
C H A P T E R 2

Cisco StadiumVision Mobile API for Apple iOS

First Published: May 26, 2015
Revised: June 12, 2015

This chapter describes the Cisco StadiumVision Mobile SDK Release 2.1 for Apple iOS, and contains
the following sections:

• Introduction to Cisco StadiumVision Mobile SDK for iOS, page 2-1

• Cisco StadiumVision Mobile and iOS Developer Tools, page 2-2

• Download and Unpack the SDK, page 2-3

• Getting Started with the iOS Sample App, page 2-3

– Compile the Sample App, page 2-4

– Customize the Sample App, page 2-5

– Embed the Cisco StadiumVision Mobile SDK in an Existing App, page 2-6

• How Cisco StadiumVision Mobile Fits into the iOS Framework, page 2-10

• Cisco StadiumVision Mobile Methods and Functions for iOS, page 2-14

• Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples,
page 2-26

– Video Player View Controller Customization, page 2-28

– Video Channels, page 2-29

– Data Channels, page 2-31

• EVS C-Cast Integration, page 2-32

Introduction to Cisco StadiumVision Mobile SDK for iOS
The Cisco StadiumVision Mobile iOS SDK contains the following components bundled together:

• A set of static libraries, header files

• Sample app (with a complete Xcode project) and SDK video player

• API documentation (Doxygen build)

The API uses Objective-C classes and method calls to access the StadiumVision Mobile data distribution
and video playback functionality within the StadiumVision Mobile iOS SDK library.
2-1
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile and iOS Developer Tools
Table 2-1 describes the mobile operating system versions supported by the Cisco StadiumVision Mobile
SDK.

Table 2-1 Mobile OS Support

For additional information, refer to the Cisco StadiumVision Mobile Release Notes available from
Cisco.com at:

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html

Cisco StadiumVision Mobile and iOS Developer Tools
Table 2-2 lists the various iOS SDK build environment requirements.

Requirements

• Download and install the Apple Xcode IDE.

• In order to build and run the project, you must join or be an existing member of the Apple iOS
Developer Program. Additional information is available at:

https://developer.apple.com/programs/ios/

• Latest Cisco StadiumVision Mobile SDK tar.bz2 file, contact your Cisco account team for details as
to how to become part of the Cisco StadiumVision Mobile SDK partner program.

Note Beginning February 1, 2015, new iOS apps submitted to the App Store must include 64-bit support and
be built with the iOS 8 SDK. Apps that are updated will also need to follow the same requirements
beginning on June 1, 2015. It is recommended you use Xcode 6.x to support iOS 8 for new and existing
apps.

OS

Apple iOS

5.x 6.x 7.x 8.x

Cisco StadiumVision Mobile SDK Release 2.1 No No Yes Yes

Cisco StadiumVision Mobile SDK Release 2.0 No Yes Yes Yes

Table 2-2 Apple iOS Build Environment Requirements

Tool Version Description URL

Mac OSX 10.10 A Mac is required to build an iOS application which
includes the StadiumVision Mobile iOS SDK.

http://www.apple.com

Xcode 6.1 Apple development IDE and tool kit. http://developer.apple.com/xcode
2-2
Cisco StadiumVision Mobile SDK Programmer’s Guide

https://developer.apple.com/xcode/downloads/
http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html
https://developer.apple.com/programs/ios/

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Download and Unpack the SDK
Download and Unpack the SDK

Step 1 Download StadiumVisionMobileSample-ios-VERSION-RELEASE.tar.bz2. If you do not have this
file, contact your Cisco account team for details as to how to become part of the Cisco StadiumVision
Mobile SDK partner program.

Step 2 Extract the downloaded package into a directory. Table 2-3 lists the extracted content and includes a
brief description.

Note The Cisco StadiumVision Mobile SDK for iOS Release 2.1 does not include "libvoCTS.a" and
"voVidDec.dat." These files are no longer required in Release 2.1.

