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Disclaimer

“Many of the products and features described herein remain in 
varying stages of development and will be offered on a when-
and-if-available basis. This roadmap is subject to change at 
the sole discretion of Cisco, and Cisco will have no liability for 
delay in the delivery or failure to deliver any of the products or 
features set forth in this document.”



Illustration Conventions
• For NodeX:

– Loopback address: 1.1.1.X/32
– SRGB: [16000 – 23999]
– Prefix-SID: 16000 + X

• For link NodeXàNodeY:
– Interface address: 99.X.Y.X/24 (where X<Y)
– Adjacency-SID: 30X0Y

• Link metric notation
– IGP & TE metric: xx (default: 10)
– IGP metric: I:xx (default: I:10)
– TE metric: T:yy (default: T:10)
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RSVP-TE
• Little deployment and many issues
• Not scalable

– Core states in k×n2

– No inter-domain

• Complex configuration
– Tunnel interfaces

• Complex steering
– PBR, autoroute

n: #head-ends; k: #ECMP



SRTE
• Simple, Automated and Scalable

– No core state: state in the packet header
– No tunnel interface: “SR Policy”
– No head-end a-priori configuration: on-demand policy instantiation
– No head-end a-priori steering: automated steering

• Multi-Domain
– XR Traffic Controller (XTC) for compute
– Binding-SID (BSID) for scale

• Lots of Functionality
– Designed with lead operators along their use-cases



MPLS and SRv6
• The SR and SRTE architecture applies to MPLS and IPv6 

data plane implementations
• This document focuses on the MPLS data plane 

implementation
– IPv6 data plane implementation (SRv6) will be added in a future revision 

of this document



SR Policy



SR Policy Identification
• An SR Policy is uniquely identified by a tuple

(head-end, color, end-point)
Head-end: where the SR Policy is instantiated (implemented)
Color: a numerical value to differentiate multiple SRTE Policies 

between the same pair of nodes
End-point: the destination of the SR Policy

• At a given head-end, an 
SR Policy is uniquely identified 
by a tuple (color, end-point)

2 3

7 6

4

1

5

SR Policy

(1, green, 4)
Head-end: 1
Color: green
End-point: 4



SR Policy Color
• Each SR Policy has a color

– Color can be used to indicate a certain treatment (SLA, policy) provided by an SR Policy

• Only one SR Policy with a given color C can exist between a given node 
pair (head-end (H), end-point (E))
– In other words: each SR Policy triplet (H, C, E) is unique

• Example:
– High-BW=“blue”, Low-latency=“green”
– steer traffic to 1.1.1.0/24 via Node4 

into High-BW SR Policy (1, blue, 4)
– steer traffic to 2.2.2.0/24 via Node4 

into LL SR Policy (1, green, 4)

2 3

7 6

4

1

5

(1, green, 4)

(1, blue, 4)

1.1.1.0/24
2.2.2.0/24

Low-latency

High-BW

LL = Low-latency; High-BW = High-Bandwidth



SR Policy – Candidate Paths
• An SR Policy consists of one or more candidate paths (Cpaths)

• An SR Policy instantiates one single path in RIB/FIB
– the selected* path, which is the preferred valid candidate path

• A candidate path is either dynamic or explicit
* See further.

SR Policy Cpath1

Cpath2

Cpathn

...
Candidate
Paths



SR Policy – Candidate Path
• A candidate path is a single segment list (SID-list) 

or a set of weighted* SID-lists
– Typically, an SR Policy path only contains a single SID-list

• Traffic steered into an SR Policy 
path is load-shared over all 
SID-lists of the path

SID = Segment ID
* For Weighted Equal Cost Multi-Path (WECMP) load-sharing. See further.

SR Policy

Cpathn

...

Cpath1 ...

SID-list1m

Weight1m

SID-list11

Weight11

...

SID-listnk

Weightnk

SID-listn1

Weightn1



Dynamic Path
• A dynamic path expresses 

an optimization objective and a set of constraints
• The head-end computes a solution to the optimization 

problem as a SID-list or a set of SID-lists
• When the head-end does not have enough topological 

information (e.g. multi-domain problem), the head-end may 
delegate the computation to a PCE

• Whenever the network situation changes, the path is 
recomputed 

...

SID-listk
Weightk

SID-list1
Weight1

Dynamic path

Optimization
Objective

Constraints
compute

path



Explicit Path
• An explicit path is an explicitly specified SID-list or set of SID-

lists

Explicit path ...

SID-listk
Weightk

SID-list1
Weight1

SID11 SID12 SID1n

SIDk1 SIDk2 SIDkm



Candidate Paths
• A candidate path has a preference
• A candidate path is associated with a single Binding-SID 
• A candidate path is valid if it is usable

– The validation rules are 
defined in a later section

SR Policy

Cpathn

Preferencen

...

Cpath1

Binding-SIDn

Preference1

Binding-SID1

SID-list1m

...

Weight1m

SID-list11

Weight11

SID-listnk

...

Weightnk

SID-listn1

Weightn1



Candidate Paths (Cont.)
• A head-end may be informed about candidate paths for an 

SR Policy (color, end-point) by various means including: local 
configuration (CLI), netconf, PCEP, or BGP

netconfCLI

PCEPBGP

SRTE



Path Selection
• A path is selected for an SR Policy (i.e. it is the preferred 

path) when the path is valid AND its preference is the best 
(highest value) among all the candidate paths of the SR 
Policy

• The protocol source of the path does not matter in the path 
selection logic



Path’s source does not influence selection

SR Policy
( Head, Color, End )

SID-list11
<16003,

16004>
Weight 1

SID-list12
<16004>
Weight 4

Cpath1

Pref 110

SID-list21
<16004>Cpath2

Pref 100

Provided by 
e.g. local configuration

Provided by 
e.g. BGP SRTE

VA
LI

D
VA

LI
D

VA
LI

D
✔ Cpath3

Pref 200

SID-list31
<16005,

16004>



Selection of a new preferred path 
• Whenever a new candidate path (Cpath) is learned or the 

validity of an existing Cpath changes or an existing Cpath is 
changed, the selection process must be re-executed



Selection of a new preferred path 

SR Policy
( Head, Color, End )

SID-list21
<16004>Cpath2

Pref 100

Cpath3

Pref 200

SID-list31
<16005,

16004>

Provided by 
e.g. local configuration

Provided by 
e.g. BGP SRTE

VA
LI

D
VA

LI
D

IN
VA

LI
D

✔
SID-list11
<16003,

16004>
Weight 1

SID-list12
<16004>
Weight 4

Cpath1

Pref 110



Segment ID (SID)
• A SID can either be expressed as 

– A label value
– An IP address and optionally its label value

• Why?
– Support inter-domain

>SIDs in remote domains cannot be resolved by the head-end and hence must be 
expressed as a resolved label

– Validation control
>SIDs expressed as label values are not validated (except the first SID)
> If the designer wants the head-end to validate a SID and that SID is in the SRTE DB of 

the head-end, then the designer should express it as an IP address



SID types
• The following segment types are defined:

1. SID only, in the form of MPLS Label (MPLS only)
2. SID only, in the form of IPv6 address (SRv6 only)*
3. IPv4 Node Address with optional SID
4. IPv6 Node Address with optional SID*
5. IPv4 Address + interface index with optional SID
6. IPv4 Local and Remote addresses with optional SID
7. IPv6 Address + interface index with optional SID*
8. IPv6 Local and Remote addresses with optional SID*

* Future



Invalid SID-list
• A SID-list is invalid as soon as:

– It is empty
– The head-end is unable to resolve the first SID into one or more outgoing 

interface(s) and next-hop(s) 
– The head-end is unable to resolve any non-first SID that is expressed as an 

IP address (SID types 3 to 8)

• The head-end of an SR Policy updates the validity of a SID-list upon 
network topological change



Invalid SR Policy candidate path
• An SR Policy candidate path is invalid as soon as it has 

no valid SID-list

SR Policy

Cpathn

...

Cpath1 ...

SID-list1m

Weight1m

SID-list11

Weight11

...

SID-listnk

Weightnk

SID-listn1

Weightn1

✘

✘
✘

✘

✔

✔

✔

✔ valid
✘ invalid



Invalid SR Policy
• An SR Policy is invalid when 

all its candidate paths are invalid

SR Policy

Cpathn

...

Cpath1 ...

SID-list1m

Weight1m

SID-list11

Weight11

...

SID-listnk

Weightnk

SID-listn1

Weightn1

✘

✘
✘

✘

✘

✘

✘

✔ valid
✘ invalid



SR Policy invalidation behavior
• If an SR Policy becomes invalid, the invalidation behavior is 

applied
– By default: SR Policy forwarding entries are removed and traffic falls 

back to its default forwarding path (e.g. IGP shortest path)
– If “invalidation drop” behavior is specified, then the SR Policy forwarding 

entry (Binding-SID) is kept, but modified to drop all traffic that is steered 
into the SR Policy



• The SID-list of an SR Policy is the SID-list or set of SID-lists 
of its selected path

• In practice, most use-cases 
have a single SID-list per 
candidate path

VA
LI

D
VA

LI
D

SID-list of an SR Policy

SR Policy

Cpathn

Preferencen

...

Cpath1

Binding-SIDn

Best Pref

Binding-SID1

SID-list1m

...

Weight1m

SID-list11

Weight11

SID-listnk

...

Weightnk

SID-listn1

Weightn1

✔



• The BSID of an SR Policy is the BSID of the selected path

VA
LI

D
VA

LI
D

Binding-SID (BSID) of an SR Policy

SR Policy

Cpathn

Preferencen

Cpath1

Binding-SIDn

Best Pref

Binding-SID1

SID-list1m

...

Weight1m

SID-list11

Weight11

SID-listnk

...

Weightnk

SID-listn1

Weightn1

✔

...



An SR Policy should have a stable BSID
• In all the use-cases known to date, all the candidate paths associated with 

a given SR Policy have the same BSID
– Recommendation: design like this!

