In diesem Dokument wird beschrieben, wie der Paketfluss über eine ACI-Fabric (Application Centric Infrastructure) in verschiedenen Situationen bestimmt wird.
Für dieses Dokument bestehen keine speziellen Anforderungen.
Die Informationen in diesem Dokument basieren auf den folgenden Hardware- und Softwareversionen:
Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.
In diesem Abschnitt werden die verschiedenen Situationen beschrieben, in denen eine ACI-Fabric verwendet werden kann, sowie die Bestimmung des Paketflusses.
In diesem Abschnitt wird beschrieben, wie Sie die Hardwareprogrammierung und den Paketfluss für zwei Endpunkte innerhalb derselben Endpunktgruppe (EPG)/Bridge Domain (BD) auf demselben Leaf-Switch überprüfen. Wenn die virtuellen Systeme (VMs) auf demselben Host ausgeführt werden, da sie sich in derselben EPG befinden, wird der Datenverkehr zum virtuellen Switch (VS) auf dem Host isoliert, und der Datenverkehr muss den Host nie verlassen. Wenn die VMs auf unterschiedlichen Hosts ausgeführt werden, gelten die folgenden Informationen.
Sie sollten zunächst überprüfen, ob die Adressinformationen der Medienzugriffskontrolle (MAC) für die Quell- und Ziel-IP-Adressen auf dem Leaf-Switch abgerufen werden. Dies sind die MAC- und IP-Adressinformationen, die in diesem Beispiel verwendet werden:
Geben Sie den Befehl show mac address table ein, um diese Informationen zu überprüfen:
leaf2# show mac address-table
Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
age - seconds since last seen,+ - primary entry using vPC Peer-Link,
(T) - True, (F) - False
VLAN MAC Address Type age Secure NTFY Ports/SWID.SSID.LID
---------+-----------------+--------+---------+------+----+------------------
16 0050.5695.248f dynamic - F F tunnel4
* 19 0050.5695.17b7 dynamic - F F eth1/31
* 19 0050.5695.248f dynamic - F F eth1/31
Wie gezeigt, erfasst das System die MAC-Adressen für beide Endpunkte im gleichen VLAN. Dieses VLAN ist das Platform Independent (PI) VLAN und für jeden Switch lokal von Bedeutung. Um zu überprüfen, ob es sich um das richtige PI-VLAN handelt, stellen Sie eine Verbindung mit vsh_lc her, und geben Sie diesen Befehl in die CLI ein:
module-1# show system internal eltmc info vlan brief
VLAN-Info
VlanId HW_VlanId Type Access_enc Access_enc Fabric_enc Fabric_enc BDVlan
Type Type
==================================================================================
9 11 BD_VLAN Unknown 0 VXLAN 16613250 9
10 12 BD_VLAN Unknown 0 VXLAN 15990734 10
13 13 FD_VLAN 802.1q 299 VXLAN 8507 10
16 14 BD_VLAN Unknown 0 VXLAN 16449431 16
17 15 FD_VLAN 802.1q 285 VXLAN 8493 16
18 16 BD_VLAN Unknown 0 VXLAN 15761386 18
19 17 FD_VLAN 802.1q 291 VXLAN 8499 18
Die HW_VlanId ist das vom Broadcom verwendete VLAN. Die VlanId ist das IP-VLAN, das dem Access_enc VLAN 291 zugeordnet ist, das vom VLAN-Pool abgeleitet ist, und das VLAN ist, das an die DVS-Portgruppe (Distributed Virtual Switch) propagiert wird:
Da sich dieser Datenverkehrsfluss im selben BD und demselben VLAN befindet, sollte der Datenverkehr lokal auf dem Broadcom ASIC geschaltet werden. Um zu überprüfen, ob der Broadcom die richtigen Einträge in der Hardware hat, stellen Sie eine Verbindung zur Broadcom-Shell her, und zeigen Sie die Tabelle für Layer 2 (L2) an:
