
White paper
Cisco Public

Cisco Network Services
Orchestrator (NSO):
The Bridge to Automation

© 2019 Cisco and/or its affiliates. All rights reserved.

Summary
Whether architecting a service orchestration toolchain or building a DevOps environment,
the underlying automation strategies have typically expected developers to understand
how infrastructure works and infrastructure owners to be conversant with application
development and service creation. Real world experience tells us that this approach is
flawed. Cisco® Network Services Orchestrator (NSO) offers a more realistic approach by
serving as bridge between application or service owners and infrastructure owners, letting
each team operate in their native environment, yet still collaborate effectively together.
Years of operational experience have produced a platform with features and operational
capabilities that these teams will find valuable as part of any automation initiative, enterprise
or service provider.

White paper
Cisco Public

© 2019 Cisco and/or its affiliates. All rights reserved.

Automation matters
Robust automation capabilities are generally recognized as a competitive
advantage, since they can help improve customer experience, increase
revenues, and lower costs. Market pioneers are pairing automation with
concepts such as agile development, continuous integration, and continuous
deployments (CI/CD); and reshaping how they operate with demonstrated
positive results. One of the keys to success with these initiatives is robust
sophisticated tooling to support an automation strategy.

Industry leaders all share certain traits: they move quickly, they strive to
deliver a great customer experience, and they have a handle on prices
and costs. More often than not, the result is both growth of revenue and
profitability, which lets these organizations keep shareholders happy and
re-invest in the business. Successfully initiating and maintaining this virtuous
cycle requires an on-going commitment to aligning people and skills;
processes and culture; and technology that can be challenging to even the
most committed company. While all three elements are important, this paper
will mostly focus on the last element: technology (although it is impossible
to escape discussing the other two). Pioneering work by companies like
Google, Netflix, Intuit, and WalMart has shown how automating processes
can speed service creation, improve customer experience, and lower costs.
Automation is recognized as a competitive advantage, and in the last few
years, the question has changed from, “Should I automate?”, to “How do I
automate?”

How automation helps and why it often disappoints
Whether you are a mobile operator, a retailer, a media company, or a bank,
your business operates based on a number of core processes that you
repeat on a regular basis. How well you repeat those processes has a lot to
do with how happy your customers are, how happy your employees are, and
how long you will stay in business. How quickly can you respond to customer
requests? How much friction is there in your order process? How quickly can
you roll out new products and services?

Market leaders like the ones mentioned earlier have applied automation
through three foundational concepts which help improve the speed and
quality of how they get things (software, products, services) from concept to
customer:

Agile development
Agile philosophy focuses on accelerating delivery by removing process
barriers, fostering collaboration between customers and engineers, and
continuous rapid incremental improvement. While “agile” started as
a software development methodology, its concepts have come to be
successfully applied to everything from manufacturing to marketing to service
creation. Automation compresses development and testing timelines.

Contents
Automation matters

Building a better bridge

Cisco Network Service
Orchestrator (NSO)

Phase 1: Building a
progammable network
interface

Phase 2: Service abstraction

Phase 3: Full DevOps
infrastructure automation

Conclusion

White paper
Cisco Public

Continuous integration/continuous delivery (CI/CD)
CI/CD pipelines are concerned with rapid, dependable
implementation. Continuous integration is a software
practice. While it typically discussed with regards
to integration of bug fixes and new features into the
production code, it could just as easily reference router
configuration changes or firewall rules. Continuous
delivery is concerned with deployment of software and
associated infrastructure. The concept of “infrastructure
as code” is the application of CI and CD to infrastructure
software and configuration management. CI/CD is
intrinsically dependent on automation as manual
processes not only introduce errors, variances, and
delay; they also throttle scalability and increase costs.

DevOps
At its core, DevOps is about driving a cultural shift
to break down typical organizational stove-piping
and cultivating a culture of collaboration and shared
ownership. Ironically, a key to DevOps success is tooling
and automation that allows greater autonomy between
teams.

Theory vs. reality
Automation works its magic because it accomplishes
three things:

1.	 By handling monotonous processes that make up the vast
majority of the operational time (i.e., a user needing an IP
address for a web server) it frees your teams to work on
higher-value tasks like better understanding the needs of
customers and stakeholders (for instance, learning how
important business apps and services work).

2.	 Automated processes are executed in a consistent way so
downstream processes don’t have to deal with errors and
variability, and customers get predictability and a better
experience.

