
Configure Multi-level CA on OpenSSL to
Generate IOS XE Certificates

Contents
Introduction

Prerequisites

Requirements

Components Used

Configure

Overview

Prepare the OpenSSL Configuration File

Create Initial Files for the Certificate Authorities

Create Root CA Certificate

Create Intermediate CA Certificate

Create Device Certificates

Create Cisco IOS XE Device Certificate

Optional - Create Endpoint Certificate

Import Certificate to the Cisco IOS XE device

Verify

Verify Certificate Information on OpenSSL

Troubleshoot

Revocation Check is in Place

Related Information

Introduction

This document describes a method to create a multi-level CA to create general purpose certificates
compatible with Cisco IOS® XE devices.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

How to use the OpenSSL application.•
Public Key Infrastructure (PKI) and digital certificates.•

Components Used

The information in this document is based on these software and hardware versions:

OpenSSL application (version 3.0.2).•
9800 WLC (Cisco IOS XE version 17.12.3).•

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, ensure
that you understand the potential impact of any command.

Configure

Overview

The purpose is to create a two level, local Certificate Authority (CA) with a Root CA and an Intermediate
CA to sign device certificates. Once the certificates are signed, they are imported to the Cisco IOS XE
device.

Note: This document uses Linux specific commands to create and arrange files. The commands are
explained so you can perform the same action on other operating systems where OpenSSL is
available.

Prepare the OpenSSL Configuration File

Create a text file called openssl.conf from your current working directory on the machine OpenSSL is
installed. Copy and paste these lines to provide OpenSSL with the necessary configurations for certificate
signing. You can edit this file to suit your needs.

[ca]
default_ca = IntermCA

[RootCA]

dir = ./RootCA
certs = $dir/RootCA.db.certs
crl_dir = $dir/RootCA.db.crl
database = $dir/RootCA.db.index
unique_subject = yes
new_certs_dir = $dir/RootCA.db.certs
certificate = $dir/RootCA.crt
serial = $dir/RootCA.db.serial
#crlnumber = $dir/RootCA.db.crlserial
private_key = $dir/RootCA.key
RANDFILE = $dir/RootCA.db.rand
name_opt = ca_default
cert_opt = ca_default
############################# Modify default days for certificates signed by Root CA (Intermediate certs only) ##################################
default_days = 360
default_md = sha256
preserve = no
policy = optional_policy

[IntermCA]

dir = ./IntermCA
certs = $dir/IntermCA.db.certs
crl_dir = $dir/IntermCA.db.crl
database = $dir/IntermCA.db.index
unique_subject = yes
new_certs_dir = $dir/IntermCA.db.certs
certificate = $dir/IntermCA.crt
serial = $dir/IntermCA.db.serial
private_key = $dir/IntermCA.key
RANDFILE = $dir/IntermCA.db.rand
name_opt = ca_default
cert_opt = ca_default
Certificate field options
############################# Modify default days for certificates signed by Intermediate CA cert (device certificates)##################################
default_days = 1000
#default_crl_days = 1000
default_md = sha256
use public key default MD
preserve = no
policy = optional_policy

[optional_policy]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied

[req]
default_bits = 2048
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the signed cert
string_mask = nombstr

[req_distinguished_name]
countryName = Country Name
countryName_default = MX
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or province
stateOrProvinceName_default = CDMX

localityName = Locality
localityName_default = CDMX

organizationName = Organization name
organizationName_default = Cisco lab

organizationalUnitName = Organizational unit
organizationalUnitName_default = Cisco Wireless

commonName = Common name
commonName_max = 64

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20

#This section contains the extensions used for the Intermediate CA certificate

[v3_ca]
Extensions for a typical CA
basicConstraints = CA:true
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer:always
subjectAltName = @Intermediate_alt_names

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth, clientAuth

[crl_ext]
CRL extensions.
#authorityKeyIdentifier=keyid:always,issuer:always

#DEFINE HERE SANS/IPs NEEDED for Intermediate CA device certificates
[Intermediate_alt_names]
DNS.1 = Intermediate.example.com
DNS.2 = Intermediate2.example.com

#Section for endpoint certificate CSR generation
[endpoint_req_ext]
subjectAltName = _alt_names

