

Cisco IPv6 Integration Best Practices

FOSE 2007

David Rubal

Senior Manager, Cisco Federal Channels & Global Systems Integrator Operation US & Canada Theater Lead, Cisco Worldwide IPv6 Task Force

Scott Hogg

GTRI - Director of Advanced Technology Services CCIE# 5133, CISSP# 4610

Agenda

- The importance of IPv6
- Planning for IPv6
- Designing for IPv6
- IPv6 implementation best practices
- Operating and IPv6 environment
- Cisco IPv6 products
- Questions and answers

IPv6

- Increases the quantity of unique IP addresses available to network devices to an almost infinite number
- Provides the foundation to radically change the way we communicate

IPv6

What Does IPv6 Offer?

Address Space

128 bits vs. 32 bits (IPv4 addresses predicted to exhaust by 2016)

Quality of Service

IPv6 eliminates the need for network address translation (NAT) and improves communication

Data Security

IP security is an integral part of the base protocol suite in IPv6

Mobility

IPv6 hosts are not restricted by location

Overcoming IPv4 Limitations

Reclaim Original Intent of Global, End-to-End Internet Model

Japan

 Japan has successfully deployed IPv6.

Europe

 European Commission has sponsored several IPv6-focused programs, including 6NET.

U.S.A.

- Department of Defense defined an IPv6 migration process to be completed by 2008.
- Office of Management and Budget mandated that all federal agencies migrate their networks to IPv6 by June 2008.

IPv6 Enables New Innovation

- **Building sensors**
- Media services
- Collaboration
- Mobility

Higher education/research

- **Set-top boxes**
- Internet gaming
- **Appliances**
- Voice/video
- **Security** monitoring

Consumer

- **Embedded devices**
- **Industrial Ethernet**
- IP-enabled components

Manufacturing

- DoD
- WIN-T
- FCS
- JTRS
- GIG-BE

Government (Federal/Public Sector)

- **Telematics**
- Traffic control
- **Hotspots**
- Transit services

Transportation

- **Animal tags**
- **Imagery**
- **Botanical**
- Weather

Agriculture/ wildlife

- Home care
- **Imaging**
- **Mobility**

Medical

Survey the Benefits

Innovative capabilities to the desktop

Microsoft's Windows Vista and Apple's Mac OS X v10.3 (and later versions) enable IPv6 by default.

Powerful IP applications

IPv6 enables sophisticated peer-to-peer communication tools that improve interagency collaboration.

Next-generation multicast

Cisco's IPv6 multicast technologies optimize media-streaming applications, allowing timely video feeds and quality-rich information to be easily distributed to millions of citizens worldwide, simultaneously.

Mobility support and wireless access

IPv6's nearly infinite capacity for addresses lends connectivity to myriad electronic devices—mobile phones, laptops, in-vehicle computers, televisions, cameras, etc.

Security

IPv6 is less vulnerable to scanning attacks than IPv4 and possesses capabilities for packet integrity. It mandates that security is provided through information encryption and source authentication.

Plug-and-play

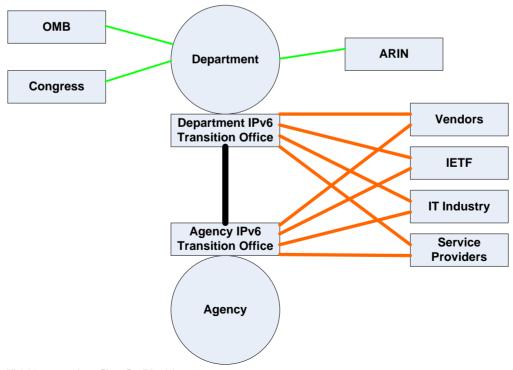
IPv6 auto-configures new equipment to communicate with the network once it is detected, which means devices are ready to use right when needed.