3.	Automated processes run on demand, at machine speed,
night and day. This shortens development, testing, and
deployment cycles for everyone. For the organization, this
translates to faster time to market, increased productivity,
and lower costs.

The theory is simple and straightforward. Reality is a bit
more complicated.

Automation depends on software being able to assert
programmatic control over the physical world—on
conceptual goals successfully crossing over into real-
word action. Even virtual resources (VMs, containers,
etc.) are still provisioned on physical infrastructure. For
instance, when a service owner clicks a button on her
screen to deploy another instance of her app, that action

must eventually translate to VMs being spun up, network
ports being brought up, IP addresses being allocated,
firewalls and load balancers being updated, amongst
other things. Real-world customers can be complicated
and demanding, and infrastructure can be equally
complicated and demanding, so success depends upon
the robustness of the bridge connecting them both (see
Figure 1).

This is a role where Cisco NSO shines: ensuring
infrastructure intent matches infrastructure reality.
Cisco NSO has been deployed for almost a decade in
some of the world’s largest and most complex multi-
vendor production environments. This white paper will
examine how that experience has translated into a set of
capabilities and tools that both developer and operations
teams can use to efficiently and comprehensively
implement automation strategy.

Building a better bridge
Years of experience helping customers automate
tier-1 environments has taught us some critical design
principles that support the goals of DevOps:

Scalable sophistication
Automation tooling is like math. Elementary school
arithmetic is fine if you need to double a pie recipe, but
you’ll need something like calculus if you are trying to
land a rocket on Mars. Similarly, you need tooling that is
simple enough to get started easily but powerful enough
for your more sophisticated initiatives. As your goals gets
more complicated, you need to make sure you have the
means to adequately express them. Scale is not just
about increasing complexity; it’s also about being able to
handle an ever-increasing number of services, apps, and
devices.

Figure 1 - Bridging worlds

White paper
Cisco Public

Flexible and adaptable edges
Change is inevitable, so your bridge must be able
to easily accommodate new apps and tools on the
“north” side of the bridge. Similarly, your bridge must
be able to accommodate changes in infrastructure on
the “south” side, such as new vendors, virtualization/
containerization, and adoption of cloud.

Normalization
The bridge must be able to abstract the view from the
other side—hide the complexity and heterogeneity that is
reality. App owners should be able to ask for resources
without caring about the implementation details.
Similarly, infrastructure owners should see requests in
a consistent way regardless of the app, tool, or system
making the requests. Because of this normalization
and abstraction role, the bridge must also serve as the
authoritative source of truth for both sides of the bridge
as to what is actually occurring.

Developer-centricity
The quality of the programmatic controls available
to both sides of the bridge will dictate what can be
accomplished and how quickly it can be accomplished.

Together, these four principles help deliver on the
promise of DevOps. They allow the entire organization
to work more cohesively while allowing each team to
function autonomously. Infrastructure owners can change
and optimize their resources without breaking apps and

services. Similarly, new apps and services can be rolled
out more quickly and without creating infrastructure
churn. Costs are lowered through increased agility,
efficiency, and productivity. Customers are happier with
products and services that are more relevant, delivered
more quickly, and with more predicable quality.

Cisco Network Service
Orchestrator (NSO)
Cisco NSO 5 represents nearly a decade of accumulated
wisdom in automating large, complex tier-1
environments. While NSO has its roots in the service
provider market, in recent years more and more large
enterprises are seeing the need for a proven automation
solution. Figure 2 provides an overview of the elements
of NSO and how they relate.

At a very high level, NSO has three components:

1.	 A model-based programmatic interface that allows for
control of everything from simple device turn-up and
configuration management to sophisticated, full lifecycle
service management.

2.	 A fast, highly scalable, highly available configuration data
store that serves as a single source of truth.

3.	 A device abstraction layer that uses network element
drivers (NEDs) to mediate access to both Cisco and more
than 150 non-Cisco physical and virtual devices.

Figure 2 - NSO architecture

White paper
Cisco Public

Taken together, these components allow NSO to
provide a single, network-wide interface to all network
devices and services—both physical and virtual—using a
common modeling language and data store. NSO lets
development teams define services and hand them off
to operations teams that can then automate service
activations and changes quickly and simply, moving from
high-level intent to granular device configurations in a
single transaction.

