

© 2024 Cisco and/or its affiliates. All rights reserved. Page 1 of 22

Data Center Automation with
Infrastructure as Code

White paper

Cisco public

-

© 2024 Cisco and/or its affiliates. All rights reserved. Page 2 of 22
-

Contents

Executive summary 3

Introduction 4

Understanding the data center ecosystem 5

Approaches to automation 6

Infrastructure as code and DevOps 7

DevOps and CI/CD 11

People and process challenges when adopting automation 13

Conclusion 18

Summary 20

Authors 21

Reviewers 21

© 2024 Cisco and/or its affiliates. All rights reserved. Page 3 of 22
-

Overcoming the human and technical challenges to achieve an effective automation

implementation

Executive summary

Today, automation is becoming a must to cope with the demands of rapid changes and updates to data center

elements such as network, storage, compute, security, and more. This comes with various challenges that

relate to technology and people and processes.

One of the most complex infrastructure domains to automate is the data center, as automation of the entire IT

infrastructure includes approvals, requests, and other IT Infrastructure Library (ITIL®) related processes. It spans

across multiple silos such as networking, compute and virtualization, cloud, security, etc. Automating these

components requires a comprehensive understanding of their interdependencies and the ability to orchestrate

and manage them effectively. In addition, many companies have these technology domains as separate

organizations, each with its own management team, and sometimes they may even have different high-level

goals and objectives. The network team will, of course, have different objectives than the compute team at a

direct level, but the two teams’ “north star” ideally should be the same. It may also involve discussions such as

moving from the User Interface and Command-Line Interface (UI/CLI) to DevOps, but other aspects, such as

platform engineering, could benefit from this white paper as well.

This white paper dives not only into the technical challenges but also into practical experiences and lessons

learned from automation projects with multiple customers. It will go into the organizational challenges, such as

siloed organizations and personnel not being comfortable with automation and digitization within the company.

Very commonly automation also must navigate security considerations, which can be complex and challenging

to satisfy.

We will address how these challenges can be overcome, as well as describe different ways that the automation

can be approached, depending on where the company is on its automation journey.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 4 of 22
-

Introduction

Data centers are complex environments made up of multiple technologies, often under the responsibility of

different teams, which can very quickly lead to silos within an organization. Adding to the structural and internal

complexity are software and firmware versions, change frequencies, and the use of multiple vendors. The data

center can also suffer from organic growth as part of expansions and acquisitions, or just technology refresh

cycles. The scale itself, and the number of changes to be made, are strong drivers for introducing automation to

help process all the changes required to run the business, but other drivers involve changes at scale, agility,

reliability, configuration consistency, reduction of human errors, maintenance of a history log of network

changes—and the list continues.

The value of automation can be broken into the following measurable categories.

Figure 1.

Infrastructure as code value

Cost reduction is related not only to the financial cost of operating and managing the data center but also to the

cost in terms of personnel and efforts required. Automating tasks previously performed manually enables

people to refocus their efforts on other tasks that bring value to the company.

Speed improvements with the use of automation relate not only to faster configuration of the infrastructure, but

also to the ability to provide visibility and predict how long a given task will take. Such visibility and predictability

help other teams within the company to work more efficiently.

Risk relates to the removal of human errors such as misconfigurations, etc. This in turn decreases the risk of

outages and increases the reliability of the infrastructure. These outcomes can help companies move toward a

culture of DevOps and further enhance and expand the role of automation.

Often automation is thought of in the context of configuring things, but it is equally important to consider

automation when deprovisioning things. Automation can help to implement full lifecycle management of the

infrastructure configuration to avoid situations where a configuration is left behind due to questions like “What’s

that do?” that are answered with “We’re not sure, but we’re afraid to remove it because it may break

something.”

Similarly, another key benefit of automation is the ability to perform a rollback in the event of an unsuccessful

change, as the automation system will be able to clean up the bad configuration faster than any engineer is able

to—especially in the case of a complex change involving multiple devices.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 5 of 22
-

There are also some challenges that could be highlighted, such as:

● The need to educate/upskill the staff

● The cost to maintain and update the automation framework, such as scripts, tools, etc.

● The time required to implement new automation tasks

However, in our experience, these challenges do not outweigh the benefits of automation.

Understanding the data center ecosystem

Introducing automation into a data center can be challenging, as there are many factors that can slow down the

adoption. To better evaluate the problem of introducing automation, we introduce the following model, to

provide an understanding of the various parts of a data center.

Figure 2.

Data center model

This figure identifies how the various areas of a data center interlock. The data center consists of the following

areas, (top to bottom):

● Governance

● Security

● Applications and platforms

● Automation

● Converged infrastructure (compute, storage, network)

© 2024 Cisco and/or its affiliates. All rights reserved. Page 6 of 22
-

Using this model when automating a solution will help you understand how everything interacts and must work

in unison to make the solution successful. The following example illustrates this with the use case of a simplified

way of deploying a Kubernetes cluster using automation:

● Governance to approve the process

● Allocate a network/subnet

● Allocate compute resources

● Allocate persistent storage

● Deploy a Kubernetes controller and worker nodes

● Create a Kubernetes cluster

● Update security rules to allow communication to and from the cluster

It is not uncommon for a use case to involve multiple departments, highlighting technical and nontechnical

challenges as previously stated.

For automation to be successful, it must effectively bridge organizational silos and seamlessly integrate

technology across different domains. First, we will explore the technical side, with DevOps and Continuous

Integration/Continuous Delivery (CI/CD) and explain why this approach is becoming the most common for

automation, one reason being that CI/CD pipelines enable shorter time to market for new features, creating

quicker results and thus lowering the strain on development. Later in this white paper will we elaborate on the

organizational challenges and constraints associated with the execution of automation projects.

Approaches to automation

One of the initial drivers that causes organizations to look at automation is the ability to reduce the time it takes

to complete a given task. While there are multiple ways to automate a configuration task, not all of them

necessarily give the same return when it comes to time savings.

The following illustration shows different approaches to operate a network and the time it takes to execute a

given task across a large number of devices.

Figure 3.

Approaches to infrastructure automation

© 2024 Cisco and/or its affiliates. All rights reserved. Page 7 of 22
-

A common starting point for automation is to create standalone scripts that automate the execution of a given

task by automating the interaction needed toward each network element. While this gives an immediate

increase in speed for that task, it may not give the rest of the organization much improvement in speed, as such

scripts are not often shared throughout the organization. Knowledge about how such scripts work is also

typically confined to the author who created them and tends to lack documentation. This results in tribal

knowledge and introduces risk if the author leaves the company, as the scripts are often stored by the author

without proper controls or repositories.

An alternative approach to automation is the introduction of a controller-based architecture. In such

architectures, the controller is responsible for translating the intended configuration provided by the engineer to

a device-level configuration for each of the devices it manages. The controller in this context can be anything

from an integral part of the infrastructure architecture, such as the Cisco® Application Policy Infrastructure

Controller (APIC) [1], Cisco Intersight® [2], Nutanix Prism [3], or Red Hat Ansible Automation Platform [4] to an

automation solution developed in-house that automates the infrastructure in question.

Even when the infrastructure architecture has a centralized controller, it often makes sense to build an

automation solution using the controller API to eliminate manual configuration through the controller’s user

interface. Such a solution can provide an abstraction that simplifies the work required to specify the intended

configuration.

It is, however, unlikely that you will find a single controller that spans the breadth of all technologies in the data

center. Instead, it is often better to ensure that all technology domains follow the same principles, often referred

to as a design pattern. This gives each technology domain enough flexibility to implement the optimal solution

for its needs while ensuring some level of consistency in terms of a way of working for engineers across

technology domains.

Infrastructure as code and DevOps

As described in the previous section, one can have multiple approaches and design patterns to choose from

when it comes to data center automation. Infrastructure as code (IaC) is one of these approaches. It is centered

around managing the infrastructure configuration through machine-readable definition files rather than directly

through interactive configuration tools like a CLI, GUI, etc. provided by the underlying hardware and software

solutions.

IaC is applicable in the scenario where the infrastructure devices are configured directly, as well as when the

infrastructure itself provides a controller that acts as single point of entry for configuration tasks.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 8 of 22
-

Operate configuration as code

A key concept with IaC is the use of machine-readable definition files used to store the configuration. While

multiple file formats exist for such definition files (JSON, XML, YAML, etc.), it is important that these are also

human readable.

The YAML definition file shown in Figure 4 is defining the Kubernetes cluster, which describes not only the

cluster itself but also the characteristics of the virtual machines on which it runs.

Figure 4.

Sample YAML code for IaC

© 2024 Cisco and/or its affiliates. All rights reserved. Page 9 of 22
-

As illustrated in the figure, YAML is human readable and therefore easy to read and update. This is one of the

reasons why YAML is used in many IaC implementations.

Describing the desired infrastructure configuration in human and machine-readable definition files is, however,

only one piece of the puzzle in an IaC implementation. It is also necessary to define and implement the engine

that will consume these definitions and translate them into device-level configurations that can be pushed to

the infrastructure.

Figure 5.

IaC automation engine

The automation engine is responsible for the following tasks:

● Ensuring that the automation inputs are valid, from both a syntax and semantics point of view, with the

goals of catching errors prior to pushing the configuration to the network. This is often referred to as

pre-change validation, which may, depending on the implementation, be leveraging the target’s API.

● Translating the desired configuration into device-level configurations that can be pushed to the

infrastructure.

● Verifying that the desired configuration has been successfully applied to the infrastructure without error.

This is often referred to as post-change validation, which will be leveraging the target’s API.

When it comes to the implementation of the automation engine, there are several fundamentally different

approaches that can be chosen:

● Imperative/procedural vs. declarative

● Stateful vs. stateless

© 2024 Cisco and/or its affiliates. All rights reserved. Page 10 of 22
-

The imperative/procedural approach specifies the sequence of steps required to achieve a certain outcome—

i.e., do task A, do task B, verify task C, and do task D, in that exact order. Such an approach is not ideal for

configuration tasks, as the described procedure often assumes a given state of the infrastructure when starting

the workflow. As an example, how would the workflow detect that task A has already been completed and

therefore can be skipped—especially if the operation in task A is not idempotent, meaning that if it is run again

for the same target it will not create the same results. The imperative/procedural approach to automation is

often required for use cases like software upgrades, as these typically need a specific sequence of tasks to be

executed in a predetermined sequence of steps and validations.

The declarative approach to automation instead focuses on describing the desired state for the infrastructure

and leaves it up to the automation system to derive the changes and sequence of actions that need to occur in

order for the infrastructure to have the desired state. A declarative implementation is ideally suited for managing

infrastructure configuration.

With a stateless approach to automation, the automation solution does not have any knowledge about what it

has done previously. Good candidates for automation tasks using a stateless approach are software upgrades,

etc., where only an indication of success or failure after the execution is needed.

A stateful approach to automation, on the other hand, stores the state of the infrastructure between execution

runs, allowing for detection of configuration changes performed outside of the automation framework—also

known as configuration drift. Stateful implementations of automation are typically seen when the automation

solution is used to manage the configuration of the infrastructure.

For the implementation of the automation system, multiple tools and solutions are typically used. Popular

choices for the configuration management elements include:

● RedHat Ansible

● HashiCorp Terraform

Ansible [5] is an automation tool from RedHat that simplifies the management and configuration of a wide range

of systems. it uses YAML to define the order in which the tasks should be executed on the target devices to

achieve the desired configuration. Ansible does not require any agents to be installed on the target systems. It

is based on an imperative/procedural approach to automation in the sense that you define a sequence of tasks

that are executed in the specified sequence, but it is possible to achieve declarative behavior with Ansible. This

does, however, required special care and considerations when writing the Ansible Playbooks and comes with

some additional complexity—especially if state is required between executions to achieve the declarative

behavior, as Ansible is stateless by nature.

Terraform [6] is an infrastructure automation tool from HashiCorp that enables a wide range of infrastructure

resources to be configured based on a declarative intent definition. This definition is specified using a human-

readable format called HashiCorp Configuration Language (HCL). Once the desired state is specified, Terraform

will automatically determine the configuration additions, updates, and removals required in the infrastructure to

ensure that it matches the defined intent. Terraform keeps state between executions, and this state information

is used when determining the actions required to achieve the defined intent.

Ansible and Terraform each have their strengths and weaknesses, which means there often is not one tool that

fits all automation use cases. Ansible is often used to implement use cases like software upgrades of network

devices or to manage the lifecycle of software packages on server workloads, while Terraform is used to

manage the lifecycle of infrastructure configurations like networks/VLANs, deployment of VMs, etc.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 11 of 22
-

DevOps and CI/CD

IaC provides the technical implementation of the automation solution using machine-readable definition files.

This ability to treat configuration as code enables organizations to evolve the way they are working using

DevOps principles.

DevOps introduces a paradigm shift from infrequent large changes to frequent small changes that allow for

real-time course corrections based on business and customer feedback.

Figure 6.

DevOps model

Another key element in the DevOps paradigm shift is the use of practices known from the software

development world for infrastructure management. With this, we mean the adoption of version control,

automated testing to ensure the success of a planned change both before and after the change, as well as

automatic deployment of the change using automation.

Standardization plays a vital role in the effectiveness of automation. Complex customizations are not feasible in

automated tasks. An obstacle often encountered in automation projects is the extensive range of customization

options provided for each IT service offering. Standardizing the service offerings into a limited number of flavors

significantly increases the probability of successful automation.

A concrete example is to provision a virtual machine. If we were to list all the possible customization options,

the list would be endless and impossible to realize into code. Instead, we could agree on a set of configuration

flavors such as the ones listed in Table 1.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 12 of 22
-

Table 1. Sample sizes for virtual machines

Size Memory vCPUs Storage

XL 128 GB 20 20 TB

L 64 GB 16 10 TB

M 32 GB 16 1 TB

S 16 GB 8 10 GB

XS 8 GB 4 2 GB

If we were to map all existing workloads into these five configuration flavors, automation would be much easier,

without the need for custom approaches.

Source version control system

When operating an environment that is defined by IaC, a source version control system is a must. The de facto

standard for source version control in today's world is Git [7]. Git is an open-source tool for version control that

operates in a distributed manner, where the change history is stored both in the central repository and on the

local copy of the repository on each engineer's workstation.

When it comes to implementing Git, there are multiple options, such as GitHub, GitLab, Bitbucket, etc. In an IaC

implementation, Git is often used to store the source of truth for the intended configuration. This configuration is

then what is pushed to the infrastructure using tools like Ansible or Terraform.

Continuous Integration/Continuous Delivery (CI/CD)

In the context of IaC and DevOps, CI/CD can be used as the process orchestrator that connects the different

elements together using one or more pipelines. Several pipeline tools are available; some commonly used ones

include Jenkins, GitHub Actions, and GitLab CI.

In an infrastructure automation solution, the pipeline is responsible for executing the different automation tasks

in the correct sequence. The following figure shows an example of a network infrastructure pipeline. The

example pipeline is taken from the Nexus as Code [8] solution available on Cisco DevNet.

Figure 7.

Network infrastructure CI/CD pipeline example

If this had been a sample pipeline for other data center technologies such as virtual machine deployment,

firewall configuration, storage provisioning, etc. it would look very similar.

The validate stage ensures that the desired state is defined using the correct syntax and, where possible, also

validates the semantics of the defined state. In other words, this stage aims at catching errors prior to deploying

the configuration to the production network.

The plan stage determines the actions (add, modify, delete) that are required in the infrastructure to match the

desired state. The output of this stage can be used as input into the change management process required to

approve the configuration change (if applicable).

© 2024 Cisco and/or its affiliates. All rights reserved. Page 13 of 22
-

The deploy stage modifies the configuration of the infrastructure to ensure that it matches the desired state.

Depending on the nature of the change and the maturity of automation within the organization, this stage may

be executed after an automatic change approval, or it may be triggered manually after an approval of the

change.

The two test stages (test-idempotency and test-integration) are executed after the deploy stage to ensure that

the required changes have been successfully applied to the infrastructure. These stages are typically executed

using automated testing tools that inspect things like interface status, error messages, etc.

The final stage in an infrastructure pipeline is the notification stage, where the success or failure of the pipeline

is communicated. Such notification can be done in multiple ways, depending on the maturity and desire of the

organization, but commonly used methods include instant messaging, email, etc.

People and process challenges when adopting automation

Technical and human challenges

This section explores in more details the various types of organizational challenges that we have experienced.

The complexity of a data center

As described earlier, the data center is complex due to its wide range of technologies, platforms, and vendors.

In addition, it is an area with a high frequency of changes such as add/modify VM, add/modify ACL, attach

switch port to network segment, etc. This can pose constraints to automation initiatives, making it challenging

to ensure compatibility, standardize processes, and adapt to evolving technology.

The human factor

People in general do not feel comfortable embracing change. Change is often seen as scary, or there is a lack

of understanding of why it is needed. The resistance to change when introducing automation is a very key

factor to address to achieve success. One way to help motivate the adoption of automation is to address the

benefits, such as:

● Fewer human errors

● Consistency of deployments

● Easy rollback

● Risk reduction

● Automated testing and validation

● Self-documenting infrastructure

● Complete audit trail of deployments

© 2024 Cisco and/or its affiliates. All rights reserved. Page 14 of 22
-

Stopping the need to perform boring and repetitive tasks will free up time for more personal development, as

the automation is supporting the changes required, or configuration updates. The main driver contributing to

resistance to change is the fear of losing one’s job or being made obsolete by technology.

The other aspect of IaC in particular is that the whole configuration of devices is kept outside of the device itself

in a version control code repository. If you are or have been a developer, this would appear very normal, but a

traditional systems/network administrator may be uncomfortable with this approach. However, the repository

can be beneficial during an audit, where everything is verified; having the source of truth outside of the devices

will greatly support the audit process.

When IaC gets introduced, it is often done in an all-or-nothing approach, since also performing direct

configuration on a device would offset the configuration stored in the code repository and lead to configuration

drift. Moving the configuration outside of the actual device is by far the biggest change to accept and really

trust. However, it is important to make sure that it does not become an all-or-nothing approach. Try to begin by

adopting even small automation tasks that feed into the bigger automation strategy.

Organizational challenges

Little kingdoms

To better understand the organizational challenges mentioned previously, we first take a look at the classic

hierarchy.

Figure 8.

Classic organizational hierarchy

In the classic hierarchy, the business is separated from the infrastructure services. The infrastructure is then

separated into network, compute, and storage, thus making automation a challenge, since it touches multiple

areas. If we collapsed this into a more functional organization, it could work better, but it is only one solution of

many. Another possible way is to have clear design patterns during an automation implementation, so they can

merge ideas and toolsets, resulting in immediate synergies. It is also quite common for security to form its own

department, which creates another challenge on top of automation.

What if we took this organization, collapsed the infrastructure, and make a dotted line between the silos? It

would then turn into something like the following.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 15 of 22
-

Figure 9.

Updated organization

What could make this scenario more likely to succeed? Notice that we now have a single team responsible for

infrastructure services. This could be seen as IT as a service, with a common goal of having the best working

private/hybrid cloud. Automation is now easier to implement, as things are now seen as services provided to

the business manager. There could then be multiple application areas.

There are other types of siloed organizations that would also challenge automation. This scenario is aimed more

at people who are facing the change with fear, which automatically leads to pushback when something is

unknown or new. Here the key would be education, and helping people embrace the future by starting with

automation of small and noncomplex tasks. Also very important would be to drive smaller automation projects

to get some small successes that can later be used to scale up the model. This would also build confidence

with the team.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 16 of 22
-

IT as a service provider

Another scenario would be to organize based on complete service transparency. This would mean that the

service provided could almost be seen as an external company.

Figure 10.

IT as a service provider

One of the challenges here would be local cost vs. profit. Another important aspect to address in the absence

of shared management is ownership and budget allocation. When multiple organizations are involved,

determining who should invest in licenses and other resources can be a challenge, particularly in larger

enterprises. Resolving this issue is not always easy, but it can be facilitated by engaging an external consultant

or vendor who could provide support. By collaborating with the various organizations within the customer, a

consultant can foster an environment where there is an incentive to work together toward a unified approach,

rather than having separate independent solutions. This allows for a more strategic and cohesive approach to

be implemented across the entire organization.

To facilitate this process, it would be advantageous to implement a service catalog. A service catalog serves as

a framework that drives the automation of services and clearly outlines the available offerings. By having a well-

defined service catalog in place, organizations can proactively prevent issues such as shadow IT (the use of

technology or software within an organization without the knowledge, approval, or oversight of the IT

department). Additionally, to drive an automation initiative forward, it is beneficial to have a global goal that

encompasses IT. When there is a shared objective that includes IT, it becomes easier to implement changes,

even if they are taken in small steps. This approach allows for a gradual and systematic implementation of a

unified strategy across the organization. It would also show a measured way of success, whether services are

repeated or just one-offs.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 17 of 22
-

Squad-based organization

Another scenario we often encounter is the formation of functional squads, consisting of representatives from

various areas such as security, network, applications, and more. Squad teams offer several positive aspects

that can contribute to their success, including diverse experience, improved collaboration, and efficient

decision-making.

While this approach allows for cross-functional collaboration and expertise, the challenge lies in establishing a

common goal among the squads. However, with some strategic thinking and setting aside personal emotions,

this challenge can be effectively addressed.

Figure 11.

Squad-based organization

Another challenge associated with squad-based organizations is cost and priorities. If the development squad

wants to buy a license but the production squad may also need it, where should the cost go? There are, of

course, benefits to keeping the functional areas together, but it also creates these types of challenges.

One benefit of this model could be the competitive aspect between squads, which could lead to increased

innovation but can also create friction between them related to budget and resource allocation.

Private agendas

An important aspect to consider is the potential for individuals to focus on personal goals and establish their

own "kingdoms," rather than prioritizing the collective greater good. It is important to note that this behavior is

not always the fault of the employee, as it can stem from management not providing a clear vision and

motivation. However, by fostering a positive work environment, organizations can address these challenges.

Encouraging open communication, providing a clear direction, and promoting collaboration can inspire

employees to align their efforts toward the organization's success.

Job protection

People often perceive automation as a potential threat to their job security, which makes it a common concern

when considering whether to adopt automation. Of course, protecting oneself is a natural reaction. However,

based on our experience, individuals who embrace new technologies and adapt to new ways of working

actually enhance their personal value on the job market.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 18 of 22
-

Trust or lack thereof

Implementing automation can sometimes require a leap of faith. Many individuals may have experienced the

initial hesitation of running an automated process and then waiting anxiously for it to complete, meticulously

checking logs to ensure that it was successful. Even when running the automation repeatedly, there may still be

lingering doubt as to whether it will perform as expected. To establish confidence in automation, incorporating

testing is key. Integrating thorough testing into the automation workflow can ensure that the system promptly

identifies any issues or failures. This approach enables real-time feedback, notifying you if something didn't

work as intended.

Summary of organizations

Let us now compare the various types of organizations. The following table outlines some pros and cons of the

various styles we have discussed.

Table 2. Comparison of organizations

Type of organization Pros Cons

Little kingdoms ● Commonly used and understood ● Less visibility into strategy

● IT separated from the business

● Siloed organizations, even inside IT

IT as a service provider ● Transparency of IT cost for the provided
services

● Clear visibility into provided IT services

● Requires a clear definition of all the provided
IT services

● Higher risk of shadow IT due to the speed of
services, costs, and processes to request a
new service

Squad-based organization ● Each squad could be set up to be
competitive

● Faster changes

● Isolated knowledge

● Defined silos

● No cost sharing such as Enterprise
Agreements on licenses

Conclusion

There is no “magic bullet” to completely solve every challenge that arises, but we have tried to share our

experiences and give our view of what a successful automation implementation could look like. We base our

conclusion on the following three topics:

Structured approach

One of the most important things to learn from this white paper is the need for a structured approach to

automation, and this includes people and processes. When a process has structure, it is much easier to follow,

measure, and see the progress made. Seeing progress will help build trust in the organization. It is also vital for

the structure to be reviewed on a regular basis, since a long-term plan is valid only when it comes to the details

for the short term. This is mainly because everything is evolving, and we must adapt the plan accordingly.

One of the key things we have seen is that technology cannot be the only driver. Working with people and the

corresponding processes has to occur side by side.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 19 of 22
-

So do we have a golden recipe for making automation a success?

The recipe we have seen to be successful is a repeatable three-stage approach:

● Automate a task or IT service by starting with low-complexity, high-impact tasks before tackling more

complex tasks.

● Build on the benefit realized from the automated tasks or IT services to implement full automation of

additional tasks or IT services.

● Use the benefits (time saved and ease of deployment) to build trust in automation, both from a technical

perspective and a people and process perspective.

Figure 12.

Automation journey

As part of this journey, make sure to advertise the success of automation to make it “popular,” which then will

inspire others to adopt automation in their technical domain.

Automation naturally requires a clearly documented plan to be in place, but it must be revisited frequently and

adapted to the ongoing change, digitization of the organization, and changes to the way of working. If a plan is

created and defined to encompass 3 years, the plan should be revalidated at least every 6 months to provide

guidance (quarterly, semiannually, in alignment with the audit cycle but 2 months before the actual audit), and

then should be amended based on progress and any other developments . A company in general will always

continue to grow, so the goals that were set in the beginning may not be the same over time. In addition,

technology advances with tremendous speed.

Another good flipside of having a working automation framework could be the reporting function, which can

show how many times a device or system has been updated, changed, added, or deleted, thus enabling the

organization to track time spent, implementation costs, potential cost savings, and similar metrics.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 20 of 22
-

People and processes

In our experience, this is the most overlooked aspect to address to make automation successful. Technology

can solve a lot of problems, but we must consider the overall company as well. If we stop now and then,

rethink, and adapt, that is a good start. It is very important to reiterate the long-term goals and translate them

into short-term, tangible, actionable items. This allows the people and processes to grow with the technology,

so they don’t end up fighting it.

Quickly going back to the data center model, we feel it is important to keep dissolving those silos and to clearly

define common goals that everyone can not only benefit from but also see the reasons behind. It is very easy to

state that automation is a must, but very easy to forget the true complexity of the relationship between humans

and technology.

Lessons learned and experience

We have listed numerous challenges and issues, and recommendations for overcoming them. Here we will try

to structure this into an approach that we have seen working in practice based on years of experience with

implementing automation for our customers:

● Break through the organizational silos and define common Key Performance Indicators (KPIs).

● Provide training and information so people use the same terminology and have a full understanding of

both the technology and the automation goals.

● See information as something to be shared, and encourage information sharing on all levels: executives,

directors, managers, architects, engineers. Encourage more transparency between roles and positions.

● Understand the complexity and risks associated with “doing it ourselves” vs. purchasing off-the-shelf

products or solutions.

● Start small and grow, so the organization can evolve at the same pace as the software.

● All opinions and inputs count, but emotions must be put aside for critical decisions. Once a decision has

been reached, everyone must agree to follow that path.

Summary

We trust you have gained some new insights from this white paper, and that it is fostering some discussions. To

help you with these discussions, we’ve distilled a short list of things to consider. One of the biggest challenges

is the link between technologies, organizations, and human processes. When introducing a new technology,

organizations frequently forget to let the people adapt and evolve as well.

It does not have to be hard to implement automation for a data center; it just requires some thinking, planning,

and agreement. It also requires an open mind. The following list summarizes some key tasks:

● Define and validate why automation would help.

● Create common KPIs across organizations.

● Decide how to automate: Classic automation vs. infrastructure as code.

● Choose between home-grown vs. off-the-shelf solutions, as both should be considered.

● Train people and update organizational structure.

● Define a clear roadmap spanning 2 to 3 years, and review it constantly.

● Implement one use case to prove the framework.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 21 of 22
-

● Use sprint-based development to add new automation use cases.

● Provide ongoing training and documentation.

● Provide cross-organizational updates and sprint demos.

● Keep track of ongoing lessons learned.

There is no order to these points, but they are all important to reflect on and define.

In conclusion, here are the truths as we see them:

● There is no magic bullet.

● There is no single technical solution that fits all.

● Investment from the business is vital.

● Evolution and building trust take time, even in a modern age.

● Involve multiple areas of the business to ensure a higher chance of success.

● Promote standardization of IT services.

Authors

Peter Charpentier, Principal Architect, Cisco Customer Experience

Morten Skriver, Principal Architect, Cisco Customer Experience

Reviewers

Asier Arlegui Lacunza, Principal Architect, Cisco Customer Experience

Michael Tievenow, Senior Solution Architect, Cisco Customer Experience

Nicole Wajer, Technical Solutions Architect, Cisco Sales

Steve Shaw, Solutions Development Architect, Cisco Customer Experience

Greg Simmons, Customer Success Enablement Leader, Cisco Customer Experience

Hank Preston, Principal Engineer, Learning and Certifications

Roger Dickinson, WW Solutions Engineer, CISG

© 2024 Cisco and/or its affiliates. All rights reserved. Page 22 of 22
-

Citations and bibliography

[1] Cisco Application Centric Infrastructure (ACI)

[2] Cisco Intersight

[3] Nutanix Prism

[4] RedHat Ansible Automation Platform

[5] RedHat, Ansible

[6] HashiCorp, Terraform

[7] Git, Distributed Version Control System

[8] Cisco, Nexus as Code

Printed in USA C11-4490477-00 07/24

https://www.cisco.com/site/us/en/products/networking/cloud-networking/application-centric-infrastructure/index.html
https://intersight.com/
https://www.nutanix.com/products/prism.
https://www.redhat.com/en/technologies/management/ansible
https://www.ansible.com/
https://www.terraform.io/
https://git-scm.com/
https://developer.cisco.com/docs/nexus-as-code/