leaf2# bcm-shell-hw
unit is 0
Available Unit Numbers: 0
bcm-shell.0> l2 show
mac=00:22:bd:f8:19:ff vlan=19 GPORT=0x7f modid=2 port=127 Static
mac=00:50:56:95:68:c4 vlan=25 GPORT=0x5f modid=0 port=95/xe94 Hit
mac=00:22:bd:f8:19:ff vlan=16 GPORT=0x7f modid=2 port=127 Static
mac=00:22:bd:f8:19:ff vlan=29 GPORT=0x7f modid=2 port=127 Static
mac=00:22:bd:f8:19:ff vlan=32 GPORT=0x7f modid=2 port=127 Static
mac=00:22:bd:f8:19:ff vlan=26 GPORT=0x7f modid=2 port=127 Static
mac=00:50:56:95:24:8f vlan=17 GPORT=0x1f modid=0 port=31/xe30 Hit
mac=00:22:bd:f8:19:ff vlan=18 GPORT=0x7f modid=2 port=127 Static
mac=00:22:bd:f8:19:ff vlan=21 GPORT=0x7f modid=2 port=127 Static
mac=00:22:bd:f8:19:ff vlan=34 GPORT=0x7f modid=2 port=127 Static
mac=00:50:56:95:26:5e vlan=25 GPORT=0x5f modid=0 port=95/xe94 Hit
mac=00:50:56:95:c3:6f vlan=24 GPORT=0x5f modid=0 port=95/xe94 Hit
mac=00:50:56:95:5c:4d vlan=28 GPORT=0x1e modid=0 port=30/xe29 Hit
mac=00:22:bd:f8:19:ff vlan=12 GPORT=0x7f modid=2 port=127 Static Hit
mac=00:22:bd:f8:19:ff vlan=11 GPORT=0x7f modid=2 port=127 Static
mac=00:50:56:95:17:b7 vlan=17 GPORT=0x1f modid=0 port=31/xe30 Hit
mac=00:50:56:95:4e:d3 vlan=30 GPORT=0x1e modid=0 port=30/xe29 Hit
mac=00:22:bd:f8:19:ff vlan=14 GPORT=0x7f modid=2 port=127 Static
Die Ausgabe zeigt, dass die Broadcom ASIC-Programmierung korrekt ist und dass der Datenverkehr lokal in VLAN 17 umschalten soll.
In diesem Abschnitt wird beschrieben, wie Sie die Hardwareprogrammierung und den Paketfluss für zwei Endpunkte im gleichen EPG/BD, aber auf unterschiedlichen Leaf-Switches überprüfen.
Zunächst sollten Sie überprüfen, ob die MAC-Adressinformationen für die Quell- und Ziel-IP-Adressen auf den Leaf-Switches abgerufen werden. Dies sind die MAC- und IP-Adressinformationen, die in diesem Beispiel verwendet werden:
Geben Sie den Befehl show mac address table in die CLI beider Leaf-Switches ein, um diese Informationen zu überprüfen:
leaf2# show mac address-table
Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
age - seconds since last seen,+ - primary entry using vPC Peer-Link,
(T) - True, (F) - False
VLAN MAC Address Type age Secure NTFY Ports/SWID.SSID.LID
---------+-----------------+--------+---------+------+----+------------------
* 19 0050.5695.17b7 dynamic - F F eth1/31
* 19 0050.5695.248f dynamic - F F eth1/31
leaf_1# show mac address-table
Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
age - seconds since last seen,+ - primary entry using vPC Peer-Link,
(T) - True, (F) - False
VLAN MAC Address Type age Secure NTFY Ports/SWID.SSID.LID
---------+-----------------+--------+---------+------+----+------------------
27 0050.5695.248f dynamic - F F tunnel7
27 0050.5695.17b7 dynamic - F F tunnel7
* 28 0050.5695.bd89 dynamic - F F eth1/25
Wie in den Ausgaben gezeigt, wird die Quell-IP-Adresse auf dem zweiten Leaf-Switch (leaf2) erfasst, während die Ziel-IP-Adresse auf dem ersten Leaf-Switch (leaf_1) erfasst wird. Da sich diese auf unterschiedlichen Leaf-Switches befinden, muss der Datenverkehr an den NorthStar ASIC auf dem zweiten Leaf-Switch gesendet werden, damit er Upstream an die Spine-Switches gesendet werden kann. Um der NorthStar-Logik zu folgen, verbinden Sie sich mit der Linecard vsh.
