WRED-Explicit Congestion Notification
|
||||||||||||||||||||||||||||||||||||||||
Contents
WRED-Explicit Congestion NotificationLast Updated: December 2, 2011
Currently, the congestion control and avoidance algorithms for Transmission Control Protocol (TCP) are based on the idea that packet loss is an appropriate indication of congestion on networks transmitting data using the best-effort service model. When a network uses the best-effort service model, the network delivers data if it can, without any assurance of reliability, delay bounds, or throughput. However, these algorithms and the best-effort service model are not suited to applications that are sensitive to delay or packet loss (for instance, interactive traffic including Telnet, web-browsing, and transfer of audio and video data). Weighted Random Early Detection (WRED), and by extension, Explicit Congestion Notification (ECN), helps to solve this problem. This document describes the WRED--Explicit Congestion Notification feature in Cisco IOS Release 12.2(8)T.
Finding Feature InformationYour software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Prerequisites for WRED-Explicit Congestion NotificationECN must be configured through the Modular Quality of Service Command-Line Interface (MQC). For more information about the MQC, see the "Applying QoS Features Using the MQC" module. Information About WRED-Explicit Congestion Notification
WRED-Explicit Congestion Notification Feature OverviewCurrently, the congestion control and avoidance algorithms for Transmission Control Protocol (TCP) are based on the idea that packet loss is an appropriate indication of congestion on networks transmitting data using the best-effort service model. When a network uses the best-effort service model, the network delivers data if it can, without any assurance of reliability, delay bounds, or throughput. However, these algorithms and the best-effort service model are not suited to applications that are sensitive to delay or packet loss (for instance, interactive traffic including Telnet, web-browsing, and transfer of audio and video data). Weighted Random Early Detection (WRED), and by extension, Explicit Congestion Notification (ECN), helps to solve this problem. RFC 3168, The Addition ofExplicit Congestion Notification (ECN) to IP, states that with the addition of active queue management (for example, WRED) to the Internet infrastructure, routers are no longer limited to packet loss as an indication of congestion. How WRED WorksWRED makes early detection of congestion possible and provides a means for handling multiple classes of traffic. WRED can selectively discard lower priority traffic when the router begins to experience congestion and provide differentiated performance characteristics for different classes of service. It also protects against global synchronization. Global synchronization occurs as waves of congestion crest, only to be followed by periods of time during which the transmission link is not used to capacity. For these reasons, WRED is useful on any output interface or router where congestion is expected to occur. WRED is implemented at the core routers of a network. Edge routers assign IP precedences to packets as the packets enter the network. With WRED, core routers then use these precedences to determine how to treat different types of traffic. WRED provides separate thresholds and weights for different IP precedences, enabling the network to provide different qualities of service, in regard to packet dropping, for different types of traffic. Standard traffic may be dropped more frequently than premium traffic during periods of congestion. For more information about WRED, refer to the "Congestion Avoidance Overview" module. ECN Extends WRED FunctionalityWRED drops packets, based on the average queue length exceeding a specific threshold value, to indicate congestion. ECN is an extension to WRED in that ECN marks packets instead of dropping them when the average queue length exceeds a specific threshold value. When configured with the WRED -- Explicit Congestion Notification feature, routers and end hosts would use this marking as a signal that the network is congested and slow down sending packets. As stated in RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP,implementing ECN requires an ECN-specific field that has two bits--the ECN-capable Transport (ECT) bit and the CE (Congestion Experienced) bit--in the IP header. The ECT bit and the CE bit can be used to make four ECN field combinations of 00 to 11. The first number is the ECT bit and the second number is the CE bit. The table below lists each of the ECT and CE bit combination settings in the ECN field and what the combinations indicate.
