In dem Dokumentationssatz für dieses Produkt wird die Verwendung inklusiver Sprache angestrebt. Für die Zwecke dieses Dokumentationssatzes wird Sprache als „inklusiv“ verstanden, wenn sie keine Diskriminierung aufgrund von Alter, körperlicher und/oder geistiger Behinderung, Geschlechtszugehörigkeit und -identität, ethnischer Identität, sexueller Orientierung, sozioökonomischem Status und Intersektionalität impliziert. Dennoch können in der Dokumentation stilistische Abweichungen von diesem Bemühen auftreten, wenn Text verwendet wird, der in Benutzeroberflächen der Produktsoftware fest codiert ist, auf RFP-Dokumentation basiert oder von einem genannten Drittanbieterprodukt verwendet wird. Hier erfahren Sie mehr darüber, wie Cisco inklusive Sprache verwendet.
Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.
In diesem Dokument wird der Prozess zur Überprüfung der End-to-End-Verbindung über ein MPLS-Layer-3-VPN-Core-Netzwerk beschrieben.
Cisco empfiehlt, dass Sie über Kenntnisse in folgenden Bereichen verfügen:
Die Informationen in diesem Dokument basierend auf folgenden Software- und Hardware-Versionen:
Die Informationen in diesem Dokument beziehen sich auf Geräte in einer speziell eingerichteten Testumgebung. Alle Geräte, die in diesem Dokument benutzt wurden, begannen mit einer gelöschten (Nichterfüllungs) Konfiguration. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die möglichen Auswirkungen aller Befehle kennen.
In diesem Dokument werden die grundlegenden Verifizierungs- und Fehlerbehebungsschritte zur Überprüfung der Konnektivität und Weiterleitung zwischen zwei CE-Routern (Customer Edge) erläutert, die über ein MPLS-Layer-3-VPN-Core-Netzwerk mit einem Mix aus Cisco IOS XE- und Cisco IOS XR-Routern, die als PE-Router (Provider Edge) und P-Router (Provider) fungieren, mit BGP (Border Gateway Protocol) verbunden sind.
Weitere Informationen zu Dokumentkonventionen finden Sie unter Cisco Technical Tips Conventions (Technische Tipps von Cisco zu Konventionen).
Quellnetzwerk: 192.168.1.0/24
Quell-CE-Router: CE-EAST
Zielnetzwerk: 172.16.1.0/24
Ziel-CE-Router: CE-WEST
Basierend auf den Anfangsinformationen und der Topologie muss die Erreichbarkeit zwischen der Quelladresse 192.168.1.10, dargestellt durch Loopback1 auf dem Router CE-EAST, und der Zieladresse 172.16.1.10, dargestellt durch Loopback1 auf dem Router CE-WEST, erfolgreich sein:
CE-EAST#show run interface loopback1
Building configuration...
Current configuration : 66 bytes
!
interface Loopback1
ip address 192.168.1.10 255.255.255.0
end
CE-WEST#show run interface loopback 1
Building configuration...
Current configuration : 65 bytes
!
interface Loopback1
ip address 172.16.1.10 255.255.255.0
end
Die ICMP-Erreichbarkeit und eine Traceroute wurden verwendet, um die Verbindung zwischen diesen Quell- und Zieladressen zu überprüfen. Anhand der nächsten Ausgaben wird jedoch deutlich, dass dies nicht erfolgreich war:
CE-EAST#ping 172.16.1.10 source loopback1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.1.10, timeout is 2 seconds:
Packet sent with a source address of 192.168.1.10
.....
Success rate is 0 percent (0/5)
CE-EAST#traceroute 172.16.1.10 source loop1 probe 1 numeric
Type escape sequence to abort.
Tracing the route to 172.16.1.10
VRF info: (vrf in name/id, vrf out name/id)
1 10.11.0.2 2 msec
2 *
3 10.10.0.2 [MPLS: Label 16 Exp 0] 9 msec
4 *
5 *
6 *
7 *
8 *
9 *
10 *
11 *
12 *
13 *
14 *
15 *
16 *
17 *
18 *
19 *
20 *
21 *
22 *
23 *
24 *
25 *
26 *
27 *
28 *
29 *
30 *
CE-EAST#
Hinweis: Bei der Fehlerbehebung kann die Verwendung einer Traceroute bei Verbindung mit einem MPLS-Netzwerk weniger effektiv sein, da einige Service Provider dazu neigen, den Befehl no mpls ip propagate-ttl forward in Cisco IOS XE oder den Befehl mpls ip-ttl propagate disable forwared in Cisco IOS XR zu konfigurieren, um alle LSRs (Label Switch Router) im Core auszublenden. (mit Ausnahme der Eingangs- und Ausgangs-PE-Router).
Beim Überprüfen des Status des Quell-CE-Routers, da dieser Router keine VRF (Virtual Route Forwarding) aufweist und MPLS nicht unterstützt, müssen Sie die RIB (Routing Information Base), CEF (Cisco Express Forwarding) und BGP überprüfen. An den nächsten Ausgängen kann festgestellt werden, dass ein via BGP zum Ziel-Subnetz 172.16.1.0/24 bekannter Routing-Eintrag vorhanden ist, der über die Schnittstelle GigabitEthernet0/0 erreichbar ist:
CE-EAST#show ip route 172.16.1.10
Routing entry for 172.16.1.0/24
Known via "bgp 65001", distance 20, metric 0 <<<<<
Tag 65500, type external
Last update from 10.11.0.2 3d01h ago
Routing Descriptor Blocks:
* 10.11.0.2, from 10.11.0.2, 3d01h ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65500
MPLS label: none
CE-EAST#show ip cef 172.16.1.10
172.16.1.0/24
nexthop 10.11.0.2 GigabitEthernet0/0 <<<<<
CE-EAST#
Da der Quell-CE-EAST-Router eine Route zum Ziel hat, das in der RIB installiert ist, ist es an der Zeit, den Provider Edge-Router PE4 (Eingangs-PE) zu betrachten, wie in der Topologie gezeigt. Zu diesem Zeitpunkt werden die VRF-Instanz und die Route Distinguisher sowie der Import und Export des Route-Ziels konfiguriert, wie in den folgenden Ausgaben zu sehen ist:
RP/0/0/CPU0:PE4#show run vrf EAST
Mon Sep 11 20:01:54.454 UTC
vrf EAST
address-family ipv4 unicast
import route-target 65000:1 65001:1 65001:2 ! export route-target 65001:1
!