Planning for IPv6

 Everyone must understand the importance of IPv6 to the organization

Map IPv6 Features/Advantages to areas in your Enterprise Architecture

Show how IPv6 will aid or transform your organization


- Leadership must buy into the process
- Strong project managers are required to guide the transition
- Organize your plan based on IT environment

Phases of the transition Core/SP interconnect Distribution Edge

IPv6 Transition Office

- Building a transition office requires a team approach
- Regular/Frequent meetings with IPv6 stakeholders to coordinate IPv6 migration activities

Preparing Your IPv6 Inventory

- Gather information about all your IPv4 devices
 Servers, network equipment, firewalls, desktops
 Look at applications that ride on that equipment
- Determine if devices are capable of running IPv6
- Look at the operating system software they run and then compare to vendor specifications
- There are some tools that can help you gather some of this information
 - Cisco IPv6 Scorecard and IPv6 Capability Assessment CiscoWorks Network Compliance Manager (NCM) v1.2
- Most of the data will be gathered manually
 This is where project managers will help tremendously

Writing an IPv6 Impact Analysis

- OMB M-05-22 memo to CIOs required impact assessment risk assessment
- Cost and risk elements as described in OMB Circular A-11
- Cost estimate

All costs related to IPv6 migration

Equipment upgrades, lab, training, cost of migration effort, ...

Risk Analysis

OMB risk analysis methodology

18 different areas to address the impact of IPv6

Writing an IPv6 Transition Plan

- OMB M-05-22 memo to CIOs required a transition plan
- OMB's Enterprise Architecture Assessment Framework:

Conduct a requirements analysis to identify current scope of IPv6 within an agency, current challenges using IPv4, and target requirements.

Develop a sequencing plan for IPv6 implementation, integrated with your agency enterprise architecture.

Develop IPv6-related policies and enforcement mechanisms.

Develop training material for stakeholders.

Develop and implement a test plan for IPv6 compatibility and interoperability.

Deploy IPv6 using a phased approach.

Maintain and monitor networks.

Update IPv6 requirements and target architecture on an ongoing basis.

Building IPv6 Capability

- Training is key to developing IPv6 operational capability
 Scarcity of IPv6-skilled IT staff
 - Must train existing employees
- Training for all aspects of IT
 - Basic IPv6 training everyone & operations
 - IPv6 advanced networking
 - IPv6 for system administrators
 - Application developer sessions on IPv6 coding

