Table Of Contents
Cisco Service Control MPLS/VPN Solution Guide, Release 3.6.x
Introduction to the Service Control MPLS/VPN Solution
Cisco Service Control MPLS/VPN: the Challenge and the Solution
Cisco MPLS-VPN Service Control Solution
Benefits for Service Providers
Overview of the Service Control Solution for MPLS/VPN Networks
Service Control in the MPLS/VPN Environment
What are the Challenges for Service Control MPLS/VPN Support?
How the Service Control MPLS/VPN Solution Works
Service Control MPLS/VPN Concepts
Additional MPLS Pattern Support
Service Control MPLS/VPN Requirements
Configuring the MPLS Environment
How to Check the Running Configuration
How to Configure the MPLS Environment
How to Configure the SCE Platform for MPLS/VPN Support
About Configuring the SCE Platform for MPLS/VPN Support
How to Configure the MAC Resolver
How to Monitor the MAC Resolver
How to Configure the SM for MPLS/VPN Support
Configuring the SM for MPLS/VPN Support
How to Edit the SM Configuration File
How to Configure the SM to Allow IP Ranges
How to Manage MPLS/VPN Support via SNMP
How to Monitor MPLS/VPN Support via SCE Platform CLI
How to Display VPN-related Mappings
How to Clear Upstream VPN Mappings
How to Monitor Subscriber Counters
How to Monitor MPLS/VPN Counters
How to Monitor Non-VPN Mappings
How to Manage MPLS/VPN Support via SM CLU
How to Add Mappings to VPN-based Subscribers
How to Remove VPN Mappings from Subscribers
How to Monitor Subscriber MPLS/VPN Mappings
Obtaining Documentation and Submitting a Service Request
Cisco Service Control Solution Guide
Cisco Service Control MPLS/VPN Solution Guide, Release 3.6.x
Revised: March 28, 2010, OL-21076-01
Note This document supports all 3.6.x releases.
1 About this Guide
This guide is for experienced network administrators who are responsible for configuring and maintaining the Service Control Multiprotocol Label Switching (MPLS) or Virtual Private Network (VPN) solution.
Document Revision History
Table 1 lists the Document Revision History which records changes to this document.
Table 1 Document Revision History
Revision Cisco Service Control Release and Date Change SummaryOL-21076-01
Supports all 3.6.x releases
March 28, 2010First version of this document.
Related Publications
The following documentation contains additional information about the components of the Service Control MPLS/VPN solution:
•For more information about general configuration of the Cisco Service Control solution, see the following guides:
–Cisco SCE8000 10GBE Software Configuration Guide
–Cisco SCE8000 GBE Software Configuration Guide
–Cisco SCE 2000 and SCE 1000 Software Configuration Guide
•For more information about the Service Control CLI and a complete listing of all CLI commands, see the following command reference:
–Cisco SCE8000 CLI Command Reference
–Cisco SCE 2000 and SCE 1000 CLI Command Reference
•For more information about the configuration and maintenance of the Subscriber Manager (SM), see Cisco Service Control Management Suite Subscriber Manager User Guide.
In addition, the extensive features and functionality of the SCE platform and the softwares are documented in the following guides:
•For complete installation information, including initial configuration, see the following installation guides:
–Cisco SCE8000 10GBE Installation and Configuration Guide
–Cisco SCE8000 GBE Installation and Configuration Guide
–Cisco SCE 2000 Installation and Configuration Guide
–Cisco SCE 1000 2xGBE Installation and Configuration Guide
Note You can access Cisco software configuration, and hardware installation and maintenance documentation at the Cisco.com.
•For initial installation and startup information, see the following quick start guides:
–Cisco SCE8000 10GBE Quick Start Guide
–Cisco SCE8000 GBE Quick Start Guide
–Cisco SCE 2000 Quick Start Guide
–Cisco Service Control Engine 1000 2xGBE Quick Start Guide
•For international agency compliance, safety, and statutory information for WAN interfaces for the SCE platform, see the regulatory and safety information document:
–Regulatory Compliance and Safety Information for the Cisco Service Control Engine (SCE)
2 Introduction to the Service Control MPLS/VPN Solution
This section explains how the Cisco Service Control MPLS/VPN solution was developed to solve the challenges faced by ISPs offering MPLS/VPN services.
Cisco Service Control MPLS/VPN: the Challenge and the Solution
•Cisco MPLS-VPN Service Control Solution
•Benefits for Service Providers
Overview
Cisco offers a Service Control solution that is applicable for service providers who are either currently offering MPLS-VPN services to their customers, or planning to introduce such a service in the near future. This service targets providers offering enterprise-focused solutions as well as those who are involved in offering MPLS-VPN services to their SOHO customers. This highest level solution allows complete visibility into the applications and services in MPLS-VPN tunnels for subscriber-based usage monitoring and billing, and is used for capacity control and differentiation of service levels as well.
The Service Control solution incorporates the ability to monitor and control all the traffic in an MPLS-VPN tunnel as belonging to a single subscriber entity, including traffic with private non-routable IP addresses. Its advanced functionality facilitates the implementation of the Cisco Service Control solution in MPLS-VPN environments, and the suite of capabilities that the solution provides.
Challenge
Service providers that offer MPLS-VPN services are challenged in their ability to use their investment in the MPLS-VPN infrastructure. This lack of control hampers their ability to both reduce total cost of ownership and increase per customer revenue, aggregate revenue, and profitability.
These service providers need to:
•Implement usage monitoring and trend analysis for the traffic of MPLS-VPN tunnels to improve existing business models and develop new ones.
•Launch new service packages and billing plans enabled by granular subscriber usage information per service and application for the traffic inside MPLS-VPN tunnels.
•Control the traffic inside MPLS-VPN tunnels by de-prioritizing some of the traffic that the MPLS-VPN customers consider less important, while prioritizing business-critical traffic and providing network-based services such as content-filtering, security phishing prevention, and other such services.
Cisco MPLS-VPN Service Control Solution
In the Cisco MPLS-VPN Service Control solution, Cisco has managed to overcome the technical challenge of classifying flows with private non-routable IP addresses into the correct MPLS-VPN that these flows are part of. The challenge originates from the fact that the SCE platform may have been incorrectly classifying the packets of these flows. The Cisco MPLS-VPN solution implements a unique learning algorithm that can successfully, reliably, and correctly classify multiple flows in multiple MPLS-VPN tunnels, even if they have the same private IP address.
The Cisco MPLS-VPN Service Control solution:
•Closes the loop between the Service Control engine and the PE routers that manage the allocation of MPLS tags to MPLS-VPN tunnels.
•Overcomes the challenge of correct classification of flows with private non-routable source-IP addresses.
