In dem Dokumentationssatz für dieses Produkt wird die Verwendung inklusiver Sprache angestrebt. Für die Zwecke dieses Dokumentationssatzes wird Sprache als „inklusiv“ verstanden, wenn sie keine Diskriminierung aufgrund von Alter, körperlicher und/oder geistiger Behinderung, Geschlechtszugehörigkeit und -identität, ethnischer Identität, sexueller Orientierung, sozioökonomischem Status und Intersektionalität impliziert. Dennoch können in der Dokumentation stilistische Abweichungen von diesem Bemühen auftreten, wenn Text verwendet wird, der in Benutzeroberflächen der Produktsoftware fest codiert ist, auf RFP-Dokumentation basiert oder von einem genannten Drittanbieterprodukt verwendet wird. Hier erfahren Sie mehr darüber, wie Cisco inklusive Sprache verwendet.
Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.
In diesem Dokument werden verschiedene Weiterleitungsszenarien beschrieben, in denen die EX-basierten ACI-Switches in der Application Centric Infrastructure (ACI) verwendet werden. Es wird gezeigt, wie die Hardware ordnungsgemäß programmiert ist, und wir leiten Pakete an die richtigen Ziel-Endpunkte (EPs) in den entsprechenden Endpunktgruppen (EPGs) weiter.
Für dieses Dokument bestehen keine speziellen Anforderungen.
Die Informationen in diesem Dokument basieren auf den folgenden Hardware- und Softwareversionen:
Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.
Angesichts dieser Topologie ist der Datenfluss von EP1 zu EP2 ein L2-Fluss und sollte lokal auf jedem Leaf geschaltet werden, auf dem der Quelldatenverkehr eingeht. Die erste Überprüfung mit Layer-2-Flüssen (L2) ist die MAC-Adresstabelle, um festzustellen, ob und wo der Switch Frames empfangen hat:
leaf4# show mac address-table | grep fccc * 30 0050.56a5.fccc dynamic - F F po3 leaf4# show mac address-table | grep 6794 * 30 0050.56a5.6794 dynamic - F F po4
Um das Kapselungs-VLAN anzuzeigen, können Sie auch die EP-Datenbank überprüfen:
leaf4# show endpoint mac 0050.56a5.fccc Legend: O - peer-attached H - vtep a - locally-aged S - static V - vpc-attached p - peer-aged L - local M - span s - static-arp B - bounce +-----------------------------------+---------------+-----------------+--------------+-------------+ VLAN/ Encap MAC Address MAC Info/ Interface Domain VLAN IP Address IP Info +-----------------------------------+---------------+-----------------+--------------+-------------+ 30 vlan-2268 0050.56a5.fccc LV po3 Joey-Tenant:Joey-Internal vlan-2268 192.168.20.2 LV po3 calo2-leaf4# show endpoint mac 0050.56a5.6794 Legend: O - peer-attached H - vtep a - locally-aged S - static V - vpc-attached p - peer-aged L - local M - span s - static-arp B - bounce +-----------------------------------+---------------+-----------------+--------------+-------------+ VLAN/ Encap MAC Address MAC Info/ Interface Domain VLAN IP Address IP Info +-----------------------------------+---------------+-----------------+--------------+-------------+ 30 vlan-2268 0050.56a5.6794 LV po4 Joey-Tenant:Joey-Internal vlan-2268 192.168.20.3 LV po4
Wir kennen die Übereinstimmungen für FD_VLAN 30, können die Zuordnung jedoch immer in der Software validieren:
leaf4# show vlan extended | grep 2268 30 enet CE vlan-2268
Natürlich können wir die Hardware überprüfen, um sicherzustellen, dass VLAN 30 VLAN 2268 als Frontpanel-Kapselung zugeordnet wird.
leaf4# vsh_lc
module-1# show system internal eltmc info vlan 30 vlan_id: 30 ::: hw_vlan_id: 22 vlan_type: FD_VLAN ::: bd_vlan: 28 access_encap_type: 802.1q ::: access_encap: 2268 fabric_encap_type: VXLAN ::: fabric_encap: 11960 sclass: 32778 ::: scope: 11 untagged: 0 acess_encap_hex: 0x8dc ::: fabric_enc_hex: 0x2eb8 pd_vlan_ft_mask: 0x8 fd_learn_disable: 0 qos_class_id: 0 ::: qos_pap_id: 0 qq_met_ptr: 25 ::: ipmc_index: 0 ingressBdAclLabel: 0 ::: ingBdAclLblMask: 0 egressBdAclLabel: 0 ::: egrBdAclLblMask: 0 qos_map_idx: 0 ::: qos_map_pri: 0 qos_map_dscp: 0 ::: qos_map_tc: 0 vlan_ft_mask: 0xe30 hw_bd_idx: 0 ::: hw_epg_idx: 11267 intf_count: 2 ::: glbl_scp_if_cnt: 2 <SNIPPED>
Da die EPs in der Software gelernt werden, können wir auch überprüfen, ob die Hardware auch die L2-Informationen dieser EPs programmiert hat. In der neuen Hardware befindet sich die Hardware Abstraktion Layer (HAL), die den Softwarestatus der Hardware darstellt. HAL hat es sich zur Aufgabe gemacht, Software-Programmieranfragen zu beantworten und auf Hardware zu übertragen.
Um L2-Hardwareinformationen zu einem Endpunkt anzuzeigen, können wir die L2-Tabelle in HAL auf bestimmte MAC-Adressen überprüfen:
leaf4# vsh_lc
module-1# show platform internal hal ep l2 mac 0050.56a5.fccc LEGEND: ------- BDId: BD Id BD Name: BD Name T: EP Type (Pl: Physical Vl: Virtual Xr: Remote EP Mac: Mac L2 IfId: L2 Interface L2 IfName: L2 IfName FDId: FD Id FD Name: FD Name S Class: S Class Age Intvl: Age Interval P A: Packet Action (F: Forward, T: Trap to CPU, L: Log & Forward, D: Drop, N: None) S T: Static Ep S E: Secure EP L D: Learn Disable B N D: Bind Notify Disable E N D: Epg Notify Disable B E: Bounce Enable I D L: IVxlan Dont Learn SPI: Source Policy Incomplete DPI: Dest Policy Incomplete SPA: Source Policy Applied DPA: Dest Policy Applied DSS: Dest Shared Service IL: Is Local VUB: Vnid Use Bd SO: SA Only L2 EP Count: 1 ====================================================================================================================== B E I S D S D D V BD EP L2 L2 FD S Age P S S L N N B D P P P P S I U S BdId Name T Mac IfId Ifname FDId Name Class Intvl A T E D D D E L I I A A S L B O ====================================================================================================================== 1c BD-28 Pl 00:50:56:a5:fc:cc 16000002 Po3 1e FD-30 800a 29f F 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 module-1# show platform internal hal ep l2 mac 0050.56a5.6794 ====================================================================================================================== B E I S D S D D V BD EP L2 L2 FD S Age P S S L N N B D P P P P S I U S BdId Name T Mac IfId Ifname FDId Name Class Intvl A T E D D D E L I I A A S L B O ====================================================================================================================== 1c BD-28 Pl 00:50:56:a5:67:94 16000003 Po4 1e FD-30 800a 29f F 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
Nachdem wir die Hardware abgebildet haben, wollen wir einen ELAM erstellen und sehen, wohin das Paket gehen soll.