!
!
RP/0/0/CPU0:PE4#show run router bgp
Mon Sep 11 20:06:48.164 UTC
router bgp 65500
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
neighbor 10.10.10.6
remote-as 65500
update-source Loopback0
address-family vpnv4 unicast
!
!
vrf EAST
rd 65001:1
address-family ipv4 unicast
!
neighbor 10.11.0.1
remote-as 65001
address-family ipv4 unicast
route-policy PASS in
route-policy PASS out
!
!
!
!
RP/0/0/CPU0:PE4#
Aus der vorherigen Ausgabe geht hervor, dass der VRF-Name "EAST" mit dem Route-Target-Import für 65000:1 definiert wurde. Nun kann die VRF-Routing-Tabelle überprüft werden, um festzustellen, ob PE4 eine Route zur Ziel-IP-Adresse 172.16.1.10 hat:
RP/0/0/CPU0:PE4#show route vrf EAST 172.16.1.10
Mon Sep 11 19:58:28.128 UTC
Routing entry for 172.16.1.0/24
Known via "bgp 65500", distance 200, metric 0
Tag 65000, type internal
Installed Sep 8 18:28:46.303 for 3d01h
Routing Descriptor Blocks
10.10.10.1, from 10.10.10.6
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos.
RP/0/0/CPU0:PE4#
Da es sich bei diesem PE um ein Cisco IOS XR-Gerät handelt, kann das Stichwort "detail" am Ende des Befehls show route vrf <name> verwendet werden, um zusätzliche Informationen wie das vom MP-BGP (Multiprotocol BGP) bereitgestellte VPNv4-Label und den Quell-RD (Route Distinguisher) aus dem Präfix zu prüfen:
RP/0/0/CPU0:PE4#show route vrf EAST 172.16.1.10 detail
Mon Sep 11 20:21:48.492 UTC
Routing entry for 172.16.1.0/24
Known via "bgp 65500", distance 200, metric 0
Tag 65000, type internal
Installed Sep 8 18:28:46.303 for 3d01h
Routing Descriptor Blocks
10.10.10.1, from 10.10.10.6
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
Label: 0x10 (16) <<<<<
Tunnel ID: None
Binding Label: None
Extended communities count: 0
Source RD attributes: 0x0000:65000:1 <<<<<
NHID:0x0(Ref:0)
Route version is 0x5 (5)
No local label
IP Precedence: Not Set
QoS Group ID: Not Set
Flow-tag: Not Set
Fwd-class: Not Set
Route Priority: RIB_PRIORITY_RECURSIVE (12) SVD Type RIB_SVD_TYPE_REMOTE
Download Priority 3, Download Version 36
No advertising protos.
RP/0/0/CPU0:PE4#
Sehen wir uns nun das BGP VPNv4-Präfix an, das in die VRF-Instanz importiert wurde. Beachten Sie, dass es sich hierbei um dasselbe Label 16 aus der vorherigen Ausgabe handelt und dass auch die erweiterte Community 65000:1 vorhanden ist. Ebenfalls zu beachten ist, dass 10.10.10.1 der Next-Hop ist, den PE4 benötigt, um eine Routen-Rekursion zu dieser durchführen zu können. Die nächste Adresse "von 10.10.10.6" ist der BGP-Peer, mit dem PE4 dieses Präfix erhalten hat (in diesem Szenario der Routen-Reflektor P6):
RP/0/0/CPU0:PE4#show bgp vpnv4 unicast vrf EAST 172.16.1.10
Mon Sep 11 22:42:28.114 UTC
BGP routing table entry for 172.16.1.0/24, Route Distinguisher: 65001:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 48 48
Last Modified: Sep 8 18:28:46.314 for 3d04h
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
65000
10.10.10.1 (metric 20) from 10.10.10.6 (10.10.10.1) <<<<<
Received Label 16
Origin IGP, metric 0, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 48
Extended community: RT:65000:1 <<<<<
Originator: 10.10.10.1, Cluster list: 10.10.10.6
Source AFI: VPNv4 Unicast, Source VRF: default, Source Route Distinguisher: 65000:1
<<<<<
Wenn Sie CEF mit dem Schlüsselwort "exact-route" auf VRF-Ebene überprüfen, erhalten Sie eine Vorstellung von der Ausgangsschnittstelle für die Pakete. Dieser Befehl kann auch einige wichtige Details enthalten, da er die beiden Labels für das Präfix 24001 und 16 anzeigt, da Label 16 vom BGP VPNv4 und Label 24001 vom LDP (Label Distribution Protocol) kommt:
RP/0/0/CPU0:PE4#show cef vrf EAST exact-route 192.168.1.10 172.16.1.10
Mon Sep 11 22:48:15.241 UTC
172.16.1.0/24, version 36, internal 0x5000001 0x0 (ptr 0xa12dc74c) [1], 0x0 (0x0), 0x208 (0xa155b1b8)
Updated Sep 8 18:28:46.323
local adjacency 10.0.0.16
Prefix Len 24, traffic index 0, precedence n/a, priority 3
via GigabitEthernet0/0/0/4
via 10.10.10.1/32, 3 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0xa15c3f54 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 10.10.10.1/32 via 24010/0/21
