# CISCO SYSTEMS

© 2002, Cisco Systems, Inc. All rights reserved



# Deploying Metro Ethernet Solutions

Joe Deveaux, CSE

jdeveaux@cisco.com

# **Deploying Metro Ethernet Solutions**

Cisco.com

# Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

# **Metro Services Evolution**



# **Fiber Build-Out Changes Metro**

Cisco.com

Fiber reaching 20% of enterprises and growing **Fiber Enterprise looking for** Site Internet Interconnect interface consolidation of services Storage **Remote Access** Speed/cost/provisioning advantages **ETTB** ETTS Large scale network Internet VoD architecture Content **Business model required** Voice Services **Opportunity for value-**added services (content, voice, etc..)

# **Metro Bandwidth and Service Issues**



#### Enterprise

Large Price Mismatch Between T1s and T3 Service

10x Bandwidth Mismatch Between LAN and MAN

**Converged Network for Cost Savings** 

#### Service Provider

Transporting Data Over a Voice Network

Long Service Provisioning Times

Challenges In Managing Data Networks

Cannot ProvisionAcross the Data and Transport Network

# **FR/ATM Services today**



# **FR/ATM Services today**



# **FR/ATM Services today**



# **Metro Ethernet Service Provider Value**

Cisco.com



Meet End Customer's Growing Bandwidth Requirement Without Network Infrastructure Change

> Reduce CapEx & OpEx

# Why Ethernet in the MAN/WAN?

Cisco.com

- Ethernet is the ubiquitous transport in LAN and MAN
- IP friendly, cost effective interface
- Relatively inexpensive and flexible bandwidth offerings
- Scalable 10/100/1000/10000 bandwidth
- Geographical independence
- Enables new and innovative services

IP telephony, storage over IP, managed services (firewall, IDS), etc..

# Application Requirements Drive Metro Networking Solution



Cisco.com

# What Problems Are Enterprises Trying to Solve?

The Requirement Is for Enterprise Applications To Be Available and Perform Well

**Networks that Deliver on This Requirement:** 

- Have consistently high performance packet forwarding
- Are reliable and available
- Are service enabling
- Are cost efficient

# How You Deliver This Is Largely Irrelevant Metro Ethernet Is Simply a Tool in the Tool Box

# Enterprise Deployment Options for MAN/WAN



# Which Technologies Do I Use?

Cisco.com

#### Application Requirements

- LAN interconnect
- Service aggregation
- Data center
  interconnect
- Backup and disaster recovery
- Bulk data replication
- Storage consolidation
- Connection to hosting services

#### What Exists Today

- Dark Fiber
- Existing edge equipment
  - Ethernet
  - SONET
  - Frame Relay
  - ΑΤΜ
  - DWDM
- Bandwidth requirements



# **Metro Ethernet: Revolution or Evolution?**

 Question: How does metro Ethernet change the way we design and deploy networks?

- Answer: Nothing changes; the same principles of structure and hierarchy still hold true
- Be aware that the service will dictate design considerations

Cisco.com

# **Deploying Metro Ethernet in the Enterprise**

# Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

Cisco.com

# **Dark Fiber**

#### Cisco.com

 Access to dark fiber enables many technology choices to be made, but depends upon physical characteristics of fiber plant

How long is the fiber?

What is the fiber quality and type?

What is the optical power budget?

What is the attenuation/loss of the system?

Will amplification be required?

What are the dispersion characteristics?

Do I need to consider non-linear effects?