leaf4# vsh_lc
module-1# debug platform internal tah elam asic 0 module-1(DBG-TAH-elam)# trigger reset module-1(DBG-TAH-elam)# trigger init in-select 6 out-select 0 module-1(DBG-TAH-elam-insel6)# set outer l2 src_mac 0050.56a5.fccc dst_mac 0050.56a5.6794 module-1(DBG-TAH-elam-insel6)# start module-1(DBG-TAH-elam-insel6)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Triggered module-1(DBG-TAH-elam-insel6)# report | grep ovec sug_elam_out_sidebnd_no_spare_vec.ovector_idx: 0x9E
Großartig, so Leaf4 erhielt den Frame auf ASIC 0 Slice 1. Mit ELAM auf der neuen Hardware gibt es ein neues Feld, das bei der Fehlerbehebung sehr wichtig ist: ovector_idx. Dieser Index ist der physische Port-Index, aus dem der Frame/das Paket weitergeleitet werden soll. Sobald Sie die ovector_idx-Datei haben, können Sie mithilfe dieses Befehls nach folgenden Ports suchen:
module-1(DBG-TAH-elam-insel6)# show platform internal hal l2 port gpd Legend: ------- IfId: Interface Id IfName: Interface Name I P: Is PC Mbr IfId: Interface Id Uc PC Cfg: UcPcCfg Idx Uc PC MbrId: Uc Pc Mbr Id As: Asic AP: Asic Port Sl: Slice Sp: Slice Port Ss: Slice SrcId Ovec: Ovector (slice | srcid) L S: Local Slot Reprogram: L3: Is L3 P: PifTable Xla Idx: Xlate Idx RP: Rw PifTable Ovx Idx: OXlate Idx IP: If Profile Table N L3: Num. of L3 Ifs RS: Rw SrcId Table NI L3: Num. of Infra L3 Ifs DP: DPort Table Vif Tid: Vif Tid SP: SrcPortState Table RwV Tid: RwVif Tid RSP: RwSrcPortstate Table Ing Lbl: Ingress Acl Label UC: UCPcCfg Egr Lbl: Egress Acl Label UM: UCPcMbr Reprogram: PROF ID: Lport Profile Id VS: VifStateTable HI: LportProfile Hw Install RV: Rw VifTable Num. of Sandboxes: 1 Sandbox_ID: 0, BMP: 0x0 Port Count: 8 ============================================================================================================================================ Uc Uc | Reprogram | | Rep | I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I ============================================================================================================================================= 1a004000 Eth1/5 1 0 1d 0 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 800 0 0 1 0 0 1a005000 Eth1/6 1 0 b 0 e 0 d 1a 1a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 800 0 0 1 0 0 1a006000 Eth1/7 0 26 5 0 f 0 e 1c 1c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-256 - 800 0 0 1 e 0 1a007000 Eth1/8 0 2e 7 0 10 0 f 1e 1e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-84 - 800 0 0 1 30 0 1a01e000 Eth1/31 1 0 2d 0 37 1 e 1c 9c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 1 0 0 1a01f000 Eth1/32 1 0 3d 0 38 1 f 1e 9e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 1 0 0 1a030000 Eth1/49 0 2 1 0 49 1 20 38 b8 1 0 0 0 0 0 0 0 0 0 0 1 8 6 2 2 D-24d - 400 0 0 0 1 0 1a031000 Eth1/50 0 3 3 0 29 1 0 0 80 1 0 0 0 0 0 0 0 0 0 0 1 9 7 2 2 D-350 - 400 0 0 0 1 0
Der Switch meint, dass das Paket über die Schnittstelle Ethernet 1/32 weitergeleitet werden soll. Ist das PO4, wo wir diese MAC-Adresse gelernt haben?
leaf4# show port-channel summary Flags: D - Down P - Up in port-channel (members) I - Individual H - Hot-standby (LACP only) s - Suspended r - Module-removed S - Switched R - Routed U - Up (port-channel) M - Not in use. Min-links not met F - Configuration failed ------------------------------------------------------------------------------- Group Port- Type Protocol Member Ports Channel ------------------------------------------------------------------------------- 1 Po1(SU) Eth LACP Eth1/5(P) 2 Po2(SU) Eth LACP Eth1/6(P) 3 Po3(SU) Eth LACP Eth1/31(P) 4 Po4(SU) Eth LACP Eth1/32(P)
Ja, das Paket wird also von Schnittstelle 1/32 an den Ziel-Host weitergeleitet.
In diesem Beispiel verfolgen wir den Paketfluss eines Pakets von EP1 zu EP2, wenn es auf demselben vPC-Leaf-Paar vorhanden ist. Die beiden EPs befinden sich in verschiedenen EPGs und verwenden unterschiedliche BDs.
Das erste, was immer zu tun ist, ist, die EP-Datenbank zu überprüfen, ob wir gelernt haben, die EP:
leaf4# show endpoint ip 192.168.20.2 Legend: O - peer-attached H - vtep a - locally-aged S - static V - vpc-attached p - peer-aged L - local M - span s - static-arp B - bounce +-----------------------------------+---------------+-----------------+--------------+-------------+ VLAN/ Encap MAC Address MAC Info/ Interface Domain VLAN IP Address IP Info +-----------------------------------+---------------+-----------------+--------------+-------------+ 30 vlan-2268 0050.56a5.fccc LV po3 Joey-Tenant:Joey-Internal vlan-2268 192.168.20.2 LV po3 calo2-leaf4# show endpoint ip 192.168.21.2 Legend: O - peer-attached H - vtep a - locally-aged S - static V - vpc-attached p - peer-aged L - local M - span s - static-arp B - bounce +-----------------------------------+---------------+-----------------+--------------+-------------+ VLAN/ Encap MAC Address MAC Info/ Interface Domain VLAN IP Address IP Info +-----------------------------------+---------------+-----------------+--------------+-------------+ 8 vlan-2200 0050.56a5.0c11 LV po4 Joey-Tenant:Joey-Internal vlan-2200 192.168.21.2 LV po4
Da wir die Informationen des EP kennen und die IP-Informationen kennen, sollten wir in der Lage sein, die Lerninformationen des EP in der Hardware anzuzeigen:
leaf4# vsh_lc module-1# show platform internal hal ep l3 all LEGEND: ------- VrfName: Vrf Name T: Type (Pl: Physical, Vl: Virtual, Xr: Remote) EP IP: Endpoint IP S Class: S Class Age Intvl: Age Interval S T: Static Ep S E: Secure EP L D: Learn Disable B N D: Bind Notify Disable E N D: Epg Notify Disable B E: Bounce Enable I D L: IVxlan Dont Learn SPI: Source Policy Incomplete DPI: Dest Policy Incomplete SPA: Source Policy Applied DPA: Dest Policy Applied DSS: Dest Shared Service IL: Is Local VUB: Vnid Use Bd SO: SA Only EP NH L3IfName: EP Next Hop L3 If Name NHT: Next Hop Type (L2: L2 Entry L3: L3 Next Hop) BD Name: L2 NH BD Name EP Mac: EP Mac L3 IfName: L3 NH If Name L2 IfName: L2 If Name FD Name: L2 Entry FD Name IP: L3 NH IP L3 EP Count: 12 =========================================================================================================================================================================================== B E I S D S D D V EP-NH N | Vrf EP S Age S S L N N B D P P P P S I U S L3 H | BD EP L3 L2 FD Name T IP Class Intvl T E D D D E L I I A A S L B O IfName T | Name Mac IfName Ifname Name IP =========================================================================================================================================================================================== common*rewall Pl 10.6.112.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 common*rewall Pl 10.6.114.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 common*rewall Pl 10.6.114.129 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 common*efault Pl 100.100.101.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.1.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Xr 192.168.1.100 8013 128 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 - L3 - 00:0c:0c:0c:0c:0c Tunnel2 Tunnel2 - 0.0.0.0 Joey-T*ernal2 Pl 192.168.3.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.20.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.20.2 800a 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 - L2 BD-28 00:50:56:a5:fc:cc - Po3 FD-30 - Joey-T*ternal Pl 192.168.21.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.21.2 800c 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 - L2 BD-7 00:50:56:a5:0c:11 - Po4 FD-8 - Joey-T*ternal Pl 2001:0:0:100::1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0
Die HAL Layer3 (l3)-Tabelle ist sehr benutzerfreundlich, da sie uns VLAN/Port-Informationen für l3-bezogene EPs bereitstellt. Wir wissen, dass das Ziel eine Po4-Schnittstelle ist. Daher sollte das Paket von einem beliebigen Po4-Port weitergeleitet werden.