• One may thus assume that in practice an SR Policy has a stable BSID 
that is independent of selected-path changes

• One may thus assume that in practice a BSID is an ID of an SR Policy 
• However, one should know that a BSID may change over the life of an SR 

Policy and the true identification of an SR Policy is the tuple (head-end, 
color, end-point)



Active SR Policy
• An SR Policy (color, end-point) is active at a head-end as 

soon as this head-end knows about a valid candidate path for 
this policy

• An active SR Policy installs a BSID-keyed entry in the 
forwarding table with the action of steering the packets 
matching this entry to the SID-list(s) of the SR Policy



Active SR Policy – FIB entry

2 3

6 5

41

20

Default link metric: 10

10GE

40GE

SR Policy
SID-list:
<16003,

16004>

Selected 
Path

BSID:
40104

Forwarding table on Node1

In Out Out_intf Fraction

40104 <16003, 16004> To Node2 100%



Weighted ECMP (WECMP)
• If a set of SID-lists is associated with the selected path of the SR Policy, 

then the steering is flow and WECMP-based according to the relative 
weight of each SID-list

2 3

6 5

41

20

Default link metric: 10

10GE

40GE

1/5
of load

4/5
of load

SR Policy

SID-list1:
<16003,
16004>

Weight 1

SID-list2:
<16004>
Weight 4

Selected 
Path



Active SR Policy – FIB entry – WECMP

2 3

6 5

41

20

Default link metric: 10

10GE

40GE

SR Policy Selected 
Path

BSID:
40104

Forwarding table on Node1

In Out Out_intf Fraction

40104
<16003, 16004> To Node2 20%

<16004> To Node6 80%

SID-list:
<16003,

16004>

SID-list:
<16004>

Weight 1

Weight 4



Configuration



Head-end SRTE DB – IGP config
• Enable the following command under ISIS/OSPF to feed the 

SRTE DB on the head-end:

router isis 1
distribute link-state

router ospf 1
distribute link-state



SR Policy – configuration example
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 100
dynamic mpls
metric
type te

affinity
exclude-any red

!
preference 200
explicit segment-list SIDLIST1

!
segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

SRTE
On Node1:

2 3

6 5

41

20

Default link metric: 10

SR Policy



SR Policy – configuration example
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 100
dynamic mpls
metric
type te

affinity
exclude-any red

!
preference 200
explicit segment-list SIDLIST1

!
segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

User-defined 
name

Color and End-point

Binding-SID

Local Candidate 
Paths

On Node1:

2 3

6 5

41

20

Default link metric: 10

SR Policy ID: 
(20,1.1.1.4)

➊

➋
➊

➋



SR Policy – configuration example
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 100
dynamic mpls
metric
type te

affinity
exclude-any red

!
preference 200
explicit segment-list SIDLIST1

!
segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

On Node1:

SID-list1

Path preference 100

Dynamic path

Opt. Obj.: TE metric

Constraint

2 3

6 5

41

20

Default link metric: 10

Path preference 200

Explicit SID-list1

➊

➋
➊

➋



SR Policy – configuration example
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 100
dynamic mpls
metric
type te

affinity
exclude-any red

!
preference 200
explicit segment-list SIDLIST1

!
segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

2 3

6 5

41

20

Default link metric: 10

On Node1:

FIB @ head-end Node1
Incoming label: 1000
Action: pop and push <16002, 30203, 14004>

Selected Path:
• Valid Path
• Highest Pref value



SR Policy – configuration example
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 100
dynamic mpls
metric
type te

affinity
exclude-any red

!
preference 200
explicit segment-list SIDLIST1

!
segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

On Node1:

Other candidate paths received for 
SR Policy (20, 1.1.1.4)

Path received via BGP signaling
preference 150
binding-sid mpls 1000
weight 1, SID-list <16002, 16005>
weight 2, SID-list <16004, 16008>

Path received via PCEP signaling
preference 120
binding-sid mpls 1000   
SID-list <16002, 16005>

Path received via NETCONF signaling
preference 50
binding-sid mpls 1000   
SID-list <16002, 16005>

Node1 may receive other 
candidate paths for SR Policy 

(20, 1.1.1.4) from other 
sources, some examples:

Source of path is not 
considered for path selection

Selected Path:
• Valid Path
• Highest Pref value



WECMP example
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 200
explicit segment-list SIDLIST1
weight 1

!
explicit segment-list SIDLIST2
weight 4

!
segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

!
segment-list name SIDLIST2
index 10 address ipv4 1.1.1.4

Path preference 
200

Explicit SID-list1, 
Weight 1

Explicit SID-list2, 
Weight 4

SID-list1

SID-list2

On Node1:

2 3

6 5

41

20

Default link metric: 10

FIB @ head-end Node1
Incoming label: 1000
Action:pop and push <16002, 30203, 14004> (20%)

push <16004> (80%)



Explicit Path



SID-list with addresses – example
segment-routing
traffic-eng
policy POLICY1
color 2 end-point ipv4 1.1.1.4
candidate-paths
preference 100
explicit segment-list SIDLIST1

segment-list name SIDLIST1
index 10 address ipv4 1.1.1.2
index 20 address ipv4 99.2.3.3
index 30 address ipv4 1.1.1.4

2 3

6 5

41

50

Default link metric: 10

à Prefix-SID 16002

à Adj-SID 30203

Outgoing interface from first 
SID: to Node2

1.1.1.2
SID 16002

1.1.1.4
SID 16004

à Prefix-SID 16004

99.2.3.3
SID 30203

On Node1:

SID-list: 
<16002, 

30203, 
16004>



SID-list with labels – example
segment-routing
traffic-eng
policy POLICY1
color 2 end-point ipv4 1.1.1.4
candidate-paths
preference 100
explicit segment-list SIDLIST1

segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

2 3

6 5

41

50

Default link metric: 10

99.2.3.3
SID 30203

Outgoing interface from first 
SID: to Node2

1.1.1.2
SID 16002

1.1.1.4
SID 16004

à Prefix-SID Node2

à Adj-SID Adj2-3

à Prefix-SID Node4

On Node1:

SID-list: 
<16002, 

30203, 
16004>



Path Validation
• Validation of:

– First SID
– Non-first SID expressed as an IP address

2 3

6 5

41

50

Default link metric: 10

99.2.3.3
SID 30203

1.1.1.2
SID 16002

1.1.1.4
SID 16004

segment-list name SIDLIST1
index 10 mpls label 16002
index 20 mpls label 30203
index 30 mpls label 16004

segment-list name SIDLIST2
index 10 address ipv4 1.1.1.2
index 20 address ipv4 99.2.3.3
index 30 address ipv4 1.1.1.4

Not validated – path remains valid

Validated – path is invalid

SID-list: 
<16002, 

30203, 
16004>

animated



Set of SID-lists – example
segment-routing
traffic-eng
policy POLICY1
color 2 end-point ipv4 1.1.1.4
candidate-paths
preference 100
explicit segment-list SIDLIST1
weight 1

!
explicit segment-list SIDLIST2
weight 4

!
!

!
!

segment-list name SIDLIST1
index 10 address ipv4 1.1.1.2
index 20 address ipv4 99.2.3.3
index 30 address ipv4 1.1.1.4

!
segment-list name SIDLIST2
index 10 address ipv4 1.1.1.4

!
!

!

2 3

6 5

41

50

Default link metric: 10

1.1.1.2
SID 16002

1.1.1.4
SID 1600499.2.3.3

SID 30203

candidate path

Explicit SID-list1, 
Weight 1

Explicit SID-list2, 
Weight 4

On Node1:

SID-list (weight 1)
<16002, 30203, 16004>

SID-list (weight 4)
<16004>



Use-case
Dual Plane – Anycast-SID

• The nodes on Plane1 (blue) advertise Anycast-SID 16111 (1.1.1.111/32)
• The nodes on Plane2 (green) advertise Anycast-SID 16222 (1.1.1.222/32)
• The explicit path on Node1 steers packets via SID-list <16111, 16003>

– The path stays on Plane1, except if both uplinks to Plane1 fail or Plane1 becomes partitioned

1 2 11

13 14

21

23 24SID-list:
< 16111, 16003 >

segment-routing
traffic-eng
policy POLICY1
color 2 end-point ipv4 1.1.1.3
candidate-paths
preference 100
explicit segment-list SIDLIST1

!
segment-list name SIDLIST1
index 10 address ipv4 1.1.1.111
index 20 address ipv4 1.1.1.3

3

12

22

Subject to testing

N
od

e1



Use-case
TDM migration

• Two disjoint pseudowires from Node1 to Node4
– PW1 steered into SR Policy BLUE

PW2 steered into SR Policy GREEN

• PWs are transported via pinned down paths
– Unprotected: using unprotected Adjacency-SIDs
– PW traffic dropped when path is invalid (invalidation drop)

segment-routing
traffic-eng
policy BLUE
color 10 end-point ipv4 1.1.1.4
candidate-paths
invalidation drop
preference 100
explicit segment-list SIDLIST1
unprotected

!
policy GREEN
color 20 end-point ipv4 1.1.1.4
candidate-paths
invalidation drop
preference 100
explicit segment-list SIDLIST2
unprotected

!
segment-list name SIDLIST1
index 10 address ipv4 99.1.2.2
index 20 address ipv4 99.2.3.3
index 30 address ipv4 99.3.4.4

!
segment-list name SIDLIST2
index 10 address ipv4 99.1.6.6
index 20 address ipv4 99.5.6.5
index 30 address ipv4 99.4.5.4

2 3

6 5

41

PW1

PW2

SID-list:
< 30106, 
30605, 30504 >

SID-list:
< 30102, 
30203, 30304 >

N
od

e1



Dynamic Path



Optimization Objectives and Constraints
• TE path computation algorithms solve optimization problems 

with constraints
– E.g. “find lowest latency path that avoids link RED”, or “find two lowest 

cost paths that are disjoint”

• New efficient SR-native algorithms have been developed 
providing solutions that leverage the ECMP-awareness of SR 
and minimize the size of the resulting SID-list

• Extensive scientific research is backing these new SRTE 
algorithms: SIGCOMM 2015*

* http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p15.pdf



SR-optimized algorithms
Circuit optimization vs SR optimization
• The introduction of Classic TE (RSVP-TE) made traditional 

circuit-based L2 (ATM, Frame-relay) functionality available in 
IP networks
– Classic TE is circuit-based, including its path computation algorithms

• Though ECMP is omnipresent in IP networks, Classic TE 
circuit-based paths do not natively leverage ECMP

• SR forwarding and SR-optimized computations preserve 
ECMP of IP networks and minimize the resulting SID-list size



SR-optimized algorithms
Circuit optimization vs SR optimization
• Using classic TE circuit-based path computation and 

translating the path in a SID-list does not provide the desired 
solution
– Not ECMP-aware, needs multiple circuits for load-sharing
– Results in a large SID-list to express the path

• A lot of research went into the development of efficient, SR-
optimized path computation algorithms
– Natively ECMP-aware
– Path expressed in a small SID-list



Circuit Optimization vs SR Optimization
2

4

1 5 3

6
7

8 9

Classic TE is circuit-based
CSPF => non-ECMP path
Classic Algo is no good!!