Looking a little deeper, real-world experience has given
NSO some key properties, including:

A true model-driven system
NSO can automatically generate a single, well-defined
API into the entire network environment. Using the
standardized YANG modeling language you can model
and automate any type of device—layers 1 through
7, physical or virtual, addressed traditionally or via
software-defined networking (SDN) overlays. And you
can model any type of service or policy.

Real-time configuration database (CDB)
NSO captures the real-time configuration state of every
device and service in the network. In a world where
network provisioning and operations teams often work
with data that is as much as 70 percent inaccurate, NSO
can provide a single, scalable, continuous source of truth
for the network.

Stateful convergence
To achieve end-to-end automation, an orchestrator
should be able to receive the “intent” of the service
and translate that to real change in the network. Many
networking organizations currently rely on workflow
definitions to accomplish this—and often find themselves
overwhelmed by a constantly growing body of workflows
to account for each unique case. NSO takes a different
approach, using the concept of state convergence.
Using the same common data models and modeling
language to describe services and devices, NSO
fully automates the creation, deletion, and run-time
modification of network services. It maps design-time
service definitions to run-time network operations
through a single, flexible data model for a service.
NSO’s stateful convergence algorithm then derives the
minimum network changes required and executes them.

Multi-domain orchestration
Automation tools have typically been bound to a
technology domain: a tool for the data center network,
a tool for the WAN, a tool for the optical network, and
perhaps tools to manage firewalls and other L4-7

devices. NSO can span multiple technology domains
allowing you to automate cross-domain service chains
much more easily and dependably.

For the virtual realm, NSO includes the Cisco Elastic
Services Controller (ESC) as part of the core platform.
ESC provides the essential capabilities needed to
automate the full lifecycle of virtual resources, virtual
machines (VMs), or container-based networking
elements as part of end-to-end services. As part of
a single service model, NSO can trigger the launch,
configuration, and ongoing monitoring and license
management of virtual network functions (VNFs)—both
individually and in complex service chains.

Getting there from here
While NSO provides the tools to support DevOps
goals, building the organizational expertise developing
processes and shifting organizational culture to take
gain maximum benefits from DevOps should be an
incremental, collaborative, iterative process. Start small,
implement something simple, learn from that experience,
and then repeat with something a little more challenging.
We recommend the following progression.

Phase 1 - Use NSO as a programmable network interface
Use NSO to provide a single API into the network.
Operations gains a network provisioning and
configuration power tool, with the ability to perform
network-wide command-line interface (CLI) and
configuration changes from a single interface, in a
single transaction, instead of having to individually
touch multiple boxes and use different, device-specific
commands.

Phase 2 - Use NSO for service abstraction
NSO draws on device and service models to begin
more fully automating service activations and changes.
You see an end-to-end view of the service as a
whole, instead of just seeing the individual device
configurations.

Phase 3 - Use NSO for DevOps infrastructure automation
As you make the people and process changes to
support agile development and CI/CD, NSO can
support that change by enabling everyone involved in
the service—product developers, network engineers,
provisioning and operations teams—to work together to
design and execute new services and changes, quickly
and continuously.

Let’s look at each of these phases in greater detail.

White paper
Cisco Public

Phase 1: Build a programmable
network interface
Despite the fact that they may be juggling hundreds or
thousands of device configurations, network engineers
often rely on manual processes—or largely manual ones,
like CLI scripting—that are fragile and labor-intensive.
NSO provides a better way using the configuration
datastore (CDB) and the abstraction/normalization of
the network element drivers (NEDs) to provide a much
more robust and resilient way of handling configuration
management through two mechanisms:

Transactions
Configuration changes are handled like database
transactions: all changes are applied at once, and if any
part of the change fails, the entire transaction rolls back.

Synchronization mechanism and diff engine
NSO can compare the configuration in the CDB to
a device and highlight differences. NSO can also
synchronize in either direction. It can bring the device
back in line with what the CDB expects or update with
CDB with the device configuration (i.e., to capture out-
of-band updates).

These two mechanisms combine to ensure configuration
changes are implemented in a trusted fashion:

1.	 NSO receives intent (what the network should look like).

2.	 NSO compares the desired state to the current state and
presents a “diff” before proceeding.

3.	NSO updates the device to match the desired state.

4.	NSO then reads back the device configuration to ensure
it matches the desired state.

This process is at the heart of NSO and, by itself, it can
make life significantly simpler for operations:

Automated device configurations with network-wide CLI
and REST interfaces
NSO manages device configurations for the entire
network with a single interface and consistent syntax.
Network engineers and operations teams can use
the same tools they use now—CLI scripting or REST
interfaces—to manipulate the configuration lifecycle
of hundreds or thousands of devices as a single set.
They can put network elements into groups and make
template-based configuration changes to large swaths
of the network at once.