IPv6 Transition Timeline

IPv6 Multihoming Solutions

Federal IT Technology Refresh Cycle

IPv6 Security Products

DNS/DHCPv6/DDNS Products

IPv6-Capable Vendor Products

Transition Planning

HAIPEv3

IPv6 Constraints

2006

2007

2008

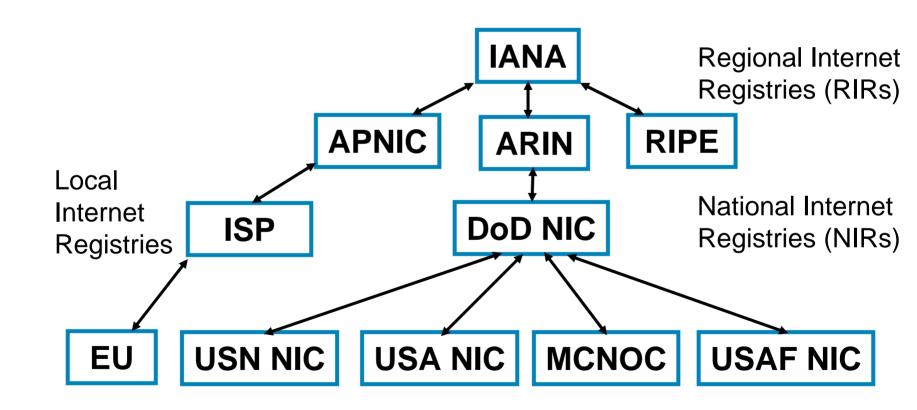
2009

2010

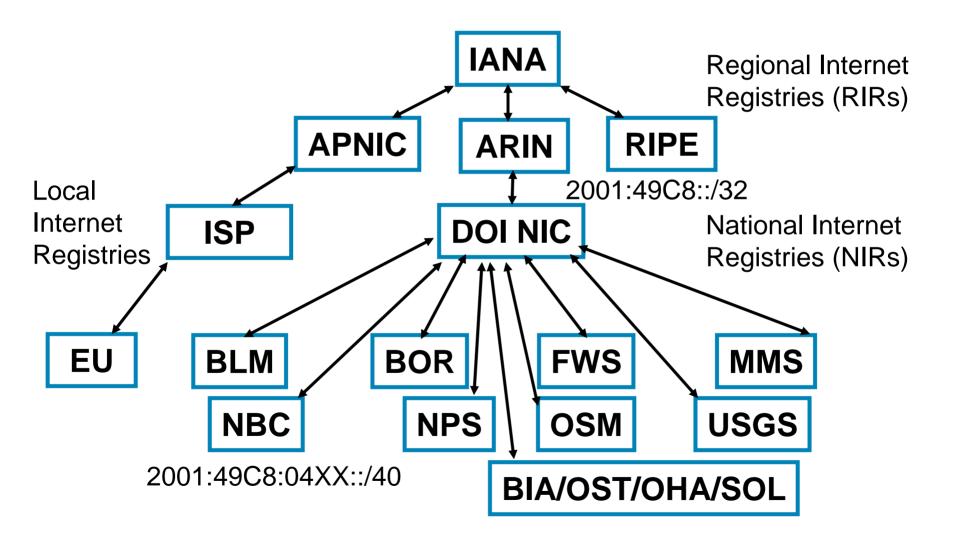
2011

IPv6 Drivers

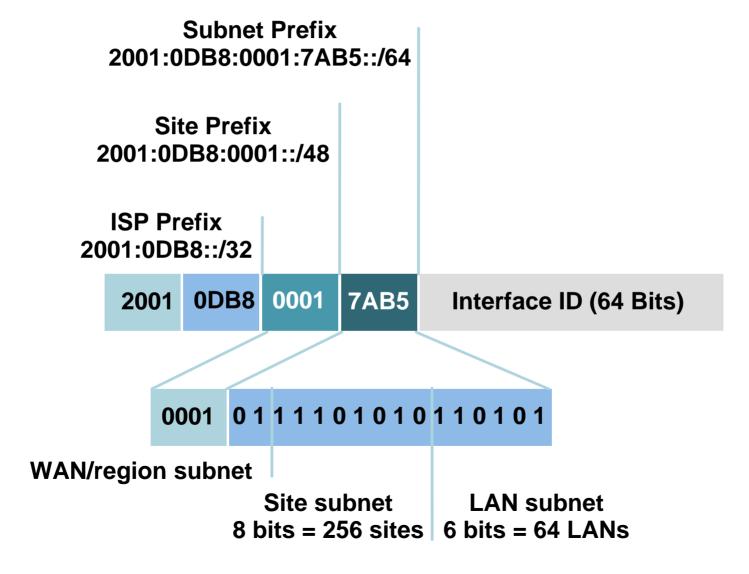
IPv4 Address Depletion


Microsoft Vista Deployment

Mandated Federal Transition


IPv6 Design

- Consider your organizational structure and current topology
- IPv6 will use some of the same topology and traffic patterns
 - IPv4 made heavy use of Unicast and client/server model IPv6 will add more mobile and peer-to-peer traffic flows
- Plan your addressing based on your current topology
 The physical topology won't change with IPv6
- Your IPv6 security architecture will be similar to your current protections
 - The perimeter security model is still valid with IPv6


DoD IPv6 Address Management

DOI IPv6 Address Management

IPv6 Addressing Plan

IPv6 Code Assessment

Tools for assessing application source code for IPv4/v6 calls.

Looks for lines in code that may be version-specific Similar to Y2K assessment utilities

 For hosts that are written on Microsoft platforms we can use Checkv4.exe to identify if the source code is IPv6ready.

http://msdn2.microsoft.com/en-us/library/ms740624.aspx

 For other systems we can use Sun Microsystem's Socket Scrubber.

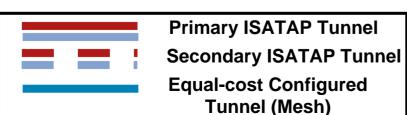
It can be compiled on a variety of Unix systems and check the source code for IPv4-only system calls.

• If you have any Tru64 systems there is an IPv6 Porting Assistant http://h30097.www3.hp.com/internet/ipv6portingassistant/

IPv6 Implementation

- Planning will prevent issues related to IPv6 from impacting current IPv4 network
- Dual stack where you can, tunnel where you must
 Chose simplicity over complexity
- Security will be key to your strategy

IPv6 must have the same protections as IPv4

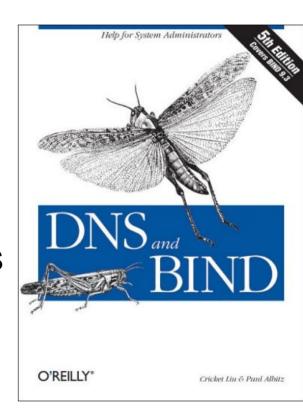

Purchase new firewalls for IPv6 rather than tunnel IP Protocol 41 through IPv4 firewalls

Apply best practices for IPv6 filtering and security

Least privilege, defense in depth, diversity of defense, choke point, weakest link, fail-safe stance, universal participation

IPv6 Service Block

- Provides ability to rapidly deploy IPv6 services without touching existing network
- Provides tight control of where IPv6 is deployed and where the traffic flows (maintain separation of groups/locations)
- Provides basic HA of ISATAP
- ISATAP tunnels from PCs in Access layer to service Block switches
- In this example configured tunnels are used from Data Center to Service Block
- Dependency on ISATAP alienates IPv6 multicast applications
- 1) Leverage existing ISP block for both IPv4 and IPv6 access
- 2) Use dedicated ISP connection just for IPv6 – Can use IOS FW or PIX/ASA appliance


Potential DNS Issues

- Current BIND 9 answers to IPv4 or IPv6 queries
- Old client resolvers may not accurately handle receiving an A and an AAAA

NXDOMAIN or No Answer

Client can't reach v4 or v6 site

- Issues with zone transfers between unlike DNS servers
- Consider using a separate dual-stack DNS server for your IPv6 entries

IPv6 Transition Techniques

- No flag day!
- "It's like rebuilding a car engine when the car is traveling 100 mph"
- Upgrade all hosts at one time not likely/plausible
- Enable host address auto-configuration
 Allows for graceful renumbering
- Dual-stack, tunneling to be used in combination
 Dual-stacking adds complexity and CPU utilization
 Remember to remove tunnels when done (full IPv6)
- Start IPv6 at the edge and then move toward the core Less popular because it requires more tunnels
- Start IPv6 at the core and then move toward the edge
 More popular because it uses dual-stack in the core

IPv6 Network Operations

- Increased operational costs due to running dual stack
 - Dual stack is not the point of arrival
 - Dual-stacking will increase CPU and memory utilization by 15 to 25%
 - Performance issues with equipment that is optimized for IPv4 but not IPv6
 - Overhead caused by maintaining IPv4 and IPv6 routing tables, firewalls, DNS servers, etc.
- Operational teams need IPv6 troubleshooting skills
 Tunnels are more difficult to troubleshoot than physical links
- Configuration management systems will help monitor the transition
- Regular operational checks needed to insure operations

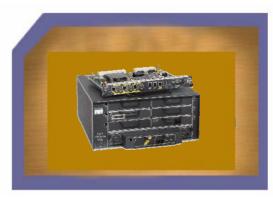
IPv6 Management

- SNMP via IPv6
 - Gather stats on both stacks if system is dual stacked IETF RFCs moving to having one MIB for v4/v6
- CiscoWorks Resource Manager Essentials (RME), LMS 2.5 CiscoView, PathTrace, User Tracking
- CiscoWorks Campus Mgr, Device Fault Mgr
- Cisco NetFlow Collector 5.0
- Service Assurance Agent (SAA) for IPv6
- Network Analysis Module (NAM)
- HP-OV NNM Advanced Edition 7.5 Smart Plug-in (SPI) for Advanced Routing

IPv6 Challenges

- There is no IPv6 capability or feature of the Internet that you can't do today with IPv4.
- Something new to learn addresses are difficult to remember
- Larger header more bits to read in order to get to destination address – requires hardware acceleration
- Effort required to make transition but hopefully operational cost savings with IPv6
- End users won't notice the improvement users aren't asking for IPv6 services
- Multi-homing is not solved (IETF Multi6 WG)
- May break older IPv4-only applications
- New IPv6 enabled apps will need to be developed

Cisco 7500 Migration Paths to New Platforms


Cisco Catalyst 6500 Series

Cisco 7600 Series

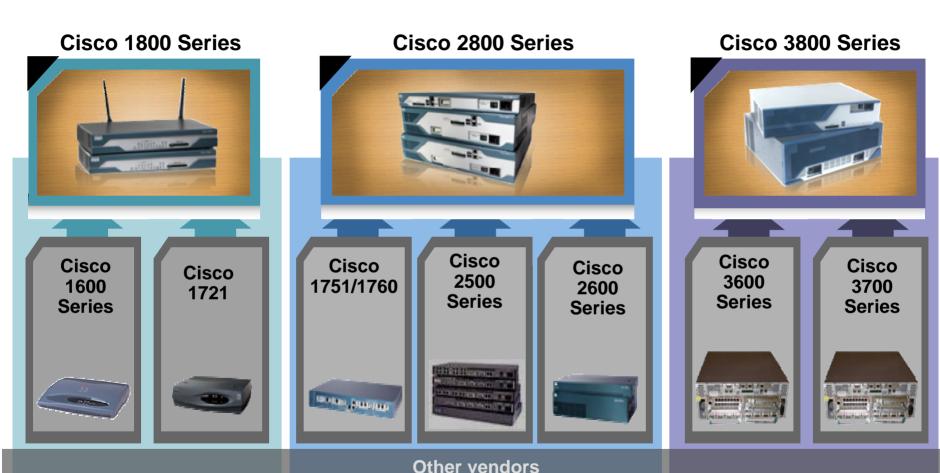
Cisco 7200 Series

* smaller scale deployments

Positioned for:

New technologies

New integrated services


New network architectures

While providing:

Operational consistency
Investment protection
In-kind services and
interfaces

The Routing Evolution: Migrating Legacy Routers to ISRs

Performance and Services Density

The Switching Evolution: Migrating Legacy Switches

Performance and Services Density

Summary

- An IPv6 transition is already underway in the federal government and other parts of the world.
- IPv6 infrastructure and host operating systems are ready now!
- Cisco is a leader in IPv6 and has a full-set of IPv6 products
- Much of the infrastructure you have already purchased is IPv6 capable, it's just a matter of enabling (software upgrade)
- GTRI can assist with transition planning
 - Perform your assessment
 - Create a migration strategy
 - Create a test lab or leverage other test labs and start experimenting.
 - Dual stack some of your systems
 - Test DNS and focus on your other applications
- The sooner we begin the transition, the sooner we will be done.

David Rubal drubal@cisco.com Mobile: (703) 626-4779

Scott Hogg SHogg@GTRI.com Mobile: (303) 949-4865