next hop 10.0.0.16/32 Gi0/0/0/4 labels imposed {24001 16} <<<<<
Als Nächstes wird der Befehl show bgp vpnv4 unicast verwendet, um die VPNv4-Routen zu überprüfen, die von diesem PE empfangen werden. Diese Ausgabe zeigt die Informationen an, bevor das VPNv4-Präfix in die VRF-Instanz importiert wird. Denken Sie daran, dass das konfigurierte RT (Route Target) (in diesem Beispiel sind die importierten RTs 65000:1, 65001:1, 65001:2) angibt, welche Routen und zu welchen VRFs importiert werden:
RP/0/0/CPU0:PE4#show bgp vpnv4 unicast
Fri Sep 15 02:15:15.463 UTC
BGP router identifier 10.10.10.4, local AS number 65500
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 85
BGP NSR Initial initsync version 1 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 65000:1
*>i172.16.1.0/24 10.10.10.1 0 100 0 65000 i <<<<<
*>i172.16.2.0/24 10.10.10.1 0 100 0 65000 i
Route Distinguisher: 65001:1 (default for vrf EAST)
* i0.0.0.0/0 10.10.10.3 0 100 0 65001 i
*> 10.11.0.1 0 0 65001 i
*>i172.16.1.0/24 10.10.10.1 0 100 0 65000 i
*>i172.16.2.0/24 10.10.10.1 0 100 0 65000 i
*> 192.168.1.0/24 10.11.0.1 0 0 65001 i
*>i192.168.2.0/24 10.10.10.3 0 100 0 65001 i
*> 192.168.3.0/24 10.11.0.1 0 0 65001 i
Route Distinguisher: 65001:2
*>i0.0.0.0/0 10.10.10.3 0 100 0 65001 i
*>i192.168.2.0/24 10.10.10.3 0 100 0 65001 i
Processed 10 prefixes, 11 paths
In diesem Beispiel kann die VPNv4-Tabelle klein sein. In einer Produktionsumgebung können Sie die Überprüfung jedoch auf den spezifischen RD und das Präfix mit dem nächsten Befehl beschränken, anstatt alle VPNv4-Präfixe zu betrachten:
RP/0/0/CPU0:PE4#show bgp vpnv4 unicast rd 65000:1 172.16.1.10
Mon Sep 11 22:54:04.967 UTC
BGP routing table entry for 172.16.1.0/24, Route Distinguisher: 65000:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 46 46
Last Modified: Sep 8 18:28:46.314 for 3d04h
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
65000
10.10.10.1 (metric 20) from 10.10.10.6 (10.10.10.1)
Received Label 16
Origin IGP, metric 0, localpref 100, valid, internal, best, group-best, import-candidate, not-in-vrf
Received Path ID 0, Local Path ID 0, version 46
Extended community: RT:65000:1
Originator: 10.10.10.1, Cluster list: 10.10.10.6
An diesem Punkt hat die MP-BGP-Kontrollebene das Zielpräfix und die LDP- bzw. VPNv4-Labels {24001 16}, die Ausgangsschnittstelle für diesen Datenverkehr scheint Gi0/0/0/4 zu sein, und der nächste Hop, an den der Datenverkehr weitergeleitet werden muss, ist 10.10.10.1. Aber gibt es eine andere Möglichkeit, die bevorzugte Exit-Schnittstelle zu überprüfen? Es ist an der Zeit, einen Blick auf die MPLS-Weiterleitungstabelle oder die LFIB (Label Forwarding Information Base) zu werfen. Mit dem Befehl show mpls wird die Weiterleitung zweier Einträge an das 10.10.10.1-Ziel (Loopback0 von PE1) angezeigt, wobei ein Pfad mit einer Ausgangsschnittstelle von Gi0/0/0/4 und einem Next-Hop 10.0.0.16 (Router P5) 24001 und ein weiterer Pfad über Gi0 lautet. /0/0/3 mit einem Next-Hop 10.0.0.13 (Router P6) und einem Outgoing Label von 23:
RP/0/0/CPU0:PE4#show mpls forwarding
Mon Sep 11 23:28:33.425 UTC
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24000 Unlabelled 192.168.1.0/24[V] Gi0/0/0/0 10.11.0.1 1096
24001 Unlabelled 192.168.3.0/24[V] Gi0/0/0/0 10.11.0.1 56056
24002 Unlabelled 0.0.0.0/0[V] Gi0/0/0/0 10.11.0.1 0
24003 Pop 10.10.10.6/32 Gi0/0/0/3 10.0.0.13 7778512
24004 Pop 10.0.0.4/31 Gi0/0/0/3 10.0.0.13 0
24005 Pop 10.0.0.8/31 Gi0/0/0/3 10.0.0.13 0
24006 Pop 10.10.10.5/32 Gi0/0/0/4 10.0.0.16 3542574
24007 Pop 10.0.0.10/31 Gi0/0/0/3 10.0.0.13 0
Pop 10.0.0.10/31 Gi0/0/0/4 10.0.0.16 0
24008 Pop 10.0.0.6/31 Gi0/0/0/4 10.0.0.16 0
24009 Pop 10.0.0.0/31 Gi0/0/0/4 10.0.0.16 0
24010 23 10.10.10.1/32 Gi0/0/0/3 10.0.0.13 22316 <<<<<
24001 10.10.10.1/32 Gi0/0/0/4 10.0.0.16 42308 <<<<<
24011 18 10.10.10.2/32 Gi0/0/0/3 10.0.0.13 0
24003 10.10.10.2/32 Gi0/0/0/4 10.0.0.16 0
24012 17 10.0.0.2/31 Gi0/0/0/3 10.0.0.13 0
24005 10.0.0.2/31 Gi0/0/0/4 10.0.0.16 0
24013 Pop 10.10.10.3/32 Gi0/0/0/1 10.0.0.20 3553900
24014 Pop 10.0.0.14/31 Gi0/0/0/1 10.0.0.20 0