SID-list: <4, 5, 7, 3>
Poor ECMP, big SID-list, ATM optimized

2

4

1 5 3

6
7

8 9

SR-native TE is needed
!No more circuit!

Recognized Innovation - Sigcomm 2015
SID-list: <7, 3>

ECMP, Small SID-list, IP-optimized



SR-optimized algorithms
Circuit optimization vs SR optimization
• In the vast majority of SR use-cases, native SR-optimized 

algorithms are preferred
• In some specific use-case (e.g. TDM migration over IP where 

the circuit notion prevails), one may prefer a classic circuit 
computation followed by an encoding into SIDs



Optimization Objectives



2 3

4

1

Default IGP link metric: I:10
Default TE link metric: T:10

T:15
I:10

6

5

T:15
I:10

T:5
I:30

T:8
I:10

Min-Metric(1 → 3, IGP) = SID-list <16003>
Cumulated IGP metric: 20

Min-Metric Optimization

• Head-end computes a SID-list that expresses the shortest-path according 
to the selected metric

segment-routing
traffic-eng

policy POLICY1
color 20 end-point ipv4 1.1.1.3
candidate-paths

preference 100
dynamic mpls

metric
type [igp|te|latency*]

Min-Metric(1 → 3, TE) 
= SID-list <16005, 16004, 16003>
Cumulated TE metric: 23

* future

N
od

e1



Min-Metric with Margin and max SID-list
• Head-end computes a SID-list such that 

packets flowing through it do not use a 
path whose cumulated optimized metric 
is larger than the shortest-path for the 
optimized metric + margin

• If this is not possible because of the 
number of SIDs constraint (sid-limit), 
then the solution SID-list minimizes the optimized metric while meeting 
the maximum number of SID constraint

• Margin can be expressed as an absolute value or as a relative value 
(percentage) (margin relative <%>)

segment-routing
traffic-eng

policy POLICY1
color 20 end-point ipv4 1.1.1.3
candidate-paths

preference 100
dynamic mpls

metric
type te
margin absolute 5
sid-limit 6



Why Min-metric with margin?
• In many deployments there are insignificant metric 

differences between mostly equal paths (e.g. a difference of 
100 usec of latency between two paths from NYC to SFO 
would not matter in most cases)

• The Min-Metric with margin relaxes the “absolute” Min-Metric 
objective to favor more ECMP or shorter SID-list instead of 
insignificant optimization increment



Min-Metric with Margin and max SID-list

2 3

4

1
T:15
I:10

6

5

T:15
I:10

T:5
I:30

T:8
I:10

Default IGP link metric: I:10
Default TE link metric: T:10

Min-Metric(1 to 3, TE) 
= SID-list <16005, 16004, 16003>
Cumulated TE metric = 23

Min-Metric(1 to 3, TE, m=5, s ≤ 6) 
= SID-list <16005, 16003>
Max Cumulated TE metric = 25 < 23 + 5

segment-routing
traffic-eng

policy POLICY1
color 20 end-point ipv4 1.1.1.3
candidate-paths

preference 100
dynamic mpls

metric
type te
margin absolute 5
sid-limit 6

Min-metric Min-metric with margin and max SID-list

• Optimal link utilization (ECMP)
• Smaller SID-list

N
od

e1



2 3

4

1

Default IGP link metric: I:10
Default TE link metric: T:10

5

SID-list: <16005, 16004, 16003>

6

Use-case
Low-Latency

• Min-metric on TE metric, where propagation latency is encoded in TE 
metric
– Same with margin and max-SID
– Same with latency metric automatically measured by a node for its attached 

links and distributed in the IGP

segment-routing
traffic-eng

policy POLICY1
color 20 end-point ipv4 1.1.1.3
candidate-paths

preference 100
dynamic mpls

metric
type te

N
od

e1

T:15
I:10

T:15
I:10

T:10
I:30

T:8
I:10



Use-case
Plane Affinity

• Min-Metric on IGP metric with exclusion of a TE-affinity “Plane2”
– All the links in Plane2 are set with TE-affinity “Plane2”

1 2
11 12

3
13 14

21 22

23 24

Plane1
Plane2

SID-list:
< 16014, 16003 >

segment-routing
traffic-eng

affinity bit-map 
Plane1 0x00000001
Plane2 0x00000002

!
policy POLICY1

color 20 end-point ipv4 1.1.1.3
candidate-paths

preference 100
dynamic mpls

metric
type igp

affinity
exclude-any Plane2

N
od

e1

More details of affinity configuration in 
the “Constraints” section 



segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.7
candidate-paths
preference 100
dynamic mpls
metric
type igp
association group 1 type node

!
policy POLICY2
color 30 end-point ipv4 1.1.1.7
candidate-paths
preference 100
dynamic mpls
metric
type igp
association group 1 type node

2 3

5 6

4 71

I:100

Default IGP link metric: I:10

I:100
POLICY1 SID-list:
<16002, 30203, 16007>

POLICY2 SID-list: 
<16005, 16006, 16007>

Use-case
Service Disjointness from same head-end

• The head-end computes two 
disjoint paths

N
od

e1

More details of disjointness configuration in the 
“Constraints” and “Path Disjointness” sections



Constraints



Constraints
• The following constraints can be specified:

– Include and/or exclude TE affinity
– Include and/or exclude IP address
– Include and/or exclude SRLG
– Maximum accumulated metric (IGP, TE, and latency)
– Maximum number of SIDs in the solution SID-list
– Disjoint from another SR Policy in the same association group



Constraint – TE affinity
• Links in the network can be “colored”

– E.g. “country X”, “under maintenance”, ...

• SRTE can compute a path that includes or excludes links that 
have specific (combinations of) colors



Constraint – Add colors to links

• “Color” links/interfaces by assigning affinity bit-maps to them

segment-routing
traffic-eng
affinity bit-map 
!! 32-bit maps
blue 0x00000001
red 0x00000002
green 0x00000004

!
interface Gi0/0/0/0
affinity blue

!
interface Gi0/0/0/1
affinity blue green

2 3

6 5

41

50

Default link metric: 10

Gi0/0/0/0
1.1.1.4

SID 16004
blue

Gi0/0/0/1
blue + green

Define user-friendly 
names for affinity bit-

maps 

On Node1:

Assign affinity bit-
map to interface

Assign affinity bit-
map to interface



Constraint – TE affinity
• Specify “affinity” or “relationship” between SR Policy path and 

link colors
• An SR Policy path can specify:

– Include-any <color> [<color> ...]: only traverse links that have any of the 
specified colors

– Include-all <color> [<color> ...]: only traverse links that have all of the 
specified colors

– Exclude-any <color> [<color> ...]: do not traverse links that have any of 
the specified colors



Constraint – SR Policy Path affinity

• Specify the relationship (affinity) of the SR Policy path with 
the link colors

segment-routing
traffic-eng

policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths

preference 100
dynamic mpls

metric
type igp

affinity
exclude-any red

On Node1:

Don’t use links with 
color red 

blue + green

2 3

6 5

41

50

Default link metric: 10

Gi0/0/0/0
1.1.1.4

SID 16004
blue

Gi0/0/0/1 red

green



Constraint – IP address
• SRTE can compute paths that avoid specific resources that 

are identified by their IP address
– Links
– Nodes
– Sets of nodes

(anycast set)

prefix-set SET1
1.1.1.6/32

end-set
!
segment-routing

traffic-eng
policy POLICY1

color 20 end-point ipv4 1.1.1.4
candidate-paths

preference 100
dynamic mpls

metric
type igp

address
exclude SET1

2 3

6 5

41

50

Default link metric: 10

1.1.1.4
SID 16004

1.1.1.6/32

On Node1:

Avoid node with 
address 1.1.1.6/32



Constraint – SRLG
• Shared Risk Link Groups (SRLGs) are identified by a number

– Links with the same SRLG id share a common risk (e.g. same fiber 
conduit)

srlg
interface Gi0/0/0/0
10 value 1111
20 value 2222

!
interface Gi0/0/0/1
10 value 2222
20 value 3333
30 value 4444

!
!

2 3

6 5

41

50

Default link metric: 10

1.1.1.4
SID 16004

SRLG 
1111
2222

SRLG
2222
3333
4444

G
i0

/0
/0

/0

G
i0

/0
/0

/1

On Node6:



Constraint – SRLG
• SRTE can compute paths that excludes links that have 

specific SRLGs
segment-routing

traffic-eng
policy POLICY1

color 20 end-point ipv4 1.1.1.4
candidate-paths

preference 100
dynamic mpls

metric
type igp

srlg
exclude 1111

2 3

6 5

41

50

Default link metric: 10

1.1.1.4
SID 16004

On Node1:

Don’t use links with 
SRLG 1111

SRLG 
1111
2222

SRLG
2222
3333
4444



Constraint – maximum metric
• SRTE can put an absolute limit on the cumulative metric of a 

computed path
segment-routing

traffic-eng
policy POLICY1

color 20 end-point ipv4 1.1.1.4
candidate-paths

preference 100
dynamic mpls

metric
type igp
limit 80

2 3

6 5

41

50

Default link metric: 10

1.1.1.4
SID 16004

On Node1:

Cumulative metric 
must be ≤ 80



Constraint – limit SIDs

segment-routing
traffic-eng

policy POLICY1
color 20 end-point ipv4 1.1.1.4
candidate-paths

preference 100
dynamic mpls

metric
sid-limit 5
type igp

Maximum 5 SIDs in 
the solution SID-list

• SRTE can put an absolute limit on the number of SIDs in the 
SID-list of a computed path



Constraint – disjointness
• SRTE can compute a path that is disjoint from another path in 

the same disjoint-group
• See Path Disjointness section
segment-routing
traffic-eng
policy POLICY1
color 10 end-point 1.1.1.3
candidate-paths
preference 100
dynamic pce
!! association group <group ID> type [link | node | srlg ] [ sub-id <sub-id value> ] 
association group 1 type node
metric
type te

Member of Node-
disjoint group 1



Topological path
to segment list



Topological path to SID-list
• After the path is computed, the SID-list that expresses the 

desired path is derived
• High-level algorithm:

1. Node = head-end
2. Find an IGP prefix-SID that leads as far down the desired path as 

possible (without using any link not included in the desired path)
3. If no such prefix-SID exists, use the Adj-SID to the first neighbor along 

the path
4. Node = the farthest node that is reached; goto 2.



