
Modern approaches to AGI:
what is the shared core problem?

Prof. Alexey Potapov

ITMO University

2018

Innovation & Research Symposium @ Paris

Artificial General Intelligence

2

(General) intelligence is an agent’s
ability to efficiently achieve goals in a
wide range of environments with
insufficient knowledge and resources

Pei Wang, Ben Goertzel, Marcus Hutter, etc.

Subfields and Approaches

3

• Deep Learning
• Cognitive Architectures
• Probabilistic Models
• Universal Algorithmic Intelligence
• Reinforcement Learning

Discriminative and Generative Models

4

P(y|x)

z~P(z)y

x~P(x|z)

x

FFNNs as Discriminative Models

5

softmax

Feed forward network

Hidden Layer Hidden Layer Hidden Layer

Input Layer (X)

Output Layer (Y)

Direct approximation of P(y|x)

Critique of Deep Learning

6

• Weak generalization

• Require large training sets; no one-
shot learning

• Cannot learn invariants

• Vulnerable to Adversarial examples

• Difficulties with transfer and
unsupervised learning

• From AGI perspective

• Encode higher-order statistics,
but not causal, logical, spatio-
temporal relations

• Bad in high-level reasoning and
planning, etc.

Images from: Szegedy, C. et al. Intriguing properties of neural networks. arXiv 1312.6199 (2013).
Gary Marcus. Keynote @ AGI-16

Generative Models: Graphical Models

7

• Curse of dimensionality

• Chain-rule decomposition

• Conditional independence



P(x1:N)  P(x1)P(x2 x1)...P(xN x1:N1)  p(xs x(s))
s1

N



• Bayesian networks

• Markov networks

• Factor graphs

• Plate models, etc.



P(x1,...,xN) 
1

Z
C (xC)

CC



Graphical CA Hypothesis: Sigma

8Rosenbloom, P., Demski, A. & Ustun, V. (2017). The Sigma Cognitive Architecture and System: Towards
Functionally Elegant Grand Unification. Journal of Artificial General Intelligence, 7(1), pp. 1-103.

• Graphical Architecture Hypothesis

• Four desiderata:

• grand unification

• generic cognition

• functional elegance

• sufficient efficiency

• Deconstruction of all cognitive
functions with the use of factor-
graphs as a general cognitive
firmware

• Reasoning: Message Passing

• Learning: Gradient Descent

Generative Models

9




z
zzx

zzx
x

zzx
xz

)()(

)()(

)(

)()(
)(

PP

PP

P

PP
P

• Produce x from z
• In opposite direction?

• Difficulties with marginalization X
Z

• RBM: simplest non-trivial probabilistic
graphical model

• Difficulties with training




z

zxczbx

z
zxx WT

e
Z

PP
1

),()(



P(zi 1x)   wijx j  ci
j













Probabilistic Models: Discriminative
and Generative

10

Discriminative Generative

Mapping A mapping from the task
to its solution space

P(y|x)

A mapping from the
solution space to data

z~P(z), x~P(x|z)
Pros • Efficient

• Less assumptions of
data distribution

• Flexible
• Un/semi-supervised
learning

Cons • One-way inference only
• Only supervised
learning

• Additional
assumptions of data
distribution
• Computationally
inefficient inference

10

Probabilistic Models: Variational Bayes

11

• Posteriors are difficult to compute

• Let’s approximate them with some easily
computable

• Criterion: Kullback-Leibler divergence / variational
lower bound for the marginal likelihood (evidence)



logP(xi ) DKL Q(z xi ,) P(z xi ,)  L(,xi)



DKL(Q P)   Q(z xi ,) log
P(z xi ,)

Q(z xi ,)









dz



L(,xi)  Q(z xi ,) log
P(xi ,z)

Q(z xi ,)









dz



P(zi | xi ,) 
P(xi ,zi |)

P(xi |)

P(xi ,zi |)

P(xi ,z |) dz



Q(z xi ,)

Z

X



Q (z x)



P(z)



