Konfigurieren des VXLAN-eBGP-Peering mit externem Knoten auf dem Nexus 9000

Inhalt

Einleitung
Voraussetzungen
Anforderungen
Verwendete Komponenten
<u>Topologie</u>
BL-Konfiguration für Leckage:
Überprüfen der Route zum externen Router
Konfigurieren
Dediziertes Loopback erstellen
Konfigurieren
Loopback bei BGP ankündigen
Konfigurieren
<u>Überprüfung</u>
Überprüfen, ob die Route in BGP-TenantVRF auf LEAF VTEP importiert wurde
Überprüfen, ob die Route in BGP L2VPN auf LEAF VTEP importiert wurde
Überprüft, ob die Route über die BL-Tenant-VRF empfangen wurde.
Überprüfen des Eingangs der Route in BL-Standard-VRF
Konfigurieren von eBGP-Peering auf LEAF
Konfigurieren
Konfigurieren von eBGP-Peering auf externem Router (EXT-R)
Konfigurieren
Zusammenfassende Schritte
<u>BLATT</u>
<u>EXT-R</u>
Überprüfung
Überprüfung des eBGP-Nachbarn im LEAF
Überprüfen des eBGP-Nachbarn auf dem externen Router

Einleitung

In diesem Dokument wird beschrieben, wie das eBGP-Peering zwischen VTEP und dem externen Knoten konfiguriert wird.

Voraussetzungen

Vorhandene VXLAN-Umgebung.

Anforderungen

Cisco empfiehlt, dass Sie über Kenntnisse in folgenden Bereichen verfügen:

- NXOS-Plattform
- QoS
- Elam-Verständnis
- VXLAN-VRF-Lecks

Verwendete Komponenten

Name	Plattform	Version
BLATT	N9K-C9332D-GX2B	10.2(6)
BL	N9K-C9348D-GX2A	10.2(5)
EXT-R	N9K-C9348D-GX2A	10.2(3)
WIRBELSÄULE	N9K-C93108TC-FX3P	10.1(1)

"Die Informationen in diesem Dokument beziehen sich auf Geräte in einer speziell eingerichteten Testumgebung. Alle Geräte, die in diesem Dokument benutzt wurden, begannen mit einer gelöschten (Nichterfüllungs) Konfiguration. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen aller Befehle verstehen."

Topologie

Hinweis: In diesem Beispiel wird eine eBGP-Peering-Sitzung zwischen Leaf (vtep) und EXT-R (externes Gerät, aus VXLAN-Fabric heraus) konfiguriert.

In diesem Beispiel kennt BL EXT-R IP über OSPF unter Standard-VRF und kennt LEAF Loopback 100 IP über VXLAN, und es wird in Standard-VRF an OSPF neu verteilt.

Um diese undichte Stelle durchzuführen, können Sie die Konfiguration und Überprüfung der VXLAN-VRF-Undichtigkeit auf Nexus-Switches unter folgender Adresse durchführen: https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/221709configure-and-verify-vxlan-vrf-leaking-o.html

Zur Vereinfachung dieses Dokuments wird nachfolgend eine Zusammenfassung der VRF-Leckkonfiguration für BL beschrieben.

BL-Konfiguration für Leckage:

```
ip prefix-list VXLAN-VRF-default-to-Tenant permit 172.16.120.55/32
route-map VXLAN-VRF-default-to-Tenant
 match ip address prefix-list VXLAN-VRF-default-to-Tenant
ip prefix-list VXLAN-VRF-Tenant-to-default permit 192.168.150.150/32
route-map VXLAN-VRF-Tenant-to-default
 match ip address prefix-list VXLAN-VRF-Tenant-to-default
route-map BGP-OSPF
 match ip address prefix-list VXLAN-VRF-Tenant-to-default
 match route-type internal
router bgp 65000
  address-family ipv4 unicast
    redistribute ospf 1 route-map VXLAN-VRF-default-to-Tenant
vrf context tenant-a
 address-family ipv4 unicast
    import vrf default map VXLAN-VRF-default-to-Tenant advertise-vpn
vrf context tenant-a
   address-family ipv4 unicast
      export vrf default map VXLAN-VRF-Tenant-to-default allow-vpn
router ospf 1
  redistribute bgp 65000 route-map BGP-OSPF
```

Überprüfen der Route zum externen Router

Der erste Schritt besteht darin, zu überprüfen, ob in VTEP eine Route zu einem externen Router vorhanden ist.