Note The clean.stream file that comes bundled with the SDK contains just one video channel. To provide app
developers with additional ways to test multiple channels, an additional set of clean.stream files is
available. For additional information refer to “Testing Your Cisco StadiumVision Mobile App” section
on page 1-8.

Step 3 Open the API documentation available in the Doxygen build that is downloaded with the SDK. Navigate
to the extracted folder contents, open the html folder > double-click index.html to launch the
documentation in a web browser.

Getting Started with the iOS Sample App
The Cisco StadiumVision Mobile SDK provided to app developers includes the source code for a iOS
Sample app. The purpose of the Sample app is to demonstrate what is possible and to enable a new app
developer to quickly get a working app up and running.

Table 2-3 Cisco StadiumVision Mobile SDK File Content

Contents Description

clean.stream Sample stream for the stream sender

Default-568h@2x.png Default theme graphic

html/ Contains Doxygen API documentation that is accessible
by opening the index.html file in a web browser

Makefile Text file referenced by the make command

Readme.txt File that contains information to get started

StadiumVisionMobile/ SVM header files and static library

StadiumVisionMobileSample/ Source code to the sample application

StadiumVisionMobileSample.xcodeproj Xcode project used to build the sample application

StadiumVisionMobileSender/ Stream sender add-on to the API

UnitTests/ Folder for unit tests
2-3
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Note Before creating a new app, review the Cisco StadiumVision Mobile SDK Best Practices, page 11-9.

Compile the Sample App

Step 1 Launch Xcode.

Step 2 Under File > Open > locate and select StadiumVisionMobileSample.xcodeproj from the extracted
folder contents. Click Open.

Step 3 Select the active scheme (iPhone 5 for example) from the iOS Simluator list as shown in Figure 2-1 (1).
To run the Sample app from an external device, connect the device to your computer and then select the
device from the iOS Simulator list.

Step 4 Click the Build and then run the current scheme arrow to build and run the Sample app with the
selected scheme as shown in Figure 2-1 (2).

Figure 2-1 Xcode—Set and Run the Active Scheme

Note If the external device you want to test on does not appear in the iOS Simulator list, be sure you’ve added
it to the list of iOS devices in the iOS Developer Program. Cisco StadiumVision Mobile SDK Release
2.1 supports iOS 64-bit, however the SVM SDK for iOS only includes support for the 32-bit simulator
and does not provide 64-bit simulator support.

Step 5 If the build was successful, a message appears followed by the Sample app launching in a new iOS
Simulator window or on the external device as shown in Figure 2-2.
2-4
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Figure 2-2 Xcode—Building the Sample App

Step 6 Test the Sample app.

Customize the Sample App
There are many ways to customize the Cisco StadiumVision Mobile Sample app including customizing
the Default-568h@2x.png graphic file to include a logo and specific colors.

Cisco Sample app Customized Video Player

The Sample app customized video player has the following properties:

• Implemented as "MyVideoViewController".

• Extends the "SVMVideoViewController" class.

• Handles all video overlays and gestures.

• Single-tap gesture and "Back", "Rewind"/"Live" overlay buttons.

• Two-finger double-tap gesture and stats overlay.

• Uses the "MyVideoViewController~iphone.xib" to layout the screen.

• Located in the "StadiumVisionMobileSample" Xcode project folder.

The video view shown in Interface Builder is connected to the "videoView" property and is of class type
"MyVideoView".
2-5
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Embed the Cisco StadiumVision Mobile SDK in an Existing App
Integration Checklist

The following list outlines integration steps for using the Cisco StadiumVision Mobile SDK.

1. Supported iOS version

– Set the app’s iOS version target set to iOS v4.0 or above.

2. Copy configuration files

– Copy the "cisco_svm.cfg" and "vompPlay.cfg" config files, and the "voVidDec.dat" license file
into the Xcode project.

3. Copy libraries

– Copy the "libStadiumVisionMobile.a" static library into the Xcode project.

Note The Cisco StadiumVision Mobile SDK for iOS Release 2.1 does not include "libvoCTS.a" that
was previously included. This file is no longer required in Release 2.1.