Golden configurations
Network engineers can use templates to ensure that
all devices of a certain type or group comply with a

particular configuration. And they can update the golden
configuration template and apply it to all devices in that
group automatically. Simply having templates to describe
the proper configuration of all devices is a huge benefit
to network engineers and operations teams currently
relying on decentralized, manual processes to try to
keep up with sprawling heterogeneous networks.

Configuration compliance reporting
Once golden configurations are applied, network
engineers and operations teams can use NSO to poll
the network for any element that deviates from the
template. They have direct access to all devices and can
immediately capture any element that has undergone
out-of-band. Engineers can then update the golden
configuration to make an exception for a change that’s
beneficial, or re-run the template to bring the device into
compliance.

Phase 2: Service abstraction
This second phase uses NSO to help service owners
design, deploy, and modify services while also providing
operations teams greater visibility into what is running
(or not). Provisioning and operations teams can now
make automated changes at a high level, without having
to explicitly code each step and address every device
and element of a service. Network operations teams
now have deeper visibility into services. Rather than
examining low-level data from network devices and
trying to infer what each service is doing, they can view
and trace the services running on the network at the
customer-facing perspective.

Developers: Closing the gap between design
time and run time
In traditional environments, the people that design and
build things (apps, services, products, etc.) rarely talk to
the people tasked with operating them. There are often
cultural and organizational barriers but these two groups
also often lack the tools and language to effectively
collaborate. This inability to align becomes a drag on the
entire organization.

Without the upfront involvement of infrastructure teams,
important requirements and design challenges for a
new service may be unaddressed in the service models.
What appears like a simple “ask” from a developer might
actually be quite operationally complex. Problems may
not be revealed until very late in the development cycle
or even after release when they are potentially customer

White paper
Cisco Public

impacting. Attempting to address problems at this point
is expensive and the “unplanned work” has a cascading
negative impact on all the teams involved.

As organizations start to align around DevOps principles
and pursue service abstraction, they begin to bridge the
gap between design intent and network execution with
tooling like NSO. Now, service designers and developers
define new services in human-readable YANG data
models. Network teams can then test and deploy them
much more quickly, because the services are written in a
language they (and their network tools) already speak.

Service provisioning: Time to market
The rule for provisioning is simple: faster is better!
Latency in the provisioning process usually translates
to lost revenue or diminished customer experience.
Fortunately, NSO incorporates a number of capabilities
that speeds provisioning:

Full-service lifecycle automation
NSO automates the entire end-to-end service
provisioning process. It encompasses all network
devices and resources, VNFs, applications, and network
services—both at the level of coarse-grained service
intent and fine-grained run-time configurations.
Furthermore, NSO allows provisioning teams to modify
running services as well as create and delete them,
so they can make changes much more quickly and
accurately.

Transactions
As noted earlier, NSO uses a database-style transaction
model for provisioning new services or changing existing
ones to ensure that the network—and any customer’s
service—is never left in an unknown state.

Activation testing
You have the tools to build canary tests for new and
changed services by sending active traffic over the new
(or newly changed) service, measure customer-facing
key performance indicators (KPIs), and verify that the
service is performing as expected.

Run-time service modifications
NSO can make changes to active services, as opposed
to deleting and re-creating a service to implement
a change. NSO’s state convergence capabilities
automatically generate the minimum configuration
changes needed to fulfill the modified intent of the
service. For example, a customer may log into their self-
service portal to change their service level (i.e. bronze
to gold) or modify security rules. Once the changes

are requested, NSO makes the fine-grained network
changes to fulfill the customer’s request.

Network change dry-run capabilities
The NSO network change tool shows how a planned
change will affect the network and services before
executing it. Before committing to a change, teams can
perform a dry run and see the minimum set of changes
that will occur in the network as the change is executed.

Decoupling of OSS and the network
Because NSO acts as a bridge, the OSS layer is shielded
from the intricacies of the network and vice-versa.
Teams can manage the lifecycle of their respective
areas independently, using a stable interface to allow
each layer to communicate with the other. The OSS
can be updated without worrying about dependencies
with specific networking equipment. Similarly, network
infrastructure can be more agile, since new vendors or
devices no longer need to be explicitly integrated into
the OSS.