 All these questions must be considered and understood

# **Dark Fiber: The Choices**

Cisco.com

 Once the physical characteristics are understood, then a technology and topology choice can be made

Point-to-point vs. ring

**CWDM vs. DWDM** 

# **Dark Fiber: Point-to-Point**

Cisco.com

 Use Etherchannel (IEEE 802.3ad) to add additional bandwidth

Up to 8 physical ports per channel

Across any module in a chassis

Single L2/L3 adjacency

Sub-second convergence

Load balance on layer 2, layer 3 or layer 4 information

Catalyst 6500 and 4000 Supervisor III

**Distance limitation** 

GE~100km using ZX and CWDM GBICs

10GE~40km using 1550nm optics



# **Dark Fiber: Ring Topologies**

Cisco.com

#### GE rings are cost effective solution if...

Traffic patterns and convergence characteristics are known and understood

#### • However, be aware of...

**Multi-hop routing or switching** 

**Blocking using 802.1d/w/s** 

Traffic aggregation will occur

Need to understand traffic patterns

#### • Solutions:

Make ring appear as point-to-point connection using CWDM or DWDM

# Dark Fibre: Wavelength Division Multiplexing



Cisco.com

Cisco.com

#### Coarse wavelength division multiplexing

Similar to DWDM but at coarser wavelengths

1470nm, 1490nm, 1510nm, 1530nm, 1550nm, 1570nm, 1590nm, 1610nm

**GBIC** form factor

Single technology (gigabit Ethernet)

**DWDM recommended for FibreChannel, ESCON, etc.** 

Very cost effective

Long drive distance

~30dB budget = ~100Km

Cannot be optically amplified, only Ethernet

# **CWDM - Value Proposition**

Cisco.com Cisco Coarse Wavelength Division Multiplexing (CWDM) Gigabit Interface Converter (GBIC) Solution

- Easy deployment and flexible implementation "Plug and play," no configuration of CWDM components Enable point-to-point, hub-and-spoke, ring, and meshed architectures on top of SMF ring
- High availability
  - Use multipath protection of ring architecture
  - Use redundancy mechanism at circuit endpoints for fast reconvergence (~250 ms) after fiber cuts
- Scalability

Provide scalable Ethernet bandwidth between 1 and 8 Gbps over SMF

Investment protection

Use existing standard GBIC ports on Cisco switches and routers Increase bandwidth on existing SMF infrastructure

# Cisco CWDM GBIC Solution Building Blocks

# **CWDM GBICs:**

- 8 different "colored" GBICs
- Plug into GBIC slot on Cisco Catalyst<sup>®</sup> switch; connect to CWDM optical add-drop module (OADM) via SMF

# **CWDM OADM:**

- 3 versions for 1, 4, and 8 wavelengths (color)
- Mounted in 1-RU chassis
- OADMs connected via optical ring



Cisco.com

# Dark Fibre: CWDM Deployment - Point-to-Point

Cisco.com

Single Lambda - 1 Channel Unprotected Pt to Pt

All that is required is one of CWDM-GBIC-XXXX at each end



© 2002, Cisco Systems, Inc. All rights reserved.

# **CWDM: Logical Core Topology**

Cisco.com

Bldg #1



# **CWDM: Physical Core Design**



# **CWDM: Logical Hub and Spoke**

Cisco.com



# **CWDM: Logical Hub and Spoke**

Cisco.com



# **DWDM and CWDM**

Cisco.com

- DWDM if you have multiple transport technologies is bit rate and transport transparent
  - **Best choice**

Fiber channel, ESCON, SONET/SDH and LAN

Supports ring, BUS and star topologies

Supports wavelength protection switching

BLSR, UPSR, etc..

Can be amplified

#### CWDM GBICs are a single transport technology

Good choice if gigabit Ethernet only is required

**Evolution to 1550nm DWDM friendly optics** 

Good drive distance

- ~100km point-to-point
- ~30km ring (8 node ring)

# **CWDM Summary**

Cisco.com

- Flexible design options using optical add/drop multiplexors
- Relatively inexpensive introduction to DWDM
- Viable alternative to 10GE using GEC
- Cost effective method of increasing fiber capacity
- Cost effective method of simplifying network topologies