Benefits for Service Providers
With the Cisco Service Control MPLS-VPN solution, service providers can benefit from granular per subscriber and per application usage reports. This granularity allows for complete per subscriber and per application Layer-7 visibility of the manner in which their MPLS-VPN subscribers are using the service provider's network. These reports can, for example, show:
•HTTP hosts or RTSP streaming hosts that are most popular for each subscriber
•Bandwidth per service consumed by an MPLS-VPN subscriber over a predefined time period
•Extensive variety of usage reports available as part of the Cisco Service Control solution
These reports can be used by the service provider network teams for capacity planning, and by the marketing teams for planning and rolling out new tiers of service packages.
As well as the data records that enable these reports, the solution generates data records that can be forwarded to mediation and billing systems and used for implementation of granular usage-based billing.
Service providers can also benefit from the Service Control MPLS-VPN solution by using the SCE platforms as network enforcement devices for a variety of per network-based services, such as:
•Mission-critical traffic prioritization—SCE platforms can be used for prioritizing the Oracle or Citrix traffic that flows between the branches of the MPLS-VPN customer.
•Implementing various types of managed services —Solution can be used to create services designed to increase employee productivity, such as the creation of a network-based content filtering service. The deployment, management, and ongoing administration of this suite of services can be easily controlled using a standard web interface.
This flexibility not only provides an extremely attractive return on investment, but protects your investment as your needs for network and application infrastructure evolves.
Using the Service Control infrastructure to create these next-generation services provides the path to enhanced customer revenue streams, differentiated service offerings, and a cost structure commensurate with the required business model.
3 Overview of the Service Control Solution for MPLS/VPN Networks
This section contains the following subsections:
•Service Control in the MPLS/VPN Environment
•What are the Challenges for Service Control MPLS/VPN Support?
•Service Control MPLS/VPN Concepts
•Service Control MPLS/VPN Requirements
Service Control in the MPLS/VPN Environment
MPLS/VPN networks are very complex, and use many routing protocols, and many different levels of addressing and control. In addition, the various VPNs may use overlapping IP addresses (private IPs).
The SCE platform makes a distinction between identical IP addresses that come from different VPNs, and maps them into subscribers according to the MPLS labels attached to the packets. This involves various mechanisms in all levels of the system.
The following assumptions and requirements allow the SCE platform to operate in an MPLS/VPN environment:
•MPLS/VPN architecture is according to RFC 2547.
•Specific type of encapsulation used is the MPLS shim header over Ethernet (described in RFC 3032).
•There are two levels of MPLS labels:
–External labels—For transport over the service provider MPLS core network.
These labels are not mandatory for VPN classification, and some situations do not appear in the packet due to Penultimate-Hop Popping (PHP) or other reasons.
–Internal labels [Border Gateway Protocol (BGP) labels]—To identify the VPNs connected to each edge router, and typically controlled by the BGP protocol.
These labels are mandatory for VPN classification.
•The MPLS/VPN solution contains the SCE platform and the SM. The SM acts as a BGP peer for the PE routers in the service provider network, and communicates the BGP information to the SCE platform as subscriber information.
Note The MPLS/VPN solution supports the existence of non-VPN-based subscribers concurrently with the MPLS/VPN-based subscribers. (see the "Non-VPN-Based Subscribers" section.)
Definitions and Acronyms
Table 2 defines important terms and acronyms.
Table 2 MPLS/VPN Terms and Acronyms
Term or Acronym DefinitionPE1
Router at the edge of the service provider network. The PE routers are the ones that connect to the customers, and maintain the VPNs
P2
Router in the core of the service provider network. P routers only forward MPLS packets, regardless of VPNs.
VPN
In the Service Control context, a VPN resides in a specific site. It is a managed entity over which private IP subscribers can be managed.
BGP LEG
Software module that resides on the SM server and generates BGP-related login events. The BGP LEG communicates with the BGP routers (PEs) and passes the relevant updates to the SM software, which generates login events to the SCE platform for the updated VPN-based subscribers.
Upstream
Traffic coming from the PE router and going into the P router.
Downstream
Traffic coming from the P router and going into the PE router.
RD3
Used to uniquely identify the same network/mask from different VRFs (such as, 10.0.0.0/8 from VPN A and 10.0.0.0/8 from VPN B).
RT4
Used by the routing protocols to control import and export policies, to build arbitrary VPN topologies for customers.
VRF5
Mechanism used to build per-interface routing tables. Each PE has several VRFs, one for each site it connects to. This is how the private IPs remain unique.
1 Provider Edge (PE)
2 Provider (P)
3 Route Distinguisher (RD)
4 Route Target (RT)
5 Virtual Routing and Forwarding (VRF) instance
What are the Challenges for Service Control MPLS/VPN Support?
The challenges for Service Control MPLS/APN support are:
•Private IP addresses cause flows to look the same except for their MPLS labels.
•The MPLS labels are different in each direction, and must be matched.
•Detecting that a flow belongs to a certain VPN is complicated by the fact that in the downstream direction there is no external label. The SCE platform must be able to understand the VPN information from the internal label and the MAC address of the PE.
How MPLS/VPN Support Works
Service Control supports three mechanisms that make MPLS/VPN support work:
•Flow detection—SCE platforms match upstream and downstream traffic to identify flows.
•VPN detection—Downstream VPN labels are identified by the SM. The SCE platform learns the upstream labels from the traffic to identify the VPN.
•Subscriber detection—SM and SCE platform function together to identify the IP range within a VPN that is defined as a single subscriber.
Flow Detection
Flow detection is the process of deciding which packets belong to the same flow. This relates to the first two challenges listed:
•Private IP addresses cause flows to look the same except for their MPLS labels.
•The MPLS labels are different in each direction, and must be matched.
Flow detection is based on the MPLS labels, extending the basic 5-tuple that SCOS uses to identify flows, and notes that in MPLS, the packet is labeled differently in each direction.
Because MPLS traffic is unidirectional, each direction is classified separately by the SCE platform, using the following:
•Downstream—BGP label and the MAC address of the PE router (only one label that is relevant to the classification)
Downstream labels are learned from the control plane (through the SM BGP LEG).
•Upstream—Combination of the external label, the BGP label, and the MAC address of the P router (two labels that are relevant to the classification).
Upstream labels are learned from the data plane.
VPN Detection
The network configuration that provides the division into VPNs is controlled by the SM. The network-wide value that describes a VPN most closely is either the RT or the RD.
•Administrator configures the SM to detect VPNs, according to selected attribute (RT or RD). (See "How to Configure the SM for MPLS/VPN Support" section)
•Network operator provides the SCE platform with a mapping between RT values and VPN subscriber names. (See How to Manage MPLS/VPN Support via SM CLU)
The relevant module in the Subscriber Manager server (SM) is the BGP LEG. The BGP LEG is added to the BGP neighborhood for obtaining the information on the MPLS labels. The local PEs are configured to add the BGP LEG as a BGP peer.