Operations: Owning the customer experience
The operations team is often the first line of defense
for managing customer experience and they have
often lacked the ability to understand what is actually
happening. NSO gives operations teams better tools for
meeting that challenge.

Traceability
NSO shows operations teams not only what is happening
on the network, but why, by letting them examine
network services within the context of the associated
customer-facing services. A team can trace a single
service across devices and see exactly how each
configuration (or change) affects each customer’s
service. This capability makes it much easier to
troubleshoot problems for a customer, understand
the impact of software version updates, and perform
other customer operations and support functions more
efficiently.

Deeper insight into service configuration
NSO gives operations teams visibility into how a service
is configured and which resources it is allocated to
quickly understand the relationship between the service
instance and what’s actually running in the network.
This allows operations to find a mismatch between how
a device is behaving, how it is configured, and what
the service expects. Operations can identify which
service is responsible for a particular part of a device’s
configuration (for instance, who needs VLAN 99?).

White paper
Cisco Public

Finally, resource failures can be linked to impacted
services (for example, which services were using the link
that keeps flapping).

Service planning
For new services is being provisioned with Reactive
FastMap (discussed in the next section), operations
can use NSO’s Plan tool to immediately see how far
the provisioning has progressed, with real-time status
and configurations from the network. This capability is
essential for automating and tracking services composed
of both quickly implemented and more time-consuming
operations.

Service health
NSO allows networking organizations to incorporate
orchestrated assurance into the service model so
they can track service KPIs that reflect the real-world
customer experience and, if applicable, verify that the
service is meeting service-level agreements (SLAs).

Phase 3: Full DevOps
infrastructure automation
Ready to start realizing the competitive advantages
of uniting network services with agile development
methodologies and CI/CD processes? Let’s take a closer
look at how NSO DevOps capabilities can help.

Model-based architecture
As discussed earlier, one of the defining features of NSO
is that it is entirely model-based. NSO captures every
aspect of a service in its models. The YANG service
model becomes a precise black box specification for
a service. By automatically mapping service intent to
device configurations, NSO significantly reduces the
amount of manual coding required, as any change in
the data model automatically triggers real-time re-
rendering of the entire system: the UI, the APIs, the data
stores, and southbound abstractions. Developers can
make design-time changes to service capabilities with
unprecedented agility, and without dependence on, or
disruption to, the infrastructure teams.

Stateful convergence

Dynamic service creation and modification is possible
because NSO works to continually converge the network
towards the desired state through two mechanisms:

FastMap
Developers only need describe the “create” operations

for a service. FastMap automatically determines the
update, delete, and repair operations needed for
any type of run-time service modification, saving the
developer the time and effort to define workflows for
every conceivable service lifecycle scenario.

Reactive FastMap
Ideal for multi-domain and distributed environments,
Reactive FastMap takes a non-linear approach to
implementing necessary changes needed to reach a
desired state. Some changes (i.e., apply a new firewall
rule) might take seconds to implement while others
(i.e., spin up a new VM) might take minutes. Instead of
getting stuck waiting on changes to complete, Reactive
FastMap makes changes where it can and continually re-
evaluates what still needs to be done

Package management
NSO gives developers a comprehensive, systematic
approach to package management with tools to
manage applications on top of the platform through
the full lifecycle of installing, updating, and uninstalling
packages. The platform applies strict versioning rules
and allows developers to capture dependencies
between packages.

Northbound integration APIs
To support DevOps processes and serve and an
effective bridge, NSO provides a stable, flexible software
interface:

A rich set of northbound APIs
NSO supports APIs ranging from programmatic or
RPC-based protocols (such as NETCONF/RESTCONF)
to language bindings like Erlang, Java, Python, and C.
NSO also provides human-to-machine interfaces, such
as a web UI and a set of CLIs. All of these interfaces are
automatically rendered from the models that developers
create.

API mediation
A common impediment service provider developers
face is existing OSS/BSS systems with hard-coded
southbound calls to infrastructure. With conventional
orchestration systems, service providers have to
undertake an extensive integration project to change
how OSS systems parse parameters to the orchestrator.
NSO simply adapts to the existing APIs the OSS uses.
Developers can create data models with that API,
load them into NSO, and map it to the existing service
package. The example is SP-specific, but NSO can
provide similar API mediation for enterprise systems.