Geben Sie diesen Befehl ein, um eine Liste der lokalen Einträge anzuzeigen:
leaf2# vsh_lc
module-1# show platform internal ns forwarding lst-l2
error opening file
: No such file or directory
================================================================================
TABLE INSTANCE : 0
================================================================================
Legend:
POS: Entry Position O: Overlay Instance
V: Valid Bit MD/PT: Mod/Port
PT: Pointer Type(A=Adj, E=ECMP, D=DstEncap N=Invalid)
PTR: ECMP/Adj/DstEncap/MET pointer
ML: MET Last
ST: Static PTH: Num Paths
BN: Bounce CP: Copy To CPU
PA: Policy Applied PI: Policy Incomplete
DL: Dst Local SP: Spine Proxy
--------------------------------------------------------------------------------
MO SRC P M S B C P P D S
POS O VNID Address V DE MD/PT CLSS T PTR L T PTH N P A I L P
--------------------------------------------------------------------------------
111 0 fd7f82 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
131 0 f1ffde 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
169 0 f37fd3 00:50:56:95:26:5e 1 0 00/24 4002 A 0 0 0 1 0 0 0 1 0 0
331 0 f37fd2 00:50:56:95:5c:4d 1 0 00/2e 8003 A 0 0 0 1 0 0 0 1 0 0
719 0 f3ffce 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
945 0 f7ffae 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
1390 0 fa7f9a 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
1454 0 efffee 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
1690 0 f37fd3 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
1720 0 f37fd3 00:50:56:95:c3:6f 1 0 00/24 c002 A 0 0 0 1 0 0 0 1 0 0
1902 0 f1ffde 00:50:56:95:4e:d3 1 0 00/2e 8006 A 0 0 0 1 0 0 0 1 0 0
2176 0 f07fea 00:50:56:95:17:b7 1 0 00/0f 8004 A 0 0 0 1 0 0 0 0 0 0
2819 0 faff97 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
3297 0 f07fea 00:22:bd:f8:19:ff 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
================================================================================
TABLE INSTANCE : 1
================================================================================
Legend:
POS: Entry Position O: Overlay Instance
V: Valid Bit MD/PT: Mod/Port
PT: Pointer Type(A=Adj, E=ECMP, D=DstEncap N=Invalid)
PTR: ECMP/Adj/DstEncap/MET pointer
ML: MET Last
ST: Static PTH: Num Paths
BN: Bounce CP: Copy To CPU
PA: Policy Applied PI: Policy Incomplete
DL: Dst Local SP: Spine Proxy
--------------------------------------------------------------------------------
MO SRC P M S B C P P D S
POS O VNID Address V DE MD/PT CLSS T PTR L T PTH N P A I L P
--------------------------------------------------------------------------------
169 0 f37fd3 00:50:56:95:26:5e 1 0 00/24 4002 A e 0 0 1 0 0 0 0 1 0
331 0 f37fd2 00:50:56:95:5c:4d 1 0 00/2e 8003 A 9 0 0 1 0 0 0 0 1 0
1720 0 f37fd3 00:50:56:95:c3:6f 1 0 00/24 c002 A c 0 0 1 0 0 0 0 1 0
1902 0 f1ffde 00:50:56:95:4e:d3 1 0 00/2e 8006 A f 0 0 1 0 0 0 0 1 0
2176 0 f07fea 00:50:56:95:17:b7 1 0 00/0f 8004 A d 0 0 1 0 0 0 0 1 0
3507 0 fa7f9a 00:50:56:95:3e:ee 1 0 00/2e c005 A 10 0 0 1 0 0 0 0 1 0
3777 0 f37fd3 00:50:56:95:68:c4 1 1 04/04 4002 A 11 0 0 1 1 0 0 0 0 0
3921 0 f07fea 00:50:56:95:24:8f 1 0 00/0f 8004 A d 0 0 1 0 0 0 0 1 0
Geben Sie diesen Befehl ein, um eine Liste der Zieleinträge anzuzeigen (suchen Sie nach der MAC-Zieladresse):
module-1# show platform internal ns forwarding gst-l2
error opening file
: No such file or directory
================================================================================
TABLE INSTANCE : 0
================================================================================