Topological path to SID-list – Example 1
• Desired topological path = 1à2à3à4
• SID-list = <16002, 16004>

– 16002 brings the packet from 1 to 2 (shortest 
path from Node1 to Node2)

– 16004 brings the packet from 2 to 4 via 3 
(shortest path from Node2 to Node4)

1 2

4 3

20

Default link metric: 10

16002

16004



Topological path to SID-list – Example 2
• Desired topological path = 1à2à3à4
• SID-list = <16003, 30304>

– 16003 brings the packet from 1 to 3 (shortest 
path from Node1 to Node3)

– 30304 brings the packet from 3 to 4 using the 
Adjacency-SID

1 2

4 3

Default link metric: 10

16003

30304

100



Topological path to SID-list – TE metric
• Note that the derivation of the SID-list to express a 

topological path only considers IGP metric, not TE metric
– Default forwarding uses shortest IGP metric forwarding entries

• Example: shortest TE metric path is 1à2à3à4
– Cumulative TE metric is 30
– The IGP metric topology is the same as

Example 2 on previous slide
à resulting SID-list = <16003, 30304>

1 2

4 3

16003

30304

I:100
T:10

I:10
T:100

Default IGP link metric: I:10
Default TE link metric: T:10



Traffic Steering



Binding-SID (BSID) is fundamental
• The BSID of the SR Policy selected path is installed in the 

forwarding table
• Remote steering

– A packet arriving on the SR Policy head-end with 
the BSID as Active Segment (top of label stack) is 
steered into the SR Policy associated with the BSID

• Local steering
– A packet that matches a forwarding entry that 

resolves on the BSID of an SR Policy is steered 
into that SR Policy

BSID SID-list

BSID

Prefix

SID-list



Automated steering
• BGP can automatically steer traffic into an SR Policy based on BGP next-

hop and color of a route
– color of a route is specified by its color extended community attribute

• By default:
If the BGP next-hop and color of a route match the end-point and color of 
an SR Policy, then BGP installs the route resolving on the BSID of the SR 
Policy
– end-point and color uniquely identify an SR Policy 

on a given head-end
1

2 3

5 4

110.1.1.3/32 (color 10, NH 1.1.1.3)
via SR Policy POL10 (10, 1.1.1.3)

120.1.1.13/32 (color 20, NH 1.1.1.3)
via SR Policy POL20 (10, 1.1.1.3)

110.1.1.3/32
120.1.1.3/32

POL20

POL10



Color Extended Community attribute
• The Extended Community attribute is specified in RFC 4360
• The color extended community is specified in RFC 5512 and 

updated in draft-previdi-idr-segment-routing-te-policy
– It is a Transitive Opaque Extended community

• CO-bits specify the SR Policy preference (see next slide)
• The color value is a flat 32-bit number

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   type 0x03   | sub-type 0x0b |C O|       Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Color Value                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Steering – Color-only (CO) bits
• Assume route R with next-hop N has a single color C
• The Color-Only (CO) bits in the color extended community 

attribute flags of R are 00, 01, or 10 (11 is treated as 00)
• BGP steers R according to this preference order:
CO=00 (or CO=11)

Preference:
1. SR Policy(N, C)
2. IGP to N

CO=01

Preference:
1. SR Policy(N, C)
2. SR Policy(null(AFN), C)
3. SR Policy(null(any), C)
4. IGP to N

CO=10

Preference:
1. SR Policy(N, C)
2. SR Policy(null(AFN), C)
3. SR Policy(null(any), C)
4. SR Policy(<any(AFN)>, C)
5. SR Policy(<any(any)>, C)
6. IGP to N



Steering – Color-only (CO) bits – Notes 
• Only valid, authorized-to-steer SR Policies are considered for traffic steering

– Invalid and not authorized-to-steer SR Policies are skipped in the selection
• “IGP to N” is the IGP shortest path to N
• SR Policy(null, C) has a “null end-point”

– null(AFN) is the null end-point for the address-family (AF) of N
– null(any) is the null end-point for any address-family
– null(IPv4) is 0.0.0.0; null(IPv6) is ::0

• SR Policy(<any>, C) is “any” SR Policy with color C
– any(AFN) is any end-point of the address-family of N
– any(any) is any end-point of any address-family

• Only one SR Policy(N, C) exists on a given node
• Only one SR Policy(null(AF), C) for each AF exists on a given node



Steering is independent of type of SR Policy
• Steering behavior is absolutely independent of the 

type/source of the SR Policy
• The SR Policy may have been preconfigured, learned via 

netconf, PCEP or BGP or on-demand triggered by BGP or 
another service (LISP)

• Once an SR Policy exists, is valid and authorized to steer, 
then BGP simply applies the steering preference rules (color 
value and CO-bits)



Route has multiple colors
• If a route R with next-hop N has multiple colors C1 … Ck then BGP steers 

R into the SR Policy with the numerically highest color
– Considering only valid and authorized-to-steer SR Policies (Ci,N) with i=1…k

• Example:
– Node1 receives 100.1.1.3/32 with NH 1.1.1.3 and colors 10 and 20
– BGP resolves 100.1.1.3/32 on BSID of POL20

(has numerically highest color 20)

1

2 3

5 4

100.1.1.3/32 (NH 1.1.1.3; color 20, color 10)
via SR Policy POL20 (20, 1.1.1.3)

100.1.1.3/32

POL10

POL20



Multiple colors for Active/Standby SR Policies
• Assume route R with next-hop N has colors C1 , C2, … ,Cn with Ci > Ci+1

• SR Policies (N,C1…n) are valid and authorized-to-steer
• BGP resolves R on SR Policy (N,C1) since C1 > C2…n

• If SR Policy (N,C1) is invalidated, then BGP re-resolves R on 
SR Policy (N,C2), with C2 the next lower numerical color value

• Example:
– Node1 receives 100.1.1.3/32 with NH 1.1.1.3 and colors 10 and 20
– BGP resolves 100.1.1.3/32 

on BSID of POL20 (color 20 > color 10)
– After invalidation of POL20, BGP 

re-resolves 100.1.1.3/32 on BSID of POL10

1

2 3

5 4

100.1.1.3/32
(NH 3; color 10, color 20)

via POL20 (C20, NH3)

100.1.1.3/32

POL10

POL20

via POL10 (C10, NH3)



Disable automated traffic steering
• By default, traffic can be steered on each SR Policy;

i.e. each SR Policy is “authorized-to-steer”
• The steering of traffic into a given SR Policy can be disabled 

by configuration
• Configuration example:

disable steering for BGP

segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
steering bgp disabled
candidate-paths
preference 100
dynamic mpls
metric
type te



Setting color of route
• The color of a BGP route is typically set at the egress PE by 

adding a color extended community to the route
– The color extended community is propagated to the ingress PE
– Traffic steering on the ingress PE is then done automatically based on 

the color, no route-policy required

• The traffic steering can be influenced on the ingress PE by 
setting a color extended community for a route using an 
ingress route-policy



Color assignment on egress PE
• Node1 has two SR Policies with end-point Node3:

– POL10 with color 10 (blue) via Node2
– POL20 with color 20 (green) via Node4

• Node3 advertises two prefixes with
next-hop 1.1.1.3 in BGP:
– 110.1.1.3/32 with color 10 (blue)
– 120.1.1.3/32 with color 20 (green)

1

2 3

5 4

110.1.1.3/32, NH 1.1.1.3
color 10

120.1.1.3/32, NH 1.1.1.3
color 20

110.1.1.3/32
120.1.1.3/32

BGP



Color assignment
Egress PE

1

2 3

5 4

110.1.1.3/32, NH 1.1.1.3
color 10

120.1.1.3/32, NH 1.1.1.3
color 20

110.1.1.3/32
120.1.1. 3/32

extcommunity-set opaque BLUE
10

end-set
!
extcommunity-set opaque GREEN
20

end-set
!
route-policy SET_COLOR
if destination in (110.1.1.3/32) then
set extcommunity color BLUE

endif
if destination in (120.1.1.3/32) then
set extcommunity color GREEN

endif
end-policy
!
router bgp 1
neighbor 1.1.1.1
remote-as 1
update-source Loopback0
address-family ipv4 unicast
route-policy SET_COLOR out

N
od

e3

BGP



Ingress PE

1

2 3

5 4

110.1.1.3/32, NH 1.1.1.3
color 10

120.1.1.3/32, NH 1.1.1.3
color 20

110.1.1.3/32
120.1.1.3/32

segment-routing
traffic-eng
policy POL10
color 10 end-point ipv4 1.1.1.3
candidate-paths
preference 100
explicit segment-list SIDLIST1
!

policy POL20
color 20 end-point ipv4 1.1.1.3
candidate-paths
preference 100
explicit segment-list SIDLIST2
!

segment-list name SIDLIST1
index 10 address ipv4 1.1.1.3

!
segment-list name SIDLIST2
index 10 address ipv4 1.1.1.4
index 20 address ipv4 1.1.1.3

N
od

e1
router bgp 1
neighbor 1.1.1.3
remote-as 1
update-source Loopback0
address-family ipv4 unicast

N
od

e1

No route-policy required on Node1!