#Section for endpoint certificate sign by CA
[Endpoint]
basicConstraints=CA:FALSE
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always
#Change the key usage according to the certificate usage needs
extendedKeyUsage = clientAuth
subjectAltName = _alt_names

#Define here SANS/IPs needed for Endpoint certificates
[endpoint_alt_names]
DNS.1 = Endpoint.example.com
DNS.2 = Endpoint2.example.com

#Section for IOS-XE device certificate CSR generation
[device_req_ext]
subjectAltName = @IOS_alt_names

#Section for IOS-XE certificate sign by CA
[IOS_cert]
basicConstraints=CA:FALSE
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always
#Change the key usage according to the certificate usage needs
extendedKeyUsage = clientAuth , serverAuth
subjectAltName = @IOS_alt_names

#Define here SANS/IPs needed for IOS-XE certificates
[IOS_alt_names]
DNS.1 = IOSXE.example.com
DNS.2 = IOSXE2.example.com

Create Initial Files for the Certificate Authorities

Create a folder on the current directory called RootCA. Inside it, create 3 more folders called
RootCA.db.tmp, RootCA.db.certs, and RootCA.db.crl.

mkdir RootCA
mkdir RootCA/RootCA.db.tmp
mkdir RootCA/RootCA.db.certs
mkdir RootCA/RootCA.db.crl

Create a file called RootCA.db.serial inside the RootCA folder. This file needs to contain the initial value
for the certificates serial number, 01 is the value selected on this case.

Create a file called RootCA.db.crlserial inside the RootCA folder. This file needs to contain the initial
value for the certificate revocation list number, 01 is the value selected on this case.

echo 01 > RootCA/RootCA.db.serial
echo 01 > RootCA/RootCA.db.crlserial

Create a file called RootCA.db.index inside the RootCA folder.

touch RootCA/RootCA.db.index

Create a file named RootCA.db.rand inside the RootCA folder and populate it with 8192 random bytes to
serve as the seed of the internal random number generator.

openssl rand -out RootCA/RootCA.db.rand 8192

Create a folder on the current directory called IntermCA. Inside it, create 3 more folders called
IntermCA.db.tmp, IntermCA.db.certs, and IntermCA.db.crl.

mkdir IntermCA
mkdir IntermCA/IntermCA.db.tmp
mkdir IntermCA/IntermCA.db.certs
mkdir IntermCA/IntermCA.db.crl

Create a file called IntermCA.db.serial inside the IntermCA folder. This file needs to contain the initial
value for the certificates serial number, 01 is the value selected on this case.

Create a file called IntermCA.db.crlserial inside the IntermCA folder. This file needs to contain the initial
value for the certificate revocation list number, 01 is the value selected on this case.

echo 01 > IntermCA/IntermCA.db.serial
echo 01 > IntermCA/IntermCA.db.crlserial

Create a file named IntermCA.db.index inside the IntermCA folder.

Create a file named IntermCA.db.rand inside the IntermCA folder and populate it with 8192 random
bytes to serve as the seed of the internal random number generator.

touch IntermCA/IntermCA.db.index

Create a file named IntermCA.db.rand inside the IntermCA folder and populate it with 8192 random
bytes to serve as the seed of the internal random number generator.

openssl rand -out IntermCA/IntermCA.db.rand 8192

This is the file structure after the creation of all initial Root and Intermediate CA files.

mariomed@CSCO-W-PF320YP6:/mnt/c/Users/mariomed/radsecfiles1$ tree
.
├── IntermCA
│ ├── IntermCA.db.certs
│ ├── IntermCA.db.crl
│ ├── IntermCA.db.crlserial
│ ├── IntermCA.db.index
│ ├── IntermCA.db.rand
│ ├── IntermCA.db.serial
│ └── IntermCA.db.tmp
├── RootCA
│ ├── RootCA.db.certs
│ ├── RootCA.db.crl
│ ├── RootCA.db.crlserial
│ ├── RootCA.db.index
│ ├── RootCA.db.rand
│ ├── RootCA.db.serial
│ └── RootCA.db.tmp
└── openssl.cnf

Create Root CA Certificate

Run this command to create the private key for the Root CA.

openssl genrsa -des3 -out ./RootCA/RootCA.key 4096

Caution: OpenSSL requires you to provide a passphrase when a key is generated. Keep the
passphrase secret and the generated private key on a secure location. Anyone with access to it can
issue certificates as your Root CA.