Lassen Sie uns eine ELAM starten und sehen, was wir bekommen!
leaf4# vsh_lc
module-1# debug platform internal tah elam asic 0 module-1(DBG-TAH-elam)# trigger init in-select 6 out-select 0 module-1(DBG-TAH-elam-insel6)# set outer ipv4 src_ip 192.168.20.2 dst_ip 192.168.21.2 module-1(DBG-TAH-elam-insel6)# start module-1(DBG-TAH-elam-insel6)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Armed module-1(DBG-TAH-elam-insel6)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Triggered module-1(DBG-TAH-elam-insel6)# report | grep ovec sug_elam_out_sidebnd_no_spare_vec.ovector_idx: 0x9E
Toll, so haben wir das Paket ausgelöst und festgestellt, dass "ovector_idx" 0x9E ist. Der Vektorindex ist der ausgehende physische Schnittstellenindex, aus dem das Paket weitergeleitet werden soll. Sehen wir uns an, welcher Port diesen Index hat:
module-1(DBG-TAH-elam-insel6)# show platform internal hal l2 port gpd Legend: ------- IfId: Interface Id IfName: Interface Name I P: Is PC Mbr IfId: Interface Id Uc PC Cfg: UcPcCfg Idx Uc PC MbrId: Uc Pc Mbr Id As: Asic AP: Asic Port Sl: Slice Sp: Slice Port Ss: Slice SrcId Ovec: Ovector (slice | srcid) L S: Local Slot Reprogram: L3: Is L3 P: PifTable Xla Idx: Xlate Idx RP: Rw PifTable Ovx Idx: OXlate Idx IP: If Profile Table N L3: Num. of L3 Ifs RS: Rw SrcId Table NI L3: Num. of Infra L3 Ifs DP: DPort Table Vif Tid: Vif Tid SP: SrcPortState Table RwV Tid: RwVif Tid RSP: RwSrcPortstate Table Ing Lbl: Ingress Acl Label UC: UCPcCfg Egr Lbl: Egress Acl Label UM: UCPcMbr Reprogram: PROF ID: Lport Profile Id VS: VifStateTable HI: LportProfile Hw Install RV: Rw VifTable Num. of Sandboxes: 1 Sandbox_ID: 0, BMP: 0x0 Port Count: 8 ============================================================================================================================================ Uc Uc | Reprogram | | Rep | I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I ============================================================================================================================================= 1a004000 Eth1/5 1 0 1d 0 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 800 0 0 1 0 0 1a005000 Eth1/6 1 0 b 0 e 0 d 1a 1a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 800 0 0 1 0 0 1a006000 Eth1/7 0 26 5 0 f 0 e 1c 1c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-256 - 800 0 0 1 c 0 1a007000 Eth1/8 0 2f 7 0 10 0 f 1e 1e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-199 - 800 0 0 1 2e 0 1a01e000 Eth1/31 1 0 2d 0 37 1 e 1c 9c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 1 0 0 1a01f000 Eth1/32 1 0 3d 0 38 1 f 1e 9e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 1 0 0 1a030000 Eth1/49 0 2 1 0 49 1 20 38 b8 1 0 0 0 0 0 0 0 0 0 0 1 6 4 2 2 D-24d - 400 0 0 0 1 0 1a031000 Eth1/50 0 3 3 0 29 1 0 0 80 1 0 0 0 0 0 0 0 0 0 0 1 5 3 2 2 D-350 - 400 0 0 0 1 0
Sieht so aus, als sollten wir es an Port 1/32 senden. Ist das richtig?
leaf4# show port-channel summary Flags: D - Down P - Up in port-channel (members) I - Individual H - Hot-standby (LACP only) s - Suspended r - Module-removed S - Switched R - Routed U - Up (port-channel) M - Not in use. Min-links not met F - Configuration failed ------------------------------------------------------------------------------- Group Port- Type Protocol Member Ports Channel ------------------------------------------------------------------------------- 1 Po1(SU) Eth LACP Eth1/5(P) 2 Po2(SU) Eth LACP Eth1/6(P) 3 Po3(SU) Eth LACP Eth1/31(P) 4 Po4(SU) Eth LACP Eth1/32(P)
Ja, das ist richtig.
In diesem Beispiel verfolgen wir den Paketfluss eines Pakets von EP1 zu EP2, wobei EP1 auf einem EX vPC-Paar vorhanden ist und EP2 auf einem Remote-vPC-Leaf-Paar der Generation 1 vorhanden ist. Die beiden EPs befinden sich in verschiedenen EPGs und verwenden unterschiedliche BDs.
Lassen Sie uns nochmals prüfen, wo die EPs gelernt haben:
leaf4# show endpoint ip 192.168.20.2 Legend: O - peer-attached H - vtep a - locally-aged S - static V - vpc-attached p - peer-aged L - local M - span s - static-arp B - bounce +-----------------------------------+---------------+-----------------+--------------+-------------+ VLAN/ Encap MAC Address MAC Info/ Interface Domain VLAN IP Address IP Info +-----------------------------------+---------------+-----------------+--------------+-------------+ 30 vlan-2268 0050.56a5.fccc LV po3 Joey-Tenant:Joey-Internal vlan-2268 192.168.20.2 LV po3 calo2-leaf4# show endpoint ip 192.168.1.100 Legend: O - peer-attached H - vtep a - locally-aged S - static V - vpc-attached p - peer-aged L - local M - span s - static-arp B - bounce +-----------------------------------+---------------+-----------------+--------------+-------------+ VLAN/ Encap MAC Address MAC Info/ Interface Domain VLAN IP Address IP Info +-----------------------------------+---------------+-----------------+--------------+-------------+ Joey-Tenant:Joey-Internal 192.168.1.100 tunnel2
Lassen Sie uns nun überprüfen, was die Hardware programmiert hat:
leaf4# vsh_lc
module-1# show platform internal hal ep l3 all LEGEND: ------- VrfName: Vrf Name T: Type (Pl: Physical, Vl: Virtual, Xr: Remote) EP IP: Endpoint IP S Class: S Class Age Intvl: Age Interval S T: Static Ep S E: Secure EP L D: Learn Disable B N D: Bind Notify Disable E N D: Epg Notify Disable B E: Bounce Enable I D L: IVxlan Dont Learn SPI: Source Policy Incomplete DPI: Dest Policy Incomplete SPA: Source Policy Applied DPA: Dest Policy Applied DSS: Dest Shared Service IL: Is Local VUB: Vnid Use Bd SO: SA Only EP NH L3IfName: EP Next Hop L3 If Name NHT: Next Hop Type (L2: L2 Entry L3: L3 Next Hop) BD Name: L2 NH BD Name EP Mac: EP Mac L3 IfName: L3 NH If Name L2 IfName: L2 If Name FD Name: L2 Entry FD Name IP: L3 NH IP L3 EP Count: 12 =========================================================================================================================================================================================== B E I S D S D D V EP-NH N | Vrf EP S Age S S L N N B D P P P P S I U S L3 H | BD EP L3 L2 FD Name T IP Class Intvl T E D D D E L I I A A S L B O IfName T | Name Mac IfName Ifname Name IP =========================================================================================================================================================================================== common*rewall Pl 10.6.112.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 common*rewall Pl 10.6.114.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 common*rewall Pl 10.6.114.129 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 common*efault Pl 100.100.101.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.1.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Xr 192.168.1.100 8013 128 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 - L3 - 00:0c:0c:0c:0c:0c Tunnel2 Tunnel2 - 0.0.0.0 Joey-T*ernal2 Pl 192.168.3.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.20.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.20.2 800a 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 - L2 BD-28 00:50:56:a5:fc:cc - Po3 FD-30 - Joey-T*ternal Pl 192.168.21.1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0 Joey-T*ternal Pl 192.168.21.2 800c 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 - L2 BD-7 00:50:56:a5:0c:11 - Po4 FD-8 - Joey-T*ternal Pl 2001:0:0:100::1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 - L3 - 00:00:00:00:00:00 - - - 0.0.0.0
Hardware denkt, dass das EP auf Tunnel 2 existiert. Welches Ziel ist Tunnel 2?