POL10

POL20

BGP

110.1.1.3/32 via POL10
120.1.1.3/32 via POL20



Color assignment on ingress PE
• Node1 has two SR Policies with end-point Node3:

– POL10 with color 10 (blue) via Node2
– POL20 with color 20 (green) via Node4

• Node3 advertises two prefixes with
next-hop 1.1.1.3 in BGP:
– 190.1.1.3/32 with color 90 (purple)
– 100.1.1.3/32 without color

• Node1 sets:
– color of 190.1.1.3/32 to 10 (blue)
– color of 100.1.1.3/32 to 20 (green)

1

2 3

5 4

190.1.1.3/32, NH 1.1.1.3
color 90

100.1.1.3/32, NH 1.1.1.3
<no color>

190.1.1.3/32
100.1.1.3/32POL10

POL20

BGP

190.1.1.3/32 via POL10
100.1.1.3/32 via POL20

190.1.1.3/32 → color 10
100.1.1.3/32 → color 20



Ingress PE
segment-routing
traffic-eng
policy POL10
color 10 end-point ipv4 1.1.1.3
candidate-paths
preference 200
explicit segment-list SIDLIST1
!

policy POL20
color 20 end-point ipv4 1.1.1.3
candidate-paths
preference 200
explicit segment-list SIDLIST2
!

segment-list name SIDLIST1
index 10 address ipv4 1.1.1.3

!
segment-list name SIDLIST2
index 10 address ipv4 1.1.1.4
index 20 address ipv4 1.1.1.3

N
od

e1

extcommunity-set opaque BLUE
10

end-set
!
extcommunity-set opaque GREEN
20

end-set
!
route-policy SET_COLOR
if destination in (190.1.1.3/32) then
set extcommunity color BLUE

endif
if destination in (100.1.1.3/32) then
set extcommunity color GREEN

endif
end-policy
!
router bgp 1
neighbor 1.1.1.3
remote-as 1
update-source Loopback0
address-family ipv4 unicast
route-policy SET_COLOR in

N
od

e1

1

2 3

5 4

190.1.1.3/32, NH 1.1.1.3
color 90

100.1.1.3/32, NH 1.1.1.3
<no color>

POL10

POL20

BGP



Pseudowire Preferred path
• The SR Policy used to transport Pseudowire traffic can be 

specified using the preferred-path configuration
• If using an LDP signaled 

PW, then the neighbor 
address must be 
reachable (via the SR 
Policy or another path)

l2vpn
pw-class EoMPLS-PWCLASS
encapsulation mpls
preferred-path sr-policy POL1

!
xconnect group XCONGRP
p2p XCON-P2P
interface TenGigE0/1/0/3
neighbor ipv4 1.1.1.3 pw-id 1234
!! below line only if not using LDP
mpls static label local 2222 remote 3333
pw-class EoMPLS-PWCLASS



On-Demand SR Policy 
(ODN)



On-demand SR Policy
• A service head-end automatically instantiates an SR Policy to 

a BGP next-hop when required (on-demand), automatically 
steering the BGP traffic into this SR Policy

• Color community is used as SLA indicator
• Reminder: an SR Policy is defined (color, end-point)

BGP Color 
Community

BGP 
Next-hop



On-demand SR Policy
• Configure an SR Policy template for each color for which on-

demand SR Policy instantiation is desired
• An example with two color templates configured:

– color 10 for high bandwidth (optimize IGP metric)
– color 20 for low-latency (optimize TE metric)

segment-routing
traffic-eng
on-demand color 10
metric
type igp

!
on-demand color 20
metric
type te

SR Policy template 
High-BW (color 10)

SR Policy template 
Low-latency (color 20)



On-demand SR Policy
• If an SR Policy template exists for color C, then a route with 

color C can trigger an on-demand SR Policy candidate path 
instantiation to its next-hop N, for any N

• The end-points for which an on-demand SR Policy candidate 
path will be instantiated can be restricted per color

• Example configuration: only 
instantiate color 10 SR Policies
for end-points 1.1.1.10 and
1.1.1.11

ipv4 access-list ACL1
10 permit ipv4 host 1.1.1.10 any
20 permit ipv4 host 1.1.1.11 any
!
segment-routing
traffic-eng
on-demand color 10
restrict ACL1
metric
type te



Automated Steering
• Service traffic is automatically steered on the right SLA path

– Steered into an SR Policy based on color and next-hop of the service 
route

– SR Policy can already exist or be instantiated on-demand (ODN) when 
receiving the service route update

• Color community of the service route is used as SLA indicator
• Simple and Performant



Different VPNs need different underlay SLA
2

6

1 CE

5

4
I: 50

Default IGP cost: I:10
Default TE cost: T:10

IGP cost 30

T: 15

2

6

1 CE

5

4
TE cost 20

Basic VPN should 
use lowest cost 
underlay path

Premium VPN 
should use lowest 
latency path

Objective: 
operationalize 
this service for 
simplicity, scale 

and 
performance

I: 50

T: 15

Default IGP cost: I:10
Default TE cost: T:10



2

6

1 CE

5

4I: 50

T: 15

On-demand SR Policy work-flow

➊ BGP: 20/8 via 
CE

20/8

RR
➋ BGP: 20/8 via PE4
VPN-LABEL: 99999
Low-latency (color 20)

➌ BGP: 20/8 via PE4
VPN-LABEL: 99999
Low-latency (color 20)

router bgp 1
neighbor 1.1.1.10
address-family vpnv4 unicast

!
segment-routing
traffic-eng
on-demand color 20
preference 100
metric
type te

➍ PE4 with Low-
latency (color 20)?
➎ use template
color 20
➏à SID-list
<16002, 30204>

➎

animated

Default IGP cost: I:10
Default TE cost: T:10

no route-policy required!

SR Policy template 
Low-latency (color 20)



2

6

1 CE

5

4
I: 50

T: 15

Automated performant steering

➊ BGP: 20/8 via 
CE

20/8

RR
➋ BGP: 20/8 via PE4
VPN-LABEL: 99999
Low-latency (color 20)

➌ BGP: 20/8 via PE4
VPN-LABEL: 99999
Low-latency (color 20)

➍ PE4 with Low-
latency (color 20)?
➎ use template
color 20
➏à SID-list
<16002, 30204>

FIB table at PE1

SRTE: 4001: Push <16002, 30204>

➐ instantiate 
SR Policy 
BSID 4001

Low Latency to PE4

➐

➑ forward 20/8
via BSID 4001

Automatically, the service route 
resolves on the Binding-SID (4001) of 

the SR Policy it requires

Simplicity and Performance

No complex PBR to configure, no 
PBR performance tax

➑

animated

➐

BGP: 20/8 via 4001

Default IGP cost: I:10
Default TE cost: T:10



Benefits
• SLA-aware BGP service
• No a-priori full-mesh of SR Policy configuration

– 3 to 4 common optimization templates are used throughout the network
> color à optimization objective

• No complex steering configuration
– Automated steering of BGP routes on the right SLA path
– Data plane performant
– BGP PIC FRR data plane protection is preserved
– BGP NHT fast control plane convergence is preserved

PIC FRR = Prefix Independent Convergence Fast ReRoute
NHT = Next-Hop Tracking



Multi-domain
On-Demand SR Policy 
(ODN)



On-demand SR Policy – multi-domain
• The On-demand SR Policy and automated steering 

functionalities also apply to multi-domain networks



On-demand SR Policy – multi-domain
• On-demand SR Policy automatically provides inter-domain 

best-effort reachability and inter-domain reachability with SLA
• Head-end uses XTC to automatically provide an SR Policy 

path to the remote domain destination when needed (On-
demand)

• Scaling benefit
– On-Demand SR Policy: on-demand pull model
– Classic inter-domain reachability uses a push model
– Think of a large-scale aggregation with 100k access nodes where each 

such node only needs to talk to 10’s of other nodes 



On-demand SR Policy – workflow
• Service head-end receives an overlay route to a remote 

service end-point
– The overlay route can indicate a certain required SLA

• The On-demand SR Policy function automatically sends a 
stateful PCEP Path Computation request to XTC
– PCEP Request includes the Optimization Objective and Constraints to 

satisfy the required SLA

• XTC computes the inter-domain path to the remote end-point 
with SLA



On-demand SR Policy
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Basic VPN should 
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(lowest cost) inter-
domain underlay 
path

Premium VPN 
should use lowest 
latency inter-
domain underlay 
path

IGP cost 40

TE cost 20

Objective: 
operationalize 
this service for 
simplicity, scale 

and 
performance
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Default IGP link metric: I:10
Default TE link metric: T:10

CE

On-demand SR Policy reachability

RR

➋ BGP: 20/8 via PE3
VPN-LABEL: 99999
Best-effort (color 10)

➌ BGP: 20/8 via PE3
VPN-LABEL: 99999
Best-effort (color 10)

➍ PE4 with Best-
effort (color 10)?
➎ use template
color 10

router bgp 1
neighbor 1.1.1.10
address-family vpnv4 unicast

!
segment-routing
traffic-eng
on-demand color 10
preference 100
pce
metric
type igp

!
on-demand color 20
preference 100
pce
metric
type te

➎

➊ BGP: 
20/8 via CE

20/8

➏ to PE4 
with lowest 
IGP metric?

animated

➐à SID-list
<16002, 16003>

XTC
SR Policy template 

Best-effort (color 10)



➎ use template
color 10
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Default IGP link metric: I:10
Default TE link metric: T:10
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On-demand SR Policy reachability
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➋ BGP: 20/8 via PE3
VPN-LABEL: 99999
Best-effort (color 10)

➌ BGP: 20/8 via PE3
VPN-LABEL: 99999
Best-effort (color 10)

➍ PE4 with Best-
effort (color 10)?

animated

➊ BGP: 
20/8 via CE

20/8

➏ to PE4 
with lowest 
IGP metric? ➐à SID-list

<16002, 16003>
Automatically, the service route 

resolves on the Binding SID (4002) of 
the SR Policy it requires

Simplicity and Performance

No complex PBR to configure, no 
PBR performance tax

XTC

➒ forward 20/8
via BSID 4002

➒

BGP: 20/8 via 4002

➑ instantiate 
SR Policy 
BSID 4002

FIB table at PE1

SRTE: 4002: Push <16002, 16003>

➑

Best-effort 
to PE3

➑
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Default IGP link metric: I:10
Default TE link metric: T:10