In diesem Beispiel wird die Route 172.16.120.55 von der Standard-VRF-Instanz an die Tenant-VRF-Instanz weitergeleitet, und die Route wird an die LEAF-Instanz weitergeleitet.

```
LEAF# show ip route 172.16.120.55 vrf tenant-a
IP Route Table for VRF "tenant-a"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
172.16.120.55/32, ubest/mbest: 1/0
*via 172.16.0.5%default, [200/2], 00:16:01, bgp-65000, internal, tag 65000, segid: 303030 tunnelid: 0xa
```

Konfigurieren

Auf dem Nexus 9000 wird eBGP-Peering zwischen einem VTEP und einem externen Router unterstützt.

Damit dieses Peering möglich ist, muss ein dediziertes Loopback auf dem VTEP konfiguriert werden.

Dediziertes Loopback erstellen

Konfigurieren

	Befehl oder Aktion	Zweck
Schritt 1	LEAF# configure terminal Geben Sie die Konfigurationsbefehle ein, einen pro Zeile. Beenden Sie mit STRG+Z.	Wechselt in den Konfigurationsmodus.
Schritt 2	LEAF(config)# interface lo 100	Erstellung eines dedizierten Loopbacks.
Schritt 3	LEAF(config-if)# vrf member tenant-a Warnung: Alle L3-Konfigurationen auf dem Schnittstellen-Loopback 100 wurden gelöscht.	Anschließen des Tenant-VRF an den Loopback
Schritt 4	LEAF(config-if)# ip address 192.168.150.150/32	Weisen Sie dem Loopback eine IP zu.

Loopback bei BGP ankündigen

Erstelltes dediziertes Loopback muss im BGP angekündigt werden, damit ein externer Router erreichbar ist.

Konfigurieren

	Befehl oder Aktion	Zweck
Schritt 1	LEAF# configure terminal Geben Sie die Konfigurationsbefehle ein, einen pro Zeile. Beenden Sie mit STRG+Z.	Wechselt in den Konfigurationsmodus.
Schritt 2	LEAF(config)# Router BGP 65000	Wechselt in die BGP- Konfiguration
Schritt 3	LEAF(config-router)# vrf tenant-a	Wechselt in BGP VRF.
Schritt 4	LEAF(config-router-vrf)# address-family-IPv4- Unicast	Wechselt in die BGP-VRF- Adressfamilie IPv4
Schritt 5	LEAF(config-router-vrf-af)# Netzwerk 192.168.150.150/32	Loopback-IP ankündigen.

Tipp: BGP-Werbung kann auch mithilfe von Routing-Maps und durch direkte Weitergabe erfolgen.

Überprüfung

Überprüfen, ob die Route in BGP-Tenant-VRF auf LEAF VTEP importiert wurde

LEAF# show ip bgp 192.168.150.150 vrf tenant-a BGP routing table information for VRF tenant-a, address family IPv4 Unicast BGP routing table entry for 192.168.150.150/32, version 20 Paths: (1 available, best #1) Flags: (0x80c0002) (high32 0x000020) on xmit-list, is not in urib, exported vpn: version 25, (0x0000000100002) on xmit-list Advertised path-id 1, VPN AF advertised path-id 1 Path type: local, path is valid, is best path, no labeled nexthop, is extd Imported to 1 destination(s) Imported paths list: tenant-b AS-Path: NONE, path locally originated 0.0.0.0 (metric 0) from 0.0.0.0 (192.168.150.150) Origin IGP, MED not set, localpref 100, weight 32768 Extcommunity: RT:1:1 RT:65000:303030