module-1# show system internal eltmc info interface tunnel2 IfInfo: interface: Tunnel2 ::: ifindex: 402718722 iod: 66 ::: state: up Mod: 0 ::: Port: 0 Tunnel Index: 0 ::: Tunnel Dst ip: 0xc0a87843 Tunnel Encap: ivxlan ::: Tunnel VPC Peer: 0 Tunnel Dst ip str: 192.168.120.67 ::: Tunnel ept: 0x1 [SDK Info]: tunnl_name: vrf_id: 2 ::: if_index: 0x18010002 hwencapidx: 0 ::: encaptype: 1 mac_proxy: 0 ::: v4_proxy: 0 v6_proxy: 0 ::: ip_addr_type: 0 ipv4_address: 0xc0a87843 [SDB INFO]: iod: 66 pc_if_index: 0 fab_if_index: 0 sv_if: 0 src_idx: 0 int_vlan: 0 encap_vlan: 0 mod_port_status: 0x41620003 v6_tbl_id: 0x80000002 v4_tbl_id: 0x2 router_mac:00.00.00.00.00.00 unnumbered: 0 trunk_id: 0 tunnel_mod: 0 tunnel_port: 0 tep_ip: 0xc0a87843 ip_if_mode: 0 sdk_vrf_id: 2 mtu: 9366 ::: ipmtu_id: 0 is_fex_fabric: 0
Da das Ziel von einem vPC entfernt ist, sollte diese Ziel-IP die vPC Virtual IP der Remote-Leafs sein. Schauen wir uns ein Remote-Leaf an und sehen Sie:
leaf1# show system internal epm vpc Local TEP IP : 192.168.160.95 Peer TEP IP : 192.168.160.93 vPC configured : Yes vPC VIP : 192.168.120.67 MCT link status : Up Local vPC version bitmap : 0x7 Peer vPC version bitmap : 0x7 Negotiated vPC version : 3 Peer advertisement received : Yes Tunnel to vPC peer : Up
Perfekt, also lernte er die Ziel-EP aus dem Remote-vPC-Paar. Sehen wir uns an, was die ELAM sieht, und überprüfen wir, ob das Paket richtig weitergeleitet wird:
module-1# debug platform internal tah elam asic 0 module-1(DBG-TAH-elam)# trigger init in-select 6 out-select 0 module-1(DBG-TAH-elam-insel6)# set outer ipv4 src_ip 192.168.20.2 dst_ip 192.168.1.100 module-1(DBG-TAH-elam-insel6)# start module-1(DBG-TAH-elam-insel6)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Triggered
Nun, bei Remote-Zielen auf EX Hardware gibt es zwei ELAM-Werte, die bei der Fehlerbehebung des Paketflusses sehr wichtig sind. Der ovector_idx wie zuvor und der encap_idx:
module-1(DBG-TAH-elam-insel6)# report | grep ovec sug_elam_out_sidebnd_no_spare_vec.ovector_idx: 0xB8 module-1(DBG-TAH-elam-insel6)# report | grep encap sug_lurw_vec.encap_l2_idx: 0x0 sug_lurw_vec.encap_pcid: 0x0 sug_lurw_vec.encap_idx: 0x6 sug_lurw_vec.encap_vld: 0x1
Auf EX Hardware können wir den Zielport steuern, aus dem das Paket weitergeleitet werden soll. Zuvor haben wir in der Regel nur die Umschließungsnummer überprüft und überprüft, ob die Zielidx der richtige Tunnel war. Hier können wir überprüfen, welche Ports 8B zugeordnet sind:
module-1(DBG-TAH-elam-insel6)# show platform internal hal l2 port gpd Legend: ------- IfId: Interface Id IfName: Interface Name I P: Is PC Mbr IfId: Interface Id Uc PC Cfg: UcPcCfg Idx Uc PC MbrId: Uc Pc Mbr Id As: Asic AP: Asic Port Sl: Slice Sp: Slice Port Ss: Slice SrcId Ovec: Ovector (slice | srcid) L S: Local Slot Reprogram: L3: Is L3 P: PifTable Xla Idx: Xlate Idx RP: Rw PifTable Ovx Idx: OXlate Idx IP: If Profile Table N L3: Num. of L3 Ifs RS: Rw SrcId Table NI L3: Num. of Infra L3 Ifs DP: DPort Table Vif Tid: Vif Tid SP: SrcPortState Table RwV Tid: RwVif Tid RSP: RwSrcPortstate Table Ing Lbl: Ingress Acl Label UC: UCPcCfg Egr Lbl: Egress Acl Label UM: UCPcMbr Reprogram: PROF ID: Lport Profile Id VS: VifStateTable HI: LportProfile Hw Install RV: Rw VifTable Num. of Sandboxes: 1 Sandbox_ID: 0, BMP: 0x0 Port Count: 8 ============================================================================================================================================ Uc Uc | Reprogram | | Rep | I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I ============================================================================================================================================= 1a004000 Eth1/5 1 0 1d 0 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 800 0 0 1 0 0 1a005000 Eth1/6 1 0 b 0 e 0 d 1a 1a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 800 0 0 1 0 0 1a006000 Eth1/7 0 26 5 0 f 0 e 1c 1c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-256 - 800 0 0 1 c 0 1a007000 Eth1/8 0 2f 7 0 10 0 f 1e 1e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-199 - 800 0 0 1 2e 0 1a01e000 Eth1/31 1 0 2d 0 37 1 e 1c 9c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 1 0 0 1a01f000 Eth1/32 1 0 3d 0 38 1 f 1e 9e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 1 0 0 1a030000 Eth1/49 0 2 1 0 49 1 20 38 b8 1 0 0 0 0 0 0 0 0 0 0 1 6 4 2 2 D-24d - 400 0 0 0 1 0 1a031000 Eth1/50 0 3 3 0 29 1 0 0 80 1 0 0 0 0 0 0 0 0 0 0 1 5 3 2 2 D-350 - 400 0 0 0 1 0
Switch meint, er sollte ihn an den Spine der Schnittstelle Eth1/49 weiterleiten. Aber wie können wir sicherstellen, dass die Encap ist richtig?
Zunächst müssen wir uns Hardware-Informationen über den Tunnel ansehen. Dazu führen Sie den folgenden HAL-Befehl aus:
module-1(DBG-TAH-elam-insel6)# show platform internal hal tunnel rtep pi Non-Sandbox Mode LEGEND: ------- Tun Ifid: Tunnel Ifid IfName: Tunnel If Name Lid: Logical Id ET: Encap Type V: Vxlan I: IVxlan N: NVGRE VrfId: Vrf Id Vrf Name: Vrf Name IP: Tunnel's IP Hw Enc: Hw Encap Idx IVP: Is VPC Peer IL: Is Local P4: Proxy for v4 P6: Proxy for V6 PM: Proxy for Mac II: Is Ingress Only IC: Is Copy Service C OBd: Copy Service Outer Bd U D: Use DF NBT: Next Base Type E: ECMP N: Next-Hop NB Id: Next Base Id NH cnt: Next Hop Count VrfId: Vrf Id Vrf Name: Vrf Name IP: IP Address Mac: Mac L3 IfId: L3 IfId L3IfName: L3 If Name L2 IfId: L2 IfId L2IfName: L2 If Name Num. of Sandboxes: 1 Sandbox_ID: 0, BMP: 0x0 Remote Tep Count: 15 ================================================================================================================================================================================================ ======= I N N | E Vrf Hw V I P P P I I C U B B NH | Vrf L3 L3 L2 L2 IfId Ifname T Lid VrfId Name IP Enc P L 4 6 M I C OBd D T Id Cnt | VrfId Name IP Mac IfId IfName IfId IfName ================================================================================================================================================================================================ ======= 18010002 Tunnel2 I 3005 2 overlay-1 192.168.120.670 0 0 0 0 0 0 0 1 0 E 2 2 2 overlay-1 0.0.0.0 0d:0d:0d:0d:0d:00 1a030001 Eth1/49.1 1a030000 Eth1/4 9 2 overlay-1 0.0.0.0 0d:0d:0d:0d:0d:00 1a031002 Eth1/50.2 1a031000 Eth1/5 0
Diese Ausgabe gibt uns einige Werte, die uns wichtig sind:
IfId - Die dem Tunnel zugewiesene Schnittstellen-ID
IP - Die IP-Adresse des Ziels Dies muss mit ELTMC übereinstimmen.
L3 IfId: Die Layer-3-Schnittstelle(n), die der Switch für die Weiterleitung an das entsprechende Ziel verwenden kann.
Sobald die IfId bekannt ist, können wir überprüfen, ob die in der Elam erhaltene Encap mit dem Tunnelziel übereinstimmt:
module-1(DBG-TAH-elam-insel9)# show platform internal hal tunnel rtep apd Non-Sandbox Mode LEGEND: ------- ifId: Interface Id IP: IP address HwVrfId: Hardware Vrf Id SrcTepIdx: Source Tep Index BDXlate: Egress BDXlate DstInfoIdx: Destination info index RwEncapIdx: Rw Encap Index ECMPIdx: ECMP Index Num: Number of hops ECMPMbrIdx: ECMP member Index L2 Index: L2 Index RwDmacIdx: Rw Dmax Index Num. of Sandboxes: 1 Sandbox_ID: 0, BMP: 0x0 Remote Tep Count: 15 ============================================================================================================================== ifId IP HwVrfId BDXlate SrcTepIdx DstInfoIdx RwEncapIdx ECMPIdx ECMPMbrIdx Num L2Index RwDmacIdx ============================================================================================================================== 18010002 192.168.120.67 2 1 3a9a 3005 6 0 0 2 1a030000 0 <---- RwEncapIdx is 6! Same as the "encap_idx" in the ELAM Report. 1a031000 1
Dieser Tunnel hat einen RwEncapIdx (Re-Write Encap Index) von 6, was im Elam angezeigt wurde.