CE

On-demand SR Policy with SLA

RR

➋ BGP: 20/8 via PE3
VPN-LABEL: 99999
Low-latency (color 20)

➌ BGP: 20/8 via PE3
VPN-LABEL: 99999
Low-latency (color 20)

➍ PE4 with Low-
latency (color 20)?
➎ use template
color 20

router bgp 1
neighbor 1.1.1.10
address-family vpnv4 unicast

!
segment-routing
traffic-eng
on-demand color 10
preference 100
pce
metric
type igp

!
on-demand color 20
preference 100
pce
metric
type te

➎

➊ BGP: 
20/8 via CE

20/8

➏ to PE4 
with lowest 
TE metric?

animated

➐à SID-list
<30102, 30203>

XTC

SR Policy template 
Low-latency (color 20)



➎ use template
color 20
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RR

➋ BGP: 20/8 via PE3
VPN-LABEL: 99999
Low-latency (color 20)

➌ BGP: 20/8 via PE3
VPN-LABEL: 99999
Low-latency (color 20)

➍ PE4 with Low-
latency (color 20)?

animated

➊ BGP: 
20/8 via CE

20/8

➏ to PE4 
with lowest 
TE metric? ➐à SID-list

<30102, 30203>
Automatically, the service route 

resolves on the Binding SID (4001) of 
the SR Policy it requires

Simplicity and Performance

No complex PBR to configure, no 
PBR performance tax

➑ instantiate 
SR Policy 
BSID 4001

FIB table at PE1

SRTE: 4001: Push <30102, 30203>

➑

Low 
Latency 
to PE3

➑

XTC

➒ forward 20/8
via BSID 4001

➒

BGP: 20/8 via 4001



Benefits
• Scalable – PE1 only gets the inter-domain paths that it needs
• Simple – no BGP3107 pushing all routes everywhere
• No complex steering configuration

– Automated steering of BGP routes on the right SLA path
– Data plane performant



Dynamic Path
Distributed or Centralized?



Distributed and Centralized
• There are two possibilities to compute the dynamic path for 

an SR Policy:
– Head-end computes the path itself (“distributed”)
– Head-end requests XTC to compute the path (“centralized”*)

• By default, dynamic paths are computed by the head-end
• Head-end uses XTC when local computation is not possible

– XTC is required if more information is needed than is available on a 
head-end; e.g. multi-area/domain paths, or disjoint paths from different 
head-ends
* “centralized” indicates XTC’s capability (having more information), not its position in the 
network. XTC is natively distributed as indicated in the XTC section



Head-end and XTC: same algorithms
• Head-end and SR PCE (XTC) use the same SR-optimized 

computation algorithms



Path Computation
Distributed or Centralized?

• SRTE supports each model where it makes sense
Policy Single-Domain Multi-Domain

Reachability IGP’s Centralized

Low Latency Distributed or Centralized Centralized

Disjoint from same node Distributed or Centralized Centralized

Disjoint from different node Centralized Centralized

Avoiding resources Distributed or Centralized Centralized

Capacity optimization Distributed (limited)
Centralized

Maintenance Centralized

Multi-Topology (IP+Optical) Centralized

XTC

WAE, REX, ODL, 
Custom app



XTC
XR Transport Controller



XR Transport Controller (XTC)
• XTC is an IOS XR multi-domain stateful SR PCE*

– IOS XR: XTC functionality is available on any physical or virtual IOS XR 
node, activated with a single configuration command

– Multi-domain: Real-time reactive feed via BGP-LS/ISIS/OSPF from 
multiple domains; computes inter-area/domain/AS paths

– Stateful: takes control of SRTE Policies, updates them when required
– SR PCE: native SR-optimized computation algorithms

• XTC is fundamentally distributed
– Not a single all-overseeing entity (“god box”), but distributed across the 

network; RR-alike deployment
* Path Computation Element



XTC – IOS XR PCE
• PCE functionality is available in IOS XR base image

– Physical and virtual IOS XR devices

• Enable it by configuring its PCEP* session IP address

pce
address ipv4 1.1.1.3

!

On XTC:

* Path Computation Element Protocol



XTC – Real-time Topology Feed
• XTC learns real-time topologies via BGP-LS and/or IGP
• BGP-LS is intended to carry link-state topology information

– Hence the name “LS” that stands for “Link State”

• BGP-LS has been extended multiple times in order to 
incorporate other types of topology information:
– SR Extensions 
– Traffic Engineering Metric Extensions
– Egress Peer Engineering
– SR TE Policies



Same multi-domain SRTE DB
• XTC uses the same multi-domain SRTE DB as the head-end

– XTC can learn an attached domain topology via its IGP or a BGP-LS 
session

– XTC can learn a non-attached domain topology via a BGP-LS session
> Direct session or via BGP Route-reflector (RR)

router isis 1    !! or ospf
distribute link-state instance-id 32

router bgp 1
address-family link-state link-state
!
neighbor 1.1.1.1
remote-as 1
update-source Loopback0
address-family link-state link-state

On XTC:

On XTC:

Domain1
XTC

RR
Domain1

XTC

Domain2 Domain3
1 2



Same multi-domain SRTE DB
• A node that feeds the IGP link-state database in BGP-LS has 

the following configuration:

• The illustrations use iBGP BGP-LS sessions, but eBGP is 
supported as well

router isis 1    !! or ospf
distribute link-state instance-id 32

!
router bgp 1
address-family link-state link-state
!
neighbor 1.1.1.10   !! XTC or RR
remote-as 1
update-source Loopback0
address-family link-state link-state

On Node1 or Node2:

RR
Domain1

XTC

Domain2 Domain3
1 2



XTC – Multi-domain real-time topology feed
• XTC receives real-time reactive feeds via BGP-LS from multiple domains

– One or more nodes in each domain feed the topology information via BGP-LS, 
including IP addresses and SIDs

– AS peering nodes advertise their peering links information in BGP-LS (Egress 
Peer Engineering)

– BGP RRs can be used to scale the BGP-LS feed to the XTC nodes (regular 
BGP functionality)

• XTC combines the different information feeds to form a 
real-time consolidated view of the entire topology

• XTC uses this complete topology for path computation



BGP-LS feed to XTC
• Typically, BGP RRs are used to scale BGP-LS feeds
• Any node can have a BGP-LS session to the RR

– Any node can feed its 
local IGP topology via BGP-LS

– Peering nodes can feed their
EPE information via BGP-LS

BGP-LS

1 3

6 5 4

RR

XTC
1

XTC
2

Domain1

7

89

RR

XTC
4

XTC
3

Domain2

In this illustration, Node6 and Node3 distribute 
Domain1’s topology in BGP-LS, Node4 and Node9 
distribute Domain2’s topology in BGP-LS



XTC receives topology of all domains
• Each domain feeds its 

topology to XTC via BGP-LS
– Typically via RRs

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

BGP-LS

Pe
er

in
g

lin
ks

Domain1 

A BR1 

BR2 

Domain2 

BR1 BR3 

BR2 BR4 

BR3 BR5 

BR4 BR6 

Domain3 

Z 

BR5 

BR6 

XTC



XTC consolidates the topologies
• XTC combines the different 

topologies to compute 
paths across entire topology

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

BGP-LS

Pe
er

in
g

lin
ks

Domain1 Domain2 

A BR1 BR3 

BR2 BR4 

Domain3 

Z 

BR5 

BR6 

XTC



XTC and Multi-domain – Notes
• When advertising multiple topologies/domains in BGP-LS, 

each topology/domain must have a unique instance-id
– Instance-id identifies a “routing universe”
– Default: 0 – Value range ISIS: <2-65535>; OSPF: <0-4294967295>
– Values 1-31 should not be used

> RFC7752: Values in the range 32 to 264-1 are for "Private Use"

router isis Domain1
distribute link-state instance-id 32

For example, on the BGP-LS node in Domain1:

router isis Domain2
distribute link-state instance-id 33

For example, on the BGP-LS node in Domain2: Unique instance-id



XTC and Multi-domain – Notes
• XTC identifies border nodes by a common TE router-id advertised in 

multiple domains
• Border nodes should advertise the same TE router-id and TE router-id 

prefix reachability in all its attached domains (i.e. all its IGP instances)

router isis Domain1
net 49.0001.1111.0000.0001.00
address-family ipv4 unicast
mpls traffic-eng level-2-only
mpls traffic-eng router-id Loopback0

!
interface Loopback0
passive
address-family ipv4 unicast
prefix-sid absolute 16001

!

router isis Domain2
net 49.0001.2222.0000.0001.00
address-family ipv4 unicast
mpls traffic-eng level-2-only
mpls traffic-eng router-id Loopback0

!
interface Loopback0
passive
address-family ipv4 unicast
prefix-sid absolute 16001

Border node BR1:

Common TE router-idCommon TE router-id

Domain1 Domain2 

A BR1 BR3 

BR2 BR4 

Domain3 

Z 

BR5 

BR6 



XTC and Multi-domain – Notes
• XTC uses BGP router-id and TE router-id to identify inter-AS border 

nodes and peering sessions
• Peering nodes should use the same router-id for TE and BGP

interface Loopback0
ipv4 address 1.1.1.3/32

!
router isis Domain2
net 49.0001.3333.0000.0003.00
address-family ipv4 unicast
mpls traffic-eng level-2-only
mpls traffic-eng router-id Loopback0

!
interface Loopback0
passive
address-family ipv4 unicast
prefix-sid absolute 16003

!
router bgp 2
bgp router-id 1.1.1.3
address-family ipv4 unicast
!
neighbor 99.3.5.5
remote-as 3
address-family ipv4 unicast
route-policy bgp_in in
route-policy bgp_out out

Border node BR3:

Domain1 Domain2 

A BR1 BR3 

BR2 BR4 

Domain3 

Z 

BR5 

BR6 

RID = router-id

TE RID == BGP RID



Same computation algorithms
• XTC uses the same SR-optimized computation algorithms as 

the head-end



XTC computes dynamic path
• A head-end asks XTC to compute a dynamic path
• Request/Reply/Report workflow is used:

– head-end requests XTC to compute a path
> Head-end provides optimization objective and constraints to XTC

– XTC computes path, derives SID-list and replies to head-end
– Head-end programs SID-list and reports it to XTC

> Head-end delegates the path to XTC

• XTC is stateful, it maintains the path, updating the path when 
required (e.g. after topology change)



Domain1 Domain2

PCEP

XTC

Request/Reply/Report workflow
• ➊ Node1 is configured to instantiate a 

low-latency SR Policy to Node3, e.g. by 
Network Service Orchestrator (NSO), or a 
human operator

• Since the end-point Node3 is in a remote 
domain, Node1 cannot compute the 
dynamic path locally and must use XTC

2
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I:100

I:100
➊ low-latency 
to 3 ?

