

© 2024 Cisco and/or its affiliates. All rights reserved. Page 1 of 43

Cilium and ACI:
Modular Design for Network
Visibility and Load Balancing

White paper

Cisco public

© 2024 Cisco and/or its affiliates. All rights reserved. Page 2 of 43

Contents

Introduction 3

Goals 4

Implementation considerations 5

Required knowledge 5

Cilium 5

Cilium BGP Control Plane 6

Cilium L2 Pod Announcements 7

Design overview 9

Cluster EPG physical connectivity 10

Selective BGP peering for service advertisement 10

Cluster-Pool: pod visibility 13

Multi-Pool: pod visibility and security 16

Cluster-Pool and Multi-Pool node-routing requirements 17

Design trade offs 18

Supported platforms 18

Example configuration - OpenShift, Multi-Pool, L2 Pod Advertisement, and BGP Advertisement 20

Pre-Requisites 21

ACI configuration 21

OpenShift configuration 23

Cilium config 32

Cluster bootstrap and preparation 33

© 2024 Cisco and/or its affiliates. All rights reserved. Page 3 of 43

Introduction

Kubernetes has become the de facto standard for container orchestration in today’s cloud-native ecosystem,

providing a robust framework for deploying, scaling, and managing containerized applications. As enterprises

increasingly adopt Kubernetes, they are often faced with the challenge of ensuring seamless network

connectivity and service discovery across diverse and dynamic environments.

Traditionally, implementing BGP peering to all the nodes in a Kubernetes cluster has been the go-to strategy to

provide security and visibility into the workload running on the cluster as well as handling external services

routing and load-balancing requirements.1

BGP peering enables Kubernetes nodes to directly exchange routing information, promoting efficient network

traffic flow, and reducing latency.

However, as clusters grow in size and complexity, the practice of establishing BGP sessions with nodes

becomes less practical. The operational overhead, configuration complexity, and scaling limitations imposed by

the L3Outs can impede the agility and flexibility that Kubernetes aims to offer.

Until recently, organizations had few choices:

● Grapple with the complexities of BGP peering; or

● Deploy Kubernetes clusters with network overlays and external load balancers; or

● Deploy the Cisco ACI® CNI Plug-in to achieve a seamless network layer between the Kubernetes Pod

network and the fabric. This last option is, however, not always possible.

This white paper proposes a hybrid design where only a subset of nodes participate in BGP peering,

significantly reducing the design and operational complexity as well as addressing all BGP scalability issues.

At present, this design does not necessitate the use of supplementary components from Cisco or other third-

party vendors to meet its objectives. While there is the potential for users or the open-source community to

create tools that automate the Cisco ACI configuration, such developments are optional and beyond the scope

of this design document.

This white paper will thoroughly examine the technical underpinnings, implementation considerations, and

operational benefits of this approach. It will guide readers through the process of implementing this hybrid

model, ensuring that network reliability, performance, and security are not only preserved but significantly

enhanced.

1 https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-

743182.html

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-743182.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-743182.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 4 of 43

Goals

The design goals for our Kubernetes networking solution focus on addressing the critical challenges faced by

administrators when managing traffic flow and ensuring secure connectivity within and outside the Kubernetes

cluster. Our approach is to implement a robust and scalable load-balancing strategy coupled with a secure

networking model that bridges the gap between containerized applications and external non-containerized

systems.

1. Efficient load balancing:

a. Design and implement a load-balancing mechanism that effectively distributes external client traffic to

services within the Kubernetes cluster

b. Utilize a subset of cluster nodes to perform BGP peering, enabling Layer- 3/Layer-4 Equal-Cost Multi-

Path (ECMP)–based load balancing

c. Minimize design complexity while maximizing traffic optimization, achieving a balance that

accommodates the dynamic nature of Kubernetes workloads without compromising on performance

2. External service security:

a. The load balancer IP is mapped to an ACI external Endpoint Group (external EPG) to facilitate the

enforcement of security policies through ACI contracts

3. Network Pod visibility

a. Leverage Cilium L2 Pod Announcements to provide visibility of the Pod IP inside the ACI fabric

4. Security between Pods-initiated traffic and external applications:

a. Leverage Cilium L2 Pod Announcements and Pod IPAM Multi-Pool to implement a strategy that handles

the unpredictable nature of Pod IP addresses, which can change on Pod restarts or rescheduling.

By mapping Pod CIDR blocks to corresponding Kubernetes namespaces and ESGs we can:

i. Secure the Pod networking for outbound cluster traffic through the use of ACI contracts

ii. Secure the Pod networking for outbound cluster traffic through an external firewall at a

“namespace” level; that is, by a Pod CIDR block that is allocated to a specific namespace

5. DHCP relay support:

a. This will ensure it is easy to bootstrap and scale a given cluster.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 5 of 43

Implementation considerations

To achieve these goals, the design will require careful planning and implementation of network policies, BGP

configurations, and integration with existing Cisco ACI infrastructure. Attention must also be given to

compatibility with current and future Kubernetes versions to ensure long-term viability of the solution.

Expected outcomes

The successful implementation of these design goals will result in a Kubernetes networking configuration that

not only optimizes traffic flow and load balancing but also maintains a high level of security for both intra-cluster

and extra-cluster communications. The solution will provide Kubernetes administrators with the tools necessary

to manage complex networking scenarios with confidence and efficiency.

The BGP external service advertisement and Layer-2 pod announcement functionalities operate autonomously

and may be conjoined or utilized separately, depending on your business requirements.

Required knowledge

This document covers advanced configuration topics in both Cisco ACI and Cilium. It is expected the user is

familiar with the following features:

● Cisco ACI:

◦ Access policies

◦ EPGs/BD

◦ ESGs

◦ Contracts

◦ L3Out floating SVI

◦ BGP

● Cilium

◦ Cilium installation

◦ Cilium configuration parameters for Pod IPAM (Cluster-Pool and Multi-Pool)

◦ Cilium BGP Control Plane

◦ Cilium L2 Pod Announcements

Cilium

Cilium is an open-source project to provide networking, security, and observability for cloud-native

environments such as Kubernetes clusters and other container orchestration platforms.

At the foundation of Cilium is a Linux kernel technology called eBPF, which enables the dynamic insertion of

powerful security, visibility, and networking control logic into the Linux kernel. eBPF is used to provide high-

performance networking, multicluster, and multicloud capabilities, advanced load balancing, transparent

encryption, extensive network security capabilities, transparent observability, and much more.2

2 https://cilium.io/get-started/

https://cilium.io/get-started/

© 2024 Cisco and/or its affiliates. All rights reserved. Page 6 of 43

Cilium BGP Control Plane3

Cilium BGP Control Plane provides a way for Cilium to advertise routes to connected routers by using the

Border Gateway Protocol (BGP). Cilium BGP Control Plane makes pod networks and/or load-balancer services

of type LoadBalancer reachable from outside the cluster for environments that support BGP. In Cilium, the BGP

Control Plane does not program the Linux host data path, so it cannot be used to establish IP reachability

within the cluster or to external IPs.

For this design on top of the interface used for node and Pod communication, an additional one is deployed for

the BGP Control Plane. This new interface will be used to advertise the IP addresses of load-balancer services

of type LoadBalancer.