4. Include at least one objective C++ file in your project. We recommend renaming "main.m" to
"main.mm".

5. Set the Xcode Project "Build Settings"

Add the required linker flag in Xcode using Build Settings > Linking > Other Linker Flags > Add.
The required Xcode "Other Linker Flags" settings are shown in Figure 2-3.

– Add the "-ObjC" flag to the "Other Linker Flags" build setting. This ensures all Objective-C
categories are loaded from the StadiumVision Mobile static library.

Figure 2-3 Xcode Other Linker Flags

Figure 2-4 shows the Xcode build settings that apply to both the project and target settings.
2-6
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Figure 2-4 Xcode Build Settings

Note The standard architectures list may or may not include armv7s depending on the Xcode version you are
using.

Figure 2-5 shows the settings for generating position dependent and position independent code.

Figure 2-5 Xcode Build Settings—Position Dependent and Independent Code Generation
2-7
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Figure 2-6 shows the Apple LLVM language settings.

Figure 2-6 Xcode Build Setting—Specify Apple LLVM 6.0 - Language C++

Note If using Xcode version 5 or earlier, set "Apple LLVM 5.1 - Language - C++" > "C++ Standard Library"
to "libstdc++ (GNU C++ standard library)". Applications that target iOS 6 and earlier do not need to
make this change.

6. Include required iOS libraries by adding frameworks in the target build phases pane of the Xcode
project, under "Link Binary With Libraries" section, as shown in Figure 2-7. A full list of required
libraries is listed below Figure 2-7.

Figure 2-7 Adding Frameworks in Xcode

Required iOS Libraries

• EventKit.framework

• MobileCoreServices.framework

• AVFoundation.framework

• CoreText.framework

• CFNetwork.framework

• SystemConfiguration.framework
2-8
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
• libresolv.dylib

• UIKit.framework

• Foundation.framework

• ExternalAccessory.framework

• CoreMedia.framework

• CoreGraphics.framework

• AudioToolbox.framework

• OpenGLES.framework

• QuartzCore.framework

• Security.framework

• MediaPlayer.framework

• libz.dylib

• libStadiumVisionMobile.a

• libStadiumVisionMobileSender.a

Configuration Files

There are two configuration files that must be bundled with any iOS app using the StadiumVision Mobile
SDK, as listed in Table 2-4.

Table 2-4 Configuration Files

Note The Cisco StadiumVision Mobile SDK for iOS does not include "voVidDec.dat" that was previously
included. This file is no longer required in Release 2.1.

Configuration File Name Description

"cisco_svm.cfg" The Cisco StadiumVision Mobile SDK configuration file that contains the "Field-of-Use"
parameters and some optional Wi-Fi network debugging information. The three
"field-of-use" properties in the "cisco_svm.cfg" configuration file that need to be
configured for each StadiumVision Mobile application are:

• Venue Name

• Content Owner

• App Developer

"vompPlay.cfg" Video decoder configuration file that contains the tuned decoding parameters. These
settings should never be changed. Any changes could result in poor video playback.
2-9
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Field of Use Configuration

There are three "field-of-use" (also known as the triplet key) properties in the "cisco_svm.cfg"
configuration file that need to be configured for each StadiumVision Mobile application. These three
fields must match the channel settings in the Cisco StadiumVision Mobile Streamer for the channels to
be accessible by the application:

{
 "license": {
 "venueName": "Stadium-A",
 "contentOwner": "Multi-Tenant Team-B",
 "appDeveloper": "Vendor-C"
 }
}

Wi-Fi Access Point Configuration

The "cisco_svm.cfg" configuration file can optionally include an array of Wi-Fi AP information that will
be used by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example
Wi-Fi AP info entry in the "cisco_svm.cfg" configuration file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

How Cisco StadiumVision Mobile Fits into the iOS Framework

Client Application Integration Overview
Figure 2-8 illustrates the high-level view of the Cisco StadiumVision iOS API libraries and common
framework components. The left side of the graphic represents how to modify the sample application,
and the right represents how the SDK is packaged.
2-10
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Figure 2-8 Cisco StadiumVision Mobile iOS SDK Components

iOS Model View Controller (MVC) Design Pattern
The Model View Controller (MVC) design pattern separates aspects of an application into three distinct
parts and defines how the three communicate. Figure 2-9 illustrates the Apple iOS MVC. As the name
implies, the application is divided into three distinct parts: Model, View and Controller. The main
purpose for MVC is reusability where you can reuse the same model for different views.

Figure 2-9 MVC Design Pattern

Cisco StadiumVision Mobile iOS API Class Overview
The singleton "StadiumVisionMobile" class provides the top-level API to start, configure, and stop the
framework. "SVMVideoViewController" classes are provided to play the video channels and to allow
for customization. Figure 2-10 illustrates the Cisco StadiumVision Mobile API classes.
2-11
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Figure 2-10 Cisco StadiumVision Mobile iOS API Classes

Video View Controller Inheritance
The iOS "UIViewController" and "UIView" classes are used as base classes. The customer application
can extend the Cisco StadiumVision Mobile classes. Figure 2-11 illustrates the UIViewController and
UIView classes.

Figure 2-11 Cisco StadiumVision Mobile Video Classes

Cisco StadiumVision Mobile Application Classes
The Cisco StadiumVision Mobile application classes:

• Extends and customizes the SVMVideoViewController class.

• Adds a UI overlay for controlling video playback (play, stop, close).

• Adds a UI overlay for displaying Cisco StadiumVision Mobile stats.

• Handles gestures to display UI overlays with the MyVideoViewController class.
2-12
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Figure 2-12 Cisco StadiumVision Mobile Sample Application Classes

Customer Application Roles

Figure 2-13 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlays

Figure 2-13 Customer Application Responsibilities
2-13
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Cisco StadiumVision Mobile Methods and Functions for iOS

Cisco StadiumVision Mobile iOS API Summary

Table 2-5 summarizes the iOS API library. Detailed API information is available in documentation
Doxygen build that is downloaded with the SDK. Navigate to the extracted folder contents, open the
html folder > double-click index.html to launch the documentation in a web browser.

Table 2-5 Cisco StadiumVision Mobile iOS API Summary

Return Type API Method Name API Method Description

BOOL isConnectedToVenue Gets whether the device is currently inside or outside of the
venue.

NSArray* getDataChannelListArray Gets a snapshot array of the currently available data
channels.

NSArray* getFileChannelListArray Gets a snapshot array of the currently available file
channels.

NSArray* getVideoChannelListArray Gets a snapshot array of the currently available video
channels.

NSArray* getStreamerArray Gets an array of detected SVM Streamer servers as
‘SVMStreamer’ objects

NSDictionary* getConfig Gets the SDK configuration at run-time.

NSDictionary* stats Gets an NSDictionary of current SVM SDK stats as a
dictionary of name/value pairs.

Note Stats are currently only available for the video
channel (not data channels).

NSInteger* getFileStatusfor Filename:forChannel: Gets the filesystem filename status for any channel.

NSInteger* getFileStatusforFilename:forChannel
Name:

Gets the filesystem filename status for any channel name.

NSMutableDictionary* getFileDistributionTable: Gets the file distribution table details.

NSString* getFileDistributionLocalFilename:for
Channel:

Gets the local filesystem filename for any object given its
URI and the file channel.

NSString* getFileDistributionLocalFilename:for
ChannelName:

Gets local filesystem filename for any object given its URI
and the file channel name.

NSString* getDeviceUUID Gets the device UUID generated by the SVM SDK and is
documented in the iOS SVM header file.

NSString* getAppSessionUUID Gets the app session UUID that is generated by the SVM
SDK. This UUID uniquely identifies each time the SDK is
started and is used for consistent statistics collection and
reporting.

NSString* getVideoSessionUUID Gets the video session UUID.

NSUInteger getServiceDownReasonsBitmap Gets the bitmap of reasons why the service state was down.

StadiumVisionMobile* sharedInstance Gets a reference to the API singleton class used for all API
calls.
2-14
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
SVMServiceState getServiceState Gets the current SVM service state.