Install coloured GBICs and implement optical add/drop muxes later

 Supported on Cisco 7600 and Catalyst 6500, 4000, 3550 and 2950 products

# **Deploying Metro Ethernet in the Enterprise**

Cisco.com

# Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

# **Dark Fiber: 10GE Attributes**

Cisco.com

### • IEEE 802.3ae 10gigabit Ethernet

**Preserves 802.3 Ethernet frame format** 

**Preserves 802.3 min/max frame size** 

Full duplex operation only

Fiber cabling only

**10.0 Gbps at MAC-PHY interface** 

LAN PHY data rate of 10 gbps

WAN PHY data rate of ~9.29 gbps

# **10GE Optical Transceivers Physical Layer Dependant (PMD)**

Cisco.com

| PMD               | Fiber<br>Supported       | Diameter<br>(Microns) | Bandwidth<br>(MHz*km) | Distance<br>(Meters) |
|-------------------|--------------------------|-----------------------|-----------------------|----------------------|
| 850 nm<br>Serial  | Multimode                | 50*                   | 400                   | 66                   |
| 1310 nm<br>CWDM   | Multimode<br>Single Mode | 62.5<br>9.0**         | 160<br>NA             | 300<br>10 k          |
| 1310 nm<br>Serial | Single Mode              | 9.0                   | NA                    | 10 k                 |
| 1550 nm<br>Serial | Single Mode              | 9.0                   | NA                    | 40 k                 |
|                   |                          |                       |                       |                      |

#### NOTES:

**Distances Current with IEEE 802.3 Draft 3.3** 

\*Draft 3.0 of the 802.3ae Specification References the Higher Bandwidth (2000 MHz\*km) 50 Micron MM Fiber\*\*The 9.0 Micron Value is the Core Diameter; ANSI/TIA/EIA-568-A Specifies That the Nominal "Mode Field Diameter "Shall be 8.7 to 10.0 Microns with a Tolerance of +/- 0.5 Micron at 1310 nm

# **Metro Ethernet: 10GE Summary**

Cisco.com

- 10GE runs on single mode fiber today
- Standard is complete 802.3ae
- Pull single mode for new installations
- Issues involving multimode fiber support are complex
- Cost effective MAN technology
- Cisco is shipping 10GE on Catalyst 6500/7600 and 12000 today

Raising the bandwidth for L2–L7 services
# GEC, 10GE and CWDM Deployment Scenarios



# **10GE and CWDM Decision Criteria**

Cisco.com

• If you have multimode fiber

Probably within campus so use GEC

• If you have single mode fiber

And have GBIC interfaces and spare fibres<10Km,

Use gigabit EtherChannel, or

Use gigabit Etherchannel and CWDM, or

**10GBASE-LR** interface

>10km<50km

Use 1550nm 10GBASE-EX4 interface

>50km

Consider CWDM and gigabit EtherChannel (assuming single fiber); or

**GE ZX GBICs (assuming spare fibers)** 

# **10GE and CWDM and DWDM**

- 10GE, CWDM and DWDM are complimentary solutions
- Cisco CWDM provides flexible, cost effective Ethernet solutions today
- Wide Cisco support for CWDM across products
  Cisco 7600 and Catalyst 6500, 4000, 3550 and 2950 products
- 10GE is an economical, future proof solution today Supported on Cisco 7600 and Catalyst 6500
- Cisco DWDM provides flexible, multi-transport optical solutions today

# **Deploying Metro Ethernet in the Enterprise**

Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

#### Acronym Soup—What Does It All Mean?



#### **Ethernet L2VPN Overview**



#### **VPWS**

#### Allinini Cisco.com



#### VPLS

#### 



#### **Metro Ethernet Service Model**



- **Performance levels**
- Implementation details in the cloud are invisible to the CE

#### **Service Definitions: A Summary**

Cisco.com



Similar to a Frame Relay service where the DLCI becomes a VLAN and where a CIR + Burst is provided on a per VLAN basis.

