

© 2023 Cisco and/or its affiliates. All rights reserved. Page 1 of 60

Performance Monitoring of a
5G Hybrid Cloud Network

A Technical Deep Dive

September 2023

White paper

Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved. Page 2 of 60

Contents

1 Network Monitoring Architecture 4

1.1 The Dish Networks Architecture: Overview 4

1.2 Streaming Strategy 4

1.3 Streaming Layers 5

2 Network Monitoring Workflow 8

2.1 Workflow Process 8

2.2 Software-Defined Networking – Controller 8

2.3 Matrix – Performance Monitoring with AI/ML 9

2.4 Kafka Message Bus 9

3 Key performance indicators 10

3.1 Identification of KPIs 10

3.2 YANG Capabilities 11

3.3 Defining telemetry sensors 14

3.5 Sensor Definition – Transport and Encoding 24

3.6 Sensor Definition – Sample Intervals 27

3.7 Defining GNMI Collection on Crosswork Network Controller 30

3.8 Reading GNMI Response on Kafka Bus 34

3.9 Defining Matrix Panels Based on Query Logic (SQL) 37

4 Monitoring KPIs on Matrix 38

4.1 System KPIs 38

4.2 Routing KPIs 39

4.3 Services KPIs 41

4.4 Hardware KPIs 44

4.5 Timing KPIs 46

4.6 Composite KPIs 48

5 Anomaly Detection – Closed Loop Automation 50

5.1 Threshold Defined in IOS XR Code 50

5.2 Manual Threshold Definition 52

5.3 AI/ML‒Based Threshold Definition 53

5.4 Exporting Anomaly Detection to Fault Management Application 56

5.5 Remediation Using Closed Loop Automation 57

© 2023 Cisco and/or its affiliates. All rights reserved. Page 3 of 60

6 Conclusion – What is the future of observability on a Hybrid Cloud? 58

Glossary 59

References 60

Author 60

Contributors 60

© 2023 Cisco and/or its affiliates. All rights reserved. Page 4 of 60

1 Network Monitoring Architecture

A networking monitoring solution is a proactive measure undertaken to anticipate potential network outages and

address them ahead of time. This type of solution helps to maintain a seamless, congestion-free, and efficient

network. A network monitoring solution reports the performance of a network, forecasts key performance

indicators, and helps you make architectural decisions to enhance the network in capacity and efficiency. To be

able to remotely visualize your network performance is not simply a wish anymore, it is a necessity.

1.1 The Dish Networks Architecture: Overview

Before we dig into the network monitoring strategy, let us briefly examine the architecture of Dish Networks.

The network deployment of different flavors of hardware and software is a combination of on-premises

(cell site, local and Provider Edge data centers) and Cloud (Breakout Edge, national and regional data centers)

architecture, or simplistically called a Hybrid Cloud Model. This makes monitoring the network a greater

challenge, wherein your strategy should seamlessly work for both on-premises and Cloud elements of the

network. Further details of the Cloud architecture that is an Amazon Web Services (AWS) deployment is

captured in this article.

1.2 Streaming Strategy

Telemetry (or Model-Driven Telemetry) is the recommended network monitoring strategy for Dish Networks. It

is fast, reliable, easy to use, and deterministic. The device (itself) can stream the data of interest in a structured

format for a collector/visualization engine to read and interpret. The format (or model) of data supported on a

Cisco® router (and XRv or Cisco’s Cloud router on AWS) are:

a) Open Config models

b) Internet Engineering Task Force (IETF) models

c) Native YANG models **

Cisco has recommended using the native Yet Another Next Generation (YANG) model

(operational/configuration) to stream the data of interest out of the router to a network monitoring engine,

based on the outstanding coverage and support we have with native YANG models compared to Open Config

and IETF models.

** All Cisco Internetwork Operating System (Cisco IOS XR data models can be found at this link.

Here is a snapshot of Cisco IOS XR data models on GitHub.

https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr/781

© 2023 Cisco and/or its affiliates. All rights reserved. Page 5 of 60

Figure 1.

IOS XR 7.8.1 Data Models

1.3 Streaming Layers

The data of interest that we want to stream out of our routers are divided into three layers:

a) Data model layer – The information (raw data) from the router’s database is mapped into a data model

(YANG definition) and is ready to be streamed out of a device using an assortment of transport

mechanism.

b) Producer layer – There is a cadence definition (or time interval) required to stream your YANG-based

data out of the router to a collector. If you don’t specify a cadence (time interval = 0), you are initializing

Event-Driven Telemetry. For MDT or Model-Driven Telemetry, we always specify a cadence based on

the importance (criticality) of the data being monitored.

c) Exporter Layer – There is an encoding and transport mechanism defined to export this data out of your

router to a centralized collector. The mechanism is defined based on several requirements like security,

sizing, and granularity of the information.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 6 of 60

Figure 2.

Telemetry Layers

All the three layers defined above are independent of each other; changing one won’t impact the other.

What transport and encoding mechanism is Dish Networks using for their network monitoring?

gNMI (Google Network Management Interface) is the transport mechanism (dial in) used along with gRPC as the

protocol (over HTTP/2) and JSON_IETF as the data format. This was defined by the OpenConfig forum (mostly

lead by Google, based on the Google Remote Procedure Call [RPC] framework), and the specification is

available here. There are other transport, protocol, and encoding mechanisms available as shown in Figure 3,

but gNMI is the approach incorporated at Dish Networks.

What is the advantage of using dial-in over the dial-out approach?

Once we had modeled our network on software-defined networking, it was an easy choice to go for the dial-in

approach (over dial-out). We wanted a single software-defined controller to manage configuration and

monitoring of the entire network. Instead of touching close to 20,000 network elements with configuration, we

would define it on the controller and implement the “pull” method to stream data from the network.

What is the advantage of using gNMI or OpenConfig RPC model over the Cisco IOS XR MDT RPC?

In a 5G Open Radio Access Network (oRAN), the ideal approach was to go for a vendor-neutral Model-Driven

Telemetry to be in line with the ideology of the customer. Cisco IOS XR supports the Google network

management interface framework in combination with the native YANG models supported on the routers. It

greatly simplifies telemetry configuration by having to start only the gRPC server on the router.

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

© 2023 Cisco and/or its affiliates. All rights reserved. Page 7 of 60

Figure 3.

Streaming Methodology - Dish Networks

Figure 4.

Dial IN with gRPC.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 8 of 60

2 Network Monitoring Workflow

2.1 Workflow Process

This section outlines the workflow process; every component of this workflow will be explained in subsequent

sections of this white paper.

● Define Key Performance Indicators and telemetry sensors for transport network.

● Enable sensors in the form of a collection job on Cisco Crosswork Network Controller

● Collection jobs will contain gNMI subscribe requests of all sensors toward the transport network.

● Crosswork Data Gateway (CDG), an application of Cisco Crosswork Network Controller (CNC), triggers

these Subscribe Requests (either per sensor or for all sensors) toward the transport network in the form

of collection jobs.

● The transport devices respond back with “raw data” (gNMI response to the CDG)

● The raw data is then published into the Cisco Software-Defined Networking (SDN) Kafka Message Bus

(to a specific topic)

● Matrix (Collector) pulls the raw data from Kafka via the topic.

● KPI and analytics logic are applied, and monitoring dashboards are created for end-user consumption.

● Processed KPIs and anomaly detection is pushed to Kafka for consumption of other applications

(like Vitria which is our fault management application)

2.2 Software-Defined Networking – Controller

The essential functions of Cisco’s Software-Defined Networking Controller that play a major role in the

performance monitoring function are:

1) CNC or Cisco Crosswork Network Controller – It is used to onboard transport elements with respect to

topology mapping and inventory management and facilitate data collection in the form of telemetry,

logs, and events.

2) CDG or Cisco Crosswork Data Gateway – It is a common collection platform for gathering network data

from transport devices that support multiple data collection protocols including MDT, Simple Network

Management Protocol (SNMP), Command-Line Interface (CLI), standards-based gNMI (dial-in), and

syslog.

3) Matrix is a Cisco Performance Monitoring platform that can compute the health score of network

elements, build KPI dashboards for network monitoring, detect threshold violation with the help of

anomaly detection, and even assist in event generation (essentially the anomaly detection), which is

sent to the fault management platform for further correlation (more details below).

4) Kafka Message Bus is an internal communication framework between the above applications. All data

from various devices and applications is published into the Kafka Message Bus for further consumption

and processing (more details below).

© 2023 Cisco and/or its affiliates. All rights reserved. Page 9 of 60

Figure 5.

SDN-C Components Workflow

2.3 Matrix – Performance Monitoring with AI/ML

Matrix is a multi-vendor analytics platform that performs anomaly detection, correlation, and forecasting based

on infrastructure and application insights and subsequently triggers action with orchestrator tools.

As far as end-to-end network intelligence goes, Matrix can correlate data and logs gathered from numerous

network elements and formulate easily consumable reports. Insights that we gain from such reports can be

applied to problem solving and operational efficiency of the customer network.

Matrix also has capacity planning capability with the help of forecasting and historical trends developed using

telemetry data streamed from network elements.

The tool provides advanced analytics including logic-based health scores and real-time performance view of

network applications, and physical and virtual network infrastructure.

2.4 Kafka Message Bus

The Kafka Message Bus, which is an open-source application from Apache Kafka, is a consumer of telemetry

data, alerts, metrics, and events from network elements including routers and monitoring tools. In a Message

Bus, we support separate topics and partitions for different categorization of data. One or more producers can

write, and one or more consumers can read from a Kafka Message Bus (specifically a topic) at the same time.

In the Figure 5, look at all the topics in the Message Bus and the corresponding consumers and producers of

that topic (note the arrows).

https://kafka.apache.org/

© 2023 Cisco and/or its affiliates. All rights reserved. Page 10 of 60

3 Key performance indicators

3.1 Identification of KPIs

It is critical that we identify the Key Performance Indicators that will help us monitor the performance of a

network. For the 5G Dish transport network, we have an assortment of network elements, both on physical

environment and virtual (cloud) infrastructure. The one size fits all type of KPI definition might not work in such

a diverse heterogenous network. There will be KPIs only applicable to cell site routers and not relevant to other

edge routers (physical/cloud). There will be KPIs applicable to all physical routers but not relevant to cloud

routers (like hardware KPIs). And then there will be KPIs applicable to all routers in the network.

The important KPIs (among many others) defined for dish networks are:

1) System

a. CPU Utilization

b. Network Processing Unit (NPU) Utilization

c. Memory Utilization

2) Routing

a. Intermediate System to Intermediate System (ISIS) Route Counts

b. Border Gateway Protocol (BGP) Route Counts

c. ISIS/BGP Neighbor States

3) Services

a. Interface Bandwidth Utilization

b. Generic Routing Encapsulation (GRE) Tunnel Bandwidth Utilization

c. Interface Ingress/Egress Throughput

d. GRE Tunnel Ingress/Egress Throughput

e. Quality of Service (QoS) Packets Transmitted/Drops

f. Interface State

g. Interface Errors

h. Path Latency

4) Hardware

a. Environment Temperature

b. Optics Health

c. Chassis Status

d. Media Storage Status

© 2023 Cisco and/or its affiliates. All rights reserved. Page 11 of 60

5) Timing

a. PTP Interface State

b. PTP Interface Status

c. SyncE Status

d. Grand Master (GM) Status

e. Global Navigation Satellite System (GNSS) Status

3.2 YANG Capabilities

Identifying a KPI is the first step of the streaming puzzle, the second step is figuring out how to stream that data

out of the device. To be able to stream a data we need a transport and a data modeling mechanism.

Figure 6.

gNMI (Transport) & YANG (Data Modeling)

Once you have identified the KPI, you need to verify if your device has a data model for the corresponding KPI.

Let us look at a few examples.

CPU

<router>#show processes cpu thread location 0/rp0/CPU0

Thu Feb 2 16:30:05.504 UTC

---- node0_RP0_CPU0 ----

CPU utilization for one minute: 6%; five minutes: 5%; fifteen minutes: 6%

<router>#yang-describe operational show processes cpu thread location 0/rp0/CPU0

Thu Feb 2 16:31:14.362 UTC

YANG Paths:

 Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

© 2023 Cisco and/or its affiliates. All rights reserved. Page 12 of 60

So, do we have the YANG capability (or the corresponding data model) to be able to stream this data out of the

device?

<router>show netconf-yang capabilities | inc wdsysmon-fd-ope

Thu Feb 2 16:32:57.226 UTC

http://cisco.com/ns/yang/Cisco-IOS-XR-wdsysmon-fd-oper |2019-07-05|

Looks like we do. Let us look at another data.

Memory

<router>#show memory summary

Thu Feb 2 16:34:08.880 UTC

node: node0_RP0_CPU0

--

 Physical Memory: 26292M total (26272M available)

 Application Memory : 26292M (26272M available)

 Image: 4M (bootram: 0M)

 Reserved: 0M, IOMem: 0M, flashfsys: 0M

 Total shared window: 969M

<router>#yang-describe operational show memory summary

Thu Feb 2 16:34:29.320 UTC

YANG Paths:

 Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/detail

<router>#show netconf-yang capabilities | inc nto-misc-oper

Thu Feb 2 16:35:16.422 UTC

http://cisco.com/ns/yang/Cisco-IOS-XR-nto-misc-oper |2022-01-25|

© 2023 Cisco and/or its affiliates. All rights reserved. Page 13 of 60

If you want to look at the structure and content of the operational data model, this is how you do it on the

device itself:

<router>#show yang operational nto-misc-oper:memory-summary JSON

Tue Jun 20 16:29:56.055 UTC

{

 "Cisco-IOS-XR-nto-misc-oper:memory-summary": {

 "nodes": {

 "node": [

 {

 "node-name": "0/RP0/CPU0",

 "summary": {

 "page-size": 4096,

 "ram-memory": "8061009920",

 "free-physical-memory": "2902458368",

 "system-ram-memory": "8061009920",

 "free-application-memory": "2902458368",

 "image-memory": "4194304",

 "boot-ram-size": "0",

 "reserved-memory": "0",

 "io-memory": "0",

 "flash-system": "0"

 },

 "detail": {

 "page-size": 4096,

 "ram-memory": "8061009920",

 "free-physical-memory": "2902458368",

 "private-physical-memory": "0",

 "system-ram-memory": "8061009920",

 "free-application-memory": "2902458368",

 "image-memory": "4194304",

 "boot-ram-size": "0",

 "reserved-memory": "0",

 "io-memory": "0",

 "flash-system": "0",

 "shared-window": [

 {

 "shared-window": "ptp",

 "window-size": "36904"

 },

 {

 "shared-window": "soasync-app-1",

© 2023 Cisco and/or its affiliates. All rights reserved. Page 14 of 60

 "window-size": "249168"

 },

…

…

…

…

// truncated from snippet //

…

…

…

],

 "total-shared-window": "536998660",

 "allocated-memory": "0",

 "program-text": "140721518205504",

 "program-data": "1",

 "program-stack": "0",

 "total-used": "5158551552"

 }

 }

]

 }

 }

}

3.3 Defining telemetry sensors

We have managed to take a sneak peek at two telemetry sensor definitions in the last section. So, how do we

arrive at a telemetry sensor from the KPI definition? Thankfully, with Cisco’s latest IOS XR releases, we have

that option available readily at our fingertips using the “yang-describe” command. You can now fetch the

YANG model (both operational and configuration) and the path for that specific command/CLI.

<router>#yang-describe ?

 configuration Describe configuration commands(cisco-support)

 operational Describe operational commands(cisco-support)

© 2023 Cisco and/or its affiliates. All rights reserved. Page 15 of 60

Here is an example of deriving Bidirectional Forwarding Detection (BFD) session sensor directly from the BFD

session “show” CLI command.

<router>#yang-describe operational show bfd session

Thu Feb 16 04:17:15.867 UTC

YANG Paths:

 Cisco-IOS-XR-ip-bfd-oper:bfd/session-briefs/session-brief

Here is another example of deriving a sensor directly from the “show” CLI command.

<router>#yang-describe operational show memory summary

Thu Feb 16 04:21:11.361 UTC

YANG Paths:

 Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/detail

A few more examples of arriving at the exact sensor path for the corresponding command that you are running

on the router.

<router>#yang-describe operational show interfaces HundredGigE 0/0/0/1

Tue Jun 20 16:41:18.805 UTC

YANG Paths:

 Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface

<router>#yang-describe operational show cef summary

Tue Jun 20 16:41:27.680 UTC

YANG Paths:

 Cisco-IOS-XR-fib-common-oper:fib/nodes/node/protocols/protocol/fib-summaries/fib-summary

© 2023 Cisco and/or its affiliates. All rights reserved. Page 16 of 60

Now, deriving all telemetry sensors may not be this straightforward. There are scenarios in which you will have

to pull data from the router by looking at a combination of data models; we call them augmented sensors. Here

is an example of an augmented sensor: if you explore the Cisco-IOS-XR-NCS-BDplatforms-npu-resources-

oper.yang data model, you will notice that to fetch specific data via this model, you will need to augment data

from another data model, which is Cisco-IOS-XR-platforms-ofa-oper.yang.

<server># pyang -f tree Cisco-IOS-XR-NCS-BDplatforms-npu-resources-oper.yang --tree-depth 4

module: Cisco-IOS-XR-NCS-BDplatforms-npu-resources-oper

 augment /a1:ofa/a1:stats/a1:nodes/a1:node:

 +--ro hw-resources-datas

 +--ro hw-resources-data* [resource]

 +--ro resource

 +--ro resource-id? uint32

 +--ro num-npus? uint32

 +--ro cmd-invalid? boolean

 +--ro asic-type? uint32

 +--ro asic-name? string

 +--ro npu-hwr* []

 +--ro npu-id? uint32

 +--ro red-oor-threshold-percent? uint32

 +--ro yellow-oor-threshold-percent? uint32

 +--ro num-bank? int32

 +--ro bank* []

 ...

<server># pyang -f tree Cisco-IOS-XR-platforms-ofa-oper.yang --tree-depth 5

module: Cisco-IOS-XR-platforms-ofa-oper

 +--ro ofa

 +--ro stats

 +--ro nodes

 +--ro node* [node-name]

 +--ro node-name xr:Node-id

© 2023 Cisco and/or its affiliates. All rights reserved. Page 17 of 60

After augmentation, the final sensor path to fetch hardware resources data for each NPU will look something

like this:

Cisco-IOS-XR-platforms-ofa-oper:ofa/stats/nodes/node/Cisco-IOS-XR-NCS-BDplatforms-npu-

resources-oper:hw-resources-datas/hw-resources-data/npu-hwr/bank

For older IOS XR releases where you don’t have support for the yang-describe command, we can look at the

schema and arrive at the corresponding sensor (with a bit of digging and experience with platform-specific

telemetry sensors).

<router>#schema-describe show processes cpu thread location 0/rp0/CPU0

Thu Feb 2 17:05:15.854 UTC

Action: get

Path: RootOper.SystemMonitoring.CPUUtilization({'NodeName': '0/RP0/CPU0'})

As mentioned in Section 1.1, we have all the YANG models available publicly for specific Cisco releases, so you

can look at it to arrive at a specific container/leaf of a YANG model.

<server># pyang -f tree Cisco-IOS-XR-wdsysmon-fd-oper.yang --tree-path system-

monitoring/cpu-utilization --tree-depth 3

module: Cisco-IOS-XR-wdsysmon-fd-oper

 +--ro system-monitoring

 +--ro cpu-utilization* [node-name]

 +--ro node-name xr:Node-id

 +--ro total-cpu-one-minute? uint32

 +--ro total-cpu-five-minute? uint32

 +--ro total-cpu-fifteen-minute? uint32

 +--ro process-cpu* []

 ...

From the above YANG tree display, if your KPI is “total-cpu-five-minute,” then the telemetry sensor will be:

Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization/total-cpu-five-minute

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr/781

© 2023 Cisco and/or its affiliates. All rights reserved. Page 18 of 60

If you want to define the sensor for a specific location or node name, you can substitute the variable and define

the telemetry sensor as below:

module: Cisco-IOS-XR-wdsysmon-fd-oper

 +--ro system-monitoring

 +--ro cpu-utilization* [node-name]

 +--ro node-name xr:Node-id

 +--ro total-cpu-one-minute? uint32

 +--ro total-cpu-five-minute? uint32

 +--ro total-cpu-fifteen-minute? uint32

 +--ro process-cpu* []

 ...

Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

[node-name=0/RP0/CPU0]/total-cpu-five-minute

You can also use regular expression instead of the variable name inside a sensor. Let us take an example of

interface statistics. If you want to fetch the statistics for all interfaces from the router, you can use this sensor:

Cisco-IOS-XR-drivers-media-eth-oper:ethernet-interface/statistics/statistic

If you want to fetch the statistics for a specific interface from the device, refer to the data model, pick the

variable-name, and use it to construct your sensor:

module: Cisco-IOS-XR-drivers-media-eth-oper

 +--ro ethernet-interface

 +--ro statistics

 +--ro statistic* [interface-name]

 +--ro interface-name xr:Interface-name

 +--ro received-total-bytes? uint64

 +--ro received-good-bytes? uint64

 +--ro received-total-frames? uint64

 +--ro received8021q-frames? uint64

Cisco-IOS-XR-drivers-media-eth-oper:ethernet-interface/statistics/statistic

[interface-name=HundredGigE0/0/0/26]

Now, if you want to fetch the statistics for all hundred gigabit interfaces, you can use the following sensor path

with a regular expression:

Cisco-IOS-XR-drivers-media-eth-oper:ethernet-interface/statistics/statistic

[interface-name=HundredGigE*]

© 2023 Cisco and/or its affiliates. All rights reserved. Page 19 of 60

Also, note that there is a possibility of different sensors for different platforms for the same KPI. In the case of

hardware-specific environment sensors, there will be different sensors for different platforms as the platforms

are built differently.

The environmental sensor for a cell site router is defined below:

Cisco-IOS-XR-envmon-oper:environmental-monitoring/rack/nodes/node/sensor-types/sensor-

type/sensor-names/sensor-name

The environmental sensor for a NCS5504 (Provider Edge Router) is defined below:

Cisco-IOS-XR-sysadmin-fretta-envmon-

ui:environment/oper/temperatures/location/sensor_attributes

The environmental sensor for a ASR9903 (Provider Edge Router) is defined below:

Cisco-IOS-XR-sysadmin-asr9k-envmon-

ui:environment/oper/temperatures/location/sensor_attributes

If you want to verify the JavaScript Object Notation (JSON) formatted data that will be streamed out of the

router for a specific data model/container/leaf structure, the router has the capability to do it on the device

itself.

<router>#show telemetry internal json Cisco-IOS-XR-nto-misc-oper:memory-

summary/nodes/node/summary

Tue Jun 20 16:26:55.005 UTC

{

 "encoding_path": "Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary",

 "subscription_id_str": "app_TEST_200000001",

 "collection_start_time": "1687278415456",

 "msg_timestamp": "1687278415465",

 "collection_end_time": "1687278415465",

 "node_id_str": "<router-hostname>",

 "data_json": [

 {

 "keys": [

 {

 "node-name": "0/RP0/CPU0"

 }

],

 "timestamp": "1687278415464",

 "content": {

 "page-size": 4096,

 "reserved-memory": "0",

© 2023 Cisco and/or its affiliates. All rights reserved. Page 20 of 60

 "boot-ram-size": "0",

 "flash-system": "0",

 "io-memory": "0",

 "free-physical-memory": "2994733056",

 "ram-memory": "8061009920",

 "system-ram-memory": "8061009920",

 "free-application-memory": "2994733056",

 "image-memory": "4194304"

 }

 }

],

 "collection_id": "437184"

},

You can also verify the data streamed out of the router in an external JSON Coding Viewer available on the

internet. Here, we are using mdt_exec to look at a sample JSON being streamed out of the router and then

verifying the data on an online JSON Coding Viewer.

<router>#run mdt_exec -s Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-

utilization[node-name=0/RP0/CPU0]/total-cpu-five-minute -c 10000

Thu Feb 2 17:33:26.563 UTC

Enter any key to exit...

{"node_id_str":"router","subscription_id_str":"app_TEST_200000001","encoding_path":"Cisco-

IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-

utilization","collection_id":"114230","collection_start_time":"1675359206702","msg_timestam

p":"1675359206774","data_json":[{"timestamp":"1675359206770","keys":[{"node-

name":"0/RP0/CPU0"}],"content":{"total-cpu-five-

minute":7}}],"collection_end_time":"1675359206775"}

© 2023 Cisco and/or its affiliates. All rights reserved. Page 21 of 60

Figure 7.

JSON streamed for your KPI

<router>#show processes cpu thread location 0/rp0/cpu0

Thu Feb 2 17:36:36.478 UTC

---- node0_RP0_CPU0 ----

CPU utilization for one minute: 6%; five minutes: 7%; fifteen minutes: 7%

Is that it? Is the device stream-ready already? Unfortunately, no, there is that one last step. We need to enable

the gRPC port (Start the gRPC Server) on the router for it to listen to a gRPC request (gNMI Subscribe Request)

and respond to that (gNMI Response).

<router>#show running-config grpc

Thu Feb 2 17:56:15.583 UTC

grpc

 dscp cs2

 port 57400

 no-tls

 address-family ipv4

!

© 2023 Cisco and/or its affiliates. All rights reserved. Page 22 of 60

To verify your device is streaming data (and/or is responding to the gRPC request for data), run the following

command:

<router>#show grpc streams

Fri Feb 3 18:39:18.106 UTC

Streaming gRPCs: 10

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 230

 Type : gNMI

 Created : 2023-01-23T17:15:06.771191Z

 Duration : 955452s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 231

 Type : gNMI

 Created : 2023-01-23T17:15:06.778634Z

 Duration : 955452s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 226

 Type : gNMI

 Created : 2023-01-23T17:15:06.77888Z

 Duration : 955452s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 269

 Type : gNMI

 Created : 2023-01-24T16:26:13.939525Z

 Duration : 871985s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 275

 Type : gNMI

 Created : 2023-01-24T16:26:14.159797Z

 Duration : 871984s

© 2023 Cisco and/or its affiliates. All rights reserved. Page 23 of 60

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 276

 Type : gNMI

 Created : 2023-01-24T16:26:18.59124Z

 Duration : 871980s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 277

 Type : gNMI

 Created : 2023-01-24T16:26:18.594697Z

 Duration : 871980s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 278

 Type : gNMI

 Created : 2023-01-24T16:26:18.599124Z

 Duration : 871980s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 279

 Type : gNMI

 Created : 2023-01-24T16:26:18.602972Z

 Duration : 871980s

10.226.140.133:53820

 User : svc_WDNCiscoSDNCp

 Request-ID : 280

 Type : gNMI

 Created : 2023-01-24T16:26:18.606819Z

 Duration : 871980s

© 2023 Cisco and/or its affiliates. All rights reserved. Page 24 of 60

3.5 Sensor Definition – Transport and Encoding

As discussed earlier, there is a transport method, protocol, encoding, and sample intervals defined for every

telemetry sensor.

Let us try to understand a few subscriptions and clarify the above information:

a) Encoding for all the streams is JSON (specifically JSON_IETF)

b) Transport method is “dial in” from the Network Controller

c) TLS or Transport Layer Certificate for data encryption is “FALSE” or not enabled.

d) State is “Active,” which means the subscription is actively sending data for the specified sample

interval.

e) The sample intervals (we will discuss this in detail in the next section) will vary based on the

subscriptions; the example below shows 5 minutes, 60 minutes, 5 minutes, and 60 minutes for the four

data streams respectively.

<router>#show telemetry model-driven subscription

Tue Apr 18 17:41:36.712 UTC

Subscription: GNMI__7083707911975322971 State: ACTIVE

 Sensor groups:

 Id Interval(ms) State

 GNMI__7083707911975322971_0 300000 Resolved

 Destination Groups:

 Id Encoding Transport State Port Vrf IP

 GNMI_1001 gnmi-json dialin Active 48828 10.226.140.133

 TLS : False

Subscription: GNMI__12328441295892632155 State: ACTIVE

 Sensor groups:

 Id Interval(ms) State

 GNMI__12328441295892632155_0 3600000 Resolved

 Destination Groups:

 Id Encoding Transport State Port Vrf IP

 GNMI_1002 gnmi-json dialin Active 48828 10.226.140.133

 TLS : False

Subscription: GNMI__864269735462518853 State: ACTIVE

 Sensor groups:

© 2023 Cisco and/or its affiliates. All rights reserved. Page 25 of 60

 Id Interval(ms) State

 GNMI__864269735462518853_0 300000 Resolved

 Destination Groups:

 Id Encoding Transport State Port Vrf IP

 GNMI_1003 gnmi-json dialin Active 48828 10.226.140.133

 TLS : False

Subscription: GNMI__1575747990938550928 State: ACTIVE

 Sensor groups:

 Id Interval(ms) State

 GNMI__1575747990938550928_0 3600000 Resolved

 Destination Groups:

 Id Encoding Transport State Port Vrf IP

 GNMI_1004 gnmi-json dialin Active 48828 10.226.140.133

 TLS : False

If you want to explore the properties of a specific gNMI subscription, you can run this command:

<router>#show telemetry model-driven subscription GNMI__17743548769788099304

Tue Jun 20 16:45:18.706 UTC

Subscription: GNMI__17743548769788099304

 State: ACTIVE

 Sensor groups:

 Id: GNMI__17743548769788099304_0

 Sample Interval: 3600000 ms

 Heartbeat Interval: NA

 Sensor Path: Cisco-IOS-XR-ip-bfd-oper:bfd/summary

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: GNMI_1196

 Destination IP: 10.226.140.133

 Destination Port: 59026

 DSCP/Qos setting: CS2

 Compression: gzip

 Encoding: gnmi-json

 Transport: dialin

 State: Active

© 2023 Cisco and/or its affiliates. All rights reserved. Page 26 of 60

 TLS : False

 Total bytes sent: 450

 Total packets sent: 4

 Last Sent time: 2023-06-20 15:45:38.2331421186 +0000

 Collection Groups:

 Id: 195

 Sample Interval: 3600000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: gnmi-json

 Num of collection: 3

 Incremental updates: 0

 Collection time: Min: 2 ms Max: 2 ms

 Total time: Min: 2 ms Avg: 2 ms Max: 3 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 0

 Last Collection Start:2023-06-20 15:45:38.2331419186 +0000

 Last Collection End: 2023-06-20 15:45:38.2331421186 +0000

 Sensor Path: Cisco-IOS-XR-ip-bfd-oper:bfd/summary

© 2023 Cisco and/or its affiliates. All rights reserved. Page 27 of 60

3.6 Sensor Definition – Sample Intervals

We have the capability of defining different sample intervals for different telemetry sensors. A sample interval

is the interval at which the device streams data responding to the gNMI requests defined in the Network

Controller. The basic difference between Model-Driven (MDT) and Event-Driven Telemetry (EDT) is the

definition of this sample interval. In EDT, we don’t define any sample interval; the device sends data when an

event is triggered (for example, interface goes down). Contrastingly for MDT, we per iodically stream data based

on the defined interval. The interval definition is based on the importance and magnitude of the data. For

example, for critical components like CPU or timing, we have defined stringent sample intervals like 300

seconds while for non-critical components like environment temperature we have defined the interval at 1800

seconds.

Let us try to understand a few subscriptions (as seen on the router below):

a) There are two gNMI requests below, both using JSON as the encoding for the response.

b) The subscriptions are for NPU resources and interfaces data.

c) The defined sample interval (at CNC) is 60 minutes for NPU resources and 5 minutes for interfaces data.

d) The destination of this data is 10.226.140.133 which is a Crosswork Data Gateway, and supports

collection protocols including gNMI, MDT, SNMP, CLI, Syslog, and Network Configuration Protocol

(NETCONF).

e) List, Datalist, and Finddata are different access methods to get statistics from internal database. You

can see the method used here is “DATALIST.”

<router>#show telemetry model-driven internal subscription

Subscription: GNMI__8703499362854295784

 State: ACTIVE

 Sensor groups:

 Id: GNMI__8703499362854295784_0

 Sample Interval: 3600000 ms

 Heartbeat Interval: NA

 Sensor Path: Cisco-IOS-XR-platforms-ofa-oper:ofa/stats/nodes/node/Cisco-IOS-

XR-NCS-BDplatforms-npu-resources-oper:hw-resources-datas

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: GNMI_1232

 Destination IP: 10.226.140.133

 Destination Port: 58036

 DSCP/Qos setting: CS2

 Compression: gzip

 Encoding: gnmi-json

 Transport: dialin

© 2023 Cisco and/or its affiliates. All rights reserved. Page 28 of 60

 State: Active

 TLS : False

 Total bytes sent: 5327398

 Total packets sent: 1612

 Last Sent time: 2023-04-18 16:43:33.34335699 +0000

 Collection Groups:

 Id: 226

 Sample Interval: 3600000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: gnmi-json

 Num of collection: 179

 Collection time: Min: 10 ms Max: 141 ms

 Total time: Min: 12 ms Avg: 14 ms Max: 143 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 0

 Last Collection Start:2023-04-18 16:43:32.34320996 +0000

 Last Collection End: 2023-04-18 16:43:33.34335738 +0000

 Sensor Path: Cisco-IOS-XR-platforms-ofa-oper:ofa/stats/nodes/node/Cisco-IOS-

XR-NCS-BDplatforms-npu-resources-oper:hw-resources-datas/hw-resources-data

 Sysdb Path: /oper/ofa/stats/node/*/hw_resources/*

 Count: 179 Method: DATALIST Min: 10 ms Avg: 12 ms Max: 141 ms

 Item Count: 1611 Status: Active

 Missed Collections:0 send bytes: 5327398 packets: 1611 dropped bytes: 0

 Missed Heartbeats:0

 success errors deferred/drops

 Gets 0 0

 List 179 0

 Datalist 179 0

 Finddata 179 0

 GetBulk 0 0

 Encode 0 0

 Send 0 0

Subscription: GNMI__864269735462518853

© 2023 Cisco and/or its affiliates. All rights reserved. Page 29 of 60

 State: ACTIVE

 Sensor groups:

 Id: GNMI__864269735462518853_0

 Sample Interval: 300000 ms

 Heartbeat Interval: NA

 Sensor Path: Cisco-IOS-XR-ifmgr-oper:interface-properties/data-nodes/data-

node/system-view/interfaces/interface

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: GNMI_1233

 Destination IP: 10.226.140.133

 Destination Port: 58036

 DSCP/Qos setting: CS2

 Compression: gzip

 Encoding: gnmi-json

 Transport: dialin

 State: Active

 TLS : False

 Total bytes sent: 126051260

 Total packets sent: 220730

 Last Sent time: 2023-04-18 17:13:33.1834844422 +0000

 Collection Groups:

 Id: 227

 Sample Interval: 300000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: gnmi-json

 Num of collection: 2143

 Collection time: Min: 12 ms Max: 44 ms

 Total time: Min: 19 ms Avg: 21 ms Max: 51 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 0

 Last Collection Start:2023-04-18 17:13:33.1834820318 +0000

 Last Collection End: 2023-04-18 17:13:33.1834844502 +0000

 Sensor Path: Cisco-IOS-XR-ifmgr-oper:interface-properties/data-nodes/data-

node/system-view/interfaces/interface

© 2023 Cisco and/or its affiliates. All rights reserved. Page 30 of 60

 Sysdb Path: /oper/im/3pg/node/*/sys/all/*

 Count: 2143 Method: DATALIST Min: 12 ms Avg: 14 ms Max: 44 ms

 Item Count: 220729 Status: Active

 Missed Collections:0 send bytes: 126051260 packets: 220729 dropped bytes: 0

 Missed Heartbeats:0

 success errors deferred/drops

 Gets 0 0

 List 2143 0

 Datalist 2143 0

 Finddata 2143 0

 GetBulk 0 0

 Encode 0 0

 Send

3.7 Defining GNMI Collection on Crosswork Network Controller

Before defining the gNMI Subscribe Requests on Crosswork Network Controller (CNC), let us look at the

expectations/format of the request and response (some of which might not be applicable as per latest

protocol/controller version).

Figure 8.

gNMI Subscribe Request Message

© 2023 Cisco and/or its affiliates. All rights reserved. Page 31 of 60

Figure 9.

gNMI Subscribe Response Message

Once you are aware of the message format, you need to define the collection job (a collection of subscriptions)

with the telemetry sensors and router name/s (that you want to respond to the gNMI request). You also need to

define the cadence or time interval for each subscription. If you have defined a cadence of 300 seconds, the

device will respond with the requested data every 5 minutes.

“Mode” is an important parameter of the subscribe request; the example below shows SAMPLE as the value,

which means data is streamed every sample interval. Further explanation of the different modes is mentioned

below:

● ONCE – The data is streamed only once and never repeated over sample intervals.

● POLL – The data is streamed only when subscribed with the current values for all specified paths.

● STREAM – As mentioned earlier, this can be “SAMPLE” where data is streamed every sample interval

or “ON_CHANGE” where data is streamed if there is a change in value. The ON_CHANGE option can be

explored if you don’t want to stream continuous data to the consumer without any need of action

(or remediation). The downside of that is, of course, you will lose the trending and forecasting capability

of a KPI if you decide to switch to ON_CHANGE.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 32 of 60

Figure 10.

gNMI Subscribe Request for CPU KPI

If the collection is a success, you get a response in the form of “Distribution,” which is destined to the Kafka

Message Bus (mentioned in Section 2.4). The response contains the data in raw format that can be read from

the Message Bus.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 33 of 60

Figure 11.

gNMI Subscribe Response for CPU KPI

Figure 12.

Data streamed toward CDG

© 2023 Cisco and/or its affiliates. All rights reserved. Page 34 of 60

3.8 Reading GNMI Response on Kafka Bus

Figure 13.

Topic on Kafka Message Bus

Now that you have plugged onto the same topic as mentioned in the gNMI Distribution in CNC, you will be able

to parse the raw data from the Kafka Message Bus. Let us try to read that data in the Message Bus and then

decode it.

Figure 14.

Raw Data of CPU KPI on Message Bus

© 2023 Cisco and/or its affiliates. All rights reserved. Page 35 of 60

Let us use a Base64 Decoder to decode this JSON_IETF value.

Figure 15.

JSON decoded from BASE64 Value

Now that we have got our data that needs to be printed in Matrix, we can process this data and build Matrix

Panels based on customized logic. As JSON data is a (key, value) pair, you can process the data based on

certain keys. For example, in the case of CPU utilization of a fixed chassis physical router like ASR9902, there

will be three key values in the form of “node-name”:

1) 0/RP0/CPU0

2) 0/RP1/CPU0

3) 0/0/CPU0

You can use any of these keys to fetch the data (cpu-utilization) specific to that node-name. For a cell site

router, you will have just one key (node-name = 0/RP0/CPU0), and it is not mandatory for you to specify a key

to fetch the value (content) of that KPI.

To verify the gNMI-based subscriptions on your router (that is defined in the collection job on CNC), you need

to run the following command:

<router>#show telemetry model-driven sensor-group

Fri Feb 3 18:41:59.772 UTC

 Sensor Group Id:GNMI__8703499362854295784_0

 Sensor Path: Cisco-IOS-XR-platforms-ofa-oper:ofa/stats/nodes/node/Cisco-IOS-XR-

NCS-BDplatforms-npu-resources-oper:hw-resources-datas

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__147082646091452568_0

 Sensor Path: Cisco-IOS-XR-qos-ma-oper:qos/interface-

table/interface/output/service-policy-names/service-policy-instance/statistics

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__2203298433605397407_0

 Sensor Path: Cisco-IOS-XR-mediasvr-linux-oper:media-svr/nodes/node/partition

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__7083707911975322971_0

 Sensor Path: Cisco-IOS-XR-fib-common-oper:fib-statistics/nodes/node/drops

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__10442864159394791983_0

 Sensor Path: Cisco-IOS-XR-drivers-media-eth-oper:ethernet-

© 2023 Cisco and/or its affiliates. All rights reserved. Page 36 of 60

interface/statistics/statistic

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__864269735462518853_0

 Sensor Path: Cisco-IOS-XR-ifmgr-oper:interface-properties/data-nodes/data-

node/system-view/interfaces/interface

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__9422764881658769044_0

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest/data-rate

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__5396827438168630175_0

 Sensor Path: Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__18328265757967605119_0

 Sensor Path: Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__12761477014645305428_0

 Sensor Path: Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-

utilization/total-cpu-five-minute

 Sensor Path State: Resolved

It is important to verify this output to make sure your sensor definition is correct in the collector. If the sensor

doesn’t get resolved on the router, you will get an error response. There are multiple reasons for a sensor to not

get resolved.

1) The sensor hasn’t been defined yet.

2) The sensor definition is incorrect.

3) The sensor is not applicable to the platform.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 37 of 60

Here is an example of that last point (3), where the sensor was not applicable to this platform:

Sensor Group Id:GNMI__2772047299061468887_0

Sensor Path: Cisco-IOS-XR-envmon-oper:environmental-monitoring/rack/nodes/node/sensor-

types/sensor-type[type='temperature']/sensor-names/sensor-name[name='MB-Inlet Temp Sensor']

Sensor Path State: Not Resolved

Status: Module 'Cisco-IOS-XR-envmon-oper' not recognized or supported for the specified

operation

Here is an example of (2), where the sensor was defined incorrectly.

<<router>>#show telemetry model-driven sensor-group

 Sensor Group Id:GNMI__5957134147446068896_0

 Sensor Path: Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface/

 Sensor Path State: Not Resolved

 Status: Invalid sensor path

 Sensor Group Id:GNMI__16416561783471716548_0

 Sensor Path: Cisco-IOS-XR-ip-bfd-oper:bfd/summary

 Sensor Path State: Resolved

 Sensor Group Id:GNMI__16950133171544085696_0

 Sensor Path: Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary/

 Sensor Path State: Not Resolved

 Status: Invalid sensor path

3.9 Defining Matrix Panels Based on Query Logic (SQL)

The final piece (and the most important) of the monitoring puzzle is building the panel for the KPI defined at the

beginning of this process. Let us summarize what we have done so far (Reference Section 2.1).

1) Enabled plumbing on the routers to get ready to stream data (gRPC configuration)

2) Defined the Key Performance Indicators for all routers.

3) Defined the corresponding Telemetry Sensor on CNC with proper cadence.

4) Enabled subscription toward the routers in the form of collection jobs from CNC

5) Enabled the mechanism of gNMI response to a Kafka Message Bus (Topic/Partition)

6) Read and parsed that message from the Message Bus and verified its accuracy.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 38 of 60

Now, we need to build our query logic to showcase the KPI in the form of a Matrix Panel. You may have your

customized logic to display the data. Instead of displaying it as a number, you may display it as percentage and

thereby modify the KPI value as streamed from the device. Here is a sample SQL code for CPU Utilization KPI.

Figure 16.

SQL for CPU Utilization

4 Monitoring KPIs on Matrix

4.1 System KPIs

Here we are reporting CPU utilization of all cell site routers in a specific region of the network for the last 12

hours of the day.

Figure 17.

CPU Utilization of CSRs

© 2023 Cisco and/or its affiliates. All rights reserved. Page 39 of 60

Here we are reporting NPU utilization of a specific NPU Bank (FEC) for all Provider Edge Data Center edge

routers in a specific region of the network for the last two hours of the day.

Figure 18.

NPU Utilization of PEDC PEs

Here we are reporting memory utilization of a specific Local Data Center Edge Router. We are looking at trends

over a period of 24 hours for two KPIs: one being the memory utilization of all processes specific to

0/RP0/CPU0, the other being the Memory Utilization of all processes specific to 0/0/CPU0.

Figure 19.

Memory Utilization of one LDC PE

4.2 Routing KPIs

Here we are looking at a non-graphical panel of the “top N” routers of a specific region in a network with the

highest number of ISIS routes

Figure 20.

Top N ISIS Routes

© 2023 Cisco and/or its affiliates. All rights reserved. Page 40 of 60

Here we are looking at a non-graphical panel of the “top N” routers of a specific region in a network with the

highest number of BGP routes.

Figure 21.

Top N BGP Routes

Here we are looking at BGP Neighbors on all PEDCs over the last two hours. Different Area of Interest (AOIs)

will have different scale, and that is why you are seeing different numbers in the graph below. The important

takeaway is that the neighbors scale is not changing over time.

Figure 22.

BGP neighbor Count for PEDCs

Another KPI Panel is snapped below; it is showing ISIS neighbors across all routers in the ne twork over the last

two hours.

Figure 23.

ISIS Neighbor Count

© 2023 Cisco and/or its affiliates. All rights reserved. Page 41 of 60

4.3 Services KPIs

Here we are looking at Interface Bandwidth Utilization (for both Ingress and Egress) for all XRv routers in a

specific region of the network. Bandwidth Utilization trends greatly helps with capacity planning of networks

once it goes live.

Figure 24.

Interface Bandwidth Utilization for all XRv

Here we are looking at GRE Tunnel Bandwidth Utilization (for both Ingress and Egress) for all XRv routers in a

specific region of the network. These are Cisco GRE tunnels running on top of a cloud underlay in the network.

Figure 25.

Tunnel Bandwidth Utilization for all XRv

Here we are looking at Interface Throughput (Ingress/Egress) for one specific XRv in a region of the network.

We are measuring it in Gbps, and it shows us a trend of the last two hours.

Figure 26.

Interface Throughput on one XRv

© 2023 Cisco and/or its affiliates. All rights reserved. Page 42 of 60

This is Transport QoS Drops (and Rate of Drops) for all Provider Edge Routers (NCS55xx) in a region of the

network. This is a trend for the present day. We did see a spike in QoS Interface Drops, but it went back to

normalcy very soon.

Figure 27.

Interface QoS Drops | Drop Rate

We are monitoring Interface Flaps and Interface Flap Rate by looking at the Carrier Transitions KPI for every

interface. The Carrier Transition of an interface is essentially the change in Operational Status of an interface

caused by flaps or micro-flaps. The following table is looking at a “suspected” cell site router over the last two

hours. We can see there is a specific interface that is flapping on the router and the operations team needs to

troubleshoot this.

Figure 28.

Interface Flaps | Flap Rate

© 2023 Cisco and/or its affiliates. All rights reserved. Page 43 of 60

Figure 29.

Interface | CEF Errors

Latency is another important KPI we are monitoring at Dish Networks. The three panels listed below show us

the latency incurred on the odd path, even path, and between the Cell Site Router (CSR) and the BEDC XRv

router (Midhaul: DU to CU). We can see an average latency of 4 milliseconds (ms) on both the odd and even

paths here. The Midhaul latency has a lot of spikes, but it averages around 5 ms over time.

Figure 30.

LIT CSR Odd Path Latency

© 2023 Cisco and/or its affiliates. All rights reserved. Page 44 of 60

Figure 31.

LIT CSR Even Path Latency

Figure 32.

CSR to BEDC Midhaul Latency

4.4 Hardware KPIs

Inlet temperature for CSRs is an important environmental KPI as these devices are deployed outdoor at a cell

site (albeit inside a cabinet). Here are two CSRs with inlet temperature KPI implemented, we can see the

trending values over a period of 24 hours.

Figure 33.

Inlet Temperature of 2 CSRs

© 2023 Cisco and/or its affiliates. All rights reserved. Page 45 of 60

Another environmental KPI is CPU temperature, which is being monitored in this panel below. You can see the

sharp spike of a CPU temperature on a CSR increasing possibly because of a power/environmental event at

that cell site.

Figure 34.

CPU Temperature of 5 CSRs

Another important hardware KPI is the Transmit (Tx) and Receive (Rx) power drawn by the optical transceiver

connected to the routers. The power value shown here is in dBm (decibel-milliwatts). These indicate the “light”

on the wire. If the power levels are very low, it means there is no light/traffic on the wire.

Figure 35.

Total Rx Power

Figure 36.

Total Tx Power

The final hardware KPI captured here is media storage utilization. There are different flavors of media types

based on the device types in the network. It is important to monitor media storage, as the lack of storage space

can lead to low memory which can impact certain processes running in the router.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 46 of 60

Figure 37.

Media Storage (Log) Utilization of LDCs

Figure 38.

Media Storage (Hard disk) Utilization of LDCs

Figure 39.

Media Storage (Apphost) Utilization of LDCs

4.5 Timing KPIs

Another extremely important KPI at a cell site is timing (a combination of phase, frequency, and time of day) and

it helps to synchronize data between end systems. If all devices (RU, CSR, LDC PE, and DU) are synchronized

(in phase/frequency/time of day) to each other with respect to a single clocking source like the GNSS

(Global Navigation Satellite System), our Mobile Fronthaul timing solution is working fine. (also means there is

no out-of-sync communication in the mobile fronthaul network). We need to monitor these KPIs and report an

anomaly if there is any.

Below you can see PTP Port and Line State being monitored for the interfaces distributing clock from the CSR

to the slave nodes (for ex: RU & DU are slave nodes while CSR is a master node with respect to distributing and

receiving clock in the network). If these interface flaps or encounter errors, these KPIs might get impacted.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 47 of 60

Figure 40.

PTP Port State of One CSR

Figure 41.

PTP Line State of One CSR

Similarly, we are looking at the Grandmaster State of all CSRs, this should ideally be true as all CSRs are acting

as T-GMs in the network (Telecom-Grandmaster)

Figure 42.

GNSS Grandmaster State of All CSRs

For frequency, time of day, and phase, we are monitoring these two KPIs – SyncE Frequency Status and GNSS

Receiver Status. If we are synchronized to the centralized clocking source or GNSS, the KPIs will show as

“locked”; if we are disconnected or drifting, we will show different states of these KPIs like “holdover,” and

“free running.” Some of the state mapping is captured in the snapshots below as per definition of the

corresponding YANG models (and data being streamed from the network).

Figure 43.

SyncE Frequency Status of all CSRs

© 2023 Cisco and/or its affiliates. All rights reserved. Page 48 of 60

Figure 44.

GNSS Receiver Lock Status of all CSRs

Figure 45.

YANG Definition of GNSS Lock Status

4.6 Composite KPIs

There are Composite KPIs in the network that are either a combination of two or more KPIs or a mathematic

derivative of a single KPI. Let us look at the composite KPIs deployed at Dish Network:

1) GRE Tunnel Bundle Interface Ingress Bandwidth Utilization / GRE Tunnel Bundle Interface Egress

Bandwidth Utilization

© 2023 Cisco and/or its affiliates. All rights reserved. Page 49 of 60

Figure 46.

Tunnel Bundle Interface BW Utilization

As we had a tunnel bandwidth defined between a pair of XRv Cloud Routers, it made more sense to create and

monitor a bundled Tunnel Bandwidth Interface Utilization. So, as you can see in the snapshot above, we are

monitoring Tunnel-R1-R2 Interface Bandwidth Utilization for both ingress and egress directions instead of

individual tunnels (like Tunnel-1, Tunnel-2 etc.). The Tunnel Bundle Interface Bandwidth Utilization is a logical

composite KPI created as a mathematic derivative of the tunnels between two routers (which can be between

two and eight in number). The below panel is GRE Tunnel Bundle Egress Utilization for all Tunnel Bundles from a

cloud router.

Figure 47.

Tunnel Bundle Egress Utilization

© 2023 Cisco and/or its affiliates. All rights reserved. Page 50 of 60

2) Total Interface Error Count is a total of all ingress and egress interface errors and interface packet

drops. There can be drops because of MTUs, CRCs, underruns, overruns etc. We are looking at the

composite of all those KPIs to derive the health of the Interface Errors on the router.

3) Interface Flaps is another composite KPI defined from the carrier transition data streamed from the

router. We subtract the value of the last carrier transition KPI data from the present carrier transition

KPI data to arrive at the Interface Flaps Composite KPI.

Interface Flaps = Present Carrier Transition Data Value (streamed at time T) – Previous Carrier Transition

Data Value (streamed at time [T – 5] mins).

5 Anomaly Detection – Closed Loop Automation

The detection of an anomaly in the network and taking a suitable action is the most critical piece of the entire

monitoring puzzle. To be able to detect an anomaly in the network, we need to define thresholds for all the Key

Performance Indicators. We can either reuse the thresholds defined in IOS XR code for every KPI, or manually

define thresholds based on network objective (role of that KPI in the network) and experience (based on similar

KPIs deployed at other service provider networks), or machine learn the thresholds and implement it in our

anomaly detection process.

5.1 Threshold Defined in IOS XR Code

This snippet is from a cell site router where we look at thresholds of environmental temperature KPIs defined in

IOS XR code. For example, we are using MB-Inlet Temp Sensor as one of our KPIs at Dish Network. We can

define (in Matrix) four values of threshold for Major Low, Critical Low, Major High, and Critical High. If the data

streamed from the router cross this threshold defined in Matrix, we generate alerts (Warning, Critical). An alert

is cleared when the KPI values drop down/move up from these thresholds.

<router>#show environment temperature

Tue Jun 20 22:51:06.338 UTC

Location TEMPERATURE Value Crit Major Minor Major Crit

 Sensor (deg C) (Lo) (Lo) (Lo) (Lo) (Hi) (Hi)

0/RP0/CPU0

 X86_PACKAGE_TEMP_SENSOR 33 -40 -25 -10 85 89 91

X86_CORE_0_TEMP_SENSOR 31 -40 -25 -10 85 89 91

X86_CORE_1_TEMP_SENSOR 33 -40 -25 -10 85 89 91

X86_CORE_2_TEMP_SENSOR 31 -40 -25 -10 85 89 91

X86_CORE_3_TEMP_SENSOR 30 -40 -25 -10 85 89 91

X86_CORE_4_TEMP_SENSOR 29 -40 -25 -10 85 89 91

X86_CORE_5_TEMP_SENSOR 29 -40 -25 -10 85 89 91

X86_CORE_6_TEMP_SENSOR 31 -40 -25 -10 85 89 91

X86_CORE_7_TEMP_SENSOR 31 -40 -25 -10 85 89 91

© 2023 Cisco and/or its affiliates. All rights reserved. Page 51 of 60

MB-Inlet Temp Sensor 26 -40 -25 -10 65 70 75

P1V15_CPU_CORE_TEMP1 29 -40 -25 -10 85 89 91

P1V0_CPU_UNCORE_TEMP1 32 -40 -25 -10 85 89 91

P1V15_CPU_VCCRAM_TEMP1 31 -40 -25 -10 85 89 91

P1V2A_CPUDDR_TEMP1 30 -40 -25 -10 85 89 91

VP1P0_TEMP1 33 -40 -25 -10 85 89 91

P1V05_CPU_SRDS_TEMP1 34 -40 -25 -10 85 89 91

P3_3V_TEMP1 39 -40 -25 -10 85 89 91

P1V0B_QAX_TEMP1 41 -40 -25 -10 97 103 108

P1V0_QAX_CORE_TEMP1 38 -40 -25 -10 97 103 108

P1V2B_QAX_TEMP1 34 -40 -25 -10 97 103 108

MB-Outlet Temp Sensor 28 -40 -25 -10 68 73 78

MB-CPU Temp Sensor Local 34 -40 -25 -10 85 89 91

MB-CPU Temp Sensor Remote 33 -40 -25 -10 85 89 91

MB-QAX Temp Sensor Local 37 -40 -25 -10 97 103 108

MB-QAX Temp Sensor Remote 44 -40 -25 -10 97 103 108

MB-QAX In-Die Temp Sensor 41 -40 -25 -10 97 103 108

Another example of a KPI threshold defined in IOS XR code is NPU resources. This snapshot is from a cell site

router for the NPU Resource FEC (Forwarding Equivalence Class) KPI. The “warning” (80%) and “critical” (95%)

thresholds are defined in code. The “OOR” (Out of Resource) flag turns YELLOW or RED based on the type of

threshold alert. It is GREEN in this snapshot. We re-use the same thresholds and define our anomalies in Matrix.

If our NPU Resource Utilization cross these thresholds, we trigger an alert.

RP/0/RP0/CPU0:DADAL00241A-CS000-CSR001#show controllers npu resources fec location

0/RP0/CPU0

Wed Jun 21 16:34:32.478 UTC

HW Resource Information

 Name : fec

 Asic Type : QAX

NPU-0

OOR Summary

 Estimated Max Entries : 61440

 Red Threshold : 95 %

 Yellow Threshold : 80 %

© 2023 Cisco and/or its affiliates. All rights reserved. Page 52 of 60

 OOR State : Green

 Bank Info : FEC

OFA Table Information

(May not match HW usage)

 ipnhgroup : 1414

 ip6nhgroup : 50

 edpl : 0

 limd : 0

 punt : 19

 iptunneldecap : 0

 ipmcroute : 1

 ip6mcroute : 0

 ipnh : 0

 ip6nh : 0

 mplsmdtbud : 0

 ipvrf : 6

 ippbr : 0

 redirectvrf : 0

 l2protect : 0

 l2bridgeport : 25

Current Hardware Usage

 Name: fec

 Estimated Max Entries : 61440

 Total In-Use : 1515 (2 %)

 OOR State : Green

 Bank Info : FEC

 Name: hier_0

 Estimated Max Entries : 61440

 Total In-Use : 1515 (2 %)

 OOR State : Green

 Bank Info : FEC

5.2 Manual Threshold Definition

We have manually defined thresholds for several KPIs based on the overall impact of the KPI on the network

(when the values hit threshold). These are defined in Matrix – Our Network Performance Management System.

Some examples are mentioned below:

1) CPU Utilization (Critical: 90%, Warning: 75%)

© 2023 Cisco and/or its affiliates. All rights reserved. Page 53 of 60

2) Memory Utilization (Critical: 90%, Warning: 75%)

3) Interface Operational Status (NOT Up)

4) Interface Admin Status (NOT Up)

5) Interface Transmit Link Utilization (Critical: 90%, Warning: 75%)

6) Interface Receive Link Utilization (Critical: 90%, Warning: 75%)

7) PTP Interface Line State (NOT Up)

8) PTP Interface Port State (NOT Master)

5.3 AI/ML‒Based Threshold Definition

Inbuilt Machine Learning (ML) framework of Matrix with integrated ML algorithms enables you to build Machine

Learning capabilities for anomaly detection, predictive analytics, forecasting, and pattern mining. Now why do

we need machine learning when we can manually define thresholds? Unfortunately, there are certain KPIs for

which we can’t define manual thresholds. The thresholds differ between devices and services within the

network.

For example, the ISIS routes count is a KPI for all routers in the network. We can’t define manual thresholds as

the count differ per ISIS process and per router type (CSR/PEs). The only way around this problem is to

machine learn the routes over a period for a process for a router type and machine define the thresholds or

outliers using the most suitable algorithm.

Another example is average latency. We are using the Internet Protocol Service Level Agreement User

Datagram Protocol IP SLA UDP Jitter application to measure average latency from source to destination and

vice-versa. We can only define the end-to-end midhaul latency based on the oRAN latency budget and/or

latency budget agreed upon with the RAN vendor. What about the latency between the CSR and the PEDC

Provider Edge router? For such scenarios, we need to rely on machine learning algorithms to give us the

following information:

1) Mean of average latency incurred between CSR and PEDC PE over a period.

2) Outlier or threshold (critical and warning) values for average latency over the same period

5.3.1 ML-Based Use Cases: IP SLA

We have implemented the second use case in Matrix. The algorithms available to us to implement this KPI were:

1) K-Means,

2) K-Means 24

3) DBScan

4) OneClass

5) Percentage Change

6) Standard Deviation

We initially started with K-Means, which is an unsupervised clustering algorithm that would divide the data

values into clusters of similar values and arrive at a centroid from all clusters (in a simplistic world, it is an

educated “mean”). The algorithm also sets thresholds (warning, critical) based on intelligent learning of spikes

and troughs on the entire data set used for training.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 54 of 60

But, upon days of training our data, we realized there aren’t enough clusters to create effective

centroids/means for IP SLA average latency. We eventually switched our algorithm to standard deviation, which

seemed like a more realistic match based on the data that was being streamed.

Here is a snapshot of the IPSLA maximum latency detailed KPI alerts (we haven’t hit any alerts for average

latency). The threshold for the alert’s detection were set by the K-Means algorithm. For different elements (10,

20, 30 – which are essentially different links in the network between the CSR and PEs, captured in figs. 47, 48,

and 49) you can see alerts getting triggered (critical, warning) and cleared when values go below the machine-

defined thresholds.

Figure 48.

Detailed IPSLA KPI Alerts

Figure 49.

Element 10 Max Latency

© 2023 Cisco and/or its affiliates. All rights reserved. Page 55 of 60

Figure 50.

Element 20 Max Latency

Figure 51.

Element 30 Max Latency

We have a KPI Alert Workbench in Matrix where you can track alerts and data over time. Here is a snapshot

with the KPI trending along with machine learned warning, critical, and “good” values using the K-Means

clustering algorithm.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 56 of 60

Figure 52.

KPI Alert Workbench for IP SLA

5.4 Exporting Anomaly Detection to Fault Management Application

We have incorporated fault management with the VIA-AIOPS platform. Detecting faults or anomalies is not the

end of the monitoring solution; we need to alert stakeholders who will act on such faults in the network.

These alerts or anomaly detection is published back to the Kafka Message Bus for VIA to ingest them. The

below shows the alerts in the Message Bus for consumers to ingest.

Figure 53.

PTP Alerts in Kafka Message Bus

https://www.vitria.com/via-aiops-with-cisco-network-automation

© 2023 Cisco and/or its affiliates. All rights reserved. Page 57 of 60

Once the alerts are processed and correlated in VIA (with other similar alerts from the same router), incidents

can be created and assigned to a Network Operations Engineer for the purpose of remediation. Figure 54

shows the above PTP Alerts ingested by VIA from the Message Bus.

Figure 54.

KPI Alerts Events in VIA

5.5 Remediation Using Closed Loop Automation

Finally, here we are, at the last stop, the final piece of the monitoring puzzle. We are creating alerts for any

critical deviation from the expected values for a KPI, but we are not (yet) remediating the problem through

automation. We are publishing that information to network operations and waiting for them to take manual

action. Now, to close the loop through automation, we need to take this solution a step further, and take

automated remediation actions.

Figure 55.

Closed Loop Automation Life Cycle

© 2023 Cisco and/or its affiliates. All rights reserved. Page 58 of 60

Let us consider an example to understand the closed loop automaton life cycle demonstrated above:

1) The router is streaming data for Timing KPI to the Message Bus (via CDG).

2) Matrix is pulling that data from the concerned topic and observing/trending it.

3) Matrix has also defined alerts for this KPI (Warning/Critical) based on manually defined thresholds.

4) Once the KPI value crosses a threshold (for example: GNSS KPI Alert is triggered because of an

anomaly), it creates an alert in Matrix.

5) The alert is published into a Kafka Topic, which gets pulled by VIA to create an incident.

6) The incident results in a ticket for the purpose of remediation.

7) It also triggers a Closed Loop Automation workflow wherein it invokes an NSO action to remediate the

problem on the router.

8) NSO (for this example) restarts the GNSS Survey on the cell site router (or reboots the router) by

running specific commands on the router.

9) Once the problem is remediated, the new data (at the defined sample interval) streamed towards Matrix

shows that the KPI Value has come back to the “expected” one.

10) The associated applications now close the alert and the corresponding incident.

6 Conclusion – What is the future of observability on a Hybrid Cloud?

The goal of every network operator is to build a utopic network which is low touch, seamlessly running, self-

detecting (problems), and self-healing. Have we arrived there yet? I don’t think so, we have a mountain to climb

but we have embarked on that journey already.

If we can build the intelligence to run a closed loop automated network that can self-detect and self-remediate

for at least half the problems, we have done a fairly good job. But is that the end goal? Which KPIs do we need

to define for our network? What data do we need to stream for specific device types? Do we stream data all the

time or only when there is a significant change? Who defines that change (thresholds)?

Maybe we don’t have the answers to every question there, but AI-Driven Telemetry being deployed on

Cisco routers is a great starting point. ADT (as it is called) leverages Machine Learning and Artificial Intelligence

to detect and describe important state changes on the router, and export only the relevant data using telemetry.

You can find more information in this article.

Your AI journey starts today.

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-4/telemetry/configuration/guide/b-telemetry-cg-asr9000-74x/AI-driven-telemetry.html

© 2023 Cisco and/or its affiliates. All rights reserved. Page 59 of 60

Glossary

KPI – Key Performance Indicator

CSR – Cell Site Router

LIT CSR – LIT CSRs use fiber optics that are already in use by other fiber vendors.

Dark CSR – Dark CSRs use fiber optics that were currently not in use.

LDC – Local Data Center

BEDC – Breakout Edge Data Center

PEDC – Provider Edge Data Center

AI - Artificial Intelligence

NPU – Network Processing Unit

CPU – Central Processing Unit

BGP – Border Gateway Protocol

AWS - Amazon Web Services

IEFT - Internet Engineering Task Force

MDT - Model-Driven Telemetry

RPC - Remote Procedure Call

RAN - Radio Access Network

oRAN - Open RAN

CLI – Command-Line Interface

SDN – Software-Defined Networking

SNMP - Simple Network Management Protocol

ISIS - Intermediate System to Intermediate System

GRE - Generic Routing Encapsulation

QoS - Quality of Service

PTP - Precision Timing Protocol

SyncE - Synchronous Ethernet

GM / T-GM - Telecom Grand Master

GNSS - Global Navigation Satellite System

BFD - Bidirectional Forwarding Detection

RU - gNB Radio Unit

CU - gNB Control Unit

© 2023 Cisco and/or its affiliates. All rights reserved. Page 60 of 60

DU - gNB Distributed Unit

IP SLA - Internet Protocol Service Level Agreement

UDP - User Datagram Protocol

References

● gNMI Specification defined in OpenConfig Forum

● ADT, as implemented on ASR9K

● VIA Platform for Cisco Network Automation

● DISH Networks Deployment Architecture on AWS Cloud

● IOS XR YANG Models

● Apache Kafka Application

Author

Sounak Mukherjee

Customer Delivery Architect

Contributors

Thank you for the contribution:

Asifiqbal Pathan – Principal Architect

Vipul Aggarwal – Customer Delivery Architect

Ariel Maceo – Customer Delivery Software Architect

Printed in USA C11-3812053-00 09/23

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-4/telemetry/configuration/guide/b-telemetry-cg-asr9000-74x/AI-driven-telemetry.html
https://www.vitria.com/via-aiops-with-cisco-network-automation
https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://kafka.apache.org/

