Cisco Cloud Campus LAN Design Guide (CVD)

Available Languages

Download Options

  • PDF
    (33.7 MB)
    View with Adobe Reader on a variety of devices
Updated:August 27, 2024

Bias-Free Language

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product. Learn more about how Cisco is using Inclusive Language.

Available Languages

Download Options

  • PDF
    (33.7 MB)
    View with Adobe Reader on a variety of devices
Updated:August 27, 2024
 

 

This document provides a pre-validated design and deployment guide for a Cisco Campus LAN with Catalyst® Switches and Access Points running in either Cloud Managed or Cloud Monitored mode alongside the various design guidelines, topologies, technologies, configurations, and other considerations relevant to the design of any highly available, full-service campus switching fabric. It is also intended to serve as a guide to direct readers to general design and best practices for Cloud-based Cisco Campus LAN.

Overview

The LAN is the networking infrastructure that provides access to network communication services and resources for end users and devices spread over a single floor or building. You create a campus network by interconnecting a group of LANs that are spread over a local geographic area. Campus network design concepts include small networks that use a single LAN switch, up to very large networks with thousands of connections.

The campus wired LAN enables communications between devices in a building or group of buildings, as well as interconnection to the WAN and Internet edge at the network core.

Specifically, this design provides a network foundation and services that enable:

      Tiered LAN connectivity

      Wired network access for employees

      IP Multicast for efficient data distribution

      Wireless and Wired infrastructure ready for multimedia services

Cisco's Campus LAN architecture offers customers a wide range of options. The Catalyst portfolio with Digital Network Architecture (a.k.a. Cisco Catalyst Center, previously known as Cisco DNA Center) provides a roadmap to digitization and a path to realizing immediate benefits of network automation, assurance and security with an on-prem operating model. The Catalyst portfolio with Meraki Dashboard enables customers to accelerate business evolution through easy-to-use cloud networking technologies that deliver secure customer experiences and simple deployment of network products with a cloud-first operating model.

The proposed architecture enables you to build secure, scalable, and robust enterprise networks. Since the design involves deploying Catalyst platforms in either Cloud Managed or Cloud Monitored modes, special attention should be given to proper planning and design to ensure interoperability and performance.

Introduction

Designing a LAN for the campus use case is not a one-design-fits-all proposition. The scale of campus LAN can be as simple as a single switch and wireless AP at a small remote site or a large, distributed, multi-building complex with high-density wired port and wireless requirements. The deployment may require very high availability for the services offered by the network, with a low tolerance for risk, or there may be tolerance for fix-on-failure approach with extended service outages for a limited number of users considered acceptable. Platform choices for these deployments are often driven by needs for network capacity, the device and network capabilities offered, and the need to meet any compliance requirements that are important to the organization.

This document provides a pre-validated design and deployment guide for a Cisco Campus LAN with Catalyst Switches and Access Points running in either Cloud Managed or Cloud Monitored mode alongside the various design guidelines, topologies, technologies, configurations, and other considerations relevant to the design of any highly available, full-service campus switching fabric. It is also intended to serve as a guide to direct readers to general design and best practices for Cloud-based Cisco Campus LAN.

Cloud management and monitoring for Cisco Catalyst

Cloud monitoring

Selected Cisco Catalyst devices (9200, 9300, and 9500) are capable of connecting to the Meraki Dashboard for monitoring purposes. This offers dashboard monitoring and insights for Catalyst devices including visibility into some configuration items. However, please note that this does not offer full management in Meraki Dashboard. (i.e. No configuration changes in Meraki Dashboard). Please see the following snapshot of C9500 switches/stacks in the Meraki Dashboard:

Related image, diagram or screenshot

For more information about Cloud Monitoring, please refer to this article.

Campus LAN architecture with Cloud management

Please refer to the following proposed architecture diagram as a reference for this CVD:

Related image, diagram or screenshot

To achieve a robust, reliable, high speed and Future Proof Campus LAN, the following components are part of this architecture:

Component

SKU

Capabilities

Management Platform

Integrations

Wireless LAN

MR55-HW (Or MR56/57) with LIC-ADV

And

C9166-MR (1) with LIC-ADV

WiFi6 High-density Wireless Access points

mGig uplinks

Adaptive Policy

Meraki Dashboard

Cisco ISE (Optional)

Azure Active Directory (Optional)

Access Switches

MS390-24P and LIC-MS390-24A

And

C9300-24P M(1) with C9300-NM-8X and LIC-MS390-24A

Physical Stacking with StackPower

Up to 40G Uplinks

Layer 3 capabilities

Meraki Dashboard

Cisco ISE (Optional)

Collapsed2 Core Switches

C9500-24Y4C (Monitor Only)

Up to 100G Uplinks

Secure segmentation with SD-Access

MACSec 6.4 TB switching capacity

Meraki Dashboard (Monitor Only)

 

WAN Edge and UTM

MX250 in warm-spare configuration (2) with LIC-MX250-SDW

OR

A Catalyst SD-WAN solution

10G SFP+ WAN

10G SFP+ LAN

1G SFP LAN

Security (UTM) and SD-WAN

4 Gbps Firewall Throughput

2 Gbps SD-WAN Throughput

Meraki Dashboard

 

(1) –M and –MR models are pre-shipped with Meraki management mode. If you have non-M devices, they can be transitioned to run in Cloud Managed mode (aka Meraki management mode).  Please refer to documentation for further details.
(2) Warm-spare configuration requires only a single license for both MX appliances
 

Logical architecture

This document will provide three options to design this campus architecture from a logical standpoint, which are outlined below (each with its own characteristics):

Layer 2 Access with Native VLAN 1

This option assumes that your Spanning Tree Protocol (STP) domain is extended all the way to your core layer. It offers great flexibility in terms of network segments as you can have your VLANs spanning over the different stacks/closets. However, the STP configuration and tuning is crucial since the Catalyst platforms can run different STP protocols than the Meraki MS390 switches.

Pros:

      Flexibility in your VLAN design

      Facilitates Wireless Roaming across the whole campus

      Easier to deploy and consistent configuration across the entire Campus LAN

Cons:

      Non-deterministic route failover

      Slow convergence

      Different STP protocol support on Cloud Monitored and Cloud Managed Catalyst Switches

      The possibility of VLAN hopping

Layer 2 access without Native VLAN 1

This option is similar to the above except that VLAN 1 does not exist and the default Native VLAN 1 is replaced with another non-trivial VLAN assignment which can be considered a more preferable option for customers as its separate from the Management VLAN

Pros:

      Flexibility in your VLAN design

      Facilitates Wireless Roaming across the whole campus

      Easier to deploy and consistent configuration across the entire Campus LAN

      Minimize the risk of VLAN hopping

Cons:

      Non-deterministic route failover

      Slow convergence

      Different STP protocol support on Cloud Monitored and Cloud Managed Catalyst Switches

Note: Please note that the recommended Spanning Tree Protocol for Cloud-based Cisco Campus is Multiple Spanning Tree Protocol since it eliminates configuration and troubleshooting issues on the different platforms. As such, if you configure other protocols on (e.g. Per VLAN Spanning Tree [PVST]) on your network, then please note that VLAN 1 is going to be essential as backward compatible Bridge Protocol Data Units (BPDUs) only run in VLAN 1.

Layer 3 access

This option assumes that your Open Shortest Path First (OSPF) domain is extended all the way to your core layer and thus there is no need to rely on STP between your Access and Core for convergence. It offers fast convergence since it relies on Equal-cost multi-path routing (ECMP) rather than STP layer 2 paths. However, it doesn't offer great flexibility in your VLAN design as each VLAN cannot span between multiple stacks/closets.

Pros:

      Deterministic route failover

      Fast convergence

      Relies on either stacking or gateway redundancy at upper layers

Cons:

      VLANs cannot span multiple stacks/closets

      Your backbone area size can be unmanageable

      Layer 3 roaming is not possible without a concentrator

This CVD offers the design and configuration guidelines for ALL options above.

Campus LAN planning, design, and configuration

Planning

The following section provides information on planning your solution and ensuring that you have a successful deployment. This will include gathering the design requirements and planning for your Cloud-based Cisco Campus LAN architecture based on your own requirements.

Prior to proceeding to plan for your deployment, please refer to the Campus LAN Design Best Practices Guide which can be used to guide you through the planning phase of designing your Campus LAN.

Meraki cloud administration and management

If you don't have an account on the Meraki Dashboard, create one following these steps:

1.     Generate an API Key for your account following these steps.

2.     Claim your order(s) or serial number(s) into your Meraki Dashboard account.

3.     Add your devices to existing networks or create new networks as required.

4.     Configure firmware upgrades for your network(s) with latest Stable or RC releases for each device type (Please check the firmware changelog for platform-specific details).

5.     Configure your network(s) with the correct time zone from Network-wide > Configure > General (This is key for reporting and firmware upgrades).

6.     Configure your network(s) with the desired upgrade date and time.

7.     Configure the MR upgrade behavior as desired.

8.     Ensure that your Campus LAN has access to the internet for management purposes.

9.     Ensure that Meraki Cloud is accessible and that all required ports are opened where applicable (information can be found in Dashboard).

10.  Ensure that there is sufficient bandwidth for firmware upgrades as they tend to be large in size.

11.  Ensure that only current administrators are added with the correct permissions on the Meraki dashboard (unless SAML is configured for Single Sign-on).

12.  If using Single sign-on integration with Meraki dashboard, please ensure that login to dashboard is scoped such that administrators have the correct level of access where applicable (e.g. Per network, Per switch port, etc.). For more information about dashboard access roles, please refer to the following article.

13.  In case of SAML SSO, it is still required to have one valid administrator account with full rights configured on the Meraki dashboard. However, it is recommended to have at least two accounts to avoid being locked out from dashboard.

14.  Where applicable, ensure that the designated Management VLAN has access to Dynamic Host Configuration Protocol (DHCP) (at least during initial bootup before assigning a static IP address) and also to the internet.

Radius integration (e.g. Cisco ISE)

1.     If using an external Radius server (e.g. Cisco ISE), then ensure that the network segment where ISE is hosted can access the Management VLAN configured on your network devices (or the Alternate Management Interface on MR and/or MS if configured and where applicable).

2.     Ensure that all required ports are opened where applicable (e.g. 1812, 1813, etc.).

Tech Tip: It is recommended to access the Radius server via VPN as the Radius traffic sourced from Meraki devices is not encrypted.

Active directory integration

1.     If using an external identity source (e.g. Active Directory), then ensure that the network segment where the AD is hosted can access the Management VLAN configured on your network devices (or the Alternate Management Interface on MR and/or MS if configured with Radius integration).

2.     Ensure that all required ports are opened where applicable (e.g. 3268, 389, etc.).

Tech Tip: It is recommended to access the Active Directory server via VPN as the traffic is not encrypted (only port 3268 is supported).

Catalyst onboarding for cloud monitoring (C9200/9300/9500)

For ease of management, Customers can onboard Cisco C9200/9300/9500 switches/stacks for Cloud Monitoring such that they can be available in the Meraki Dashboard in Monitor only mode. This process enables dashboard monitoring on these switches/stacks and selected configuration parameters will be visible in the Meraki Dashboard. Please refer to the following article for the supported Catalyst 9000 series.

Pre-requisites

Please ensure the following prior to onboarding a switch/stack for Cloud Monitoring:

      It is a supported model (Please refer to this article)

      Running IOS-XE 17.3 – 17.10.1

      It must have an SVI or routed interface that has access to the Internet on port TCP 443

      It must have a valid DNS server

      It must have a valid DNA software subscription

      It must have Telnet for connectivity pre-check (Please refer to this article)

      A valid Dashboard account and API Key

      A computer with both access to internet on port 443 and access to the switch(es)

Tech Tips

  HTTPS proxies to access the API endpoint and the TLS gateway are not currently supported. If necessary, ensure rules are in place to allow direct HTTPS connections to each.
  Connectivity must be via a front-panel port (not the management interface).
  Only the default VRF is supported.
  Ensure routes are in place to reach external addresses including a default route (use of ip default-gateway is not supported).
  IP routing (ip routing) must be enabled on the switch or will be enabled as part of onboarding.
  Ensure DNS is enabled on the switch (ip name-server {DNS server IP} configured).
  Ensure DNS lookup is enabled (ip domain lookup).
  NTP needs to be enabled on the switch (ntp server {address}), and the switch clock must reflect the correct time.
  AAA on the switch must be configured using aaa new model.
  RADIUS authentication is not currently supported.
  SSH access to the switch CLI must be enabled and accessible via the computer used for onboarding.
  The user account for onboarding must have privilege-15 level access on the switch.

Onboarding catalyst devices for cloud monitoring

The onboarding process for the C9500 core switches is out of scope for the purposes of this CVD. Please refer to the following article for a step by step guide on onboarding Catalyst for Cloud Monitoring.

Switch Status on Meraki dashboard

Once the device has been onboarded for Meraki dashboard monitoring, it should come online on dashboard after several minutes and also the network topology will show all switches in Monitor Only mode.

Related image, diagram or screenshot

Related image, diagram or screenshot

Design and configuration guidelines

Option 1: STP Based convergence with Native VLAN 1

Overview

This design option allows for flexibility in terms of VLAN and IP addressing across the Campus LAN such that the same VLAN can span across multiple access switches/stacks thanks to Spanning Tree that will ensure that you have a loop-free topology. However, this method of convergence is considered non- deterministic since the path of execution isn't fully determined (unlike Layer 3 routing protocols for example). As a result, convergence can be slow and STP must be tuned to provide best results.

This design is based on consistent STP protocols running in this campus deployment, as such Multiple Spanning Tree Protocol (MST, aka 802.1s) will be configured since it is supported on both the Meraki and Catalyst platforms.

Tech Tip: It is recommended to run the same STP protocol across all switches (MST in this case). Running any other protocol on Catalyst (e.g. PVST) can introduce undesired behavior and can be more difficult to troubleshoot.

You should consider this option if you need a consistent VLAN assignment across all switching closets. Here are some things to consider about this design option:

Pros:

      Flexibility in your VLAN design

      Facilitates Wireless Roaming across the whole campus

      Easier to deploy and consistent configuration across the entire Campus LAN

Cons:

      Non-deterministic route failover

      Slow convergence

      Different STP protocol support on Cloud Managed and Cloud Monitored Catalyst Switches

Since MST will be used as a loop prevention mechanism, all SVIs will be created on the collapsed core layer.

Logical architecture

The following diagram shows the logical architecture highlighting STP convergence within a campus LAN design leveraging Cloud Managed and Cloud Monitored Catalyst platforms:

Related image, diagram or screenshot

Physical architecture

The following diagram shows the physical architecture and port list for this design:

A screenshot of a computerDescription automatically generated

Assumptions

The following assumptions have been considered:

      It is assumed that Wireless roaming is required everywhere in the Campus

      It is assumed that VLANs are spanning across multiple zones/closets

      Corporate SSID (Broadcast in all zones/areas) users are assigned VLAN 10 on all APs. CoA VLAN is VLAN 30 (via Cisco ISE)

      BYOD SSID (Broadcast in all zones/areas) users are assigned VLAN 20 on all APs. CoA VLAN is VLAN 30 (via Cisco ISE)

      Guest SSID (Broadcast in all zones/areas) users are assigned VLAN 30 on all APs

      IoT SSID (Broadcast in all zones/areas) users are assigned VLAN 40 on all APs

      Access Switches will be running in Layer 2 mode (No SVIs or DHCP)

      MS390 Access Switches physically stacked together

      C9300-M (or compatible) Access Switches physically stacked together

      C9500 Core Switches with Stackwise-virtual stacking using SVLs

      Access Switch uplinks are in trunk mode with native VLAN = VLAN 1 (Management VLAN*)

      STP root is at Distribution/Collapsed-core

      Distribution/Collapsed-core uplinks are in Trunk mode with Native VLAN = VLAN 1 (Management VLAN)

      All VLAN SVIs are hosted on the core layer

      Network devices will be assigned fixed IPs from the management VLAN DHCP pool. Default Gateway is 10.0.1.1

Tech Tip: The client serving SVIs (offering DHCP services) were configured in this case on the C9500 Core Stack. However, it is also possible to configure them on the WAN Edge MX instead. In this case, please remember to configure the C9500 Core Stack uplinks AND the MX Downlinks with the appropriate VLANs in the Allowed VLAN list.

Tech Tip: While it is possible to configure a different Management VLAN than VLAN 1, the design and configuration guidelines in the coming section will assume that VLAN 1 is the Management VLAN. Please refer to this separate section should you wish to configure a different Management VLAN for your Campus LAN.

Network segments

Please check the following table for more information about the network segments (e.g. VLANs, SVIs, etc.) for this design:

Network Segment

VLAN ID

Subnet

Default Gateway

Notes

Management

1

10.0.1.0/24

10.0.1.1

SVI hosted on edge MX

Corporate Devices (Wireless and Wired)

10

10.0.10.0/24

10.0.10.1

SVI hosted on core switches

BYOD Wireless Devices

20

10.0.20.0/24

10.0.20.1

SVI hosted on core switches

Guest Wireless Devices

30

10.0.30.0/24

10.0.30.1

SVI hosted on core switches

IoT Wireless Devices

40

10.0.40.0/24

10.0.40.1

SVI hosted on core switches

Tech Tip: Please size your subnets based on your own requirements. The above table is for illustration purposes only

Tech Tip: In this example, the Management VLAN has been created on the Edge MX. Alternatively, you can create the SVI on the C9500 Core Stack.

Application

MR

Access switches

Core switches

MX Appliance

SIP (Voice)

EF DSCP 46

AC_Vo

Trust incoming values

DSCP 46

CoS 5

Trust incoming values

EF

DSCP 45

LLQ

Unlimited

Webex and Skype

AF41

DSCP 34

AC_VI

Trust incoming values

DSCP 34

CoS 4

Trust incoming values

Af41

DSCP 34

High Priority

All Video and Music

AF21

DSCP 18

AC_BE

Trust incoming values

DSCP 18

CoS 2

Trust incoming values

AF21

DSCP 18

Medium Priority

5Mbps / Client

Software Updates

AF11

DSCP 10

AC_BK

Trust incoming values

DSCP 10

CoS 1

Trust incoming values

AF11

DSCP 10

Device list

Device

Name

Management IP address

Notes

MX250

Primary WAN Edge

10.0.1.1

warm-spare

MX250

Spare WAN Edge

C9500-24YCY

C9500-01

10.0.1.2

Stackwise Virtual (C9500-Core-Stack)

C9500-24CY

C9500-02

MS390-24P

MS390-01

10.0.1.3

Physical Stacking (Stack1-MS390)

MS390-24P

MS390-02

C9300-24P

C9300-01

100.1.4

Physical Stacking (Stack2-C9300)

C9300-24P

C9300-02

MR55

AP1_Zone1

10.0.1.5

Tag = Zone1

C9166 (eq MR57)

AP2_Zone1

10.0.1.6

Tag = Zone1

MR55

AP3_Zone2

10.0.1.7

Tag = Zone2

C9166 (eq MR57)

AP4_Zone2

10.0.1.8

Tag = Zone2

Access policies

Access Policy Name

Purpose

Configuration

Notes

Wired-1x

802.1x Authentication via Cisco ISE for wired clients that support 802.1x

Authentication method = my Radius server

Radius CoA = enabled

Host mode = Single-Host

Access Policy type = 802.1x

Guest VLAN = 30

Failed Auth VLAN = 30

Critical Auth VLAN = 30

Suspend Port Bounce = Enabled

Voice Clients = Bypass

authentication

Walled Garden = enabled

Cisco ISE authentication and posture checks

Wired-MAB

MAB Authentication via Cisco ISE for wired clients that do not support 802.1x

Authentication method = my Radius server

Radius CoA = disabled

Host mode = Single-Host

Access Policy type = MAC

authentication bypass

Guest VLAN = 30

Failed Auth VLAN = 30

Critical Auth VLAN = 30

Suspect Port Bounce = Enabled

Voice Clients = Bypass authentication

Walled Garden = disabled

Cisco ISE authentication

Tech Tip: The above Access Policies are for illustration purposes only. Please configure your Access Policies as required.

Port list

Device name

Port

Far-end

Port details

Notes

Primary WAN Edge / Spare WAN Edge

1

WAN1

 

VIP1

Primary WAN Edge / Spare WAN Edge

2

WAN2

 

VIP2

Primary WAN Edge

19

9500-01 (Port Twe1/0/1)

Trunk (Native VLAN 1)

Downlink

20

9500-02 (Port Twe2/0/1)

Trunk (Native VLAN 1)

Downlink

Spare WAN Edge

19

9500-01 (port Twe1/0/2)

Trunk (Native VLAN 1)

Downlink

20

9500-02 (Port Twe2/0/2)

Trunk (Native VLAN 1)

Downlink

9500-01

Twe1/0/1

Primary WAN Edge (Port 19)

switchport access vlan 1 auto qos trust dscp policy static sgt 2 trusted

Uplink

Twe1/0/2

Spare WAN Edge (Port 19)

switchport access vlan 1 auto qos trust dscp policy static sgt 2 trusted

Uplink

9500-02

Twe2/0/1

Primary WAN Edge (Port 20)

switchport access vlan 1 auto qos trust dscp policy static sgt 2 trusted

Uplink

Twe2/0/2

Spare WAN Edge (Port 20)

switchport access vlan 1 auto qos trust dscp policy static sgt 2 trusted

Uplink

9500-01

Twe1/0/23

MS390-01 (Port 1)

switchport trunk native vlan 1

switchport trunk allowed vlans 1,10,20,30,40

channel-group 1 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

Twe1/0/24

C9300-01 (Port 1)

switchport trunk native vlan 1

switchport trunk allowed vlans 1,10,20,30,40

channel-group 2 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

9500-02

Twe2/0/23

MS390-02 (Port 1)

switchport trunk native vlan 1

switchport trunk allowed vlans 1,10,20,30,40

channel-group 1 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

Twe2/0/24

C9300-02 (Port 1)

switchport trunk native vlan 1

switchport trunk allowed vlans 1,10,20,30,40

channel0group 2 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

9500-01

Hu1/0/25

C9500-02 (Port Hu2/0/26)

stackwise-virtual link 1

Stackwise Virtual

Hu1/0/26

C9500-02 (Port Hu2/0/25)

stackwise-virtual link 1

Stackwise Virtual

9500-02

Hu2/0/25

C9500-01 (Port Hu1/0/26)

stackwise-virtual link 1

Stackwise Virtual

Hu2/0/26

C9500-01 (PortHu1/0/25)

stackwise-virtual link 1

Stackwise Virtual

MS390-01

5-8

Wired Clients

Access (Data VLAN 1)

Access Policy = Wired-1x

PoE Enabled

STP BPDU Guard

Tag = Wired Clients 802.1x

AdP: Corp

For wired clients supporting 802.1x

MS390-02

C9300-01

C9300-02

MS390-01

9-12

Wired Clients

Access (Data VLAN 1)

Access Policy = MAB

PoE Enabled

STP BPDU Guard

Tag = Wired Clients MAB

AdP: Corp

For wired clients that do not support 802.1x

MS390-02

C9300-01

C9300-02

MS390-01

13-16

MR

Trunk (Native VLAN 1)

PoE Enabled

STP BPDU Guard

Tag = MR WLAN

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 1,10,20,30,40

MS390-02

C9300-01

C9300-02

MS390-01

1

9500-01 (Port Twe1/0/23)

Trunk (Native VLAN 1)PoE Disabled

Name: Core 1

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 1,10,20,30,40

MS390-02

1

9500-02 (Port Twe2/0/23)

Trunk (Native VLAN 1)

PoE Disabled

Name: Core 2

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 1,10,20,30,40

C9300-01

C9300-01 / C9300-NM-8X / 1

9500-01 (Port Twe1/0/24)

Trunk (Native VLAN 1)

PoE Disabled

Name: Core 1

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 1,10,20,30,40

C9300-02

C9300-02 / C9300-NM-8X / 1

C9500-02 (Port Twe2/0/24)

Trunk (Native VLAN 1)

PoE Disabled

Name: Core 2

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 1,10,20,30,40

Wireless SSID list

SSID Name

Broadcast

Configuration

Notes

Firewall and Traffic Shaping

Acme Corp

All APs

Association = Enterprise with my Radius server

Encryption = WPA2 only

Splash Page = Cisco ISE

Radius CoA = Enabled

SSID mode = Bridge mode

VLAN Tagging = 10 (ISE Override)

AdP Group = 10:Corp

Radius override = Enabled

Mandatory DHCP = Enabled

Layer 2 isolation = Disabled

Allow Clients access LAN = Allow

Traffic Shaping = Enabled with default settings

Cisco ISE Authentication and posture checks (172.31.16.32/1812)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 50Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Acme BYOD

All APs

Association = Enterprise with my Radius server

Encryption = WPA2 only

802.11w = Enabled

Splash Page = Cisco ISE

SSID mode = Bridge mode

VLAN Tagging = 20

AdP Group = 20:BYOD

Radius override = Disabled

Mandatory DHCP = Enabled

Layer 2 isolation = Disabled

Allow Clients access LAN = Allow

Traffic Shaping = Enabled with default settings

Cisco ISE Authentication (via Azure AD) and posture checks.

Dynamic GP assignment (Radius attribute = Airospace-ACLNAME)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 50Mbps

Per-SSID Bandwidth

Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Guest

All APs

802.11w = Enabled

Splash Page = Click-Through

SSID mode = Bridge mode

VLAN Tagging = 30

AdP Group = 30:Guest

Radius override = Disabled

Mandatory DHCP = Enabled

Layer 2 isolation = Enabled

Allow Clients access LAN = Deny

Per SSID limit = 100Mbps

Traffic Shaping = Enabled with default settings

Meraki Authentication

Layer 2 Isolation = Enabled

Allow Access to LAN = Disabled

Per-Client Bandwidth Limit = 5Mbps

Per-SSID Bandwidth Limit = 100Mbps

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Acme IoT

All APs

Association = identity PSK with Radius

Encryption = WPA1 and WPA2

802.11r = Disabled

802.11w = Disabled

Splash Page = None

Radius CoA = Disabled

SSID mode = Bridge mode

VLAN Tagging = 40

AdP Group = 40:IoT

Radius override = Disabled

Mandatory DHCP = Enabled

Allow Clients access LAN = Deny

Per SSID limit = 10Mbps

Traffic Shaping = Enabled with default settings

Cisco ISE is queried at association time to obtain a passphrase for

a device based on its MAC address.

Dynamic GP assignment (Radius attribute Filter-Id)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 5Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46) Software Updates -

AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Tech Tips:

  The above configuration is for illustration purposes only. Please configure your SSIDs based on your own requirements ( mode, IP assignment, traffic shaping, etc.)
  Please note that Adaptive Policy on MR requires MR-ADV license. For more information about the requirements, please refer to this document.

Group policies

Group Policy Name

Purpose

Configuration

Notes

BYOD

For BYOD users to limit bandwidth per client and restrict access as desired. GP will be dynamically assigned based on Radius attribute 

Name = BYOD

Schedule = disabled

Bandwidth = 10Mbps

Firewall and Traffic Shaping = None

Layer 3 FW = None

Layer 7 FW = Block All Email

VLAN = 20

Splash = N/A

Tech Tip: The above Group Policies are for illustration purposes only. Please configure your Group Policies as required. To configure your Radius server to assign a dynamic Group Policy please refer to this article.

Configuration and implementation guidelines

Notes:

  It is assumed that by this stage, Catalyst devices have been added to dashboard for either Monitoring (e.g. C9500) or Management (e.g. C9300). For more information, please refer to the above section.
  Before proceeding, please make sure that you have the appropriate licenses claimed into your dashboard account.

1.     Login to your dashboard account (or create an account if you don't have one)

2.     Navigate to Organization > Configure > Inventory

3.     For Co-term license model, click on Claim. And for PDL, please click on Add

Related image, diagram or screenshot

Related image, diagram or screenshot

4.     Enter the order and/or serial number(s) to claim the devices into your account. For PDL, click Next then please choose to add them to Inventory (Do not add them to a network)

5.     Create a Dashboard Network: Navigate to Organization > Configure > Create network to create a network for your Campus LAN (Or use an existing network if you already have one). If you are creating a new network, please choose "Combined" as this will facilitate a single topology diagram for your Campus LAN. Choose a name (e.g. Campus) and then click Create network

Related image, diagram or screenshot

Related image, diagram or screenshot

6.     Dashboard Network Settings: Navigate to Network-wide > Configure > General and choose the settings for your network (e.g. Time zone, Traffic Analytics, firmware upgrade day/time, etc.)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

7.     Schedule Firmware Upgrade: Navigate to Organization > Monitor > Firmware upgrades to select the firmware settings for your devices such that devices upgrade once they connect to dashboard. Select the device type then click on Schedule upgrade.

8.     Add Devices to a Dashboard Network: Navigate to Organization > Configure > Inventory:

      For Co-term licensing model, select the MS390 and C9300 switches and the Primary WAN Edge then click on Add then choose the Network Campus

      For PDL licensing model, select the MS390 and C9300 switches and the Primary WAN Edge then click on Change network assignment and then choose the Network Campus

      Please DO NOT add the Secondary WAN Edge device at this stage

9.     Rename MX Security Appliance: Navigate to Security and SD-WAN > Monitor > Appliance status then click on the edit button to rename the MX to Primary WAN Edge then click on Save.

Related image, diagram or screenshot

10.  MX Connectivity: Plug in your WAN uplink(s) on the Primary WAN Edge MX then power it on and wait for it to come online on dashboard. This might take a few minutes as the MX will download its firmware and configuration. Navigate to Security and SD-WAN > Monitor > Appliance status and verify that the MX has come online and that its firmware and configuration is up to date.

Related image, diagram or screenshot

Related image, diagram or screenshot

11.  Rename Access Switches: Navigate to Switching > Monitor > Switches then click on each MS390 and C9300 switch and then click on the edit button on top of the page to rename it per the above table then click on Save such that all your switches have their designated names.

Related image, diagram or screenshot

12.  Rename MR APs: Navigate to Wireless > Monitor > Access points then click on each AP and then click on the edit button on top of the page to rename it per the above table then click on Save such that all your APs have their designated names.

13.  MR AP Tags: Navigate to Wireless > Monitor >Access points then click on each AP and then click on the edit button next to TAGS to add Tags to your AP per the above table then click on Save such that all your APs have their designated tags.

Related image, diagram or screenshot

14.  MX Addressing and VLANs: Navigate to Security and SD-WAN > Configure > Addressing and VLANs, and in the Deployment Settings menu select Routed mode. Further down the page on the Routing menu, click on VLANs then click on Add VLAN to add your management VLAN then click on Create. Then for the per-port VLAN settings, select your downlink ports (19 and 20) and click on Edit and configure them as access with VLAN 1 and click on Update. Finally, click on Save at the bottom of the page.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

15.  Campus LAN Static Routes: Create Static Routes for your Campus network by navigating further down the page to Static routes then click on Add Static Route. Start by adding your Corporate LAN subnet then click on Update and then add static routes to all other subnets (e.g. BYOD, Guest and IoT). Finally, click on Save at the bottom of the page. (The Next hop IP that you have used here will be used to create a fixed assignment for the Core Stack later in DHCP settings).

Related image, diagram or screenshot

Related image, diagram or screenshot

16.  Optional - If you are accessing any resources over Meraki SD-WAN, please navigate to Security and SD-WAN > Configure > Site-to-site VPN and enable VPN based on your topology and traffic flow requirements. (In this case we will configure this Campus as Spoke with Split Tunneling)

      Choose Type: Spoke then click on Add a hub and select your hub site where you need access to resources via VPN. You can also add multiple hubs for resiliency. To choose Split Tunneling, please leave the box next to the Hub unticked as shown below.

Related image, diagram or screenshot

      Under VPN Settings, choose which subnet to be Enabled in VPN (e.g. Management VLAN will be required for Radius authentication purposes as the MR/MS390/C9300 devices will reach out to Cisco ISE using their management IP). Any Subnet that needs to access resources via VPN must be Enabled otherwise keep it as Disabled.

Related image, diagram or screenshot

      Finally, click on Save at the bottom of the page

      On the Hub site, please make sure to advertise the subnets that are required to be reachable via VPN. Navigate to Security and SD-WAN > Configure > Site-to-site VPN then add a local network then click Save at the bottom of the page (Please make sure that you are configuring this on the Hub's dashboard network)

Related image, diagram or screenshot

17.  Optional - Verify that your VPN has come up by selecting your Campus LAN dashboard network from the Top-Left Network drop down list and then navigate to Security and SD-WAN > Monitor >VPN status then check the status of your VPN peers. Next, navigate to Security and SD-WAN > Monitor > Route table and check the status of your remote subnets that are reachable via VPN. You can also verify connectivity by pinging a remote subnet(e.g. 172.31.16.32 which is Cisco ISE) by navigating to Security and SD-WAN > Monitor > Appliance status then click on Tools and ping the specified IP address (Please note that the MX will choose the highest IP participating in VPN by default as the source).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Please note that in order to ping a remote subnet, you must either have BGP enabled or have static routes at the far-end pointing back to the Campus LAN local subnets.

In this example, the VPC in AWS has been configured with a Route Entry to route 10.0.1.0/24 via the vMX deployed in AWS that has a VPN tunnel back to the Campus LAN site.

Related image, diagram or screenshot

If the remote VPN peer (e.g. AWS) is configured in Routed mode, the static route is not required since traffic will always be NAT'd to a local reachable IP address.

18.  SD-WAN and Traffic Shaping Configuration: To configure Traffic Shaping settings for your Campus LAN site. Navigate to Security and SD-WAN > Configure > SD-WAN and Traffic Shaping to configure your preferred settings. For the purpose of this CVD, the default traffic shaping rules will be used to mark traffic with a DSCP tag without policing egress traffic (except for traffic marked with DSCP 46) or applying any traffic limits. (Please adjust these settings based on your requirements such as traffic limits or priority queue values. For more information about traffic shaping settings on the MX devices, please refer to the following article).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

19.  Optional - Configure Threat Protection (Requires Advanced License or above) for your Campus LAN site. Navigate to Security and SD-WAN > Configure > Threat Protection and choose the settings that meet your site requirements. Please see the following configuration example:

Related image, diagram or screenshot

20.  Click on Save at the bottom of the page.

21.  Optional - Configure Content Filtering Settings (Requires Advanced License or above) for your Campus LAN site. Navigate to Security and SD-WAN > Configure > Content filtering and choose the settings that meet your site requirements. Please see the following configuration example:

Related image, diagram or screenshot

Related image, diagram or screenshot

22.  Click on Save at the bottom of the page.

23.  Core Switch Uplinks: On the Catalyst 9500 core switches, Connect their uplinks to the Primary WAN Edge MX and power them both on.

24.  Core Switch Network Access: Connect to first C9500 switch via console and configure it with the following commands:

Switch>en

Switch#conft

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname 9500-01

9500-01(config)#ip domain name meraki-cvd.local

9500-01(config)#cdp run

9500-01(config)#lldp run

9500-01(config)#stackwise

Please reload the switch for Stackwise Virtual configuration to take effect

Upon reboot, the config will be part of running config but not part of start-up

config. 9500-01(config-stackwise-virtual)#domain 1

9500-01(config)#exit

9500-01(config)#interface Twe1/0/1

9500-01(config-if)#switchport mode access

9500-01(config-if)#switchport access vlan 1

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface Twe1/0/2

9500-01(config-if)#switchport mode access

9500-01(config-if)#switchport access vlan 1

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 1

9500-01(config-if)#ip address dhcp

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#

9500-01#sh ip int brief

Interface             IP-Address   OK? Method Status      Protocol

Vlan1                 10.0.1.110   YES DHCP up            up

GigabitEthernet0/0    unassigned   YES NVRAM down         down

TwentyFiveGigE1/0/1   unassigned   YES unset              up

TwentyFiveGigE1/0/2   unassigned   YES unset              up

9500-01#ping 8.8.8.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/5 ms

9500-01#ping cisco.com

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 72.163.4.185, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 109/109/109 ms

9500-01#switch 1 renumber 1

9500-01#switch priority 5

9500-01#wr mem

Building configuration...

[OK]

25.  Core Switch Network Access: Connect to the second C9500 switch via console and configure it with the following commands:

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname 9500-02

9500-02(config)#ip domain name meraki-cvd.local

9500-01(config)#cdp run

9500-01(config)#lldp run

9500-02(config)#stackwise

Please reload the switch for Stackwise Virtual configuration to take effect

Upon reboot, the config will be part of running config but not part of start-up

config. 9500-02(config-stackwise-virtual)#domain 1

9500-02(config)#exit

9500-02(config)#interface Twe1/0/1

9500-01(config-if)#switchport mode access

9500-02(config-if)#switchport access vlan 1

9500-02(config-if)#no shut

9500-02(config-if)#exit

9500-02(config)#interface Twe1/0/2

9500-01(config-if)#switchport mode access

9500-02(config-if)#switchport access vlan 1

9500-02(config-if)#no shut

9500-02(config-if)#exit

9500-02(config)#interface vlan 1

9500-02(config-if)#ip address dhcp

9500-02(config-if)#no shut

9500-02(config-if)#end

9500-02#

9500-02#sh ip int brief

Interface             IP-Address     OK? Method Status     Protocol

Vlan1                 10.0.1.111    YES DHCP up            up

GigabitEthernet0/0    unassigned    YES NVRAM down         down

TwentyFiveGigE1/0/1   unassigned    YES unset up           up

TwentyFiveGigE1/0/2   unassigned    YES unset up           up

9500-02#ping 8.8.8.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/5 ms

9500-02#ping cisco.com

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 72.163.4.185, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 109/109/109 ms

9500-02#switch 1 renumber 2

9500-02#switch priority 1

9500-02#wr mem

Building configuration...

[OK]

26.  SVL Configuration: Now that both C9500 switches have access to the network, proceed to configure the Stackwise Virtual Links per the port list provided above (In this case with using two ports as part of the SVL providing a total stacking bandwidth of 80 Gbps).

9500-01(config)#interface HundredGigE1/0/25

9500-01(config-if)#stackwise-virtual link 1

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface HundredGigE1/0/26

9500-01(config-if)#stackwise-virtual link 1

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#reload

Proceed with reload? [confirm]

9500-02(config)#interface HundredGigE1/0/25

9500-02(config-if)#stackwise-virtual link 1

9500-02(config-if)#no shut

9500-02(config-if)#exit

9500-02(config)#interface HundredGigE1/0/26

9500-02(config-if)#stackwise-virtual link 1

9500-02(config-if)#no shut

9500-02(config-if)#end

9500-02#wr mem

Building configuration...

[OK]

9500-02#reload

Proceed with reload? [confirm]

27.  Connect Stacking Cables: Whilst the C9500 switches are reloading, connect the stacking cables on both switches.

28.  Verify Stackwise Configuration: Please wait for about 10 minutes for the switches to come back up and initialize the stack. Then, connect to the 9500-01 (Stack Master) via console to verify that the stack is operational. The stackwise-virtual link should be U (Up) and R (Ready).

9500-01#show stackwise-virtual

Stackwise Virtual Configuration:

----------------------------

Stackwise Virtual : Enabled

Domain Number : 1

 

Switch Stackwise Virtual Link Ports

-----------------------------

1    1      HundredGigE1/0/25

           HundredGigE1/0/26

2    1      HundredGigE2/0/25

           HundredGigE2/0/26

9500-01#

9500-01#show stackwise-virtual link

Stackwise Virtual Link(SVL) Information:

-----------------------------

Flags:

-----

Link Status

-----------

U-Up D-Down

Protocol Status

-----------

S-Suspended P-Pending E-Error T-Timeout R-Ready

-----------------------------

Switch SVL Ports     Link-Status Protocol-Status

------------------------------------------------

1     1   HundredGigE1/0/25      U        R

          HundredGigE1/0/26      U        R

2     1   HundredGigE2/0/25      U        R

          HundredGigE2/0/26      U        R

 

9500-01#

9500-01#show stackwise-virtual bandwidth

Switch Bandwidth

----------------

1    80G

2    80G

 

9500-01#

9500-01#sh switch

Switch/Stack Mac Address : b0c5.3c60.fba0 - Local Mac Address

Mac persistency wait time: Indefinite

                       H/W Current

Switch#      Role      Mac Address      Priority      Version     State

*1          Active     b0c5.3c60.fba0      5           V02        Ready

2          Standby    40b5.c111.01e0       1           V02       Ready

 

9500-01#

29.  Optional - Attach and configure stackwise-virtual dual-active-detection: DAD is a feature used to avoid a dual- active situation within a stack of switches. It will rely on a direct attachment link between the two switches to send hello packets and determine if the active switch is responding or not. Please note that DAD cannot be applied to any SVL links and has to be a dedicated interface. For the purpose of this CVD, interface HundredGigE1/0/27 and HundredGigE2/0/27 will be used for enabling DAD between the two C9500 switches.

9500-01#configure terminal

9500-01(config)#interface HundredGigE1/0/27

9500-01(config-if)#stackwise-virtual dual-active-detection

WARNING: All the extraneous configurations will be removed for HundredGigE1/0/27 on reboot.

INFO: Upon reboot, the config will be part of running config but not part of start-up config.

9500-01(config-if)#interface HundredGigE2/0/27

9500-01(config-if)#stackwise-virtual dual-active-detection

WARNING: All the extraneous configurations will be removed for HundredGigE1/0/27 on reboot.

INFO: Upon reboot, the config will be part of running config but not part of start-up config.

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#reload

Reload command is being issued on Active unit, this will reload the whole stack

Proceed with reload? [confirm]Connection to 10.0.1.2 closed by remote host.

Connection to 10.0.1.2 closed.

>> 

9500-01#sh stackwise-virtual dual-active-detection

In dual-active recovery mode: No

Recovery Reload: Enabled

 

Dual-Active-Detection Configuration:

-----------------------------------

Switch Dad port Status

-----------------------------------

1  HundredGigE1/0/27   up

2  HundredGigE2/0/27   up

 

9500-01#

30.  Configure Multiple Spanning Tree Protocol (802.1s). Connect to the 9500-01 (Stack Master) via console and use the following commands:

9500-01(config)#spanning-tree mst configuration

9500-01(config-mst)#instance 0 vlan 1

9500-01(config-mst)#name region1

9500-01(config-mst)#revision 1

9500-01(config-mst)#exit

9500-01(config)#spanning-tree mode mst

9500-01(config)#spanning-tree mst 0 priority 4096

9500-01(config)#exit

9500-01#wr mem

Building configuration...

[OK]

9500-01#

31.  Verify Spanning Tree Configuration (Please note that interface Twe2/0/1 will be in STP blocking state due to the fact that both uplinks are connected to the same MX edge device at this stage).

9500-01#show spanning-tree

MST0

Spanning tree enabled protocol mstp

Root ID     Priority     4096

            Address     b0c5.3c60.fba0

            This bridge is the root

            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority      4096       (priority 4096 sys-id-ext 0)

         Address          b0c5.3c60.fba0

         Hello Time       2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface    Role Sts Cost     Prio.Nbr Type

-----------------------------------------------------

Twe1/0/1     Desg FWD 2000     128.193 P2p

Twe2/0/1     Back BLK 2000     128.385 P2p

 

9500-01#

32.  Configure STP Root Guard and UDLD on the Core Stack Downlinks:

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#int Twe1/0/23

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#int Twe1/0/24

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#int Twe2/0/23

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#int Twe2/0/24

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

33.  Optional - STP Hygiene: It is recommended to configure STP Root Guard on all C9500 Core Stack downlinks to avoid any new introduced downstream switches from claiming root bridge status.

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#define interface-range stp-protect TwentyFiveGigE1/0/3 - 22

9500-01(config)#interface range macro stp-protect

9500-01(config-if-range)#spanning-tree guard root

9500-01(config-if-range)#exit

9500-01(config)#define interface-range stp-protect2 TwentyFiveGigE2/0/3 - 22

9500-01(config)#interface range macro stp-protect2

9500-01(config-if-range)#spanning-tree guard root

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

34.  Optional - STP Hygiene: It is recommended to configure STP Loop Guard on all C9500 Core Stack un-used stacking links.

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface HundredGigE1/0/27

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if-range)#exit

9500-01(config)#interface HundredGigE1/0/28

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if)#exit

9500-01(config)#interface HundredGigE2/0/27

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if-range)#exit

9500-01(config)#interface HundredGigE2/0/28

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

35.  Configure SVIs for your Campus LAN on the Core Stack:

9500-01(config)#interface vlan 10

9500-01(config-if)#ip address 10.0.10.1 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#interface vlan 20

9500-01(config-if)#ip address 10.0.20.1 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#interface vlan 30

9500-01(config-if)#ip address 10.0.30.1 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#interface vlan 40

9500-01(config-if)#ip address 10.0.40.1 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#ip dhcp pool vlan10

9500-01(dhcp-config)#network 10.0.10.0 /24

9500-01(dhcp-config)#default-router 10.0.10.1

9500-01(dhcp-config)#dns-server 208.67.222.222 208.67.220.220

9500-01(dhcp-config)#ip dhcp pool vlan20

9500-01(dhcp-config)#network 10.0.20.0 /24

9500-01(dhcp-config)#default-router 10.0.20.1

9500-01(dhcp-config)#dns-server 208.67.222.222 208.67.220.220

9500-01(dhcp-config)#ip dhcp pool vlan30

9500-01(dhcp-config)#network 10.0.30.0 /24

9500-01(dhcp-config)#default-router 10.0.30.1

9500-01(dhcp-config)#dns-server 208.67.222.222 208.67.220.220

9500-01(dhcp-config)#ip dhcp pool vlan40

9500-01(dhcp-config)#network 10.0.40.0 /24

9500-01(dhcp-config)#default-router 10.0.40.1

9500-01(dhcp-config)#dns-server 208.67.222.222 208.67.220.220

9500-01(dhcp-config)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

36.  Verify your DHCP pool configuration:

9500-01#sh ip dhcp pool

 

Pool vlan10 :

Utilization mark (high/low) : 100 / 0

Subnet size (first/next)    : 0 / 0

Total addresses               254

Leased addresses                0

Excluded addresses              0

Pending event               : none

1 subnet is currently in the pool :

Current index    IP address range                    Leased/Excluded/Total

10.0.20.1         10.0.20.1          - 10.0.20.254   0 / 0 / 254

 

Pool vlan20 :

Utilization mark (high/low) : 100 / 0

Subnet size (first/next)    : 0 / 0

Total addresses                 254

Leased addresses                  0

Excluded addresses                0

Pending event               : none

1 subnet is currently in the pool :

Current index    IP address range                    Leased/Excluded/Total

10.0.20.1         10.0.20.1      - 10.0.20.254       0 / 0 / 254

 

Pool vlan30 :

Utilization mark (high/low) : 100 / 0

Subnet size (first/next)    : 0 / 0

Total addresses                 254

Leased addresses                  0

Excluded addresses                0

Pending event               : none

1 subnet is currently in the pool :

Current index    IP address range                    Leased/Excluded/Total

10.0.30.1         10.0.30.1 -     10.0.30.254        0 / 0 / 254

 

Pool vlan40 :

Utilization mark (high/low) : 100 / 0

Subnet size (first/next)    : 0 / 0

Total addresses                 254

Leased addresses                  0

Excluded addresses                0

Pending event               : none

1 subnet is currently in the pool :

Current index    IP address range                    Leased/Excluded/Total

10.0.40.1         10.0.40.1 - 10.0.40.254            0 / 0 / 254

9500-01#

37.  Verify your SVI configuration:

9500-01#sh ip int brief | in Vlan

Vlan1      10.0.1.113       YES DHCP up       up

Vlan10     10.0.10.1        YES manual down   down

Vlan20     10.0.20.1        YES manual down   down

Vlan30     10.0.30.1        YES manual down   down

Vlan40     10.0.40.1        YES manual down   down

9500-01#

38.  Configure Layer 2 Switchports, SGTs and CST (Cisco TrustSec) on your Core Stack interfaces. (Please note that enforcement has been disabled on downlink ports allowing it to happen downstream):

9500-01#conf t

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#cts sgt 2

9500-01(config)#cts role-based enforcement vlan-list 1,10,20,30,40

9500-01(config)#ip access-list role-based Allow_All

9500-01(config-rb-acl)#permit ip

9500-01(config-rb-acl)#exit

9500-01(config)#cts role-based permissions default Allow_All

9500-01(config)#interface TwentyFiveGigE1/0/23

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 1

9500-01(config-if)#switchport trunk allowed vlan 1,10,20,30,40

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01(config)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 1

9500-01(config-if)#switchport trunk allowed vlan 1,10,20,30,40

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01(config)#interface TwentyFiveGigE2/0/23

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 1

9500-01(config-if)#switchport trunk allowed vlan 1,10,20,30,40

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01(config)#interface TwentyFiveGigE2/0/24

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 1

9500-01(config-if)#switchport trunk allowed vlan 1,10,20,30,40

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01#wr mem

Building configuration...

[OK]

9500-01#

39.  Spare WAN Edge Connectivity: Follow these steps to create warm-spare with two MX appliances: (Please note that this might result in a brief interruption of packet forwarding on the MX Appliance):

      Navigate to Security and SD-WAN > Monitor > Appliance status and click on Configure warm spare

Related image, diagram or screenshot

      Now click on Enabled then choose the Spare MX from the drop-down menu and then choose the Uplink IP option that suits your requirements (Please note that choosing Virtual IPs requires an additional IP address on the upstream network and a single broadcast domain between the two MXs) then click on Update

Related image, diagram or screenshot

      Now click on Spare to access the Appliance status page of your Spare MX and click on the Edit button to rename the spare unit (e.g. Secondary WAN Edge)

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      Then configure the following on your C9500 Core Stack:

9500-01#configure terminal

9500-01(config)#interface Twe1/0/2

9500-01(config-if)#switchport mode access

9500-01(config-if)#switchport access vlan 1

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface Twe2/0/2

9500-01(config-if)#switchport mode access

9500-01(config-if)#switchport access vlan 1

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

      Then connect the Spare MX downlinks to your C9500 Core Stack (e.g. Spare MX port 19 to Twe1/0/2 and port 20 to Twe2/0/2)

      Then connect the Spare MX with its uplinks (This must match the uplink configuration on your Primary WAN Edge)

      Power on the Spare MX and wait for it to come online on dashboard

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      You can also verify that your C9500 Core Stack interfaces to the Spare MX are up, and that the redundant uplinks are in STP BLK mode

9500-01#sh ip interface brief

Interface              IP-Address OK?     Method Status     Protocol

TwentyFiveGigE1/0/2     unassigned        YES unset up      up

TwentyFiveGigE2/0/2     unassigned        YES unset up      up

9500-01#

9500-01#show spanning-tree

MST0

Spanning tree enabled protocol mstp

Root ID Priority 4096

     Address b0c5.3c60.fba0

     This bridge is the root

     Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

      Address    b0c5.3c60.fba0

      Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface      Role Sts Cost      Prio.Nbr Type

Twe1/0/1       Desg FWD 2000      128.193 P2p

Twe1/0/2       Desg FWD 2000      128.194 P2p

Twe2/0/1       Back BLK 2000      128.385 P2p

Twe2/0/2       Back BLK 2000      128.386 P2p

 

9500-01#

40.  Access Policy configuration: When you're logged in dashboard, Navigate to Switching > Configure > Access policies to configure Access Policies as required for your Campus LAN. Please see the following example for two Access Policies; 802.1x and MAB.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

41.  Adaptive Policy Configuration: Configure Adaptive Policy for your Campus LAN. When you're logged in dashboard, Navigate to Organization > Configure > Adaptive Policy then click on the Groups tab on the top.

There should be two groups (Unknown, Infrastructure) that are already available. Click on Add group to add each group required for your Campus LAN. You need to fill in the Name, the SGT value, and a description then click on Review changes then click on Submit. Please see the following examples:

Related image, diagram or screenshot

Related image, diagram or screenshot

42.  Adaptive Policy Configuration: Configure Adaptive Policy for your Campus LAN. When you're logged in dashboard, Navigate to Organization > Configure > Adaptive Policy then click on the Policies tab on the top. The source groups are on the left side, and the destination groups are on the right side. Select a source group from the left side then select all destination groups on the right side that should be allowed then click on Allow and click on Save at the bottom of the page. Next, select a source group from the left side then select all destination groups on the right side that should be denied (i.e. Blocked) then click on Deny and click on Save at the bottom of the page. After creating the policy for that specific source group, the allowed destination groups will be displayed with a green tab and the denied destination groups will be displayed with a red tab. Repeat this step for all policies required for all Groups (Allow and Deny).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

43.  Access Switch Ports Configuration: Configure Uplink Ports on your Access Switches. When you're logged in dashboard, Navigate to Switching > Monitor > Switch Ports, then select your uplink ports and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

44.  Optional - For ease of management, it is recommended that you rename the ports connecting to your Core switches with the actual switch name / Connecting port as shown below.

Related image, diagram or screenshot

45.  Access Switch Ports Configuration: Configure Wired Client Ports (802.1x) on your Access Switches. Navigate to or Refresh Switching > Monitor > Switch Ports, then select your Wired Client ports (5-8) and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

46.  Access Switch Ports Configuration: Configure Wired Client Ports (MAB) on your Access Switches. Navigate to or Refresh Switching > Monitor > Switch Ports, then select your Wired Client ports (9-12) and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

47.  Access Switch Ports Configuration: Configure MR Ports on your Access Switches. Navigate to or Refresh Switching > Monitor > Switch Ports, then select your ports connecting to MR Access Points (13-16) and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

48.  Optional - Access Switch Ports Configuration: Configure unused ports on your Access Switches such that they are disabled and mapped to an unrouted VLAN (e.g. VLAN 999). Navigate to Switching > Configure > Switch Ports and filter for any unused ports (e.g. 17-24) and configure them as shown below.

Related image, diagram or screenshot

49.  Rename Wireless SSIDs: To configure your SSIDs per the above table, first navigate to Wireless > Configure SSIDs then rename the SSIDs per your requirements (Refer to the above table for guidance).

      SSID#1 (First column, aka vap:0, enabled by default): Click on rename and change it to Acme Corp

      SSID#2 (Second column, aka vap:1): Click on rename and change it to Acme BYOD, then click on the top drop-down menu to enable it

      SSID#3 (Third column, aka vap:2): Click on rename and change it to Guest, then click on the top drop-down menu to enable it

      SSID#4 (Fourth column, aka vap:3): Click on rename and change it to Acme IoT, then click on the top drop- down menu to enable it

      Click Save at the bottom of the page

Related image, diagram or screenshot

50.  Configure Access Control for Acme Corp: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Acme Corp.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Click Save at the bottom of the page

Related image, diagram or screenshot

      Please Note: Adaptive Policy Group feature is not currently available in the New Version of the Access. You will need to click on View old version

View old version

which is available at the top right corner of the page to be able to access this and configure the Adaptive Policy Group (10: Corp). Then, please click Save at the bottom of the page

51.  Configure Access Control for Acme BYOD: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Acme BYOD.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      Click on

View old Version

which is available on the top right corner of the page, then choose the Adaptive Policy Group 20: BYOD and then click on Save at the bottom of the page.

Related image, diagram or screenshot

52.  Configure Access Control for Guest: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Guest.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Click on

View old Version

at the top right corner of the page then choose the Adaptive Policy Group 30: Guest then click on Save at the bottom of the page

Related image, diagram or screenshot

53.  Configure Access Control for Acme IoT: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Acme IoT.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Click on

View old version

at the top right corner of the page then choose the Adaptive Policy Group 40: IoT then click on Save at the

      bottom of the page

Related image, diagram or screenshot

54.  Enabling Stacking on your MS390 and C9300 Switches in Meraki Dashboard; please follow these steps:

A.   Connect a single uplink to each switch (e.g. Port 1 on MS390-01 to Port TwentyFiveGigE1/0/23 on C9500)

B.   Make sure all stacking cables are unplugged from all switches

C.   Power up all switches

D.   Verify that your C9500 Stack downlinks are up and not shutdown

9500-01#ship interface brief

Interface              IP-Address OK?    Method Status    Protocol

TwentyFiveGigE1/0/23   unassigned         YES unset up     up

TwentyFiveGigE1/0/24   unassigned         YES unset up     up

TwentyFiveGigE2/0/23   unassigned         YES unset up     up

TwentyFiveGigE2/0/24   unassigned         YES unset up     up

9500-01#

E.   Wait for them to come online on dashboard. Navigate to Switching > Monitor > Switches and check the status of your Access Switches

Related image, diagram or screenshot

F.   After they come online and download their configuration and firmware (Up to date) you can proceed to the next step. You can see their Configuration status and Firmware version from Switching > Monitor > Switches

G.   Enable stacking in dashboard by Navigating to Switching > Monitor > Switch stacks then click on add one

Related image, diagram or screenshot

H.   Then give your stack a name and select its members and click on Create

Related image, diagram or screenshot

 

Related image, diagram or screenshot

I.    Now click on Add a stack to create all other stacks in your Campus LAN access layer by repeating the above steps

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

J.   Power off all access switches

K.   Disconnect all uplink cables from all switches

L.   Nominate your master switch for each stack (e.g. MS390-01 for stack1 and C9300-01 for stack2)

M.  On the master switches, plug the uplink again

N.   Plug stacking cables on all switches in each stack to form a ring topology and make sure that the Cisco logo is upright

O.  Power on your master switches first, then power other stack members

P.   Wait for the stack to come online on dashboard. To check the status of your stack, Navigate to Switching > Monitor > Switch stacks and then click on each stack to verify that all members are online and that stacking cables show as connected

Related image, diagram or screenshot

 

Related image, diagram or screenshot

Q.  Plug uplinks on all other non-master members and verify that the uplink is online in dashboard by navigating to Switching > Monitor > Switch stacks and then click on each stack to verify that all uplinks are showing as connected however they should be in STP discarding mode

Related image, diagram or screenshot

 

Related image, diagram or screenshot

R.   Configure the same Static IP for all members in each stack by navigating to Switching > Monitor > Switches then click on the master switch (e.g. MS390-01 for Stack1) and under LAN IP menu copy the IP address then click on the edit button to specify the Static IP address information (You can use the same IP address that was assigned using DHCP) then click Save. The same Static IP address information should now be copied for all members of the same stack. You can verify this by navigating to Switch > Monitor > Switches (Tip: Click on the configure button on the right-hand side of the table to add Local IP information display).

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

S.   Finally, configure etherchannels on both your Access Switch Stacks and your Core Switch Stacks so that all uplinks can be operational (STP forwarding mode) at the same time. Follow these steps:

    First, disconnect the downlinks to non-master switches from your C9500 Core Stack (e.g. Port TwentyFiveGigE2/0/23 and TwentyFiveGigE2/0/24)

    Navigate to Switching > Monitor > Switch ports and search for uplink then select all uplinks in the same stack (in case you have tagged your ports otherwise search for them manually and select them all) then click on Aggregate. Please note that all port members of the same Ether Channel must have the same configuration otherwise Dashboard will not allow you to click the aggregate button.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

    Please repeat above steps for all stacks in your network

    Please note that the above step will cause all members within the stack to go offline in Dashboard

      On your C9500 Core Stack, please configure etherchannel Settings for your downlinks such that each Stack downlinks should be in a separate Port-channel and that the mode is active:

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface TwentyFiveGigE1/0/23

9500-01(config-if)#channel-group 1 mode active

Creating a port-channel interface Port-channel 1

 

9500-01(config-if)#

9500-01(config-if)#interface TwentyFiveGigE2/0/23

9500-01(config-if)#channel-group 1 mode active

9500-01(config-if)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#channel-group 2 mode active

Creating a port-channel interface Port-channel 2

 

9500-01(config-if)#interface TwentyFiveGigE2/0/24

9500-01(config-if)#channel-group 2 mode active

9500-01(config-if)#end

9500-01#

9500-01#show etherchannel 1 port-channel

Port-channels in the group:

------------------------

Port-channel: Po1 (Primary Aggregator)

---------------

Age of the Port-channel = 0d:01h:42m:43s

Logical slot/port = 9/1 Number of ports = 2

HotStandBy port = null

Port state = Port-channel Ag-Inuse

Protocol = LACP

Port security = Disabled

Fast-switchover = disabled

Fast-switchover Dampening = disabled

Ports in the Port-channel:

 

Index Load Port        EC state    No of bits

------+------+------+-------------+-----------

0    00   Twe1/0/23   Active        0

0    00   Twe2/0/23   Active        0

 

Time since last port bundled: 0d:01h:40m:21s     Twe2/0/23

 

9500-01#

9500-01#show etherchannel 2 port-channel

Port-channels in the group:

------------------

 

Port-channel: Po2 (Primary Aggregator)

 

-----------

 

Age of the Port-channel = 0d:01h:43m:56s

Logical slot/port = 9/2      Number of ports = 2

HotStandBy port = null

Port state = Port-channel Ag-Inuse

Protocol = LACP

Port security = Disabled

Fast-switchover = disabled

Fast-switchover Dampening = disabled

Ports in the Port-channel:

Index   Load    Port     EC state   No of bits

-------+------+------+-------------+-----------

0   00       Twe1/0/24    Active        0

0   00       Twe2/0/24    Active        0

 

Time since last port bundled: 0d:01h:42m:04s Twe2/0/24

9500-01#9500-01#wr mem

Building configuration...

[OK]

9500-01#

 

      Plug all uplinks to non-master switches

      Now all your switches should come back online on Dashboard

Related image, diagram or screenshot

 

      And now all your uplinks from each stack should be in STP Forwarding mode, which you can verify on Dashboard by navigating to Switching > Monitor > Switch stacks and checking the uplink port status. Also, you can check that on your C9500 Core Stack:

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

9500-01#show spanning-tree interface port-channel 1

 

Mst Instance        Role Sts Cost     Prio.Nbr Type

----------------------------------------------------

MST0               Desg FWD 10000     128.2089 P2p

9500-01#show spanning-tree interface port-channel 2

 

Mst Instance        Role Sts Cost     Prio.Nbr Type

----------------------------------------------------

MST0               Desg FWD 10000     128.2089 P2p

9500-01#show spanning-tree

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 4096

     Address b0c5.3c60.fba0

     This bridge is the root

     Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

    Address b0c5.3c60.fba0

    Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface     Role Sts Cost       Prio.Nbr Type

---------------------------------------------------

Twe1/0/1      Desg FWD 2000       128.193 P2p

Twe1/0/2      Desg FWD 2000       128.194 P2p

Twe2/0/1      Back BLK 2000       128.385 P2p

Twe2/0/2      Back BLK 2000       128.386 P2p

Po1           Desg FWD 10000      128.2089 P2p

Po2           Desg FWD 1000       128.2090 P2p

9500-01#

 

55.  Configure Multiple Spanning Tree Protocol (802.1s) in Dashboard for MS390 and C9300 switches: Navigate to Switching > Configure > Switch settings and select your stack and choose the appropriate STP priority per stack (61440 for all Access Switch Stacks) then click Save at the bottom of the page.

Related image, diagram or screenshot

      Verify that the Access Stacks are seeing the C9500 Core Stack as the root by navigating to Switching > Monitor > Switches then click on any switch and under the RSTP root menu check the root bridge information

56.  Configure Dynamic ARP Inspection (DAI) on your C9500 Core Switches: All Downlinks to Access Switches and Uplinks to MX Edge must be configured as Trusted and all other interfaces as Untrusted. (Please note that the order of commands is important to avoid loss of connectivity)

9500-01#show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

                  S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,

                  D - Remote, C - CVTA, M - Two-port Mac Relay

 

Device ID     Local Intrfce    Holdtme Capability Platform Port ID

a4b4395f2a80  Twe 1/0/24       124     S C9300-24U Port C9300-NM-8X/1

2c3f0b0fec00  Twe 2/0/23       174     S MS390-24 Port 1

2c3f0b047e80  Twe 1/0/23       159     S MS390-24U Port 1

4ce175b0ba00  Twe 2/0/24       177     S C9300-24U Port C9300-NM-8X/1

 

Total cdp entries displayed : 4

9500-01#configure terminal

9500-01(config)#interface TwentyFiveGigE1/0/1

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface TwentyFiveGigE1/0/2

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface TwentyFiveGigE2/0/1

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface TwentyFiveGigE2/0/2

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface Po1

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface Po2

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#ip arp inspection vlan 1,10,20,30,40

9500-01(config)#ip dhcp snooping vlan 1,10,20,30,40

9500-01(config)#end

9500-01#show ip dhcp snooping

Switch DHCP snooping is enabled

Switch DHCP gleaning is disabled

DHCP snooping is configured on following VLANs:

1,10,20,30,40

DHCP snooping is operational on following VLANs:

1,10,20,30,40

DHCP snooping is configured on the following L3 Interfaces:

 

Insertion of option 82 is enabled

   circuit-id default format: vlan-mod-port

   remote-id: b0c5.3c60.fba0 (MAC)

Option 82 on untrusted port is not allowed

Verification of hwaddr field is enabled

Verification of giaddr field is enabled

DHCP snooping trust/rate is configured on the following Interfaces:

 

Interface                Trusted      Allow option      Rate limit (pps)

------------------------------------------------------------------------

TwentyFiveGigE1/0/1         yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE1/0/2         yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE1/0/23        yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE1/0/24        yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/1         yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/2         yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/23        yes        yes           unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/24        yes        yes           unlimited

Custom circuit-ids:

Port-channel1               yes        yes           unlimited

Custom circuit-ids:

Port-channel2               yes        yes           unlimited

Custom circuit-ids:

9500-01#

9500-01#show ip arp inspection

 

Source Mac Validation : Disabled

Destination Mac Validation : Disabled

IP Address Validation : Disabled

 

Vlan      Configuration        Operation     ACL Match     Static ACL

-----------------------------------------------------

1         Enabled               Active

10         Enabled              Active

20         Enabled              Active

30         Enabled              Active

40         Enabled              Active

9500-01#wr mem

Building configuration...

[OK]

9500-01#

57.  Configure Dynamic Arp Inspection (DAI) on your Access Switch Stacks: Navigate to Switching > Monitor > DHCP Servers and ARP and scroll down to Dynamic ARP Inspection and enable it. Then click Save at the bottom of the page.

Related image, diagram or screenshot

58.  Setting up your Access Points: Connect your APs to the respective ports on the Access Switches (e.g. Ports 13-16) and wait for them to come online on dashboard and download their firmware and configuration files. To check the status of your APs navigate to Wireless > Monitor > Access points and check the status, configuration and firmware of your APs.

Related image, diagram or screenshot

59.  Re-addressing your Network Devices: In this step, you will adjust your IP addressing configuration to align with your network design. This step could have been done earlier in the process however it will be easier to adjust after all your network devices have come online since the MX (The DHCP server for Management VLAN 1) has kept a record of the actual MAC addresses of all DHCP clients. Follow these steps to re-assign the desired IP addresses: (Please note that this will cause disruption to your network connectivity)

A.   Navigate to Organization > Monitor > Overview then click on Devices tab to check the current IP addressing for your network devices

B.   Navigate to Security and SD-WAN > Monitor > Appliance status then click on the Tools tab and click on Run next to ARP Table

C.   Take a note of the MAC addresses of your network devices

D.   Navigate to Security and SD-WAN > Configure > DHCP then under Fixed IP assignments click on Add a fixed IP assignment and add entries for your network devices using the MAC addresses you have from Step #3 above then click on Save at the bottom of the page

Related image, diagram or screenshot

E.   Navigate to Switching > Configure > Switch ports then filter for MR (in case you have previously tagged your ports or select ports manually if you haven't) then select those ports and click on Edit, then set Port status to Disabled then click on Save.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

F.   After a few minutes (For configuration to be up to date) Navigate to Switching > Configure > Switch ports then filter for MR (in case you have previously tagged your ports or select ports manually if you haven't) then select those ports and click on Edit, then set Port status to Enabled then click on Save.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

G.   Navigate to Switching > Monitor > Switches then click on each master switch to change its IP address to the one desired using Static IP configuration (remember that all members of the same stack need to have the same static IP address)

Related image, diagram or screenshot

Related image, diagram or screenshot

H.   On your C9500 Core Stack, bounce your VLAN 1 interface. Then verify that the interface VLAN 1 came up with the correct IP address (e.g. 10.0.0.2 per this design)

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface vlan 1

9500-01(config-if)#shutdown

9500-01(config-if)#no shutdown

9500-01(config-if)#end

9500-01#sh ip interface brief vlan 1

Interface     IP-Address OK?   Method Status    Protocol

Vlan1         10.0.1.2         YES DHCP up      up

9500-01#

 

I.    Navigate to Organization > Monitor > Overview then click on Devices tab to check the current IP addressing for your network devices

Related image, diagram or screenshot

60.  Configure QoS in your Campus LAN: Quality of Service configuration needs to be consistent across the whole Campus LAN. Please refer to the above table as an example. To configure QoS, please follow these steps: (For the purpose of this CVD, Default traffic shaping rules will be used to mark traffic with DSCP values without setting any traffic limits. Please adjust traffic shaping rules based on your own requirements)

A.    Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the Acme Corp SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules. Click Save at the bottom of the page when you are done. Click Save at the bottom of the page when you are done.

Related image, diagram or screenshot

B.     Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the Acme BYOD SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules.

Related image, diagram or screenshot

C.    Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the Guest SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules. Click Save at the bottom of the page when you are done.

Related image, diagram or screenshot

D.   Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the IoT SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules. Click Save at the bottom of the page when you are done.

Related image, diagram or screenshot

E.   Navigate to Switching > Configure > Switch settings and under the Quality of Service menu configure the VLAN to DSCP mappings. Please click on Edit DSCP to CoS map to change settings per your requirements. (For more information on MS QoS settings and operation, please refer to the following article) Click Save at the bottom of the page when you are done. (Please note that the ports used in the below example are based on Cisco Webex traffic flow)

Related image, diagram or screenshot

 

Related image, diagram or screenshot

F.   Please ensure that your C9500 Core Stack is configured to trust incoming QoS. Here's a reference of the configuration needed to be applied:

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface TwentyFiveGigE1/0/1

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE1/0/2

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE2/0/1

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE2/0/2

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE1/0/23

9500-01(config-if)#auto qos trust dscp

Warning: add service policy will cause inconsistency with port TwentyFiveGigE2/0/23 in ether

channel 1.

9500-01(config-if)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#auto qos trust dscp

Warning: add service policy will cause inconsistency with port TwentyFiveGigE2/0/24 in ether

channel 2.

9500-01(config-if)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#end

9500-01#show auto qos

 

TwentyFiveGigE1/0/1

auto qos trust dscp

 

TwentyFiveGigE1/0/2

auto qos trust dscp

 

TwentyFiveGigE1/0/23

auto qos trust dscp

 

TwentyFiveGigE1/0/24

auto qos trust dscp

 

TwentyFiveGigE2/0/1

auto qos trust dscp

 

TwentyFiveGigE2/0/2

auto qos trust dscp

 

TwentyFiveGigE2/0/23

auto qos trust dscp

 

TwentyFiveGigE2/0/24

auto qos trust dscp

 

9500-01#wr mem

G.   Navigate to Security and SD-WAN > Configure > SD-WAN and Traffic shaping and make sure your Uplink configuration matches your WAN speed. Then, under Uplink selection choose the settings that match your requirements (e.g. Load balancing). Under Traffic shaping rules, select Enable default traffic shaping rules then click on Add a new shaping rule to create the rules needed for your network (for more information about Traffic shaping rules on MX appliances, please refer to the following article). Please see the following example:

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

For more information about any of the above configurations, please refer to Meraki Documentation for further guidance on configuring Etherchannels, stacking, switch ports, SSId configuration and more. Here is a useful MR – Wireless section and a MS – Switching section.

Testing and Verification

Firmware

The following table indicates the firmware versions used in this Campus LAN:

Device

Firmware Version

Notes

MX250 WAN Edge

MX 16.16

GA

C9500 Core Stack

IOS XE 17.3.4

Stable

MS390 Access Stack

MS 15.14

Beta

C9300 Access Stack

MS 15.14

Beta

MR55

28.6.1

GA

C9166 (MR57)

28.30

Beta

Device Connectivity

MX WAN Edge

Upstream Connectivity

Related image, diagram or screenshot

Internet/Cloud Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Downstream Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

C9500 Core Stack

Upstream Connectivity

9500-01#ping 10.0.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#

 

Internet Connectivity

9500-01#ping 8.8.8.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 5/5/5 ms

9500-01#ping cisco.com

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 72.163.4.185, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 108/110/112 ms

9500-01#

 

Downstream Connectivity (Please note that the MS390 and C9300-M platforms will prioritize packet forwarding over ICMP echo replies so it's expected behavior that you might get some drops)

9500-01#ping 10.0.1.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.3, timeout is 2 seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 2/2/3 ms

9500-01#ping 10.0.1.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.4, timeout is 2 seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 2/2/4 ms

9500-01#ping 10.0.1.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.5, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#ping 10.0.1.6

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.6, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#

In case of connectivity issues, please check the following:

Item

Expected Configuration/ Status

Verification

Actual Configuration

C9500 Uplinks to

MX Edge:

TwentyFiveGigE1/0/1

TwentyFiveGigE1/0/2

TwentyFiveGigE2/0/1

TwentyFiveGigE2/0/2

Access , VLAN 1

DAI Trusted

up/up

sh ip int brief

sh run int

<interface>

sh spanning-tree

int <interface>

!all uplinks!

switchport mode access

ip arp inspection trust

ip dhcp snooping trust

end

!

STP interface configuration:

STP Configuration

 

 

TwentyFiveGigE1/0/1

TwentyFiveGigE1/0/2

TwentyFiveGigE2/0/1

TwentyFiveGigE2/0/2

TwentyFiveGigE1/0/23

TwentyFiveGigE1/0/24

TwentyFiveGigE2/0/23

TwentyFiveGigE2/0/24

N/A

N/A

N/A

N/A

Root Guard + UDLD aggressive

Root Guard + UDLD aggressive

Root Guard + UDLD aggressive

Root Guard + UDLD aggressive

sh run int <interface>

!where applicable!

 

udld port aggressive

 

spanning-tree guard root

 

end

 

!

STP interface status:

TwentyFiveGigE1/0/1

TwentyFiveGigE1/0/2

TwentyFiveGigE2/0/1

TwentyFiveGigE2/0/2

Po1

Po2

STP status:

FWD

BLK

FWD

BLK

FWD

FWD

sh spanning-tree

int <interface>

!only PHY interfaces!

spanning-tree mode mst

spanning-tree extend system-id

!

spanning-tree mst configuration

name region1

revision 1

!

spanning-tree mst 0 priority 4096

!

Default Route

DHCP, VLAN 1

sh int vlan1

sh ip route

!

interface Vlan1

ip address dhcp

end

!

sh ip route | in /0

S* 0.0.0.0/0 [254/0] via 10.0.1.1

MX WAN Edge Downlinks:

Port 19

Port 20

Access, VLAN 1

Navigate to Security and SD-WAN > Configure > Addressing and VLANs

Related image, diagram or screenshot

C9500 Downlinks:

TwentyFiveGigE1/0/23

TwentyFiveGigE1/0/24

TwentyFiveGigE2/0/23

TwentyFiveGigE2/0/24

Trunk, Native

VLAN 1,

Allowed

VLANs

1,10,20,30,40

DAI Trusted

SGT 2 Trusted

No CTS enforcement

sh run int <interface>

!

switchport trunk allowed vlan 1,10,20,30,40

switchport mode trunk

ip arp inspection trust

!

cts manual

policy static sgt 2 trusted

no cts role-based enforcement

!

End

C9500 Ether-Channels:

TwentyFiveGigE1/0/23

TwentyFiveGigE1/0/24

TwentyFiveGigE2/0/23

TwentyFiveGigE2/0/24

Po1

Po2

Channel-Group 1

Channel-Group 2

Channel-Group 1

Channel-Group 2

up/up

up/up

sh run int

<interface>

sh

etherchannel <#> sum

sh ip int brief | in

Po

!PHY 23!

channel-group 1 mode active

!PHY 24!

channel-group 2 mode active

!

End

MS390 Access Stack

Upstream Connectivity

Related image, diagram or screenshot

Internet/Cloud Connectivity

Related image, diagram or screenshot

Downstream Connectivity

Related image, diagram or screenshot

C9300 Access Stack

Upstream Connectivity

Related image, diagram or screenshot

Internet/Cloud Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Downstream Connectivity

Related image, diagram or screenshot

MR Access Points

Client Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

802.1x Authentication

802.1x authentication has been tested on both Corp and BYOD SSIDs. Dashboard will be checked to verify the correct IP address assignment and username. Packet captures will also be checked to verify the correct SGT assignment. In the final section, ISE logs will show the authentication status and authorization policy applied.

Client

SSID / Port

Username

VLAN

SGT

MacBook Pro

3c:22:fb:30:da:69

10.0.10.3

Acme Corp

Corp1

10

10

iPhone 11

46:f2:0c:4b:e7:fd

10.0.20.5

Acme BYOD

Byod1

20

20

MacBook Pro

8C:AE:4C:DD:15:19

10.0.10.6

MS390-01

Port 6

Corp1

10 (Auth-fail VLAN 30)

10

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Authentication Details

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Please note that the configuration of Cisco ISE is out of scope of this CVD. Please refer to Cisco ISE administration guide for details on configuring policy sets on Cisco ISE. Also, please refer to this article for more information on the configuration of Cisco ISE with Cisco Meraki devices.

Wireless roaming

Wireless roaming has been tested between two zones and APs homed to different switch stacks whilst being on a Webex meeting with Audio/Video and Content share. Device and Client details in the following table:

Device Type

Details

Connected to

MR55 (AP3_Zone2)

68:3a:1e:54:0d:48

10.0.1.5

C9300-2 (Stack2)

MR57 (AP2_Zone1)

cc:9c:3e:ec:26:b0

10.0.1.6

MS390-1 (Stack1)

Client (iPhone 11)

cc:66:0a:3e:44:69

10.0.20.3

AP3_Zone2

AP2_Zone1

(Layer 2 Roaming)

 

First association

Related image, diagram or screenshot

Related image, diagram or screenshot

Second Association (The video overlay is the stream from a Webex meeting while the client was roaming)

Related image, diagram or screenshot

Related image, diagram or screenshot

Traffic Flow (Packet #27)

Related image, diagram or screenshot

Webex meeting statistics (Snapshot taken after roaming)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Dashboard logs

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

STP Convergence

STP convergence will be tested using several methods as outlined below. Please see the following table for steady-state of the Campus LAN before testing:

 

 

Bridge ID

STP Status

C9500-01

Master

4096:b0c5.3c60.fba0

Related image, diagram or screenshot

C9500-02

Member

4096.40b5.c111.01e0

MS390-01

Master

61440:2c3f.0b04.7e80

STP ROOT

b0:c5:3c:60:fb:a0 (priority 4096)

MS390-02

Member

 

Blocking ports

None

Related image, diagram or screenshot

Introducing loops (Access to Core)

A screenshot of a computerDescription automatically generated

A loop was introduced by adding a link between C9300-01 /NM Port 2 and C9500 Core Stack / Port TwentyFiveGigE1/0/22 (Please note that for the purposes of this test, the interface has been unshut and configured as a Trunk port with Native VLAN 1 with STP guards on that interface).

9500-01#show ip interface brief | in TwentyFiveGigE1/0/22

TwentyFiveGigE1/0/22 unassigned YES unset up up

ow9500-01#show run interface TwentyFiveGigE1/0/22

Building configuration...

 

Current configuration : 132 bytes

!

interface TwentyFiveGigE1/0/22

switchport trunk allowed vlan 1,10,20,30,40

switchport mode trunk

spanning-tree guard root

end

 

9500-01#

9500-01#show spanning-tree

 

MST0

Spanning tree enabled protocol mstp

Root ID Priority 4096

    Address b0c5.3c60.fba0

    This bridge is the root

    Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

    Address b0c5.3c60.fba0

    Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface      Role Sts Cost        Prio.Nbr Type

-------------------------------------------------

Twe1/0/1       Desg FWD 2000        128.193 P2p

Twe1/0/2       Desg FWD 2000        128.194 P2p

Twe1/0/22      Desg FWD 2000        128.214 P2p

Twe2/0/1       Back BLK 2000        128.385 P2p

Twe2/0/2       Back BLK 2000        128.386 P2p

Po1            Desg FWD 10000       128.2089 P2p

Po2            Desg FWD 1000        128.2090 P2p

 

Note: Interface Twe1/0/22 is in STP FWD state (As expected since this is the Root bridge)

Related image, diagram or screenshot

Note: Interface 26 is in STP BLK state (As expected since the Ether-channel is in FWD state)

Related image, diagram or screenshot

Note: No impact on traffic flow for wireless clients

Introducing Loops (Access Layer, with STP Guard: Loop Guard)

A screenshot of a computer screenDescription automatically generated

For the purposes of this test and in addition to the previous loop connections, the following ports were connected: MS390-01 / Port 11 < - > C9300-01 / Port 11

Related image, diagram or screenshot

Note: Port 11 on MS390-01 in STP BLK state

Related image, diagram or screenshot

Note: Port 11 on C9300-01 in STP FWD state (Bridge ID: 61440:a4b4.395f.2a8b)

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Packet capture on MS390-01 / Port 11 shows that Bridge ID: 61440:4ce1.75b0.ba00 is relaying the Root bridge BPDUs with Root Bridge ID: 4096:b0c5.3c60.fba0

Introducing Loops (Access Layer, without STP Guard)

A screenshot of a computerDescription automatically generated

For the purposes of this test and in addition to the previous loop connections, the following ports were connected:

MS390-02 / Port 12 < - > C9300-02 / Port 12

Related image, diagram or screenshot

 

Note: MS390-02 / Port 12 is in STP BLK state (Bridge ID: 61440:2c3f.0b0f.ec00)

Related image, diagram or screenshot

Note: C9300-02 / Port 12 is in STP FWD state (Bridge ID: 61440:4ce1.75b0.ba00)

Introducing Loops (Core Layer)

A screenshot of a computerDescription automatically generated

For the purpose of this test and in addition to the previous loop connections, the following ports were connected:

Port Twe1/0/10 to port Twe2/0/10 on the C9500 Core switches.

9500-01#show run interface Twe1/0/10

Building configuration...

Current configuration : 132 bytes

!

interface TwentyFiveGigE1/0/10

switchport trunk allowed vlan 1,10,20,30,40

switchport mode trunk

spanning-tree guard root

end

9500-01#show run interface Twe2/0/10

Building configuration...

Current configuration : 132 bytes

!

interface TwentyFiveGigE2/0/10

switchport trunk allowed vlan 1,10,20,30,40

switchport mode trunk

spanning-tree guard root

end

9500-01#

9500-01#show ip interface brief | in TwentyFiveGigE1/0/10

TwentyFiveGigE1/0/10 unassigned YES unset up up

9500-01#

9500-01#show ip interface brief | in TwentyFiveGigE2/0/10

TwentyFiveGigE2/0/10 unassigned YES unset up up

9500-01#show spanning-tree

MST0

Spanning tree enabled protocol mstp

Root ID Priority 4096

      Address b0c5.3c60.fba0

      This bridge is the root

      Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

      Address b0c5.3c60.fba0

      Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface      Role Sts Cost        Prio.Nbr Type

------------------------------------------------

Twe1/0/1       Desg FWD 2000        128.193 P2p

Twe1/0/2       Desg FWD 2000        128.194 P2p

Twe1/0/10      Desg BLK 2000        128.202 P2p

Twe1/0/22      Desg FWD 2000        128.214 P2p

Twe2/0/1       Back BLK 2000        128.385 P2p

Twe2/0/2       Back BLK 2000        128.386 P2p

Twe2/0/10      Desg BKN*2000        128.394 P2p *ROOT_Inc

Po1            Desg FWD 10000       128.2089 P2p

Po2            Desg FWD 1000        128.2090 P2p

 

9500-01#show spanning-tree interface Twe2/0/10 detail

Port 394 (TwentyFiveGigE2/0/10) of MST0 is broken (Root Inconsistent)

  Port path cost 2000, Port priority 128, Port Identifier 128.394.

  Designated root has priority 4096, address 4ce1.75b0.ba00

  Designated bridge has priority 8192, address b0c5.3c60.fba0

  Designated port id is 128.394, designated path cost 0

  Timers: message age 4, forward delay 0, hold 0

  Number of transitions to forwarding state: 0

  Link type is point-to-point by default, Internal

  PVST Simulation is enabled by default

  Root guard is enabled on the port

  BPDU: sent 2592, received 5175

9500-01#

 

Introducing Rogue Bridge in VLAN 1

A screenshot of a computerDescription automatically generated

For the purpose of this test and in addition to the previous loop connections, the Bridge priority on C9300 Stack will be reduced to 4096 (likely root) and increasing the Bridge priority on C9500 to 8192.

      Downlinks on C9500 are configured with STP Root Guard

      Access Layer Links (Stack to Stack) are configured with STP Loop Guard + UDLD

9500-01(config)#spanning-tree mst 0 priority 8192

9500-01(config)#end

9500-01#show spanning-tree

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 8192

      Address b0c5.3c60.fba0

      This bridge is the root

      Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 8192 (priority 8192 sys-id-ext 0)

    Address b0c5.3c60.fba0

    Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface     Role Sts Cost           Prio.Nbr Type

Twe1/0/1      Desg FWD 2000           128.193 P2p

Twe1/0/10     Desg FWD 2000           128.202 P2p

Twe1/0/22     Desg FWD 2000           128.214 P2p

Twe2/0/1      Back BLK 2000           128.385 P2p

Twe2/0/10     Desg BKN*2000           128.394 P2p *ROOT_Inc

Po1           Desg FWD 10000           128.2089 P2p

Po2           Desg FWD 1000           128.2090 P2p

9500-01#

Related image, diagram or screenshot

9500-01#show spanning-tree

MST0

   Spanning tree enabled protocol mstp

   Root ID Priority 8192

      Address b0c5.3c60.fba0

      This bridge is the root

      Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 8192 (priority 8192 sys-id-ext 0)

      Address b0c5.3c60.fba0

      Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

Interface            RoleSts Cost         Prio.Nbr Type

--------------------------------------------------------

Twe1/0/1            Desg FWD 2000         128.193 P2p

Twe1/0/2            Desg FWD 2000         128.194 P2p

Twe1/0/10           Desg FWD 2000         128.202 P2p

Twe1/0/22           Desg BKN*2000         128.214 P2p *ROOT_Inc

Twe2/0/1            Back BLK 2000         128.385 P2p

Twe2/0/2            Back BLK 2000         128.386 P2p

Twe2/0/10           Desg BKN*2000         128.394 P2p *ROOT_Inc

Po1                 Desg FWD 10000        128.2089 P2p

Po2                 Desg FWD 1000         128.2090 P2p

 

9500-01#

9500-01#show spanning-tree interface Twe1/0/22 detail

  Port 214 (TwentyFiveGigE1/0/22) of MST0 is broken (Root Inconsistent)

  Port path cost 2000, Port priority 128, Port Identifier 128.214.

  Designated root has priority 4096, address 4ce1.75b0.ba00

  Designated bridge has priority 8192, address b0c5.3c60.fba0

  Designated port id is 128.214, designated path cost 0

  Timers: message age 5, forward delay 0, hold 0

  Number of transitions to forwarding state: 2

  Link type is point-to-point by default, Internal

  PVST Simulation is enabled by default

  Root guard is enabled on the port

  BPDU: sent 4611, received 319

9500-01#

 

Note: C9500 Core Stack is still the Root Bridge (i.e. The root Bridge placement has been enforced).
Downlink to C9300-01 is in STP Inconsistent State

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: C9300 Stack is root
All C9300 ports are in FWD state

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: C9300 Stack is root for MS390
All MS390 to C9300 are in STP BLK state

Related image, diagram or screenshot

Note: Wireless client traffic flow disrupted for about 30 secs

Notes:

Reverting all configuration back to original state:

1.     Disconnect and shutdown interface TwentyFiveGigE1/0/22

2.     Disconnect port 11 on MS390-01 and C9300-01 and remove Loop Guard and UDLD

3.     Disconnect port 12 on MS390-02 and C9300-02.

4.     Disconnect and revert port TwentyFiveGigE1/0/10 and TwentyFiveGigE20/10 back to access with VLAN 1 and shutdown

5.     Change MST priority on C9300 stack to 61440

6.     Change MST priority on C9500 Core Stack to 4096

High Availability and Failover

Here's the steady-state physical architecture for reference:

A screenshot of a computerDescription automatically generated

MX WAN Edge Failover

A screenshot of a computerDescription automatically generated

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Client traffic was very briefly disrupted during failover event (1 packet drop)

A screenshot of a computerDescription automatically generated

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Client traffic disrupted for about 1-3 secs

C9500 Core Stack Loss of Uplink

A screenshot of a computerDescription automatically generated

For the purpose of this test, ports TwentyFiveGigE1/0/1 and TwentyFiveGigE1/0/2 will be disconnected.

9500-01#show ip interface brief

TwentyFiveGigE1/0/1    unassigned      YES unset down    down

TwentyFiveGigE1/0/2    unassigned      YES unset down    down

TwentyFiveGigE2/0/1    unassigned      YES unset up      up

TwentyFiveGigE2/0/2    unassigned      YES unset up      up

9500-01#show switch

Switch/Stack Mac Address : b0c5.3c60.fba0 - Local Mac Address

Mac persistency wait time: Indefinite

                           H/W Current

 

Switch#    Role     Mac Address          Priority   Version   State

-------------------------------------------------------------------

*1         Active    b0c5.3c60.fba0       5        V02        Ready

2          Standby  40b5.c111.01e0        1        V02        Ready

 

9500-01#

Related image, diagram or screenshot

Note: Wireless client traffic flow disrupted for about 30 secs

 

C9300 Stack Loss of Uplink

Related image, diagram or screenshot

For the purpose of this test, NM Port 1 on C9300-01 (Master switch) will be disconnected.

Related image, diagram or screenshot

Note: Wireless client traffic flow disrupted for about 30 secs

MS390 Stack Loss of Uplink

A screenshot of a computerDescription automatically generated

For the purpose of this test, port 1 on MS390-01 (Master switch) will be disconnected.

Related image, diagram or screenshot

Note: Wireless client traffic to the internet disrupted for about 2 secs

Related image, diagram or screenshot

Note: Wireless client traffic on Campus LAN disrupted for about 1 sec

QoS

For the purpose of this test, packet capture will be taken between two clients running a Webex session. Packet capture will be taken on the Edge (i.e. MR wireless and wired interfaces) then on the Access (i.e. the MS390 or C9300 uplink port) then on the MX WAN Downlink and finally on the MX WAN Uplink. The table below shows the testing components and the expected QoS behavior:

Client

Application

Access Point (Wired) Expected QoS

Access Switch Uplink Port Expected QoS

MX Appliance Uplink Port Expected QoS

Client #1 (10.0.20.2)

iPhone 11 (cc:66:0a:3e:44:69)

Webex (UDP 9000)

AP3_Zone2 / AF41 / DSCP 34

C9300-02 (Port 25) / AF41 / DSCP 34

AF41 / DSCP 34

iTunes

AP3_Zone2 / AF21 / DSCP 18

C9300-02 (Port 25) / AF21 / DSCP 18

AF21 / DSCP 18

Client #2 (10.0.20.3)

MacBook Pro (3c:22:fb:30:da:69)

Webex (UDP 9000)

AP2_Zone1 / AF41 / DSCP 34

MS390-01 (Port 1) / AF41 / DSCP 34

AF41 / DSCP 34

Dropbox

AP2_Zone1 / AF0 / DSCP 0

MS390-01 (Port 1) / AF0 / DSCP 0

AF0 / DSCP 0

Access Point Wireless Port pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Please note that QoS values in this case could be arbitrary as they are upstream (i.e. Client to AP) unless you have configured Wireless Profiles on the client devices. Please check the following article for more details on creating Wireless Profiles and using FastLane with Meraki Systems Manager.

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Please note that QoS values in this case could be arbitrary as they are upstream (i.e. Client to AP) unless you have configured Wireless Profiles on the client devices. Please check the following article for more details on creating Wireless Profiles and using FastLane with Meraki Systems Manager.

Access Point Wired Port pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

Access Switch Uplink pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

MX appliance Downlink pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

MX Appliance Uplink pcaps

Related image, diagram or screenshot

Related image, diagram or screenshot

Option 2: STP-Based Convergence without Native VLAN 1

Overview

This option is similar to the above except that the default VLAN 1 does not exist and the Native VLAN is replaced with another non-trivial VLAN assignment which can be considered a more preferable option for customers as it's separate from the Management VLAN. Also, a Transit VLAN has been introduced between the C9500 Core Stack and the MX WAN Edge to facilitate the separation between Management traffic (VLAN 100) and Client Traffic (Transit VLAN 192)

This design is based on consistent STP protocols running in this campus deployment, as such Multiple Spanning Tree Protocol (MST, aka 802.1s) will be configured since it is supported on both the Meraki and Catalyst platforms.

Tech Tip: It is recommended to run the same STP protocol across all switches (MST in this case). Running any other protocol on Catalyst (e.g. PVST) can introduce undesired behavior and can be more difficult to troubleshoot.

Tech Tip: Running PVST/PVST+ on Catalyst in this design will result in very slow STP convergence and create an inconsistent STP domain due to the fact that PVST/PVST+ backward compatible BPDUs only run in VLAN 1 tagged whereas Meraki switches will send 802.1D BPDUs in the Native VLAN untagged

You should consider this option if you need to steer away from having VLAN 1 in your Campus LAN. Here's some things to consider about this design option:

Pros:

      Flexibility in your VLAN design

      Facilitates Wireless Roaming across the whole campus

      Easier to deploy and consistent configuration across the entire Campus LAN

      Minimize the risk of VLAN hopping

      Considered more secure due to separation between Management traffic and Client traffic

Cons:

      Non-deterministic route failover

      Slow convergence

      Different STP protocols on Cloud Managed and Cloud Monitored Catalyst Switches

Tech Tip: Since STP will be used as a loop prevention mechanism, all SVIs will be created on the collapsed core layer with the exception of the Management (aka Infrastructure VLAN) and Transit VLAN.

Logical Architecture

The following diagram shows the logical architecture highlighting STP convergence within a campus LAN design leveraging Cloud Managed and Cloud Monitored Catalyst platforms:

A screenshot of a computerDescription automatically generated

Physical Architecture

The following diagram shows the physical architecture and port list for this design:

A screenshot of a computerDescription automatically generated

A screenshot of a computerDescription automatically generated

Assumptions

The following assumptions have been considered:

      VLAN 1 should not be configured on any switchport in this Campus LAN

      It is assumed that Wireless roaming is required everywhere in the Campus

      It is assumed that VLANs are spanning across multiple zones

      Corporate SSID (Broadcast in all zones) users are assigned VLAN 10 on all APs. CoA VLAN is VLAN 30 (Via Cisco ISE)

      BYOD SSID (Broadcast in all zones) users are assigned VLAN 20 on all APs. CoA VLAN is VLAN 30 (Via Cisco ISE)

      Guest SSID (Broadcast in all zones) users are assigned VLAN 30 on all APs

      IoT SSID (Broadcast in all zones) users are assigned VLAN 40 on all APs

      Access Switches will be running in Layer 2 mode (No SVIs or DHCP)

      MS390-M Access Switches physically stacked together

      C9300-M Access Switches physically stacked together

      C9500 Core Switches with Stackwise-virtual stacking using SVLs

      Access Switch uplinks are in trunk mode with native VLAN = VLAN 1 (Management VLAN*)

      STP root is at Distribution/Collapsed-core

      Distribution/Collapsed-core uplinks are in Trunk mode with Native VLAN = VLAN 1 (Management VLAN)

      All VLAN SVIs are hosted on the core layer

      Network devices will be assigned fixed IPs from the management VLAN DHCP pool. Default Gateway is 10.0.100.1

Network Segments

Please check the following table for more information about the network segments (e.g. VLANs, SVIs, etc.) for this design:

Network Segment

VLAN ID

Subnet

Default Gateway

Notes

Infrastructure

100

10.0.100.0/24

10.0.100.1

SVI hosted on edge MX

Transit

192

192.168.0.0/24

192.168.0.1

SVI hosted on edge MX

Corporate Devices (Wireless and Wired)

10

10.0.10.0/24

10.0.10.1

SVI hosted on core switches

BYOD Wireless Devices

20

10.0.20.0/24

10.0.20.1

SVI hosted on core switches

Guest Wireless Devices

30

10.0.30.0/24

10.0.30.1

SVI hosted on core switches

IoT Wireless Devices

40

10.0.40.0/24

10.0.40.1

SVI hosted on core switches

Tech Tip: Please size your subnets based on your own requirements. The above table is for illustration purposes only

Tech Tip: In this example, the Infrastructure VLAN has been created on the Edge MX. Alternatively, you can create the SVI on the C9500 Core Stack

Quality of Service

Application

MR

Access Switches

Core Switches

SIP (Voice)

EF

DSCP 46

AC_Vo

Trust incoming values

DSCP 46

CoS 5

Trust incoming values

Webex and Skype

AF41

DSCP 34

AC_VI

Trust incoming values

DSCP 34

CoS 4

Trust incoming values

All Video and Music

AF21

DSCP 18

AC_BE

Trust incoming values

DSCP 18

CoS 2

Trust incoming values

Software Updates

AF11

DSCP 10

AC_BK

Trust incoming values

DSCP 10

CoS 1

Trust incoming values

Tech Tip:

Please note that the above table is for illustration purposes only. Please configure QoS based on your network requirements. Refer to the following articles for more information on traffic shaping and QoS settings on Meraki devices:

SD-WAN and traffic shaping

MS QoS and traffic shaping

MR traffic shaping rules

Device list

Device

Name

Management IP address

Notes

MX250

MX250

Primary WAN Edge

Spare WAN Edge

10.0.100.1

warm-spare

C9500-24YCY

C9500-24YCY

C9500-01

C9500-02

10.0.100.2

Stackwise Virtual (C9500-Core-Stack)

MS390-24P

MS390-24P

MS390-01

MS390-02

10.0.100.3

Physical Stacking (Stack1-MS390)

C9300-24P

C9300-24P

C9300-01

C9300-02

100.100.4

Physical Stacking (Stack2-C9300)

MR55

AP1_Zone1

10.0.100.5

Tag = Zone1

C9166 (eq MR57)

AP2_Zone1

10.0.100.6

Tag = Zone1

MR55

AP3_Zone2

10.0.100.7

Tag = Zone2

C9166 (eq MR57)

AP4_Zone2

10.0.100.8

Tag = Zone2

Access policies

Access Policy Name

Purpose

Configuration

Notes

Wired-1x

802.1x Authentication via Cisco ISE for wired clients that support 802.1x

Authentication method = my Radius server

Radius CoA = enabled

Host mode = Single-Host

Access Policy type = 802.1x

Guest VLAN = 30

Failed Auth VLAN = 30

Critical Auth VLAN = 30

Suspend Port Bounce = Enabled

Voice Clients = Bypass authentication

Walled Garden = enabled

Cisco ISE authentication and posture checks

Wired-MAB

MAB Authentication via Cisco ISE for wired clients that do not support 802.1x

Authentication method = my Radius server

Radius CoA = disabled

Host mode = Single-Host

Access Policy type = MAC authentication bypass

Guest VLAN = 30

Failed Auth VLAN = 30

Critical Auth VLAN = 30

Suspect Port Bounce = Enabled

Voice Clients = Bypass authentication

Walled Garden = disabled

Cisco ISE authentication

Port list

Device name

Port

Far-end

Port details

Notes

Primary WAN Edge / Spare WAN Edge

1

WAN1

 

VIP1

Primary WAN Edge / Spare WAN Edge

2

WAN2

 

VIP2

Primary WAN Edge

19

9500-01 (PortTwe1/0/1)

Trunk (Native VLAN 100)

Allowed VLANs 100, 192

Downlink

20

9500-02 (PortTwe2/0/1)

Trunk (Native VLAN 100)

Allowed VLANs 100, 192

Downlink

Spare WAN Edge

19

9500-01 (Port Twe1/0/2)

Trunk (Native VLAN 100)

Allowed VLANs 100, 192

Downlink

20

9500-02 (Port Twe2/0/2)

Trunk (Native VLAN 100)

Allowed VLANs 100, 192

Downlink

9500-01

Twe1/0/1

Primary WAN Edge (Port 19)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlan 100,192

Uplink

Twe1/0/2

Spare WAN Edge (Port 19)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlan 100,192

Uplink

9500-02

Twe2/0/1

Primary WAN Edge (Port 20)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlan 100,192

Uplink

Twe2/0/2

Spare WAN Edge (Port 20)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlan 100,192

Uplink

9500-01

Twe1/0/23

MS390-01 (Port 1)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlans 10,20,30,40, 100

channel-group 1 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

Twe1/0/24

C9300-01 (Port 1)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlans 10,20,30,40,100

channel-group 2 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

9500-02

Twe2/0/23

MS390-02 (Port 1)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlans

10,20,30,40,100

channel-group 1 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

Twe2/0/24

C9300-02 (Port 1)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlans 10,20,30,40,100

channel-group 2 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

9500-01

Hu1/0/25

C9500-02 (Port Hu2/0/26)

stackwise-virtual link 1

Stackwise Virtual

Hu1/0/26

C9500-02 (Port Hu2/0/25)

stackwise-virtual link 1

Stackwise Virtual

9500-02

Hu2/0/25

C9500-01 (PortHu1/0/26)

stackwise-virtual link 1

Stackwise Virtual

Hu2/0/26

C9500-01 (PortHu1/0/25)

stackwise-virtual link 1

Stackwise Virtual

MS390-01

5-8

Wired Clients

Access (Data VLAN 10)

Access Policy = Wired-1x

PoE Enabled

STP BPDU Guard

Tag = Wired Clients 802.1x

AdP: Corp

For wired clients supporting 802.1x

MS390-02

C9300-01

C9300-02

MS390-01

9-12

Wired Clients

Access (Data VLAN 10)

Access Policy = MAB

PoE Enabled

STP BPDU Guard

Tag = Wired Clients MAB

AdP: Corp

For wired clients that do not support 802.1x

MS390-02

C9300-01

C9300-02

MS390-01

13-16

MR

Trunk (Native VLAN 100)

PoE Enabled

STP BPDU Guard

Tag = MR WLAN

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs:

10,20,30,40,100

MS390-02

C9300-01

C9300-02

MS390-01

1

9500-01 (Port Twe1/0/23)

Trunk (Native VLAN 100)

PoE Disabled

Name: Core 1

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs:

10,20,30,40,100

MS390-02

1

9500-02 (Port Twe2/0/23)

Trunk (Native VLAN 100)

PoE Disabled

Name: Core 2

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs:

10,20,30,40,100

C9300-01

C9300-01 /

C9300-NM-8X / 1

9500-01 (Port Twe1/0/24)

Trunk (Native VLAN 100)

PoE Disabled

Name: Core 1

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs:

10,20,30,40,100

C9300-02

C9300-02 /

C9300-NM-8X / 1

C9500-02 (Port Twe2/0/24)

Trunk (Native VLAN 100)

PoE Disabled

Name: Core 2

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs:

10,20,30,40,100

Wireless SSID list

SSID Name

Broadcast

Configuration

Notes

Firewall and Traffic Shaping

Acme Corp

All APs

Association = Enterprise with my Radius server

Encryption = WPA2 only

Splash Page = Cisco ISE

Radius CoA = Enabled

SSID mode = Bridge mode

VLAN Tagging = 10 (ISE Override)

AdP Group = 10:Corp

Radius override = Enabled

Mandatory DHCP = Enabled

Layer 2 isolation = Disabled

Allow Clients access LAN = Allow

Traffic Shaping = Enabled with default settings

Cisco ISE Authentication and posture checks (172.31.16.32/1812)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 50Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Acme BYOD

All APs

Association = Enterprise with my Radius server

Encryption = WPA2 only

802.11w = Enabled

Splash Page = Cisco ISE

SSID mode = Bridge mode

VLAN Tagging = 20

AdP Group = 20:BYOD

Radius override = Disabled

Mandatory DHCP = Enabled

Layer 2 isolation = Disabled

Allow Clients access LAN = Allow

Traffic Shaping = Enabled with default settings

Cisco ISE Authentication (via Azure AD) and posture checks.

Dynamic GP assignment (Radius attribute = Airospace-ACLNAME)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 50Mbps

Per-SSID Bandwidth

Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Guest

All APs

Association = Enterprise with my Radius server

Encryption = WPA1 and WPA2

802.11w = Enabled

Splash Page = Click-Through

SSID mode = Bridge mode

VLAN Tagging = 30

AdP Group = 30:Guest

Radius override = Disabled

Mandatory DHCP = Enabled

Layer 2 isolation = Enabled

Allow Clients access LAN = Deny

Per SSID limit = 100Mbps

Traffic Shaping = Enabled with default settings

Meraki Authentication

Layer 2 Isolation = Enabled

Allow Access to LAN = Disabled

Per-Client Bandwidth Limit = 5Mbps

Per-SSID Bandwidth Limit = 100Mbps

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Acme IoT

All APs

Association = identity PSK with Radius

Encryption = WPA1 and WPA2

802.11r = Disabled

802.11w = Disabled

Splash Page = None

Radius CoA = Disabled

SSID mode = Bridge mode

VLAN Tagging = 40

AdP Group = 40:IoT

Radius override = Disabled

Mandatory DHCP = Enabled

Allow Clients access LAN = Deny

Per SSID limit = 10Mbps

Traffic Shaping = Enabled with default settings

Cisco ISE is queried at association time to obtain a passphrase for a device based on its MAC address.

Dynamic GP assignment (Radius attribute Filter-Id)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 5Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Tech Tips:

  The above configuration is for illustration purposes only. Please configure your SSIDs based on your own requirements (mode, IP assignment, etc.)
  Please note that Adaptive Policy on MR requires MR-ADV license. For more information about the requirements, please refer to this document.

Configuration and implementation guidelines

The following section will take you through the steps to amend your design by removing VLAN 1 and creating the desired new Native VLAN (e.g. VLAN 100) across your Campus LAN. The steps below should not be followed in isolation as first you have to complete the configuration of your Campus LAN based on the above previous section. The below steps are meant to replace VLAN 1 in your Campus LAN with a new one.

Tech Tip: It is vital to follow the below steps in chronological order. This is to avoid loss of connectivity to downstream devices and consequently the requirement to do a factory reset. This will result in traffic interruption. It is therefore recommended to do this in a maintenance window where applicable.

1.     Login to your dashboard account

2.     MX Addressing and VLANs; Navigate to Security and SD-WAN > Configure > Addressing and VLANs, then click on VLANs then click on Add VLAN to add your new infrastructure and Transit VLANs then click on Create. Please do not delete the existing VLAN 1 yet. Then, click on Save at the bottom of the page.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      As seen above, VLAN 1 needs to be kept at this stage to avoid losing connectivity to all downstream devices.

3.     MX Addressing and VLANs: Navigate to Security and SD-WAN > Configure > DHCP, then under VLAN 100 AND 192 click on Fixed IP assignments and add entries for your network devices. (Tip: You can copy the MAC addresses from VLAN 1 and make sure to add the correct IP assignment to them). Then, click on Save at the bottom of the page.

Related image, diagram or screenshot

Related image, diagram or screenshot

4.     Create VLAN 100 and 192 on your C9500 Core Stack

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

9500-02(config)#interface vlan 100

9500-02(config-if)#ip address dhcp

9500-02(config-if)#no shut

9500-02(config)#interface vlan 192

9500-02(config-if)#ip address dhcp

9500-02(config-if)#no shut

9500-02(config)#vlan 100

9500-02(config-if)#no shut

9500-02(config)#vlan 192

9500-02(config-if)#no shut

9500-02(config-if)#end

9500-02#wr mem

Building configuration...

[OK]

5.     Navigate to Switching > Configure > Switch ports and filter for MR (if you have tagged the ports accordingly, otherwise select your downlink ports manually), then change the Native VLAN on these switchports from Native VLAN 1 to Native VLAN 100. Also, please add VLAN 100 to the list of Allowed VLANs and remove VLAN 1 from the allowed list of VLANs. Then, click on Save at the bottom of the page.

Related image, diagram or screenshot

      Please note that this will cause disruption to client traffic

6.     Navigate to Switching > Monitor > Switches and click on the first master switch then change the IP address settings from Static to DHCP and please leave the VLAN field blank. (DO NOT add VLAN 100 at this stage). Then, click on Save at the bottom of the window. Please repeat this for all master switches in your network.

Related image, diagram or screenshot

      As seen from the above screen shot, the VLAN value has been kept empty at this stage

7.     On your C9500 Core Stack, add an MST instance in VLAN 100 and VLAN 192

9500-01(config)#spanning-tree mst configuration

9500-01(config-mst)#instance 0 vlan 100

9500-01(config-mst)#instance 0 vlan 192

9500-01(config-mst)#name region1

9500-01(config-mst)#revision 1

9500-01(config-mst)#exit

9500-01(config)#spanning-tree mode mst

9500-01(config)#spanning-tree mst 0 priority 4096

9500-01(config)#exit

9500-01#wr mem

Building configuration... [OK]

9500-01#

8.     Navigate to Switching > Monitor > Switch ports and filter for uplink (if you have tagged the ports accordingly, otherwise select your uplink ports manually), then change the Native VLAN on these switchports from Native VLAN 1 to Native VLAN 100. Also, please add VLAN 100 to the list of Allowed VLANs and remove VLAN 1 from the allowed list of VLANs. Then, click on Save at the bottom of the page.

Related image, diagram or screenshot

      Please note that this will cause the Access Stacks to go offline on the Meraki dashboard

9.     On your C9500 Core Stack, change the Native VLAN on your downlink Port-channels to VLAN 100

9500-01(config)#interface po1

9500-01(config-if)#switchport trunk allowed vlan 10,20,30,40,100

9500-01(config-if)#switchport trunk native vlan 100

9500-01(config-if)#interface po2

9500-01(config-if)#switchport trunk allowed vlan 10,20,30,40,100

9500-01(config-if)#switchport trunk native vlan 100

9500-01(config)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

10.  Shutdown all uplinks from C9500 Core Stack to Port 19 and 20 on your Secondary WAN Edge appliance to avoid having a dual-active situation.

9500-01(config)#interface twe1/0/24

9500-01(config-if)#shutdown

9500-01(config-if)#interface twe2/0/24

9500-01(config-if)#shutdown

9500-01(config)#end

9500-01#

11.  MX Addressing and VLANs: Navigate to Security and SD-WAN > Configure > Addressing and VLANs, then under Per-port settings, change the Native VLAN on your downlinks to VLAN 100 and allow both VLAN 100 and 192.

Related image, diagram or screenshot

12.  On your C9500 Core Stack, change the Native VLAN on your uplink to VLAN 100 and allow VLANs 100 and 192 (Please note that you will need to connect to your C9500 Core Stack via console access since VLAN 1 does not exist anymore on the upstream device which is the MX WAN Edge in this case):

9500-01(config)#define interface-range uplinks TwentyFiveGigE1/0/1-2 , TwentyFiveGigE2/0/1-2

9500-01(config)#interface range macro uplinks

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk allowed vlan 100,192

9500-01(config-if)#switchport trunk native vlan 100

9500-01(config)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

13.  On your C9500 Core Stack, create a default route for your SVI interfaces:

9500-01(config)#ip route 0.0.0.0 0.0.0.0 192.168.0.1

9500-01(config)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

14.  Adjust your Static Routes on the MX to point to the transit VLAN instead of VLAN 1. Navigate to Security and SD-WAN > Configure > Addressing and VLANs and under Static routes click on a static route to change the next-hop. Please repeat that for all your static routes. Then, click on Save at the bottom of the page:

Related image, diagram or screenshot

Related image, diagram or screenshot

15.  Wait for your Access Switches to come back online and acquire an IP address in the new Native VLAN 100. Then, proceed to the next step.

16.  Now your switches should have acquired an IP address per the fixed IP assignment configuration. Navigate to Switching > Monitor > Switches then click on the first master switch and then change the IP address settings to static. Then, click on Save at the bottom of the window. Repeat this for all master switches in your network.

Related image, diagram or screenshot

      Please repeat the above step for all stacks in your network

17.  Navigate to your Primary WAN Edge device and ping 10.0.100.2 to make sure that it is reachable via VLAN 100. Then proceed to the next step.

18.  Unshut the uplinks on your C9500 Core Stack to the Secondary WAN Edge appliance:

9500-01(config)#interface twe1/0/24

9500-01(config-if)#no shutdown

9500-01(config-if)#interface twe2/0/24

9500-01(config-if)#no shutdown

9500-01(config)#end

9500-01#

19.  Verify that all your devices have come back online and acquired an IP address in the new Management VLAN. Navigate to Organization > Monitor > Overview then click on the devices tab:

Related image, diagram or screenshot

20.  Navigate to Switching > Configure > Switch settings then change the Management VLAN configuration to VLAN 100. Then, click on Save at the bottom of the page.

Related image, diagram or screenshot

21.  Delete VLAN 1 from your MX appliance. Navigate to Security and SD-WAN > Configure > Addressing and VLANs and select the old Management VLAN 1 and then click on Delete. Then, click on Save at the bottom of the page.

Related image, diagram or screenshot

22.  Where applicable - Please remember to adjust any routing between your Campus LAN and remote servers (e.g. Cisco ISE for 802.1x auth) as in this case devices will use the new Management VLAN 100 as the source of Radius requests. To verify that you have connectivity to your remote servers, Navigate to Wireless > Monitor > Access points then click on any AP and from the Tools section ping your remote server. Repeat this process from one of your switches.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      With the current scope of the design, Cisco ISE resides in AWS and is reachable via AutoVPN which terminates on the vMX in AWS as well. As such, it was required to add a route on the VPC to 10.0.100.0/24 pointing to the vMX

      Also, please ensure that the new Management VLAN has been enabled with AutoVPN by navigating to Security and SD-WAN > Configure > Site-to-site VPN and ensure that VLAN 100 is enabled.

23.  Where applicable - Please remember to adjust your Radius server configuration (e.g. Cisco ISE) as the Network devices now are grouped in a new Management VLAN 100. Please see the below example for Cisco ISE:

Related image, diagram or screenshot

Option 3: Layer 3 Access

Overview

This option assumes that your OSPF domain is extended all the way to your core layer and thus there is no need to rely on STP between your Access and Core for convergence (as long as there are separate broadcast domains between Access and Core). It offers fast convergence since it relies on ECMP rather than STP layer 2 paths. However, it doesn't offer great flexibility in your VLAN design as each VLAN cannot span between multiple stacks/closets.

Pros:

      Deterministic route failover

      Fast convergence

      Relies on either stacking or gateway redundancy at upper layers

      Complete end to end separation between Management traffic and Client traffic

Cons:

      VLANs cannot span multiple stacks/closets

      Your backbone area size can be unmanageable

      Forces Layer 3 roaming across the Campus LAN

      Additional VLANs needed to route traffic between Campus LAN layers (aka Transit VLAN)

Logical Architecture

The following diagram shows the logical architecture for Layer 3 convergence within a campus LAN design leveraging Cloud Managed and Cloud Monitored Catalyst platform components:

Logical Architecture

Physical Architecture

The following diagram shows the physical architecture and port list for this design:

A screenshot of a computerDescription automatically generated

Assumptions

The following assumptions have been considered:

      It is assumed that Wireless roaming is required only within a specific Campus Zone

      It is assumed that VLANs are NOT spanning across multiple zones

      There will be NO use of VLAN 1 across the Campus LAN

      Corporate SSID (Broadcast in all zones) users are assigned VLAN 11/12 based on the AP zone.

      BYOD SSID (Broadcast in all zones) users are assigned VLAN 21/22 based on the AP zone.

      Guest SSID (Broadcast in Zone1) users are assigned VLAN 30 on all APs in that zone

      IoT SSID (Broadcast in zone2) users are assigned VLAN 40 on all APs in that Zone

      Access Switches will be running Layer 3 (SVIs and DHCP)

      MS390 Access Switches physically stacked together

      C9300-M Access Switches physically stacked together

      C9500 Core Switches with Stackwise-virtual stacking using SVLs

      Access Switch uplinks are in trunk mode with native VLAN = VLAN 1 (Management VLAN)

      STP root is at Distribution/Collapsed-core

      Network devices will be assigned fixed IPs from the management VLAN DHCP pool. Default Gateway will vary based on the Zone and stack.

Network Segments

Please check the following table for more information about the network segments (e.g. VLANs, SVIs, etc.) for this design:

Network Segment

VLAN ID

Subnet

Default Gateway

Notes

Management (Core)

3

10.0.3.0/24

10.0.3.1

SVI hosted on edge MX

Management (Stack1)

100

10.0.100.0/24

10.0.100.1

SVI hosted on edge MX

Management (Stack2)

200

10.0.200.0/24

10.0.200.1

SVI hosted on edge MX

Corporate Devices
(Wireless and Wired)

11

10.0.11.0/24

10.0.11.1

SVI hosted on Access switches (Zone 1)

12

10.0.12.0/24

10.0.12.1

BYOD Wireless Devices

21

10.0.21.0/24

10.0.21.1

SVI hosted on Access switches (Zone 2)

22

10.0.22.0/24

10.0.22.1

 

Guest Wireless Devices

30

10.0.30.0/24

10.0.30.1

SVI hosted on Access switches (Zone 1)

IoT Wireless Devices

40

10.0.40.0/24

10.0.40.1

SVI hosted on Access switches (Zone 2)

Tech Tip: Please size your subnets based on your own requirements. The above table is for illustration purposes only.

Quality of Service

Application

MR

Access switches

Core switches

MX Appliance

SIP (Voice)

EF

DSCP 46

AC_Vo

Trust incoming values

DSCP 46

CoS 5

Trust incoming values

EF

DSCP 45

LLQ

Unlimited

Webex and Skype

AF41

DSCP 34

AC_VI

Trust incoming values

DSCP 34

CoS 4

Trust incoming values

Af41

DSCP 34

High Priority

All Video and Music

AF21

DSCP 18

AC_BE

Trust incoming values

DSCP 18

CoS 2

Trust incoming values

AF21

DSCP 18

Medium Priority

5Mbps / Client

Software Updates

AF11

DSCP 10

AC_BK

Trust incoming values

DSCP 10

CoS 1

Trust incoming values

AF11

DSCP 10

Low Priority

10Mbps / Client

Device List

Device

Name

Management IP address

Notes

MX250

MX250

Primary WAN Edge

Spare WAN Edge

10.0.3.1

warm-spare

C9500-24YCY

C9500-24YCY

C9500-01

C9500-02

10.0.3.2

Stackwise Virtual (C9500-Core-Stack)

MS390-24P

MS390-24P

MS390-01

MS390-02

10.0.100.2

Physical Stacking (Stack1-MS390)

C9300-24P

C9300-24P

C9300-01

C9300-02

10.0.200.2

Physical Stacking (Stack2-C9300)

MR55

AP1_Zone1

10.0.100.3

Tag = Zone1

MR55

AP2_Zone1

10.0.100.4

Tag = Zone1

C9166 (eq MR57)

AP3_Zone2

10.0.200.3

Tag = Zone2

C9166 (eq MR57)

AP4_Zone2

10.0.200.4

Tag = Zone2

Access policies

Access Policy Name

Purpose

Configuration

Notes

Wired-1x

802.1x Authentication via Cisco ISE for wired clients that support 802.1x

Authentication method = my Radius server

Radius CoA = enabled

Host mode = Single-Host

Access Policy type = 802.1x

Suspend Port Bounce = Enabled

Voice Clients = Bypass

authentication

Walled Garden = enabled

Cisco ISE authentication and posture checks

Wired-MAB

MAB Authentication via Cisco ISE for wired clients that do not support 802.1x

Authentication method = my Radius server

Radius CoA = disabled

Host mode = Single-Host

Access Policy type = MAC authentication bypass

Suspect Port Bounce = Enabled

Voice Clients = Bypass

authentication

Walled Garden = disabled

Cisco ISE authentication

Port List

Device Name

Port

Far-end

Port details

Notes

WAN Edge

 

 

 

 

Primary WAN Edge

19

9500-01 (port Twe1/0/1)

Trunk (Native VLAN 3)

Downlink, allowed VLANs  3, 100, 200, 1923

20

9500-02 (port Twe2/0/1)

Trunk (Native VLAN 3)

Downlink, allowed VLANs  3, 100, 200, 1923

Spare WAN Edge

19

9500-01 (port Twe1/0/2)

Trunk (Native VLAN 3)

Downlink, allowed VLANs  3, 100, 200, 1923

20

9500-02 (port Twe2/0/2)

Trunk (Native VLAN 3)

Downlink, allowed VLANs 3, 100, 200, 1923

9500-01

Twe1/0/1

Primary WAN Edge (Port 19)

switchport mode trunk

switchport trunk native vlan 3

switchport trunk allowed vlan 3,100,200,1923

auto qos trust dscp

policy static sgt 2 trusted

Uplink

Twe1/0/2

Spare WAN Edge (Port 19)

switchport mode trunk

switchport trunk native vlan 3

switchport trunk allowed vlan 3,100,200,1923

auto qos trust dscp

policy static sgt 2 trusted

Uplink

9500-02

Twe2/0/1

Primary WAN Edge (Port 20)

switchport mode trunk

switchport trunk native vlan 3

switchport trunk allowed vlan 3,100,200,1923

auto qos trust dscp

policy static sgt 2 trusted

Uplink

Twe2/0/2

Spare WAN Edge (Port 20)

switchport mode trunk

switchport trunk native vlan 3

switchport trunk allowed vlan 3,100,200,1923

auto qos trust dscp

policy static sgt 2 trusted

Uplink

9500-01

Twe1/0/23

MS390-01 (Port 1)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed vlan 100,1921

channel-group 1 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

Twe1/0/24

C9300-01 (Port 1)

switchport mode trunk

switchport trunk native vlan 200

switchport trunk allowed vlan 200,1922

channel-group 2 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

9500-02

Twe2/0/23

MS390-02 (Port 1)

switchport mode trunk

switchport trunk native vlan 100

switchport trunk allowed

vlan 100,1921

channel-group 1 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

Twe2/0/24

C9300-02 (Port 1)

switchport mode trunk

switchport trunk native vlan 200

switchport trunk allowed

vlan 200,1922

channel-group 2 mode active

spanning-tree guard root

auto qos trust dscp

policy static sgt 2 trusted

Downlink

9500-01

Hu1/0/25

C9500-02 (Port Hu2/0/26)

stackwise-virtual link 1

Stackwise Virtual

Hu1/0/26

C9500-02 (Port Hu2/0/25)

stackwise-virtual link 1

Stackwise Virtual

9500-02

Hu2/0/25

C9500-01 (Port Hu1/0/26)

stackwise-virtual link 1

Stackwise Virtual

Hu2/0/26

C9500-01 (Port Hu1/0/25)

stackwise-virtual link 1

Stackwise Virtual

MS390-01

5-8

Wired Clients

"Access (Data VLAN 11/12)

Access Policy = Wired-1x

PoE Enabled

STP BPDU Guard

Tag = Wired Clients 802.1x

AdP: Corp"

For wired clients supporting 802.1x

MS390-02

C9300-01

C9300-02

MS390-01

9-12

Wired Clients

Access (Data VLAN 11/12)

Access Policy = MAB

PoE Enabled

STP BPDU Guard

Tag = Wired Clients MAB

AdP: Corp

For wired clients that do not support 802.1x

MS390-02

C9300-01

C9300-02

MS390-01

13-16

MR

Trunk (Native VLAN 100/200)

PoE Enabled

STP BPDU Guard

Tag = MR WLAN

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 11/12, 21/22, 30 or 40, 100/200

MS390-01

1

9500-01 (port Twe1/0/23)

Trunk (Native VLAN 100)

PoE Disabled

Name: Core 1

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 100,1921

MS390-02

1

9500-02 (Port Twe2/0/23)

Trunk (Native VLAN 100)

PoE Disabled

Name: Core 2

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 100,1921

C9300-01

C9300-01 / C9300-NM-8X / 1

9500-01 (Port Twe1/0/24)

Trunk (Native VLAN 200)

PoE Disabled

Name: Core 1

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 200,1922

C9300-02

C9300-02 / C9300-NM-8X / 1

9500-02 (Port Twe2/0/24)

Trunk (Native VLAN 200)

PoE Disabled

Name: Core 2

Tag = Uplink

Peer SGT Capable

AdP: Infrastructure

Allowed VLANs: 200,1922

Wireless SSID List

SSID Name

Broadcast

Configuration

Notes

Firewall and Traffic Shaping

Acme Corp

All APs

Association = Enterprise with my Radius server

Encryption = WPA2 only

Splash Page = Cisco ISE

Radius CoA = Enabled

SSID mode = Bridge mode

VLAN Tagging = 11/12 (based on AP tag)

AdP Group = 10:Corp

Radius override = Enabled

Mandatory DHCP = Enabled

Layer 2 isolation = Disabled

Allow Clients access LAN = Allow

Traffic Shaping = Enabled with default settings

Cisco ISE Authentication and posture checks (172.31.16.32/1812)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 50Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Acme BYOD

All APs

Association = Enterprise with my Radius server

Encryption = WPA2 only

802.11w = Enabled

Splash Page = Cisco ISE

SSID mode = Bridge mode

VLAN Tagging = 21/22

(based on AP tag)

AdP Group = 20:BYOD

Radius override = Disabled

Mandatory DHCP = Enabled

Layer 2 isolation = Disabled

Allow Clients access LAN = Allow

Traffic Shaping = Enabled with default settings

Cisco ISE Authentication (via Azure AD) and posture checks.

Dynamic GP assignment (Radius attribute = Airospace-ACLNAME)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 50Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Guest

Zone1

Association = Enterprise with my Radius server

Encryption = WPA1 and WPA2

802.11w = Enabled

Splash Page = Click Through

SSID mode = Bridge mode

VLAN Tagging = 30

AdP Group = 30:Guest

Radius override = Disabled

Mandatory DHCP = Enabled

Layer 2 isolation = Enabled

Allow Clients access LAN = Deny

Per SSID limit = 100Mbps

Traffic Shaping = Enabled

with default settings

Meraki Authentication

Allow Access to LAN = Disabled

Per-Client Bandwidth Limit = 5Mbps

Per-SSID Bandwidth Limit = 100Mbps

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Acme IoT

Zone2

Association = identity PSK with Radius

Encryption = WPA1 and WPA2

802.11r = Disabled

802.11w = Disabled

Splash Page = None

Radius CoA = Disabled

SSID mode = Bridge mode

VLAN Tagging = 40

AdP Group = 40:IoT

Radius override = Disabled

Mandatory DHCP = Enabled

Allow Clients access LAN = Deny

Per SSID limit = 10Mbps

Traffic Shaping = Enabled with default settings

Cisco ISE is queried at association time to obtain a passphrase for a device based on its MAC address.

Dynamic GP assignment (Radius attribute Filter-Id)

Layer 2 Isolation = Disabled

Allow Access to LAN = Enabled

Per-Client Bandwidth Limit = 5Mbps

Per-SSID Bandwidth Limit = Unlimited

Enable Default Traffic Shaping rules

SIP - EF (DSCP 46)

Software Updates - AF11 (DSCP 10)

Webex and Skype - AF41 (DSCP 34)

All Video and Music - AF21 (DSCP 18)

Tech Tip:

      The above configuration is for illustration purposes only. Please configure your SSIDs based on your own requirements (mode, IP assignment, etc.).

      Please note that Adaptive Policy on MR requires MR-ADV license. For more information about the requirements, please refer to this document.

Configuration and Implementation Guidelines

It is assumed that by this stage, Catalyst devices have been added to dashboard for either Monitoring (e.g. C9500) and/or Management (e.g. C9300). For more information, please refer to the above section.

Before proceeding, please make sure that you have the appropriate licenses claimed into your dashboard account.

1.     Login to your dashboard account (or create an account if you don't have one)

2.     Navigate to Organization > Configure > Inventory

3.     For Co-term license model, click on Claim. And for PDL, please click on Add

Related image, diagram or screenshot

Related image, diagram or screenshot

4.     Enter the order and/or serial number(s) to claim the devices into your account. For PDL, click Next then please choose to add them to Inventory (Do not add them to a network)

5.     Create a Dashboard Network: Navigate to Organization > Configure > Create network to create a network for your Campus LAN (Or use an existing network if you already have one). If you are creating a new network, please choose "Combined" as this will facilitate a single topology diagram for your Campus LAN. Choose a name (e.g. Campus) and then click Create network

Related image, diagram or screenshot

Related image, diagram or screenshot

6.     Dashboard Network Settings: Navigate to Network-wide > Configure > General and choose the settings for your network (e.g. Time zone, Traffic Analytics, firmware upgrade day/time, etc.)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

7.     Schedule Firmware Upgrade: Navigate to Organization > Configure > Firmware upgrades to select the firmware for your devices such that devices upgrade once they connect to dashboard. Select the device type then click on Schedule upgrade.

8.     Add Devices to a Dashboard Network: Navigate to Organization > Configure > Inventory.

      For Co-term licensing model, select the MS390 and C9300 switches and the Primary WAN Edge then click on Add then choose the Network Campus

      For PDL licensing model, select the MS390 and C9300 switches and the Primary WAN Edge then click on Change network assignment and then choose the Network Campus

      Please DO NOT add the Secondary WAN Edge device at this stage

9.     Rename MX Security Appliance: Navigate to Security and SD-WAN > Monitor > Appliance status then click on the edit button to rename the MX to Primary WAN Edge then click on Save.

Related image, diagram or screenshot

10.  MX Connectivity: Plug in your WAN uplink(s) on the Primary WAN Edge MX then power it on and wait for it to come online on dashboard. This might take a few minutes as the MX will download its firmware and configuration. Navigate to Security and SD-WAN > Configure > Appliance status and verify that the MX has come online and that its firmware and configuration is up to date.

Related image, diagram or screenshot

Related image, diagram or screenshot

11.  Rename Access Switches: Navigate to Switching > Monitor > Switches then click on each MS390 and C9300 switch and then click on the edit button on top of the page to rename it per the above table then click on Save such that all your switches have their designated names.

Related image, diagram or screenshot

12.  Rename MR APs: Navigate to Wireless > Monitor > Access points then click on each AP and then click on the edit button on top of the page to rename it per the above table then click on Save such that all your APs have their designated names.

13.  MR AP Tags: Navigate to Wireless > Monitor > Access points then click on each AP and then click on the edit button next to TAGS to add Tags to your AP per the above table then click on Save such that all your APs have their designated tags.

Related image, diagram or screenshot

14.  MX Addressing and VLANs: Navigate to Security and SD-WAN > Configure > Addressing and VLANs, and in the Deployment Settings menu select Routed mode. Further down the page on the Routing menu, click on VLANs then click on Add VLAN to add your Management and Transit VLANs then click on Create. Then for the per-port VLAN settings, select your downlink ports (19 and 20) and click on Edit and configure them as Trunk with VLAN 3 (Allowed VLANs 3, 100, 200, 1923) and click on Update. Finally, click on Save at the bottom of the page.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Please repeat the above steps to create VLANs 100 and 200

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

15.  Campus LAN Static Routes: Create Static Routes for your Campus network by navigating further down the page to Static routes then click on Add Static Route. Start by adding your Corporate LAN subnet then click on Update and then add static routes to all other subnets (e.g. BYOD, Guest and IoT). Finally, click on Save at the bottom of the page. (The Next hop IP that you have used here will be used to create a fixed assignment for the Core Stack later in DHCP settings).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

16.  Optional - If you are accessing any resources over Meraki SD-WAN, please navigate to Security and SD-WAN > Configure > Site-to-site VPN and enable VPN based on your topology and traffic flow requirements. (In this case, we will configure this Campus as Spoke with Split Tunneling)

      Choose Type: Spoke then click on Add a hub and select your hub site where you need access to resources via VPN. You can also add multiple hubs for resiliency. To choose Split Tunneling, please leave the box next to the Hub unticked as shown below.

Related image, diagram or screenshot

      Under VPN Settings, choose which subnet to be Enabled in VPN (e.g. Management VLAN will be required for Radius authentication purposes as the MR/MS390/C9300 devices will reach out to Cisco ISE using their management IP). Any Subnet that needs to access resources via VPN must be Enabled otherwise keep it as Disabled.

Related image, diagram or screenshot

      Finally, click on Save at the bottom of the page on the Hub site, please make sure to advertise the subnets that are required to be reachable via VPN. Navigate to Security and SD-WAN > Configure > Site-to-site VPN then add a local network then click Save at the bottom of the page (Please make sure that you are configuring this on the Hub's dashboard network).

Related image, diagram or screenshot

17.  Optional - Verify that your VPN has come up by selecting your Campus LAN dashboard network from the Top-Left Network drop-down list and then navigate to Security and SD-WAN > Monitor > VPN status then check the status of your VPN peers. Next, navigate to Security and SD-WAN > Monitor > Route table and check the status of your remote subnets that are reachable via VPN. You can also verify connectivity by pinging a remote subnet (e.g. 172.31.16.32 which is Cisco ISE) by navigating to Security and SD-WAN > Monitor > Appliance status then click on Tools and ping the specified IP address (Please note that the MX will choose the highest VLANs interface IP participating in VPN by default as the source).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Please note that in order to ping a remote subnet, you must either have BGP enabled or have static routes at the far-end pointing back to the Campus LAN local subnets. (In other words, the source of your traffic which for ping by default is the highest VLAN participating in AutoVPN if not otherwise specified).

In this example, the VPC in AWS has been configured with a Route Entry to route 10.0.100.0/24 and 10.0.200.0/24 via the vMX deployed in AWS that has a VPN tunnel back to the Campus LAN site.

Related image, diagram or screenshot

If the remote VPN peer (e.g. AWS) is configured in Routed mode, the static route is not required since traffic will always be NAT'd to a local reachable IP address. Please also don't forget to create Network Device groups on Cisco ISE for your network devices to be able to send authentication messages to Cisco ISE. See the below example:

18.  SD-WAN and Traffic Shaping Configuration: To configure Traffic Shaping settings for your Campus LAN site. Navigate to Security and SD-WAN > Configure > SD-WAN and Traffic Shaping to configure your preferred settings. For the purpose of this CVD, the default traffic shaping rules will be used to mark traffic with a DSCP tag without policing egress traffic (except for traffic marked with DSCP 46) or applying any traffic limits. (Please adjust these settings based on your requirements such as traffic limits or priority queue values. For more information about traffic shaping settings on the MX devices, please refer to the following article).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

19.  Optional - Configure Threat Protection (Requires Advanced License or above) for your Campus LAN site. Navigate to Security and SD-WAN > Configure > Threat Protection and choose the settings that meet your site requirements. Please see the following configuration example:

Related image, diagram or screenshot

20.  Click on Save at the bottom of the page.

21.  Optional - Configure Content Filtering Settings (Requires Advanced License or above) for your Campus LAN site. Navigate to Security and SD-WAN > Configure > Content filtering and choose the settings that meet your site requirements. Please see the following configuration example:

Related image, diagram or screenshot

Related image, diagram or screenshot

22.  Click on Save at the bottom of the page.

23.  Core Switch Uplinks: On the Catalyst 9500 core switches, Connect their uplinks to the Primary WAN Edge MX and power them both on.

24.  Core Switch Network Access: Connect to the first C9500 switch via console and configure it with the following commands:

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname 9500-01

9500-01(config)#ip domain name meraki-cvd.local

9500-01(config)#cdp run

9500-01(config)#lldp run

9500-01(config)#stackwise

Please reload the switch for Stackwise Virtual configuration to take effect

Upon reboot, the config will be part of running config but not part of start-up

config. 9500-01(config-stackwise-virtual)#domain 1

9500-01(config)#exit

9500-01(config)#interface Twe1/0/1

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 3

9500-01(config-if)#switchport trunk allowed vlan 3,100,200,1923

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface Twe1/0/2

9500-01(config-if)#switchport mode trunkk

9500-01(config-if)#switchport trunk native vlan 3

9500-01(config-if)#switchport trunk allowed vlan 3,100,200,1923

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 3

9500-01(config-if)#ip address dhcp

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 100

9500-01(config-if)#ip address dhcp

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 200

9500-01(config-if)#ip address dhcp

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 1923

9500-01(config-if)#ip address 192.168.3.2 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#

9500-01#sh ip int brief

Interface            IP-Address       OK? Method Status      Protocol

Vlan3                10.0.3.2         YES DHCP up             up

Vlan100              10.0.100.2       YES DHCP up             up

Vlan200              10.0.200.2       YES DHCP up             up

Vlan1923             192.168.3.2      YES manual up           up

GigabitEthernet0/0   unassigned       YES NVRAM down          down

TwentyFiveGigE1/0/1  unassigned       YES unset up            up

TwentyFiveGigE1/0/2  unassigned       YES unset up            up

9500-01#ping 8.8.8.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/5 ms

9500-01#ping cisco.com

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 72.163.4.185, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 109/109/109 ms

9500-01#switch 1 renumber 1

9500-01#switch priority 5

9500-01#wr mem

Building configuration...

[OK]

25.  Core Switch Network Access: Connect to the second C9500 switch via console and configure it with the following commands:

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname 9500-02

9500-02(config)#ip domain name meraki-cvd.local

9500-01(config)#cdp run

9500-01(config)#lldp run

9500-02(config)#stackwise

Please reload the switch for Stackwise Virtual configuration to take effect

Upon reboot, the config will be part of running config but not part of start-up

config. 9500-02(config-stackwise-virtual)#domain 1

9500-02(config)#exit

9500-02(config)#interface Twe1/0/1

9500-01(config-if)#switchport mode trunk

9500-02(config-if)#switchport trnk native vlan 3

9500-01(config-if)#switchport trunk allowed vlan 3,100,200,1923

9500-02(config-if)#no shut

9500-02(config-if)#exit

9500-02(config)#interface Twe1/0/2

9500-01(config-if)#switchport mode access

9500-02(config-if)#switchport access vlan 3

9500-01(config-if)#switchport trunk allowed vlan 3,100,200,1923

9500-02(config-if)#no shut

9500-02(config-if)#exit

9500-02(config)#interface vlan 3

9500-02(config-if)#ip address dhcp

9500-02(config-if)#no shut

9500-01(config)#interface vlan 100

9500-01(config-if)#ip address dhcp

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 200

9500-01(config-if)#ip address dhcp

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface vlan 1923

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#

9500-01#sh ip int brief

Interface            IP-Address         OK? Method Status       Protocol

Vlan3                10.0.3.3           YES DHCP up             up

Vlan100              10.0.100.3         YES DHCP up             up

Vlan200              10.0.200.3         YES DHCP up             up

Vlan1923             unassigned         YES manual up           down

GigabitEthernet0/0   unassigned         YES NVRAM down          down

TwentyFiveGigE1/0/1  unassigned         YES unset up            up

TwentyFiveGigE1/0/2  unassigned         YES unset up            up

9500-02#ping 8.8.8.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/5 ms

9500-02#ping cisco.com

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 72.163.4.185, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 109/109/109 ms

9500-02#switch 1 renumber 2

9500-02#switch priority 1

9500-02#wr mem

Building configuration...

[OK]

26.  SVL Configuration: Now that both C9500 switches have access to the network, proceed to configure the Stackwise Virtual Links per the port list provided above (In this case using two ports for the SVL providing a total stacking bandwidth of 80 Gbps).

9500-01(config)#interface HundredGigE1/0/25

9500-01(config-if)#stackwise-virtual link 1

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface HundredGigE1/0/26

9500-01(config-if)#stackwise-virtual link 1

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#reload

Proceed with reload? [confirm]

9500-02(config)#interface HundredGigE1/0/25

9500-02(config-if)#stackwise-virtual link 1

9500-02(config-if)#no shut

9500-02(config-if)#exit

9500-02(config)#interface HundredGigE1/0/26

9500-02(config-if)#stackwise-virtual link 1

9500-02(config-if)#no shut

9500-02(config-if)#end

9500-02#wr mem

Building configuration...

[OK]

9500-02#reload

Proceed with reload? [confirm]

27.  Connect Stacking Cables: Whilst the C9500 switches are reloading, connect the stacking cables on both switches.

28.  Verify Stackwise Configuration: Please wait for about 10 minutes for the switches to come back up and initialize the stack. Then, connect to the 9500-01 (Stack Master) via console to verify that the stack is operational. The stackwise-virtual link should be U (Up) and R (Ready).

9500-01#show stackwise-virtual

Stackwise Virtual Configuration:

----------------------------

Stackwise Virtual : Enabled

Domain Number : 1

 

Switch Stackwise Virtual Link Ports

-----------------------------

    1      HundredGigE1/0/25

           HundredGigE1/0/26

    2      HundredGigE2/0/25

           HundredGigE2/0/26

9500-01#

9500-01#show stackwise-virtual link

Stackwise Virtual Link(SVL) Information:

-----------------------------

Flags:

-----

Link Status

-----------

U-Up D-Down

Protocol Status

-----------

S-Suspended P-Pending E-Error T-Timeout R-Ready

-----------------------------

Switch SVL Ports Link-Status Protocol-Status

---------------------------------------

1     1   HundredGigE1/0/25      U    R

         HundredGigE1/0/26       U    R

2     1   HundredGigE2/0/25      U    R

         HundredGigE2/0/26       U    R

 

9500-01#

9500-01#show stackwise-virtual bandwidth

Switch Bandwidth

----------------

1    80G

2    80G

 

9500-01#

9500-01#sh switch

Switch/Stack Mac Address : b0c5.3c60.fba0 - Local Mac Address

Mac persistency wait time: Indefinite

                       H/W Current

Switch#      Role      Mac Address     Priority     Version     State

*1          Active     b0c5.3c60.fba0     5           V02       Ready

2          Standby     40b5.c111.01e0      1          V02       Ready

 

9500-01#

29.  Optional - Attach and configure stackwise-virtual dual-active-detection: DAD is a feature used to avoid a dual- active situation within a stack of switches. It will rely on a direct attachment link between the two switches to send hello packets and determine if the active switch is responding or not. Please note that DAD cannot be applied to any SVL links and has to be a dedicated interface. For the purpose of this CVD, interface HundredGigE1/0/27 and HundredGigE2/0/27 will be used for enabling DAD between the two C9500 switches.

9500-01#configure terminal

9500-01(config)#interface HundredGigE1/0/27

9500-01(config-if)#stackwise-virtual dual-active-detection

WARNING: All the extraneous configurations will be removed for HundredGigE1/0/27 on reboot.

INFO: Upon reboot, the config will be part of running config but not part of start-up config.

9500-01(config-if)#interface HundredGigE2/0/27

9500-01(config-if)#stackwise-virtual dual-active-detection

WARNING: All the extraneous configurations will be removed for HundredGigE1/0/27 on reboot.

INFO: Upon reboot, the config will be part of running config but not part of start-up

config. 9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#reload

Reload command is being issued on Active unit, this will reload the whole stack

Proceed with reload? [confirm]Connection to 10.0.3.2 closed by remote host.

Connection to 10.0.3.2 closed.

>> 

9500-01#sh stackwise-virtual dual-active-detection

In dual-active recovery mode: No

Recovery Reload: Enabled

Dual-Active-Detection Configuration:

-----------------------------------

Switch Dad port Status

----------------------------

1     HundredGigE1/0/27   up

2     HundredGigE2/0/27   up

 

9500-01#

30.  Configure Multiple Spanning Tree Protocol (802.1s). Connect to the 9500-01 (Stack Master) via console and use the following commands:

9500-01(config)#spanning-tree mst configuration

9500-01(config-mst)#instance 0 vlan 3,100,200,1921,1922,1923

9500-01(config-mst)#name region1

9500-01(config-mst)#revision 1

9500-01(config-mst)#exit

9500-01(config)#spanning-tree mode mst

9500-01(config)#spanning-tree mst 0 priority 4096

9500-01(config)#exit

9500-01#wr mem

Building configuration...

[OK]

9500-01#

31.  Verify Spanning Tree Configuration (Please note that interface Twe2/0/1 will be in STP blocking state due to the fact that both uplinks are connected to the same MX edge device at this stage).

9500-01#show spanning-tree

MST0

  Spanning tree enabled protocol mstp

   Root ID Priority 4096

       Address b0c5.3c60.fba0

       This bridge is the root

       Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

   Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

       Address b0c5.3c60.fba0

       Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface     Role Sts Cost        Prio.Nbr Type

Twe1/0/1     Desg FWD 2000        128.193 P2p

Twe2/0/1     Back BLK 2000        128.385 P2p

 

9500-01#

32.  Configure STP Root Guard and UDLD on the Core Stack Downlinks:

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#int Twe1/0/23

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#int Twe1/0/24

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#int Twe2/0/23

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#int Twe2/0/24

9500-01(config-if)#spanning-tree guard root

9500-01(config-if)#udld port aggressive

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

33.  Optional - STP Hygiene: It is recommended to configure STP Root Guard on all C9500 Core Stack downlinks to avoid any new introduced downstream switches from claiming root bridge status.

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#define interface-range stp-protect TwentyFiveGigE1/0/3 - 22

9500-01(config)#interface range macro stp-protect

9500-01(config-if-range)#spanning-tree guard root

9500-01(config-if-range)#exit

9500-01(config)#define interface-range stp-protect2 TwentyFiveGigE2/0/3 - 22

9500-01(config)#interface range macro stp-protect2

9500-01(config-if-range)#spanning-tree guard root

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

34.  Optional - STP Hygiene: It is recommended to configure STP Loop Guard on all C9500 Core Stack un-used stacking links.

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface HundredGigE1/0/27

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if-range)#exit

9500-01(config)#interface HundredGigE1/0/28

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if)#exit

9500-01(config)#interface HundredGigE2/0/27

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if-range)#exit

9500-01(config)#interface HundredGigE2/0/28

9500-01(config-if)#spanning-tree guard loop

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

35.  Configure SVIs for your Campus LAN on the Core Stack:

9500-01(config)#interface vlan 1921

9500-01(config-if)#ip address 192.168.1.1 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#interface vlan 1922

9500-01(config-if)#ip address 192.168.2.1 255.255.255.0

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#ip dhcp pool vlan100

9500-01(dhcp-config)#network 10.0.100.0 /24

9500-01(dhcp-config)#default-router 10.0.100.1

9500-01(dhcp-config)#dns-server 208.67.222.222 208.67.220.220

9500-01(dhcp-config)#ip dhcp pool vlan200

9500-01(dhcp-config)#network 10.0.200.0 /24

9500-01(dhcp-config)#default-router 10.0.200.1

9500-01(dhcp-config)#dns-server 208.67.222.222 208.67.220.220

9500-01(dhcp-config)#end

9500-01#wr mem

Building configuration...

[OK]

9500-01#

36.  Verify your DHCP pool configuration:

9500-01#sh ip dhcp pool

Pool vlan100 :

Utilization mark (high/low) : 100 / 0

Subnet size (first/next) : 0 / 0

Total addresses 254

Leased addresses 0

Excluded addresses 0

Pending event : none

1 subnet is currently in the pool :

Current index    IP address range                Leased/Excluded/Total

10.0.100.1        10.0.100.1 - 10.0.100.254         0 / 0 / 254

 

Pool vlan200 :

Utilization mark (high/low) : 100 / 0

Subnet size (first/next) : 0 / 0

Total addresses 254

Leased addresses 0

Excluded addresses 0

Pending event : none

1 subnet is currently in the pool :

Current index     IP address range                Leased/Excluded/Total

10.0.100.1        10.0.100.1 - 10.0.100.254         0 / 0 / 254

9500-01#

37.  Verify your SVI configuration:

9500-01#sh ip int brief | in Vlan

Vlan3              10.0.3.113      YES DHCP up        up

Vlan100            10.0.100.2      YES DHCP up        up

Vlan200            10.0.200.2      YES DHCP up        up

Vlan1921           192.168.1.1     YES manual up      down

Vlan1922           192.168.2.1     YES manual up      down

Vlan1923           192.168.3.2      YES manual up     up

9500-01#

38.  Configure Layer 2 Switchports, SGTs, and CST (Cisco TrustSec) on your Core Stack interfaces. (Please note that enforcement has been disabled on downlink ports allowing it to happen downstream)

9500-01#conf t

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#cts sgt 2

9500-01(config)#cts role-based enforcement vlan-list 3,11,12,21,22,30,40,100,200

9500-01(config)#ip access-list role-based Allow_All

9500-01(config-rb-acl)#permit ip

9500-01(config-rb-acl)#exit

9500-01(config)#cts role-based permissions default Allow_All

9500-01(config)#interface TwentyFiveGigE1/0/23

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 100

9500-01(config-if)#switchport trunk allowed vlan 100,1921

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01(config)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 200

9500-01(config-if)#switchport trunk allowed vlan 200,1922

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01(config)#interface TwentyFiveGigE2/0/23

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 100

9500-01(config-if)#switchport trunk allowed vlan 100,1921

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01(config)#interface TwentyFiveGigE2/0/24

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 200

9500-01(config-if)#switchport trunk allowed vlan 200,1922

9500-01(config-if)#no cts role-based enforcement

9500-01(config-if)#cts manual

9500-01(config-if-cts-manual)#propagate sgt

9500-01(config-if-cts-manual)#policy static sgt 2 trusted

9500-01#wr mem

Building configuration...

[OK]

9500-01#

39.  Spare WAN Edge Connectivity: Follow these steps to create warm-spare with two MX appliances: (Please note that this might result in a brief interruption of packet forwarding on the MX Appliance)

      Navigate to Security and SD-WAN > Monitor > Appliance status and click on Configure warm spare

Related image, diagram or screenshot

      Now click on Enabled then choose the Spare MX from the drop-down menu and then choose the Uplink IP option that suits your requirements (Please note that choosing Virtual IPs requires an additional IP address on the upstream network and a single broadcast domain between the two MXs) then click on Update

Related image, diagram or screenshot

      Now click on Spare to access the Appliance status page of your Spare MX and click on the Edit button to rename the spare unit (e.g. Secondary WAN Edge)

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      Then configure the following on your C9500 Core Stack:

9500-01#configure terminal

9500-01(config)#interface Twe1/0/2

9500-01(config-if)#switchport mode trunk

9500-01(config-if)#switchport trunk native vlan 3

9500-01(config-if)#switchport trunk allowed vlan 3,100,200,1923

9500-01(config-if)#no shut

9500-01(config-if)#exit

9500-01(config)#interface Twe2/0/2

9500-01(config-if)#switchport mode access

9500-01(config-if)#switchport trunk native vlan 3

9500-01(config-if)#switchport trunk allowed vlan 3,100,200,1923

9500-01(config-if)#no shut

9500-01(config-if)#end

9500-01#wr mem

Building configuration...

[OK]

 

      Then connect the Spare MX downlinks to your C9500 Core Stack (e.g. Spare MX port 19 to Twe1/0/2 and port 20 to Twe2/0/2)

      Then connect the Spare MX with its uplinks (This must match the uplink configuration on your Primary WAN Edge)

      Power on the Spare MX and wait for it to come online on dashboard

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      You can also verify that your C9500 Core Stack interfaces to the Spare MX are up, and that the redundant uplinks are in STP BLK mode

9500-01#sh ip interface brief

Interface             IP-Address        OK? Method      Status

TwentyFiveGigE1/0/2   unassigned        YES unset up    up

TwentyFiveGigE2/0/2   unassigned        YES unset up    up

9500-01#

9500-01#show spanning-tree

MST0

Spanning tree enabled protocol mstp

Root ID   Priority   4096

        Address b0c5.3c60.fba0

        This bridge is the root

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority  4096 (priority 4096 sys-id-ext 0)

        Address b0c5.3c60.fba0

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface    Role Sts Cost    Prio.Nbr Type

Twe1/0/1     Desg FWD 2000    128.193 P2p

Twe1/0/2     Desg FWD 2000    128.194 P2p

Twe2/0/1     Back BLK 2000    128.385 P2p

Twe2/0/2     Back BLK 2000    128.386 P2p

 

9500-01#

 

40.  Access Policy configuration: When you're logged in dashboard, Navigate to Switching > Configure > Access policies to configure Access Policies as required for your Campus LAN. Please see the following example for two Access Policies; 802.1x and MAB.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

41.  Adaptive Policy Configuration: Configure Adaptive Policy for your Campus LAN. When you're logged in dashboard, Navigate to Organization > Configure > Adaptive Policy then click on the Groups tab on the top. There should be two groups (Unknown, Infrastructure) that are already available. Click on Add group to add each group required for your Campus LAN. You need to fill in the Name, the SGT value, and a description then click on Review changes then click on Submit. Please see the following examples.

Related image, diagram or screenshot

Related image, diagram or screenshot

42.  Adaptive Policy Configuration: Configure Adaptive Policy for your Campus LAN. When you're logged in dashboard, Navigate to Organization > Configure > Adaptive Policy then click on the Policies tab on the top. The source groups are on the left side, and the destination groups are on the right side. Select a source group from the left side then select all destination groups on the right side that should be allowed then click on Allow and click on Save at the bottom of the page. Next, select a source group from the left side then select all destination groups on the right side that should be denied (i.e. Blocked) then click on Deny and click on Save at the bottom of the page. After creating the policy for that specific source group, the allowed destination groups will be displayed with a green tab and the denied destination groups will be displayed with a red tab. Repeat this step for all policies required for all Groups (Allow and Deny).

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

43.  Access Switch Ports Preparation: MS390 switches support a maximum of 1000 configured VLANs and given that the default configuration has all switchports in Trunk mode with Native VLAN 1 and allowed VLANs 1-1000 (consuming the 1000 limit already), Dashboard will not allow for the configuration of this design to be saved (i.e. configuring VLAN 1921/1922 as this will breach the 1000 VLANs limit). As such, ports will need to be configured with a different range or VLAN set other than the default settings before applying the configuration needed for this design. It is therefore recommended to configure ALL ports in your network as access in a parking VLAN such as 999. To do that, Navigate to Switching > Monitor > Switch ports then select all ports (Please be mindful of the page overflow and make sure to browse the different pages and apply configuration to ALL ports) and then make sure to deselect stacking ports (as you cannot change configuration on dedicated stacking ports) then click on the Edit button and configure all ports as shown below:

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      IMPORTANT - The above step is essential before proceeding to the next steps. If you proceed to the next step and receive an error on Dashboard then it means that some switchports are still configured with the default configuration. Please revisit the Switching > Monitor > Switch ports page and ensure that no ports have a Trunk with allowed VLANs 1-1000

44.  Access Switch Ports Configuration: Configure Uplink Ports on your Access Switches. When you're logged in dashboard, Navigate to Switching > Monitor > Switch ports, then select your uplink ports and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard):

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

45.  Optional - For ease of management, it is recommended that you rename the ports connecting to your Core switches with the actual switch name / Connecting port as shown below.

Related image, diagram or screenshot

46.  Access Switch Ports Configuration: Configure Wired Client Ports (802.1x) on your Access Switches. Navigate to or Refresh Switching > Monitor > Switch Ports, then select your Wired Client ports (5-8) and configure them as◦ shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

47.  Access Switch Ports Configuration: Configure Wired Client Ports (MAB) on your Access Switches. Navigate to or Refresh Switching > Monitor > Switch Ports, then select your Wired Client ports (9-12) and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

48.  Access Switch Ports Configuration: Configure MR Ports on your Access Switches. Navigate to or Refresh Switching > Configure > Switch Ports, then select your ports connecting to MR Access Points (13-16) and configure them as shown below. (Tip: You can filter for ports by using search terms in dashboard)

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

49.  Optional - Access Switch Ports Configuration: Configure unused ports on your Access Switches such that they are disabled and mapped to a parking VLAN such as 999. Navigate to Switching > Monitor > Switch Ports and filter for any unused ports (e.g. 17-24) and configure them as shown below.

Related image, diagram or screenshot

50.  Rename Wireless SSIDs: To configure your SSIDs per the above table, first navigate to Wireless > Configure SSIDs then rename the SSIDs per your requirements (Refer to the above table for guidance).

      SSID#1 (First column, aka vap:0, enabled by default): Click on rename and change it to Acme Corp

      SSID#2 (Second column, aka vap:1): Click on rename and change it to Acme BYOD, then click on the top drop-down menu to enable it

      SSID#3 (Third column, aka vap:2): Click on rename and change it to Guest, then click on the top drop-down menu to enable it

      SSID#4 (Fourth column, aka vap:3): Click on rename and change it to Acme IoT, then click on the top drop- down menu to enable it

      Click Save at the bottom of the page

Related image, diagram or screenshot

51.  Configure Access Control for Acme Corp: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Acme Corp.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Click Save at the bottom of the page

Related image, diagram or screenshot

      Please Note: Adaptive Policy Group feature is not currently available in the New Version of the Access. You will need to click on View old version

View old Version

which is available at the top right corner of the page to be able to access this and configure the Adaptive Policy Group (10: Corp). Then, please click Save at the bottom of the page.

52.  Configure Access Control for Acme BYOD: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Acme BYOD.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Click on

View old Version

which is available on the top right corner of the page, then choose the Adaptive Policy Group 20: BYOD and then click on Save at the bottom of the page.

Related image, diagram or screenshot

53.  Configure Access Control for Guest: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Guest.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Click Save at the bottom of the page

      Click on the top right corner of the page on "View Old Version" then choose the Adaptive Policy Group 30:Guest then click on Save at the bottom of the page

Related image, diagram or screenshot

      Navigate to Wireless > Configure > SSID availability and configure broadcast via Tag = Zone 1

Related image, diagram or screenshot

54.  Configure Access Control for Acme IoT: Navigate to Wireless > Configure > Access control then from the top drop-down menu choose Acme IoT. (Please note that in this example Acme IoT SSID has been configured with iPSK without Radius).

      Navigate to Network-wide > Configure > Group policies, then create a group policy for IoT devices and click Save at the bottom of the page

Related image, diagram or screenshot

Related image, diagram or screenshot

      Then, Navigate to Wireless > Configure > Access control and choose Acme IoT from the top drop-menu and configure settings as shown below, First choose iPSK without Radius from the Security menu:

Related image, diagram or screenshot

Related image, diagram or screenshot

      Then, click on Add an identity PSK:

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      Click on Save at the bottom of the page

      Click on

View old Version

at the top right corner of the page then choose the Adaptive Policy Group 40: IoT then click on Save at the bottom of the page.

Related image, diagram or screenshot

      Navigate to Wireless > Configure > SSID availability and configure broadcast via Tag = Zone 2

Related image, diagram or screenshot

55.  Enabling Stacking on your MS390 and C9300 Switches in Meraki Dashboard: Please follow these steps.

A.   Connect a single uplink to each switch (e.g. Port 1 on MS390-01 to Port TwentyFiveGigE1/0/23 on C9500)

B.   Make sure all stacking cables are unplugged from all switches

C.   Power up all switches

D.   Verify that your C9500 Stack downlinks are up and not shutdown

9500-01#sh ip interface brief

Interface               IP-Address OK?    Method Status     Protocol

TwentyFiveGigE1/0/23    unassigned YES    unset up           up

TwentyFiveGigE1/0/24    unassigned YES    unset up           up

TwentyFiveGigE2/0/23    unassigned YES    unset up           up

TwentyFiveGigE2/0/24    unassigned YES    unset up           up

9500-01#

 

E.   Wait for them to come online on dashboard. Navigate to Switching > Configure > Switches and check the status of your Access Switches

Related image, diagram or screenshot

F.   After they come online and download their configuration and firmware (Up to date) you can proceed to the next step. You can see their Configuration status and Firmware version from Switching > Configure > Switches

Related image, diagram or screenshot

G.   Enable stacking in dashboard by Navigating to Switching > Monitor > Switch stacks then click on add one

Related image, diagram or screenshot

H.   Then give your stack a name and select it's members and click on Create

Related image, diagram or screenshot

 

Related image, diagram or screenshot

I.    Now click on Add a stack to create all other stacks in your Campus LAN access layer by repeating the above steps

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

J.   Power off all access switches

K.   Disconnect all uplink cables from all switches

L.   Nominate your master switch for each stack (e.g. MS390-01 for stack1 and C9300-01 for stack2)

M.  On the master switches, plug the uplink again

N.   Plug stacking cables on all switches in each stack to form a ring topology and make sure that the Cisco logo is upright

O.  Power on your master switches first, then power other stack members

P.   Wait for the stack to come online on dashboard. To check the status of your stack, Navigate to Switching > Monitor > Switch stacks and then click on each stack to verify that all members are online and that stacking cables show as connected

Related image, diagram or screenshot

 

Related image, diagram or screenshot

Q.  Plug uplinks on all other non-master members and verify that the uplink is online in dashboard by navigating to Switching > Monitor > Switch stacks and then click on each stack to verify that all uplinks are showing as connected however they should be in STP discarding mode.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

R.   Configure the same Static IP for all members in each stack by navigating to Switching > Monitor > Switches then click on the master switch (e.g. MS390-01 for Stack1) and under LAN IP menu copy the IP address then click on the edit button to specify the Static IP address information (You can use the same IP address that was assigned using DHCP) then click Save. The same Static IP address information should now be copied for all members of the same stack. You can verify this by navigating to Switching > Monitor > Switches (Tip: Click on the configure button on the right-hand side of the table to add Local IP information display).

Related image, diagram or screenshot

 

Related image, diagram or screenshot

      And on your Stack2-9300 Master Switch:

Related image, diagram or screenshot

 

Related image, diagram or screenshot

S.   Finally, configure etherchannels on both your Access Switch Stacks and your Core Switch Stacks so that all uplinks can be operational (STP forwarding mode) at the same time. Follow these steps:

    First, disconnect the downlinks to non-master switches from your C9500 Core Stack (e.g. Port TwentyFiveGigE2/0/23 and TwentyFiveGigE2/0/24)

    Navigate to Switching > Monitor > Switch ports and search for uplink then select all uplinks in the same stack (in case you have tagged your ports otherwise search for them manually and select them all) then click on Aggregate. Please note that all port members of the same Ether Channel must have the same configuration otherwise Dashboard will not allow you to click the aggregate button.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

    Please repeat above steps for all stacks in your network

    Please note that the above step will cause all members within the stack to go offline in Dashboard

      On your C9500 Core Stack, please configure etherchannel Settings for your downlinks such that each Stack downlinks should be in a separate Port-channel and that the mode is active:

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface TwentyFiveGigE1/0/23

9500-01(config-if)#channel-group 1 mode active

Creating a port-channel interface Port-channel 1

 

9500-01(config-if)#

9500-01(config-if)#interface TwentyFiveGigE2/0/23

9500-01(config-if)#channel-group 1 mode active

9500-01(config-if)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#channel-group 2 mode active

Creating a port-channel interface Port-channel 2

 

9500-01(config-if)#interface TwentyFiveGigE2/0/24

9500-01(config-if)#channel-group 2 mode active

9500-01(config-if)#end

9500-01#

9500-01#show etherchannel 1 port-channel

Port-channels in the group:

-------------------------

Port-channel: Po1 (Primary Aggregator)

Age of the Port-channel = 0d:01h:42m:43s

Logical slot/port = 9/1 Number of ports = 2

HotStandBy port = null

Port state = Port-channel Ag-Inuse

Protocol = LACP

Port security = Disabled

Fast-switchover = disabled

Fast-switchover Dampening = disabled

 

Ports in the Port-channel:

Index    Load    Port    EC state    No of bits

------+------+------+----------------- -+-----------

0   00    Twe1/0/23       Active        0

0   00    Twe2/0/23       Active        0

 

Time since last port bundled: 0d:01h:40m:21s Twe2/0/23

 

9500-01#

9500-01#show etherchannel 2 port-channel

Port-channels in the group:

--------------------------

Port-channel: Po2 (Primary Aggregator)

----------

Age of the Port-channel = 0d:01h:43m:56s

Logical slot/port = 9/2 Number of ports = 2

HotStandBy port = null

Port state = Port-channel Ag-Inuse

Protocol = LACP

Port security = Disabled

Fast-switchover = disabled

Fast-switchover Dampening = disabled

 

Ports in the Port-channel:

 

Index   Load Port     EC state      No of bits

------+------+------+--------------+-----------

0 00     Twe1/0/24     Active             0

0 00 Twe2/0/24         Active             0

 

Time since last port bundled: 0d:01h:42m:04s Twe2/0/24

 

9500-01#9500-01#wr mem

Building configuration...

 

[OK]

9500-01#

      Plug all uplinks to non-master switches

      Now all your switches should come back online on Dashboard

Related image, diagram or screenshot

      And now all your uplinks from each stack should be in STP Forwarding mode, which you can verify on Dashboard by navigating to Switching > Monitor > Switch stacks and checking the uplink port status. Also, you can check that on your C9500 Core Stack.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

9500-01#show spanning-tree interface port-channel 1

Mst Instance      Role Sts Cost      Prio.Nbr Type

----------------------------------------------------

MST0             Desg FWD 10000      128.2089 P2p

9500-01#show spanning-tree interface port-channel 2

 

Mst Instance      Role Sts Cost      Prio.Nbr Type

----------------------------------------------------

MST0              Desg FWD 1000       128.2090 P2p

9500-01#show spanning-tree

 

MST0

   Spanning tree enabled protocol mstp

   Root ID Priority 4096

        Address b0c5.3c60.fba0

        This bridge is the root

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

   Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

        Address b0c5.3c60.fba0

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface    Role Sts Cost       Prio.Nbr Type

------------------------------------------------------

Twe1/0/1     Desg FWD 2000        128.193 P2p

Twe2/0/1     Back BLK 2000        128.385 P2p

Po1          Desg FWD 10000       128.2089 P2p

Po2          Desg FWD 1000       128.2090 P2p

 

9500-01#

56.  Configure Multiple Spanning Tree Protocol (802.1s) in Dashboard for MS390 and C9300 switches: Navigate to Switch > Configure > Switch settings and select your stack and choose the appropriate STP priority per stack (61440 for all Access Switch Stacks) then click Save at the bottom of the page.

Related image, diagram or screenshot

      Please note that changing the STP priority will cause a brief outage as the STP topology will be recalculated.

      Verify that the Access Stacks are seeing the C9500 Core Stack as the root by navigating to Switching > Monitor > Switches then click on any switch and under the RSTP root menu check the root bridge information

57.  Configure Dynamic ARP Inspection (DAI) on your C9500 Core Switches: All Downlinks to Access Switches and Uplinks to MX Edge must be configured as Trusted and all other interfaces as Untrusted. (Please note that the order of commands is important to avoid loss of connectivity)

9500-01#show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

                  S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,

                  D - Remote, C - CVTA, M - Two-port Mac Relay

 

Device ID     Local Intrfce    Holdtme Capability Platform Port ID

a4b4395f2a80  Twe 1/0/24       124     S C9300-24U Port C9300-NM-8X/1

2c3f0b0fec00  Twe 2/0/23       174     S MS390-24 Port 1

2c3f0b047e80  Twe 1/0/23       159     S MS390-24U Port 1

4ce175b0ba00  Twe 2/0/24       177     S C9300-24U Port C9300-NM-8X/1

 

Total cdp entries displayed : 4

9500-01#configure terminal

9500-01(config)#interface TwentyFiveGigE1/0/1

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface TwentyFiveGigE1/0/2

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface TwentyFiveGigE2/0/1

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface TwentyFiveGigE2/0/2

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface Po1

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#interface Po2

9500-01(config-if)#ip arp inspection trust

9500-01(config-if)#ip dhcp snooping trust

9500-01(config-if)#exit

9500-01(config)#ip arp inspection vlan 3,100,200,1921,1922,1923

9500-01(config)#ip arp inspection validate src-mac

9500-01(config)#ip arp inspection validate ip src-mac

9500-01(config)#ip dhcp snooping vlan 3,100,200, 1921,1922,1923

9500-01(config)#end

9500-01#show ip dhcp snooping

Switch DHCP snooping is enabled

Switch DHCP gleaning is disabled

DHCP snooping is configured on following VLANs:

3,100,200,1921-1923

DHCP snooping is operational on following VLANs:

3,100,200,1921-1923

DHCP snooping is configured on the following L3 Interfaces:

 

Insertion of option 82 is enabled

   circuit-id default format: vlan-mod-port

   remote-id: b0c5.3c60.fba0 (MAC)

Option 82 on untrusted port is not allowed

Verification of hwaddr field is enabled

Verification of giaddr field is enabled

DHCP snooping trust/rate is configured on the following Interfaces:

 

Interface             Trusted     Allow option     Rate limit (pps)

-------------------------------------------------------------------

TwentyFiveGigE1/0/1         yes        yes          unlimited

Custom circuit-ids:

TwentyFiveGigE1/0/2         yes        yes          unlimited

Custom circuit-ids:

TwentyFiveGigE1/0/23         yes        yes         unlimited

Custom circuit-ids:

TwentyFiveGigE1/0/24         yes        yes         unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/1         yes        yes          unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/2         yes        yes          unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/23         yes        yes         unlimited

Custom circuit-ids:

TwentyFiveGigE2/0/24         yes        yes         unlimited

Custom circuit-ids:

Port-channel1                yes        yes        unlimited

Custom circuit-ids:

Port-channel2                yes        yes         unlimited

   Custom circuit-ids:

9500-01#

9500-01#show ip arp inspection

 

Source Mac Validation : Enabled

Destination Mac Validation : Disabled

IP Address Validation : Enable

 

Vlan      Configuration        Operation     ACL Match     Static ACL

-----------------------------------------------------

3            Enabled              Active

100          Enabled              Active

200          Enabled              Active

1921         Enabled              Active

1922         Enabled              Active

1923         Enabled              Active

 

Vlan   ACL Logging    DHCP Logging   Probe Logging

--------------------------------------------------

3      Deny     Deny    Off

100    Deny     Deny    Off

200    Deny     Deny    Off

1921   Deny     Deny    Off

1922   Deny     Deny    Off

1923   Deny     Deny    Off

 

Vlan     Forwarded     Dropped       DHCP Drops     ACL Drops

-------------------------------------------------------------

3        0             0             0               0

100      0             0             0               0

200      0             0             0               0

1921     0             0             0               0

1922     0             0             0               0

1923     0             0             0               0

 

Vlan    DHCP Permits   ACL Permits   Probe Permits    Source MAC Failures

-------------------------------------------------------------------------

3        0             0             0               0

100      0             0             0               0

200      0             0             0               0

1921     0             0             0               0

1922     0             0             0               0

1923     0             0             0               0

 

Vlan     Dest MAC Failures   IP Validation Failures    Invalid Protocol Data

---------------------------------------------------------------------------

3           0                                0             0              

100         0                                0             0              

200         0                                0             0              

1921        0                                0             0              

1922        0                                0             0              

1923        0                                0             0              

9500-01#wr mem

Building configuration...

[OK]

9500-01#

58.  Configure Dynamic Arp Inspection (DAI) on your Access Switch Stacks: Navigate to Switch > Monitor > DHCP Servers and ARP and scroll down to Dynamic ARP Inspection and enable it, then click Save at the bottom of the page.

Related image, diagram or screenshot

59.  Setting up your Access Points: Connect your APs to the respective ports on the Access Switches (e.g. Ports 13-16) and wait for them to come online on dashboard and download their firmware and configuration files. To check the status of your APs navigate to Wireless > Monitor > Access points and check the status, configuration and firmware of your APs.

Related image, diagram or screenshot

60.  Re-addressing your Network Devices: In this step, you will adjust your IP addressing configuration - if required - to align with your network design. This step could have been done earlier in the process however it will be easier to adjust after all your network devices have come online since the MX (The DHCP server for Management VLAN 1) has kept a record of the actual MAC addresses of all DHCP clients. Follow these steps to re-assign the desired IP addresses. (Please note that this will cause disruption to your network connectivity)

A.   Navigate to Organization > Monitor > Overview then click on Devices tab to check the current IP addressing for your network devices

B.   Navigate to Security and SD-WAN > Monitor > Appliance status then click on the Tools tab and click on Run next to ARP Table

C.   Take a note of the MAC addresses of your network devices

D.   Navigate to Security and SD-WAN > Configure > DHCP then under Fixed IP assignments click on Add a fixed IP assignment and add entries under each DHCP Pool as shown below for your network devices using the MAC addresses you have from Step #3 above then click on Save at the bottom of the page.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

E.   Navigate to Switching > Monitor > Switch ports then filter for MR (in case you have previously tagged your ports or select ports manually if you haven't) then select those ports and click on Edit, then set Port status to Disabled then click on Save.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

F.   After a few minutes (For configuration to be up to date) navigate to Switching > Monitor > Switch ports, then filter for MR (in case you have previously tagged your ports or select ports manually if you haven't) then select those ports and click on Edit, then set Port status to Enabled then click on Save.

Related image, diagram or screenshot

 

Related image, diagram or screenshot

G.   Navigate to Switching > Monitor > Switches, then click on each master switch to change its IP address to the one desired using Static IP configuration (remember that all members of the same stack need to have the same static IP address)

Related image, diagram or screenshot

Related image, diagram or screenshot

H.   On your C9500 Core Stack, bounce your VLAN 3,100,200 interfaces. Then verify that the interfaces VLAN 3/ 100/200 came up with the correct IP address (e.g. 10.0.3.2 per this design)

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface vlan 3

9500-01(config-if)#shutdown

9500-01(config-if)#no shutdown

9500-01(config-if)#interface vlan 100

9500-01(config-if)#shutdown

9500-01(config-if)#no shutdown

9500-01(config-if)#interface vlan 200

9500-01(config-if)#shutdown

9500-01(config-if)#no shutdown

9500-01(config-if)#end

9500-01#sh ip interface brief | in Vlan

Vlan1     unassigned      YES NVRAM administratively down   down

Vlan3      10.0.3.2       YES DHCP up                       up

Vlan100    10.0.100.2     YES DHCP up                       up

Vlan200    10.0.200.2     YES DHCP up                       up

9500-01#

I.    Navigate to Organization > Monitor > Overview then click on Devices tab to check the current IP addressing for your network devices:

Related image, diagram or screenshot

61.  Configure QoS in your Campus LAN: Quality of Service configuration needs to be consistent across the whole Campus LAN. Please refer to the above table as an example. (For the purpose of this CVD, Default traffic shaping rules will be used to mark traffic with DSCP values without setting any traffic limits. Please adjust traffic shaping rules based on your own requirements). To configure QoS, please follow these steps.

A.   Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the Acme Corp SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules. Click Save at the bottom of the page when you are done. Click Save at the bottom of the page when you are done.

Related image, diagram or screenshot

B.   Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the Acme BYOD SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules.

Related image, diagram or screenshot

C.   Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the Guest SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules. Click Save at the bottom of the page when you are done.

Related image, diagram or screenshot

D.   Navigate to Wireless > Configure > Firewall and Traffic Shaping and choose the IoT SSID from the above drop-down menu. Under Traffic Shaping rules, choose the per-client and per-SSID limits desired and select Shape traffic on this SSID then select Enable default traffic shaping rules. Click Save at the bottom of the page when you are done.

Related image, diagram or screenshot

E.   Navigate to Switching > Configure > Switch settings and under the Quality of Service menu configure the VLAN to DSCP mappings. Please click on Edit DSCP to CoS map to change settings per your requirements. Click Save at the bottom of the page when you are done. (Please note that the ports used in the below example are based on Cisco Webex traffic flow)

Related image, diagram or screenshot

 

Related image, diagram or screenshot

F.   Please ensure that your C9500 Core Stack is configured to trust incoming QoS. Here's a reference of the configuration needed to be applied:

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#interface TwentyFiveGigE1/0/1

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE1/0/2

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE2/0/1

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE2/0/2

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#interface TwentyFiveGigE1/0/23

9500-01(config-if)#auto qos trust dscp

Warning: add service policy will cause inconsistency with port TwentyFiveGigE2/0/23 in ether

channel 1.

9500-01(config-if)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#auto qos trust dscp

Warning: add service policy will cause inconsistency with port TwentyFiveGigE2/0/24 in ether

channel 2.

9500-01(config-if)#interface TwentyFiveGigE1/0/24

9500-01(config-if)#auto qos trust dscp

9500-01(config-if)#end

9500-01#show auto qos

TwentyFiveGigE1/0/1

auto qos trust dscp

 

TwentyFiveGigE1/0/2

auto qos trust dscp

 

TwentyFiveGigE1/0/23

auto qos trust dscp

 

TwentyFiveGigE1/0/24

auto qos trust dscp

 

TwentyFiveGigE2/0/1

auto qos trust dscp

 

TwentyFiveGigE2/0/2

auto qos trust dscp

 

TwentyFiveGigE2/0/23

auto qos trust dscp

 

TwentyFiveGigE2/0/24

auto qos trust dscp

 

9500-01#wr mem

 

G.   Navigate to Security and SD-WAN > Configure > SD-WAN and Traffic shaping and make sure your Uplink configuration matches your WAN speed. Then, under Uplink selection choose the settings that match your requirements (e.g. Load balancing). Under Traffic shaping rules, select Enable default traffic shaping rules then click on Add a new shaping rule to create the rules needed for your network. (for more information about Traffic shaping rules on MX appliances, please refer to the following article). Please see the following example:

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

62.  Enable OSPF Routing: Navigate to Switching > Configure > OSPF routing and then click on Enabled to enable OSPF. Add the details required and create an OSPF area for your Campus Network. Then, click Save at the bottom of the page.

Related image, diagram or screenshot

Related image, diagram or screenshot

63.  Enable OSPF Routing on your Core Stack: Please use the following commands to add an OSPF instance and create OSPF neighbors.

9500-01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

9500-01(config)#router ospf 1

9500-01(config-router)#network 192.168.1.0 0.0.0.255 area 0

9500-01(config-router)#network 192.168.2.0 0.0.0.255 area 0

9500-01(config-router)#neighbor 192.168.1.1

9500-01(config-router)#neighbor 192.168.2.1

9500-01(config-router)#end

9500-01#

9500-01#show ip ospf neighbor

Neighbor ID          Pri        State      Dead Time          Address    Interface

192.168.2.2          1          FULL/DR    00:00:33          192.168.2.2           Vlan1922

192.168.1.2          1          FULL/DR    00:00:38          192.168.1.2           Vlan1921

9500-01#wr mem

64.  Create SVI Interfaces on your Access Switch Stacks: Navigate to Switching > Configure > Routing and DHCP and click on CREATE INTERFACE and start adding your interfaces but first start with the Transit VLANs. Once you have created an interface click on Save and add another at the bottom of the page to add more interfaces.

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

      Please note that the Static Routes shown above are automatically created per stack and they reflect the default gateway settings that you have configured with the first SVI interface created which is in this case the Transit VLAN interface for each Stack

65.  Verify that your Core Stack is receiving OSPF routes from its neighbors:

9500-01#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP

n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

H - NHRP, G - NHRP registered, g - NHRP registration summary

o - ODR, P - periodic downloaded static route, l - LISP

a - application route

+ - replicated route, % - next hop override, p - overrides from PfR

& - replicated local route overrides by connected

 

Gateway of last resort is 10.0.200.1 to network 0.0.0.0

 

S* 0.0.0.0/0 [254/0] via 10.0.200.1

   [254/0] via 10.0.100.1

   [254/0] via 10.0.3.1

  10.0.0.0/8 is variably subnetted, 12 subnets, 2 masks

C 10.0.3.0/24 is directly connected, Vlan3

L 10.0.3.2/32 is directly connected, Vlan3

O 10.0.11.0/24 [110/2] via 192.168.1.2, 00:04:13, Vlan1921

O 10.0.12.0/24 [110/2] via 192.168.2.2, 00:03:56, Vlan1922

O 10.0.21.0/24 [110/2] via 192.168.1.2, 00:04:13, Vlan1921

O 10.0.22.0/24 [110/2] via 192.168.2.2, 00:03:56, Vlan1922

O 10.0.30.0/24 [110/2] via 192.168.1.2, 00:04:13, Vlan1921

O 10.0.40.0/24 [110/2] via 192.168.2.2, 00:03:56, Vlan1922

C 10.0.100.0/24 is directly connected, Vlan100 L

10.0.100.2/32 is directly connected, Vlan100 C

10.0.200.0/24 is directly connected, Vlan200 L

10.0.200.2/32 is directly connected, Vlan200

   192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.1.0/24 is directly connected, Vlan1921

L 192.168.1.1/32 is directly connected, Vlan1921

   192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.2.0/24 is directly connected, Vlan1922 L

192.168.2.1/32 is directly connected, Vlan1922

    192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.3.0/24 is directly connected, Vlan1923

L 192.168.3.2/32 is directly connected, Vlan1923

9500-01#

66.  And that concludes the configuration requirements for this design option. Please remember to always click Save at the bottom of the page once you have finished configuring each item on the Meraki Dashboard.

Testing and Verification

Firmware

The following table indicates the firmware versions used in this Campus LAN:

Device

Firmware Version

Notes

MX250 WAN Edge

MX 16.16

GA

C9500 Core Stack

 

 

MS390 Access Stack

MS 15.14

Beta

C9300 Access Stack

MS 15.14

Beta

MR55

28.6.1

GA

C9166 (MR57)

28.30

Beta

Device Connectivity

MX WAN Edge

Upstream Connectivity

Related image, diagram or screenshot

Internet/Cloud Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Downstream Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

C9500 Core Stack

Upstream Connectivity

9500-01#ping 10.0.3.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#ping 192.168.3.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.3.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#

Internet Connectivity

9500-01#ping 8.8.8.8 source 192.168.3.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:

Packet sent with a source address of 192.168.3.2

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

9500-01#

9500-01#ping cisco.com source 192.168.3.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 72.163.4.185, timeout is 2 seconds:

Packet sent with a source address of 192.168.3.2

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 108/108/109 ms

9500-01#

Downstream Connectivity (Please note that the MS390 and C9300-M platforms will prioritize packet forwarding over ICMP echo replies so it's expected behavior that you might get some drops when you ping the management interface)

9500-01#ping 10.0.100.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.100.3, timeout is 2 seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 2/2/3 ms

9500-01#ping 10.0.100.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.100.4, timeout is 2 seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 2/2/4 ms

9500-01#ping 10.0.200.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.200.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#ping 10.0.200.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.200.4, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

9500-01#

In case of connectivity issues, please check the following:

Item

Expected Configuration/ Status

Verification

Actual Configuration

C9500 Uplinks to MX Edge:

Trunk , VLAN 3

sh ip int brief

!all uplinks!

TwentyFiveGigE1/0/1

DAI Trusted

sh run int <interface>

switchport mode access

TwentyFiveGigE1/0/2

up/up

sh spanning-tree int <interface>

ip arp inspection trust

TwentyFiveGigE2/0/1

 

 

ip dhcp snooping trust

TwentyFiveGigE2/0/2

 

 

End

!

STP interface Configuration:

STP Configuration

sh run int <interface>

!where applicable!

TwentyFiveGigE1/0/1

N/A

 

udld port aggressive

TwentyFiveGigE1/0/2

N/A

 

spanning-tree guard root

TwentyFiveGigE2/0/1

N/A

 

end

TwentyFiveGigE2/0/2

N/A

 

!

TwentyFiveGigE1/0/23

Root Guard + UDLD aggressive

 

 

TwentyFiveGigE1/0/24

Root Guard + UDLD aggressive

 

 

TwentyFiveGigE2/0/23

Root Guard + UDLD aggressive

 

 

TwentyFiveGigE2/0/24

Root Guard + UDLD aggressive

 

 

STP interface Status:

STP status:

sh spanning-tree int <interface>

!only PHY interfaces!

TwentyFiveGigE1/0/1

FWD

 

spanning-tree mode mst

TwentyFiveGigE1/0/2

BLK

 

spanning-tree extend system-id

TwentyFiveGigE2/0/1

FWD

 

!

TwentyFiveGigE2/0/2

BLK

 

spanning-tree mst configuration

Po1

FWD

 

name region1

Po2

FWD

 

revision 1

!

 

 

 

spanning-tree mst 0 priority 4096

Default Route

DHCP, VLAN 1923

sh int vlan1923

 hip route

!

interface Vlan1923

ip address 192.168.3.2 255.255.255.0

end

!

sh ip route | in /0

S* 0.0.0.0/0 [254/0] via 192.168.3.1

MX WAN Edge Downlinks:

Trunk , VLAN 3

Navigate to Security and SD-WAN > Configure > Addressing and VLANs

Related image, diagram or screenshot

Port 19

 

 

 

Port 20

 

 

 

C9500 Downlinks:

Trunk

sh run int

!PHY 23!

 

DAI Trusted

switchport trunk allowed vlan 100,1921

 

SGT 2 Trusted

switchport mode trunk

 

No CTS enforcement

ip arp inspection trust

TwentyFiveGigE1/0/23

VLAN 100 / 100, 1921

!PHY 24!

TwentyFiveGigE1/0/24

VLAN 200 / 200, 1922

switchport trunk allowed vlan 200,1922

TwentyFiveGigE2/0/23

VLN 100 / 100, 1921

switchport mode trunk

TwentyFiveGigE2/0/24

VLAN 200 / 200, 1922

ip arp inspection trust

!BOTH!

cts manual

  policy static sgt 2 trusted

no cts role-based enforcement

!

end

 

 

C9500 Ether-Channels:

 

 

!PHY 23!

TwentyFiveGigE1/0/23

Channel-Group 1

sh run int <interface>

channel-group 1 mode active

TwentyFiveGigE1/0/24

Channel-Group 2

sh etherchannel <#> sum

!PHY 24!

TwentyFiveGigE2/0/23

Channel-Group 1

sh ip int brief | in Po

channel-group 2 mode active

TwentyFiveGigE2/0/24

Channel-Group 2

 

!

Po1

up/up

 

end

Po2

up/up

 

 

MS390 Access Stack

Upstream Connectivity

Tech Tip: Please note that the MS390 and C9300 switches use a separate routing table for management traffic than the configured SVIs. As such, you won't be able to verify connectivity using ping tool from the switch page to its default gateway (e.g. 10.0.100.1) since we have not created a L3 interface for the Management VLAN (e.g. VLAN 100). Upstream connectivity verification should be done using one of the SVI interfaces configured on the stack/ switch to the upstream Transit VLAN configured on the Edge MX appliance. (e.g. VLAN 1923)

Related image, diagram or screenshot

Internet/Cloud Connectivity

Related image, diagram or screenshot

Downstream Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

C9300 Access Stack

Upstream Connectivity

Related image, diagram or screenshot

Internet/Cloud Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Downstream Connectivity

Related image, diagram or screenshot

MR Access Points

Downstream Connectivity

Client Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

802.1x Authentication

802.1x authentication has been tested on both Corp and BYOD SSIDs. Dashboard will be checked to verify the correct IP address assignment and username. Packet captures will also be checked to verify the correct SGT assignment. In the final section, ISE logs will show the authentication status and authorization policy applied.

Client

SSID/Port

Username

VLAN

SGT

iKarem

f4:5c:89:b9:35:09

10.0.22.2

Acme BYOD

byod1

22

20

iPhone 11

12:99:2a:2d:d5:d6

10.0.30.2

Guest

N/A

30

30

MacBook Pro

8c:ae:4c:dd:15:19

10.0.11.3

MS390-02

Port 4

Corp1

10

10

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

 

Related image, diagram or screenshot

Tech Tip: Please note that the configuration of the Cisco ISE is out of scope of this CVD. Please refer to Cisco ISE administration guide for details on configuring policy sets on Cisco ISE. Also, please refer to this article for more information on configuring Cisco ISE with Cisco Meraki Devices

VLAN Assignment

This section will validate that VLANs are assigned correctly based on the VLAN tag. The following client was used to test the connectivity in the designated VLAN:

 

Acme Corp

Acme BYOD

AP

AP2_Zone1

AP3_Zone2

AP2_Zone1

AP3_Zone2

Expected VLAN

11

12

21

22

Testing Client

12:34:5C:8C:16:0

12:34:5C:8C:16:0

46:F2:0C:4B:E7:FD

46:F2:0C:4B:E7:FD

Assigned IP Address / VLAN

10.0.11.3 / VLAN 11

10.0.12.3 / VLAN 12

10.0.21.3 / VLAN 21

10.0.22.2 / VLAN 22

 

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

STP Convergence

STP convergence will be tested using several methods as outlined below. Please see the following table for steady-state of the Campus LAN before testing:

 

 

Bridge ID

STP Status

C9500-01

Master

4096:b0c5.3c60.fba0

Related image, diagram or screenshot

C9500-02

Member

4096.40b5.c111.01e0

MS390-01

Master

61440:2c3f.0b04.7e80

STP ROOT

b0:c5:3c:60:fb:a0 (priority 4096)

MS390-02

Member

61440:2c3f.0b0f.ec00

Blocking ports

None

C9300-01

Master

61440:a4b4.395f.2a8b

STP ROOT

b0:c5:3c:60:fb:a0 (priority 4096)

C9300-02

Member

61440:4ce1.75b0.ba00

Blocking ports

None

Client Device

 

IP Address: 10.0.20.4

 

A screenshot of a computerDescription automatically generated

Introducing loops (Access to Core)

A screenshot of a computerDescription automatically generated

A loop was introduced by adding a link between C9300-01 /NM Port 2 and C9500 Core Stack / Port TwentyFiveGigE1/0/22 (Please note that for the purposes of this test, the interface has been unshut and configured as a Trunk port with Native VLAN 1 with STP guards on that interface)

9500-01#show ip interface brief | in TwentyFiveGigE1/0/22

TwentyFiveGigE1/0/22 unassigned YES unset up up

ow9500-01#show run interface TwentyFiveGigE1/0/22

Building configuration...

 

Current configuration : 132 bytes

!

interface TwentyFiveGigE1/0/22

switchport trunk native vlan 200

switchport trunk allowed vlan 200,1922

switchport mode trunk

spanning-tree guard root

end

 

9500-01#

9500-01#show spanning-tree

 

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 4096

       Address b0c5.3c60.fba0

       This bridge is the root

       Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

  Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

       Address b0c5.3c60.fba0

       Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface      Role Sts Cost       Prio.Nbr Type

-------------------------------------------------------

Twe1/0/1       Desg FWD 2000       128.193 P2p

Twe1/0/2       Desg FWD 2000       128.194 P2p

Twe1/0/22      Desg FWD 2000       128.214 P2p

Twe2/0/1       Back BLK 2000       128.385 P2p

Twe2/0/2       Back BLK 2000       128.386 P2p

Po1            Desg FWD 10000       128.2089 P2p

Po2            Desg FWD 1000       128.2090 P2p

Interface Twe1/0/22 is in STP FWD state (As expected since this is the Root bridge)

Related image, diagram or screenshot

Interface 26 is in STP BLK state (As expected since the Ether-channel is in FWD state)

Related image, diagram or screenshot

Note: No impact on traffic flow for wireless and wired clients

Introducing Loops (Access Layer, with STP Guard: Loop Guard)

A screenshot of a computer screenDescription automatically generated

For the purposes of this test and in addition to the previous loop connections, the following ports were connected: MS390-01 / Port 11 < - > C9300-01 / Port 11

Please note that the port configuration for both ports was changed to assign a common VLAN (in this case VLAN 99). Please see the following configuration that has been applied to both ports:

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Port 11 on MS390-01 in STP BLK state (Bridge ID: 61440:2c3f.0b04.7e80)

Related image, diagram or screenshot

Note: Port 11 on C9300-01 in STP FWD state (Bridge ID: 61440:a4b4.395f.2a8b)

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Packet capture on MS390-01 / Port 11 shows that Bridge ID: 61440:4ce1.75b0.ba00 is relaying the Root bridge BPDUs with Root Bridge ID: 4096:b0c5.3c60.fba0

 

Introducing Loops (Access Layer, without STP Guard)

A screenshot of a computerDescription automatically generated

For the purposes of this test and in addition to the previous loop connections, the following ports were connected: MS390-02 / Port 12 < - > C9300-02 / Port 12.

Please note that the port configuration for both ports was changed to assign a common VLAN (in this case VLAN 99). Please see the following configuration that has been applied to both ports:

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: MS390-02 / Port 12 is in STP BLK state (Bridge ID: 61440:2c3f.0b0f.ec00)

Related image, diagram or screenshot

Note: C9300-02 / Port 12 is in STP FWD state (Bridge ID: 61440:4ce1.75b0.ba00)

Introducing Loops (Core Layer)

A screenshot of a computerDescription automatically generated

For the purpose of this test and in addition to the previous loop connections, the following ports were connected:

Port Twe1/0/10 to port Twe2/0/10 on the C9500 Core switches.

9500-01#show run interface Twe1/0/10

Building configuration...

 

Current configuration : 132 bytes

!

interface TwentyFiveGigE1/0/10

switchport trunk native vlan 3

switchport trunk allowed vlan 3,100,200,1921,1922,1923

switchport mode trunk

spanning-tree guard loop

end

 

9500-01#show run interface Twe2/0/10

Building configuration...

 

Current configuration : 132 bytes

!

interface TwentyFiveGigE2/0/10

switchport trunk native vlan 3

switchport trunk allowed vlan 3,100,200,1921,1922,1923

switchport mode trunk

spanning-tree guard loop

end

 

9500-01#

9500-01#show ip interface brief | in TwentyFiveGigE1/0/10

TwentyFiveGigE1/0/10 unassigned YES unset up up

9500-01#

9500-01#show ip interface brief | in TwentyFiveGigE2/0/10

TwentyFiveGigE2/0/10 unassigned YES unset up up

9500-01#show spanning-tree

 

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 4096

          Address b0c5.3c60.fba0

          This bridge is the root

          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

  Bridge ID Priority 4096 (priority 4096 sys-id-ext 0)

          Address b0c5.3c60.fba0

          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface   Role Sts Cost     Prio.Nbr Type

--------------------------------------------

Twe1/0/1    Desg FWD 2000     128.193 P2p

Twe1/0/2    Desg FWD 2000     128.194 P2p

Twe1/0/10   Desg FWD 2000     128.202 P2p

Twe1/0/22   Desg FWD 2000     128.214 P2p

Twe2/0/1    Back BLK 2000     128.385 P2p

Twe2/0/2    Back BLK 2000     128.386 P2p

Twe2/0/10   Back BLK 2000     128.394 P2p

Po1         Desg FWD 10000    128.2089 P2p

Po2         Desg FWD 1000     128.2090 P2p

 

9500-01#show spanning-tree interface Twe2/0/10 detail

Port 394 (TwentyFiveGigE2/0/10) of MST0 is backup blocking

  Port path cost 2000, Port priority 128, Port Identifier 128.394.

  Designated root has priority 4096, address b0c5.3c60.fba0

  Designated bridge has priority 4096, address b0c5.3c60.fba0

  Designated port id is 128.202, designated path cost 0

  Timers: message age 4, forward delay 0, hold 0

  Number of transitions to forwarding state: 0

  Link type is point-to-point by default, Internal

  PVST Simulation is enabled by default

  Loop guard is enabled on the port

  BPDU: sent 2, received 66

9500-01#

Introducing Rogue Bridge in VLAN 200

A screenshot of a computerDescription automatically generated

For the purpose of this test and in addition to the previous loop connections, the Bridge priority on C9300 Stack will be reduced to 4096 (likely root) and increasing the Bridge priority on C9500 to 8192.

      Downlinks on C9500 are configured with STP Root Guard

      Access Layer Links (Stack to Stack) are configured with STP Loop Guard + UDLD

9500-01(config)#spanning-tree mst 0 priority 8192

9500-01(config)#end

9500-01#show spanning-tree

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 8192

        Address b0c5.3c60.fba0

        This bridge is the root

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

  Bridge ID Priority 8192 (priority 8192 sys-id-ext 0)

        Address b0c5.3c60.fba0

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface       Role StsCost       Prio.Nbr Type

-----------------------------------------------------

Twe1/0/1      Desg FWD 2000        128.193 P2p

Twe1/0/2      Desg FWD 2000        128.194 P2p

Twe1/0/10     Desg FWD 2000        128.202 P2p

Twe1/0/22     Desg BKN*2000        128.214 P2p *ROOT_Inc

Twe2/0/1      Back BLK 2000        128.385 P2p

Twe2/0/2      Back BLK 2000        128.386 P2p

Twe2/0/10     Back BLK 2000        128.394 P2p

Po1           Desg BKN*10000       128.2089 P2p *ROOT_Inc

Po2           Desg BKN*1000        128.2090 P2p *ROOT_Inc

 

9500-01#

Related image, diagram or screenshot

9500-01#show spanning-tree

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 8192

        Address b0c5.3c60.fba0

        This bridge is the root

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

  Bridge ID Priority 8192 (priority 8192 sys-id-ext 0)

  Address b0c5.3c60.fba0

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface     Role Sts Cost     Prio.Nbr Type

---------------------------------------------

9500-01#sh spanning-tree

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 8192

           Address b0c5.3c60.fba0

           This bridge is the root

           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 

  Bridge ID Priority 8192 (priority 8192 sys-id-ext 0)

           Address b0c5.3c60.fba0

           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface       Role StsCost       Prio.Nbr Type

-----------------------------------------------------

Twe1/0/1      Desg FWD 2000        128.193 P2p

Twe1/0/2      Desg FWD 2000        128.194 P2p

Twe1/0/10     Desg FWD 2000        128.202 P2p

Twe1/0/22     Desg BKN*2000        128.214 P2p *ROOT_Inc

Twe2/0/1      Back BLK 2000        128.385 P2p

Twe2/0/2      Back BLK 2000        128.386 P2p

Twe2/0/10     Back BLK 2000        128.394 P2p

Po1           Desg BKN*10000       128.2089 P2p *ROOT_Inc

Po2           Desg BKN*1000        128.2090 P2p *ROOT_Inc

 

9500-01#

9500-01#show spanning-tree interface Po1 detail

Port 2089 (Port-channel1) of MST0 is broken (Root Inconsistent)

Port path cost 10000, Port priority 128, Port Identifier 128.2089.

Designated root has priority 8192, address b0c5.3c60.fba0

Designated bridge has priority 8192, address b0c5.3c60.fba0

Designated port id is 128.2089, designated path cost 0

Timers: message age 5, forward delay 0, hold 0

Number of transitions to forwarding state: 1

Link type is point-to-point by default, Internal

PVST Simulation is enabled by default

Root guard is enabled on the port

BPDU: sent 15929, received 1230

 

9500-01#show spanning-tree interface Po2 detail

Port 2090 (Port-channel2) of MST0 is broken (Root Inconsistent)

Port path cost 1000, Port priority 128, Port Identifier 128.2090.

Designated root has priority 8192, address b0c5.3c60.fba0

Designated bridge has priority 8192, address b0c5.3c60.fba0

Designated port id is 128.2090, designated path cost 0

Timers: message age 5, forward delay 0, hold 0

Number of transitions to forwarding state: 1

Link type is point-to-point by default, Internal

PVST Simulation is enabled by default

Root guard is enabled on the port

BPDU: sent 15849, received 1330

9500-01#

C9500 Core Stack is still the Root Bridge (i.e. The root Bridge placement has been enforced).

Downlinks to C9300 and MS390 stacks are in STP Root Inconsistent State which caused all access switches to go offline on Dashboard.

Note: Please note that this caused client disruption, and no traffic was passing since the C9500 Core Stack put all downlink ports into Root inconsistent state.

To recover access switches, you will need to change the STP priority on the C9500 Core stack to 0 which ensures that your core stack becomes the root of the CIST. Alternatively, you can configure STP root Guard on the MS390 ports facing the C9300 and thus the MS390s will come back online.

The reason why all access switches went online on dashboard is that the C9300 was the root for the access layer (priority 4096) and thus the MS390s were passing traffic to Dashboard via the C9300s. Configuring STP Root Guard on the ports facing C9300 recovered the MS390s and client connectivity.

On the other hand, changing the STP priority on the C9500 core stack pulled back the Root to the core layer and recovered all switches on the access layer.

Tech Tip: It is considered best practices to avoid assigning STP priority on your network to 0 on any device which gives you room for adding devices in the future and for maintenance purposes. In this instance, configuring STP priority 0 allowed us to recover the network which wouldn't have been possible if priority 0 was configured already on the network. Having said that, please remember to revert the STP priority on your C9500 Core Stack after recovering the network. (Default value 4096)

9500-01(config)#spanning-tree mst 0 priority 0

9500-01(config)#

9500-01(config)#end

9500-01#show spanning-tree

MST0

  Spanning tree enabled protocol mstp

  Root ID Priority 0

        Address b0c5.3c60.fba0

        This bridge is the root

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

  Bridge ID Priority 0 (priority 0 sys-id-ext 0)

        Address b0c5.3c60.fba0

        Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface    Role Sts Cost      Prio.Nbr Type

---------------------------------------------

Twe1/0/1    Desg FWD 2000       128.193 P2p

Twe1/0/2    Desg FWD 2000       128.194 P2p

Twe1/0/10   Desg FWD 2000       128.202 P2p

Twe1/0/22   Desg FWD 2000       128.214 P2p

Twe2/0/1    Back BLK 2000       128.385 P2p

Twe2/0/2    Back BLK 2000       128.386 P2p

Twe2/0/10   Back BLK 2000       128.394 P2p

Po1         Desg FWD 10000       128.2089 P2p

Po2         Desg FWD 1000       128.2090 P2p

9500-01#ping 10.0.200.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.200.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 2/2/3 ms

9500-01#ping 10.0.100.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.100.3, timeout is 2 seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 2/2/3 ms

9500-01#

 

Reverting all configurations back to its original state:

1.     Disconnect and shutdown interface TwentyFiveGigE1/0/22

2.     Disconnect port 11 on MS390-01 and C9300-01 and remove Loop Guard and UDLD

3.     Disconnect port 12 on MS390-02 and C9300-02

4.     Disconnect and revert port TwentyFiveGigE1/0/10 and TwentyFiveGigE20/10 back to access with VLAN 1 and shutdown

5.     Change MST priority on C9300 stack to 61440

6.     Change MST priority on C9500 Core Stack to 4096

High Availability and Failover

Here's the steady-state physical architecture for reference:

A screenshot of a computerDescription automatically generated

MX WAN Edge Failover

A screenshot of a computerDescription automatically generated

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Client traffic was not disrupted during failover event for both Wireless and Wired clients.

 

A screenshot of a computerDescription automatically generated

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Client traffic disrupted for about 1-3 secs

C9500 Core Stack Loss of Uplink

A screenshot of a computerDescription automatically generated

For the purpose of this test, ports TwentyFiveGigE1/0/1 and TwentyFiveGigE1/0/2 will be disconnected.

9500-01#show ip interface brief

TwentyFiveGigE1/0/1    unassigned    YES unset down    down

TwentyFiveGigE1/0/2    unassigned    YES unset down    down

TwentyFiveGigE2/0/1    unassigned    YES unset up      up

TwentyFiveGigE2/0/2    unassigned    YES unset up      up

9500-01#show switch

Switch/Stack Mac Address : b0c5.3c60.fba0 - Local Mac Address

Mac persistency wait time: Indefinite

H/W Current

----------------------------------------------------------

Switch#    Role     Mac Address     Priority Version State

*1        Active    b0c5.3c60.fba0    5       V02    Ready

2        Standby    40b5.c111.01e0    1       V02    Ready

9500-01#

 

Note: Wireless client traffic flow disrupted for about 30 secs

Related image, diagram or screenshot

C9300 Stack Loss of Uplink

A screenshot of a computerDescription automatically generated

For the purpose of this test, NM Port 1 on C9300-01 (Master switch) will be disconnected.

Related image, diagram or screenshot

Note: Wireless client traffic flow disrupted for about 1 sec

MS390 Stack Loss of Uplink

A screenshot of a computerDescription automatically generated

For the purpose of this test, port 1 on MS390-01 (Master switch) will be disconnected.

Related image, diagram or screenshot

Note: Wireless client traffic flow disrupted for about 2 secs

Related image, diagram or screenshot

Note: Wireless client traffic on Campus LAN disrupted for about 1 sec

QoS

For the purpose of this test, packet capture will be taken between two clients running a Webex session. Packet capture will be taken on the Edge (i.e. MR wireless and wired interfaces) then on the Access (i.e. the MS390 or C9300 uplink port) then on the MX WAN Downlink and finally on the MX WAN Uplink. The table below shows the testing components and the expected QoS behavior:

Client

Application

Access Point (Wired) Expected QoS

Access Switch Uplink Port Expected QoS

MX Appliance Uplink Port Expected QoS

Client #1 (10.0.20.2)

iPhone 11 (cc:66:0a:3e:44:69)

Webex (UDP 9000)

AP3_Zone2 / AF41 / DSCP 34

C9300-02 (Port 25) / AF41 / DSCP 34

AF41 / DSCP 34

iTunes

AP3_Zone2 / AF21 / DSCP 18

C9300-02 (Port 25) / AF21 / DSCP 18

AF21 / DSCP 18

Client #2 (10.0.20.3)

MacBook Pro (3c:22:fb:30:da:69)

Webex (UDP 9000)

AP2_Zone1 / AF41 / DSCP 34

MS390-01 (Port 1) / AF41 / DSCP 34

AF41 / DSCP 34

Dropbox

AP2_Zone1 / AF0 / DSCP 0

MS390-01 (Port 1) / AF0 / DSCP 0

AF0 / DSCP 0

Access Point Wired Port pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

Access Point Wired Port pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

Access Switch Uplink pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

MX appliance Downlink pcaps

Client #1

Related image, diagram or screenshot

Related image, diagram or screenshot

Client #2

Related image, diagram or screenshot

Related image, diagram or screenshot

Layer 3 Roaming with concentrator

The previous design which extends the Layer 3 domain to the Access Layer offered several benefits but one of the drawbacks was that VLANs cannot span between different stacks and therefore roaming is restricted within a single zone/closet. As such, to enable Layer 3 roaming in this Campus network the SSID needs to be tunneled to a Meraki MX operating as a concentrator. Please see the below diagram for the logical architecture of this design option:

A computer screen shot of a computerDescription automatically generated

The design will not change any of the elements previously configured except that the Acme Corp SSID will be configured in Layer 3 Roaming with Concentrator mode which requires having a Meraki MX Appliance configured as a concentrator. Subsequently, VLANs 11 and 12 will not be required anymore and the SVI for the new Corp VLAN will move to the WAN Edge MX. The WAN Edge MX in this case needs to provide DHCP services to roaming clients.

Tech Tip: Please note that the MX concentrator in the above diagram was plugged directly into the MX WAN Edge appliance on port 3. Alternatively, this could have been plugged on the C9500 Core Stack which could be also beneficial should you wish to use warm-spare concentrators. In this case, please make sure that the switchports where these concentrator(s) are plugged on the C9500 Core Stack are configured as trunk ports and that the Roaming VLAN is allowed. For more information on MX concentrator sizing, please refer to this article.

Tech Tip: Please note that though it is possible to use an MX appliance in routed mode to concentrate the SSID, it will not be possible in the case of this design. The reason is that the AutoVPN tunnel will fail to establish as it terminates on the MX uplink interface (on the WAN side, not the LAN side).

Special considerations for this design option:

      APs will create a Layer 2 AutoVPN tunnel to the MX Concentrator using their management IP address

      Radius requests from the Acme Corp SSID will have the NAS ID referring to the AP's management IP address where the client is attached however the device IP in the request will refer to the uplink IP address of the MX concentrator (e.g. 10.0.3.4 in this case)

      The Radius server (in our case Cisco ISE) will require an IP route to the MX concentrator's uplink IP address (e.g. 10.0.3.4)

      The Radius server will also need to be configured with the concentrator as a network device since the Radius requests will have its IP address as the device IP address (Otherwise testing 802.1x auth failed)

      If the Radius server is reachable from the Campus via VPN tunnel (e.g. AutoVPN) then the Concentrator's uplink IP address/network will need to be advertised via the VPN as well

The following steps will outline the configuration changes to enable Layer 3 Roaming in this Campus LAN:

1.     Please ensure that you have an additional MX appliance in your dashboard and the appropriate license(s) claimed

2.     Add the appliance(s) to a new network (e.g. Roaming)

3.     Navigate to your Roaming network

4.     Navigate to Security and SD-WAN > Configure > Addressing and VLANs

5.     Select Passthrough or VPN Concentrator and click Save at the bottom of the page

Related image, diagram or screenshot

6.     Navigate to your Campus Network

7.     Navigate to Security and SD-WAN > Addressing and VLANs and create a new VLAN for the Roaming SSID (e.g. VLAN 10)

Related image, diagram or screenshot

8.     Navigate further down the page to the Per-port VLAN settings and configure the port connecting the MX Concentrator (e.g. Port 3 in this design) with a Native VLAN (e.g. VLAN 3) and allow both the native VLAN and the Roaming SSI VLAN that you have just created in the above step

Related image, diagram or screenshot

9.     Click Save at the bottom of the page

10.  Plug your MX Concentrator and connect it to the designated port (Port #3) on the WAN Edge MX. Please note that the MX concentrator needs to be connected ONLY via a single uplink (No other uplinks or LAN ports)

11.  Once the MX Concentrator comes online on dashboard you can proceed to the next step (Waiting for the concentrator to come online will allow you to test the tunnel connectivity from the APs to the Concentrator)

Related image, diagram or screenshot

12.  Navigate to Wireless > Configure > Access control and from the top drop-down menu select the Acme Corp SSID

13.  Navigate further down the page and under the Client IP assignment menu, select the Layer 3 with Concentrator option then choose VLAN 10 as the terminating VLAN for this SSID. Click Save at the bottom of the page.

Related image, diagram or screenshot

Related image, diagram or screenshot

14.  To test the Tunnel connectivity, click on Test Connectivity

Related image, diagram or screenshot

      The test above will check the IP connectivity between the APs with the Acme Corp SSID (AP's uplink IP address) and the MX concentrator (MX's uplink IP address) and return back how many APs passed the test (valid IP route) and how many failed (due to IP routing issues)

15.  Navigate to Security and SD-WAN > Configure > Site-to-site VPN and enable the upstream network of the MX Concentrator in AutoVPN (e.g. VLAN 3 in our case)

Related image, diagram or screenshot

      As explained earlier, this step is essential for the Cisco ISE server to accept Access-Requests from the MX concentrator

16.  After you have configured the appropriate routing on the Radius server side to allow it to communicate with VLAN 3, you can proceed with testing IP connectivity between the MX concentrator and the Radius Server

Related image, diagram or screenshot

      Please note that you won't be able to ping unless the Upstream network of the MX Concentrator has been enabled in AutoVPN and that the Radius Server has an IP route back to the Campus LAN. Please check the following example for this implementation of Cisco ISE in AWS where a route has been added on the VPC where the ISE server resides

Related image, diagram or screenshot

17.  After you have added the MX concentrator on your Radius server as a network device, you can test using a client attached to the Acme Corp SSID

Related image, diagram or screenshot

Testing and Verification:

The following client was used for testing and verification:

Device

Mac address

IP address

iPhone

12:34:5c:8c:16:04

10.0.10.2

Device Connectivity

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: As seen above, the Client successfully associated with the Acme Corp SSID and acquired an IP address in VLAN 10 (10.0.10.2)

 

Radius Authentication

Related image, diagram or screenshot

Related image, diagram or screenshot

Tech Tip: As seen above from the Cisco ISE live logs, 802.1x authentication was successful and the client was permitted on the network. Please note the Device IP Address field which shows 10.0.3.4 (MX Concentrator uplink IP address in this case)

Layer 3 Wireless Roaming

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Related image, diagram or screenshot

Note: Roaming back and forth between APs caused a brief packet loss of one packet

 

Learn more