In diesem Beispiel verfolgen wir den Paketfluss eines Pakets von EP1, das ICMP an einen Loopback auf einem Nexus 500 mit OSPF sendet. Der Nexus 5000 ist über ein L3Out auf demselben Paar EX-Switches verbunden.
Da wir die lokale EP-Programmierung zu Beginn dieses Dokuments überprüft haben, gehen wir davon aus, dass die EP-Datei in der Hardware richtig gelernt wurde, und fahren Sie mit der Routenüberprüfung fort.
Überprüfen wir zunächst den OSPF-Status und die Routing-Tabelle:
leaf6# show ip ospf neighbors vrf jr:sb OSPF Process ID default VRF jr:sb Total number of neighbors: 2 Neighbor ID Pri State Up Time Address Interface 27.27.27.1 1 FULL/BDR 00:22:39 10.10.27.1 Vlan28 <---- Leaf5 27.27.27.3 1 FULL/DROTHER 00:22:37 10.10.27.3 Vlan28 <---- N5K
leaf6# show ip route vrf jr:sb 100.100.100.100 IP Route Table for VRF "jr:sb" '*' denotes best ucast next-hop '**' denotes best mcast next-hop '[x/y]' denotes [preference/metric] '%<string>' in via output denotes VRF <string> 100.100.100.100/32, ubest/mbest: 1/0 *via 10.10.27.3, vlan28, [110/5], 00:16:58, ospf-default, intra
Wir wissen, dass die Routingtabelle den nächsten Hop als 5K bei 10.10.27.3 anzeigt. Guten Start, aber wie können wir überprüfen, welche Hardware hat?
Sehen wir uns zunächst die Adjacency-Tabelle in der Hardware an, um sicherzustellen, dass der ARP-Wert auf 10.10.27.3 aufgelöst wurde und dass er mit der richtigen Schnittstelle programmiert wurde:
leaf6# vsh_lc module-1# show forwarding adjacency IPv4 adjacency information, adjacency count 20 next-hop rewrite info interface phy i/f -------------- -------------- --------------- --------------- 10.10.27.1 0022.bdf8.19ff Vlan28 Tunnel3 10.10.27.3 8c60.4f02.88fc Vlan28 port-channel5
MAC-Adressen stimmen mit der 5.000-Adresse überein:
ACI-5548-B# show interface vlan 3117 Vlan3117 is up, line protocol is up Hardware is EtherSVI, address is 8c60.4f02.88fc Internet Address is 10.10.27.3/29 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec
Auf EX-Plattformen ist einer VRF-Instanz "hw_vrf_idx" zugewiesen. Auf diesen Index wird verwiesen, wenn wir die Hardware-Programmierung überprüfen. Suchen wir den Index:
module-1# show system internal eltmc info vrf jr:sb VRF-TABLE: jr:sb vrf_type: tenant ::: context_id: 6 overlay_index: 0 ::: vnid: 2129921 scope: 5 ::: sclass: 16386 v4_table_id: 0x5 ::: v6_table_id: 0x80000005 intf_count: 5 ::: intrn_vlan_id: 0 VRF Intf: Vlan11 ::: src_plcy_incomp: 0 vnid_hex: 0x208001 ::: ingress_policy: 0x1 vrf_intf_list: Vlan28,Vlan16,Vlan9,Vlan11,loopback2, hw_vrf_idx: 4612 ::: nb_egr_outer_bd: 0 sb_egr_outer_bd: 0 vrf_bd_list: 28,16,11,9, sb_egr_outer_bd: 0 ::: sdk_vrf_id: 5 [SDK Info]: vrf_name: jr:sb vrf_id: 5 ::: hw_vrf_idx: 4612 vrf_vnid: 2129921 ::: is_infra: 0 tornbinfrahwbd: 0 ::: torsbinfrahwbd: 0 ingressBdAclLabel: 0 ::: ingBdAclLblMask: 0 egressBdAclLabel: 0 ::: egrBdAclLblMask: 0 sg_label: 5 ::: sclass: 16386 sp_incomplete: 1 ::: sclassprio: 3 [SDB INFO]: v4 table vrf type: 1 vrf id: 5 vnid: 2129921 internal infra vlan: 0 external router mac:00:22:bd:f8:19:ff v6 table vrf type: 1 vrf id: 5 vnid: 2129921 internal infra vlan: 0 external router mac:00:22:bd:f8:19:ff ::::
Nachdem die Adjacency erkannt wurde, sollte HAL eine Route programmieren. Dies können wir mit dem folgenden Befehl überprüfen:
module-1# show platform internal hal l3 routes | head ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ LEGEND: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ LID: Logical ID RID: Route ID PID: Physical ID NB-ID:Next-Base ID HIT IDX: Next-Hop HitIndex CLP : Class Priority TBI: Trie Base Index | SC : Sup-Copy SSR: Src Sup-Redirect DSR: Dst Sup-Redirect TDD :TTL Disable NB: NextBaseType SDC : Src Direct Connect TRO: Trie Offset | SPI: Src Policy Inc DPI: Dst Policy Inc DR : Default Route LE :Learn Enable [E:Ecmp/A:Adj] ILL : Is Link Local ISS: Is Shared Services | RT : Route Type FWD: Forwarding HR : Host Routes EP :Ext Prefixes DLR: Default Lpm Route CLSS: Class Id RDEL: Route in Deletion | BNE: Bind Notify Enable SNE: Sclass Notify Enable BE : Bounce Enable IDL :Ivxlan DoNotLearn DL : Dest Local SA : Src Only AI : Age Interval | SF : Static Flag SH : Src Hit DH: Dest Hit | module-1# show platform internal hal l3 routes ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ LEGEND: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ LID: Logical ID RID: Route ID PID: Physical ID NB-ID:Next-Base ID HIT IDX: Next-Hop HitIndex CLP : Class Priority TBI: Trie Base Index | SC : Sup-Copy SSR: Src Sup-Redirect DSR: Dst Sup-Redirect TDD :TTL Disable NB: NextBaseType SDC : Src Direct Connect TRO: Trie Offset | SPI: Src Policy Inc DPI: Dst Policy Inc DR : Default Route LE :Learn Enable [E:Ecmp/A:Adj] ILL : Is Link Local ISS: Is Shared Services | RT : Route Type FWD: Forwarding HR : Host Routes EP :Ext Prefixes DLR: Default Lpm Route CLSS: Class Id RDEL: Route in Deletion | BNE: Bind Notify Enable SNE: Sclass Notify Enable BE : Bounce Enable IDL :Ivxlan DoNotLearn DL : Dest Local SA : Src Only AI : Age Interval | SF : Static Flag SH : Src Hit DH: Dest Hit | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | | | | | LID |<------------------ Trie ------------->|<Dleft Trie>| | | VRF | Prefix/Len | RT| RID | LID | Type| PID | FPID/| HIT |N| NB-ID | NB Hw | PID | FPID/| TBI |TRO|Ifindex|CLSS|CLP| AI |SH|DH| Flags | |-----|-------------------------------------------|---|-----|----------|-----| | TID | IDX |B| | Idx | | TID |---------|---|-------|----|---|----|--|--|------------------| |-----|-------------------------------------------|---|-----|----------|-----|<------------------ DLEFT ------------>|-----|------|---------|---|-------|----|---|----|--|--|------------------| | | | | | | | PID | FPID/| HIT |N| NB-ID | NB Hw | | | | | | | | | | | | | | | | | | | | TID | IDX |B| | Idx | | | | | | | | | | | | | | | | | | |<------------------ TCAM ------------->| | | | | | | | | | | | | | | | | | | PID | TCAM | HIT |N| NB-ID | NB Hw | | | | | | | | | | | | | | | | | | | | ID | IDX |B| | Idx | | | | | | | | | | | | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |Sandbox_ID: 0 Asic Bitmap: 0x0 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- module-1# show platform internal hal l3 routes | egrep 100.100.100.100 | 4612| 100.100.100.100/ 32| UC| e4| 4a04| TRIE| 10| 5/ 0| 6010|A| 7567| 802e| 186a| 1/ 2| 10| 0| 0| f| 3| 0| 0| 0|spi,dpi
Diese Ausgabe enthält Informationen zur nächsten Hop-Route. 4612 ist der hw_vrf_idx des jr:sb VRF. Damit wir den Next Hop überprüfen können, wird der "NB Hw Idx" im TCAM für die nächste Tabelle verwendet:
module-1# show platform internal hal l3 nexthops Non-Sandbox Mode LEGEND: ------- NHOP ID : Nhop Identifier (Hex) CONS : H/W S/W info Consistency TYPE : Nexthop Type ACTN : Nexthop Action Vrf : L3 Vrf of the Nhop L3 INTF : L3 interface index (Hex) L2 INTF : L2 interface index (Hex) BDID Or RwVRF : Bridge Domain Id Or Rewrite Vrfid (Hex) INFR : ACI Infra valid PVRF : Preserve VRF LRN : Learn Enabled VRFR : VRF Rewrite PID : Physical ID FPID : FP of this nexthop TLID : Tile Id within FP HIT IDX : Location of this Nhop (Hex) Mac Entry: TYP : Type INTF : Interface related Info (Hex) LRN : Learn Info DL : Destination Local MLD : Unused VNB : Vnid use BD DFL : Default Entry VLD : MacKey Valid FT : FID Type FV : FID Valid FID : FID value (Hex) Mac : L2 MAC Address L2 Ifabric Info: CLSS : Source Class CLP : Source Class Priority EPG : EndPoint Group BNE : Bind Notification Enabled SNE : Source Address Notification Enabled CNE : Source class Notification Enabled DL : iVxlan DL SPI : Source Policy Incomplete DPI : Dest Policy Incomplete IP Address : IP address Sandbox_ID: 0 Asic Bitmap: 0x0 Summary info for 31 L3 Nexthop objects C T A BDID I P V T |---------------------Mac Entry-------------------|----L2 Ifabric Info----| NHOP O Y C L3 L2 Or N V L R L HIT|T L M V D V|--------------Mac Key-------| C B S C S D| ID N P T INTF INTF RwVRF F R R F FP I IDX|Y INTF R D L N F L|F F FID | L N N N D P P| (Hex) S E N Vrf (H) (H) (H) R F N R PID ID D (H)|P (H) N L D B L D|T V (H) Mac |CLSS P EPG E E E L I I| IP Address --------+-+-+-+----+--------+--------+----+-+-+-+-+----+--+-+----+-+------+-+-+-+-+-+-+-+-+------+-----------------+----+-+----+-+-+-+-+-+-+----------------------------- module-1# show platform internal hal l3 nexthops | grep 802e 7567 N I F 5 901001c 16000004 1c 0 0 0 0 2e 9 0 802e 0 22 0 0 0 0 0 1 1 1 1214 8c:60:4f:02:88:fc 0 0 2c0d 0 0 0 0 0 0 10.10.27.3
Hier nehmen wir die "NB Hw Idx" und ordnen sie der "HIT IDX" zu. Hier sehen Sie den Eintrag für die Next-Hop-MAC/IP. Dies entspricht der Anzeige von "l3 defip show" und "l3 ausgang show" in Broadcom für ACI Leaf-Switches der 1. Generation.
Wie wir sehen können, enthält die Tabelle die richtigen Informationen:
L2 INTF: 0x16000004 —> Der ifIndex für Port-Channel 5
HIT-IDX: Der Index, der von der Nb Hw Idx in Hal-L3-Routen abgeleitet wird
MAC: 8c:60:4f:02:88:fc —> MAC der nächsten HOP SVI auf 5000
EPG: SKLASS L3 EPG
IP-Adresse: 10.10.27.3 —> Next-Hop-IP der SVI auf 5.000
leaf6# pwd /var/sysmgr/tmp_logs leaf6# cat elam_report.txt | grep ip.da sug_pr_lu_vec_l3v.ip.da: 0x0000000000000000064646464 leaf6# cat elam_report.txt | grep ip.sa sug_pr_lu_vec_l3v.ip.sa: 0x00000000000000000C0A8140A leaf6# cat elam_report.txt | grep adj sug_lurw_vec.dst_addr.adj: 0x8C604F0288FC sug_lurw_vec.dst_addr.adj.padfield: 0x04F0288FC sug_lurw_vec.dst_addr.adj.idx: 0x2318 sug_lurw_vec.adj_vld: 0x0 leaf6# cat elam_report.txt | grep macdarslt.hit_idx sug_fpc_lookup_vec.fplu_vec.rslt.macdarslt.hit_idx: 0x802E
In diesem Beispiel verfolgen wir den Paketfluss eines Pakets von EP1, das für eine Remote BD Switched Virtual Interface (SVI) bestimmt ist. In diesem Beispiel wird die Spine Forwarding überprüft, um sicherzustellen, dass das Paket an den richtigen Leaf gesendet wird. Nehmen wir an, das Paket wurde an den Spine-Proxy am Eingangs-Leaf gesendet.
Auf der Spine wollen wir zunächst das Council of Oracles Protocol (COOP) für die Ziel-IP überprüfen, da das Paket zur Suche an den Spine-Proxy gesendet wird:
calo1-spine1# show coop internal info ip-db | grep -A 10 192.168.20.1 IP address : 192.168.20.1 Vrf : 2129921 Flags : 0 EP vrf vnid : 2129921 EP IP : 192.168.20.1 Publisher Id : 10.0.224.88 Record timestamp : 11 04 2016 16:41:16 422062712 Publish timestamp : 11 04 2016 16:41:16 424633605 Seq No: 0 Remote publish timestamp: 01 01 1970 00:00:00 0 URIB Tunnel Info Num tunnels : 1 Tunnel address : 10.0.224.88 <---- REMOTE LEAF Tunnel ref count : 1
Lassen Sie uns überprüfen, welches Leaf diese TEP-Adresse hat:
spine1# acidiag fnvread | grep 10.0.224.88 105 1 calo1-leaf5 FDO20160TPS 10.0.224.88/32 leaf active 0
Da wir wissen, dass das Paket an Modul 2, Port 6, in die Spine gelangt, können wir es an Modul 2 anhängen und das Port-Layout überprüfen.
spine1# vsh Cisco iNX-OS Debug Shell This shell should only be used for internal commands and exists for legacy reasons. User should use ibash infrastructure as this will be deprecated. calo1-spine1# attach module 2 Attaching to module 2 ... To exit type 'exit', to abort type '$.' No directory, logging in with HOME=/ Bad terminal type: "xterm-256color". Will assume vt100. Cisco iNX-OS Debug Shell This shell should only be used for internal commands and exists for legacy reasons. User should use ibash infrastructure as this will be deprecated. Loading parse tree (LC). Please be patient... module-2# module-2# show platform internal hal l2 port gpd Legend: ------- IfId: Interface Id IfName: Interface Name I P: Is PC Mbr IfId: Interface Id Uc PC Cfg: UcPcCfg Idx Uc PC MbrId: Uc Pc Mbr Id As: Asic AP: Asic Port Sl: Slice Sp: Slice Port Ss: Slice SrcId Ovec: Ovector (slice | srcid) L S: Local Slot Reprogram: L3: Is L3 P: PifTable Xla Idx: Xlate Idx RP: Rw PifTable Ovx Idx: OXlate Idx IP: If Profile Table N L3: Num. of L3 Ifs RS: Rw SrcId Table NI L3: Num. of Infra L3 Ifs DP: DPort Table Vif Tid: Vif Tid SP: SrcPortState Table RwV Tid: RwVif Tid RSP: RwSrcPortstate Table Ing Lbl: Ingress Acl Label UC: UCPcCfg Egr Lbl: Egress Acl Label UM: UCPcMbr Reprogram: PROF ID: Lport Profile Id VS: VifStateTable HI: LportProfile Hw Install RV: Rw VifTable Num. of Sandboxes: 1 Sandbox_ID: 0, BMP: 0x0 Port Count: 7 ============================================================================================================================================ Uc Uc | Reprogram | | Rep | I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I ============================================================================================================================================= 1f5 SpInBndMgmt 0 9de 1a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-2d4 D-3e1 0 0 0 0 1 0 1a080000 Eth2/1 0 9a 1c 0 11 0 10 20 20 1 0 0 0 0 0 0 0 0 0 0 1 b b 1 1 D-f3 D-61 100 0 0 0 1 0 1a081000 Eth2/2 0 9b 22 0 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 1 c c 1 1 D-1ee D-30b 100 0 0 0 1 0 1a084000 Eth2/5 0 9e 1e 0 3d 1 14 28 a8 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 D-19a D-2ee 100 0 0 0 1 0 1a085000 Eth2/6 0 9f 24 0 39 1 10 20 a0 1 0 0 0 0 0 0 0 0 0 0 1 e e 1 1 D-87 D-184 100 0 0 0 1 0 1a086000 Eth2/7 0 a0 26 0 35 1 c 18 98 1 0 0 0 0 0 0 0 0 0 0 1 d d 1 1 D-1d0 D-357 100 0 0 0 1 0 1a088000 Eth2/9 0 a2 20 1 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-3ea D-1a9 100 0 0 0 1 0
Ethernet 2/6 ist die Schnittstelle, die mit Leaf 6 verbunden ist, auf ASIC 0 SLICE 1.