To handle routing over two separate interfaces (and avoid asymmetric routing), Linux IP route tables and IP

rules will be used, as following:

● Create a new route-table ID; that is, “100”

● In route table 100, add a default route pointing to the floating SVI secondary address

● Use ip rule so that traffic that is sourced from either of the following:

◦ the service interface IP address

◦ the service IP pool is going to use route table 100, thus ensuring that traffic will be sent back to the

L3Out, which preserves routing symmetry.

Cilium BGP Control Plane high-level cluster topology

3 https://docs.cilium.io/en/stable/network/bgp-control-plane/#cilium-bgp-control-plane-beta

https://docs.cilium.io/en/stable/network/bgp-control-plane/#cilium-bgp-control-plane-beta

© 2024 Cisco and/or its affiliates. All rights reserved. Page 7 of 43

Cilium BGP Control Plane traffic flows 4

Cilium L2 Pod Announcements

Cilium L2 Pod Announcements announce pod IP addresses on the L2 network using gratuitous ARP replies.

When enabled, the node transmits gratuitous ARP replies for every locally created Pod on the configured

network interface.

When using this feature Cilium Masquerading needs to be disabled or the Pod IP will still be natted.

We can leverage this capability with ACI ESGs and create a design where the nodes and Pod subnets are

separated in two ESGs and use ACI contracts to secure traffic to and from the nodes and traffic from the Pods.

The contracts can be applied to ESGs or external EPGs.

Warning: Due to the ephemeral nature of the Pod IPs, you should not use this capability to access the Pod IP

directly. This is not supported, and this design is not tested or intended to be used in such way.

Note: This feature is primarily utilized to enhance network visibility and to provide external devices with

predictable IP ranges for traffic initiated by the pods. It is important to remember that direct access to the

Pods using this method is not recommended. The IP addresses assigned to pods are transient and, as

such, cannot be predetermined with certainty.

4 https://docs.cilium.io/en/latest/network/l2-announcements/#l2-pod-announcements

https://docs.cilium.io/en/latest/network/l2-announcements/#l2-pod-announcements

© 2024 Cisco and/or its affiliates. All rights reserved. Page 8 of 43

L2 Announcement contracts

Multi-Pool5

Multi-Pool IPAM mode supports allocating pod CIDRs from multiple different IPAM pools, depending on

properties of the workload that are defined by the user; for example, annotations. When running in Multi-Pool

IPAM mode, Cilium can use the ipam.cilium.io/ip-pool annotation on Pods and namespaces to determine the

IPAM pool from which a Pod’s IP is allocated.

Since the Multi-Pool IPAM mode supports allocating podCIDRs (from multiple different IPAM pools) to different

namespaces, we can now easily create namespace-to-ESG mappings by using an ESG subnet selector. As

explained in the previous section, we leverage this capability with ACI ESGs and create a design where the

nodes and Pods are placed in dedicated ESGs however, in this case we can have multiple ESGs for our Pods

based on the namespace they reside in. As before, the contracts can be applied to ESGs or external EPGs.

Warning: Due to the ephemeral nature of the Pod IPs you should not use this capability to access the Pod IP

directly. This is not supported, and this design is not tested or intended to be used in such way.

5 https://docs.cilium.io/en/latest/network/concepts/ipam/multi-pool/#multi-pool-beta

https://docs.cilium.io/en/latest/network/concepts/ipam/multi-pool/#multi-pool-beta

© 2024 Cisco and/or its affiliates. All rights reserved. Page 9 of 43

L2 Announcement Multi Pool contracts

Design overview

Irrespective of the specific features you select to incorporate within your design, there exists a foundational

infrastructure that underpins the entire configuration, which is delineated as follows:

● The Kubernetes cluster can be placed in any tenant: dedicated, pre-existing between multiple clusters,

etc.

● Create one Bridge Domain (BD) or your Kubernetes cluster

◦ Configure the bridge domain with a primary subnet in the node subnet. This will be the default

gateway for the Kubernetes nodes.

● Create one EPG for the Kubernetes nodes primary (KubeAPI) interface

This basic design gives us the following capabilities:

● Secure the traffic initiated by the Kubernetes nodes with ACI contracts.

● DHCP relay support: This will allow the Kubernetes nodes to be bootstrapped without the need to

manually configure their IP address easing the cluster bootstrap and horizontal scalability Remember to

set the node subnet as “Primary” as DHCP relay packets are forwarded only for this subnet.

◦ This is an advantage compared to a pure BGP design, because DHCP relay is not supported on an

L3Out.

● Visibility of the node IP

● The nodes can be of any type and can be mixed: you can have a cluster composed of bare-metal hosts

and VMs running on any hypervisor as long as network connectivity is provided.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 10 of 43

● Routing simplicity: the node default gateway is the ACI node subnet SVI IP.

Foundational infrastructure

Cluster EPG physical connectivity

There is no strict requirement of the physical connectivity for the cluster EPG as long as it provides the required

redundancy level. Most designs are likely to lean toward a vPC based design.

Selective BGP peering for service advertisement

In this design, a dedicated Cisco ACI L3Out is created for external service advertisement for a subset of

Kubernetes nodes that will be, from now on, called “ingress nodes.”

These nodes will be configured with two interfaces. It is convenient to keep the ingress nodes in the cluster

EPG, because it simplifies node-to-node communication and allows the use of DHCP relay for node

provisioning.

Selective BGP peering architecture

© 2024 Cisco and/or its affiliates. All rights reserved. Page 11 of 43

L3Out physical connectivity

There is no strict requirement of the physical connectivity for the L3Out as long as it provides the required

redundancy level.

This design implements L3 connectivity with the use of the floating SVI feature. This feature allows us to

configure an L3Out without specifying logical interfaces, thus removing the need to configure multiple L3Out

logical interfaces to maintain routing when VMs move from one host to another. Floating SVI is supported for

VMware vSphere Distributed Switch (VDS) as of Cisco ACI Release 4.2(1) and on physical domains as of

Cisco ACI Release 5.0(1). It is recommended to use the physical domains approach for the following reasons:

● It can support any hypervisor.

● It can support mixed mode clusters (VMs and bare-metal).

This is not a strict requirement, and, if all nodes are running in a VMware environment, there are no technical

reasons not to use VMM integration.

Using floating SVI also relaxes the requirement of not having any Layer-2 communications between the ingress

nodes; this allows the design to use:

● A single subnet for all the ingress nodes

● A single encapsulation (VLAN) for all the ingress nodes

Due to a limitation in ACI, an additional requirement for this design is to peer the ingress nodes with directly

attached anchor nodes: routes generated by nodes directly connected to the anchor nodes are preferred over

routes from nodes not directly connected to the anchor nodes, and this could lead to nodes not being utilized.

For example: if we have exposed, from our ingress nodes, a service with IP 1.1.1.1 over BGP, as shown in

Figure 78, anchor leaf101 will only install one ECMP path for 1.1.1.1/32 through 192.168.2.1, because the

locally attached route is preferred.

Floating SVI and non-directly attached nodes

© 2024 Cisco and/or its affiliates. All rights reserved. Page 12 of 43

In practice, this means that, if we are using VMs for ingress nodes, we need to ensure that they cannot be

migrated to a host not directly connected to the anchor nodes selected for BGP peering. This partially voids one

of the main benefits of using floating SVI; however, a future ACI release will address this limitation.

ACI BGP design

From a BGP design perspective, we will take advantage of the following features:

BGP Dynamic Neighbors

All the ingress nodes will share the same AS number. By sharing the same AS number, we can use the BGP

Dynamic Neighbors capability, which allows for the dynamic and automated establishment of peering sessions

between routers. Instead of requiring manual configuration of individual neighbor statements for each peer, this

feature utilizes a "listener" (in our case, the ACI fabric) to accept incoming BGP connections from a predefined

IP subnet.

BGP Graceful Restart

Both ACI and Cilium will be configured to use BGP Graceful Restart. When a BGP speaker restarts its BGP

process or when the BGP process crashes, neighbors will not discard the received paths from the speaker,

ensuring that connectivity is not impacted as long as the data plane is still correctly programmed.

BGP timers tuning

Currently, Cilium does not support Bidirectional Forwarding Detection (BFD), so, to achieve faster convergence,

we must rely on BGP timers tuning. Since the number of ingress nodes is limited, this should not pose any

scalability issues on the border leaves.

The ACI BGP timers should be set to 1s/3s to ensure faster convergence.

Max BGP ECMP path (optional)

By default, ACI installs up to 16 eBGP/iBGP ECMP paths. If more than 16 ingress nodes are required, ACI can

be configured to install up to 64 ECMP paths.

BGP hardening (optional)

To protect the ACI system against potential Kubernetes BGP misconfigurations, the following settings are

recommended:

● Enable BGP password authentication

● Set the maximum AS limit to one:

◦ Per the eBGP architecture, the AS path should always be one.

● Configure BGP import route control to accept only the expected external-services subnets.

● (Optional) Set a limit on the number of received prefixes from the nodes.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 13 of 43

Cilium BGP design

When it comes to the Cilium BGP design, the only real decisions we must make are how many ingress nodes to

deploy and whether or not we want to dedicate them only for this purpose.

Ideally, we want to have a minimum of two ingress nodes distributed between two pairs of anchor nodes. This

will provide redundancy in case of ingress node or ACI leaf failure or during upgrades.

Depending on the cluster scale and application requirements, dedicated ingress nodes could be beneficial for

the following reasons:

● Consistent latency: if no Pods are running on the ingress node, latency will always be the same: all the

ingress traffic will reach the target Pod through two hops.

● Limit the number of ingress nodes: By having dedicated ingress nodes, we can ensure that all the

bandwidth and compute are dedicated to the ingress function.

● Specialized hardware: not all the nodes in a Kubernetes clusters need to be the same; specialized high-

performance hardware can be utilized for our ingress nodes. For example, thanks to CiliumNodeConfig,6

we can deploy bare-metal nodes with wither Mellanox or Intel® network interface cards and achieve

100+ Gbps throughput per ingress node, thanks to Cilium Big TCP capability. 7

For small clusters or labs, there is no need to have dedicated ingress nodes.

To selectively enable BGP and ensure that we peer with the “correct” anchor nodes (that is, ones that are

directly attached), we can use CiliumBGPPeeringPolicy and matchLabels to select leaves and ingress node

groups.

Refer to the “Example configuration - OpenShift, Multi-Pool, L2 Pod Advertisement, and BGP Advertisement”

section of this document for implementation details.

Cluster-Pool: pod visibility

Layer-2 Pod Announcements advertise the pod IP addresses within the Layer-2 network domain, utilizing

Gratuitous Address Resolution Protocol (GARP). When enabled, the node transmits gratuitous ARP replies for

every locally created Pod on the configured network interface.

In Cisco ACI, we can take advantage of this behavior, as described below:

1. Create a Bridge Domain (BD) with a two subnets configured:

a. The node subnet, and set this as primary, ensuring we can enable DHCP relay.

b. The Pod subnet, as defined in the Cilium configuration

2. Create an Endpoint Group (EPG) that is associated with the aforementioned BD.

3. Create two Endpoint Security Groups (ESGs):

a. A node ESG with an IP-subnet-based selector that correlates with the node subnet.

b. A Pod ESG with an IP-subnet-based selector that aligns with the Pod subnet.

6 https://docs.cilium.io/en/latest/configuration/per-node-config/#per-node-configuration

7 https://docs.cilium.io/en/stable/operations/performance/tuning/#ipv6-big-tcp

https://docs.cilium.io/en/latest/configuration/per-node-config/#per-node-configuration
https://docs.cilium.io/en/stable/operations/performance/tuning/#ipv6-big-tcp

© 2024 Cisco and/or its affiliates. All rights reserved. Page 14 of 43

Cluster-Pool: pod visibility

This configuration enables the segregation and independent security management of node and Pod traffic using

contracts while concurrently maintaining Pod IP visibility within the network fabric.

Pod-to-node communication is expected to be unrestricted, therefore the node and POD ESGs need to be

configured with a contract that allows unrestricted communication or are placed in the same preferred group.

Note that having different preferred groups in the same VRF is not allowed., and an ESG/EPG can be a member,

though it does not have to be. This does not allow having different preferred groups in the same VRF; as such, it

is not recommended.

Additionally, we need to ensure that no Pod will ever use as an IP address one already used in the ACI BD:

Cilium does not have any capability to exclude one IP from the PodCIDRs nor to learn of such an address in the

ACI BD.

This issue is, however, easily addressed:

Consider, for instance, a desired configuration such as the following:

● clusterPoolIPv4PodCIDRList=10.52.0.0/16

● ipv4NativeRoutingCIDR=10.52.0.0/16

● clusterPoolIPv4MaskSize=/24

● ACI BD subnet with Switch Virtual Interface (SVI): 10.52.255.254/16

We need to ensure that Cilium will never allocate to a Pod the 10.52.255.254 address.

Cilium allocates PODs CIDRto the Kubernetes nodes by splitting the clusterPoolIPv4PodCIDRList by

clusterPoolIPv4MaskSize.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 15 of 43

For example, based on the above configuration, our nodes will get per node podCIDR subnets like these:

10.52.0.0/24,10.52.1.0/24, etc.

Furthermore, Cluster-Pool supports having one or more subnets in the PodCIDRList, allowing us to define the

clusterPoolIPv4PodCIDRList as a list of the following subnets:

● 10.52.0.0/17

● 10.52.128.0/18

● 10.52.192.0/19

● 10.52.224.0/20

● 10.52.240.0/21

● 10.52.248.0/22

● 10.52.252.0/23

● 10.52.254.0/24

In practice, this results in the exclusion of 10.52.255.0/24 from the 10.52.0.0/16 clusterPoolIPv4PodCIDRList,

ensuring that 10.52.255.254 is never going to be allocated to a Pod. The only disadvantages of this

configuration are wasting a clusterPoolIPv4MaskSize subnet and the requirement to configure the

clusterPoolIPv4PodCIDRList with multiple subnets.

Note: To keep the clusterPoolIPv4PodCIDRList as easy to manage as possible, it is recommended to

allocate to ACI either the first or the last IP in the subnet.

Currently, a Cilium issue has been opened to enhance this configuration:

https://github.com/cilium/cilium/issues/31600

Warning: Both Cluster-Pool and Multi-Pool will generate duplicate IPs and routing loops if the nodes are not

configured correctly. Please refer to Cluster-Pool and Multi-Pool node-routing requirements.

https://github.com/cilium/cilium/issues/31600

© 2024 Cisco and/or its affiliates. All rights reserved. Page 16 of 43

Multi-Pool: pod visibility and security

The design for Multi-Pool follows the same principle of the one for Cluster-Pool; however, since the Multi-Pool

IPAM mode supports allocating PodCIDRs (from multiple different IPAM pools) to different namespaces, we can

now easily create namespace-to-ESG mappings by using an ESG subnet selector.

Multi-Pool pod visibility and per-namespace security

Similarly to what we did for Cluster-Pool, we need to ensure that Cilium will never allocate to a Pod the ACI BD

SVI address. Furthermore, it is recommended to have a “default” POD CIDR pool that will be used when the

ipam.cilium.io/ip-pool is not present. This is particularly convenient in the case of OpenShift where several

Pods will need to be running as part of the cluster bootstrap process.

Let’s assume for our cluster that we want to use the 10.52.0.0/16 as ipv4NativeRoutingCIDR.

● Create a “default” Pod IP pool in the 10.52.0.0/17 subnet. This will be the default subnet the Pods will

use.

● As needed, carve out the 10.52.128.0/17 subnet to create additional POD CIDR pools that can be

selected with the ipam.cilium.io/ip-pool annotation.

● Create new ESGs in ACI that match the “new” POD CIDR pools.

● Do not allocate to a POD CIDR pools a subnet that contains the ACI BD address.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 17 of 43

Multi-Pool CIDR size and nodes

When configuring Pod pools, it is important to remember that Pod scheduling is managed by the Kubernetes

scheduler, and the Pod IP pool allocation to a Kubernetes node is managed by Cilium.

These two components do not talk or influence each other’s, and, every time a Pod is started on a node, Cilium

will select a maskSize subnet from the Pod pool and allocate it to the node (unless is already allocated).

If there are more Kubernetes nodes than maskSize subnets inside the Pod pool, it is possible that the

Kubernetes scheduler will schedule a Pod on a node that has no POD CIDR available, resulting in the Pod never

reach the run stage.

To avoid this issue, we can:

● Pick a Pod pool that is large enough for every node to get a maskSize subnet.

● Influence the Kubernetes scheduler: this can be done by using node labels to select only a subset of the

nodes when scheduling an application that is using a specific Pod pool.

Note: This behaviour is standard in Kubernetes and can be seen even without the use of Multi-Pool. In

general, this is a nonissue because we tend to allocate /16 or larger subnets as POD CIDRs.

Warning: Both Cluster-Pool and Multi-Pool will generate duplicate IPs and routing loops if the nodes are not

configured correctly. Please refer to Cluster-Pool and Multi-Pool node-routing requirements

Cluster-Pool and Multi-Pool node-routing requirements

With both Cluster-Pool and Multi-Pool, loops and duplicate IPs will happen under the following circumstances:

● Cluster-Pool:

◦ When a Kubernetes node(s) is reloaded

● Multi-Pool:

◦ When a Kubernetes node(s) is reloaded

◦ When a Pod is no longer on a node but traffic is still being sent to the nonexistent Pod

The root cause is that the Pod endpoint learned by ACI will not age-out immediately, and any traffic directed to

a non-existing Pod IP will still be forwarded to the Kubernetes node.

The node receiving the traffic, not having a Pod running anymore with that IP, will return the traffic back to ACI,

following the default route. This will lead to routing loops, and in both cases ACI Rogue EP Control will be

triggered and the whole cluster connectivity will be impacted.

Note: This is a simplified explanation, and there are differences in the behavior of Cluster-Pool vs. Multi-

Pool. A detailed root-cause analysis is available in this GitHub issue:

https://github.com/cilium/cilium/issues/31079.

The solution is quite simple: When using L2 Pod Subnet advertisement, ALL your Kubernetes nodes need to

have a blackhole route (route to null) for the ipv4NativeRoutingCIDR.

https://github.com/cilium/cilium/issues/31079

© 2024 Cisco and/or its affiliates. All rights reserved. Page 18 of 43

Design trade offs

This design aims to provide you with an easy and high scalable design; however, it comes with the following

drawbacks:

1. External services can only be advertised as “Cluster Scope”: since all the incoming traffic has to pass

through a subset of Kubernetes nodes, we need to be able to perform a second-stage load balancing

to reach the “correct” node.

2. Potential bottle necks for ingress traffic

3. BGP cannot be used anymore to advertise the Pod subnets.

For issue (1) there is no solution; this is a trade-off we make to achieve a more scalable and simple design.

Issue (2) can be easily addressed with either vertical or horizontal scaling, as detailed in the “Cilium BGP

design” section in this document.

Issue (3) can be addressed with Cilium L2 Pod Announcements: This feature uses gratuitous ARP to advertise

the Pod IPs to the network, bypassing the need for each node to participate in BGP peering.

Supported platforms

This design has been tested on the following Kubernetes distributions:

OpenShift

The design works correctly on OpenShift except for two issues, both with easy workarounds:

1. There is currently an RBAC issue on Cilium manifests for OpenShift. The workaround is to patch the

cluster-network-06-cilium-00009-cilium-cilium-clusterrole.yaml file and add the following

additional permissions:

 - apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

2. Even if NMState supports setting blackhole routes, OpenShift Assisted Installer will fail, displaying the

following error:

Invalid YAML string: unknown field route-type, expected one of state, destination, next-

hop-interface, next-hop-address, metric, table-id, weight, err_kind: InvalidArgument

The blackhole route can be added once the cluster is installed, using an
NodeNetworkConfigurationPolicy. In my testing, a cluster bootstrap completed successfully even
without the “blackhole” route for the POD CIDR; however, especially in a production environment, it is
recommended to add this route manually on all the nodes during the bootstrap process.

This can be done by connecting to every node with SSH and issuing this command:

ip route add blackhole <POD_CIDR>

Note: During installation, the nodes will reload once; adding the route is required after the first

reload.

https://github.com/isovalent/olm-for-cilium/issues/91

© 2024 Cisco and/or its affiliates. All rights reserved. Page 19 of 43

Once the cluster is successfully bootstrapped, you can install the NMState Operator and add this
config to ensure that the blackhole route will always be present:

apiVersion: nmstate.io/v1

kind: NodeNetworkConfigurationPolicy

metadata:

 name: additional-routes

spec:

 nodeSelector:

 kubernetes.io/os: linux

 desiredState:

 routes:

 config:

 - destination: <POD_CIDR>

 route-type: blackhole

Note: Since I need this route on all the nodes, and since all my nodes are Linux-based, I am using as

nodeSelector the label kubernetes.io/os=linux. This might need to be changed depending on

your specific environment.

Upstream Kubernetes

The design works correctly on Upstream Kubernetes.

Depending on the version of Linux OS chosen, the way to configure the blackhole route and the ip-rules might

be different:

● On distribution, where NetworkManager is present, you can install the NMState Operator and use the

same config as shown in the example above.

● If you have direct access to the Linux networking config, you can simply add the routes/rules manually.

● If you are using a version of Linux OS that does not support editing the ip rules manually (for example,

for Cisco® Talos® Linux, see this issue) a possible solution is to run a privileged daemon set on the nodes

to set the ip-rules. A possible open-source approach is provided here:

https://github.com/camrossi/cilium-secondary-interface-route-manager.

Note: The above code is provided as is and is not supported by Cisco TAC.

The above list is not exhaustive and shows just a few possibilities.

https://github.com/siderolabs/talos/issues/7184
https://github.com/camrossi/cilium-secondary-interface-route-manager

© 2024 Cisco and/or its affiliates. All rights reserved. Page 20 of 43

Example configuration - OpenShift, Multi-Pool, L2 Pod Advertisement, and

BGP Advertisement

This example assumes you are familiar with OpenShift, OpenShift Assisted Installer, and have bootstrapped

OpenShift clusters in the past.

Note: DHCP relay is not used for this example.

This cluster will be composed of

● 3x primary nodes

● 4x dedicated worker nodes

● 2x dedicated ingress nodes

The following subnets will be used:

● Node subnet: 192.168.2.16/28

● Pod subnet: 10.53.0.0/16

◦ Default Pod subnet 10.53.0.0/17

◦ App-1 Pod subnet: 10.53.128.0/24

◦ App-2 Pod subnet: 10.53.129.0/24

◦ ACI Pod SVI: 10.53.255.254/16

● BGP peering subnet: 192.168.2.0/28

● Load-balancer services pool: 192.168.2.32/28

Note: In this example, the cluster will be placed in a dedicated tenant called openshift-cilium-c1 and will

use a pre-existing VRF “k8s” in the common tenant.

A high-level topology is show below, the tenant and VRF are not shown for simplicity.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 21 of 43

OpenShift topology

Pre-Requisites

● The fabric access policies / VMM domains must already be in place for your OpenShift nodes.

● To successfully bootstrap an OpenShift cluster, both the node and the Pod subnets need to have internet

access. How this is achieved is environment dependent.

ACI configuration

1. Create a new “openshift-cilium-c1” tenant. All of the subsequent config is placed inside this tenant.

2. Create a new “cluster” BD.

a. Note: In this example, this BD is mapped to a pre-existing VRF in the common tenant. You will need to

create your own VRF.

b. Add the nodes subnet SVI 192.168.2.30/28 as the primary subnet.

c. Add an additional Pod subnet SVI: 10.53.255.254/16.

3. Create a new “cluster” application profile.

a. Create a “cluster” EPG and provision connectivity to your OpenShift node through VMM and/or static

port binding.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 22 of 43

b. Create a “contract-master” ESG:

i. Set the ESG admin state to “Admin Shut.” This ESG is not expected to carry any traffic and will only

be used as a contract master ESG.

ii. Add a “permit-all” contract in both the consumer and provider direction. This will be used to ensure

that bidirectional communication is allowed between the nodes and the Pods.

This is required because, in any Kubernetes cluster, all the Pods need to be able to communicate with
the DNS service. Additionally, OpenShift deploys several operators that will need to access the
KubeAPI, node statistics, etc. Providing unrestricted communication within the cluster is hence the
preferred approach. This is also the default behavior of any Kubernetes cluster.

iii. When creating the ESGs in the following steps, select the “contract-master” ESG as ESG contract

master.

c. Create a “nodes” ESG and use the 192.168.2.16/28 as IP subnet selector.

i. Add contracts to allow internet connectivity, because OpenShift requires this to operate correctly.

d. Create a “default-pods” ESG and use the 10.53.0.0/17 as IP subnet selector.

i. Add contracts to allow internet connectivity, because OpenShift requires this to operate correctly.

e. Create an “app-1-pods” ESG and use the 10.53.128.0/24 as IP subnet selector.

f. Create an “app-2-pods” ESG and use the 10.53.129.0/24 as IP subnet selector.

4. Create a new BGP Timers Policy and set the following parameters:

a. Keep-alive interval: 1s

b. Hold interval: 3s

c. Maximum AS limit: 1

d. Leave the rest as default.

5. Create a new L3Out called “services.” This will be configured using floating SVIs.

a. Create a new “Node Profile” and add you anchor nodes to it; in this example. I have 4 anchor nodes, as

shown in Figure 9

b. Configure a floating interface profile with 4 floating-SVI interfaces, one for each node.

i. Add a BGP peer connectivity profile for the 192.168.2.0/28 subnet. Select a BGP remote AS for

your cluster; in this example, we are going to use 65112. Leave all the other options as default.

ii. Create a “default_svc” external EPG for the load-balancer services pool: 192.168.2.32/28, and set

this subnet as “External Subnets for External EPG.”

iii. Create an “app1_svc” external EPG for the load-balancer services: 192.168.2.33/32, and set this

subnet as “External Subnets for External EPG.”

iv. Create an “app2_svc” external EPG for the load-balancer services: 192.168.2.34/32, and set this

subnet as “External Subnets for External EPG.”

v. Depending on your lab config, you should also add contracts to these 3 external EPGs to provide

connectivity toward your clients.

c. Create a “BGP Protocol Profile” by clicking on Node Profile that you created.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 23 of 43

i. Apply the BGP timers policy.

This concludes the ACI configuration. The fabric should be ready to accept your workloads.

OpenShift configuration

In this example, I am deploying OpenShift 4.15 with Assisted Installer8. Assisted Installer requires us to create

two config files:

● install-config.yaml

● agent-config.yaml

Furthermore, since we are installing Cilium, we also need to prepare an additional folder containing the required

Cilium manifests and their customisations.

Note: When openshift-install generates the cluster config, it will delete the source files. I strongly

recommend that you create an agent-config folder and an install folder and generate the cluster config by

executing the openshift-install against the install folder after copying the content from the agent-config

folder in it.

Install-config

The difference from a standard OpenShift installation is the networkType: Cilium setting.

apiVersion: v1

baseDomain: cam.ciscolabs.com

compute:

- name: worker

 replicas: 6

controlPlane:

 name: master

 replicas: 3

metadata:

 name: ocp-cilium-c1

networking:

 machineNetwork:

 - cidr: 192.168.2.16/28

 clusterNetwork:

 - cidr: 10.53.0.0/16

 hostPrefix: 27

 networkType: Cilium

 serviceNetwork:

 - 172.30.0.0/16

platform:

 baremetal:

8 https://docs.openshift.com/container-platform/4.15/installing/installing_on_prem_assisted/installing-on-prem-assisted.html

https://docs.openshift.com/container-platform/4.15/installing/installing_on_prem_assisted/installing-on-prem-assisted.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 24 of 43

 apiVIPs:

 - 192.168.2.29

 ingressVIPs:

 - 192.168.2.28

fips: false

pullSecret: '<youPullSecret>'

sshKey: 'ssh-rsa <yourkey>'

Agent-Config

The difference from a standard OpenShift Installation is the following:

The ingress nodes are configured with an additional interface for the L3Out peering, and additional static route

and route-rules as described in the “Cilium Cilium BGP Control Plane” section of this document. In this

example, we will have two route-rules sending traffic from the node service interface “192.168.2.<nodeIP>/32”

and our CiliumLoadBalancerIPPool pool 192.168.2.32/28 to route-table 101.