Legend:
POS: Entry Position O: Overlay Instance
V: Valid Bit MD/PT: Mod/Port
PT: Pointer Type(A=Adj, E=ECMP, D=DstEncap N=Invalid)
PTR: ECMP/Adj/DstEncap/MET pointer
ML: MET Last
ST: Static PTH: Num Paths
BN: Bounce CP: Copy To CPU
PA: Policy Applied PI: Policy Incomplete
DL: Dst Local SP: Spine Proxy
--------------------------------------------------------------------------------
MO SRC P M S B C P P D S
POS O VNID Address V DE MD/PT CLSS T PTR L T PTH N P A I L P
--------------------------------------------------------------------------------
2139 0 ff7f72 00:50:56:95:7b:16 1 0 00/00 8006 A d 0 0 1 0 0 0 0 1 0
2195 0 faff97 00:50:56:95:5d:6e 1 0 00/00 8005 A f 0 0 1 0 0 0 0 1 0
3379 0 f07fea 00:50:56:95:bd:89 1 1 00/00 8004 A 10 0 0 1 0 0 0 0 0 0
4143 0 f07fea 00:50:56:95:17:b7 1 0 00/00 8004 A a 0 0 1 0 0 0 0 1 0
4677 0 f07feb 00:50:56:95:68:c4 1 0 00/00 4002 A e 0 0 1 0 0 0 0 1 0
5704 0 f07fea 00:50:56:95:24:8f 1 0 00/00 8004 A a 0 0 1 0 0 0 0 1 0
6191 0 f7ffaf 00:50:56:95:00:33 1 0 00/00 4007 A c 0 0 1 0 0 0 0 1 0
Beachten Sie in diesen Ausgaben das Pointer (PTR)-Feld, das den Adjazenzzeiger darstellt. Dieser Wert wird im nächsten Befehl verwendet, um das gekapselte Ziel-VLAN zu finden. Dies ist ein HEX-Wert, den Sie in einen Dezimalwert konvertieren müssen (0 x 10 im Dezimalwert ist 16).
Geben Sie diesen Befehl in die CLI ein, wobei 16 als Adjacency-Zeiger dient:
module-1# show platform internal ns forwarding adj 16
error opening file
: No such file or directory
================================================================================
TABLE INSTANCE : 0
================================================================================
Legend
TD: TTL Dec Disable UP: USE PCID
DM: Dst Mac Rewrite SM: Src Mac Rewrite
RM IDX: Router Mac IDX SR: Seg-ID Rewrite
--------------------------------------------------------------------------------
ENCP T U USE D S RM S SRC
POS SEG-ID PTR D P PCI M DST-MAC M IDX R SEG-ID CLSS
--------------------------------------------------------------------------------
16 0 2ffa 0 0 0 1 00:0c:0c:0c:0c:0c 0 0 0 0 0
Beachten Sie den PTR-Wert für ENCP in dieser Ausgabe, der verwendet wird, um die Ziel-TEP-Adresse (Tunnel Endpoint) zu finden:
module-1# show platform internal ns forwarding encap 0x2ffa
error opening file
: No such file or directory
================================================================================
TABLE INSTANCE : 0
================================================================================
Legend
MD: Mode (LUX & RWX) LB: Loopback
LE: Loopback ECMP LB-PT: Loopback Port
ML: MET Last TD: TTL Dec Disable
DV: Dst Valid DT-PT: Dest Port
DT-NP: Dest Port Not-PC ET: Encap Type
OP: Override PIF Pinning HR: Higig DstMod RW
HG-MD: Higig DstMode KV: Keep VNTAG
--------------------------------------------------------------------------------
M PORT L L LB MET M T D DT DT E TST O H HG K M E
POS D FTAG B E PT PTR L D V PT NP T IDX P R MD V D T Dst MAC DIP
--------------------------------------------------------------------------------
12282 0 c00 0 1 0 0 0 0 0 0 0 3 7 0 0 0 0 0 3 00:00:00:00:00:00 192.168.56.93
In diesem Fall wird der Frame in iVXLAN über die Quell-IP-Adresse des lokalen TEP und die Ziel-IP-Adresse des aufgelisteten TEP gekapselt. Basierend auf der ELTMC-Ausgabe beträgt die VXLAN-ID für diesen BD 15761386, d. h. die ID, die im VXLAN-Paket gespeichert wird. Wenn der Datenverkehr die andere Seite erreicht, wird er entkapselt, und da die MAC-Zieladresse lokal ist, wird er vom Port im Befehl l2 show vom Broadcom weitergeleitet.
