Konfigurieren der ASR1000-Verschlüsselung über OTV Unicast

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Hintergrundinformationen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung

Einführung

Dieses Dokument beschreibt die grundlegenden Konfigurationssätze, mit denen die Overlay Transport Virtualization (OTV) mit IPSec-Verschlüsselung aufgerufen wird. Für die Verschlüsselung über OTV sind keine zusätzlichen Konfigurationen vom OTV-Ende erforderlich. Sie müssen nur verstehen, wie OTV und IPSEC gleichzeitig existieren.

Um die Verschlüsselung über OTV hinzuzufügen, müssen Sie zusätzlich zur OTV PDU einen ESP-Header (Encapsulating Security Payload) hinzufügen. Für die ASR1000 Edge Devices (ED) kann eine Verschlüsselung auf zwei Arten erfolgen: (i) IPSec (ii) GETVPN.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf den folgenden Software- und Hardwareversionen:

- ASR1000 Router für Edge-Geräte (ED)
- Core (ISP Cloud)
- Catalyst 2960 Switches als Access Switch an beiden Standorten

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Hintergrundinformationen

Es wird davon ausgegangen, dass die Benutzer dieses Dokuments über die grundlegenden Funktionen und Konfigurationen von OTV Bescheid wissen.

Sie können auch die folgenden Dokumente für die gleiche Weise befolgen:

- OTV-Unicast-Konfiguration
- OTV-Multicast-Konfiguration

Konfigurieren

Netzwerkdiagramm

Konfigurationen

Standort A: ED-Konfigurationen:

Site_A_1#show run	Site_A_2#show run
Building configuration	Building configuration
otv site bridge-domain 99	otv site bridge-domain 99
!	!
otv site-identifier 0000.0000.0001	otv site-identifier 0000.0000.0001
crypto isakmp policy 10	crypto isakmp policy 10
hash md5	hash md5
authentication pre-share	authentication pre-share

```
crypto isakmp key cisco address 30.0.0.1
                                            crypto isakmp key cisco address 30.0.0.1
crypto isakmp key cisco address 40.0.0.1
                                            crypto isakmp key cisco address 40.0.0.1
!
                                             !
crypto ipsec transform-set tset esp-aes
                                            crypto ipsec transform-set tset esp-aes
esp-md5-hmac
                                            esp-md5-hmac
mode tunnel
                                             mode tunnel
                                             1
!
crypto map cmap 1 ipsec-isakmp
                                            crypto map cmap 2 ipsec-isakmp
set peer 30.0.0.1
                                             set peer 30.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl
                                             match address cryptoacl2
crypto map cmap 3 ipsec-isakmp
                                            crypto map cmap 3 ipsec-isakmp
set peer 40.0.0.1
                                             set peer 40.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl3
                                             match address cryptoacl3
!
                                             !
interface Overlay99
                                            interface Overlay99
no ip address
                                             no ip address
otv join-interface GigabitEthernet0/0/1
                                             otv join-interface GigabitEthernet0/0/1
otv adjacency-server unicast-only
                                             otv use-adjacency-server 10.0.0.1 30.0.0.1
                                            unicast-only
service instance 100 ethernet
                                             service instance 100 ethernet
encapsulation dot1q 100
                                             encapsulation dotlg 100
bridge-domain 100
                                             bridge-domain 100
 1
                                             1
 service instance 101 ethernet
                                             service instance 101 ethernet
encapsulation dotlg 101
                                             encapsulation dotlg 101
bridge-domain 101
                                             bridge-domain 101
1
                                             1
!
                                             Ţ
interface GigabitEthernet0/0/0
                                            interface GigabitEthernet0/0/0
no ip address
                                             no ip address
service instance 99 ethernet
                                            service instance 99 ethernet
encapsulation dot1g 99
```

```
bridge-domain 99
 Т
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dot1q 101
bridge-domain 101
 !
!
interface GigabitEthernet0/0/1
ip address 10.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl
permit gre host 10.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 10.0.0.1 host 40.0.0.1
```

```
encapsulation dot1q 99
bridge-domain 99
 !
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dotlq 101
bridge-domain 101
!
Т
interface GigabitEthernet0/0/1
ip address 20.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl2
permit gre host 20.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 20.0.0.1 host 40.0.0.1
```

Standort B: ED-Konfigurationen:

```
Site_B_1#sh run
                                           Site_B_2#sh run
Building configuration...
                                           Building configuration...
otv site bridge-domain 99
                                           otv site bridge-domain 99
1
                                            !
otv site-identifier 0000.0000.0002
                                           otv site-identifier 0000.0000.0002
crypto isakmp policy 10
                                           crypto isakmp policy 10
hash md5
                                            hash md5
authentication pre-share
                                            authentication pre-share
crypto isakmp key cisco address 10.0.0.1
                                           crypto isakmp key cisco address 10.0.0.1
crypto isakmp key cisco address 20.0.0.1
                                           crypto isakmp key cisco address 20.0.0.1
```

!