Default IGP link metric: I:10
Default TE link metric: T:10

A single centralized  
XTC node to 

simplify illustration

1



Domain1 Domain2

PCEP

Request/Reply/Report workflow (Cont.)
• ➋ Node1 sends a PCEP Path 

Computation Request (PCReq) to XTC, 
requesting path “to Node3” with “Optimize 
TE metric”

• ➌ XTC stores the request and computes 
a TE metric shortest-path from Node1 to 
Node3, say the resulting SID list is 
<30102, 30203>

• ➍ PCE sends “SID list <30102, 30203>” 
to Node1 in PCEP Path Computation 
Reply (PCRepl)
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I:100➊

➋ PCReq “to 3”, 
“TE metric”

➍ PCRepl
“SID-list <30102, 30203>”

➌à SID-list 
<30102, 30203>

XTC

Default IGP link metric: I:10
Default TE link metric: T:10



Request/Reply/Report workflow (Cont.)
• ➎ Node1 allocates a BSID 4001 and 

activates the SR Policy path to Node3 via 
<30102, 30203>

• and ➏ sends Path Computation Report 
(PCRpt) to XTC, delegating the SR Policy 
to XTC and including BSID

Domain1 Domain2
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I:100
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➋

➍

➌

➎ SID-list: 
<30102, 30203>

FIB table at Node1
SRTE: 4001: Push <30102, 30203>

➏ PCRept
“BSID 4001”, “delegate”

PCEP

XTC

➊

Default IGP link metric: I:10
Default TE link metric: T:10

BSID



Decouple overlay/underlay
• The Request/Reply model separates the service creation and 

maintenance (overlay) from the topology and path 
maintenance (underlay)
– NSO (Overlay Controller) does not need to be aware of the topology
– XTC (Underlay Controller) is not aware of the service, SR Policy and 

traffic steering configuration
– NSO does not need to interact directly with XTC; 

Overlay Controller is decoupled from Underlay Controller



XTC – Stateful
• XTC stores path computation requests (stateful)

– Request includes optimization objective and constraints

• XTC has control over the paths delegated to it
• XTC updates the paths when required, e.g. following a multi-

domain topology change that impacts connectivity
– Anycast-SIDs and Local FRR (TI-LFA) minimize traffic loss during the 

stateful re-optimization



Stateful – XTC updates path
• ➊ A topology change occurs in Domain2
• TI-LFA protects traffic within 50ms
• ➋ BGP-LS pushes the topology change to 

XTC
• ➌ XTC re-computes path; the new SID-

list is <30102, 16003>
• ➍ XTC sends PCUpd message with “SID 

list <30102, 16003>” to Node1

Domain1 Domain2
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PCEPDefault IGP link metric: I:10
Default TE link metric: T:10 BGP-LS

1

➌à SID-list 
<30102, 16003>

➍ PCUpd
“SID-list <30102, 16003>”

XTC
➋ BGP-LS update



Stateful – XTC updates path
• ➎ Node1 updates SR Policy Path via 

<30102, 16003>, maintaining the BSID 
4001

• and ➏ sends Path Computation Report 
(PCRpt) to XTC, delegating the SR Policy 
to XTC and including BSID
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➎ SID-list: 
<30102, 16003>

➏ PCRept
“BSID 4001”, “delegate”

PCEP

XTC

Default IGP link metric: I:10
Default TE link metric: T:10 BGP-LS
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➌

➍

FIB table at Node1
SRTE: 4001: Push <30102, 30203>

1

SRTE: 4001: Push <30102, 16003>

BSID



XTC – High Availability (HA)
• XTC leverages the well-known standardized PCE HA
• Head-end sends PCEP Report for its SR Policies to all 

connected XTC nodes
• Head-end delegates control to its primary XTC

– Delegate flag (D) is set in PCRept to primary XTC

• Upon failure of the primary XTC, head-end re-delegates 
control to another XTC



XTC HA – workflow
• ➊ Node1 requests XTC1 to compute path 

to Node3, ➋ XTC1 computes path and 
replies with SID list <30102, 30203> and 
➌ Node1 activates SR Policy

• ➍ Node1 reports SR Policy to both XTC1 
and XTC2 and delegates control of the SR 
Policy to XTC1 (“delegate” (D:1))
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XTC HA – workflow
• ➎ XTC1 (primary) fails
• ➏ Node1 detects XTC1 PCEP failure 

(keepalive) and starts re-delegation timer
• ➐ when the timer expires, Node1 

delegates the SR Policy control to XTC2
• XTC2 re-computes path and updates path 

if required
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XTC – Fundamentally Distributed
• XTC not to be considered as a single all-overseeing device
• XTC deployment is closer to BGP RR deployment model
• Different service end-points can use different pairs of XTCs
• Choice of XTC can either be based on proximity or service



XTC – Fundamentally Distributed
• Add XTC nodes where needed; per geographic region, per 

service, ...
– XTC needs to get the required topology information for its task

> E.g. to compute inter-domain paths XTC needs the topology of all domains

• Example:
Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

ZBR5

BR6

B

PCEP
XTCXTC XTCXTC XTCXTC



XTC – Fundamentally Distributed
• Using RRs to scale the BGP-LS topology distribution
• Any node can have a BGP-LS session to the RR

Domain1 Domain2 Domain3

BGP-LS

RR

XTC XTC

RR

XTC XTC

RR

XTC XTC

1
2

3

4 5
6



Domain1

SID-list:
{30102, 30203}

SID-list: 
{16007, 16008}

Domain2

Use-case
Service Disjointness

• Two dynamic paths between two different pairs of (head-
end, end-point) must be disjoint from each other
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Use-case
Inter-Domain Path – Best Effort

• There is no a-priori route distribution between domains

Domain1

SID-list: 
{16002, 16003}

Domain2
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Use-case
Inter-Domain Path – Low-Latency

• No a-priori route distribution required between domains
• An end-to-end policy is requested

Domain1

SID-list:
{30102, 30203}

Domain2
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BGP-TE
Signaling SRTE path via BGP



Signaling SR Policy
candidate path via BGP

DC (BGP-SR)
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IPv4 – SR Policy
NLRI

Color green
End-point 4.4.4.4
Distinguisher 1234

Tunnel encaps attr
Preference 200
Binding SID 4001
Segment List
Weight: 1
<16001, 16002, 30204>

Segment List
Weight: 1
<16003, 16004>

FIB on Node12:

Ctrl

In Out Fraction

4001
<16001, 16002, 30204> 50%

50%<16003, 16004>

BG
P



Signaling SR Policy candidate path via BGP
• BGP signals a candidate path of an SR Policy

– SR Policy is identified by the NLRI
– If the SR Policy does not yet exist when the candidate path is signaled, 

then the SR Policy will be automatically instantiated



SAFI and NLRI

• A new SAFI is defined: SR Policy SAFI
– suggested code-point value 73, to be assigned by IANA

• The NLRI identifies the SR Policy
– Distinguisher: BGP-specific mechanism to allow to distribute multiple paths for the same 

SR Policy and avoid BGP-based path selection
> Recommendation: path selection should be done by SRTE as part of the SR Policy behavior

– Policy Color: identifies the color of the SR Policy
– End-point: identifies the end-point of the SR Policy

+-----------------------------------------------+
|           Distinguisher (4 octets)            |
+-----------------------------------------------+
|           Policy Color (4 octets)             |
+-----------------------------------------------+
|           End-point (4 or 16 octets)        |
+-----------------------------------------------+

N
LR

I



Path selection in SR-TE, not in BGP
• Recommendation:

– Use Distinguishers to 
avoid BGP path selection

– Path selection
is better done by 
SR-TE process

1

2 3

5 4

CtrlCtrl

TE selects path 
➊ or ➋ based on 

Preference

BGP sends paths 
➊ and ➋ to TE

AFI IPv4; SAFI SR Policy
NLRI:

Color green
End-point 4.4.4.4
Distinguisher 1111

Tunnel encaps attribute
<…>

AFI IPv4; SAFI SR Policy
NLRI:

Color green
End-point 4.4.4.4
Distinguisher 2222

Tunnel encaps attribute
<…>

➊ ➋

BG
P

BG
P



Path description
• The signaled candidate path for the SR Policy is encoded in a Tunnel 

Encapsulation Attribute
– See draft-ietf-idr-tunnel-encaps; new Tunnel Type: “SR Policy”

• One single candidate path is advertised per NLRI
SR Policy SAFI NLRI:

<Distinguisher, Policy-Color, End-point>
Attributes:

Tunnel Encaps Attribute (23)
Tunnel Type: SR Policy

Preference TLV       
Binding SID TLV
Segment List TLV

Weight SubTLV
Segment SubTLV
Segment SubTLV
...

