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Artificial General Intelligence

2

(General) intelligence is an agent’s
ability to efficiently achieve goals in a
wide range of environments with
insufficient knowledge and resources

Pei Wang, Ben Goertzel, Marcus Hutter, etc.



Subfields and Approaches
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• Deep Learning
• Cognitive Architectures
• Probabilistic Models
• Universal Algorithmic Intelligence
• Reinforcement Learning



Discriminative and Generative Models
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P(y|x)

z~P(z)y

x~P(x|z)
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FFNNs as Discriminative Models
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Direct approximation of P(y|x)



Critique of Deep Learning
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• Weak generalization

• Require large training sets; no one-
shot learning

• Cannot learn invariants

• Vulnerable to Adversarial examples

• Difficulties with transfer and 
unsupervised learning

• From AGI perspective

• Encode higher-order statistics,
but not causal, logical, spatio-
temporal relations

• Bad in high-level reasoning and
planning, etc.

Images from: Szegedy, C. et al. Intriguing properties of neural networks. arXiv 1312.6199 (2013).
Gary Marcus. Keynote @ AGI-16



Generative Models: Graphical Models
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• Curse of dimensionality

• Chain-rule decomposition 

• Conditional independence



P(x1:N )  P(x1)P(x2 x1)...P(xN x1:N1)  p(xs x(s))
s1
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• Bayesian networks

• Markov networks

• Factor graphs

• Plate models, etc.
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Graphical CA Hypothesis: Sigma

8Rosenbloom, P., Demski, A. & Ustun, V. (2017). The Sigma Cognitive Architecture and System: Towards 
Functionally Elegant Grand Unification. Journal of Artificial General Intelligence, 7(1), pp. 1-103.

• Graphical Architecture Hypothesis

• Four desiderata:

• grand unification

• generic cognition

• functional elegance

• sufficient efficiency

• Deconstruction of all cognitive 
functions with the use of factor-
graphs as a general cognitive 
firmware

• Reasoning: Message Passing

• Learning: Gradient Descent



Generative Models
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• Produce x from z
• In opposite direction?

• Difficulties with marginalization X
Z

• RBM: simplest non-trivial probabilistic 
graphical model

• Difficulties with training
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Probabilistic Models: Discriminative 
and Generative
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Discriminative Generative

Mapping A mapping from the task 
to its solution space

P(y|x)

A mapping from the 
solution space to data

z~P(z), x~P(x|z)
Pros • Efficient

• Less assumptions of 
data distribution

• Flexible
• Un/semi-supervised 
learning

Cons • One-way inference only
• Only supervised 
learning

• Additional 
assumptions of data 
distribution
• Computationally 
inefficient inference

10



Probabilistic Models: Variational Bayes
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• Posteriors are difficult to compute

• Let’s approximate them with some easily 
computable

• Criterion: Kullback-Leibler divergence / variational 
lower bound for the marginal likelihood (evidence)



logP(xi ) DKL Q(z xi ,) P(z xi ,)  L(,xi )
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Probabilistic Models in Deep Learning:
Variational Autoencoders
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logP(xi ) DKL Q(z xi ,) P(z xi ,)  L(,xi )

• Let’s learn the generative model and its 
variational approximation simultaneously

• Let’s represent P and Q as DNNs

• Add some heuristics

https://arxiv.org/abs/1312.6114



Probabilistic Models in Deep Learning:
Generative Adversarial Networks
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• DCGAN, WGAN, LSGAN, … BiGAN, InfoGAN, Bayesian GAN



min

max

V (,)  Ex~Pdata(x)

[logD(x)] Ez~Pmodel(z)
[log(1D(G(x)))]

https://arxiv.org/abs/1406.2661

• Does not construct variational 
approximation of a posterior 
distribution

• Directly estimates the quality of a 
generative marginal distribution

• No sampling, just gradient descent



Is it enough?
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• Example: Adversarial Autoencoders
• Training sets: all digits except 4 were rotated by all angle

• No generalization of rotation



Universal Algorithmic Intelligence: 
Solomonoff Induction
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• Universal priors

μ – programs (binary strings) for Universal Turing Machine

• Marginal probability

• Prediction

• Optimal prediction for any (computable) data source

• No “no free lunch theorem”!
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Universality of the algorithmic space
3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 

8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 
8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 
2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 
4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 
3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 
8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 
0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 
7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 
8640344181 5981362977 4771309960 5187072113 4999999 ………

int a=10000,b,c=8400,d,e,f[8401],g;
main() {for(;b-c;)f[b++]=a/5;
for(;d=0,g=c*2;c-=14, printf("%.4d",e+d/a),e=d%a)
for(b=c;d+=f[b]*a,f[b]=d%--g,d/=g--,--b;d*=b);}
By D.T. Winter



Is DL that bad?
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Image from: https://deepmind.com/blog/differentiable-neural-computers/

• RNN instead of 
finite state machine
• External memory 
with soft addressing
• End-to-end 
differentiable 
algorithms

• Neural differentiable computer, Neural GPU, Neural 
programmer-interpreter, Differentiable Forth interpreter, etc.
• Memory augmented NNs, including deep RL
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• Apparent trend towards universal induction within DL



Is DL that bad?