Jetzt wissen wir, auf welchem ASIC unser ELAM ausgeführt werden soll. ASIC 0.
module-2# debug platform internal tah elam asic 0 module-2(DBG-TAH-elam)# trigger reset module-2(DBG-TAH-elam)# trigger init in-select 13 out-select 0 module-2(DBG-TAH-elam-insel13)# set inner ipv4 src_ip 10.100.17.11 dst_ip 192.168.20.1 module-2(DBG-TAH-elam-insel13)# start stat module-2(DBG-TAH-elam-insel13)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Armed module-2(DBG-TAH-elam-insel13)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Triggered <---- Packet triggered from FM Asic 0 Slice 1 Status Triggered <---- Packet triggered from Front Panel
Im ELAM finden Sie den Vektorindex:
Front Panel ELAM drove sug_elam_out_sidebnd_no_spare_vec.ovector_idx: 0xB8
Wie ordnen wir 0xb8 einem Port zu? Da wir wissen, dass das Paket zur Suche an ein Fabric-Modul (FM) gesendet werden soll, können wir die interne Port-Zuordnung überprüfen, um das älteste FM zu finden:
module-2# show platform internal hal l2 internal-port pi Num. of Sandboxes: 1 Legend: ------- IfId: Interface Id IfName: Interface Name As: Asic AP: Asic Port Sl: Slice SP: Slice Port Ss: Slice SrcId Ovec: Ovector UcPcCfgId: Uc Pc CfgId Lb Mbrid: LB MbrId Sandbox_ID: 0, BMP: 0x0 Internal Port Count: 32 ====================================================================== UcPc Lb IfId IfName As AP Sl SP Ss Ovec CfgId MbrId ====================================================================== 7d - 0 21 0 20 38 38 0 4 7e - 0 29 1 0 0 80 0 8 7f - 1 21 0 20 38 38 0 c 80 - 1 29 1 0 0 80 0 10 81 - 2 21 0 20 38 38 0 14 82 - 2 29 1 0 0 80 0 18 83 - 3 21 0 20 38 38 0 1c 84 - 3 29 1 0 0 80 0 20 95 - 0 19 0 18 30 30 0 3 96 - 0 49 1 20 38 b8 0 7 97 - 1 19 0 18 30 30 0 b 98 - 1 49 1 20 38 b8 0 f 99 - 2 19 0 18 30 30 0 13 9a - 2 49 1 20 38 b8 0 17 9b - 3 19 0 18 30 30 0 1b 9c - 3 49 1 20 38 b8 0 1f ad - 0 25 0 24 40 40 0 1 ae - 0 41 1 18 30 b0 0 6 af - 1 25 0 24 40 40 0 9 b0 - 1 41 1 18 30 b0 0 e b1 - 2 25 0 24 40 40 0 11 b2 - 2 41 1 18 30 b0 0 16 b3 - 3 25 0 24 40 40 0 19 b4 - 3 41 1 18 30 b0 0 1e dd - 0 15 0 14 28 28 0 2 de - 0 4d 1 24 40 c0 0 5 df - 1 15 0 14 28 28 0 a e0 - 1 4d 1 24 40 c0 0 d e1 - 2 15 0 14 28 28 0 12 e2 - 2 4d 1 24 40 c0 0 15 e3 - 3 15 0 14 28 28 0 1a e4 - 3 4d 1 24 40 c0 0 1d
Mit ASIC0 / Ovec B8 erhalten wir MbrId 0x7, Slice spielt keine Rolle.
Diese MbrId ist die Schnittstelle auf dem USD, die einer Schnittstelle auf einem FM zugeordnet ist. Beachten Sie, dass diese MbrId in Hex gespeichert ist und in Dezimalzahlen umgewandelt werden muss.
Anhand der USD-Schnittstellen und der Überprüfung von Port 7 können wir herausfinden, welches FM eingesetzt wird:
module-2# show platform internal usd port info | grep -A 3 "Int 7"(if the interface has multiple digits, will be "Int##" with no space) Port 73.0 (Int 7) : Admin UP Link UP Remote slot22.asic0 slice:1 slice port:32 lcl srcid:56 gbl srcid:184 asic mrl:0xd07c010, mac mrl:0x12c84010, mac:16, chan:0 speed 106G serdes: 0x328 0x329 0x32a 0x32b
Der "Steckplatz" basiert auf 0, und die FM-Nummerierung basiert auf 1. Daher müssen wir der hier aufgeführten Nummer 1 hinzufügen. Das bedeutet, dass das Paket an FM 23 gesendet werden soll.
Genau wie in der Alpen gibt es eine synthetische IP, die als äußere IP-Adresse verwendet wird, um den Hash für die COOP-Suche zu bestimmen. Um dies zu finden, müssen Sie diesen Befehl und grep für die innere DST-IP ausführen:
module-2(DBG-TAH-elam-insel7)# show forwarding route synthetic vrf all | grep 192.168.20.1 SYNTH-88 1.203.211.185/32 0x208001 192.168.20.1
Dies zeigt uns, dass 1.203.211.185 unsere synthetische IP ist. Auf dieser Grundlage können wir auch die "Äußere DST IP" in unserem FM-Elam auf diese setzen. Für den FM sollten folgende Auslöser verwendet werden:
module-23(DBG-TAH-elam-insel7)# trigger reset module-23(DBG-TAH-elam)# trigger init in-select 13 out-select 0 module-23(DBG-TAH-elam-insel13)# set outer ipv4 dst_ip 1.203.211.185 <----- DST IP IS THE SYNTHETIC IP module-23(DBG-TAH-elam-insel13)# set inner ipv4 src_ip 10.100.17.11 dst_ip 192.168.20.1 module-23(DBG-TAH-elam-insel13)# start stat module-23(DBG-TAH-elam-insel13)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Armed Asic 0 Slice 2 Status Armed Asic 0 Slice 3 Status Armed Asic 0 Slice 4 Status Armed Asic 0 Slice 5 Status Armed module-23(DBG-TAH-elam-insel13)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Armed Asic 0 Slice 2 Status Triggered <---- Triggered on SLICE 2 Asic 0 Slice 3 Status Armed Asic 0 Slice 4 Status Armed Asic 0 Slice 5 Status Armed
Lassen Sie uns natürlich den vollständigen Bericht auslesen, aber schauen wir uns die ovector_idx-Datei für dieses Paket an, das wir ausgelöst haben:
lac_elam_out_sidebnd_no_reserve_vec.ovector_idx: 0x20 <— Ovektor-Index, der im folgenden Befehl verwendet wird
Wie können wir herausfinden, welche Schnittstelle diesen Vektor hat? Führen Sie auf dem FM Folgendes aus:
** Aufgrund des Bugs CSCvf42796 , fügen Sie alle FM-Befehle mit "| no-more" an. Andernfalls werden bestimmte Tabelleneinträge möglicherweise nicht in der endgültigen Ausgabe angezeigt.