Pop 10.0.0.14/31 Gi0/0/0/4 10.0.0.16 0
24015 Pop 10.0.0.18/31 Gi0/0/0/1 10.0.0.20 0
Pop 10.0.0.18/31 Gi0/0/0/3 10.0.0.13 0
RP/0/0/CPU0:PE4#show mpls forwarding prefix 10.10.10.1/32
Mon Sep 11 23:30:54.685 UTC
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24010 23 10.10.10.1/32 Gi0/0/0/3 10.0.0.13 3188
24001 10.10.10.1/32 Gi0/0/0/4 10.0.0.16 6044
RP/0/0/CPU0:PE4#show mpls forwarding prefix 10.10.10.1/32 detail hardware egress
Mon Sep 11 23:36:06.504 UTC
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24010 23 10.10.10.1/32 Gi0/0/0/3 10.0.0.13 N/A
Updated: Sep 8 20:27:26.596
Version: 39, Priority: 3
Label Stack (Top -> Bottom): { 23 }
NHID: 0x0, Encap-ID: N/A, Path idx: 0, Backup path idx: 0, Weight: 0
MAC/Encaps: 14/18, MTU: 1500
Outgoing Interface: GigabitEthernet0/0/0/3 (ifhandle 0x000000a0)
Packets Switched: 0
24001 10.10.10.1/32 Gi0/0/0/4 10.0.0.16 N/A
Updated: Sep 8 20:27:26.596
Version: 39, Priority: 3
Label Stack (Top -> Bottom): { 24001 }
NHID: 0x0, Encap-ID: N/A, Path idx: 1, Backup path idx: 0, Weight: 0
MAC/Encaps: 14/18, MTU: 1500
Outgoing Interface: GigabitEthernet0/0/0/4 (ifhandle 0x000000c0)
Packets Switched: 0
Aus den vorherigen Ausgaben geht klar hervor, dass es zwei Pfadoptionen gibt, bei denen die Datenverkehrslast ausgeglichen werden kann. Es gibt jedoch eine Reihe von Möglichkeiten, anhand derer Sie bestimmen können, welcher Pfad der bevorzugte ist. Eine Möglichkeit besteht darin, mit dem Befehl show cef exact-route <Quell-IP> <Ziel-IP> Loopback0 vom Quell-PE und Loopback0 vom Ziel-PE hinzuzufügen. Wie in der nächsten Ausgabe gezeigt, ist der bevorzugte Pfad Gi0/0/0/4:
RP/0/0/CPU0:PE4#show cef exact-route 10.10.10.4 10.10.10.1
Mon Sep 11 23:49:44.558 UTC
10.10.10.1/32, version 39, internal 0x1000001 0x0 (ptr 0xa12dbdbc) [1], 0x0 (0xa12c18c0), 0xa28 (0xa185307c)
Updated Sep 8 20:27:26.596
local adjacency 10.0.0.16
Prefix Len 32, traffic index 0, precedence n/a, priority 3
via GigabitEthernet0/0/0/4
via 10.0.0.16/32, GigabitEthernet0/0/0/4, 9 dependencies, weight 0, class 0 [flags 0x0] <<<<<
path-idx 1 NHID 0x0 [0xa16765bc 0x0]
next hop 10.0.0.16/32
local adjacency
local label 24010 labels imposed {24001}
Eine weitere Option besteht darin, zuerst die LIB (Label Information Base) zu überprüfen und die LDP-Bindung des Ziel-Loopbacks0 (10.10.10.1, das zum Ausgangs-PE gehört) mit dem Befehl show mpls ldp bindings <prefix/mask> abzurufen. Sobald das lokale Bindungslabel aus dieser Ausgabe gefunden wurde, verwenden Sie diesen Labelwert im Befehl show mpls forward ding exact-route label <label> ipv4 <Quell-IP> <Ziel-IP> detail to find the preferred path:
RP/0/0/CPU0:PE4#show mpls ldp bindings 10.10.10.1/32
Wed Sep 13 17:18:43.007 UTC
10.10.10.1/32, rev 29
Local binding: label: 24010 <<<<<
Remote bindings: (3 peers)
Peer Label
----------------- ---------
10.10.10.3:0 24
10.10.10.5:0 24001
10.10.10.6:0 23
RP/0/0/CPU0:PE4#show mpls forwarding exact-route label 24010 ipv4 10.10.10.4 10.10.10.1 detail
Wed Sep 13 17:20:06.342 UTC
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24010 24001 10.10.10.1/32 Gi0/0/0/4 10.0.0.16 N/A <<<<<
Updated: Sep 12 14:15:37.009
Version: 198, Priority: 3
Label Stack (Top -> Bottom): { 24001 }
NHID: 0x0, Encap-ID: N/A, Path idx: 1, Backup path idx: 0, Weight: 0
Hash idx: 1
MAC/Encaps: 14/18, MTU: 1500
Outgoing Interface: GigabitEthernet0/0/0/4 (ifhandle 0x000000c0)
Packets Switched: 0
Via: Gi0/0/0/4, Next Hop: 10.0.0.16
Label Stack (Top -> Bottom): { 24001 }
NHID: 0x0, Encap-ID: N/A, Path idx: 1, Backup path idx: 0, Weight: 0
Hash idx: 1
MAC/Encaps: 14/18, MTU: 1500
Outgoing Interface: GigabitEthernet0/0/0/4 (ifhandle 0x000000c0)
Als Nächstes ist es wichtig, den nächsten Hop-Router zu überprüfen, der sich in der Datenebene befindet. In diesem speziellen Beispiel ist der zu überprüfende Router P5 (dieser hat die Schnittstelle 10.0.0.16). Die erste zu untersuchende Stelle ist die MPLS-Weiterleitungstabelle, wobei das lokale Label für das Präfix 10.10.10.1 24001 sein muss:
RP/0/0/CPU0:P5#show mpls forwarding
Thu Sep 14 20:07:16.455 UTC