Similar to a Private Line service. Provided on a Shared Packet Network versus a TDM/Optical Network (EPL). The CElocated equipment can be a router or a switch.



Any-to-Any transport service that can be an alternative to unmanaged MPLS-VPN (or CsC). By using CE-routers there is NO issue with MAC table size in the PE's. Layer 2 access is Ethernet only.

#### **Ethernet Relay Service (ERS)**

Cisco.com

#### The Frame Relay Analog

**Required Feature: Service Multiplexing (SM)** 

Service Multiplexing enables multiple instances of service to be multiplexed onto a single UNI, allowing that UNI to be in multiple ERS. Such a UNI is referred to as a Multiplexed UNI. When a UNI is in a single EVC, it is referred to as a Non-Multiplexed UNI.



Using SM, service to B and C can be implemented at A without requiring two physical ports on the Customer Equipment at A

Note: ERS requires a 1:1 mapping association between CE-VLANs and ERS

### **Ethernet Wire Service (EWS)**

All Cisco.com

#### The Private Line Analog

Required Features: VLAN Transparency (VT), All-to-One Bundling (B\*), and Layer 2 Control Protocol Tunneling

#### **VLAN Transparency**

In a VLAN Transparent EVC, the CE-VLAN tag (including untagged) of an egress frame is always identical to the CE-VLAN tag on the corresponding ingress frame.

#### **All-to-One Bundling**

Bundling enables multiple CE-VLANs to be mapped to an EVC at the UNIs belonging to the EVC

All-to-One Bundling (B\*) is a case of Bundling where at each UNI in a given EVC, *all* CE-VLANs are mapped to that EVC. All UNIs in such an EVC therefore are Non-Multiplexed.

#### Layer 2 Control Protocol Tunneling

Per-EVC Layer 2 Control Protocol Tunneling enables the Service User's control packets to pass through the Metro Ethernet Network in a manner consistent with other data packets. A B

Physical Port to Physical Port Good Fit for Switches and Routers

**EWS - Private Line Analog** 

### **Ethernet Multipoint Service (EMS)**

#### **Applicable Service Features**

**VLAN Transparency** 

All-to-One Bundling

Layer 2 Control Protocol Tunneling

Done in Multicast fashion, with BPDUs being transmitted to all UNIs

Service suitable for both routers and switches

### Ethernet Multipoint Service (VPLS): A Customers Perspective



# **Ethernet Multipoint Service (VPLS):**

Cisco.com

#### • The issues:

Although the enterprise "sees" a virtual Ethernet, the actual service may be a full mesh of VCs

If a single VC breaks what is the effect on traffic, the network, the applications?

How do you troubleshoot?



# **Ethernet Multipoint Service (VPLS):**

Cisco.com

#### "Emulated" LAN model

Each device is now a peer in it's own right and consideration must be taken of...

**Routing protocol interaction** 

**Traffic patterns** 

**QoS policies** 

**Security policies** 

Troubleshooting

#### **Routing Protocol Interaction**

Routing protocol interaction

All routers seen as direct peers

"Plug and play"

**Optimal routing between sites** 



### **IP Multicast: OSPF and EIGRP**

dillight Cisco.com



Transparent LAN Service

# Ethernet Multipoint Service (VPLS): QoS Issues

- Unpredictable traffic flows cause issues for QoS in that flows may aggregate in undesirable patterns
- Careful consideration needs to be taken for Interactive services such as video and IP telephony
- Best to model your applications first to understand the behaviour



# Ethernet Multipoint Service (VPLS): QoS Issues

Cisco.com

 To manage this, device must have a QoS policy configured to meet the business requirements for the applications

Needs careful consideration of bandwidth requirements for peer-to-peer (IP telephony) as well as core applications

**QoS policy management becomes problematic** 

#### **Metro Ethernet: Security**

Cisco.com

- Layer two switches present unique security concerns.
- DoS attacks
  - MAC address flooding/storms
  - Spanning tree attacks
  - -CDP
- However, several mechanisms exist within Cisco IOS to increase security and protection of switched networks
- Need to protect yourself from the provider and vice versa