In diesem Abschnitt wird beschrieben, wie die Hardwareprogrammierung und der Paketfluss für zwei Endpunkte in unterschiedlichen EPGs, jedoch mit demselben BD überprüft werden. Der Datenverkehr fließt zum selben Leaf-Switch. Dies wird auch als physisches Local-to-Physical Local (PL-to-PL) Bridge-Paket bezeichnet. Sie wird überbrückt, da die Kommunikation zwischen zwei gekapselten VLANs möglich ist, ohne dass eine Layer 3 (L3)-Schnittstelle für das Routing erforderlich ist.
Als Erstes sollten Sie überprüfen, ob die MAC-Adressinformationen für die Quell- und Ziel-IP-Adressen der Leaf-Switches auf der erwarteten Schnittstelle erfasst werden (in diesem Fall 1/48). Dies sind die MAC- und IP-Adressinformationen, die in diesem Beispiel verwendet werden:
Geben Sie den Befehl show mac address table in die CLI ein, um diese Informationen zu überprüfen:
leaf1# show mac address-table | grep 908b
* 34 0050.5695.908b dynamic - F F eth1/48
leaf1# show mac address-table | grep bd89
* 38 0050.5695.bd89 dynamic - F F eth1/48
Geben Sie dann die Broadcom (BCM)-Shell ein, und überprüfen Sie, ob der BCM die richtigen MAC-Adressinformationen erfasst:
bcm-shell.0> l2 show
mac=00:50:56:95:bd:89 vlan=55 GPORT=0x30 modid=0 port=48/xe47
mac=00:50:56:95:90:8b vlan=54 GPORT=0x30 modid=0 port=48/xe47 Hit
Die Ausgabe zeigt, dass der BCM die Informationen zur MAC-Adresse erfasst hat. Die MAC-Adressen befinden sich jedoch in verschiedenen VLANs. Dies ist zu erwarten, da der Datenverkehr vom Host mit unterschiedlichen gekapselten VLANs (unterschiedlichen EPGs) eingeht.
Geben Sie im ELTMC ein, um die HW_VlanID zu überprüfen, die in der BCM-Shell für das BD-VLAN für die beiden gekapselten VLANs angezeigt wird:
module-1# show system internal eltmc info vlan brief
VLAN-Info
VlanId HW_VlanId Type Access_enc Access_enc Fabric_enc Fabric_enc BDVlan
Type Type
==================================================================================
13 15 BD_CTRL_VLAN 802.1q 4093 VXLAN 16777209 0
14 16 BD_VLAN Unknown 0 VXLAN 15957970 14
15 17 BD_VLAN Unknown 0 VXLAN 16613250 15
16 18 FD_VLAN 802.1q 301 VXLAN 8509 15
17 19 BD_VLAN Unknown 0 VXLAN 16220082 17
18 46 BD_VLAN Unknown 0 VXLAN 14745592 18
19 50 BD_VLAN Unknown 0 VXLAN 16646015 19
20 51 FD_VLAN 802.1q 502 VXLAN 8794 19
21 23 BD_VLAN Unknown 0 VXLAN 16121792 21
22 24 FD_VLAN 802.1q 538 VXLAN 8830 21
23 25 BD_VLAN Unknown 0 VXLAN 15826915 23
24 28 FD_VLAN 802.1q 537 VXLAN 8829 23
25 26 BD_VLAN Unknown 0 VXLAN 16351138 25
26 29 FD_VLAN 802.1q 500 VXLAN 8792 25
27 27 BD_VLAN Unknown 0 VXLAN 16678779 27
28 30 FD_VLAN 802.1q 534 VXLAN 8826 27
29 52 BD_VLAN Unknown 0 VXLAN 15859681 29
31 47 FD_VLAN 802.1q 602 VXLAN 9194 18
32 31 FD_VLAN 802.1q 292 VXLAN 8500 55
33 20 BD_VLAN Unknown 0 VXLAN 15761386 33
34 54 FD_VLAN 802.1q 299 VXLAN 8507 54
35 33 BD_VLAN Unknown 0 VXLAN 16449431 35
38 55 FD_VLAN 802.1q 300 VXLAN 8508 54
39 53 FD_VLAN 802.1q 501 VXLAN 8793 29
In dieser ELTMC-Ausgabe können Sie sehen, dass die HW_VlanId für jeden Eintrag der Access_enc zugeordnet ist, mit der der Datenverkehr beim Eintritt in den Switch gekennzeichnet wird (überprüfen Sie die VMware-Portgruppen, um zu überprüfen, ob er virtualisiert ist) und dass die VLANID das in der MAC-Adresstabelle enthaltene IP-VLAN ist. Dies ist in diesem Fall eine Bridge-Verbindung, da das BD-VLAN identisch ist (beide VLANs befinden sich im VLAN 54). Dieses Diagramm zeigt die Interaktion zwischen BCM und NorthStar:
NordStar passt das Paket an und schreibt den Ausgangframe mit der HW_VlanId der Ziel-IP-Adresse um. Auf diese Weise hat der BCM einen lokalen Treffer in diesem VLAN und sendet den Frame über Port 1/48.