!

crypto ipsec transform-set tset esp-aes crypto ipsec transform-set tset esp-aes esp-md5-hmac esp-md5-hmac mode tunnel mode tunnel ! ! crypto map cmap 1 ipsec-isakmp crypto map cmap 1 ipsec-isakmp set peer 10.0.0.1 set peer 10.0.0.1 set transform-set tset set transform-set tset match address cryptoacl match address cryptoacl crypto map cmap 2 ipsec-isakmp crypto map cmap 2 ipsec-isakmp set peer 20.0.0.1 set peer 20.0.0.1 set transform-set tset set transform-set tset match address cryptoacl2 match address cryptoacl2 ! 1 interface Overlay99 interface Overlay99 no ip address no ip address otv join-interface GigabitEthernet1/0/2 otv join-interface GigabitEthernet2/2/0 otv use-adjacency-server 10.0.0.1 unicast- otv use-adjacency-server 10.0.0.1 30.0.0.1 only unicast-only service instance 100 ethernet otv adjacency-server unicast-only service instance 100 ethernet encapsulation dotlq 100 encapsulation dotlq 100 bridge-domain 100 bridge-domain 100 1 1 service instance 101 ethernet service instance 101 ethernet encapsulation dotlg 101 encapsulation dotlg 101 bridge-domain 101 bridge-domain 101 1 1 Ţ interface GigabitEthernet2/2/1 1 interface GigabitEthernet1/0/3 no ip address no ip address service instance 99 ethernet service instance 99 ethernet encapsulation dotlg 99 encapsulation dot1q 99 bridge-domain 99

```
bridge-domain 99
```

```
Т
                                              service instance 100 ethernet
 service instance 100 ethernet
                                              encapsulation dotlg 100
 encapsulation dotlq 100
                                              bridge-domain 100
bridge-domain 100
                                              !
 !
                                              service instance 101 ethernet
 service instance 101 ethernet
                                              encapsulation dotlg 101
 encapsulation dot1q 101
                                              bridge-domain 101
bridge-domain 101
                                              !
 !
                                             !
!
                                             interface GigabitEthernet2/2/0
interface GigabitEthernet1/0/2
                                              ip address 40.0.0.1 255.255.255.0
 ip address 30.0.0.1 255.255.255.0
                                              crypto map cmap
crypto map cmap
!
                                             ip access-list extended cryptoacl
ip access-list extended cryptoacl
                                              permit gre host 40.0.0.1 host 10.0.0.1
permit gre host 30.0.0.1 host 10.0.0.1
                                             ip access-list extended cryptoacl2
ip access-list extended cryptoacl2
                                              permit gre host 40.0.0.1 host 20.0.0.1
permit gre host 30.0.0.1 host 20.0.0.1
```

!

Überprüfen

In diesem Abschnitt überprüfen Sie, ob Ihre Konfiguration ordnungsgemäß funktioniert.

- 1. Überprüfen Sie, ob die MAC-Adresse des internen VLAN-Hosts (in diesem Fall die SVI auf den Catalyst-Switches der Serie 2960) in den OTV-Routing-Tabellen erfasst wurde.
- 2. Überprüfen Sie, ob die Verschlüsselungsverschlüsse und die Decap-Dateien für den Overlay (OTV-Datenverkehr)-Datenverkehr ausgeführt werden.

Wenn das OTV nach der Konfiguration der Crypto Map auf der Join-Schnittstelle aktiviert ist, überprüfen Sie den aktiven Forwarder für die lokalen VLANs (in diesem Fall VLAN 100 und 101). Dies zeigt, dass Site_A_1 und Site_B_2 die aktiven Forwarder für die selbst erstellten VLANs sind, da Sie die Datenverkehrsverschlüsselung für Pings testen, die von VLAN 100 auf Site A bis VLAN 100 auf Site B initiiert wurden: Overlay 99 VLAN Configuration Information

Inst	VLAN	BD	Auth ED	State	Site If(s)
0	100	100	*Site_A_1	active	Gi0/0/0:SI100
0	101	101	Site_A_2	inactive(NA)	Gi0/0/0:SI101
0	200	200	*Site_A_1	active	Gi0/0/0:SI200
0	201	201	Site_A_2	inactive(NA)	Gi0/0/0:SI201

Total VLAN(s): 4

Site_B_2#show otv vlan

Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.

Overlay 99 VLAN Configuration Information

Inst VLAN BD		Auth ED	State	Site If(s)	
0	100	100	*Site_B_2	active	Gi2/2/1:SI100
0	101	101	Site_B_1	inactive(NA)	Gi2/2/1:SI101
0	200	200	*Site_B_2	active	Gi2/2/1:SI200
0	201	201	Site_B_1	inactive(NA)	Gi2/2/1:SI201

Total VLAN(s): 4

Um zu überprüfen, ob die Pakete tatsächlich auf einem der ED-Geräte gekapselt und entkapselt werden, sollten Sie überprüfen, ob die IPSec-Sitzung aktiv ist und ob die Zählerwerte in den Krypto-Sitzungen vorhanden sind, um sicherzustellen, dass die Pakete tatsächlich verschlüsselt und entschlüsselt werden. Um zu überprüfen, ob die IPSec-Sitzung aktiv ist, da sie nur aktiviert wird, wenn ein Datenverkehr durchfließt, überprüfen Sie die Ausgabe von **show crypto isakmp sa**. Hier werden nur die Ausgänge für die aktiven Forwarder überprüft. Dies sollte jedoch den aktiven Status auf allen EDs anzeigen, damit OTV over Encryption funktioniert.

Site_A_1#show crypto isakmp sa

IPv4 Crypto ISAKMP SA

dst	src	state	conn-id	status	
10.0.0.1	30.0.0.1	QM_IDLE	1008	ACTIVE	
10.0.0.1	40.0.0.1	QM_IDLE	1007	ACTIVE	
Site_B_2#sh crypto isakmp sa					
IPv4 Crypto ISAKMP SA					
dst	src	state	conn-id	status	
20.0.0.1	40.0.0.1	QM_IDLE	1007	ACTIVE	
10.0.0.1	40.0.0.1	QM_IDLE	1006	ACTIVE	

Um zu überprüfen, ob die Pakete verschlüsselt und entschlüsselt werden, müssen Sie zunächst wissen, was in den Ausgaben der **Anzeige** der **Verschlüsselungssitzungsdetails** zu erwarten ist. Wenn Sie also das ICMP-Echo-Paket vom Sw_A-Switch zum Sw_B initiieren, wird Folgendes erwartet:

- Das ICMP-Echo verlässt den Standort_A_1 ED, der der aktive Forwarder f
 ür das VLAN 100 ist, jedoch muss die OTV-Payload gekapselt werden (ICMP-Echo + MPLS + GRE).
- Sobald das ICMP-Echo den Standort_B_2 ED erreicht hat, der der aktive Forwarder f
 ür VLAN 100 ist, muss die OTV-Nutzlast entkapselt werden (ICMP Echo + MPLS + GRE).
- Wenn der Standort_B_2 ED die ICMP-Echo-Antwort von Sw_B erhält, muss er die OTV-Payload erneut kapseln (ICMP Echo + MPLS + GRE).
- Sobald die ICMP-Echo-Antwort den Standort_A_1 ED erreicht hat, muss ich erneut die OTV-Payload entkapseln (ICMP-Echo + MPLS + GRE).

Erwarten Sie nach den erfolgreichen Pings von Sw_A nach Sw_B, dass im Abschnitt "Enc" (Verschlüsseln) und "dec" (Dezimalstellen) der **Ausgabe** von **Verschlüsselungssitzungsdetails** auf beiden aktiven Weiterleitungs-EDs eine Erhöhung von 5 Zählern angezeigt wird.

Jetzt prüfen Sie das Gleiche über die LEDs:

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3345

Outbound: #pkts enc'ed 10 drop 0 life (KB/Sec) 4607998/3291 <<<< 10 counter before ping

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3343

Inbound: #pkts dec'ed 18 drop 0 life (KB/Sec) 4607997/3289 <<<< 18 counter before ping

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 18 drop 0 life (KB/Sec) 4607997/3295 <<<< 18 counter before ping

Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3295

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 10 drop 0 life (KB/Sec) 4607998/3293 <<<< 10 counter before ping

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3293

Sw_A(config)#do ping 192.168.10.1 source vlan 100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:

Packet sent with a source address of 192.168.10.2

```
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/10 ms
Sw_A(config)#
Site_A_1(config-if)#do show crypto session detail | section enc
K - Keepalives, N - NAT-traversal, T - cTCP encapsulation
       Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3339
       Outbound: #pkts enc'ed 15 drop 0 life (KB/Sec) 4607997/3284 <<<< 15 counter after ping
(After ICMP Echo)
Site_A_1(config-if)#do show crypto session detail | section dec
       Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3338
       Inbound: #pkts dec'ed 23 drop 0 life (KB/Sec) 4607997/3283 <<<< 23 counter after ping
(After ICMP Echo Reply)
Site_B_2(config-if)#do show crypto session detail | section enc
K - Keepalives, N - NAT-traversal, T - cTCP encapsulation
       Outbound: #pkts enc'ed 23 drop 0 life (KB/Sec) 4607997/3282 <<<< 23 counter after ping
(After ICMP Echo Reply)
       Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3282
Site_B_2(config-if)#do show crypto session detail | section dec
       Inbound: #pkts dec'ed 15 drop 0 life (KB/Sec) 4607997/3281 <<<< 15 counter after ping
```

(After ICMP Echo)

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3281

Dieser Konfigurationsleitfaden kann die erforderlichen Konfigurationsdetails mithilfe von IPSec für die Dual-Homed-Einrichtung des Unicast-Core-Kerns vermitteln.

Fehlerbehebung

Für diese Konfiguration sind derzeit keine spezifischen Informationen zur Fehlerbehebung verfügbar.