They will be protecting themselves too

### Metro Ethernet: Security Recommendations

Cisco.com

Disable VTP on edge switches

Could be used as a denial of service attack

#### Disable CDP on all devices

Advertises device, IP and software versions

**Could be used as a DOS attack** 

• Disable DTP on edge switches

Define only the VLANs that you require for connectivity

Configure spanning tree ROOT guard

If switches are used to connect to provider network

### Metro Ethernet: Security Recommendations

Cisco.com

 Make sure to secure the console and telnet ports of the device

**Use SSH not Telnet** 

**Use TACACS+** 

Use imaginative passwords for login and enable passwords

Use upper case, lower case and numeric characters (example: 3bmChtr)

**Change SNMP community strings** 

**Use IP filters to block SNMP access** 

#### **Metro Ethernet: The Impact of IP Multicast**

Cisco.com

#### This is What We Expect...



#### **Metro Ethernet: IP Multicast**

Cisco.com

#### And This is What We Get...



#### **Metro Ethernet: IP Multicast**

Cisco.com

 The issue is that the routers are using PIM to join the multicast tree, and the switches use IGMP join messages to constrain forwarding



### Metro Ethernet Constrained Multicast Flooding

Cisco.com

- L2 switches will flood broadcasts, multicasts and unknown unicasts
- L2 switches will use static multicast mac-address entries to constraint the flooding of multicast packets through:

CGMP: Control Plane Protocol between mcast router (Server) and CGMP-capable switch (Client), triggered by IGMP messages received by the CGMP Server

IGMP Snooping : L2 switch itself will snoop IGMP v2 join/leave message and install appropriate static cam entry

RGMP: to constraint flooding of mcast router to mcast router packets

Manual configuration

### **Metro Ethernet: Controlling Failure Domains**

Cisco.com

#### This L2 Metro Ethernet Defines a Failure Domain



# IEEE 802.1w Rapid Spanning Tree Protocol

Cisco.com

• IEEE 802.1w provides for a significant improvement to IEEE 802.1d

Explicit handshake before port can forward

- Convergence can be in milli-seconds but depends on direct interface failure
- Indirect failures cannot be detected except for max-age or 3\*hello timeout
- Most VPLS drafts assuming full mesh of VCs in core to prevent running spanning tree within the core

Split horizon forwarding



This Does Not Solve All Issues with Layer 2—Bridged Domains

### **Metro Ethernet: Spanning Tree**

Cisco.com

 Ethernet has no explicit end-to-end signaling

Max-age or 3\*BPDU hellos may have to expire to detect failure.

Slow convergence even using 802.1w

**Relies upon 3\*keepalive loss** 

Dependant upon providers core for convergence characteristics

Ethernet LMI currently being defined

#### Failure Domains: Broadcast and Multicast Radiation



#### **Metro Ethernet Service**

Cisco.com

#### How Do We Solve These Issues? Use Routing

![](_page_67_Picture_3.jpeg)

Network Modeled as Point-to-Point Links Controlled Routing Protocol Adjacencies, Easily Defined QoS Parameters, Simplified Troubleshooting

# **Deploying Metro Ethernet in the Enterprise**

#### Cisco.com

#### Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

# **Design Principles**

Cisco.com

#### • When designing a network several factors

Performance

- Scalability
- **Reliability and availability**
- **Cost efficiency**
- Security
- ...Need to be considered irrespective of technology to support critical business objectives, i.e. the applications

# **Design Principles: Hierarchy**

Cisco.com

• To design a network with the correct attributes hierarchy is used to define functional blocks...