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24000 Pop 10.10.10.6/32 Gi0/0/0/2 10.0.0.11 361906
24001 Pop 10.10.10.1/32 Gi0/0/0/1 10.0.0.0 361002 <<<<<
24002 Pop 10.0.0.4/31 Gi0/0/0/1 10.0.0.0 0
Pop 10.0.0.4/31 Gi0/0/0/2 10.0.0.11 0
24003 Pop 10.10.10.2/32 Gi0/0/0/0 10.0.0.6 360940
24004 Pop 10.0.0.8/31 Gi0/0/0/0 10.0.0.6 0
Pop 10.0.0.8/31 Gi0/0/0/2 10.0.0.11 0
24005 Pop 10.0.0.2/31 Gi0/0/0/0 10.0.0.6 0
Pop 10.0.0.2/31 Gi0/0/0/1 10.0.0.0 0
24006 Pop 10.10.10.4/32 Gi0/0/0/4 10.0.0.17 361230
24007 Pop 10.0.0.12/31 Gi0/0/0/2 10.0.0.11 0
Pop 10.0.0.12/31 Gi0/0/0/4 10.0.0.17 0
24008 Pop 10.10.10.3/32 Gi0/0/0/3 10.0.0.15 361346
24009 Pop 10.0.0.20/31 Gi0/0/0/3 10.0.0.15 0
Pop 10.0.0.20/31 Gi0/0/0/4 10.0.0.17 0
24010 Pop 10.0.0.18/31 Gi0/0/0/2 10.0.0.11 0
Pop 10.0.0.18/31 Gi0/0/0/3 10.0.0.15 0
RP/0/0/CPU0:P5#show mpls forwarding labels 24001
Thu Sep 14 20:07:42.584 UTC
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24001 Pop 10.10.10.1/32 Gi0/0/0/1 10.0.0.0 361060
RP/0/0/CPU0:P5#
Aus der vorherigen Ausgabe ist ersichtlich, dass der LFIB-Eintrag für das Präfix 10.10.10.1/32 "Pop" als ausgehendes Label anzeigt, was bedeutet, dass dieser Router das Penultimate Hop Popping (PHP) ist. Es zeigt auch, dass Datenverkehr basierend auf LFIB-Informationen über Gi0/0/0/1 gesendet werden muss, und dies kann auch unter CEF überprüft werden. Die nächste CEF-Ausgabe für exakte Routen zeigt das implizite Null-Label als auferlegtes Label an. Dies wiederum ist darauf zurückzuführen, dass der an Gi0/0/0/1 angeschlossene Next-Hop der letzte Router im Label-Switch-Pfad und auch der PE zum Zielstandort (CE-WEST) ist. Dies ist auch der Grund, warum Router P5 das Paket entfernt und ihm kein weiteres Label auferlegt. Dank dieses Prozesses empfängt der Egress-Router PE1 ein Paket ohne LDP-Label:
RP/0/0/CPU0:P5#show cef exact-route 10.10.10.4 10.10.10.1
Thu Sep 14 20:25:57.269 UTC
10.10.10.1/32, version 192, internal 0x1000001 0x0 (ptr 0xa1246394) [1], 0x0 (0xa122b638), 0xa20 (0xa155b550)
Updated Sep 12 14:15:38.009
local adjacency 10.0.0.0
Prefix Len 32, traffic index 0, precedence n/a, priority 3
via GigabitEthernet0/0/0/1
via 10.0.0.0/32, GigabitEthernet0/0/0/1, 9 dependencies, weight 0, class 0 [flags 0x0]
path-idx 0 NHID 0x0 [0xa166e280 0xa166e674]
next hop 10.0.0.0/32
local adjacency
local label 24001 labels imposed {ImplNull} <<<<<
Der letzte Punkt, an dem der Label-Switch-Pfad überprüft wird, ist PE1. Bei der MPLS-Weiterleitungstabelle ist zu beachten, dass in der LFIB kein Eintrag für das Präfix 10.10.10.1/32 vorhanden ist:
PE1#show mpls forwarding-table
Local Outgoing Prefix Bytes Label Outgoing Next Hop
Label Label or Tunnel Id Switched interface
16 No Label 172.16.1.0/24[V] 12938 Gi3 10.10.0.1
17 No Label 172.16.2.0/24[V] 0 Gi3 10.10.0.1
18 Pop Label 10.0.0.6/31 0 Gi1 10.0.0.1
Pop Label 10.0.0.6/31 0 Gi2 10.0.0.3
19 Pop Label 10.0.0.8/31 0 Gi2 10.0.0.3
Pop Label 10.0.0.8/31 0 Gi4 10.0.0.5
20 Pop Label 10.0.0.10/31 0 Gi1 10.0.0.1
Pop Label 10.0.0.10/31 0 Gi4 10.0.0.5
21 Pop Label 10.0.0.12/31 0 Gi4 10.0.0.5
22 Pop Label 10.0.0.14/31 0 Gi1 10.0.0.1
23 Pop Label 10.0.0.16/31 0 Gi1 10.0.0.1
24 Pop Label 10.0.0.18/31 0 Gi4 10.0.0.5
25 24009 10.0.0.20/31 0 Gi1 10.0.0.1
22 10.0.0.20/31 0 Gi4 10.0.0.5
26 Pop Label 10.10.10.2/32 0 Gi2 10.0.0.3
27 24008 10.10.10.3/32 0 Gi1 10.0.0.1
24 10.10.10.3/32 0 Gi4 10.0.0.5
28 24006 10.10.10.4/32 0 Gi1 10.0.0.1
25 10.10.10.4/32 0 Gi4 10.0.0.5
29 Pop Label 10.10.10.5/32 0 Gi1 10.0.0.1
Local Outgoing Prefix Bytes Label Outgoing Next Hop
Label Label or Tunnel Id Switched interface
30 Pop Label 10.10.10.6/32 0 Gi4 10.0.0.5
31 [T] Pop Label 1/1[TE-Bind] 0 drop
[T] Forwarding through a LSP tunnel.
View additional labelling info with the 'detail' option
Wie Sie herausgefunden haben, liegt der Grund für dieses Verhalten darin, dass das Präfix (10.10.10.1/32) zu PE1 gehört und dass der Router diesem verbundenen Präfix ebenfalls ein implizites Null-Label zugewiesen hat. Dies kann mit dem Befehl show mpls ldp bindings überprüft werden:
PE1#show run interface loopback 0
Building configuration...