Create the root CA self signed certificate using the req command on openSSL. The -x509 flag internally
creates a certificate signing request (CSR) and automatically self-signs it. Edit the -days parameter and
subject alternative name. The perminal prompts you to provide a common name. Ensure the common name
you enter matches the Subject Alternative Name (SAN).

openssl req -new -key ./RootCA/RootCA.key -out ./RootCA/RootCA.crt -config openssl.cnf -x509 -days 3650 -addext "subjectAltName = DNS:RootCA"

OpenSSL Distinguished Name Interactive Prompt

The generated file is called RootCA.crt and is located inside the RootCA folder. This file is the Root CA
certificate.

Create Intermediate CA Certificate

Create folder to store the signed Intermediate CA certificate inside the root folder.

mkdir ./RootCA/RootCA.db.certs/IntermCA

Create private key for intermediate certificate.

openssl genrsa -des3 -out ./RootCA/RootCA.db.certs/IntermCA/IntermCA.key 4096

Caution: OpenSSL requires you to provide a passphrase when a key is generated. Keep the
passphrase secret and the generated private key on a secure location. Anyone with access to it can
issue certificates as your Intermediate CA.

Create intermediate CA Certificate Signing Request. The terminal prompts you to enter the certificate
information.

openssl req -new -key ./RootCA/RootCA.db.certs/IntermCA/IntermCA.key -out ./RootCA/RootCA.db.certs/IntermCA/IntermCA.csr -config openssl.cnf

Sign Intermediate CSR with the RootCA section of the openssl.cnf file.

openssl ca -config openssl.cnf -name RootCA -extensions v3_ca -out ./RootCA/RootCA.db.certs/IntermCA/IntermCA.crt -infiles ./RootCA/RootCA.db.certs/IntermCA/IntermCA.csr

The generated file is called IntermCA.crt and is located inside the RootCA folder. This file is the Root CA
certificate.

Move the intermediate certificate and key to its own folder that you created as part of the initial files for the
intermediate CA.

cp ./RootCA/RootCA.db.certs/IntermCA/IntermCA.crt ./RootCA/RootCA.db.certs/IntermCA/IntermCA.key ./IntermCA/

This is the file structure after the creation of the private key and certificates for both initial Root and
Intermediate CAs.

mariomed@CSCO-W-PF320YP6:/mnt/c/Users/mariomed/radsecfiles$ tree
.
├── IntermCA
│ ├── IntermCA.crt <------Intermediate CA certficate
│ ├── IntermCA.db.certs
│ ├── IntermCA.db.crl
│ ├── IntermCA.db.crlserial
│ ├── IntermCA.db.index
│ ├── IntermCA.db.rand
│ ├── IntermCA.db.serial
│ ├── IntermCA.db.tmp
│ └── IntermCA.key <------Intermediate CA private key
├── RootCA
│ ├── RootCA.crt <------Root CA certficate
│ ├── RootCA.db.certs
│ │ ├── 01.pem
│ │ └── IntermCA
│ │ ├── IntermCA.crt
│ │ ├── IntermCA.csr
│ │ └── IntermCA.key
│ ├── RootCA.db.crl
│ ├── RootCA.db.crlserial
│ ├── RootCA.db.index
│ ├── RootCA.db.index.attr
│ ├── RootCA.db.index.old
│ ├── RootCA.db.rand
│ ├── RootCA.db.serial
│ ├── RootCA.db.serial.old
│ ├── RootCA.db.tmp
│ └── RootCA.key <------Root CA private key
└── openssl.cnf

Create Device Certificates

Create Cisco IOS XE Device Certificate

Create a new folder to store the Cisco IOS XE device certificates.

mkdir ./IntermCA/IntermCA.db.certs/IOSdevice

Create the device private key IOSdevice.key and device CSR IOSdevice.csr. Use section device_req_ext
to add the SANs under said section onto the CSR.

openssl req -newkey rsa:4096 -sha256 -keyout ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.key -nodes -config openssl.cnf -out ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.csr -reqexts device_req_ext

Modify the opnessl.cnf file [IOS_alt_names] section so that the common name you provide on the CSR
matches the SAN.