19
Image from: https://deepmind.com/blog/differentiable-neural-computers/

• RNN instead of 
finite state machine
• External memory 
with soft addressing
• End-to-end 
differentiable 
algorithms

• Neural differentiable computer, Neural GPU, Neural 
programmer-interpreter, Differentiable Forth interpreter, etc.
• Memory augmented NNs, including deep RL
• Apparent trend towards universal induction within DL
• But gradient descent is not enough to learn algorithms



What’s about probabilistic models?
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• Graphical models in computer vision, 
knowledge representations, etc.

• Probabilistic programming

• Probabilistic models of cognition

Images from: Mansinghka, V., Kulkarni, T., Perov, Y., Tenenbaum, J.: Approximate Bayesian Image Interpretation using 
Generative Probabilistic Graphics Programs. Advances in NIPS, arXiv:1307.0060 [cs.AI] (2013).



Probabilistic Programming: Knowledge 
Representation

21

var generate = function() {
var worksInHospital = flip(0.01)
var smokes = flip(0.2)
var lungCancer = flip(0.01) || (smokes && flip(0.02))
var TB = flip(0.005) || (worksInHospital && flip(0.01))
var cold = flip(0.2) || (worksInHospital && flip(0.25))
var stomachFlu = flip(0.1)
var other = flip(0.1)
var cough = ((cold && flip(0.5)) || (lungCancer && flip(0.3)) ||

(TB && flip(0.7)) || (other && flip(0.01)))
var fever = ((cold && flip(0.3)) || (stomachFlu && flip(0.5)) ||

(TB && flip(0.2)) || (other && flip(0.01)))
var chestPain = ((lungCancer && flip(0.4)) ||

(TB && flip(0.5)) || (other && flip(0.01)))
var shortnessOfBreath = ((lungCancer && flip(0.4)) ||

(TB && flip(0.5)) || (other && flip(0.01)))
condition(cough && chestPain && shortnessOfBreath)
return {lungCancer: lungCancer, TB: TB}

}



Probabilistic Programming: Reasoning and 
Problem Solving
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var task = [10, 8, -8, -12, 15, 3]
var target = 1
var generate = function() {

var subset = repeat(task.length, flip)
var sum = reduce(function(x, acc)

{ return acc + (x[1] ? x[0] : 0) },
0, zip(task, subset))

condition(sum == target)
return subset

}
Infer({method: "rejection", samples: 100,

model: generate})

 {"probs":[0.48,0.52],
"support":[[true,true,true,true,false,true],

[true,false,false,true,false,true]]} 



Probabilistic Programming: Learning
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var xs = [0 , 1 , 2 , 3 ]
var ys = [0.01, 0.99, 4.02, 5.97]
var linreg = function() {

var a = gaussian(0, 1)
var b = gaussian(0, 1)
var sigma = gamma(1, 1)
var f = function(x) { return a * x + b }
var check = function(x, y)

{ observe(Gaussian({mu: f(x), sigma: sigma}), y) }
map2(check, xs, ys)
return f(4)

}
Infer({method: 'MCMC', samples: 10000, model: linreg})

• Arbitrary models including but not 
limited to graphical models

• Model selection, structure learning

• Bayesian Occam Razor for free



Probabilistic Programming: Neural Bayes
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import edward as ed
from edward.models import Normal
def neural_network(X):
h = tf.tanh(tf.matmul(X, W_0) + b_0)
h = tf.tanh(tf.matmul(h, W_1) + b_1)
h = tf.matmul(h, W_2) + b_2
return tf.reshape(h, [-1])

W_0 = Normal(loc=tf.zeros([D, 10]), scale=tf.ones([D, 10]))
...
b_2 = Normal(loc=tf.zeros(1), scale=tf.ones(1))
X = tf.placeholder(tf.float32, [N, D])
y = Normal(loc=neural_network(X), scale=0.1 * tf.ones(N))
qW_0 = Normal(loc=tf.Variable(tf.random_normal([D, 10])),
scale=tf.nn.softplus(tf.Variable(tf.random_normal([D, 10]))))

...
inference = ed.KLqp({W_0: qW_0, b_0: qb_0, W_1: qW_1, b_1: qb_1,

W_2: qW_2, b_2: qb_2},
data={X: X_train, y: y_train})

http://edwardlib.org/



Learning Probabilistic Programs

25https://arxiv.org/pdf/1407.2646v1.pdf

• Higher-order PPLs allow for learning probabilistic 
programs from data by means of probabilistic programs 
(while learning of graphical models cannot be expressed in terms of graphical models)