Access

Distribution

Core

 ...Which provide the "right" fault isolation, scaling, security, QoS and scaling characteristics

# **Each Layer Provides Unique Functionality**

![](_page_71_Picture_2.jpeg)
#### **Attributes of Modularity**

Cisco.com

- Designing and building networks in modules that are then plugged together to build a large hierarchical network provides several benefits:
  - Ease of growth
  - **Allows component scaling**
  - **Streamlined training**
  - **Distributed management**
  - Fault isolation—troubleshooting

#### The "Building Block" Approach

## **Structure and Hierarchy: Summary**

Routed hierarchies enable...

**Scalable network architectures** 

Improved application performance

**Managed change** 

**Improve service** 

Simplified management and troubleshooting

**Reduced cost of ownership** 

#### Structure and Hierarchy: Scalable Routing

Cisco.com

#### Hierarchy enables us to...

**Control the impact of failures** 

Manage change

Enable effective, deterministic routing behavior

Define fault, QoS, security, domains

**Reduces the routing protocol processing overhead** 

Hierarchical (modular) topologies must be used with protocols such as OSPF, IS-IS or EIGRP

## **Deploying Metro Ethernet in the Enterprise**

#### Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

#### Metro Ethernet Distribution Hub and Spoke vs. EMS

Cisco.com

Hub and spoke

Predictable traffic patterns

Simple QoS and security policy definition

Simple IGP peering

Simple IP multicast behaviour

Simple troubleshooting

Emulated LAN

Unpredictable traffic patterns Complex QoS and security policy definition Complex IGP peering Complex IP multicast behaviour Complex troubleshooting





#### Metro Ethernet: EMS Decision Criteria

Cisco.com

• An Ethernet Multipoint service may be considered, if...

A small number of sites are considered

Limited number of devices/hosts

Multicast is not a big requirement

#### Use ERS service if these criteria cannot be met

**Design for the future** 

Easier to implement as point-to-point than migrate later

• Layer 3 service

### The MAN and WAN Edge: Switches or Routers?

Cisco.com

#### Pros

Very cost effective Easy to implement

#### Cons

Little filtering or intelligence Not true for newer switches Policing, typically no shaping Broadcast flooding Spanning tree dangers if not utilized correctly "Fuzzy" demarcation between enterprise and SP

#### • Pros



**Traffic segmentation** 

Address structuring and management

Fault isolation and control

**Policing and shaping** 

Layer 2 broadcast and multicast segmentation

No spanning tree; greater control w/ routing protocols

• Cons

More costly to implement

## Metro Ethernet: Switched Edge Recommendations

Cisco

Cisco.com

Suitable for data only services

IP telephony/interactive applications need careful consideration

Suitable for very small, simple applications

~2–10 sites, ~10–20 hosts per site

Use broadcast suppression

Set to low% of committed rate

 Use intelligent switches and police using VACLs to define QoS policies

Note: traffic shaping is not typically supported

## Metro Ethernet: Switched Edge Recommendations

Cisco.com

From a security perspective...

Configure port security internally

Consider IEEE 802.1x

There should only be one MAC address per port

**Disable VTP on edge switches** 

Could be used as a denial of service attack

**Disable CDP on edge ports** 

Advertises device, IP and software versions

Could be used as a DOS attack

**Disable DTP on edge switches** 

Define only the VLANs that you require for connectivity

Configure spanning tree ROOT guard

#### **Metro Ethernet: Why Routers?**

- Sophisticated traffic management LLQ, CBQ, CAR, etc.
- Sophisticated security management ACLs, firewall features, etc.
- Structured address management IP addresses
- Simplified policy management QoS, security, etc.
- Simple fault determination and convergence Explicit one-to-one relationships Robust routing protocol support

## Metro Ethernet: Distribution Hub and Spoke

Cisco.com

#### Deploy metro Ethernet as virtual leased lines

Deploy routers as the edge device of choice

Enables key features such as IP multicast routing, content services, security, etc.