Current configuration : 66 bytes
!
interface Loopback0
ip address 10.10.10.1 255.255.255.255
end
PE1#show mpls ldp bindings 10.10.10.1 32
lib entry: 10.10.10.1/32, rev 24
local binding: label: imp-null
remote binding: lsr: 10.10.10.6:0, label: 23
remote binding: lsr: 10.10.10.5:0, label: 24001
remote binding: lsr: 10.10.10.2:0, label: 24000
Da es sich bei PE1 um einen Cisco IOS XE-Router handelt, kann die Verwendung des Befehls show bgp vpnv4 unicast all oder show bgp vpnv4 unicast rd <Wert> <Ziel-IP> dazu beitragen, das Zielpräfix 172.16.1.0/24 richtig über MP-BGP zu ermitteln und zu bestätigen. Die Ausgabe dieser Befehle zeigt das Präfix nach dem Exportieren an:
PE1#show bgp vpnv4 unicast all
BGP table version is 61, local router ID is 10.10.10.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path, L long-lived-stale,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 65000:1 (default for vrf WEST)
*>i 0.0.0.0 10.10.10.3 0 100 0 65001 i
*bi 10.10.10.4 0 100 0 65001 i
*> 172.16.1.0/24 10.10.0.1 0 0 65000 i <<<<<
*> 172.16.2.0/24 10.10.0.1 0 0 65000 i
*>i 192.168.1.0 10.10.10.4 0 100 0 65001 i
*>i 192.168.2.0 10.10.10.3 0 100 0 65001 i
*>i 192.168.3.0 10.10.10.4 0 100 0 65001 i
Route Distinguisher: 65001:1
*>i 0.0.0.0 10.10.10.4 0 100 0 65001 i
*>i 192.168.1.0 10.10.10.4 0 100 0 65001 i
*>i 192.168.3.0 10.10.10.4 0 100 0 65001 i
Route Distinguisher: 65001:2
Network Next Hop Metric LocPrf Weight Path
*>i 0.0.0.0 10.10.10.3 0 100 0 65001 i
*>i 192.168.2.0 10.10.10.3 0 100 0 65001 i
PE1#show bgp vpnv4 unicast rd 65000:1 172.16.1.10
BGP routing table entry for 65000:1:172.16.1.0/24, version 2
Paths: (1 available, best #1, table WEST)
Additional-path-install
Advertised to update-groups:
6
Refresh Epoch 2
65000
10.10.0.1 (via vrf WEST) from 10.10.0.1 (172.16.2.10) <<<<<
Origin IGP, metric 0, localpref 100, valid, external, best
Extended Community: RT:65000:1 , recursive-via-connected <<<<<
mpls labels in/out 16/nolabel
rx pathid: 0, tx pathid: 0x0
Updated on Sep 15 2023 18:27:23 UTC
Wenn man sich das BGP-VPNv4-Präfix an der VRF (das von CE-WEST empfangene Präfix) ansieht und den Befehl show bgp vpnv4 unicast vrf <name> <prefix> verwendet, zeigt die Ausgabe das MP-BGP-Label 16 an, das bis zum Eingangs-PE4 übertragen wurde, sowie den konfigurierten RT-Export. 65000:1:
PE1#show bgp vpnv4 unicast vrf WEST 172.16.1.10
BGP routing table entry for 65000:1:172.16.1.0/24, version 2
Paths: (1 available, best #1, table WEST)
Additional-path-install
Advertised to update-groups:
6
Refresh Epoch 2
65000
10.10.0.1 (via vrf WEST) from 10.10.0.1 (172.16.2.10)
Origin IGP, metric 0, localpref 100, valid, external, best
Extended Community: RT:65000:1 , recursive-via-connected <<<<<
mpls labels in/out 16/nolabel <<<<<
rx pathid: 0, tx pathid: 0x0
Updated on Sep 15 2023 18:27:23 UTC
PE1#show run vrf WEST
Building configuration...
Current configuration : 478 bytes
vrf definition WEST
rd 65000:1
route-target export 65000:1 <<<<<
route-target import 65000:1
route-target import 65001:1
route-target import 65001:2
!
address-family ipv4
exit-address-family
!
!
interface GigabitEthernet3
vrf forwarding WEST
ip address 10.10.0.2 255.255.255.252
negotiation auto
no mop enabled
no mop sysid
!
router bgp 65500
!
address-family ipv4 vrf WEST
neighbor 10.10.0.1 remote-as 65000
neighbor 10.10.0.1 activate
exit-address-family
!
end
Die letzte an diesem PE zu überprüfende Information sind die RIB- und CEF-Einträge auf VRF-Ebene zur Ziel-IP, im Gegensatz zu dem an PE4 erkannten Eintrag gibt es in der RIB kein Label für das Präfix 172.16.1.0/24, da dies die vom CE eingehende Route ist, die über eBGP erfasst und in die VRF-Routing-Tabelle eingefügt wird, bevor dieses Präfix in VPNv4 exportiert wird. Dies kann mithilfe der Befehle show ip route vrf <name> <prefix> und show ip cef vrf <name> <prefix> wie folgt überprüft werden:
PE1#show ip route vrf WEST 172.16.1.10
Routing Table: WEST
Routing entry for 172.16.1.0/24
Known via "bgp 65500", distance 20, metric 0
Tag 65000, type external
Last update from 10.10.0.1 1w0d ago
Routing Descriptor Blocks:
* 10.10.0.1, from 10.10.0.1, 1w0d ago, recursive-via-conn
opaque_ptr 0x7F8B4E3E1D50
Route metric is 0, traffic share count is 1
AS Hops 1
Route tag 65000
MPLS label: none
PE1#show ip cef vrf WEST 172.16.1.10
172.16.1.0/24
nexthop 10.10.0.1 GigabitEthernet3
An diesem Punkt wurde bestätigt, dass das Zielpräfix 172.16.1.0/24 von der Quelle des Datenverkehrs-CE (CE-EAST) korrekt gelernt wurde, dass es korrekt über MP-BGP propagiert wurde und dass die Labels von PEs und Ps-Loopbacks über den Label Switch-Pfad gelernt wurden. Dennoch ist die Erreichbarkeit zwischen Quelle und Ziel nicht erfolgreich, und es gibt immer noch einen letzten Router, der CE-WEST verifiziert. Als Erstes muss in diesem Router die Routing-Tabelle eingecheckt werden. Denken Sie daran, dass das Quell-IP-Präfix 192.168.1.0/24 darin erscheinen soll:
CE-WEST#show ip route 192.168.1.10
% Network not in table CE-WEST#