NLRI,
identifies SR Policy

Tunnel Encaps Attribute,
defines a candidate path for 

the identified SR Policy



Direct session or via RR

1

2 3

5 4

Ctrl

AFI IPv4; SAFI SR Policy
NLRI:

Color green
End-point 4.4.4.4
Distinguisher 1111

Tunnel encaps attribute
<…>

NO-ADVERTISE community*
and/or Route-target**: 1.1.1.1

Direct session

1

2 3

5 4

CtrlRR

Via RR
AFI IPv4; SAFI SR Policy
NLRI:

Color green
End-point 4.4.4.4
Distinguisher 1111

Tunnel encaps attribute
<…>

Route-target: 1.1.1.1

* NO-ADVERTISE community: indicates: “do not advertise to any BGP neighbor”
** Route-target extended community (cfr L3VPN)

1.1.1.1 1.1.1.1

BG
P

BG
P



BGP only a conveyor of information
• BGP does basic sanity checks on the Update message
• If multiple paths have been received for the same NLRI (Distinguisher, 

Color, End-point), run BGP bestpath
– Unlikely, see previous recommendation

• Give the path to SR-TE process
à path is one of the possibly many candidate paths of the SR Policy



Head-end BGP SRTE Configuration

• 1.1.1.10 is a service RR (IPv4 and VPNv4)
• 1.1.1.20 is a BGP SRTE controller

router bgp 1
bgp router-id 1.1.1.1
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
address-family ipv4 sr-policy
!
neighbor 1.1.1.10
remote-as 1
update-source Loopback0
address-family ipv4 unicast
!
address-family vpnv4 unicast

!

neighbor 1.1.1.20
remote-as 1
update-source Loopback0
address-family ipv4 sr-policy

1

2 3

5 4

Ctrl
RR

1.1.1.1

1.1.1.20

1.1.1.10

On Node1:

To Service RR

To BGP SRTE 
Controller



BGP TE SR Policy – example
RP/0/0/CPU0:XRv-1#show bgp ipv4 sr-policy [2][10][1.1.1.3]/96
BGP routing table entry for [2][10][1.1.1.3]/96
Versions:

Process           bRIB/RIB  SendTblVer
Speaker                  4           4

Last Modified: Jun 13 21:18:10.371 for 00:05:50
Paths: (1 available, best #1)

Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local

1.1.1.12 (metric 30) from 1.1.1.12 (1.1.1.12)
Origin IGP, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 0, version 4
Extended community: RT:1.1.1.1:0
Tunnel encap attribute type: 15 (SR Policy)
bsid 900000, preference 100, num of paths 1
Path 1, weight 0x1
Sids: {16004} {16003}

SR TE Policy state is UP, Allocated bsid 900000

1

2 3

5 4

Ctrl

BGP

IPv4 – SR Policy
NLRI

Color 10
End-point 1.1.1.3
Distinguisher 2

Tunnel encaps attr
Preference 100
Binding SID 900000
Segment List
Weight: 1
<16004, 16003>



BGP TE SR Policy – example
RP/0/0/CPU0:XRv-1#show segment-routing traffic-eng policy
SR-TE policy database
---------------------
Name: bgp_AP_1 (Color: 10, End-point: 1.1.1.3)

Status:
Admin: up  Operational: up for 00:08:19 (since Jun 13 21:18:10.469)

Candidate-paths:
Preference 100:

Explicit: segment-list Autopath_1_1* (active)
Weight: 1

16004
16003

Attributes:
Binding SID: 900000 (configured)
Forward Class: 0
Distinguisher: 2

Auto-policy info:
Creator: BGP
IPv6 caps enable: no

1

2 3

5 4

Ctrl

BGP

IPv4 – SR Policy
NLRI

Color 10
End-point 1.1.1.3
Distinguisher 2

Tunnel encaps attr
Preference 100
Binding SID 900000
Segment List
Weight: 1
<16004, 16003>



Path disjointness



Path disjointness
• Disjoint paths for a service may be required to guarantee service 

resiliency
– Live-live or primary-backup

• Disjoint paths do not share any (or limited) network resources
• Path disjointness may be required for paths between the same pair of 

nodes, between different pairs of nodes, or a combination (only same 
head or only same end)

1 2
1 2

3 4



Path disjointness levels
• Different levels of disjointness may be offered:

– Link disjointness: the paths transit different links (but may not be node or 
SRLG disjoint)

– Node disjointness: the paths transit different nodes and different links 
(but may not be SRLG disjoint)

– SRLG disjointness: the paths transit different links that do not share 
SRLG (but may not be node disjoint)

– Node+SRLG disjointness: the paths transit different links that do not 
share SRLG and transit different nodes

• Common head-end nodes and end-point nodes are not taken 
into account for node-disjointness



Path disjointness levels – fallback
• If disjoint paths of a specified level are not available, then a lower level of 

disjointness will be tried:
– If no node+SRLG-disjoint paths are available, then compute node-disjoint paths
– If no SRLG- or node-disjoint paths are available, then compute link-disjoint paths
– If no link-disjoint paths are available, then compute shortest paths without 

disjointness constraints

• Operator can disable fallback to another disjointness level

Node+SRLG Node

SRLG

Link None



Association Groups
• The PCEP IETF draft-ietf-pce-association-group introduces a 

generic mechanism to create groups of LSPs
• This grouping mechanism can then be used to define 

associations between sets of LSPs or between a set of LSPs 
and a set of attributes (such as configuration parameters or 
behaviors)

• One application of this mechanism is grouping LSPs that 
must be mutually disjoint: disjointness association-group or 
disjoint-group
– Specified in draft-litkowski-pce-association-diversity



PCEP Association Object
• draft-ietf-pce-association-group specifies the PCEP 

Association Object
– This object indicates the association type and the association identifier
– This object is included in PCReq and PCRept PCEP messages

• An association type is specified for ach disjointness level
– Link, Node, SRLG, Node+SRLG

• The association identifier consists of a pair: (association-id, 
association source) 0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Reserved |            Flags            |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Association type         |      Association ID           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              IPv4 Association Source                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//                   Optional TLVs                             //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: The IPv4 ASSOCIATION Object format

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Reserved |            Flags            |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Association type         |      Association ID           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                    IPv6 Association Source                    |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//                   Optional TLVs                             //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: The IPv6 ASSOCIATION Object format



Disjointness configuration

• Policies that must be disjoint must be configured with the 
same association group id and type

segment-routing
traffic-eng
policy POLICY1
color 20 end-point 1.1.1.4
candidate-paths
preference 100
dynamic mpls
pce
metric
type te

association group 1 type node Node-disjoint

Group-id 1



Disjoint paths – workflow
• This is the workflow when requesting disjoint paths:

– First path of a disjoint-group is requested, it is computed as regular 
shortest path

– Second path of a disjoint-group is requested, both paths are computed 
concurrently to provide the optimum solution and minimizing the 
combined cumulative metrics of both paths
> PCE may need to update the first path after this computation

• Following a topology change, XTC re-computes both paths 
and updates them if required



Disjoint paths – workflow
• Two node-disjoint paths are required 

Node1àNode4 and Node5àNode8
• ➊ Node1 first requests the path to 

Node4, ➋ XTC computes it as a regular 
shortest path and ➌ replies with SID-list 
<16004>

• ➍ Node1 installs the path and ➎ reports 
to XTC, delegating control to XTC

1 4

5

2

6

3

7 8

100

Default link metric: 10

SID-list: <16004>

XTC
5

31
2

4



Disjoint paths – workflow
• ➊ Node5 requests path to Node8
• ➋ XTC concurrently computes the two 

paths and finds that the first (existing) 
path must be updated to accommodate 
disjointness with the second path

• ➌ XTC sends update to Node1 with SID-
list <16002, 30203, 16004>

• ➍ Node1 installs the new path and ➎
reports to XTC

1 4

5

2

6

3

7 8

100

Default link metric: 10

XTC

SID-list:
<16002,

30203,
16004>

1 4 

5 

2 

6 

3 

7 8 

100 

5

31
2

4



Disjoint paths – workflow
•➏ XTC sends reply to Node5 with 

SID-list <16008>
•➐ Node5 installs path and ➑

sends report to XTC 1 4

5

2

6

3

7 8

100

Default link metric: 10

XTC

SID-list: <16008>

8

6

7



Disjoint paths – workflow
• Following a topology change, XTC is notified by IGP/BGP-LS
• XTC re-computes both paths and updates them if required



Binding-SID



Binding-SID is fundamental to SR
• The Binding-SID is fundamental to SR, it provides scaling,

network opacity and service independence
– Use of BSID decreases the number of segments imposed by the source
– A BSID acts as a stable anchor point that isolates one domain from the 

churn of another domain
– A BSID provides opacity and independence between domains



DC1 Core DC2

Binding-SID illustration

• Low-latency SR Policy on DCI1 to DCI3:
– BSID: 40102
– SID-list <16022, 32223, 16003>

21 32

24

22 23

25 33

I:100DCI1

DCI2

DCI3

DCI4

11

12

13
Default IGP metric: I:10
Default TE metric: T:10

31

BSID 40102
SID-list
<16022, 32223, 
16003>

T:100

Low-latency path DCI1àDCI3



DC1 Core DC2

Reduced imposition SID-list size

• Low-latency SR Policy from Node11 to Node31:
– Without intermediate core SR Policy: <16001, 16022, 32223, 16003, 16031>
– With intermediate core SR Policy: <16001, 40102, 16031>

21 32

24

22 23

25 33

I:100DCI1

DCI2

DCI3

DCI4

11

12

13
Default IGP metric: I:10
Default TE metric: T:10

31

BSID 40102
SID-list
<16022, 32223, 
16003>

T:100

Low-latency path DCI1àDCI3



Stable Anchor Point

• When the Core domain’s topology changes, the BSID of the 
intermediate SR Policy on DCI1 does not change

à the SR Policy on Node11 does not change
à Node11 is shielded from the churn in domain DC1



Opacity
and Independence

• The administrative authority of the Core domain does not 
want to share information about its topology
à BSID keeps network and service opaque

• Node11 does not know the details of how the Core domain 
provides the low-latency service



BSID allocation
• By default, BSID is dynamically allocated
• BSID can be explicitly specified
• BSID can be allocated for RSVP-TE tunnel



Explicit allocation – Example

• Dynamic allocation is the default

segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.4
binding-sid mpls 1000
candidate-paths
preference 100
dynamic mpls
metric
type te



• SR Policy from Node11 to Node31:
– With intermediate RSVP-TE tunnel: <16001, 4001, 16031>

SR DC1 RSVP-TE Core SR DC2

SRTE RSVP-TE interworking

21 32

24

22 23

25 33

I:100DCI1

DCI2

DCI3

DCI4

11

12

13
Default IGP metric: I:10
Default TE metric: T:10

31

BSID 4001
RSVP-TE 
tunnel

T:100

RSVP-TE tunnel DCI1àDCI3

interface tunnel-te1
ipv4 unnumbered Loopback0
destination 1.1.1.3
binding-sid mpls label 4001
path-selection metric te
path-option 1 dynamic



Thank you.Thank you.