In diesem Abschnitt wird beschrieben, wie Sie die Hardwareprogrammierung und den Paketfluss für zwei Endpunkte in verschiedenen EPGs überprüfen, die unterschiedliche BDs verwenden. Der Datenverkehr fließt zum selben Leaf-Switch, muss jedoch geroutet werden. Dies wird auch als PL-zu-PL-geroutetes Paket bezeichnet.
Als Erstes sollten Sie überprüfen, ob die MAC-Adressinformationen für die Quell- und Ziel-IP-Adressen auf dem Leaf-Switch in der erwarteten Schnittstelle erfasst wurden (in diesem Fall 1/48). Dies sind die MAC- und IP-Adressinformationen, die in diesem Beispiel verwendet werden:
Während Sie die MAC-Adresstabelle anzeigen können, um die L2-Informationen zu überprüfen, ist ein wichtiger Teil der Lösung für den über L3 weitergeleiteten Datenverkehr der Endpoint Manager (EPM). Der EPM ist der Prozess, der alle Endpunkte auf einem bestimmten Gerät verfolgt.
Stellen Sie sicher, dass der EPM über die beiden Endpunkte des ersten Leaf-Switches (Leaf1) verfügt:
leaf1# show endpoint ip 192.168.1.50
Legend:
O - peer-attached H - vtep a - locally-aged S - static
V - vpc-attached p - peer-aged L - local M - span
s - static-arp B - bounce
+---------------+---------------+-----------------+--------------+-------------+
VLAN/ Encap MAC Address MAC Info/ Interface
Domain VLAN IP Address IP Info
+---------------+---------------+-----------------+--------------+-------------+
56 vlan-299 0050.5695.908b L eth1/48
Joey-Tenant:Joey-Internal vlan-299 192.168.1.50 L
Die Quell-IP-Adresse wird auf Ethernet 1/48 erfasst und ist lokal auf diesem Switch gespeichert.
leaf1# show endpoint ip 192.168.3.51
Legend:
O - peer-attached H - vtep a - locally-aged S - static
V - vpc-attached p - peer-aged L - local M - span
s - static-arp B - bounce
+---------------+---------------+-----------------+--------------+-------------+
VLAN/ Encap MAC Address MAC Info/ Interface
Domain VLAN IP Address IP Info
+---------------+---------------+-----------------+--------------+-------------+
44 vlan-291 0050.5695.bd89 L eth1/48
Joey-Tenant:Joey-Internal vlan-291 192.168.3.51 L
Wie gezeigt, wird die Ziel-IP-Adresse auf Ethernet 1/48 gelernt und ist lokal auf diesem Switch.
Um detailliertere Informationen zu diesen Endpunkten zu erhalten, verbinden Sie sich mit der Linecard (LC):
leaf1# vsh_lc
module-1# show system internal epmc endpoint ip 192.168.1.50
MAC : 0050.5695.908b ::: Num IPs : 1
IP# 0 : 192.168.1.50 ::: IP# 0 flags :
Vlan id : 56 ::: Vlan vnid : 8507 ::: BD vnid : 15990734
VRF vnid : 2523136 ::: phy if : 0x1a02f000 ::: tunnel if : 0
Interface : Ethernet1/48
VTEP tunnel if : N/A ::: Flags : 0x80004c04
Ref count : 5 ::: sclass : 0x2ab5
Timestamp : 02/01/1970 00:43:53.129731
last mv timestamp 12/31/1969 19:00:00.000000 ::: ep move count : 0
previous if : 0 ::: loop detection count : 0
EP Flags : local,IP,MAC,class-set,timer,
Aging:Timer-type : Host-tracker timeout ::: Timeout-left : 423 ::: Hit-bit :
Yes ::: Timer-reset count : 406
PD handles:
Bcm l2 hit-bit : Yes
[L2]: Asic : NS ::: ADJ : 0x14 ::: LST SA : 0x83a ::: LST DA : 0x83a :::
GST ING : 0xedb ::: BCM : Yes
[L3-0]: Asic : NS ::: ADJ : 0x14 ::: LST SA : 0xe56 ::: LST DA : 0xe56 :::
GST ING : 0x12ae ::: BCM : Yes
::::
Beachten Sie die Werte VRF VNID und BD VNID.