P(x z)

Probabilistic Models in Deep Learning:
Variational Autoencoders

12



logP(xi ) DKL Q(z xi ,) P(z xi ,)  L(,xi)

• Let’s learn the generative model and its
variational approximation simultaneously

• Let’s represent P and Q as DNNs

• Add some heuristics

https://arxiv.org/abs/1312.6114

Probabilistic Models in Deep Learning:
Generative Adversarial Networks

13

• DCGAN, WGAN, LSGAN, … BiGAN, InfoGAN, Bayesian GAN



min

max

V (,)  Ex~Pdata(x)

[logD(x)] Ez~Pmodel(z)
[log(1D(G(x)))]

https://arxiv.org/abs/1406.2661

• Does not construct variational
approximation of a posterior
distribution

• Directly estimates the quality of a
generative marginal distribution

• No sampling, just gradient descent

Is it enough?

14

• Example: Adversarial Autoencoders
• Training sets: all digits except 4 were rotated by all angle

• No generalization of rotation

Universal Algorithmic Intelligence:
Solomonoff Induction

15

• Universal priors

μ – programs (binary strings) for Universal Turing Machine

• Marginal probability

• Prediction

• Optimal prediction for any (computable) data source

• No “no free lunch theorem”!



MU (x)  2l()

:U ()x*



P()  2l()



MU(y x) MU (xy) /MU (x)



Q Q(xi1 1 | x1:i)PU(xi1 1 | x1:i) 
2

i1

n











ln 2

2
KU(Q)Convergence!

16

Universality of the algorithmic space
3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899

8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502
8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165
2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817
4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724
8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277
0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091
7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960
8640344181 5981362977 4771309960 5187072113 4999999 ………

int a=10000,b,c=8400,d,e,f[8401],g;
main() {for(;b-c;)f[b++]=a/5;
for(;d=0,g=c*2;c-=14, printf("%.4d",e+d/a),e=d%a)
for(b=c;d+=f[b]*a,f[b]=d%--g,d/=g--,--b;d*=b);}
By D.T. Winter

Is DL that bad?

17
Image from: https://deepmind.com/blog/differentiable-neural-computers/

• RNN instead of
finite state machine
• External memory
with soft addressing
• End-to-end
differentiable
algorithms

• Neural differentiable computer, Neural GPU, Neural
programmer-interpreter, Differentiable Forth interpreter, etc.
• Memory augmented NNs, including deep RL

Is DL that bad?

18
Image from: https://deepmind.com/blog/differentiable-neural-computers/

• RNN instead of
finite state machine
• External memory
with soft addressing
• End-to-end
differentiable
algorithms

• Neural differentiable computer, Neural GPU, Neural
programmer-interpreter, Differentiable Forth interpreter, etc.
• Memory augmented NNs, including deep RL
• Apparent trend towards universal induction within DL

Is DL that bad?

19
Image from: https://deepmind.com/blog/differentiable-neural-computers/

• RNN instead of
finite state machine
• External memory
with soft addressing
• End-to-end
differentiable
algorithms

• Neural differentiable computer, Neural GPU, Neural
programmer-interpreter, Differentiable Forth interpreter, etc.
• Memory augmented NNs, including deep RL
• Apparent trend towards universal induction within DL
• But gradient descent is not enough to learn algorithms

What’s about probabilistic models?

20

• Graphical models in computer vision,
knowledge representations, etc.

• Probabilistic programming

• Probabilistic models of cognition

Images from: Mansinghka, V., Kulkarni, T., Perov, Y., Tenenbaum, J.: Approximate Bayesian Image Interpretation using
Generative Probabilistic Graphics Programs. Advances in NIPS, arXiv:1307.0060 [cs.AI] (2013).