The ECN field combination 00 indicates that a packet is not using ECN. The ECN field combinations 01 and 10--called ECT(1) and ECT(0), respectively--are set by the data sender to indicate that the endpoints of the transport protocol are ECN-capable. Routers treat these two field combinations identically. Data senders can use either one or both of these two combinations. For more information about these two field combinations, and the implications of using one over the other, refer to RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP. The ECN field combination 11 indicates congestion to the endpoints. Packets arriving a full queue of a router will be dropped. How Packets Are Treated When ECN Is Enabled
Benefits of WRED-Explicit Congestion NotificationImproved Method for Congestion AvoidanceThis feature provides an improved method for congestion avoidance by allowing the network to mark packets for transmission later, rather than dropping them from the queue. Marking the packets for transmission later accommodates applications that are sensitive to delay or packet loss and provides improved throughput and application performance. Enhanced Queue ManagementCurrently, dropped packets indicate that a queue is full and the network is experiencing congestion. When a network experiences congestion, this feature allows networks to mark the IP header of a packet with a CE bit. This marking, in turn, triggers the appropriate congestion avoidance mechanism and allows the network to better manage the data queues. With this feature, ECN-capable routers and end hosts can respond to congestion before a queue overflows and packets are dropped, providing enhanced queue management. For more information on the benefits associated with ECN, refer to RFC 2309, Internet Performance Recommendations. How to Configure WRED-Explicit Congestion Notification
Configuring Explicit Congestion Notification
SUMMARY STEPS
DETAILED STEPS Verifying the Explicit Congestion Notification Configuration
SUMMARY STEPS
DETAILED STEPS Configuration Examples for WRED-Explicit Congestion NotificationExample Verifying the ECN ConfigurationThe following is sample output from the show policy-map command. The words "explicit congestion notification" (along with the ECN marking information) included in the output indicate that ECN has been enabled.
Router# show policy-map
Policy Map pol1
Class class-default
Weighted Fair Queueing
Bandwidth 70 (%)
exponential weight 9
explicit congestion notification
class min-threshold max-threshold mark-probability
----------------------------------------------------------
----------------------------------------------------------
0 - - 1/10
1 - - 1/10
2 - - 1/10
3 - - 1/10
4 - - 1/10
5 - - 1/10
6 - - 1/10
7 - - 1/10
rsvp - - 1/10
The following is sample output from the show policy-map interfacecommand. The words "explicit congestion notification" included in the output indicate that ECN has been enabled. Router# show policy-map interface Serial4/1 Serial4/1 Service-policy output:policy_ecn Class-map:prec1 (match-all) 1000 packets, 125000 bytes 30 second offered rate 14000 bps, drop rate 5000 bps Match:ip precedence 1 Weighted Fair Queueing Output Queue:Conversation 42 Bandwidth 20 (%) Bandwidth 100 (kbps) (pkts matched/bytes matched) 989/123625 (depth/total drops/no-buffer drops) 0/455/0 exponential weight:9 explicit congestion notification mean queue depth:0 class Transmitted Random drop Tail drop Minimum Maximum Mark pkts/bytes pkts/bytes pkts/bytes threshold threshold probability 0 0/0 0/0 0/0 20 40 1/10 1 545/68125 0/0 0/0 22 40 1/10 2 0/0 0/0 0/0 24 40 1/10 3 0/0 0/0 0/0 26 40 1/10 4 0/0 0/0 0/0 28 40 1/10 5 0/0 0/0 0/0 30 40 1/10 6 0/0 0/0 0/0 32 40 1/10 7 0/0 0/0 0/0 34 40 1/10 rsvp 0/0 0/0 0/0 36 40 1/10 class ECN Mark pkts/bytes 0 0/0 1 43/5375 2 0/0 3 0/0 4 0/0 5 0/0 6 0/0 7 0/0 rsvp 0/0 Additional ReferencesRelated Documents
MIBsTechnical Assistance
Feature Information for WRED-Explicit Congestion NotificationThe following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. © 2011 Cisco Systems, Inc. All rights reserved.
|
||||||||||||||||||||||||||||||||||||||||