Note: If you add more than one CiliumLoadBalancerIPPool, you will need to add them as additional

rules. You can use a NMState NodeNetworkConfigurationPolicy for this task.

apiVersion: v1alpha1

kind: AgentConfig

metadata:

 name: ocp-cilium-c1

rendezvousIP: 192.168.2.17

AdditionalNTPSources:

 - time.cisco.com

hosts:

 - hostname: ocp-cilium-c1-m1

 role: master

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:e5:49

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:e5:49

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.17

 prefix-length: 28

 dhcp: false

© 2024 Cisco and/or its affiliates. All rights reserved. Page 25 of 43

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-m2

 role: master

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:82:30

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:82:30

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.18

 prefix-length: 28

 dhcp: false

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-m3

 role: master

 interfaces:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 26 of 43

 - name: ens192

 macAddress: 00:50:56:b1:70:90

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:70:90

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.19

 prefix-length: 28

 dhcp: false

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-w1

 role: worker

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:a0:10

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:a0:10

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.20

 prefix-length: 28

 dhcp: false

© 2024 Cisco and/or its affiliates. All rights reserved. Page 27 of 43

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-w2

 role: worker

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:b9:ea

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:b9:ea

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.21

 prefix-length: 28

 dhcp: false

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-w3

 role: worker

 interfaces:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 28 of 43

 - name: ens192

 macAddress: 00:50:56:b1:41:78

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:41:78

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.22

 prefix-length: 28

 dhcp: false

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-w4

 role: worker

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:55:35

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:55:35

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.23

 prefix-length: 28

 dhcp: false

© 2024 Cisco and/or its affiliates. All rights reserved. Page 29 of 43

 ipv6:

 enabled: false

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - hostname: ocp-cilium-c1-ingress1

 role: worker

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:b8:35

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:b8:35

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.24

 prefix-length: 28

 dhcp: false

 ipv6:

 enabled: false

 - name: ens224

 description: Interface for BGP Peering

 type: ethernet

 state: up

 ipv4:

 dhcp: false

 address:

 - ip: 192.168.2.1

 prefix-length: 28

 enabled: true

 dns-resolver:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 30 of 43

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.11

 next-hop-interface: ens224

 table-id: 101

 route-rules:

 config:

 - ip-from: 192.168.2.1/32

 route-table: 101

 - ip-from: 192.168.2.32/28

 route-table: 101

 - hostname: ocp-cilium-c1-ingress2

 role: worker

 interfaces:

 - name: ens192

 macAddress: 00:50:56:b1:56:d0

 networkConfig:

 interfaces:

 - name: ens192

 type: ethernet

 state: up

 mac-address: 00:50:56:b1:56:d0

 ipv4:

 enabled: true

 address:

 - ip: 192.168.2.25

 prefix-length: 28

 dhcp: false

 ipv6:

 enabled: false

 - name: ens224

 description: Interface for BGP Peering

 type: ethernet

 state: up

 ipv4:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 31 of 43

 dhcp: false

 address:

 - ip: 192.168.2.2

 prefix-length: 28

 enabled: true

 dns-resolver:

 config:

 server:

 - 10.67.185.100

 routes:

 config:

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.30

 next-hop-interface: ens192

 - destination: 0.0.0.0/0

 next-hop-address: 192.168.2.11

 next-hop-interface: ens224

 table-id: 101

 route-rules:

 config:

 - ip-from: 192.168.2.2/32

 route-table: 101

 - ip-from: 192.168.2.32/28

 route-table: 101

As explained in the supported-platform section for OpenShift once the cluster is bootstrapped, we need to add

the blackhole for the POD CIDR.

apiVersion: nmstate.io/v1

kind: NodeNetworkConfigurationPolicy

metadata:

 name: pod-blackhole

spec:

 nodeSelector:

 kubernetes.io/os: linux

 desiredState:

 routes:

 config:

 - destination: 10.53.0.0/16

 route-type: blackhole

© 2024 Cisco and/or its affiliates. All rights reserved. Page 32 of 43

Cilium config

Normally, Cilium is installed after the Kubernetes cluster is bootstrapped, but for OpenShift, there is a strict

requirement for any CNI plug-in to be installed together with the cluster bootstrap.

To do so, we can follow the following procedure. Below, I have it summarized and slightly adapted to work with

Assisted Installer:

1. Obtain the Cilium manifest:

cd /tmp

git clone https://github.com/isovalent/olm-for-cilium.git

2. Copy the manifest for the required Cilium version in the OpenShift config folder.

Note: openshift-install requires additional manifests to be placed in a folder called “openshift.”

cp /tmp/olm-for-cilium/manifests/cilium.v1.15.1/* ./ocp-cilium-c1/config/openshift

3. Due to the following issue, we need to manually patch the manifests; this is needed to have the BGP

Control Plane working.

Edit the cluster-network-06-cilium-00009-cilium-cilium-clusterrole.yaml file and add the following:

 - apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

4. Edit the cluster-network-07-cilium-ciliumconfig.yaml to configure Cilium and configure as follows:

apiVersion: cilium.io/v1alpha1

kind: CiliumConfig

metadata:

 name: cilium

 namespace: cilium

spec:

 ipam:

 mode: "multi-pool"

 operator:

 autoCreateCiliumPodIPPools:

 default:

 ipv4:

 cidrs:

 - 10.53.0.0/17

 maskSize: 27

 ipv4NativeRoutingCIDR: "10.53.0.0/16"

https://github.com/isovalent/olm-for-cilium/blob/main/Documentation/k8s-install-openshift-okd.rst
https://github.com/isovalent/olm-for-cilium.git
https://github.com/isovalent/olm-for-cilium/issues/91

© 2024 Cisco and/or its affiliates. All rights reserved. Page 33 of 43

 enableIPv4Masquerade: false

 endpointRoutes:

 enabled: true

 autoDirectNodeRoutes: true

Not supported on VMs

loadBalancer:

acceleration: "native"

 l2podAnnouncements:

 enabled: true

 interface: ens192

 routingMode: "native"

 bgpControlPlane:

 enabled: true

 cni:

 binPath: "/var/lib/cni/bin"

 confPath: "/var/run/multus/cni/net.d"

 prometheus:

 serviceMonitor: {enabled: false}

 hubble:

 tls: {enabled: false}

 securityContext:

 privileged: true

 sessionAffinity: true

 kubeProxyReplacement: true

 k8sServiceHost: api-int.ocp-cilium-c1.cam.ciscolabs.com

 k8sServicePort: '6443'

 k8sClientRateLimit:

 qps: 2

 burst: 4

Cluster bootstrap and preparation

You can now generate your Assisted Installer ISO image using the following command:

cp -R config/* install

openshift-install agent create image --dir install/

Once the ISO is generated, you can follow the Assisted Installer procedure and just boot your OpenShift nodes.

Note: Once the cluster is up, please remember to add the blackhole routes through NMState. Failure to

do so will result in an unstable cluster.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 34 of 43

BGP configuration

The main goals for this example are the following:

1. To ensure that the ingress nodes are not running any POD, you can use a node taint. In this example, I

use NoExecute;9 this will terminate any Pod running on my ingress nodes. This is useful because the

ingress nodes have been provisioned during cluster bootstrap and will be running some Pods.

oc adm taint node <nodes> dedicated=ingress:NoExecute

2. ocp-cilium-c1-ingress1 peers with leaves 201 and 202. This requirement can be met by labelling the

node and creating a CiliumBGPPeeringPolicy that selects the nodes based on this label and ensures

that each node peers only with Leaf201 and 202.

oc label node ocp-cilium-c1-ingress1 bgp=ingress-201-202

3. ocp-cilium-c1-ingress2 peers with leaves 203 and 204.

oc label node ocp-cilium-c1-ingress2 bgp=ingress-203-204

4. Services with a “type:bgp” label are going to be advertised. This requirement can be met by creating a

CiliumBGPPeeringPolicy that selects the services based on this label.

apiVersion: "cilium.io/v2alpha1"

kind: CiliumBGPPeeringPolicy

metadata:

 name: bgp-peering-policy-201-202

spec: # CiliumBGPPeeringPolicySpec

 nodeSelector:

 matchLabels:

 bgp: ingress-201-202

 virtualRouters: # []CiliumBGPVirtualRouter

 - localASN: 65112

 exportPodCIDR: false

 serviceSelector:

 matchLabels:

 type: bgp

 neighbors: # []CiliumBGPNeighbor

 - peerAddress: '192.168.2.9/28'

 peerASN: 65002

 gracefulRestart:

 enabled: true

 - peerAddress: '192.168.2.10/28'

 peerASN: 65002

 gracefulRestart:

 enabled: true

9 https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#concepts

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#concepts

© 2024 Cisco and/or its affiliates. All rights reserved. Page 35 of 43

apiVersion: "cilium.io/v2alpha1"

kind: CiliumBGPPeeringPolicy

metadata:

 name: bgp-peering-policy-203-204

spec: # CiliumBGPPeeringPolicySpec

 nodeSelector:

 matchLabels:

 bgp: ingress-203-204

 virtualRouters: # []CiliumBGPVirtualRouter

 - localASN: 65112

 exportPodCIDR: false

 serviceSelector:

 matchLabels:

 type: bgp

 neighbors: # []CiliumBGPNeighbor

 - peerAddress: '192.168.2.11/28'

 peerASN: 65002

 gracefulRestart:

 enabled: true

 - peerAddress: '192.168.2.12/28'

 peerASN: 65002

 gracefulRestart:

 enabled: true

After applying the above configuration, you should be able to see the BGP peering that has been established

with the ACI leaves:

For example, here we can see BGP peering on leaf 201 from the ocp-cilium-c1-ingress node:

fab2-apic1# fabric 201 show ip bgp summary vrf common:k8s

--

Node 201 (Leaf201)

--

BGP summary information for VRF common:k8s, address family IPv4 Unicast

BGP router identifier 1.1.1.201, local AS number 65002

BGP table version is 593, IPv4 Unicast config peers 6, capable peers 3

55 network entries and 91 paths using 13348 bytes of memory

BGP attribute entries [25/8800], BGP AS path entries [0/0]

BGP community entries [0/0], BGP clusterlist entries [6/24]

Neighbor V AS MsgRcvd MsgSentTblVer InQ OutQ Up/Down State/PfxRcd

192.168.2.1 4 65112 1545 1546593 0 0 00:25:42 0

© 2024 Cisco and/or its affiliates. All rights reserved. Page 36 of 43

Configuring additional IP pools

As per our design, we expect to have the following additional subnets configured:

● App-1 Pod Subnet: 10.53.128.0/24

● App-2 Pod Subnet: 10.53.129.0/24

● Load-balancer services pool: 192.168.2.32/28

The first two are Pod subnets, and the last one is a load-balancer one.

The configurations required to generate these pools are shown below.

CiliumPodIPPool

In the config below, we are creating two IP pools called app-1 and app-2 and allocate the 10.53.128.0/24 and

10.53.129.0/24 subnets, respectively. I choose a maskSize of /27. In my cluster, I have four worker nodes, and

this maskSize will generate eight subnets in the /24 supernet.

apiVersion: cilium.io/v2alpha1

kind: CiliumPodIPPool

metadata:

 name: app-1

spec:

 ipv4:

 cidrs:

 - 10.53.128.0/24

 maskSize: 27

apiVersion: cilium.io/v2alpha1

kind: CiliumPodIPPool

metadata:

 name: app-2

spec:

 ipv4:

 cidrs:

 - 10.53.129.0/24

 maskSize: 27

© 2024 Cisco and/or its affiliates. All rights reserved. Page 37 of 43

CiliumLoadBalancerIPPool

In the config below, we allocate the 192.168.2.32/28 subnet as type CiliumLoadBalancerIPPool. The subnet is

configured with a “serviceSelector.matchLabels.pool,” which can be used in our services to select this pool.

apiVersion: cilium.io/v2alpha1

kind: CiliumLoadBalancerIPPool

metadata:

 name: "bgp-pool-1"

spec:

 blocks:

 - cidr: "192.168.2.32/28"

 serviceSelector:

 matchLabels:

 pool: bgp-pool-1

Deploying an application – parksmap

We are now ready to deploy an application to test our cluster.

We can use the “parksmap” demo application provided by Red Hat. We are going to deploy this application

three times.

Default Pod subnet – not advertised.

1. We will be placing our application in the parksmap namespace:

oc create ns parksmap

2. We can now deploy our application using the command and manifest shown below:

oc -n parksmap apply -f <Deployment>

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: parksmap

 name: parksmap

spec:

 replicas: 4

 selector:

 matchLabels:

 app: parksmap

 template:

 metadata:

 labels:

 app: parksmap

 deployment: parksmap

 spec:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 38 of 43

 containers:

 - image: quay.io/openshiftroadshow/parksmap:latest

 imagePullPolicy: Always

 name: parksmap

 ports:

 - containerPort: 8080

 protocol: TCP

We should now see the following:

1. We have four Pods running in the default Pod IP pool

oc -n parksmap get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE

parksmap-7b9889f9bf-95svw 1/1 Running 0 82s 10.53.0.176 ocp-cilium-c1-w2

parksmap-7b9889f9bf-kgjnn 1/1 Running 0 82s 10.53.0.218 ocp-cilium-c1-w1

parksmap-7b9889f9bf-lrz66 1/1 Running 0 82s 10.53.0.226 ocp-cilium-c1-w3

parksmap-7b9889f9bf-nr8l6 1/1 Running 0 82s 10.53.1.30 ocp-cilium-c1-w4

2. ACI is learning these IPs in the default Pod ESG; note that under the same node MAC address, we have

multiple IPs because multiple Pods are running on a single node.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 39 of 43

App-1 Pod subnet – advertised externally through BGP

1. We will be placing our application in the app-1 namespace:

oc create ns app-1

2. We want to use app-1 CiliumPodIPPool so we can annotate the namespace as follows:

oc annotate ns app-1 ipam.cilium.io/ip-pool=app-1

3. We can now deploy our application using the same deployment manifest as shown in the previous

example; just remember to use the right namespace:

oc -n app-1 apply -f <Deployment>

4. To expose our application through BGP, we can create a service of type LoadBalancer and use the

following labels:

a. pool: bgp-pool-1 to select our CiliumLoadBalancerIPPool type: bgp to advertise our service
through BGP. (The CiliumBGPPeeringPolicy is configured to advertise services that are configured
with this label

5. Since ACI is preconfigured with an external EPG with a 192.168.2.33/32 LPM, we can manually select

this address from our pool using the io.cilium/lb-ipam-ips annotation.

oc -n app-1 apply -f <Service>

apiVersion: v1

kind: Service

metadata:

 labels:

 app: parksmap

 pool: bgp-pool-1

 type: bgp

 annotations:

 io.cilium/lb-ipam-ips: "192.168.2.33"

 name: parksmap

spec:

 ports:

 - name: 8080-tcp

 port: 8080

 protocol: TCP

 targetPort: 8080

 selector:

 app: parksmap

 deployment: parksmap

 type: LoadBalancer

© 2024 Cisco and/or its affiliates. All rights reserved. Page 40 of 43

We should now see the following:

1. We have four Pods running in the app-1 Pod IP pool (10.53.128.0/24):

oc -n app-1 get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE

parksmap-7b9889f9bf-h7hdh 1/1 Running 0 21s 10.53.128.28 ocp-cilium-c1-w1

parksmap-7b9889f9bf-lnmnw 1/1 Running 0 21s 10.53.128.87 ocp-cilium-c1-w2

parksmap-7b9889f9bf-mkqnp 1/1 Running 0 21s 10.53.128.62 ocp-cilium-c1-w4

parksmap-7b9889f9bf-zrtjx 1/1 Running 0 21s 10.53.128.121 ocp-cilium-c1-w3

2. ACI is learning these IP addresses in the app-1 Pod ESG:

3. A service of type LoadBalancer is created on the cluster with IP 192.168.2.33:

oc -n app-1 get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

parksmap LoadBalancer 172.30.238.58 192.168.2.33 8080:30867/TCP 107s

4. ACI is receiving /32 routes from the two ingress nodes:

fab2-apic1# fabric 201 show ip route 192.168.2.33 vrf common:k8s

192.168.2.33/32, ubest/mbest: 1/0

 *via 192.168.2.1%common:k8s, [20/0], 00:00:26, bgp-65002, external, tag 65112

 recursive next hop: 192.168.2.1/32%common:k8s

fab2-apic1# fabric 203 show ip route 192.168.2.33 vrf common:k8s

192.168.2.33/32, ubest/mbest: 1/0

 *via 192.168.2.2%common:k8s, [20/0], 00:00:18, bgp-65002, external, tag 65112

 recursive next hop: 192.168.2.2/32%common:k8s

5. Assuming your contracts are correct on the app-1 external EPG, you should now be able to access the

application.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 41 of 43

App-2 Pod subnet – advertised externally through BGP

We can now repeat the exact same steps as in the App-1 example, just selecting a different CiliumPodIPPool

and using 192.168.2.34 as the LoadBalancer IP.

1. We will be placing our application in the app-2 namespace:

oc create ns app-2

2. We want to use app-2 CiliumPodIPPool so we can annotate the namespace as follows:

oc annotate ns app-2 ipam.cilium.io/ip-pool=app-2

3. We can now deploy our application using the same deployment manifest as shown in the first example;

just remember to use the right namespace:

oc -n app-2 apply -f <Deployment>

4. To expose our application through BGP, we can create a service of type LoadBalancer and use the

following labels:

a. pool: bgp-pool-1 to select our CiliumLoadBalancerIPPool type: bgp to advertise our service through

BGP. (The CiliumBGPPeeringPolicy is configured to advertise services that are configured with this

label

5. Since ACI is preconfigured with an external EPG with a 192.168.2.34/32 LPM, we can manually select

this address from our pool using the io.cilium/lb-ipam-ips annotation:

oc -n app-1 apply -f <Service>

apiVersion: v1

kind: Service

metadata:

 labels:

 app: parksmap

 pool: bgp-pool-1

 type: bgp

 annotations:

 io.cilium/lb-ipam-ips: "192.168.2.34"

 name: parksmap

spec:

 ports:

 - name: 8080-tcp

 port: 8080

 protocol: TCP

 targetPort: 8080

 selector:

 app: parksmap

 deployment: parksmap

 type: LoadBalancer

© 2024 Cisco and/or its affiliates. All rights reserved. Page 42 of 43

We should now see the following:

6. We have four Pods running in the app-2 Pod IP pool (10.53.129.0/24):

oc -n app-2 get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE

parksmap-7b9889f9bf-gkjsn 1/1 Running 0 30s 10.53.129.61 ocp-cilium-c1-w1

parksmap-7b9889f9bf-jqhd8 1/1 Running 0 30s 10.53.129.65 ocp-cilium-c1-w2

parksmap-7b9889f9bf-pqx9w 1/1 Running 0 30s 10.53.129.29 ocp-cilium-c1-w4

parksmap-7b9889f9bf-xbfdr 1/1 Running 0 30s 10.53.129.102 ocp-cilium-c1-w3

7. ACI is learning these IP addresses in the app-2 Pod ESG:

8. A service of type LoadBalancer is created on the cluster with IP 192.168.2.34:

oc -n app-2 get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

parksmap LoadBalancer 172.30.249.57 192.168.2.34 8080:32671/TCP 13s

9. ACI is receiving /32 routes from the two ingress nodes:

fab2-apic1# fabric 201 show ip route 192.168.2.34 vrf common:k8s

192.168.2.34/32, ubest/mbest: 1/0

 *via 192.168.2.1%common:k8s, [20/0], 00:01:10, bgp-65002, external, tag 65112

 recursive next hop: 192.168.2.1/32%common:k8s

fab2-apic1# fabric 203 show ip route 192.168.2.34 vrf common:k8s

192.168.2.34/32, ubest/mbest: 1/0

 *via 192.168.2.2%common:k8s, [20/0], 00:01:26, bgp-65002, external, tag 65112

 recursive next hop: 192.168.2.2/32%common:k8s

10. Assuming your contracts are correct on the app-2 external EPG, you should now be able to access the

application.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 43 of 43

Pod-initiated traffic

We have now deployed our application in three different Pod subnets and corresponding ESGs on ACI. ACI will

be able to policy-egress traffic initiated from the ESGs using standard contracts. Furthermore, since we have

disabled masquerading, the Pod IP will be preserved.

For example, if we try to access an external webserver (10.67.185.120 in this example) from a parksmap Pod,

we will see the Pod IP address:

oc -n app-1 get pod parksmap-7b9889f9bf-h7hdh -o wide

NAME READY STATUS RESTARTS AGE IP NODE

parksmap-7b9889f9bf-h7hdh 1/1 Running 0 73m 10.53.128.28 ocp-cilium-c1-w1

oc -n app-1 exec parksmap-7b9889f9bf-h7hdh -- curl 10.67.185.120

http-server# tail -f /var/log/nginx/access.log

10.53.128.28 - - [15/Apr/2024:11:22:53 +1000] "GET / HTTP/1.1" 200 3003 "-" "curl/7.29.0"

oc -n app-2 get pod -o wide parksmap-7b9889f9bf-gkjsn

NAME READY STATUS RESTARTS AGE IP NODE

parksmap-7b9889f9bf-gkjsn 1/1 Running 0 24m 10.53.129.61 ocp-cilium-c1-w1

oc -n app-2 exec parksmap-7b9889f9bf-gkjsn -- curl 10.67.185.120

tail -f /var/log/nginx/access.log

10.53.129.61 - - [15/Apr/2024:11:27:25 +1000] "GET / HTTP/1.1" 200 3003 "-" "curl/7.29.0"

Since now the Pod subnet is predictable and allocated to a dedicated namespace, we can leverage this to

configure external firewalls.

Note: The best granularity is at the whole POD CIDR; because the Pod IP addresses are ephemeral,

DO NOT use Pod IP in any security rule.

Printed in USA C11-4383353-00 06/24