module-23(DBG-TAH-elam-insel13)# show platform internal hal l2 port gpd | no-more Legend: ------- IfId: Interface Id IfName: Interface Name I P: Is PC Mbr IfId: Interface Id Uc PC Cfg: UcPcCfg Idx Uc PC MbrId: Uc Pc Mbr Id As: Asic AP: Asic Port Sl: Slice Sp: Slice Port Ss: Slice SrcId Ovec: Ovector (slice | srcid) L S: Local Slot Reprogram: L3: Is L3 P: PifTable Xla Idx: Xlate Idx RP: Rw PifTable Ovx Idx: OXlate Idx IP: If Profile Table N L3: Num. of L3 Ifs RS: Rw SrcId Table NI L3: Num. of Infra L3 Ifs DP: DPort Table Vif Tid: Vif Tid SP: SrcPortState Table RwV Tid: RwVif Tid RSP: RwSrcPortstate Table Ing Lbl: Ingress Acl Label UC: UCPcCfg Egr Lbl: Egress Acl Label UM: UCPcMbr Reprogram: PROF ID: Lport Profile Id VS: VifStateTable HI: LportProfile Hw Install RV: Rw VifTable Num. of Sandboxes: 1 Sandbox_ID: 1, BMP: 0x1 Port Count: 8 ============================================================================================================================================ Uc Uc | Reprogram | | Rep | I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I ============================================================================================================================================= ae fc0-lc1:0-0 1 0 3 0 11 0 10 20 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 af fc0-lc1:0-1 1 0 4 0 3d 2 c 18 98 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 b0 fc0-lc1:1-0 1 0 13 0 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 b1 fc0-lc1:1-1 1 0 14 0 39 2 8 10 90 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 b2 fc0-lc1:2-0 1 0 23 0 5d 3 14 28 e8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 b3 fc0-lc1:2-1 1 0 24 0 21 1 8 10 50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 b4 fc0-lc1:3-0 1 0 33 0 51 3 8 10 d0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0
Dieser Vektor ist LC1 (Linecard in Steckplatz 2, da sie auf 0 basiert) zugeordnet, auf ASIC 0/SLICE 0. Wie wir wissen, wurde der ELAM ursprünglich auf dem LC ausgeführt und auf diesem Segment ausgelöst:
module-2# debug platform internal tah elam asic 0 module-2(DBG-TAH-elam)# trigger reset module-2(DBG-TAH-elam)# trigger init in-select 13 out-select 0 module-2(DBG-TAH-elam-insel13)# set inner ipv4 src_ip 10.100.17.11 dst_ip 192.168.20.1 module-2(DBG-TAH-elam-insel13)# start stat module-2(DBG-TAH-elam-insel13)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Armed Asic 0 Slice 1 Status Armed module-2(DBG-TAH-elam-insel13)# stat ELAM STATUS =========== Asic 0 Slice 0 Status Triggered <---- Packet triggered from FM Asic 0 Slice 1 Status Triggered <---- Packet triggered from Front Panel
Der Vektor dieses ELAM ist sug_elam_out_sidebnd_no_ersatz_vec.ovector_idx: 0x98, das wir aus dem "hal l2 port gpd" kennen, ist der richtigen Schnittstelle auf dem LC zugeordnet:
============================================================================================================================================ Uc Uc | Reprogram | | Rep | I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I ============================================================================================================================================= 1f5 SpInBndMgmt 0 9de 1a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-2d4 D-3e1 0 0 0 0 1 0 1a080000 Eth2/1 0 9a 1c 0 11 0 10 20 20 1 0 0 0 0 0 0 0 0 0 0 1 b b 1 1 D-f3 D-61 100 0 0 0 1 0 1a081000 Eth2/2 0 9b 22 0 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 1 c c 1 1 D-1ee D-30b 100 0 0 0 1 0 1a084000 Eth2/5 0 9e 1e 0 3d 1 14 28 a8 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 D-19a D-2ee 100 0 0 0 1 0 1a085000 Eth2/6 0 9f 24 0 39 1 10 20 a0 1 0 0 0 0 0 0 0 0 0 0 1 e e 1 1 D-87 D-184 100 0 0 0 1 0 1a086000 Eth2/7 0 a0 26 0 35 1 c 18 98 1 0 0 0 0 0 0 0 0 0 0 1 d d 1 1 D-1d0 D-357 100 0 0 0 1 0 1a088000 Eth2/9 0 a2 20 1 d 0 c 18 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-3ea D-1a9 100 0 0 0 1 0
Ethernet 2/7 ist die Schnittstelle, die mit Leaf 5 verbunden ist.
Es gibt einige Szenarien, in denen ein Paket erfasst wird, das in der Tabelle "show platform internal hal l2 internal-port pi" keinen Ovektor enthält. Im unten stehenden Szenario wird das Paket tatsächlich vom FM zurückgesendet. Aus diesem Grund müssen wir eine andere Tabelle betrachten, um zu sehen, welcher Port an der Vorderseite des Pakets ausgewählt wird.
Beachten Sie, dass die oben angegebene Topologie eine komplett andere Umgebung ist, in der der Transitverkehr erfasst wird (kein Proxy-Routing). Das Modul ist ein N9K-X9732C-EX.
@module-1# debug platform internal tah elam asic 3
@module-1(DBG-elam)# trigger reset
@module-1(DBG-elam)# trigg init in-select 13 out-select 0
@module-1(DBG-elam-insel13)# set inner ipv4 src_ip 192.85.1.2 dst_ip 192.85.2.67
@module-1(DBG-elam-insel13)# star
@module-1(DBG-elam-insel13)# stat
ELAM STATUS
===========
Asic 3 Slice 0 Status Armed
Asic 3 Slice 1 Status Triggered
@module-1(DBG-elam-insel13)# report | grep ovector
sug_elam_out_sidebnd_no_spare_vec.ovector_idx: 0xA0 <<<<<<<<<<<<<<<<< now we look for this in the "hal internal-port pi" command
@module-1# show platform internal hal l2 internal-port pi
No sandboxes exist
Num. of Sandboxes: 1
Legend:
-------
IfId: Interface Id IfName: Interface Name
As: Asic AP: Asic Port
Sl: Slice SP: Slice Port
Ss: Slice SrcId Ovec: Ovector
UcPcCfgId: Uc Pc CfgId Lb Mbrid: LB MbrId
Sandbox_ID: 0, BMP: 0x0
Internal Port Count: 24
======================================================================
UcPc Lb
IfId IfName As AP Sl SP Ss Ovec CfgId MbrId
======================================================================
7d - 0 21 0 20 38 38 0 4
7e - 0 29 1 0 0 80 0 8
7f - 1 21 0 20 38 38 0 c
80 - 1 29 1 0 0 80 0 10
81 - 2 21 0 20 38 38 0 14
82 - 2 29 1 0 0 80 0 18
83 - 3 21 0 20 38 38 0 1c
84 - 3 29 1 0 0 80 0 20
ad - 0 25 0 24 40 40 0 1
ae - 0 41 1 18 30 b0 0 6
af - 1 25 0 24 40 40 0 9
b0 - 1 41 1 18 30 b0 0 e
b1 - 2 25 0 24 40 40 0 11
b2 - 2 41 1 18 30 b0 0 16
b3 - 3 25 0 24 40 40 0 19
b4 - 3 41 1 18 30 b0 0 1e
dd - 0 15 0 14 28 28 0 2
de - 0 4d 1 24 40 c0 0 5
df - 1 15 0 14 28 28 0 a
e0 - 1 4d 1 24 40 c0 0 d
e1 - 2 15 0 14 28 28 0 12
e2 - 2 4d 1 24 40 c0 0 15
e3 - 3 15 0 14 28 28 0 1a
e4 - 3 4d 1 24 40 c0 0 1d <<<<<<< we cant find an entry that matches 0xA0
@module-1# show platform internal hal l2 port gpd
Legend:
-------
<snip>
Sandbox_ID: 0, BMP: 0x0
Port Count: 6
============================================================================================================================================
Uc Uc | Reprogram | | Rep |
I PC Pc L | R I R D R U U X | L Xla Ovx N NI Vif RwV Ing Egr | V R | PROF H
IfId Ifname P Cfg MbrID As AP Sl Sp Ss Ovec S | P P P S P Sp Sp C M L | 3 Idx Idx L3 L3 Tid Tid Lbl Lbl | S V | ID I
=============================================================================================================================================
1f5 SpInBndMgmt 0 9de 1a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-2d4 D-3e1 0 0 0 0 1 0
1a000000 Eth1/1 0 1b 1c 0 11 0 10 20 20 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 D-13b D-33b 500 0 1 0 3 0
1a01c000 Eth1/29 0 37 1e 3 3d 1 14 28 a8 1 0 0 0 0 0 0 0 0 0 0 1 8 8 1 1 D-3f2 D-7a 100 0 0 0 2 0
1a01d000 Eth1/30 0 38 20 3 39 1 10 20 a0 1 0 0 0 0 0 0 0 0 0 0 1 5 5 1 1 D-36e D-362 100 0 0 0 2 0
1a01e000 Eth1/31 0 39 22 3 35 1 c 18 98 1 0 0 0 0 0 0 0 0 0 0 1 9 9 1 1 D-273 D-8 100 0 0 0 2 0
1a01f000 Eth1/32 0 3a 24 3 31 1 8 10 90 1 0 0 0 0 0 0 0 0 0 0 1 a a 1 1 D-154 D-5d 100 0 0 0 2 0
1/30 ist die Phys-Schnittstelle, die eine Verbindung zu Leaf 102 herstellt. Diese Schnittstelle wird durch die Topologie ASIC 3, Slice 1 verifiziert.