Probabilistic Programming: Knowledge
Representation

21

var generate = function() {
var worksInHospital = flip(0.01)
var smokes = flip(0.2)
var lungCancer = flip(0.01) || (smokes && flip(0.02))
var TB = flip(0.005) || (worksInHospital && flip(0.01))
var cold = flip(0.2) || (worksInHospital && flip(0.25))
var stomachFlu = flip(0.1)
var other = flip(0.1)
var cough = ((cold && flip(0.5)) || (lungCancer && flip(0.3)) ||

(TB && flip(0.7)) || (other && flip(0.01)))
var fever = ((cold && flip(0.3)) || (stomachFlu && flip(0.5)) ||

(TB && flip(0.2)) || (other && flip(0.01)))
var chestPain = ((lungCancer && flip(0.4)) ||

(TB && flip(0.5)) || (other && flip(0.01)))
var shortnessOfBreath = ((lungCancer && flip(0.4)) ||

(TB && flip(0.5)) || (other && flip(0.01)))
condition(cough && chestPain && shortnessOfBreath)
return {lungCancer: lungCancer, TB: TB}

}

Probabilistic Programming: Reasoning and
Problem Solving

22

var task = [10, 8, -8, -12, 15, 3]
var target = 1
var generate = function() {

var subset = repeat(task.length, flip)
var sum = reduce(function(x, acc)

{ return acc + (x[1] ? x[0] : 0) },
0, zip(task, subset))

condition(sum == target)
return subset

}
Infer({method: "rejection", samples: 100,

model: generate})

 {"probs":[0.48,0.52],
"support":[[true,true,true,true,false,true],

[true,false,false,true,false,true]]}

Probabilistic Programming: Learning

23

var xs = [0 , 1 , 2 , 3]
var ys = [0.01, 0.99, 4.02, 5.97]
var linreg = function() {

var a = gaussian(0, 1)
var b = gaussian(0, 1)
var sigma = gamma(1, 1)
var f = function(x) { return a * x + b }
var check = function(x, y)

{ observe(Gaussian({mu: f(x), sigma: sigma}), y) }
map2(check, xs, ys)
return f(4)

}
Infer({method: 'MCMC', samples: 10000, model: linreg})

• Arbitrary models including but not
limited to graphical models

• Model selection, structure learning

• Bayesian Occam Razor for free

Probabilistic Programming: Neural Bayes

24

import edward as ed
from edward.models import Normal
def neural_network(X):
h = tf.tanh(tf.matmul(X, W_0) + b_0)
h = tf.tanh(tf.matmul(h, W_1) + b_1)
h = tf.matmul(h, W_2) + b_2
return tf.reshape(h, [-1])

W_0 = Normal(loc=tf.zeros([D, 10]), scale=tf.ones([D, 10]))
...
b_2 = Normal(loc=tf.zeros(1), scale=tf.ones(1))
X = tf.placeholder(tf.float32, [N, D])
y = Normal(loc=neural_network(X), scale=0.1 * tf.ones(N))
qW_0 = Normal(loc=tf.Variable(tf.random_normal([D, 10])),
scale=tf.nn.softplus(tf.Variable(tf.random_normal([D, 10]))))

...
inference = ed.KLqp({W_0: qW_0, b_0: qb_0, W_1: qW_1, b_1: qb_1,

W_2: qW_2, b_2: qb_2},
data={X: X_train, y: y_train})

http://edwardlib.org/

Learning Probabilistic Programs

25https://arxiv.org/pdf/1407.2646v1.pdf

• Higher-order PPLs allow for learning probabilistic
programs from data by means of probabilistic programs
(while learning of graphical models cannot be expressed in terms of graphical models)

• Probabilistic Programming implements a form of universal
induction

https://arxiv.org/pdf/1407.2646v1.pdf

Learning Probabilistic Programs

26https://arxiv.org/pdf/1407.2646v1.pdf

• Higher-order PPLs allow for learning probabilistic
programs from data by means of probabilistic programs
(while learning of graphical models cannot be expressed in terms of graphical models)