#Define here SANS/IPs needed for IOS-XE certificates
[IOS_alt_names]
DNS.1 = IOSXE.example.com
DNS.2 = IOSXE2.example.com

Sign IOS XE device CSR with intermediate CA IntermCA section. Use -config to point to the openSSL
configuration file and -extensions to point to the IOS_cert section. This keeps the SAN on the signed
certificate.

openssl ca -config openssl.cnf -extensions IOS_cert -name IntermCA -out ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.crt -infiles ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.csr

After this step, you have created a valid certificate for the IOS XE device called IOSdevice.crt with
matching private key IOSdevice.key.

Optional - Create Endpoint Certificate

At this point, you have deployed a local CA and issued one certificate for your IOS XE device. You can also
use this CA to generate endpoint identity certificates. These certificates are valid too, for example, perform
Local EAP authentication on 9800 Wireless LAN controllers or even dot1x authentication with RADIUS
servers. This section helps you to generate an endpoint certificate.

Create a folder to store the endpoint certficates.

mkdir ./IntermCA/IntermCA.db.certs/Endpoint

Modify the openSSL.cnf file [endpoint_alt_names] section so that the common name you provide on the
CSR matches the SAN.

#Define here SANS/IPs needed for Endpoint certificates
[endpoint_alt_names]

DNS.1 = Endpoint.example.com
DNS.2 = Endpoint2.example.com

Create the endpoint private key and WLC CSR with the use of section endpoint_req_ext for SANs.

openssl req -newkey rsa:2048 -keyout ./IntermCA/IntermCA.db.certs/Endpoint/Endpoint.key -nodes -config openssl.cnf -out ./IntermCA/IntermCA.db.certs/Endpoint/Endpoint.csr -reqexts endpoint_req_ext

Sign the Endpoint device certificate.

openssl ca -config openssl.cnf -extensions Endpoint -name IntermCA -out ./IntermCA/IntermCA.db.certs/Endpoint/Endpoint.crt -infiles ./IntermCA/IntermCA.db.certs/Endpoint/Endpoint.csr

Import Certificate to the Cisco IOS XE device

Create a file which contains the Root CA and Intermediate CA on the same file and save it to
./IntermCA/IntermCA.db.certs/WLC/ folder with name certfile.crt as is required for import to the Cisco
IOS XE device.

cat ./RootCA/RootCA.crt ./IntermCA/IntermCA.crt > ./IntermCA/IntermCA.db.certs/IOSdevice/certfile.crt

The 9800 series WLC uses different commands to create the pfx file for certificate import. To create your
pfx file, run one of these commands according to the Cisco IOS XE version.

Refer to Generate and Download CSR Certificates on Catalyst 9800 WLCs for detailed information about
the certificate import process

For versions older than 17.12.1:

openssl pkcs12 -export -macalg sha1 -legacy -descert -out ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.pfx -inkey ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.key -in ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.crt -certfile ./IntermCA/IntermCA.db.certs/IOSdevice/certfile.crt

For version 17.12.1 or later:

openssl pkcs12 -export -out ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.pfx -inkey ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.key -in ./IntermCA/IntermCA.db.certs/IOSdevice/IOSdevice.crt -certfile ./IntermCA/IntermCA.db.certs/IOSdevice/certfile.crt

https://www.cisco.com/c/en/us/support/docs/wireless/catalyst-9800-series-wireless-controllers/213917-generate-csr-for-third-party-certificate.html

Import the IOSdevice.pfx certificate to the Cisco IOS XE device:

WLC# configure terminal
WLC(config)#crypto pki import <trustpoint-name> pkcs12 [tftp://<TFTP-IP>/<cert-filename> | ftp://<FTP-IP>/<cert-filename> | http://<server-IP>/<cert-filename> | bootflash:<cert-filename>] password <cert-password>

Note: Ensure the CA certificates created for this guide are trusted by the devices that need to verify
the device certificate. For example, If the device certificate is used for web admin purposes on the
Cisco IOS XE device, any computer or browser accessing the admin portal needs to have the CA
certificates on its trust store.

Disable revocation check for the certificates as there is no online certificate revocation list the Cisco IOS XE
device can check from the CA you have deployed.
You must disable it on all the trustpoints that are part of the verification path. The root CA trustpoint has the
same name as the Intermediate/Device trustpoint with the string -rrr1 appended at the end.

9800#configure terminal

9800(config)#crypto pki trustpoint IOSdevice.pfx
9800(config)#revocation-check none
9800(config)#exit

9800(config)#crypto pki trustpoint IOSdevice.pfx-rrr1
9800(config)#revocation-check none
9800(config)#exit

Verify

Verify Certificate Information on OpenSSL

To verify the certificate information for the created certificates, on the Linux terminal run the command:

openssl x509 -in <path to cert> -text -noout

It shows the full certificate information.

Cisco IOS XE Device Certificate Information as Shown by OpenSSL

Verify Certificate Information on the Cisco IOS XE Device.

Command show crypto pki certificates verbose prints the certificate information of all available certificates on the
device.

9800#show crypto pki certificates verbose
CA Certificate <------Type of certificate
 Status: Available
 Version: 3
 Certificate Serial Number (hex): 2A352E27C69021ECE1AA61751CA1F233E0636FB1
 Certificate Usage: General Purpose
 Issuer: <-------------DN for issuer
 cn=RootCA
 ou=Cisco Wireless
 o=Cisco lab
 l=CDMX
 st=CDMX
 c=MX

 Subject: <--------------DN for subject
 cn=RootCA
 ou=Cisco Wireless
 o=Cisco lab
 l=CDMX
 st=CDMX
 c=MX
 Validity Date: <--------Validity date
 start date: 14:54:02 Central Jul 22 2024
 end date: 14:54:02 Central Jul 20 2034
 Subject Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit) <--------------Key size
 Signature Algorithm: SHA256 with RSA Encryption
 Fingerprint MD5: 432021B5 B4BE15F5 A537385C 4FAB9A94
 Fingerprint SHA1: 86D18427 BE619A2A 6C20C314 9EDAAEB2 6B4DFE87
 X509v3 extensions:
 X509v3 Subject Key ID: 57DEEBD8 3214CA05 176F0CD6 6C842EBC 9ABFF7D8
 X509v3 Basic Constraints:
 CA: TRUE
 X509v3 Subject Alternative Name:
 RootCA <------------SANs
 IP Address :
 OtherNames :
 X509v3 Authority Key ID: 57DEEBD8 3214CA05 176F0CD6 6C842EBC 9ABFF7D8
 Authority Info Access:
 Cert install time: 16:42:09 Central Jul 22 2024
 Associated Trustpoints: WLC.pfx-rrr1 <----------Associated trustpoint
 Storage: nvram:RootCA#6FB1CA.cer

Troubleshoot

Revocation Check is in Place

When the certificates are imported to Cisco IOS XE, the newly created trustpoints have revocation check
enabled. If a certificate is presented to the device that needs to use the imported certificate trustpoints for
validation, the device searches for a non-existent Certificate Revocation List and fails. The message is
printed on the terminal.

Jul 17 21:50:39.068: %PKI-3-CRL_FETCH_FAIL: CRL fetch for trustpoint WLC1.pfx failed
 Reason : Enrollment URL not configured.

Ensure each trustpoint in the verification path for the certificates contains the command revocation-check none.

Related Information

Generate and Download CSR Certificates on Catalyst 9800 WLCs•
Configure CA Signed Certificates with IOS XE PKI•
Security and VPN Configuration Guide, Cisco IOS XE 17.x•
Understand Certificate Information to Create a Chain for 9800 WLC•

https://www.cisco.com/c/en/us/support/docs/wireless/catalyst-9800-series-wireless-controllers/213917-generate-csr-for-third-party-certificate.html
https://www.cisco.com/c/en/us/support/docs/security-vpn/public-key-infrastructure-pki/220422-configure-ca-signed-certificates-with-io.html
https://www.cisco.com/c/en/us/td/docs/routers/ios/config/17-x/sec-vpn/b-security-vpn/m_sec-deploy-rsa-pki-0.html#GUID-44796FDC-72A0-4240-895A-CCA9DB62CAE6
https://www.cisco.com/c/en/us/support/docs/wireless/catalyst-9800-series-wireless-controllers/221946-understand-certificate-information-to-cr.html

