The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product. Learn more about how Cisco is using Inclusive Language.
This document describes how to verify Layer-2 LISP in Software-Defined Access (SDA) on Catalyst 9000 switches.
Cisco recommends that you have knowledge of these topics:
The information in this document is based on these software and hardware versions:
The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.
The SD-Access architecture is supported by fabric technology implemented for the campus. It enables the use of virtual networks (overlay networks) that run on the top of a physical network (underlay network) in order to create alternative topologies to connect devices. For more information about the different components of the Cisco SD-Access Solution, please visit:
Cisco SD-Access Solution Design Guide
The actual usable number of L2-LISP instances is 64 less than the max number on the SDM template:
EDGE-1#show plat hardware fed switch active fwd-asic resource tcam utilization CAM Utilization for ASIC [0] Table Max Values Used Values -------------------------------------------------------------------------------- Unicast MAC addresses 32768/1024 44/21 L3 Multicast entries 8192/512 4/10 L2 Multicast entries 8192/512 1/9 Directly or indirectly connected routes 24576/8192 33/81 QoS Access Control Entries 5120 153 Security Access Control Entries 5120 180 Ingress Netflow ACEs 256 8 Policy Based Routing ACEs 1024 20 Egress Netflow ACEs 768 8 Flow SPAN ACEs 1024 13 Control Plane Entries 512 255 Tunnels 512 18 Lisp Instance Mapping Entries 512 16 Input Security Associations 256 4 Output Security Associations and Policies 256 5 SGT_DGT 8192/512 0/1 CLIENT_LE 4096/256 0/0 INPUT_GROUP_LE 1024 0 OUTPUT_GROUP_LE 1024 0 Macsec SPD 256 2
In this case, the actual usable number of L2-LISP instances for an Edge node loaded with Cisco IOSĀ® XE 16.9.8 is 448 (512 - 64).
Two hosts that reside on same VN (Virtual Network), same VLAN/Subnet, but attached to different Edge switches. Both Edge switches are part of same SDA Fabric cloud as depicted in the topology image. The two hosts Client-1 and Client-2 are part of same VN Campus_VN which is attached to VLAN 1021 / Subnet 10.90.10.1/24. ICMP packets (pings) are used to test connectivity across both hosts.
Client-1>ping 10.90.10.20 Pinging 10.90.10.20 with 32 bytes of data: Reply from 10.90.10.20: bytes=32 time=4ms TTL=128 Reply from 10.90.10.20: bytes=32 time<1ms TTL=128 Reply from 10.90.10.20: bytes=32 time<1ms TTL=128 Ping statistics for 10.90.10.20: Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 4ms, Average = 1ms Client-2>ping 10.90.10.10 Pinging 10.90.10.10 with 32 bytes of data: Reply from 10.90.10.10: bytes=32 time<1ms TTL=128 Reply from 10.90.10.10: bytes=32 time<1ms TTL=128 Reply from 10.90.10.10: bytes=32 time<1ms TTL=128 Ping statistics for 10.90.10.10: Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms
Since both Edge switches are part of same SDA Fabric, then all production traffic between Edge-1 and Edge-2 needs to be VxLAN encapsulated. In this case, the Edge switches use L3 Instance ID (IID) 4100 and L2 Instance ID 8191 to encapsulate the traffic.
You first need to confirm that Control-Plane information is correct. If the information from Control-Plane (software state) looks fine, then you need to verify the Data-Plane (hardware states).
As previously mentioned, both hosts from our first scenario reside on VLAN 1021 and this VLAN/Subnet is stretched across the SDA-Fabric. First, you need to check the configuration of the SVI from VLAN 1021 that was automatically provisioned by Digital Network Architecture Center (DNA Center, or DNAC) on each of the Edge switches:
EDGE-1#show run int vlan 1021 Building configuration... Current configuration : 618 bytes ! interface Vlan1021 description Configured from Cisco DNA-Center mac-address 0000.0c9f.f55e vrf forwarding Campus_VN ip address 10.90.10.1 255.255.255.0
ip helper-address 10.122.150.179 no ip redirects ip route-cache same-interface no lisp mobility liveness test lisp mobility CAMPUS-WIRED-IPV4 end
EDGE-2#show run int vlan 1021 Building configuration... Current configuration : 618 bytes ! interface Vlan1021 description Configured from Cisco DNA-Center mac-address 0000.0c9f.f55e vrf forwarding Campus_VN ip address 10.90.10.1 255.255.255.0
ip helper-address 10.122.150.179 no ip redirects ip route-cache same-interface no lisp mobility liveness test lisp mobility CAMPUS-WIRED-IPV4 end
As you can see in this output, neither L2 nor L3 Instance IDs (IID) are part of the SVI configuration. On an SDA environment, these Instances are automatically configured by DNAC. Therefore, in order to find this information, you have to check the device LISP running-configuration. However, if you have hundreds of VLANs, it is not an easy task to find the info of the actual VLAN you want to verify
Tip: Tip: If you do not know the L2 IID information beforehand, you can run this command to find it (use the 'include' filter for the VLAN in question, in our case *VLAN 1021*
EDGE-1#show lisp instance-id * ethernet database | include Vlan 1021
LISP ETR MAC Mapping Database for EID-table Vlan 1021 (IID 8191), LSBs: 0x1
First you need to confirm that both MAC addresses (local and remote) are present in the MAC address table of the Edge switches. For the MAC of the local host, you must also have an ARP entry. You need to check same info on both devices.
EDGE-1#sh mac address-table | in 1021 1021 0000.0c9f.f55e STATIC Vl1021 1021000c.29ef.34d1 DYNAMIC Gi1/0/13 <<<< Local host
1021 2cab.eb4f.e6f5 STATIC Vl1021 1021000c.297b.3544 CP_LEARN Tu0 <<<< Remote host
EDGE-2#sh mac address-table | in 1021 1021 0000.0c9f.f55e STATIC Vl1021 1021 000c.297b.3544 STATIC Gi1/0/13 <<<< Local host
1021 70d3.79be.9675 STATIC Vl1021 1021 000c.29ef.34d1 CP_LEARN Tu0 <<<< Remote host
As you can see in this output, there is an entry with CP_LEARN as the address type for the remote host. This entry comes from Tu0, which is discussed in greater detail during the 'decapsulation' section. It shows CP_LEARN because L2-forwarding got this info from LISP Control-Plane (CP).
ARP table only includes an entry for the local host, as the remote host location is resolved via LISP and not directly via ARP:
EDGE-1#sh ip arp vrf Campus_VN 10.90.10.10 Protocol Address Age (min) Hardware Addr Type Interface Internet 10.90.10.10 0 000c.29ef.34d1 ARPA Vlan1021 <<<< Local host
EDGE-1#sh ip arp vrf Campus_VN 10.90.10.20
EDGE-1# <<<< Empty for remote host
EDGE-2#sh ip arp vrf Campus_VN 10.90.10.10
EDGE-2# <<<< Empty for remote host
EDGE-2#sh ip arp vrf Campus_VN 10.90.10.20
Protocol Address Age (min) Hardware Addr Type Interface
Internet 10.90.10.20 0 000c.297b.3544 ARPA Vlan1021 <<<< Local host
The information you got from the MAC Address Table is also populated in its hardware-state counterpart, which is the MAC Address Table Manager (MATM). For local hosts, Switch Integrated Security Features (SISF, also known as Device-Tracking) snoops the info from the clients and notifies LISP CP of L2-EID (MAC) and L2-AR EID (IP/MAC) information, and this is how LISP Database is populated:
EDGE-1#show lisp instance-id 8191 ethernet database LISP ETR MAC Mapping Database for EID-table Vlan 1021 (IID 8191), LSBs: 0x1 Entries total 2, no-route 0, inactive 0000c.29ef.34d1/48, dynamic-eid Auto-L2-group-8191, inherited from default locator-set rloc_497d4d09-992e-4eaa-92c8-5c7e27d08734 Locator Pri/Wgt Source State 192.168.3.69 10/10 cfg-intf site-self, reachable
EDGE-2#show lisp instance-id 8191 ethernet database LISP ETR MAC Mapping Database for EID-table Vlan 1021 (IID 8191), LSBs: 0x1 Entries total 1, no-route 0, inactive 0000c.297b.3544/48, dynamic-eid Auto-L2-group-8191, inherited from default locator-set rloc_ccca08ff-fd0f-42e2-9fbb-a6521bb1b65e Locator Pri/Wgt Source State 192.168.3.68 10/10 cfg-intf site-self, reachable
Additionally, in the LISP Database you can also verify the address-resolution for the local host. This way you can correlate the L2 information with the L3 data. As previously stated, entries for the remote hosts are not populated in the regular ARP table of the device, therefore this command shows the LISP EID info learnt via ARP only for the local hosts:
Tip: In this output you can also find the L3 IID associated to that host/subnet: 4100.
EDGE-1#show lisp instance-id 8191 ethernet database address-resolution LISP ETR Address Resolution for EID-table Vlan 1021 (IID 8191) (*) -> entry being deleted Hardware Address Host Address L3 InstID 000c.29ef.34d1 10.90.10.10/32 4100
EDGE-2#show lisp instance-id 8191 ethernet database address-resolution LISP ETR Address Resolution for EID-table Vlan 1021 (IID 8191) (*) -> entry being deleted Hardware Address Host Address L3 InstID 000c.297b.3544 10.90.10.20/32 4100
One more additional check is to verify the location of the remote host. you can use LIG command to resolve and identify the RLOC where the remote MAC address is located (in this case, you manually trigger the LIG via the cli, but when switch needs to forward a frame to an unknown destination MAC, then it automatically signals LISP in order to resolve the location of that unknown MAC):
Tip: Since you want to check L2 connectivity, then you have to use the L2 IID and the MAC address of the remote host as EID for the LIG. On the other hand, if you want to check L3 connectivity, you need to use the L3 IID (in this case 4100) and the actual IP of the host as EID for the LIG.
EDGE-1#lig instance 8191 000c.297b.3544 Mapping information for EID 000c.297b.3544 from 192.168.2.2 with RTT 1 msecs 000c.297b.3544/48, uptime: 05:32:34, expires: 23:59:59, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID 192.168.3.68 05:32:34 up 10/10 - <<<< RLOC of Edge-2
EDGE-2#lig instance 8191 000c.29ef.34d1 Mapping information for EID 000c.29ef.34d1 from 192.168.2.2 with RTT 1 msecs 000c.29ef.34d1/48, uptime: 05:33:14, expires: 23:59:59, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID 192.168.3.69 05:33:14 up 10/10 - <<<< RLOC of Edge-1
The RLOC from the remote host is also present in the LISP map-cache table (if you do not see the info from your remote host present on this output, then try to do a LIG for that host first and then check again). For remote hosts, LISP updates the L2-forwarding information of the switch with the info present in the LISP map-cache table, which is the reason why the MAC address of the remote host is displayed in the MAC address table of the switch as learnt over Tu0 with CP_LEARN type:
EDGE-1#show lisp instance-id 8191 ethernet map-cache
LISP MAC Mapping Cache for EID-table Vlan 1021 (IID 8191), 1 entries
000c.297b.3544/48, uptime: 05:36:05, expires: 23:56:28, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID
192.168.3.68 05:36:05 up 10/10 - <<<< RLOC of Edge-2
EDGE-2#show lisp instance-id 8191 ethernet map-cache
LISP MAC Mapping Cache for EID-table Vlan 1021 (IID 8191), 1 entries
000c.29ef.34d1/48, uptime: 05:36:17, expires: 23:56:56, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID 192.168.3.69 05:36:17 up 10/10 - <<<< RLOC of Edge-1
SISF is involved in the process of snooping Layer 3 to Layer 2 mappings to facilitate learning of End Points (through DHCP and ARP snooping). In L2-LISP, the Edge nodes forward the traffic purely based upon Layer 2 information. SISF comes into play because Broadcast ARP traffic is not forwarded over the Fabric across Ingress/Egress Tunnel Routers (xTRs - which is another name for the Edge nodes in the SDA architecture). ARP traffic is tunneled, not flooded, through the Fabric.
The SISF component of the Edge node registers the ARP resolution information from its local hosts (this info is called Endpoint ID - EID) on the Map Server & Map Resolver (MSMR) functionality of the Control-Plane (CP) nodes. The CP/MSMR nodes maintain the mapping database that is populated by all Edge nodes. When a host tries to resolve via ARP Request the IP/MAC binding of a remote host located on a different Edge node, the local Edge node intercepts and caches the Broadcast ARP request, it then snoops the packet and queries the CP/MSMR for the IP to MAC binding. Finally, the Edge node rewrites the Broadcast Destination Mac to the Unicast Destination Mac - that got from CP/MSMR as response to its query -, encapsulates the Unicast ARP request packet in VxLAN format and sends it over the Fabric to the remote Edge node that contains that Destination.
SISF not only helps snoop the packets, it also keeps the local entries refreshed in the Device-Tracking database by appropriate use of ARP probes.
EDGE-1#sh device-tracking database vlanid 1021 vlanDB has 5 entries for vlan 1021, 2 dynamic <snip> Network Layer Address Link Layer Address Interface vlan prlvl age state Time left ARP 10.90.10.20 000c.297b.3544 Tu0 1021 0005 15s REACHABLE 234s <<<< Remote host (info from the CP node via MSMR query)
ARP 10.90.10.1 0000c.29ef.34d1 Gi1/0/13 1021 0005 15s REACHABLE 300s <<<< Local host
EDGE-1#sh device-tracking database mac MAC Interface vlan prlvl state time left policy <snip> 000c.29ef.34d1 Gi1/0/13 1021 NO TRUST MAC-REACHABLE 284s IPDT_POLICY <<<< Local host
000c.297b.3544 Tu0 1021 NO TRUST MAC-REACHABLE 87s LISP-DT-GUARD-VLAN <<<< Remote host (info from the CP node via MSMR query)
EDGE-1#sh device-tracking database address all Network Layer Address Link Layer Address Interface vlan prlvl age state Time left <snip> ARP 10.90.10.20 000c.297b.3544 Tu0 1021 0005 2s REACHABLE 243s <<<< Remote host (info from the CP node via MSMR query)
ARP 10.90.10.10 000c.29ef.34d1 Gi1/0/13 1021 0005 2s REACHABLE 304s <<<< Local host
EDGE-2#sh device-tracking database vlanid 1021 vlanDB has 5 entries for vlan 1021, 2 dynamic <snip> Network Layer Address Link Layer Address Interface vlan prlvl age state Time left ARP 10.90.10.20 000c.297b.3544 Gi1/0/13 1021 0005 2s REACHABLE 250s <<<< Local host
ARP 10.90.10.10 000c.29ef.34d1 Tu0 1021 0005 2s REACHABLE 244s <<<< Remote host (info from the CP node via MSMR query)
EDGE-2#sh device-tracking database mac MAC Interface vlan prlvl state time left policy <snip> 000c.29ef.34d1 Tu0 1021 NO TRUST MAC-REACHABLE 187s LISP-DT-GUARD-VLAN <<<< Remote host (info from the CP node via MSMR query) 000c.297b.3544 Gi1/0/13 1021 NO TRUST MAC-REACHABLE 239s IPDT_POLICY <<<< Local host
EDGE-2#sh device-tracking database address all Network Layer Address Link Layer Address Interface vlan prlvl age state Time left <snip> ARP 10.90.10.20 000c.297b.3544 Gi1/0/13 1021 0005 29s REACHABLE 211s <<<< Local host
ARP 10.90.10.10 000c.29ef.34d1 Tu0 1021 0005 138s REACHABLE 108s <<<< Remote host (info from the CP node via MSMR query)
Once you have verified that Control-Plane information is complete and correct, you can now review the Data-Plane part.
MATM stands for MAC Address Table Manager and the hardware abstraction of the regular MAC address table.
Tip: The commands on this section relate to the hardware-abstraction layer of the device. This means that, if you deployed your devices in stack configuration, you need to run the command not only for the Active member, but also for the member switch you want to verify (for example, if your host is attached to member 2 of the stack, you also have to use 'switch 2' on the cli). For this article only standalone switches were used, therefore only the info for the Active instance is verified.
EDGE-1#show platform software fed switch active matm macTable vlan 1021
VLAN MAC Type Seq# EC_Bi Flags machandle siHandle riHandle diHandle *a_time *e_time ports ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ <snip> 1021 000c.29ef.34d1 0x1 1 0 0 0x7f9e1caa4358 0x7f9e1caf3fc8 0x0 0x7f9e1c7b5228 300 21 GigabitEthernet1/0/13
1021 000c.297b.3544 0x1000001 0 0 64 0x7f9e1cded158 0x7f9e1ce092f8 0x7f9e1ce08de8 0x7f9e1c2f4a48 0 16 RLOC 192.168.3.68 adj_id 23 Total Mac number of addresses:: 1 Summary: Total number of secure addresses:: 0 Total number of drop addresses:: 0 Total number of lisp local addresses:: 0 Total number of lisp remote addresses:: 0 *a_time=aging_time(secs) *e_time=total_elapsed_time(secs) Type: MAT_DYNAMIC_ADDR 0x1 MAT_STATIC_ADDR 0x2 MAT_CPU_ADDR 0x4 MAT_DISCARD_ADDR 0x8 MAT_ALL_VLANS 0x10 MAT_NO_FORWARD 0x20 MAT_IPMULT_ADDR 0x40 MAT_RESYNC 0x80 MAT_DO_NOT_AGE 0x100 MAT_SECURE_ADDR 0x200 MAT_NO_PORT 0x400 MAT_DROP_ADDR 0x800 MAT_DUP_ADDR 0x1000 MAT_NULL_DESTINATION 0x2000 MAT_DOT1X_ADDR 0x4000 MAT_ROUTER_ADDR 0x8000 MAT_WIRELESS_ADDR 0x10000 MAT_SECURE_CFG_ADDR 0x20000 MAT_OPQ_DATA_PRESENT 0x40000 MAT_WIRED_TUNNEL_ADDR 0x80000 MAT_DLR_ADDR 0x100000 MAT_MRP_ADDR 0x200000 MAT_MSRP_ADDR 0x400000 MAT_LISP_LOCAL_ADDR 0x800000 MAT_LISP_REMOTE_ADDR 0x1000000 MAT_VPLS_ADDR 0x2000000
As seen in the previous output, the bit-map type for the MAC addresses of the remote hosts is 0x1000001: Bit 0x1000000 indicates a LISP remote entry and bit 0x1 is set for a dynamic entry. The other important values from this table are the machandle, the siHandle and the riHandle, keep this info handy for the next verifications.
The machandle is used to verify the info programmed on hardware for this object, in this case for the remote MAC address:
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1cded158 1 Handle:0x7f9e1cded158 Res-Type:ASIC_RSC_HASH_TCAM Res-Switch-Num:0 Asic-Num:255 Feature-ID:AL_FID_L2_WIRELESS Lkp-ftr-id:LKP_FEAT_L2_SRC_MAC_VLAN ref_count:1 priv_ri/priv_si Handle: (nil)Hardware Indices/Handles: handle [ASIC: 0]: 0x7f9e1cded368 Features sharing this resource:Cookie length: 12 7b 29 0c 00 44 35 06 80 07 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Number of HTM Entries: 1 Entry 0: (handle 0x7f9e1cded368) Absolute Index: 4100 Time Stamp: 231
KEY - vlan:6 mac:0xc297b3544 l3_if:0 gpn:3401 epoch:0 static:0 flood_en:0 vlan_lead_wless_flood_en: 0 client_home_asic: 0 learning_peerid 0, learning_peerid_valid 0 MASK - vlan:0 mac:0x0 l3_if:0 gpn:0 epoch:0 static:0 flood_en:0 vlan_lead_wless_flood_en: 0 client_home_asic: 0 learning_peerid 0, learning_peerid_valid 0 SRC_AD - need_to_learn:0 lrn_v:0 catchall:0 static_mac:0 chain_ptr_v:0 chain_ptr: 0 static_entry_v:0 auth_state:0 auth_mode:0 auth_behavior_tag:0 traf_m:0 is_src_ce:0 DST_AD - si:0xd5 bridge:0 replicate:0 blk_fwd_o:0 v4_rmac:0 v6_rmac:0 catchall:0 ign_src_lrn:0 port_mask_o:0 afd_cli_f:0 afd_lbl:0 prio:3 dest_mod_idx:0 destined_to_us:0 pv_trunk:0 smr:1 ==============================================================
These are the most important fields from the previous output from Edge-1:
The Key VLAN ID from previous output must match the hardware MVID value assigned to VLAN 1021, you can find that info on this command output:
EDGE-1#show platform software fed switch active vlan 1021 VLAN Fed Information Vlan Id IF Id LE Handle STP Handle L3 IF Handle SVI IF ID MVID ----------------------------------------------------------------------------------------------------------------------- 1021 0x0000000000420010 0x00007f9e1c65d268 0x00007f9e1c65da98 0x00007f9e1c995e18 0x000000000000003a 6
Confirmed, MVID value is equal to 6 for VLAN 1021!
In order to check the GPN value used by the L2-LISP Tunnel0, a couple of commands are required. First you have to confirm the hardware Interface ID assigned to the Tunnel0:
EDGE-1#show platform software dpidb l2lisp 8191
Instance Id:8191, dpidx:4325400, vlan:1021, Parent Interface:Tunnel0(if_id:64) ### or alternatively you can use command: EDGE-1#show platform software fed sw active ifm interfaces l2-lisp
Interface IF_ID State ----------------------------------------------------------------------
Tunnel0 0x00000040 READY
Now, you can verify the attributes assigned to that interface ID in the Interface Feature Manager (IFM):
EDGE-1#show platform software fed switch active ifm if-id 64 <<<< 64 DEC = 0x40 HEX Interface IF_ID : 0x0000000000000040 Interface Name : Tunnel0 Interface Block Pointer : 0x7f9e1c91d5c8 Interface Block State : READY Interface State : Enabled Interface Status : ADD, UPD Interface Ref-Cnt : 2 Interface Type : L2_LISP <<<< Tunnel Type Is top interface : TRUE Asic_num : 0 Switch_num : 0 AAL port Handle : cc00005d Source Ip Address : 192.168.3.69 <<<< Tunnel Source Address (Lo0), RLOC of Edge-1 Vlan Id : 0 Instance Id : 0 Dest Port : 4789 <<<< VxLAN UDP Port SGT : Disable <<<< CTS not configured for this scenario Underlay VRF (V4) : 0 Underlay VRF (V6) : 0 Flood Access-tunnel : Disable Flood unknown ucast : Disable Broadcast : Disable Multicast Flood : Disable Decap Information TT HTM handle : 0x7f9e1c9c40e8 Port Information Handle ............ [0xcc00005d] Type .............. [L2-LISP-top] Identifier ........ [0x40] Unit .............. [64] L2 LISP Topology interface Subblock Switch Num : 1 Asic Num : 0 Encap PORT LE handle : 0x7f9e1c9befe8 Decap PORT LE handle : 0x7f9e1c91d818 L3IF LE handle : 0x7f9e1c9bf2b8 SI handle decap : 0x7f9e1c9c8568 DI handle : 0x7f9e1c2f4a48 RI handle : 0x7f9e1c9c4498 RCP Service ID : 0x0 GPN : 3401 <<<< GPN TRANS CATCH ALL handle : 0x7f9e1c2f5698 <snip>
Apart from the GPN value of 3401, which matches the info obtained during the hardware abstraction verification of the machandle for the remote MAC, in the previous output you have some other useful information that is used to encapsulate the traffic when is sent over the L2-LISP tunnel, like for example: Tunnel Type, Tunnel Source IP Address, UDP Destination Port, and so on.
With the station index you can obtain the destination index and rewrite index used to send the traffic over the L2-LISP tunnel. This info tells us HOW and WHERE to send the packets:
Tip: At this step you collect two more additional values, the DI (destination index) and the RI (rewrite index), keep them handy for future reference.
EDGE-1#show platform hardware fed switch active fwd-asic resource asic all station-index range 0xd5 0xd5 ASIC#0: Station Index (SI) [0xd5] RI = 0x28 <<<< Rewrite Index DI = 0x5012 <<<< Destination Index stationTableGenericLabel = 0 stationFdConstructionLabel = 0x7 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: LD ASIC#1: Station Index (SI) [0xd5] RI = 0x28 DI = 0x5012 stationTableGenericLabel = 0 stationFdConstructionLabel = 0x7 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: RD CD
The important takeaway from this section is that the port-map value (pmap) for the physical ports is all-zeroes and the recirculation port-map (rcp_pmap) is equal to one on ASIC 0. Since these values use a boolean logic, then this output actually means that the switch does not use a physical port, but a logical interface - Tunnel0 -, to forward the traffic. Note that the rcp_pmap is ON only for ASIC 0.
Tip: The actual ASIC used to forward the traffic depends on the physical port(s) used to establish the L2-LISP tunnel (the underlay connection to the upstream device), as each physical port is mapped to an specific ASIC instance. Also consider that the number of ASICs on the switch varies for each model.
EDGE-1#show platform hardware fed switch active fwd-asic resource asic all destination-index range 0x5012 0x5012 ASIC#0: Destination Index (DI) [0x5012] portMap = 0x00000000 00000000 <<<< All bits for physical ports are off cmi1 = 0 rcpPortMap = 0x1 <<<< Recirculation port-map bit is enabled CPU Map Index (CMI) [0] ctiLo0 = 0 ctiLo1 = 0 ctiLo2 = 0 cpuQNum0 = 0 cpuQNum1 = 0 cpuQNum2 = 0 npuIndex = 0 stripSeg = 0 copySeg = 0
ASIC#1: Destination Index (DI) [0x5012] portMap = 0x00000000 00000000 <<<< All bits for physical ports are off cmi1 = 0 rcpPortMap = 0 CPU Map Index (CMI) [0] ctiLo0 = 0 ctiLo1 = 0 ctiLo2 = 0 cpuQNum0 = 0 cpuQNum1 = 0 cpuQNum2 = 0 npuIndex = 0 stripSeg = 0 copySeg = 0
In order to verify this index, you have to use the riHandle associated to the remote MAC on the MATM table output from Step 1, which in this case is 0x7f9e1ce08de8. The Rewrite Index provides the final details of the VxLAN header that is imposed to the packet before it is sent over the L2-LISP tunnel:
Tip: RI value 40 from this output must match RI index 0x28 from Step 5 (40 DEC = 0x28 HEX).
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1ce08de8 1 Handle:0x7f9e1ce08de8 Res-Type:ASIC_RSC_RI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_L2_WIRELESS Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1 priv_ri/priv_si Handle: 0x7f9e1cded678Hardware Indices/Handles: index0:0x28 mtu_index/l3u_ri_index0:0x0 index1:0x28 mtu_index/l3u_ri_index1:0x0 Features sharing this resource:58 (1)] Cookie length: 56 00 00 00 00 00 00 00 00 fd 03 00 00 00 00 00 00 00 00 00 00 07 00 00 0c 29 7b 35 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Rewrite Data Table Entry, ASIC#:0, rewrite_type:116, RI:40 <<<< Must match RI Index 0x28 from Step 5 Src IP: 192.168.3.69 <<<< VxLAN header (RLOC of the Local Edge node Edge-1) Dst IP: 192.168.3.68 <<<< VxLAN header (RLOC of the Remote Edge node Edge-2) iVxlan dstMac: 0x0c:0x297b:0x3544 <<<< MAC address of the Remote host iVxlan srcMac: 0x00:0x00:0x00 IPv4 TTL: 0 iid present: 1 lisp iid: 0 lisp flags: 0 dst Port: 46354 update only l3if: 0 is Sgt: 1 is TTL Prop: 0 L3if LE: 0 (0) Port LE: 276 (0) Vlan LE: 6 (0) Detailed Resource Information (ASIC# 1) ---------------------------------------- Rewrite Data Table Entry, ASIC#:1, rewrite_type:116, RI:40 Src IP: 192.168.3.69 Dst IP: 192.168.3.68 iVxlan dstMac: 0x0c:0x297b:0x3544 iVxlan srcMac: 0x00:0x00:0x00 IPv4 TTL: 0 iid present: 1 lisp iid: 0 lisp flags: 0 dst Port: 46354 update only l3if: 0 is Sgt: 1 is TTL Prop: 0 L3if LE: 0 (0) Port LE: 276 (0) Vlan LE: 6 (0) ==============================================================
The forwarding decision for the original ICMP Packet directed to Client-2 - IP:10.90.10.20 points to the LISP interface:
EDGE-1#sh ip cef vrf Campus_VN 10.90.10.20 10.90.10.0/24 attached to LISP0.4100
Once the original packet has been encapsulated and the proper VxLAN headers have been appended to it, you now have to check the forwarding decision based on the top VxLAN fields. In this case the destination IP address 192.168.3.68 which is the RLOC from remote Edge-2 switch:
EDGE-1#show ip route 192.168.3.68 Routing entry for 192.168.3.68/32 Known via "isis", distance 115, metric 30, type level-1 Redistributing via isis Advertised by isis (self originated) Last update from 192.168.3.74 on TenGigabitEthernet1/1/1, 01:15:14 ago Routing Descriptor Blocks: * 192.168.3.74, from 192.168.3.68, 01:15:14 ago, via TenGigabitEthernet1/1/1 Route metric is 30, traffic share count is 1 EDGE-1#show ip cef 192.168.3.68 detail 192.168.3.68/32, epoch 3, per-destination sharing Adj source: IP midchain out of Tunnel0, addr 192.168.3.68 7FEADF30A390 Dependent covered prefix type adjfib, cover 0.0.0.0/0 1 RR source [no flags] nexthop 192.168.3.74 TenGigabitEthernet1/1/1 EDGE-1#show adjacency 192.168.3.68 detail Protocol Interface Address IP Tunnel0 192.168.3.68(4) 0 packets, 0 bytes epoch 0 sourced in sev-epoch 10 Encap length 28 4500000000000000FF113413C0A80345 C0A8034412B512B500000000 Tun endpt <<<< Adjacency type: Tunnel Next chain element: IP adj out of TenGigabitEthernet1/1/1, addr 192.168.3.74 <<<< Upstream connection from Underlay network
In order to reach IP 192.168.3.68, traffic has to go through next-hop 192.168.3.74 over interface Te1/1/1, therefore you also need to check the adjacency for the next-hop IP:
EDGE-1#show ip route 192.168.3.74 Routing entry for 192.168.3.74/31 Known via "connected", distance 0, metric 0 (connected, via interface) Advertised by isis level-2 Routing Descriptor Blocks: * directly connected, via TenGigabitEthernet1/1/1 Route metric is 0, traffic share count is 1 EDGE-1#show ip cef 192.168.3.74 detail 192.168.3.74/32, epoch 3, flags [attached] Interest List: - fib bfd tracking BFD state up, tracking attached BFD session on TenGigabitEthernet1/1/1 Adj source: IP adj out of TenGigabitEthernet1/1/1, addr 192.168.3.74 7FEADEADCFA8 Dependent covered prefix type adjfib, cover 192.168.3.74/31 1 IPL source [no flags] attached to TenGigabitEthernet1/1/1 EDGE-1#show adjacency 192.168.3.74 detail Protocol Interface Address IP TenGigabitEthernet1/1/1 192.168.3.74(40) 0 packets, 0 bytes epoch 0 sourced in sev-epoch 10 Encap length 14 00A3D14415582CABEB4FE6C60800 <<<< Layer-2 Rewrite Information for the traffic forwarded through this adjacency L2 destination address byte offset 0 L2 destination address byte length 6 Link-type after encap: ip ARP EDGE-1#show interfaces tenGigabitEthernet 1/1/1 | in bia Hardware is Ten Gigabit Ethernet, address is 2cab.eb4f.e6c6 (bia 2cab.eb4f.e6c6) EDGE-1#show ip arp Te1/1/1 Protocol Address Age (min) Hardware Addr Type Interface Internet 192.168.3.74 98 00a3.d144.1558 ARPA TenGigabitEthernet1/1/1
In order to verify how an incoming VxLAN packet is handled by the switch, first you need to understand how the traffic is decapsulated when is received on Tunnel0 virtual interface. Remember the Interface Manager (IFM) command you collected on a previous step? Back then, you checked the information on the first portion of the command output, now you have to verify the second part of the command output, the one that relates to Decap Information:
EDGE-1#show platform software fed switch active ifm if-id 64 Interface IF_ID : 0x0000000000000040 Interface Name : Tunnel0 Interface Block Pointer : 0x7f9e1c91d5c8 <snip> Decap Information TT HTM handle : 0x7f9e1c9c40e8 Port Information Handle ............ [0xcc00005d] Type .............. [L2-LISP-top] Identifier ........ [0x40] Unit .............. [64] L2 LISP Topology interface Subblock Switch Num : 1 Asic Num : 0 Encap PORT LE handle : 0x7f9e1c9befe8 Decap PORT LE handle : 0x7f9e1c91d818 L3IF LE handle : 0x7f9e1c9bf2b8 SI handle decap : 0x7f9e1c9c8568 <<<< Station Index Handle DI handle : 0x7f9e1c2f4a48 RI handle : 0x7f9e1c9c4498 <<<< Rewrite Index Handle RCP Service ID : 0x0 GPN : 3401 TRANS CATCH ALL handle : 0x7f9e1c2f5698 Port L2 Subblock Enabled ............. [No] Allow dot1q ......... [No] Allow native ........ [No] Default VLAN ........ [0] Allow priority tag ... [No] Allow unknown unicast [No] Allow unknown multicast[No] Allow unknown broadcast[No] Allow unknown multicast[Enabled] Allow unknown unicast [Enabled] Protected ............ [No] IPv4 ARP snoop ....... [No] IPv6 ARP snoop ....... [No] Jumbo MTU ............ [0] Learning Mode ........ [0] Vepa ................. [Disabled] Port QoS Subblock Trust Type .................... [0x7] Default Value ................. [0] Ingress Table Map ............. [0x0] Egress Table Map .............. [0x0] Queue Map ..................... [0x0] Port Netflow Subblock Port CTS Subblock Disable SGACL .................... [0x0] Trust ............................ [0x0] Propagate ........................ [0x0] %Port SGT .......................... [1251474769] Ref Count : 2 (feature Ref Counts + 1) IFM Feature Ref Counts FID : 95 (AAL_FEATURE_L2_MULTICAST_IGMP), Ref Count : 1 No Sub Blocks Present
You have to take into consideration two values from this output: The L3 Interface Logical-Entity (L3IF LE) Handle and the Station Index (SI) Handle from the Decap Information section.
In order to verify the features associated to Tunnel0 interface, you need to pull the resource handle information from the associated L3IF LE Handle. In this output you can see the features enabled on that interface in a boolean logic, for example: LISP_VXLAN_ENABLE_IPV4 feature is enabled on this tunnel interface.
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1c9bf2b8 1 | in VXLAN LEAD_L3IF_LISP_VXLAN_ENABLE_IPV4 value 1 Pass <<<< ASIC 0 LEAD_L3IF_LISP_VXLAN_ENABLE_IPV6 value 0 Pass LEAD_L3IF_LISP_VXLAN_ENABLE_IPV4 value 1 Pass <<<< ASIC 1 LEAD_L3IF_LISP_VXLAN_ENABLE_IPV6 value 0 Pass
You need to use the resource handle command one more time, in order to check the Station Index (SI Handle) and get the Rewrite Index (RI) and Destination Index (DI) used by the traffic that is received over the Tunnel0 interface and that needs to be decapsulated by the switch before it is sent to its final destination via regular layer-2 forwarding (local MAC address table):
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1c9c8568 1 Handle:0x7f9e1c9c8568 Res-Type:ASIC_RSC_SI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_LISP Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1 priv_ri/priv_si Handle: 0x7f9e1c9c4498Hardware Indices/Handles: index0:0xac mtu_index/l3u_ri_index0:0x0 index1:0xac mtu_index/l3u_ri_index1:0x0 Features sharing this resource:109 (1)] Cookie length: 56 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Station Index (SI) [0xac] RI = 0xa800 <<<< Rewrite Index DI = 0x5012 <<<< Destination Index stationTableGenericLabel = 0 stationFdConstructionLabel = 0x4 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: LD Detailed Resource Information (ASIC# 1) ---------------------------------------- Station Index (SI) [0xac] RI = 0xa800 DI = 0x5012 stationTableGenericLabel = 0 stationFdConstructionLabel = 0x4 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: RD CD ==============================================================
From previous outputs you already know that DI = 0x5012 means internal recirculation, which makes sense, because switch needs to internally recirculate the packet to do the deposition of the VxLAN header. This means that when switch gets a VxLAN packet on the Tunnel interface, that packet needs to be recirculated to remove the VxLAN header to be able to deliver it to its final destination with the use of the Destination MAC address from the original Frame. In order to verify the Rewrite Index, you have to check the resource handle information from the RI Handle collected on Step 1 of this section:
Tip: RI value 43008 from this output must match RI index 0xa800 from previous step (43008 DEC = 0xa800 HEX).
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1c9c4498 1 Handle:0x7f9e1c9c4498 Res-Type:ASIC_RSC_PORT_LE_RI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_LISP Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1 priv_ri/priv_si Handle: 0x7f9e1c9c87f8Hardware Indices/Handles: index0:0xa800 mtu_index/l3u_ri_index0:0x0 index1:0xa800 mtu_index/l3u_ri_index1:0x0 Features sharing this resource:109 (1)] Cookie length: 56 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Rewrite Data Table Entry, ASIC#:0, rewrite_type:114, RI:43008 <<<< 43008 DEC = 0xa800 HEX Port LE handle: 0 Port LE Index: 275 Detailed Resource Information (ASIC# 1) ---------------------------------------- Rewrite Data Table Entry, ASIC#:1, rewrite_type:114, RI:43008 Port LE handle: 0 Port LE Index: 275 ==============================================================
You can use EPC tool to confirm that the packets are encapsulated with the correct VxLAN info when forwarded over the Tunnel0 interface. In order to do this, you just have to set the EPC capture on the physical interfaces that composed Tunnel0 (your underlay connections to the upstream device) and use a filter to catch only the info that is sent to the RLOC of the other Edge switch:
EDGE-1#show ip access-lists TAC Extended IP access list TAC 10 permit ip host 192.168.3.69 host 192.168.3.68 20 permit ip host 192.168.3.68 host 192.168.3.69 EDGE-1#mon cap tac int te1/1/1 both access-list TAC buffer size 100 EDGE-1#show mon cap tac Status Information for Capture tac Target Type: Interface: TenGigabitEthernet1/1/1, Direction: BOTH Status : Inactive Filter Details: Access-list: TAC Buffer Details: Buffer Type: LINEAR (default) Buffer Size (in MB): 100 File Details: File not associated Limit Details: Number of Packets to capture: 0 (no limit) Packet Capture duration: 0 (no limit) Packet Size to capture: 0 (no limit) Packet sampling rate: 0 (no sampling) EDGE-1#mon cap tac start Started capture point : tac
#### Four ICMP Requests from local host 10.90.10.10 to remote host 10.90.10.20 were sent and then the capture was stopped. EDGE-1#mon cap tac stop Capture statistics collected at software: Capture duration - 19 seconds Packets received - 12 Packets dropped - 0 Packets oversized - 0 Bytes dropped in asic - 0 Capture buffer will exists till exported or cleared Stopped capture point : tac EDGE-1#show mon cap tac buffer brief Starting the packet display ........ Press Ctrl + Shift + 6 to exit 1 0.000000 00:0c:29:ef:34:d1 -> 00:0c:29:7b:35:44 ARP 110 Who has 10.90.10.20? Tell 10.90.10.10 <<<< Unicast ARP Request 2 0.000744 00:0c:29:7b:35:44 -> 00:0c:29:ef:34:d1 ARP 110 10.90.10.20 is at 00:0c:29:7b:35:44 3 0.001387 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=66/16896, ttl=128 4 0.131122 00:0c:29:7b:35:44 -> 00:0c:29:ef:34:d1 ARP 110 Who has 10.90.10.10? Tell 10.90.10.20 <<<< Unicast ARP Request 5 0.132059 00:0c:29:ef:34:d1 -> 00:0c:29:7b:35:44 ARP 110 10.90.10.10 is at 00:0c:29:ef:34:d1 6 0.299394 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=66/16896, ttl=128 (request in 3) 7 0.875191 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=67/17152, ttl=128 8 0.875465 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=67/17152, ttl=128 (request in 7) 9 1.889098 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=68/17408, ttl=128 10 1.889384 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=68/17408, ttl=128 (request in 9) 11 2.902932 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=69/17664, ttl=128 12 2.903234 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=69/17664, ttl=128 (request in 11) #### You can also see the entire packet details with 'buffer detailed' option (use a filter for the appropriate Frame number): EDGE-1#show mon cap tac buffer detailed | be Frame 7 Frame 7: 124 bytes on wire (992 bits), 124 bytes captured (992 bits) on interface 0 <snip> [Protocols in frame: eth:ethertype:ip:udp:vxlan:eth:ethertype:ip:icmp:data] Ethernet II, Src: 00:00:00:00:00:00 (00:00:00:00:00:00), Dst: 00:00:00:00:00:00 (00:00:00:00:00:00) <<<< Outer Layer-2 Data (VxLAN header). EPC is collected before outer layer-2 fields are added to the original frame, which is the reason why this section is empty (all-zeroes) Destination: 00:00:00:00:00:00 (00:00:00:00:00:00) Address: 00:00:00:00:00:00 (00:00:00:00:00:00) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Source: 00:00:00:00:00:00 (00:00:00:00:00:00) Address: 00:00:00:00:00:00 (00:00:00:00:00:00) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 192.168.3.69, Dst: 192.168.3.68 <<<< Outer IP Data (VxLAN header) 0100 .... = Version: 4 .... 0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) 0000 00.. = Differentiated Services Codepoint: Default (0) .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0) Total Length: 110 Identification: 0x2204 (8708) Flags: 0x02 (Don't Fragment) 0... .... = Reserved bit: Not set .1.. .... = Don't fragment: Set ..0. .... = More fragments: Not set Fragment offset: 0 Time to live: 255 Protocol: UDP (17) Header checksum: 0xd1a0 [validation disabled] [Good: False] [Bad: False] Source: 192.168.3.69 Destination: 192.168.3.68 User Datagram Protocol, Src Port: 65344 (65344), Dst Port: 4789 (4789) Source Port: 65344 Destination Port: 4789 <<<< VxLAN UDP Port Length: 90 Checksum: 0x0000 (none) [Good Checksum: False] [Bad Checksum: False] [Stream index: 0] Virtual eXtensible Local Area Network Flags: 0x8800, GBP Extension, VXLAN Network ID (VNI) 1... .... .... .... = GBP Extension: Defined .... .... .0.. .... = Don't Learn: False .... 1... .... .... = VXLAN Network ID (VNI): True .... .... .... 0... = Policy Applied: False .000 .000 0.00 .000 = Reserved(R): False Group Policy ID: 0 VXLAN Network Identifier (VNI): 8191 <<<< VNI mapped to L2 Instance ID 8191 for L2-LISP Reserved: 0
########## Original Frame starts here (Inner headers) ########## Ethernet II, Src: 00:0c:29:ef:34:d1 (00:0c:29:ef:34:d1), Dst: 00:0c:29:7b:35:44 (00:0c:29:7b:35:44) Destination: 00:0c:29:7b:35:44 (00:0c:29:7b:35:44) <<<< MAC of Remote host Address: 00:0c:29:7b:35:44 (00:0c:29:7b:35:44) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Source: 00:0c:29:ef:34:d1 (00:0c:29:ef:34:d1) <<<< MAC of Local host Address: 00:0c:29:ef:34:d1 (00:0c:29:ef:34:d1) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 10.90.10.10, Dst: 10.90.10.20 0100 .... = Version: 4 .... 0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) 0000 00.. = Differentiated Services Codepoint: Default (0) .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0) Total Length: 60 Identification: 0x30b7 (12471) Flags: 0x00 0... .... = Reserved bit: Not set .0.. .... = Don't fragment: Not set ..0. .... = More fragments: Not set Fragment offset: 0 Time to live: 128 Protocol: ICMP (1) Header checksum: 0xe138 [validation disabled] [Good: False] [Bad: False] Source: 10.90.10.10 <<<< IP of Local host Destination: 10.90.10.20 <<<< IP of Remote host Internet Control Message Protocol Type: 8 (Echo (ping) request) Code: 0 Checksum: 0x4d18 [correct] Identifier (BE): 1 (0x0001) Identifier (LE): 256 (0x0100) Sequence number (BE): 67 (0x0043) Sequence number (LE): 17152 (0x4300) Data (32 bytes) 0000 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 abcdefghijklmnop 0010 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi Data: 6162636465666768696a6b6c6d6e6f707172737475767761... [Length: 32]
Revision | Publish Date | Comments |
---|---|---|
1.0 |
14-Jun-2023 |
Initial Release |