VRF advertise information: Path-id 1 not advertised to any peer

VPN AF advertise information: Path-id 1 not advertised to any peer

Überprüfen, ob die Route in BGP L2VPN auf LEAF VTEP importiert wurde

LEAF# sh bgp l2vpn evpn 192.168.150.150 BGP routing table information for VRF default, address family L2VPN EVPN Route Distinguisher: 172.16.0.2:3 (L3VNI 303030) BGP routing table entry for [5]:[0]:[0]:[32]:[192.168.150.150]/224, version 59 Paths: (1 available, best #1) Flags: (0x000002) (high32 00000000) on xmit-list, is not in l2rib/evpn

Advertised path-id 1 Path type: local, path is valid, is best path, no labeled nexthop Gateway IP: 0.0.0.0 AS-Path: NONE, path locally originated 172.16.0.2 (metric 0) from 0.0.0.0 (172.16.0.2) Origin IGP, MED not set, localpref 100, weight 32768 Received label 303030 Extcommunity: RT:65000:303030 ENCAP:8 Router MAC:9c54.1651.5cd7

Path-id 1 advertised to peers: 10.101.11.1

Überprüft, ob die Route über die BL-Tenant-VRF empfangen wurde.

BL# show ip route 192.168.150.150 vrf tenant-a IP Route Table for VRF "tenant-a" '*' denotes best ucast next-hop '**' denotes best mcast next-hop '[x/y]' denotes [preference/metric] '%<string>' in via output denotes VRF <string> 192.168.150.150/32, ubest/mbest: 1/0 *via 172.16.0.2%default, [200/0], 00:01:13, bgp-65000, internal, tag 65000, segid: 303030 tunnelid: 0xa Überprüfen des Eingangs der Route in BL-Standard-VRF

Da der externe Router über die Standard-VRF-Instanz bekannt ist, muss die VTEP-Loopback-IP-Adresse in die Standard-VRF-Instanz auf BL importiert werden.

BL(config-router-vrf-neighbor)# show ip route 192.168.150.150
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

```
192.168.150.150/32, ubest/mbest: 1/0
*via 172.16.0.2, [200/0], 00:12:16, bgp-65000, internal, tag 65000, segid: 303030 tunnelid: 0xac100002
```

Konfigurieren von eBGP-Peering auf LEAF

Nach der Erstellung des dedizierten Loopbacks kann eBGP-Peering mit dem BGP-VRF durchgeführt werden.

Konfigurieren

	Befehl oder Aktion	Zweck
Schritt 1	LEAF# configure terminal Geben Sie die Konfigurationsbefehle ein, einen pro Zeile. Beenden Sie mit STRG+Z.	Wechselt in den Konfigurationsmodus.
Schritt 2	LEAF(config)# Router BGP 65000	Wechselt in die BGP- Konfiguration
Schritt 3	LEAF(config-router)# vrf tenant-a	Wechselt in BGP VRF.
Schritt 4	LEAF(config-router-vrf)# address-family-IPv4- Unicast	Wechselt in die BGP-VRF- Adressfamilie IPv4
Schritt 5	LEAF(config-router-vrf-af)# neighbor 172.16.120.55 remote-as 64577	Erstellt einen eBGP- Nachbarn.
Schritt 6	LEAF(config-router-vrf-neighbor)# update- source loopback 100	Loopback 100 als Update- Quelle verwenden.
Schritt 7	LEAF(config-router-vrf-neighbor)# address- family-IPv4-Unicast	Wechselt in die IPv4- Konfiguration für die Nachbar- Adressfamilie.
Schritt 8	LEAF(config-router-vrf-neighbor-af)# ebgp- multihop 10	Zuweisung von TTL für Pakete für eBGP-Peering

Warnung: Die Verwendung der Update-Quelle eines dedizierten Loopbacks ist obligatorisch.