Model links as frame relay or ATM PVCs

**Use VLANs as sub interfaces** 

**Use VLAN tags like DLCI or PVCs** 

Apply same QoS and security policies as existing Frame Relay networks

#### **Metro Ethernet Deployment**

Cisco.com



Interface fastethernet0/0 No ip address

L

Interface fastethernet0/0.1 ip address 192.168.255.2 255.255.255.252 Encapsulation dot1q 101

- Implement as Point-to-point interfaces
- Use sub-interfaces as these allow flexibility later if additional connections are required.

Cisco.com

- Shaping is required to allow flexibility in the way bandwidth is managed
- Policing is a "hard" limit, congestion unaware mechanism

Within contract yes/no decision

• Metro Ethernet will be a sub-rate service

I.e. 10Mbps within a 100Mbps connection Provider will police your traffic

 Shaper ensures that congestion is notified on interface even if there is no actual congestion "Virtual" queue

Cisco.com

#### • An example

Assume that we have a 100Mbps connection and a 20Mbps access rate

4Mbps allocated for IP voice

6Mbps allocated for video traffic

6Mbps allocated for business critical traffic

4Mbps allocated for everything else

- But, in the absence of higher or lower priority traffic, I want to be a able to burst into those classes
- Solution: Combine police and shaping

Cisco.com

policy-map customer\_classes

class VOICE

police 4000000 conform-action set-prec-transmit 5 exceed-action drop priority 4000

class MISSION-CRITICAL

bandwidth 20000

service-policy customer classes bandwidth 6000

police 6000000 conform-action set-prec-transmit 3 exceed-action setprec-transmit 0

class VIDEO

bandwidth 6000

police 6000000 conform-action set-prec-transmit 2 exceed-action setprec-transmit 0

class BEST-EFFORT

bandwidth 4000

police 4000000 conform-action set-prec-transmit 0 exceed-action setprec-transmit 0

policy-map shape\_output

class ALL-CUSTOMER-CLASSES

© 2002, Cisco Systems, Inc. All rights reserved

- Classification and policing of in-and out of profile traffic at ingress
- Shaper at egress allows "elastic" bandwidth sharing



#### **Metro Ethernet: ERS Recommendation**

Cisco.com

- Point-to-point ERS service modelled as existing Frame Relay or ATM deployments today
  - **Optimum scaling characteristics**
  - **Optimum QoS policy**
  - **Optimum security policy**
  - **Optimum troubleshooting and management**

#### Leverages existing expertise

Well understood and widely deployed model in Frame Relay and ATM networks today

## Metro Ethernet ERS: Network Design Practice

Cisco.com

#### Improved performance

Support for deterministic traffic engineering designs for routing protocols

**Deterministic convergence** 

Traffic load share on equal cost paths

**Minimize downtime:** By providing redundancy and alternative path routing where appropriate

#### Metro Ethernet ERS: Good Network Design Practice

Cisco.com

#### Improved management

**Ease change:** Building block approach, plus well-defined boundaries

Minimize downtime: By provided redundancy and alternative path routing

Maximize services: QoS, rate limiting, voice, etc...implemented at appropriate levels of the network

**Distribute the security** policy and processing load by creating well-defined functional layers

## **Deploying Metro Ethernet in the Enterprise**

#### Agenda

- Metro Services Evolution
- Designing with Fiber
- Designing with 10 Gigabit Ethernet
- Ethernet TLS
- Design Principles
- Metro Ethernet Design Recommendations
- Cisco Metro Solutions

#### **Cisco Metro Fusion**

- Comprehensive service portfolio meeting diverse application requirements
- Deliver efficient and flexible design options and architectures
- Proven industry leadership delivering unparalleled network scale and service availability
- Driving industry innovation: architectures, technologies, standards





## Deploying Metro Ethernet Solutions



# Please Complete Your Evaluation Form

**Session – Deploying Metro Ethernet Solutions** 

# **CISCO SYSTEMS INTERNET GENERATION**