The SCE platform detects that a flow belongs to a certain VPN according to the downstream label that the flow carries, and the MAC address of the PE router that it is sent to.
One VPN may spread over more than one PE router, as long as all the sites of the VPN are connected to the subscriber side of the same SCE platform.
VPNs can be configured only via the SM. The SCE platform CLI can be used to view VPN-related information, but not to configure the VPNs.
Subscriber Detection
•What is an MPLS/VPN-based Subscriber?
•Private IP Subscriber Support
What is an MPLS/VPN-based Subscriber?
As in other modes of operation, in MPLS/VPN each flow belongs to a certain subscriber. A VPN-based subscriber is a part of a VPN. The VPN itself corresponds to a set of IP addresses that are managed separately and that belong to a specific ISP customer who pays for the VPN service.
An MPLS/VPN-based subscriber can be defined as either of the following:
•Set of IP addresses or ranges in a certain VPN.
•All the IP addresses of a CE router, defined by a BGP community over a VPN.
The network configuration that provides the division into VPNs and VPN-based subscribers is controlled by the SM. (For more information, see Cisco Service Control Management Suite Subscriber Manager User Guide.)
Private IP Subscriber Support
VPN-based subscribers can have private IP mappings, which are a combination of an IP range and a VPN mapping. Because the source of such mappings is typically in the BGP protocol, and they are received automatically from the protocol by the BGP agent, the IP ranges may contain overlapping ranges. The semantics of such overlaps is that of a longest prefix match.
For example, if subscriber A receives the range 10.0.0.0/8@VPN1 and subscriber B receives the range 10.1.0.0/16@VPN1, the system maps IPs that start with 10.1 to subscriber B, and any other address that begins with 10 to subscriber A. Traffic with other IP addresses on VPN1 are mapped to the unknown subscriber.
For private IP subscribers, flows are distributed to traffic processors according to the VPN, not according to the IP address. This means that all traffic from any one VPN is mapped to the same traffic processor.
How the Service Control MPLS/VPN Solution Works
•How the Service Control MPLS/VPN Solution Works: A Summary
•SCE Platform Tasks in the MPLS/VPN Solution
•BGP LEG Tasks in the MPLS/VPN Solution
•SM Tasks in the MPLS/VPN Solution
How the Service Control MPLS/VPN Solution Works: A Summary
•SM is configured with the VPNs and VPN-based subscribers that should be managed.
A VPN is identified by the RD or RT and the PE router.
•BGP LEG updates the SM with the MPLS labels and IP routes.
•SM pushes the VPNs with their labels and the VPN-based subscriber to the SCE platform with the downstream MPLS labels of the VPN.
•SCE platform resolves the PE MAC addresses and updates its tables with the new information.
•SCE platform learns the upstream labels, including the P MAC address.
•SCE platform provides the regular services to the VPN-based subscribers (BW management, reports, and so forth.)
SCE Platform Tasks in the MPLS/VPN Solution
•Matching upstream to downstream labels:
–Mappings of downstream labels to VPNs are received from the SM
–Upstream labels are learned from the data
•MAC addresses of the PEs are used to distinguish downstream labels of different PEs.
•After the learning, each flow is classified as belonging to one of the VPNs.
•SCE platform performs a longest prefix match on the IP address inside the VPN, and classifies each flow to the correct VPN-based subscriber.
•SCE platform runs the Service Control Application for Broadband (SCA-BB) application for the network flows, which are classified to VPNs, thus providing subscriber-aware service control and reporting.
BGP LEG Tasks in the MPLS/VPN Solution
•BGP LEG is a software module that runs on the SM server.
•LEG maintains a BGP session with a list of PEs.
•After the sessions establishment, the LEG propagates MP-BGP route-updates from the PEs to the SM module.
SM Tasks in the MPLS/VPN Solution
•VPNs are stored in the SM database.
•Each VPN is defined by:
–IP address of the loopback interface of the PE router.
–RD or RT that identifies the VPN within the PE router.
•VPN-based subscriber is defined by the IP range in a specified VPN or the BGP community (CE as subscriber).
•SM receives updates from the BGP LEG and updates the VPN information with the new MPLS labels.
•Relevant SCE platforms that gets the MPLS updates are defined by the VPN domain.
Service Control MPLS/VPN Concepts
•Additional MPLS Pattern Support
Non-VPN-Based Subscribers
The MPLS/VPN solution supports the existence of non-VPN-based (regular IP) subscribers concurrently with the MPLS/VPN-based subscribers, with the following limitations and requirements:
•SM must work in "push" mode.
•Non-VPN-based subscribers cannot have IP in VPN mappings.
•VLAN-based subscribers are not supported at the same time as MPLS/VPN-based subscribers.
In typical MPLS/VPN networks, traffic that does not belong to any VPN is labeled with a single MPLS label in the upstream direction, which is used for routing. The downstream direction of such flows typically contains no label, because of PHP.
The SCE platform uses one or more labels upstream and no label downstream definition to identify non-VPN flows. Classification and traffic processor load balancing on these flows is performed according to the IP header, rather than the label.
This process requires learning of the upstream labels in use for such flows, and is done using the flow detection mechanism described above (see the "Flow Detection" section).
Bypassing Unknown VPNs
In an MPLS network, there may be many VPNs crossing the SCE platform, only a small number of which require service control functionality. It is necessary for the SCE platform to recognize which VPNs are not managed.
•SCE platform automatically bypasses any VPN that is not configured in the SM.
•VPNs are bypassed by the SCE platform without any service.
Note The label limit (see the "Limitations" section)of 57,344 different labels includes labels from the bypassed VPNs.
Each bypassed VPN entry, both upstream and downstream, is removed from the database after a set period of time (10 minutes). If the entry is still used in the traffic, it is re-learned. This allows the database to remain clean, even if the labels are reused by the routers for different VPNs.
In the show bypassed VPNs command, the age is indicated with each label—Length of time since it was learned.
Additional MPLS Pattern Support
The MPLS/VPN solution was designed to provide DPI services in an MPLS/VPN network. These networks use BGP protocol as the control plane for the VPNs and LDP protocol for routing. There are complex networks in which the MPLS infrastructure is used not only for VPN and routing, but also for other features such as traffic engineering (TE) and better fail-over. These features are usually enabled per VRF in the PE.
The Service Control MPLS/VPN solution does not support VPNs that use other MPLS-related features. Features such as MPLS-TE or MPLS-FRR (Fast Reroute) are not supported. VPNs for which these features are enabled can be automatically bypassed in the system, but are not allowed to be configured in the SM as serviced VPNs. Configuration of these VPNs in the SM might cause misclassification because of label aliasing.
The following list describes the labels combinations that are supported by the SCE platform and how each combination is interpreted by the platform:
•One or more labels upstream, no labels downstream—Assumed to be non-VPN (see the "Non-VPN-Based Subscribers" section).
SCE platform treats the following IP flows as non-VPN flows, and ignores their labels.
•One label upstream, one label downstream—Assumed to be VPN traffic, in which the P router happens to be the last hop in the upstream.
Label in the downstream is treated as a BGP label, like the regular case. If the BGP label is known from the SM, then the flow is assigned to the correct subscriber, otherwise, it is treated as a bypassed VPN.
•Two labels upstream, one label downstream—Typical configuration of the system. Of the two upstream labels, one is for BGP and one for LDP. The downstream label is for BGP only.
•More than two labels upstream, or more than one label downstream—Combinations that occur when other MPLS-related features are enabled for the VPN. Such VPNs are not supported and should not be configured in the SM. However, they can be bypassed in the SCE platform without any service and without harming the service for other VPNs.
VPN Identifier (RD or RT)
Either the RD attribute or the RT attribute can be used to identify the VPN. It is required to decide which attribute best reflects the VPN partitioning, and configure the system accordingly. Note that the configuration is global for all the VPNs, that is, all VPNs must be identified by the same attribute.
RD is generally used to distinguish the distinct VPN routes of separate customers who connect to the provider, so in most cases the RD is a good partition for the VPNs in the network. Because RD is an identifier of the local VRF, and not the target VRF, it can be used to distinguish between VPNs that transfer information to a common central entity (for example a central bank, IRS, Port Authority, and so forth.).
RT is used to define the destination VPN site. Though it is not intuitive to define the VPN based on its destination route, it might be easier in some cases. For example, if all the VPN sites that communicate to a central bank must be treated as a single subscriber, consider using the RT as the VPN identifier.
It is important to note that this configuration is global. Therefore, if at some point in time, any VPN would have to be defined by RD, then all the other VPNs must be defined by RD as well. This is a point to consider when designing the initial deployment.
Service Control MPLS/VPN Requirements
Topology
Following are the general topology requirements for MPLS/VPN support:
•SCE platform is placed in the network between the P routers (Provider MPLS core) and the PE routers.
•Subscriber side of the SCE platform is connected to the PE router.
•Network side of the SCE platform is connected to the P router.
•BGP LEG is installed on the SM, and is placed somewhere in the network.
It speaks with the SCE platform through the management IP.
In a Cascade Installation:
•The two SCE platforms are connected to each other via the cascade interfaces.
•The data link between the P and the PE is connected via the other interfaces on each SCE platform, as described above:
–Subscriber side of each SCE platform connected toward the PE router
–Network side of each SCE platform connected toward the P router
Figure 1 depicts a typical cascade installation.
Figure 1 Typical MPLs/VPN Installation
Capacity
The system supports:
•2015 MPLS/VPNs. 80,000 IP mappings over VPNs
•57,344 different labels (including upstream and downstream, and including the bypassed VPNs)
•256 PEs per SCE platform. 4 interfaces per PE
Limitations
Note MPLS/VPN functionality is not supported on the Cisco SCE8000 platform.
The limitations are:
•Mutually Exclusive System Modes
•Subscriber-related Limitations
•VPN Configuration Requirements
Mutually Exclusive System Modes
When the system works in MPLS/VPN mode, the following modes are not supported:
•Tunneling modes:
–MPLS traffic engineering skip
–MPLS VPN skip
–L2TP skip
–VLAN symmetric classify
•TCP Bypass-establishment
•DDoS
•Value Added Services (VAS)
Number of MPLS Labels
•Choice of the unique VPN site must be based on the BGP label only. The BGP label must be the innermost label.
•MPLS/VPN solution supports various combinations of labels. See "Additional MPLS Pattern Support" section.
•Systems do not support VPNs for which other MPLS-related features, such as MPLS-TE or MPLS-FRR, are enabled.
Subscriber-related Limitations
The following subscriber-related limitations exist in the current solution:
•The SM must be configured to operate in Push mode.
•VLAN-based subscribers cannot be used.
•Introduced subscriber aging is not supported when using VPN-based subscribers.
•Maximum number of VPN-based mappings per single subscriber:
–200 (standalone)
–50 (cascade)
Topology-related Limitations
•Asymmetrical routing topology in which the traffic may be unidirectional, is not supported because the MPLS/VPN solution relies on the bidirectional nature of the traffic for various mechanisms.
TCP Related Requirements
•Number of Upstream TCP Flows—There must be enough TCP flows opening from the subscriber side on each PE-PE route in each period of time. The higher the rate of TCP flows from the subscriber side, the higher the accuracy of the mechanism can be.
VPN Configuration Requirements
•Two VPN sites must be aggregated into one VPN if the following conditions are both true:
–Connected to the same SCE platform
–Communicate with a common remote site using the same upstream labels and P router.
•An MPLS/VPN-based subscriber MAY NOT have IP mappings over more than one VPN.
Backwards Compatibility
An SCE platform running SCOS V3.1.5 and later does not support MPLS/VPN subscribers of the type used in earlier versions. Instead of defining an MPLS/VPN subscriber, which reflects the whole VPN, the user must configure a VPN entity and a full range private IP subscriber within that VPN (0.0.0.0/0@VPN1).
When working with the combination of SM (version before V3.1.5) and an SCE (V3.1.5 and above), only regular IP subscribers are supported. VPN-based subscribers are not supported.
4 Configuring MPLS/VPN Support
This module explains how to configure MPLS/VPN support. Both the SCE platform and the SM must be properly configured.
•Configuring the MPLS Environment
•How to Configure the SCE Platform for MPLS/VPN Support
•How to Configure the SM for MPLS/VPN Support
Configuring the MPLS Environment
For MPLS/VPN support to function, the environment must be configured correctly, specifically requires that:
•All other tunneling protocols are configured to the default mode.
•MPLS auto-learning mechanism are enabled.
How to Check the Running Configuration
Check the running configuration to verify no user-configured values appear for tunneling protocols or VLAN support, indicating that they are all in default mode.
Step 1 From the SCE# prompt, enter show running-config and press Enter.
The running configuration appears.
Step 2 Check that no VLAN or L2TP configuration appears.
How to Configure the MPLS Environment
If either VLAN or tunneling support is in default mode, skip the relevant step in the following procedure.
Step 1 From the SCE(config if)# prompt, enter default vlan and press Enter.
This configures VLAN support to default mode.
Step 2 From the SCE(config if)# prompt, enter no IP-tunnel and press Enter.
This disables all other tunneling protocol support.
Note All subscribers with VPN mappings must be cleared to change the tunneling mode. To clear all subscribers with VPN mappings when the SM is down, use the no subscriber all with-vpn-mappings CLI command.
Note In addition, all VPN mappings must also be removed. This can only be done via the SM CLU (which means that the connection with the SM must be up). See the "How to Manage VPN Mappings" section.
Step 3 From the SCE(config if)# prompt, enter MPLS VPN auto-learn and press Enter.
This enables the MPLS auto-learning mechanism.
How to Configure the SCE Platform for MPLS/VPN Support
•About Configuring the SCE Platform for MPLS/VPN Support
•How to Configure the MAC Resolver
•How to Monitor the MAC Resolver
About Configuring the SCE Platform for MPLS/VPN Support
There are three main steps to configure the SCE platform for MPLS/VPN support:
1. Correctly configure the MPLS tunneling environment by disabling all other tunneling protocols, including VLAN support. (See the "How to Configure the MPLS Environment" section)
2. Define all PE routers, specifying the relevant interface IP addresses necessary for MAC resolution. (See the "How to Define the PE Routers" section)
3. Configure the MAC resolver. (See the "How to Configure the MAC Resolver" section)
How to Define the PE Routers
Options
The following options are available:
•PE-ID—IP address that identifies the PE router.
•interface-ip—Interface IP address for the PE router. This option is used for MAC resolution.
–At least one interface IP address must be defined per PE router.
–Multiple interface IP addresses may be defined for one PE router.
–In the case where the PE router has multiple IP interfaces sharing the same MAC address, it is sufficient to configure just one of the PE interfaces.
•vlan—VLAN tags can optionally be provided for each interface IP.
Two interfaces cannot be defined with the same IP address, even if they have different VLAN tags. If such a configuration is attempted, it simply updates the VLAN tag information for the existing PE interface.
How to Add a PE Router
Each PE router that has managed VPNs behind it must be defined using the following CLI command.
From the SCE(config if)# prompt, enter MPLS VPN PE-ID pe-id interface-ip-address interface-ip [vlan vlan] and press Enter.
This defines the PE router with one interface IP address and optional VLAN tag may also be used to add an additional interface IP address to an existing PE router.
How to Remove PE Routers
•How to Remove a Specified PE Router
•How to Remove a Specified Interface from a PE Router
About Removing PE Routers
Use these commands to remove one or all defined PE routers.
Note the following:
•You cannot remove a PE, if it retains any MPLS mappings. The VPN must be logged out and all mappings removed before removing the router used. (You must use the SM CLU to remove VPN mappings. See the "How to Manage VPN Mappings" section)
•Removing the last interface of a PE router removes the router as well. Therefore, you must logout the relevant VPN to remove the last interface.
•Likewise, all VPNs must be logged out before using the no PE-Database command below because it removes all PE routers.
How to Remove a Specified PE Router
From the SCE(config if)# prompt, enter
no MPLS VPN PE-ID
pe-id and press Enter.This command removes the specified PE router.
How to Remove All PE Routers
From the SCE(config if)# prompt, enter
no MPLS VPN PE-Database
and press Enter.This command removes all configured PE routers.
How to Remove a Specified Interface from a PE Router
From the SCE(config if)# prompt, enter
no MPLS VPN PE-ID pe-id interface-ip-address
interface-ip and press Enter.This command removes the specified interface from the PE router definition. The PE router itself is not removed.
How to Configure the MAC Resolver
•How to Add a Static IP Address
•How to Remove a Static IP Address
About the MAC Resolver
The MAC resolver allows the SCOS to find the MAC address associated with a specific IP address. The MAC resolver must be configured when the SCE platform operates in MPLS/VPN mode, to translate the IP addresses of the PE router interfaces to their respective MAC addresses.
The MPLS/VPN mode needs the MAC resolver, as opposed to the standard ARP protocol, because the ARP is used by the management interface, whereas MPLS/VPN uses the traffic interfaces of the SCE platform, which ARP does not include.
The MAC resolver database holds the IP addresses registered by the clients to be resolved. The IP addresses of the routers are added to and removed from the database in either of two modes:
•Dynamic mode (default)—System listens to ARP messages of the configured PE interfaces, and this way it stays updated with their MAC addresses. There is no configuration required when operating in dynamic mode.
–Benefit—Works even if the MAC address of the PE interface changes.
–Drawback—depending on the specific network topology, the MAC resolution convergence time may be undesirably long.
•Static mode—MAC address of each PE router must be explicitly defined by the user.
–Benefit—No initial delay until IP addresses converge
–Drawback—PE interface is not automatically updated via ARP updates; therefore, it does not automatically support cases where the MAC address changes on the fly.
However, for statically configured MAC addresses, a user log message appears when the system detects that the MAC address changed. This can be used by the operator to configure the new address.
These two modes can function simultaneously; therefore, selected PE routers can be configured statically, while the rest are resolved dynamically
For more information about the MAC resolver, see the following software configuration guides:
•Cisco SCE8000 10GBE Software Configuration Guide
•Cisco SCE8000 GBE Software Configuration Guide
•Cisco SCE 2000 and SCE 1000 Software Configuration Guide
Options
The following options are available:
•ip address—IP address entry to be added to or removed from the database.
•vlan tag—VLAN tag that identifies the VLAN that carries this IP address (if applicable).
•mac address—MAC address assigned to enter the IP address, in xxxx.xxxx.xxxx format.
How to Add a Static IP Address
From the SCE(config if)# prompt, enter
mac-resolver arp
ip_address [vlan vlan_tag] mac_address and press Enter.This command adds the specified IP address and MAC address pair to the MAC resolver database.
How to Remove a Static IP Address
From the SCE(config if)# prompt, enter
no mac-resolver arp
ip_address [vlan vlan_tag] and press Enter.This command removes the specified IP address and MAC address pair from the MAC resolver database.
How to Monitor the MAC Resolver
Use this command to see a listing of all IP addresses and corresponding MAC addresses currently registered in the MAC resolver database.
From the SCE# prompt, enter
show interface linecard 0 mac-resolver arp
and press Enter.This command displays a listing of all IP addresses and corresponding MAC addresses currently registered in the MAC resolver database.
How to Configure the SM for MPLS/VPN Support
•Configuring the SM for MPLS/VPN Support
•How to Edit the SM Configuration File
•How to Configure the SM to Allow IP Ranges
Configuring the SM for MPLS/VPN Support
There are two main steps to configure the SM for MPLS/VPN support:
Step 1 Edit the p3sm.cfg configuration file to specify the field in the BGP messages that should be used by the SM for MPLS-VPN identification. See the "How to Edit the SM Configuration File" section
Step 2 Install and configure the BGP LEG.
For more information, see Cisco SCMS SM LEGs User Guide.
How to Edit the SM Configuration File
The SM configuration file, p3sm.cfg, must be configured to:
•Specify the field in the BGP messages that should be used by the SM for MPLS-VPN identification.
•Enable IP ranges.
How to Configure the SM for MPLS/VPN Support
Add the following section to the p3sm.cfg configuration file:
# The following section enables SM operation with MPLS-VPN support. [MPLS-VPN] # The following parameter defines the BGP attribute to use to identify VPN subscribers # possible values: "rd" or "rt". # (default: rt) vpn_id=rtHow to Configure the SM for Troubleshooting MPLS/VPN Support
An optional parameter may be turned on to facilitate troubleshooting the BGP LEG installation. This parameter turns on detailed logging of messages received from the BGP LEG. It should only be turned on when necessary for troubleshooting and should always be turned off for normal operation of the system.
Add the following parameter to the [MPLS-VPN] section of the p3sm.cfg configuration file:
# The following parameter turns on detailed logging of messages received from the BGP LEG # should be changed to true only during troubleshooting # (default: false) log_all=trueHow to Configure the SM to Allow IP Ranges
To setup the SM to work with MPLS/VPN, to enable the IP ranges use the support_ip_ranges command in the configuration file.
Set the support_ip_ranges parameter in the [Data Repository] section of the p3sm.cfg configuration file to 'yes', as in the following example.
support_ip_ranges=yes
Note Resetting this parameter requires restarting the SM. This parameter is discarded on regular configuration loading (using CLU).
5 Managing MPLS/VPN Support
This section explains how to manage MPLS/VPN support:
•How to Manage MPLS/VPN Support via SNMP
•How to Monitor MPLS/VPN Support via SCE Platform CLI
•How to Manage MPLS/VPN Support via SM CLU
How to Manage MPLS/VPN Support via SNMP
SNMP support for MPLS/VPN auto-learn is provided in two ways:
•MIB variables
•SNMP traps
MPLS/VPN MIB Objects
The mplsVpnAutoLearnGrp MIB object group (pcubeSEObjs 17) contains information about MPLS/VPN auto-learning.
The objects in the mplsVpnAutoLearnGrp provide the following information:
•Maximum number of mappings
•Allowed current number of mappings
For more information, see the "Proprietary MIB Reference" chapter of Cisco SCE 2000 and SCE 1000 Software Configuration Guide or the "Cisco Service Control MIBs" chapter in the following software configuration guides:
•Cisco SCE8000 10GBE Software Configuration Guide
•Cisco SCE8000 GBE Software Configuration Guide
MPLS/VPN Traps
There is one MPLS/VPN-related trap:
mplsVpnTotalHWMappingsThresholdExceeded (pcubeSeEvents 45)
To provide online notification of a resource deficiency, when the system reaches a level of 80 percent utilization of the hardware MPLS/VPN mappings, a warning message appears in the user log, and this SNMP trap is sent.
Both the warning and the trap are sent for each 100 mappings that are added after the threshold has been exceeded.
How to Monitor MPLS/VPN Support via SCE Platform CLI
The SCE platform CLI allows you to do the following:
•Display VPN-related mappings
•Monitor subscriber counters
•Monitor PE routers
•Monitor bypassed VPNs
How to Display VPN-related Mappings
Use the following Viewer commands to display subscriber mappings. These commands display the following information:
•Mappings for a specified VPN
•Listing of all currently logged-in VPNs
•Listing of all subscribers mapped to an IP range on a specified VPN
•Number of subscribers mapped to an IP range on a specified VPN
•Subscriber to whom a specified downstream mapping (PE loopback IP address &BGP label) is mapped. (This option is provided for backwards compatibility and has certain restrictions. See below How to Display the Name of the Subscriber Mapped to a Specified VPN.)
How to Display Mappings for a Specified VPN
•Displaying Mappings for a Specified VPN: Examples
Options
The following option is available:
vpn-name—Name of the VPN for which to display mappings.
From the SCE > prompt, enter
show interface linecard 0 VPN name
vpn-name and press Enter.Displaying Mappings for a Specified VPN: Examples
The following example shows the output of this command for an MPLS-based VPN.
SCE# show interface linecard 0 VPN name vpn1 VPN name: Vpn1 Downstream MPLS Mappings: PE-ID = 1.0.0.1 Mpls Label = 20 PE-ID = 1.0.0.1 Mpls Label = 30 =======>Total Downstream Mappings: 2 Upstream MPLS Mappings: =======>Total Upstream Mappings: 0 Number of subscriber mappings: 0 Explicitly introduced VPNThe following example shows the output of this command for a VLAN-based VPN.
SCE> show interface linecard 0 VPN name Vpn3VPN name: Vpn3VLAN: 2Number of subscriber mappings: 0Explicitly introduced VPNThe following example shows the output of this command for an automatically created VLAN.
SCE> show interface linecard 0 VPN name 2VPN name: 2VLAN: 2Number of subscriber mappings: 1Automatically created VPNHow to Display a Listing of all VPNs
Use this command to display a listing of all currently logged-in VPNs
From the SCE > prompt, enter
show interface linecard 0 VPN all-names
and press Enter.Displaying a Listing of All VPNs: Example
SCE# show interface linecard 0 VPN all-namesHow to Display Subscriber Mappings for an IP range on a Specified VPN
•Displaying Subscribers Mapped to a IP range on a Specified VPN: Example
Options
The following options are available:
•ip-range—IP range for which to display mapped subscribers
•vpn-name—Name of the VPN for which to display mappings.
From the SCE > prompt, enter
show interface linecard 0 subscriber mapping included-in IP ip-range VPN vpn-name
and press Enter.The VPN option allows you to search for subscribers with a private IP mapping
Displaying Subscribers Mapped to a IP range on a Specified VPN: Example
SCE# show interface linecard 0 subscriber mapping included-in IP 10.0.0.0/0 VPN vpn1 Subscribers with IP mappings included in IP range '10.0.0.0/0'@vpn1: Subscriber 'Sub10', mapping '10.1.4.150/32@vpn1'. Subscriber 'Sub10', mapping '10.1.4.149/32@vpn1'. Subscriber 'Sub10', mapping '10.1.4.145/32@vpn1'. Subscriber 'Sub11', mapping '10.1.4.146/32@vpn1'. Total 2 subscribers found, with 4 matching mappingsHow to Display the Number of Subscribers Mapped to an IP range on a Specified VPN
•Displaying the Number of Subscribers Mapped to range on a Specified VPN: Example
Options
The following options are available:
•ip-range—IP range for which to display mapped subscribers
•vpn-name—Name of the VPN for which to display mappings.
Use the `amount `keyword to display the number of subscribers rather than a listing of subscriber names.
From the SCE > prompt, enter
show interface linecard 0 subscriber amount mapping included-in IP
ip-range VPN vpn-name and press Enter.Displaying the Number of Subscribers Mapped to range on a Specified VPN: Example
SCE# show interface linecard 0 subscriber amount mapping included-in IP 0.0.0.0/0 VPN vpn1 There are 2 subscribers with 4 IP mappings included in IP range '0.0.0.0/0'.How to Display the Name of the Subscriber Mapped to a Specified VPN
If the MPLS/VPN is configured as a single subscriber mapped to 0.0.0.0/0 on the VPN that is mapped to the specified MPLS, this option displays that subscriber:
•Displaying the Subscriber Mapped to a Specified VPN: Example 1
•Displaying the Subscriber Mapped to a Specified VPN: Example 2
Note This command provides backward compatibility for MPLS/VPN subscriber configuration in SCOS versions previous to 3.1.5.
From the SCE# prompt, enter
show interface linecard 0 subscriber mapping MPLS-VPN PE-ID
pe-id BGP-label label and press Enter.Displaying the Subscriber Mapped to a Specified VPN: Example 1
SCE#>show interface lineCard 0 subscriber mapping MPLS-VPN PE-ID 1.0.0.1 BGP-label 30 BGP MPLS label 30 on PE 1.0.0.1 is mapped to VPN named 'Vpn1' The VPN is NOT mapped to a single subscriber (0.0.0.0/0@Vpn1)Displaying the Subscriber Mapped to a Specified VPN: Example 2
SCE#>show interface lineCard 0 subscriber mapping MPLS-VPN PE-ID 1.0.0.1 BGP-label 30 BGP MPLS label 30 on PE 1.0.0.1 is mapped to VPN named 'Vpn1' Subscriber 'Sub10' is mapped to 0.0.0.0/0@Vpn1How to Display the Mappings of Upstream Labels that Belong to Non-VPN Flows
From the SCE# prompt, enter
show interface linecard 0 MPLS-VPN non-VPN-mappings
and press Enter.How to Clear Upstream VPN Mappings
Use this command to remove all learned upstream labels of a specified VPN.
Options
The following option is available:
vpn-name—Name of the VPN for which to display mappings.
From the SCE# prompt, enter
clear interface linecard 0 VPN name
vpn-name upstream mpls all and press Enter.This command, in effect, causes early label aging. Clearing the mappings allows relearning; labels are quickly relearned after they have been cleared. Therefore, this command is useful when you want to update the VPN mappings without waiting for the standard aging period.
How to Monitor Subscriber Counters
Use the following Viewer command to display subscriber counters, including those related to MPLS/VPN mappings.
•Monitoring Subscriber Counters: Example
About Subscriber Counters
When MPLS/VPN-based subscribers are enabled, the following related counters appear in addition to the basic subscriber counters:
•MPLS/VPN-based subscribers:
–Current number of MPLS/-based subscribers that have VPN mappings.
–Maximum number of MPLS/VPN-based subscribers.
•MPLS/VPN-based subscribers are also counted in the general subscribers counters, but the general subscribers maximum number does not apply to MPLS/VPN-based subscribers, which have a smaller maximum number.
•MPLS/VPN mappings:
–Current number of used MPLS/VPN mappings.
–Maximum number of MPLS/VPN mappings.
Note that these values reflect the total number of mappings, not just the mappings used by MPLS/VPN-based subscribers. Bypassed VPNs also consume MPLS/VPN mappings.
From the SCE# prompt, enter show interface linecard 0 subscriber db counters and press Enter.
Monitoring Subscriber Counters: Example
SCE#show interface linecard 0 subscriber db counters Current values: =============== Subscribers: 2 used out of 99999 max. Introduced subscribers: 2. Anonymous subscribers: 0. Subscribers with mappings: 2 used out of 99999 max. SINGLE non-VPN IP mappings: 1. non-VPN IP Range mappings: 1. IP Range over VPN mappings: 1. Single IP over VPN mappings: 3. MPLS-based subscribers are enabled. MPLS/VPN mappings: 2 used out of 57344 max. MPLS based VPNs with subscriber mappings: 2 used out of 2015 max. Subscribers with open sessions: 0. Subscribers with TIR mappings: 0. Sessions mapped to the default subscriber: 0. Peak values: ============ Peak number of subscribers with mappings: 2 Peak number occurred at: 14:56:55 ISR MON June 9 2007 Peak number cleared at: 15:29:39 ISR MON June 9 2007 Event counters: =============== Subscriber introduced: 2. Subscriber pulled: 0. Subscriber aged: 0. Pull-request notifications sent: 0. State notifications sent: 0. Logout notifications sent: 0. Subscriber mapping TIR contradictions: 0How to Monitor MPLS/VPN Counters
Use the following Viewer command to display MPLS/VPN information.
From the SCE# prompt, enter
show interface linecard 0 mpls vpn
and press Enter.Monitoring MPLS/VPN Counters: Example
SCE#show interface linecard 0 mpls vpn MPLS/VPN auto-learn mode is enabled. MPLS based VPNs with subscriber mappings: 0 used out of 2015 max Total HW MPLS/VPN mappings utilization: 0 used out of 57344 max MPLS/VPN mappings are divided as follows: downstream VPN subscriber mappings: 0 upstream VPN subscriber mappings: 0 non-vpn upstream mappings: 0 downstream bypassed VPN mappings: 0 upstream bypassed VPN mappings: 0How to Monitor the PE Routers
Use the following Viewer commands to monitor PE routers. These commands provide the configuration information of:
•Currently defined PE routers.
•Specified PE router.
How to Display the Configuration of all Currently Defined PE Routers
From the SCE# prompt, enter
show interface linecard 0 MPLS VPN PE-Database
and press Enter.How to Display the Configuration of a Specified PE Router
From the SCE# prompt, enter
show interface linecard 0 MPLS VPN PE-Database PE-ID
pe-id and press Enter.How to Monitor Bypassed VPNs
•How to Display the Currently Bypassed VPNs
•How to Remove all Learned Bypassed VPNs
How to Display the Currently Bypassed VPNs
From the SCE# prompt, enter
show interface linecard 0 MPLS VPN Bypassed-VPNs
and press Enter.How to Remove all Learned Bypassed VPNs
From the SCE# prompt, enter
clear interface linecard 0 MPLS VPN Bypassed-VPNs
and press Enter.How to Monitor Non-VPN Mappings
•How to Display Non-VPN Mappings
•How to Remove all Learned non-VPN Mappings
How to Display Non-VPN Mappings
From the SCE# prompt, enter
show interface linecard 0 MPLS VPN non-VPN-mappings
and press Enter.How to Remove all Learned non-VPN Mappings
From the SCE# prompt, enter
clear interface linecard 0 MPLS VPN non-VPN-mappings
and press Enter.How to Manage MPLS/VPN Support via SM CLU
The SM CLU allows you to do the following:
•Add and remove VPNs.
•Display VPN information.
•Clear MPLS/VPN mappings.
For more information, see Cisco Service Control Management Suite Subscriber Manager User Guide.