Konfigurieren von eBGP-Peering auf externem Router (EXT-R)

Nach der Erstellung des dedizierten Loopbacks kann eBGP-Peering mit dem BGP-VRF durchgeführt werden.

Konfigurieren

	Befehl oder Aktion	Zweck
Schritt 1	EXT-R# konfigurierbares Terminal Geben Sie die Konfigurationsbefehle ein, einen pro Zeile. Beenden Sie mit STRG+Z.	Wechselt in den Konfigurationsmodus.
Schritt 2	EXT-R(config)# Router BGP 64577	Wechselt in die BGP- Konfiguration

Schritt 3	EXT-R(Konfigurationsrouter)# VRF blau	Wechselt in BGP VRF.
Schritt 4	EXT-R(config-router-vrf)# address-family-IPv4- Unicast	Wechselt in die BGP-VRF- Adressfamilie IPv4
Schritt 5	EXT-R(config-router-vrf-af)#neighbor 192.168.150.150 remote-as 65000	Erstellt einen eBGP- Nachbarn.
Schritt 6	EXT-R(config-router-vrf-neighbor)# Update- Source-Loopback 10	Loopback 100 als Update- Quelle verwenden.
Schritt 7	EXT-R(config-router-vrf-neighbor)# address- family-IPv4-Unicast	Wechselt in die IPv4- Konfiguration für die Nachbar-Adressfamilie.
Schritt 8	EXT-R(config-router-vrf-neighbor-af)# ebgp- multihop 10	Zuweisung von TTL für Pakete für eBGP-Peering

Zusammenfassende Schritte

BLATT

- 1. Terminal konfigurieren
- 2. interface lo 100
- 3. VRF-Mitglied Tenant-a
- 4. ip address 192.168.150.150/32
- 5. Router BGP 65000
- 6. VRF-Tenant-a
- 7. address-family-IPv4-Unicast
- 8. network 192.168.150.150/32
- 9. Nachbar 172.16.120.55
- 10. remote-as 64577
- 11. Update-Source-Loopback 100
- 12. address-family-IPv4-Unicast
- 13. ebgp-multihop 10

EXT-R

- 1. Terminal konfigurieren
- 2. Router BGP 64577
- 3. VRF Blau
- 4. address-family-IPv4-Unicast
- 5. Nachbar 172.16.120.55
- 6. remote-as 64577
- 7. Update-Source-Loopback 100
- 8. address-family-IPv4-Unicast
- 9. ebgp-multihop 10

Überprüfung

Überprüfung des eBGP-Nachbarn im LEAF

LEAF# show ip bgp summary vrf tenant-a BGP summary information for VRF tenant-a, address family IPv4 Unicast BGP router identifier 192.168.150.150, local AS number 65000 BGP table version is 23, IPv4 Unicast config peers 1, capable peers 1 13 network entries and 14 paths using 2436 bytes of memory BGP attribute entries [8/2816], BGP AS path entries [0/0] BGP community entries [0/0], BGP clusterlist entries [3/12]

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 172.16.120.55 4 64577 6 6 23 0 0 00:00:27 0

Überprüfen des eBGP-Nachbarn auf dem externen Router

EXT-R(config-router-vrf-neighbor)# show ip bgp summary vrf blue BGP summary information for VRF blue, address family IPv4 Unicast BGP router identifier 172.16.120.55, local AS number 64577 BGP table version is 15, IPv4 Unicast config peers 1, capable peers 1 13 network entries and 13 paths using 3588 bytes of memory BGP attribute entries [2/704], BGP AS path entries [1/6] BGP community entries [0/0], BGP clusterlist entries [0/0]

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 192.168.150.150 4 65000 13 6 15 0 0 00:00:48 13

Informationen zu dieser Übersetzung

Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.