White paper
Cisco Public

Transaction-safe operations
As mentioned previously, NSO uses a transactional
model by default, which means developers don’t have
to worry about developing and maintaining one for
themselves.

Idempotent operations
A core tenet of DevOps, NSO’s diff and convergence
operations implicitly deliver idempotency.

Transactionality and idempotency are particularly
valuable for integrating with service provider OSS/
BSS instances, as it means that when those systems
call on NSO, they never have to contend with a change
being partially executed. Any new service or change
transaction is either fully applied or not applied at all.
Additionally, idempotency means that event-based
systems in the OSS/BSS layer don’t have to be coded
with logic to avoid sending too much configuration. OSS
systems no longer need to gather and maintain state
at all—eliminating a huge amount of complexity in the
OSS layer. Upper-layer systems become much more
adaptable, and simpler and less expensive to integrate.

Multi-vendor abstraction through NEDs
NSO uses a device abstraction layer built around the
concept of NEDs that allow NSO to manipulate every
device in the network programmatically. The NED
computes the ordered sequence of device-specific
commands to take the element from its current
configuration state to the desired configuration state.
This frees developers from both having to write and
maintain device-specific code and the logic to handle
multi-vendor environments. NEDs are available for
practically any network physical or virtual Cisco element,
as well as over 150 non-Cisco devices. For further
flexibility, NSO 5 introduces a NED Builder tool that
allows customers to create their own NEDs for NETCONF
devices.

Developer tools and SDK content
NSO includes comprehensive tools to help developers
work faster and more efficiently at every stage of the
development cycle.

Create
NSO gives developers the ability to run a full production-
grade installation of the system in a realistic development
environment, so they can get started coding right
away. It features a wide set of YANG tools, including
YANG validators and compilers. This simplifies work for
developers during the “Create” process.

Verify
NSO provides development and production test
capabilities through its NetSim tool. This network
simulator allows developers to quickly and inexpensively
test their code on a realistic simulation of the production
environment. NSO also provides offline tools for
validating version migration. These tools validate the
extent to which clients or consumers of a service (i.e.,
an orchestrator or a OSS/BSS system) need updates, so
developers can avoid introducing unintended disruptive
changes.

Package
When developers release new code, NSO provides
a self-contained and versioned package format. This
means that developers can build and package their work
such that the package is the only thing they need to
import into the running system. NSO also provides hitless
package installation and version migration, so developers
can introduce new packages or update existing ones at
run time, without impacting the operation of the system.

Configure
NSO can integrate into a CI/CD pipeline so that
infrastructure and infrastructure configuration can be
seamlessly deployed in concert with the related software
packages. Beyond simplifying initial deployment, this
capability is helpful with functions like auto-scaling so
adding or deleting app instances also automatically
includes the associated infrastructure.

Monitor
NSO provides insight to understand how an app or
service is interacting with the infrastructure--is there a
performance bottleneck or is a service running out of
resources. The CDB also provides a single source of
truth for performance management, health monitoring,
system assurance and similar tools to easily gather
operational data on the state of infrastructure.

Figure 3 - DevOps cycle

White paper
Cisco Public

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered trademarks of
Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/
trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does
not imply a partnership relationship between Cisco and any other company. (1110R)

More information
cisco.com/go/nso

NSO on DevNet

developer.cisco.com/nso

NSO on GitHub
github.com/NSO-developer

Conclusion
NSO makes it easy to bring development tools and methodologies from
the software world into the network world. When everyone is speaking the
same language and using the same tools, and information flows freely in all
directions, the time between coming up with a great idea and getting it into
production is radically shortened.

What to do next?
Crossing the bridge will take many steps. Be incremental and be persistent:

•	 Map the links between technology, people, and processes
•	 Invest in upgrading the skills of your people
•	 Take small steps, conduct many pilots, and learn things
•	 Recognize there will be resistance to change
•	 Embrace uncertainty
•	 Let each team move at their own pace
•	 Keep your customer (internal or external) front and center
•	 Start with something small but useful: get a win, gain

confidence, repeat with something a bit more challenging
By breaking down the walls separating service designers, application
developers and infrastructure operations teams, NSO helps organizations
accelerate their adoption of DevOps principles and culture with its attendant
benefits for both an organization and its customers.