module-1# show system internal epmc endpoint ip 192.168.3.51
MAC : 0050.5695.bd89 ::: Num IPs : 1
IP# 0 : 192.168.3.51 ::: IP# 0 flags :
Vlan id : 44 ::: Vlan vnid : 8499 ::: BD vnid : 15761386
VRF vnid : 2523136 ::: phy if : 0x1a02f000 ::: tunnel if : 0
Interface : Ethernet1/48
VTEP tunnel if : N/A ::: Flags : 0x80004c04
Ref count : 5 ::: sclass : 0x8004
Timestamp : 02/01/1970 00:43:53.130524
last mv timestamp 12/31/1969 19:00:00.000000 ::: ep move count : 0
previous if : 0 ::: loop detection count : 0
EP Flags : local,IP,MAC,class-set,timer,
Aging:Timer-type : Host-tracker timeout ::: Timeout-left : 532 ::: Hit-bit :
Yes ::: Timer-reset count : 1
PD handles:
Bcm l2 hit-bit : Yes
[L2]: Asic : NS ::: ADJ : 0x15 ::: LST SA : 0x28e ::: LST DA : 0x28e :::
GST ING : 0xd33 ::: BCM : Yes
[L3-0]: Asic : NS ::: ADJ : 0x15 ::: LST SA : 0x497b ::: LST DA : 0x497b :::
GST ING : 0x1e98 ::: BCM : Yes
::::
Der VRF-VNID-Wert in dieser Ausgabe ist derselbe, da beide Routen Teil derselben VRF-Instanz (Virtual Routing and Forwarding) in der Routing-Tabelle sind (gleicher Kontext). Der BD-Wert ist unterschiedlich, da sich die beiden Endpunkte in unterschiedlichen BDs befinden.
So wie Sie die NorthStar-Tabellen zur Überprüfung der Hardwareprogrammierung für die MAC-Adressen auf L2-Ebene angezeigt haben, können Sie das Gleiche tun, um die L3-Tabelle zu überprüfen:
module-1# show platform internal ns forwarding lst-l3
error opening file
: No such file or directory
================================================================================
TABLE INSTANCE : 0
================================================================================
Legend:
POS: Entry Position O: Overlay Instance
V: Valid Bit MD/PT: Mod/Port
PT: Pointer Type(A=Adj, E=ECMP, D=DstEncap N=Invalid)
PTR: ECMP/Adj/DstEncap/MET pointer
ML: MET Last
ST: Static PTH: Num Paths
BN: Bounce CP: Copy To CPU
PA: Policy Applied PI: Policy Incomplete
DL: Dst Local SP: Spine Proxy
--------------------------------------------------------------------------------
MO SRC P M S B C P P D S
POS O VNID Address V DE MD/PT CLSS T PTR L T PTH N P A I L P
--------------------------------------------------------------------------------
2881 0 268000 192.168.1.1 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
3003 0 208001 80.80.80.10 1 0 00/14 800d A 0 0 0 1 0 0 0 1 0 0
3051 0 208001 30.30.30.30 1 0 00/14 c009 A 0 0 0 1 0 0 0 0 0 0
3328 0 268000 192.168.2.1 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
3670 0 268000 192.168.1.50 1 0 00/09 2ab5 A 0 0 0 1 0 0 0 0 0 0
3721 0 2b8001 50.50.50.1 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
3903 0 268000 192.168.3.1 1 0 00/00 1 A 0 0 1 1 0 0 0 1 0 0
18811 0 268000 192.168.3.51 1 0 00/09 8004 A 0 0 0 1 0 0 0 0 0 0
Dieses Diagramm veranschaulicht den Fluss durch die ASICs: