Konfigurationsbeispiel für einen LAN-zu-LAN-IPsec-Tunnel zwischen zwei Routern

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung Befehle zur Fehlerbehebung Beispielausgabe für Debugging Router Zugehörige Informationen

Einführung

Dieses Dokument enthält eine Beispielkonfiguration, um VPN-Benutzern den Zugriff auf das Internet zu ermöglichen, während sie über einen IPsec LAN-to-LAN (L2L)-Tunnel mit einem anderen Router verbunden sind. Diese Konfiguration wird bei Aktivierung von Split-Tunneling vorgenommen. Durch Split-Tunneling können VPN-Benutzer über den IPsec-Tunnel auf Unternehmensressourcen zugreifen, ohne den Zugriff auf das Internet zu verweigern.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf einem Cisco 3640 Router mit Cisco IOS[®] Softwareversion 12.4.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u> (Technische Tipps zu Konventionen von Cisco).

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Netzwerkdiagramm

In diesem Dokument wird die folgende Netzwerkeinrichtung verwendet:

Hinweis: Die in dieser Konfiguration verwendeten IP-Adressierungsschemata sind im Internet nicht rechtlich routbar. Sie sind <u>RFC 1918</u> -Adressen, die in einer Laborumgebung verwendet werden.

Konfigurationen

In diesem Dokument werden folgende Konfigurationen verwendet:

- Router A
- Router B

Router A

```
RouterA#show running-config
Building configuration...
Current configuration : 1132 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname R9
!
boot-start-marker
boot-end-marker
```

```
!
!
no aaa new-model
resource policy
1
1
!--- Create an ISAKMP policy for Phase 1
!--- negotiations for the L2L tunnels. crypto isakmp policy 10 hash md5 authentication pre-share !--- S
the pre-shared key and the remote peer address
!--- to match for the L2L tunnel. crypto isakmp key vpnuser address 10.0.0.2 ! !--- Create the Phase 2
for actual data encryption. crypto ipsec transform-set myset esp-des esp-md5-hmac ! !--- Create the act
crypto map. Specify
!--- the peer IP address, transform
!--- set, and an access control list (ACL) for the split tunneling. crypto map mymap 10 ipsec-isakmp se
10.0.0.2 set transform-set myset match address 100 ! ! ! ! interface Ethernet0/0 ip address 10.1.1.2
255.255.255.0 half-duplex ! !--- Apply the crypto map on the outside interface. interface Serial2/0 ip
address 172.16.1.1 255.255.255.0 crypto map mymap ! ip http server no ip http secure-server ! ip route
0.0.0.0 0.0.0.0 172.16.1.2 ! !--- Create an ACL for the traffic to
!--- be encrypted. In this example,
!--- the traffic from 10.1.1.0/24 to 172.16.2.0/24
!--- is encrypted. The traffic which does not match the access list
!--- is unencrypted for the Internet. access-list 100 permit ip 10.1.1.0 0.0.0.255 172.16.2.0 0.0.0.255
control-plane ! line con 0 line aux 0 line vty 0 4 ! ! end
```

Router B

```
RouterB#show running-config
Building configuration...
Current configuration : 835 bytes
1
version 12.4
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
1
hostname R2
1
1
ip subnet-zero
!
1
!--- Create an ISAKMP policy for Phase 1
!--- negotiations for the L2L tunnels. crypto isakmp policy 10 hash md5 authentication pre-share !--- S
the pre-shared key and the remote peer address
!--- to match for the L2L tunnel. crypto isakmp key vpnuser address 172.16.1.1 ! !--- Create the Phase
policy for actual data encryption. crypto ipsec transform-set myset esp-des esp-md5-hmac ! !--- Create
actual crypto map. Specify
!--- the peer IP address, transform
!--- set, and an ACL for the split tunneling. ! crypto map mymap 10 ipsec-isakmp set peer 172.16.1.1 se
transform-set myset match address 100 ! ! ! ! interface Ethernet0 ip address 172.16.2.1 255.255.255.0 !
Apply the crypto map on the outside interface. interface Ethernet1 ip address 10.0.0.2 255.255.255.0 cr
map mymap ! interface Serial0 no ip address shutdown no fair-queue ! interface Serial1 no ip address sh
! ip classless ip route 0.0.0.0 0.0.0.0 10.0.0.1 ip http server ! !--- Create an ACL for the traffic to
!--- be encrypted. In this example,
!--- the traffic from 172.16.2.0/24 to 10.1.1.0/24
!--- is encrypted. The traffic which does not match the access list
!--- is unencrypted for the Internet. access-list 100 permit ip 172.16.2.0 0.0.0.255 10.1.1.0 0.0.0.255
line con 0 line aux 0 line vty 0 4 ! end
```

Überprüfen

RouterA#show crypto ipsec sa

Dieser Abschnitt enthält Informationen, mit denen Sie überprüfen können, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Der <u>Cisco CLI Analyzer</u> (nur <u>registrierte</u> Kunden) unterstützt bestimmte **show**-Befehle. Verwenden Sie den Cisco CLI Analyzer, um eine Analyse der **Ausgabe** des **Befehls show** anzuzeigen.

• show crypto ipsec sa - Zeigt die von aktuellen Sicherheitszuordnungen (SAs) verwendeten Einstellungen.

```
interface: Serial2/0
   Crypto map tag: mymap, local addr 172.16.1.1
  protected vrf: (none)
  local ident (addr/mask/prot/port): (10.1.1.0/255.255.255.0/0/0)
  remote ident (addr/mask/prot/port): (172.16.2.0/255.255.255.0/0/0)
  current_peer 10.0.0.2 port 500
    PERMIT, flags={origin_is_acl,}
    #pkts encaps: 43, #pkts encrypt: 43, #pkts digest: 43
    #pkts decaps: 43, #pkts decrypt: 43, #pkts verify: 43
    #pkts compressed: 0, #pkts decompressed: 0
    #pkts not compressed: 0, #pkts compr. failed: 0
    #pkts not decompressed: 0, #pkts decompress failed: 0
    #send errors 4, #recv errors 0
    local crypto endpt.: 172.16.1.1, remote crypto endpt.: 10.0.0.2
     path mtu 1500, ip mtu 1500, ip mtu idb Serial2/0
     current outbound spi: 0x267BC43(40352835)
     inbound esp sas:
      spi: 0xD9F4BC76(3656694902)
        transform: esp-des esp-md5-hmac ,
       in use settings ={Tunnel, }
       conn id: 2001, flow_id: SW:1, crypto map: mymap
        sa timing: remaining key lifetime (k/sec): (4558868/3550)
        IV size: 8 bytes
       replay detection support: Y
        Status: ACTIVE
     inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0x267BC43(40352835)
        transform: esp-des esp-md5-hmac ,
        in use settings ={Tunnel, }
        conn id: 2002, flow_id: SW:2, crypto map: mymap
        sa timing: remaining key lifetime (k/sec): (4558868/3548)
        IV size: 8 bytes
       replay detection support: Y
        Status: ACTIVE
     outbound ah sas:
     outbound pcp sas:
```

• **show crypto isakmp sa** - Zeigt alle aktuellen IKE-SAs in einem Peer an. RouterA#**show crypto isakmp sa**

dst	src	state	conn-id slo	ot	status
10.0.0.2	172.16.1.1	QM_IDLE	1	0	ACTIVE

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration. Ein Beispiel für eine Debugausgabe wird ebenfalls angezeigt.

Befehle zur Fehlerbehebung

Der <u>Cisco CLI Analyzer</u> (nur <u>registrierte</u> Kunden) unterstützt bestimmte **show**-Befehle. Verwenden Sie den Cisco CLI Analyzer, um eine Analyse der **Ausgabe** des **Befehls show** anzuzeigen.

Hinweis: Beachten Sie vor der Verwendung von Debug-Befehlen die Informationen zu Debug-Befehlen.

- debug crypto isakmp Zeigt die ISAKMP-Verhandlungen von Phase 1 an.
- debug crypto ipsec Zeigt die IPsec-Verhandlungen von Phase 2 an.

Beispielausgabe für Debugging

Router

```
RouterA#debug crypto isakmp
*Sep 29 22:50:35.511: ISAKMP: received ke message (1/1)
*Sep 29 22:50:35.511: ISAKMP:(0:0:N/A:0): SA request profile is (NULL)
*Sep 29 22:50:35.511: ISAKMP: Created a peer struct for 10.0.0.2, peer port 500
*Sep 29 22:50:35.511: ISAKMP: New peer created peer = 0x64C0EF54 peer_handle = 0
x800000C
*Sep 29 22:50:35.515: ISAKMP: Locking peer struct 0x64C0EF54, IKE refcount 1 for
isakmp initiator
*Sep 29 22:50:35.515: ISAKMP: local port 500, remote port 500
*Sep 29 22:50:35.515: ISAKMP: set new node 0 to QM_IDLE
*Sep 29 22:50:35.515: ISAKMP: Find a dup sa in the avl tree during calling isadb
_insert sa = 64CDBF3C
*Sep 29 22:50:35.515: ISAKMP:(0:0:N/A:0):Can not start Aggressive mode, trying M
ain mode.
*Sep 29 22:50:35.515: ISAKMP:(0:0:N/A:0):found peer pre-shared key matching 10.0
.0.2
*Sep 29 22:50:35.515: ISAKMP:(0:0:N/A:0): constructed NAT-T vendor-07 ID
*Sep 29 22:50:35.519: ISAKMP:(0:0:N/A:0): constructed NAT-T vendor-03 ID
*Sep 29 22:50:35.519: ISAKMP:(0:0:N/A:0): constructed NAT-T vendor-02 ID
*Sep 29 22:50:35.519: ISAKMP:(0:0:N/A:0):Input = IKE_MESG_FROM_IPSEC, IKE_SA_REQ
_MM
*Sep 29 22:50:35.519: ISAKMP:(0:0:N/A:0):Old State = IKE_READY New State = IKE_
I_MM1
*Sep 29 22:50:35.519: ISAKMP:(0:0:N/A:0): beginning Main Mode exchange
*Sep 29 22:50:35.519: ISAKMP:(0:0:N/A:0): sending packet to 10.0.0.2 my_port 500
peer_port 500 (I) MM_NO_STATE
*Sep 29 22:50:38.451: ISAKMP (0:0): received packet from 10.0.0.2 dport 500 spor
t 500 Global (I) MM_NO_STATE
*Sep 29 22:50:38.451: ISAKMP:(0:0:N/A:0):Input = IKE_MESG_FROM_PEER, IKE_MM_EXCH
I MM2
```

```
*Sep 29 22:50:38.455: ISAKMP:(0:0:N/A:0): processing SA payload. message ID = 0
*Sep 29 22:50:38.455: ISAKMP:(0:0:N/A:0):found peer pre-shared key matching 10.0
.0.2
*Sep 29 22:50:38.455: ISAKMP:(0:0:N/A:0): local preshared key found
*Sep 29 22:50:38.455: ISAKMP : Scanning profiles for xauth ...
*Sep 29 22:50:38.455: ISAKMP:(0:0:N/A:0):Checking ISAKMP transform 1 against pri
ority 10 policy
*Sep 29 22:50:38.455: ISAKMP:
                              encryption DES-CBC
*Sep 29 22:50:38.455: ISAKMP:
                             hash MD5
*Sep 29 22:50:38.455: ISAKMP:
                             default group 1
*Sep 29 22:50:38.455: ISAKMP:
                              auth pre-share
*Sep 29 22:50:38.459: ISAKMP:
                              life type in seconds
                              life duration (VPI) of 0x0 0x1 0x51 0x80
*Sep 29 22:50:38.459: ISAKMP:
*Sep 29 22:50:38.459: ISAKMP:(0:0:N/A:0):atts are acceptable. Next payload is 0
*Sep 29 22:50:38.547: ISAKMP:(0:4:SW:1):Input = IKE_MESG_INTERNAL, IKE_PROCESS_M
AIN MODE
MM2
*Sep 29 22:50:38.551: ISAKMP:(0:4:SW:1): sending packet to 10.0.0.2 my_port 500
peer_port 500 (I) MM_SA_SETUP
*Sep 29 22:50:38.551: ISAKMP:(0:4:SW:1):Input = IKE_MESG_INTERNAL, IKE_PROCESS_C
OMPLETE
_MM3
*Sep 29 22:50:42.091: ISAKMP (0:134217732): received packet from 10.0.0.2 dport
500 sport 500 Global (I) MM_SA_SETUP
*Sep 29 22:50:42.095: ISAKMP:(0:4:SW:1):Input = IKE MESG FROM PEER, IKE MM EXCH
_MM4
*Sep 29 22:50:42.095: ISAKMP:(0:4:SW:1): processing KE payload. message ID = 0
*Sep 29 22:50:42.203: ISAKMP:(0:4:SW:1): processing NONCE payload. message ID =
0
*Sep 29 22:50:42.203: ISAKMP:(0:4:SW:1):found peer pre-shared key matching 10.0.
0.2
*Sep 29 22:50:42.207: ISAKMP:(0:4:SW:1):SKEYID state generated
*Sep 29 22:50:42.207: ISAKMP:(0:4:SW:1): processing vendor id payload
*Sep 29 22:50:42.207: ISAKMP:(0:4:SW:1): speaking to another IOS box!
*Sep 29 22:50:42.207: ISAKMP:(0:4:SW:1):Input = IKE_MESG_INTERNAL, IKE_PROCESS_M
AIN_MODE
_MM4
*Sep 29 22:50:42.211: ISAKMP:(0:4:SW:1):Send initial contact
*Sep 29 22:50:42.215: ISAKMP:(0:4:SW:1):SA is doing pre-shared key authenticatio
n using id type ID_IPV4_ADDR
*Sep 29 22:50:42.215: ISAKMP (0:134217732): ID payload
       next-payload : 8
       type
                  : 1
       address
                 : 172.16.1.1
      protocol
                 : 17
                 : 500
      port
                 : 12
       length
*Sep 29 22:50:42.215: ISAKMP:(0:4:SW:1):Total payload length: 12
*Sep 29 22:50:42.215: ISAKMP:(0:4:SW:1): sending packet to 10.0.0.2 my_port 500
peer_port 500 (I) MM_KEY_EXCH
*Sep 29 22:50:42.219: ISAKMP:(0:4:SW:1):Input = IKE_MESG_INTERNAL, IKE_PROCESS_C
OMPLETE
*Sep 29 22:50:42.219: ISAKMP:(0:4:SW:1):Old State = IKE_I_MM4 New State = IKE_I
MM5
```

*Sep 29 22:50:42.783: ISAKMP (0:134217732): received packet from 10.0.0.2 dport 500 sport 500 Global (I) MM_KEY_EXCH *Sep 29 22:50:42.783: ISAKMP:(0:4:SW:1): processing ID payload. message ID = 0 *Sep 29 22:50:42.783: ISAKMP (0:134217732): ID payload next-payload : 8 : 1 type : 10.0.0.2 address protocol : 17 : 500 port length : 12 *Sep 29 22:50:42.783: ISAKMP:(0:4:SW:1):: peer matches *none* of the profiles *Sep 29 22:50:42.787: ISAKMP:(0:4:SW:1): processing HASH payload. message ID = 0 *Sep 29 22:50:42.787: ISAKMP:(0:4:SW:1):SA authentication status: authenticated *Sep 29 22:50:42.787: ISAKMP:(0:4:SW:1):SA has been authenticated with 10.0.0.2 *Sep 29 22:50:42.787: ISAKMP: Trying to insert a peer 172.16.1.1/10.0.0.2/500/, and inserted successfully 64C0EF54. *Sep 29 22:50:42.787: ISAKMP:(0:4:SW:1):Input = IKE MESG FROM PEER, IKE MM EXCH _ММб *Sep 29 22:50:42.791: ISAKMP:(0:4:SW:1):Input = IKE_MESG_INTERNAL, IKE_PROCESS_M AIN MODE _MM6 *Sep 29 22:50:42.795: ISAKMP:(0:4:SW:1):Input = IKE MESG_INTERNAL, IKE PROCESS_C OMPLETE 1_COMPLETE *Sep 29 22:50:42.799: ISAKMP:(0:4:SW:1):beginning Quick Mode exchange, M-ID of -966196463 *Sep 29 22:50:42.803: ISAKMP:(0:4:SW:1): sending packet to 10.0.0.2 my_port 500 peer_port 500 (I) QM_IDLE *Sep 29 22:50:42.803: ISAKMP:(0:4:SW:1):Node -966196463, Input = IKE_MESG_INTERN AL, IKE_INIT_QM *Sep 29 22:50:42.803: ISAKMP:(0:4:SW:1):Old State = IKE OM READY New State = IK E_QM_I_QM1 !--- IKE Phase 1 is completed successfully. *Sep 29 22:50:42.803: ISAKMP:(0:4:SW:1):Input = IKE_MESG_INTERNAL, IKE_PHASE1_CO MPLETE *Sep 29 22:50:42.803: ISAKMP:(0:4:SW:1):Old State = IKE_P1_COMPLETE New State = IKE P1 COMPLETE *Sep 29 22:50:43.907: ISAKMP (0:134217732): received packet from 10.0.0.2 dport 500 sport 500 Global (I) QM_IDLE *Sep 29 22:50:43.911: ISAKMP:(0:4:SW:1): processing HASH payload. message ID = -966196463 *Sep 29 22:50:43.911: ISAKMP:(0:4:SW:1): processing SA payload. message ID = -96 6196463 *Sep 29 22:50:43.911: ISAKMP:(0:4:SW:1):Checking IPSec proposal 1 *Sep 29 22:50:43.911: ISAKMP: transform 1, ESP_DES *Sep 29 22:50:43.911: ISAKMP: attributes in transform: *Sep 29 22:50:43.915: ISAKMP: encaps is 1 (Tunnel) SA life type in seconds *Sep 29 22:50:43.915: ISAKMP: SA life duration (basic) of 3600 *Sep 29 22:50:43.915: ISAKMP:

 *Sep 29 22:50:43.915: ISAKMP:
 SA life type in kilobytes

 *Sep 29 22:50:43.915: ISAKMP:
 SA life duration (VPI) of 0x0 0x46 0x50 0x0

 *Sep 29 22:50:43.915: ISAKMP:
 authenticator is HMAC-MD5

 *Sep 29 22:50:43.915: ISAKMP:(0:4:SW:1):atts are acceptable. *Sep 29 22:50:43.915: ISAKMP:(0:4:SW:1): processing NONCE payload. message ID = -966196463

*Sep 29 22:50:43.919: ISAKMP:(0:4:SW:1): processing ID payload. message ID = -96 6196463 *Sep 29 22:50:43.919: ISAKMP:(0:4:SW:1): processing ID payload. message ID = -96 6196463 *Sep 29 22:50:43.923: ISAKMP: Locking peer struct 0x64C0EF54, IPSEC refcount 1 f or for stuff_ke *Sep 29 22:50:43.923: ISAKMP:(0:4:SW:1): Creating IPSec SAs *Sep 29 22:50:43.923: inbound SA from 10.0.0.2 to 172.16.1.1 (f/i) 0/ 0 (proxy 172.16.2.0 to 10.1.1.0) *Sep 29 22:50:43.923: has spi 0x84E11317 and conn_id 0 and flags 2 *Sep 29 22:50:43.923: lifetime of 3600 seconds lifetime of 4608000 kilobytes *Sep 29 22:50:43.923: has client flags 0x0 *Sep 29 22:50:43.923: *Sep 29 22:50:43.923: outbound SA from 172.16.1.1 to 10.0.0.2 (f/i) 0/0 (proxy 10.1.1.0 to 172.16.2.0) *Sep 29 22:50:43.923: has spi -65483228 and conn_id 0 and flags A *Sep 29 22:50:43.923: lifetime of 3600 seconds *Sep 29 22:50:43.923: lifetime of 4608000 kilobytes *Sep 29 22:50:43.923: has client flags 0x0 *Sep 29 22:50:43.927: ISAKMP:(0:4:SW:1): sending packet to 10.0.0.2 my_port 500 peer_port 500 (I) QM_IDLE *Sep 29 22:50:43.927: ISAKMP:(0:4:SW:1):deleting node -966196463 error FALSE rea son "No Error" *Sep 29 22:50:43.927: ISAKMP:(0:4:SW:1):Node -966196463, Input = IKE_MESG_FROM_P EER, IKE_QM_EXCH

!--- IKE Phase 2 is completed successfully. *Sep 29 22:50:43.927: ISAKMP:(0:4:SW:1):Old State =

IKE_QM_I_QM1 New State = IK

E_QM_PHASE2_COMPLETE
*Sep 29 22:50:43.931: ISAKMP: Locking peer struct 0x64C0EF54, IPSEC refcount 2 f
or from create_transforms
*Sep 29 22:50:43.931: ISAKMP: Unlocking IPSEC struct 0x64C0EF54 from create_tran
sforms, count 1

RouterA#debug crypto ipsec

```
*Sep 29 22:46:06.699: IPSEC(sa_request): ,
  (key eng. msg.) OUTBOUND local= 172.16.1.1, remote= 10.0.0.2,
   local_proxy= 10.1.1.0/255.255.255.0/0/0 (type=4),
   remote_proxy= 172.16.2.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac (Tunnel),
   lifedur= 3600s and 4608000kb,
    spi= 0xD9F4BC76(3656694902), conn_id= 0, keysize= 0, flags= 0x400A
*Sep 29 22:46:12.631: IPSEC(validate_proposal_request): proposal part #1,
  (key eng. msg.) INBOUND local= 172.16.1.1, remote= 10.0.0.2,
    local_proxy= 10.1.1.0/255.255.255.0/0/0 (type=4),
   remote_proxy= 172.16.2.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac (Tunnel),
   lifedur= 0s and 0kb,
    spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x2
*Sep 29 22:46:12.631: Crypto mapdb : proxy_match
       src addr
                  : 10.1.1.0
                    : 172.16.2.0
       dst addr
       protocol
                   : 0
       src port
                   : 0
       dst port
                    : 0
*Sep 29 22:46:12.639: IPSEC(key_engine): got a queue event with 2 kei messages
*Sep 29 22:46:12.639: IPSEC(initialize_sas): ,
  (key eng. msg.) INBOUND local= 172.16.1.1, remote= 10.0.0.2,
    local_proxy= 10.1.1.0/255.255.255.0/0/0 (type=4),
   remote_proxy= 172.16.2.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac (Tunnel),
   lifedur= 3600s and 4608000kb,
    spi= 0xD9F4BC76(3656694902), conn_id= 0, keysize= 0, flags= 0x2
*Sep 29 22:46:12.639: IPSEC(initialize_sas): ,
```

```
(key eng. msg.) OUTBOUND local= 172.16.1.1, remote= 10.0.0.2,
    local_proxy= 10.1.1.0/255.255.255.0/0/0 (type=4),
   remote_proxy= 172.16.2.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac (Tunnel),
   lifedur= 3600s and 4608000kb,
   spi= 0x267BC43(40352835), conn_id= 0, keysize= 0, flags= 0xA
*Sep 29 22:46:12.639: Crypto mapdb : proxy_match
                 : 10.1.1.0
       src addr
       dst addr
                    : 172.16.2.0
                   : 0
       protocol
       src port
                   : 0
       dst port
                    : 0
*Sep 29 22:46:12.643: IPSEC(crypto_ipsec_sa_find_ident_head): reconnecting with
the same proxies and 10.0.0.2
*Sep 29 22:46:12.643: IPSec: Flow_switching Allocated flow for sibling 80000006
*Sep 29 22:46:12.643: IPSEC(policy_db_add_ident): src 10.1.1.0, dest 172.16.2.0
dest_port 0
*Sep 29 22:46:12.643: IPSEC(create_sa): sa created,
  (sa) sa_dest= 172.16.1.1, sa_proto= 50,
    sa_spi= 0xD9F4BC76(3656694902),
    sa_trans= esp-des esp-md5-hmac , sa_conn_id= 2001
*Sep 29 22:46:12.643: IPSEC(create_sa): sa created,
  (sa) sa_dest= 10.0.0.2, sa_proto= 50,
    sa_spi= 0x267BC43(40352835),
    sa_trans= esp-des esp-md5-hmac , sa_conn_id= 2002
```

Zugehörige Informationen

- IPsec-Aushandlung/IKE-Protokolle
- <u>Technischer Support und Dokumentation Cisco Systems</u>