• Probabilistic Programming implements a form of universal 
induction

https://arxiv.org/pdf/1407.2646v1.pdf


Learning Probabilistic Programs

26https://arxiv.org/pdf/1407.2646v1.pdf

• Higher-order PPLs allow for learning probabilistic 
programs from data by means of probabilistic programs 
(while learning of graphical models cannot be expressed in terms of graphical models)

• Probabilistic Programming implements a form of universal 
induction
• MCMC inference is not scalable enough

https://arxiv.org/pdf/1407.2646v1.pdf


Deep Amortized Probabilistic Inference
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• A generative model specified as a 
probabilistic program is ‘compiled’ 
into a discriminative model 
specified as a neural networks

https://arxiv.org/abs/1610.09900

• Generative model is not learned

https://arxiv.org/abs/1610.09900
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Gap between universal and 
pragmatic methods
• Universal methods

• can work in arbitrary computable environment

• incomputable or computationally infeasible

• approximations are either inefficient or not 
universal

• Practical methods

• work in non-toy environments

• set of environments is highly restricted

=> Bridging this gap is necessary



More Efficient Universal Induction
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• Choice of the reference machine

• Only ‘exponentially small’ number of models can be 
inferred given limited computational resources

• Incremental learning

• Genetic Programming

• Incremental Self-Improvement
• HSearch: instead of enumerating all programs, enumerate all proofs, so only 
programs are executed which are provably solve the problem with provably 
bounded computational time

• Gödel machine: searcher+solver – searches for proof techniques which 
output proofs about useful self-rewrites including rewriting both solver and 
searcher itself. Completely self-referential

• Still impractical



Metacomputations in Universal 
Intelligence

30

• Program specialization = construction of its efficient 
projection on one of its parameters

• E.g. specialized interpreter w.r.t. program = 
compiled program (Futamura-Turchin projections)

• Specialized specializer w.r.t. interpreter = compiler

• Specialized MCMC w.r.t. generative model = 
discriminative model

• Specialized universal induction w.r.t. Turing-incomplete 
reference machine = narrow machine learning method

Khudobakhshov V. Metacomputations and program-based knowledge representation // AGI-13
Potapov A. Rodionov S. Making universal induction efficient by specialization //  AGI-14



Metacomputations in Universal 
Intelligence
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• Still not enough  Partial specialization

• Discriminative models are not always possible
• But we can do much better than blind or metaheuristic search
• E.g. genetic algorithms with data-guided trainable crossover

Potapov A. Rodionov S. Genetic Algorithms with DNN-Based Trainable Crossover as an Example of Partial 
Specialization of General Search // Proc. Artificial General Intelligence, AGI’17. P. 101-111.

• Task:

• NetD – FFNN, which learns to produce z* 
from A and b

• NetGA – DNN, which produces next 
candidate z from A, b, z’, z’’

• GA – Traditional Genetic Algorithms

• BS – Brute force search



f (zA,b)  Az b
2



z
* A1b



Meta-learning with DNNs as an example
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• A neural network that embeds its own meta-levels
• Learning to learn using gradient descent
• Learning to learn by gradient descent by gradient descent
• Learning to reinforcement learn
• RL2: Fast Reinforcement Learning via Slow Reinforcement 
Learning
• Meta-Learning with Memory-Augmented Neural Networks
• Designing Neural Network Architectures using 

Reinforcement
Learning

• ...

https://arxiv.org/pdf/1611.02167.pdf



One approach to AGI
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• Extended probabilistic programming language:
• Probabilistic programs as generative models (basic)
• Representation of discriminative models (available)
• Self-referential interpreter with controllable inference
 A cognitive architecture with knowledge management do 

deal with learnt domain-dependent specialized models
• OpenCog

• Cognitive architecture with Turing-complete knowledge 
representation

OpenCoggy probabilistic programming with inference 
meta-learning extended with deep learning models

https://wiki.opencog.org/w/OpenCoggy_Probabilistic_Programming
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture

https://wiki.opencog.org/w/OpenCoggy_Probabilistic_Programming
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://blog.opencog.org/2017/10/14/inference-meta-learning-part-i/
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture
https://github.com/opencog/semantic-vision/wiki/About-the-SynerGAN-architecture


AIXI

Reinforcement 
Learning

Approaching AGI

34

Deep 
Learning

Cognitive 
Architectures

Probabilistic 
Models

Universal 
Induction

Probabilistic 
Programming

Narrow General

Inefficient

Efficient

Universal meta-
computations

Deep RL

Deep meta-
learning

Neuro-
cognitive 

Architectures

Neural-
Bayesian 
Models

+

+

Incremental self-
improvement

Turing-
complete 

DNNs

Deep PPLs

?

?

? ?

AGI



35

Thank you for attention!

Contact: potapov@aideus.com