Managing VPNs
Use the p3vpn utility to manage VPNs:
•How to Add a New MPLS-based VPN
•How to Display VPN Information
Options
The following options are available:
•VPN-Name—Name assigned to the VPN when it was added, or, if adding a VPN, the name to be assigned to it.
•RT@PE-IP—Mapping assigned to the VPN. Multiple mappings can be specified using a comma.
–RT—Route target of the VPN, specified using the ASN:n notation or the IP:n notation.
Note The RD may be specified rather than the route target.
–PE-IP—Loopback IP of the PE router connected to that VPN.
How to Add a New MPLS-based VPN
From the shell prompt, enter the following command:
p3vpn --add --vpn=VPN-Name
--mpls-vpn=RT@PE,(RT@PE2, RT@PE3,...).How to Remove a VPN
From the shell prompt, enter the following command:
p3vpn --remove --vpn=VPN-Name
How to Display VPN Information
•To List All Subscribers for a Specified VPN
•To Display the Mappings for a Specified VPN
To List All Existing VPNs
From the shell prompt, enter the following command:
p3vpn --show-all
To List All Subscribers for a Specified VPN
From the shell prompt, enter the following command:
p3vpn --show-sub --vpn=VPN-Name
Listing All Subscribers for a Specified VPN: Example
p3vpn -show-sub --vpn=vpn1 sub1: 10.1.1.0/24@vpn1 sub2: 20.1.1.0/24@vpn1 Command terminated successfullyTo Display the Mappings for a Specified VPN
From the shell prompt, enter the following command:
p3vpn --show --vpn=VPN-Name
Listing All Subscribers for a Specified VPN: Example
p3vpn --show --vpn=vpn1 Name: vpn1 Domain: subscribers Mappings: MPLS/VPN: 1:1000@10.0.0.1 (no BGP information) MPLS/VPN: 1:1000@10.0.0.2 label: 10 IP range: 1.1.1.1/32 Command terminated successfullyHow to Manage VPN Mappings
•To Remove All Existing Mappings from a Specified VPN
•To Remove a Specified Mapping from a Specified VPN
To Remove All Existing Mappings from a Specified VPN
From the shell prompt, enter the following command:
p3vpn --remove-all-mappings --vpn=VPN-Name
To Remove a Specified Mapping from a Specified VPN
From the shell prompt, enter the following command:
p3vpn --remove-mappings --vpn=VPN-Name --mpls-vpn=RT@PE,(RT@PE2, RT@PE3,...)
How to Add Mappings to VPN-based Subscribers
There are three types of mappings that can be added to an existing VPN-based subscriber:
•Set of IP addresses defined as IP@VPN.
•Complete VPN (this is actually a special case of IP@VPN mappings, in which the mapping is defined as 0.0.0.0/0@VPN).
•IP addresses of a CE router, defined by a AS:value@VPN-NAME (BGP community).
How to Add IP Address Mappings
Options
The following options are available:
•SUB-NAME—Name of the subscriber to be associated with the specified community attribute
•IP1[/RANGE][,...]@VPN-NAME—IP address or addresses to assign to the VPN
–IP = IP address. This may be any of the following:
•Single IP address (x.x.x.x).
•Single range of IP addresses (x.x.x.x/y).
•List of IP addresses separated by commas (x.x.x.x, y.y.y.y, z.z.z.z).
•List of IP address ranges (x.x.x.x/a, y.y.y.y/b, z.z.z.z/c).
–VPN-NAME = name of the VPN to which the community attribute is assigned.
•--additive-mappings—Use this option to add the new mapping(s) to any existing ones. (Without this option, any existing mappings are overwritten.)
From the shell prompt, enter the following command:
p3subs -add --subscriber=SUB-NAME
--ip=IP1[/RANGE][,...]@VPN-NAME [--additive-mappings]How to Add VPN-based Mappings
This option is supported to provide backwards compatibility with MPLS/VPN-based subscribers in releases before 3.1.5.
Options
The following options are available:
•SUB-NAME—Name of the subscriber to be associated with the specified community attribute.
•VPN-NAME—Name of the VPN to which the subscriber is mapped. (This option is equivalent to defining the mapping as 0.0.0.0/0@VPN).
•--additive-mappings—Use this option to add the new mapping(s) to any existing ones. (Without this option, any existing mappings are overwritten.)
From the shell prompt, enter the following command:
p3subs -add --subscriber=SUB-NAME
--vpn=VPN-NAME [--additive-mappings]How to Configure the Community Parameter
An optional parameter may be set defining a community attribute. The community attribute provides a mechanism for defining the BGP community as one subscriber, using the community@VPN specification.
The community attribute in the BGP protocol is used to dynamically map IP ranges to subscribers. The community attribute can be configured in the Provider Edge (PE) router or in the Customer Edge (CE) router.
The community@VPN specification is replaced by an IP@VPN specification by the BGP LEG.
Use the p3subs utility to configure the community parameter.
Options
The following options are available:
•SUB-NAME—Name of the subscriber to be associated with the specified community attribute.
•AS:value@VPN-NAME—Community attribute to assign to the VPN:
–AS—Autonomous system. Integer in the range 0-65535 assigned by the network administrator.
–value—Community attribute. Integer in the range 0-65535 assigned by the network administrator.
–VPN-NAME—Name of the VPN to which the community attribute is assigned.
From the shell prompt, enter the following command:
p3subs -add --subscriber=SUB-NAME --community=AS:value@VPN-NAME
How to Remove VPN Mappings from Subscribers
•To Remove All Existing Mappings from a Specified Subscriber
•To Remove a Specified IP Mapping from a Specified Subscriber
•To Remove a Specified VPN Mapping from a Specified Subscriber
•To Remove a Specified Community-based Mapping from a Specified Subscriber
To Remove All Existing Mappings from a Specified Subscriber
From the shell prompt, enter the following command:
p3subs --remove-all-mappings --subscriber=SUB-NAME
To Remove a Specified IP Mapping from a Specified Subscriber
From the shell prompt, enter the following command:
p3psubs --remove-mappings --subscriber=SUB-NAME --ip=IP1[/RANGE][,...]@VPN-NAME
To Remove a Specified VPN Mapping from a Specified Subscriber
From the shell prompt, enter the following command:
p3psubs --remove-mappings --subscriber=SUB-NAME --vpn=VPN-NAME
To Remove a Specified Community-based Mapping from a Specified Subscriber
From the shell prompt, enter the following command:
p3psubs --remove-mappings --subscriber=SUB-NAME --community=AS:value@VPN-NAME
How to Monitor Subscriber MPLS/VPN Mappings
Use the p3subs utility to manage VPNs.
From the shell prompt, enter the following command:
p3subs --show-all-mappings --subscriber=SUB-NAME
6 Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.
Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)
Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.
© 2010 Cisco Systems, Inc. All rights reserved.