Das Problem liegt eindeutig in der "Network not in table" (Netzwerk nicht in Tabelle) vor. Die BGP-Tabelle kann ebenfalls verifiziert werden, ist aber nach der Suche nach dem Präfix auch nicht vorhanden:
CE-WEST#show ip bgp
BGP table version is 41, local router ID is 172.16.2.10
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
Network Next Hop Metric LocPrf Weight Path
*> 172.16.1.0/24 0.0.0.0 0 32768 i
*> 172.16.2.0/24 0.0.0.0 0 32768 i
CE-WEST#
Gehen Sie einen Schritt zurück, können Sie überprüfen, ob dieser Provider Edge-Router (PE1) das Präfix an den eBGP-Nachbarn CE-WEST übermittelt. Dies kann mithilfe des Befehls show bgp vpnv4 unicast vrf <name> neighbors <neighbor IP> advertised-route wie folgt geschehen:
PE1#show bgp vpnv4 unicast vrf WEST neighbors 10.10.0.1 advertised-routes
BGP table version is 61, local router ID is 10.10.10.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path, L long-lived-stale,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 65000:1 (default for vrf WEST)
*>i 0.0.0.0 10.10.10.3 0 100 0 65001 i
*>i 192.168.1.0 10.10.10.4 0 100 0 65001 i <<<<<
*>i 192.168.2.0 10.10.10.3 0 100 0 65001 i
*>i 192.168.3.0 10.10.10.4 0 100 0 65001 i
Total number of prefixes 4
Basierend auf dem vorherigen Schritt kann bestätigt werden, dass der PE1-Router das Präfix korrekt an CE-WEST weitergibt. Daher ist es an der Zeit, die BGP-Nachbarn auf der CE-Seite zu betrachten:
CE-WEST#show ip bgp neighbors
BGP neighbor is 10.10.0.2, remote AS 65500, external link
BGP version 4, remote router ID 10.10.10.1
BGP state = Established, up for 1w4d
Last read 00:00:40, last write 00:00:43, hold time is 180, keepalive interval is 60 seconds
Neighbor sessions:
1 active, is not multisession capable (disabled)
Neighbor capabilities:
Route refresh: advertised and received(new)
Four-octets ASN Capability: advertised and received
Address family IPv4 Unicast: advertised and received
Enhanced Refresh Capability: advertised and received
Multisession Capability:
Stateful switchover support enabled: NO for session 1
Message statistics:
InQ depth is 0
OutQ depth is 0
Sent Rcvd
Opens: 1 1
Notifications: 0 0
Updates: 3 17
Keepalives: 19021 18997
Route Refresh: 2 0
Total: 19029 19019
Do log neighbor state changes (via global configuration)
Default minimum time between advertisement runs is 30 seconds
For address family: IPv4 Unicast
Session: 10.10.0.2
BGP table version 41, neighbor version 41/0
Output queue size : 0
Index 3, Advertise bit 0
3 update-group member
Inbound path policy configured
Route map for incoming advertisements is FILTER <<<<<
Slow-peer detection is disabled
Slow-peer split-update-group dynamic is disabled
Sent Rcvd
Prefix activity: ---- ----
Prefixes Current: 2 0
Prefixes Total: 4 23
Implicit Withdraw: 2 13
Explicit Withdraw: 0 10
Used as bestpath: n/a 0
Used as multipath: n/a 0
Used as secondary: n/a 0
Outbound Inbound
Local Policy Denied Prefixes: -------- -------
route-map: 0 4
Bestpath from this peer: 18 n/a
Total: 18 4
Number of NLRIs in the update sent: max 2, min 0
Last detected as dynamic slow peer: never
Dynamic slow peer recovered: never
Refresh Epoch: 3
Last Sent Refresh Start-of-rib: 4d23h
Last Sent Refresh End-of-rib: 4d23h
Refresh-Out took 0 seconds
Last Received Refresh Start-of-rib: 4d23h
Last Received Refresh End-of-rib: 4d23h
Refresh-In took 0 seconds
Sent Rcvd
Refresh activity: ---- ----
Refresh Start-of-RIB 1 2
Refresh End-of-RIB 1 2
Address tracking is enabled, the RIB does have a route to 10.10.0.2
Route to peer address reachability Up: 1; Down: 0
Last notification 1w5d
Connections established 3; dropped 2
Last reset 1w4d, due to Peer closed the session of session 1
External BGP neighbor configured for connected checks (single-hop no-disable-connected-check)
Interface associated: GigabitEthernet0/3 (peering address in same link)
Transport(tcp) path-mtu-discovery is enabled
Graceful-Restart is disabled
SSO is disabled
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Connection is ECN Disabled, Mininum incoming TTL 0, Outgoing TTL 1
Local host: 10.10.0.1, Local port: 179
Foreign host: 10.10.0.2, Foreign port: 39410
Connection tableid (VRF): 0
Maximum output segment queue size: 50
Enqueued packets for retransmit: 0, input: 0 mis-ordered: 0 (0 bytes)
Event Timers (current time is 0x4D15FD56):
Timer Starts Wakeups Next
Retrans 19027 1 0x0
TimeWait 0 0 0x0
AckHold 19012 18693 0x0
SendWnd 0 0 0x0
KeepAlive 0 0 0x0
GiveUp 0 0 0x0
PmtuAger 0 0 0x0
DeadWait 0 0 0x0
Linger 0 0 0x0
ProcessQ 0 0 0x0
iss: 1676751051 snduna: 1677112739 sndnxt: 1677112739
irs: 2109012892 rcvnxt: 2109374776
sndwnd: 16061 scale: 0 maxrcvwnd: 16384
rcvwnd: 15890 scale: 0 delrcvwnd: 494
SRTT: 1000 ms, RTTO: 1003 ms, RTV: 3 ms, KRTT: 0 ms
minRTT: 0 ms, maxRTT: 1000 ms, ACK hold: 200 ms
uptime: 1036662542 ms, Sent idletime: 40725 ms, Receive idletime: 40925 ms
Status Flags: passive open, gen tcbs
Option Flags: nagle, path mtu capable
IP Precedence value : 6
Datagrams (max data segment is 1460 bytes):
Rcvd: 37957 (out of order: 0), with data: 19014, total data bytes: 361883
Sent: 37971 (retransmit: 1, fastretransmit: 0, partialack: 0, Second Congestion: 0), with data: 19027, total data bytes: 361687