• Probabilistic Programming implements a form of universal
induction
• MCMC inference is not scalable enough

https://arxiv.org/pdf/1407.2646v1.pdf

Deep Amortized Probabilistic Inference

27

• A generative model specified as a
probabilistic program is ‘compiled’
into a discriminative model
specified as a neural networks

https://arxiv.org/abs/1610.09900

• Generative model is not learned

https://arxiv.org/abs/1610.09900

28

Gap between universal and
pragmatic methods
• Universal methods

• can work in arbitrary computable environment

• incomputable or computationally infeasible

• approximations are either inefficient or not
universal

• Practical methods

• work in non-toy environments

• set of environments is highly restricted

=> Bridging this gap is necessary

More Efficient Universal Induction

29

• Choice of the reference machine

• Only ‘exponentially small’ number of models can be
inferred given limited computational resources

• Incremental learning

• Genetic Programming

• Incremental Self-Improvement
• HSearch: instead of enumerating all programs, enumerate all proofs, so only
programs are executed which are provably solve the problem with provably
bounded computational time

• Gödel machine: searcher+solver – searches for proof techniques which
output proofs about useful self-rewrites including rewriting both solver and
searcher itself. Completely self-referential

• Still impractical

Metacomputations in Universal
Intelligence

30

• Program specialization = construction of its efficient
projection on one of its parameters

• E.g. specialized interpreter w.r.t. program =
compiled program (Futamura-Turchin projections)

• Specialized specializer w.r.t. interpreter = compiler

• Specialized MCMC w.r.t. generative model =
discriminative model

• Specialized universal induction w.r.t. Turing-incomplete
reference machine = narrow machine learning method

Khudobakhshov V. Metacomputations and program-based knowledge representation // AGI-13
Potapov A. Rodionov S. Making universal induction efficient by specialization // AGI-14

Metacomputations in Universal
Intelligence

31

• Still not enough  Partial specialization

• Discriminative models are not always possible
• But we can do much better than blind or metaheuristic search
• E.g. genetic algorithms with data-guided trainable crossover

Potapov A. Rodionov S. Genetic Algorithms with DNN-Based Trainable Crossover as an Example of Partial
Specialization of General Search // Proc. Artificial General Intelligence, AGI’17. P. 101-111.

• Task:

• NetD – FFNN, which learns to produce z*
from A and b

• NetGA – DNN, which produces next
candidate z from A, b, z’, z’’

• GA – Traditional Genetic Algorithms

• BS – Brute force search



f (zA,b)  Az b
2



z
* A1b

Meta-learning with DNNs as an example

32

• A neural network that embeds its own meta-levels
• Learning to learn using gradient descent
• Learning to learn by gradient descent by gradient descent
• Learning to reinforcement learn
• RL2: Fast Reinforcement Learning via Slow Reinforcement
Learning
• Meta-Learning with Memory-Augmented Neural Networks
• Designing Neural Network Architectures using

Reinforcement
Learning

• ...

https://arxiv.org/pdf/1611.02167.pdf

One approach to AGI

33

• Extended probabilistic programming language:
• Probabilistic programs as generative models (basic)
• Representation of discriminative models (available)
• Self-referential interpreter with controllable inference
 A cognitive architecture with knowledge management do

deal with learnt domain-dependent specialized models
• OpenCog

• Cognitive architecture with Turing-complete knowledge
representation

OpenCoggy probabilistic programming with inference
meta-learning extended with deep learning models

https://wiki.opencog.org/w/OpenCoggy_Probabilistic_Programming
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture

https://wiki.opencog.org/w/OpenCoggy_Probabilistic_Programming
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture

AIXI

Reinforcement
Learning

Approaching AGI

34

Deep
Learning

Cognitive
Architectures

Probabilistic
Models

Universal
Induction

Probabilistic
Programming

Narrow General

Inefficient

Efficient

Universal meta-
computations

Deep RL

Deep meta-
learning

Neuro-
cognitive

Architectures

Neural-
Bayesian
Models

+

+

Incremental self-
improvement

Turing-
complete

DNNs

Deep PPLs

?

?

? ?

AGI

35

Thank you for attention!

Contact: potapov@aideus.com