Packets received in fast path: 0, fast processed: 0, slow path: 0
fast lock acquisition failures: 0, slow path: 0
TCP Semaphore 0x0F3194AC FREE
Die vorherige Ausgabe zeigt, dass für eingehende Ankündigungen mit dem Namen "FILTER" eine Routenübersicht angewendet wird. Nach der Konfiguration der Routenübersicht wird eine Übereinstimmungsklausel angezeigt, die auf eine Präfixliste mit einer permit-Anweisung für 192.168.0.0/16 verweist. Diese Angabe ist jedoch falsch, da die Präfixliste nur dieses spezifische Präfix zulässt und nicht alle Präfixe, die in diesem Bereich enthalten sein können:
CE-WEST#show route-map FILTER
route-map FILTER, permit, sequence 10
Match clauses:
ip address prefix-lists: FILTER
Set clauses:
Policy routing matches: 0 packets, 0 bytes
CE-WEST#show ip prefix-list FILTER
ip prefix-list FILTER: 1 entries
seq 5 permit 192.168.0.0/16 <<<<<
CE-WEST#show run | i ip prefix-list
ip prefix-list FILTER seq 5 permit 192.168.0.0/16
Mit einer kleinen Änderung an der Präfixlistenkonfiguration ist nun die Route zu 192.168.1.10 in der RIB installiert:
CE-WEST#show run | i ip prefix-list
ip prefix-list FILTER seq 5 permit 192.168.0.0/16 le 32 <<<<<
CE-WEST#show ip bgp
BGP table version is 44, local router ID is 172.16.2.10
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
x best-external, a additional-path, c RIB-compressed,
t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
Network Next Hop Metric LocPrf Weight Path
*> 172.16.1.0/24 0.0.0.0 0 32768 i
*> 172.16.2.0/24 0.0.0.0 0 32768 i
*> 192.168.1.0 10.10.0.2 0 65500 65001 i <<<<<
*> 192.168.2.0 10.10.0.2 0 65500 65001 i
*> 192.168.3.0 10.10.0.2 0 65500 65001 i
CE-WEST#show ip route 192.168.1.10
Routing entry for 192.168.1.0/24 <<<<<
Known via "bgp 65000", distance 20, metric 0
Tag 65500, type external
Last update from 10.10.0.2 00:00:37 ago
Routing Descriptor Blocks:
* 10.10.0.2, from 10.10.0.2, 00:00:37 ago
Route metric is 0, traffic share count is 1
AS Hops 2
Route tag 65500
MPLS label: none
Die Erreichbarkeit zwischen Quelle und Ziel ist nun erfolgreich, und es kann bestätigt werden, dass die Traceroute denselben Label Switch-Pfad durchläuft, der auch im MPLS-Netzwerk verfolgt wurde:
CE-EAST#ping 172.16.1.10 source loopback 1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.1.10, timeout is 2 seconds: Packet sent with a source address of 192.168.1.10 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 7/7/9 ms <<<<< CE-EAST#traceroute 172.16.1.10 source loop1 probe 1 numeric Type escape sequence to abort. Tracing the route to 172.16.1.10 VRF info: (vrf in name/id, vrf out name/id) 1 10.11.0.2 2 msec 2 10.0.0.16 [MPLS: Labels 24001/16 Exp 0] 9 msec 3 10.10.0.2 [MPLS: Label 16 Exp 0] 8 msec 4 10.10.0.1 9 msec
RP/0/0/CPU0:P5#show ipv4 interface brief Wed Sep 20 18:23:47.158 UTC Interface IP-Address Status Protocol Vrf-Name Loopback0 10.10.10.5 Up Up default MgmtEth0/0/CPU0/0 unassigned Shutdown Down default GigabitEthernet0/0/0/0 10.0.0.7 Up Up default GigabitEthernet0/0/0/1 10.0.0.1 Up Up default <<<<< GigabitEthernet0/0/0/2 10.0.0.10 Up Up default GigabitEthernet0/0/0/3 10.0.0.14 Up Up default GigabitEthernet0/0/0/4 10.0.0.16 Up Up default <<<<< RP/0/0/CPU0:P5#
MPLS/LDP
show mpls interfaces
show mpls forwarding-table
show mpls ldp bindings [destination prefix]
show mpls ldp neighbor [neighbor address]
clear mpls ldp neighbor [neighbor address|*]
RIB and CEF show ip vrf [detail]
show run vrf
show ip route [destination prefix]
show ip route vrf <name> [destination prefix]
show ip cef vrf <name> [destination prefix]
show ip cef exact-route <source IP> <destination IP>
show ip cef vrf <name> exact-route <source IP> <destination IP>
BGP/VPNv4 show ip bgp [neighbors] <neighbor address>
show bgp vpnv4 unicast all [summary|destination prefix]
show bgp vpnv4 unicast all neighbor <neighbor address> advertised-routes
show bgp vpnv4 unicast vrf <name> neighbors <neighbor IP> advertised-routes
show bgp vpnv4 unicast vrf <name> <prefix>
show bgp vpnv4 unicast rd <value> <destination IP>
MPLS/LDP show mpls interfaces
show mpls forwarding
show mpls ldp bindings [destination prefix/mask]
show mpls ldp neighbor [neighbor address]
show mpls forwarding prefix [destination prefix/mask]
show mpls forwarding prefix [destination prefix/mask] detail hardware egress
clear mpls ldp neighbor [neighbor address]
RIB and CEF show vrf [name|all]
show run vrf [name]
show route [destination prefix]
show route vrf <name> [destination prefix]
show cef vrf <name> [destination prefix]
show cef exact-route <source IP> <destination IP>
show cef vrf <name> exact-route <source IP> <destination IP>
BGP/VPNv4 show bgp vpnv4 unicast [summary|destination prefix/mask]
show bgp vpnv4 unicast neighbors <neighbor address> advertised-routes
show bgp vpnv4 unicast vrf <name> [prefix]
show bgp vrf <name> neighbors <neighbor IP> advertised-routes
show bgp vpnv4 unicast rd [value|all] [destination IP]
Überarbeitung | Veröffentlichungsdatum | Kommentare |
---|---|---|
1.0 |
21-Sep-2023 |
Erstveröffentlichung |