SVMStatus* addDataChannelListDelegate: Registers a callback delegate to receive all data channel list
updates.

SVMStatus* addDataChannelObserver: Registers an observer class to receive data for a particular
data channel.

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data updates for a
particular data channel.

SVMStatus* addDataChannelObserver:forChannel
Name:

Registers an observer class to receive all data updates for a
particular data channel name.

SVMStatus* addFileChannelListDelegate: Registers to callback delegate to receive all file channel list
updates.

SVMStatus* addFileChannelObserver:forChannel: Registers an observer class to receive all file updates for a
particular file channel.

SVMStatus* addFileChannelObserver:forChannelN
ame:

Registers an observer class to receive all file updates for a
particular file channel name.

SVMStatus* addVideoChannelListDelegate: Registers a callback delegate to receive all video channel
list updates.

SVMStatus* allowAllStreamers Allows all Streamers to be processed by the SDK.

SVMStatus* allowPlaybackWhenViewDisappears Allows the video player to continue rendering the channels
when the video player view has lost focus.

SVMStatus* allowStreamers: Allows only specific Streamers in a given array to be
processed by the SDK.

SVMStatus* disableQualityMonitoring Disables quality monitoring within the SDK.

SVMStatus* enableQualityMonitoring Enables quality monitoring within the SDK.

SVMStatus* initSDK Initializes the SDK.

SVMStatus* loadConfigFile Loads the security configuration data.

SVMStatus* removeDataChannelListDelegate: Unregisters the callback delegate from receiving the data
channel list updates.

SVMStatus* removeDataChannelObserver: Unregisters an observer class from receiving data for a
particular data channel.

SVMStatus* removeDataChannelObserver:forChan
nel:

Unregisters an observer class from receiving any data
updates for a particular data channel.

SVMStatus* removeDataChannelObserver:forChan
nelName:

Unregisters an observer class from receiving any data
updates for a particular data channel name.

SVMStatus* removeFileChannelListDelegate: Unregisters the callback delegate from receiving the file
channel list updates.

SVMStatus* removeFileChannelObserver:forChan
nel:

Unregisters an observer class from receiving any file
updates for a particular file channel.

SVMStatus* removeFileChannelObserver:forChan
nel:Name:

Unregisters an observer class from receiving any file
updates for a particular file channel name.

Table 2-5 Cisco StadiumVision Mobile iOS API Summary (continued)

Return Type API Method Name API Method Description
2-15
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Return Status Object

Each API call returns a SVMStatus object whenever applicable. Table 2-6 lists the SVMStatus object
fields.

Table 2-6 SVMStatus class

Table 2-7 lists the hash keys and description for the Stats API.

SVMStatus* removeVideoChannelListDelegate: Unregisters the callback delegate from receiving the video
channel list updates.

SVMStatus* setConfig: Sets the SDK configuration at run time.

SVMStatus* setConfigWithString: Sets the SDK configuration at run time with the config
JSON string.

SVMStatus* setLogLevel: Sets the logging output level of the SDK, with the
"DEBUG" level being more verbose than the "INFO" level.

SVMStatus* setStatsHookDelegate: Sets the callback stats hook delegate.

SVMStatus* shutdown Stops the SVM SDK.

SVMStatus* start Starts the SVM SDK and any SVM background threads and
component managers.

SVMStatus* version Gets the SVM version string.

SVMWifiInfo* wifiInfo Returns the current Wi-Fi network connection information.
This information gets collected in the statistics information
that gets uploaded to the Reporter server.

void onData Implemented by the customer app to support the
"SVMDataObserver" protocol. This delegate method is
used as a callback from the SVM SDK. Each callback from
the SDK to the customer app provides a received data
message on the given data channel, delivered as a byte array
(NSData).

Table 2-5 Cisco StadiumVision Mobile iOS API Summary (continued)

Return Type API Method Name API Method Description

Type BOOL NSString

Property isOk errorString

Description
Boolean indicating whether the API call was
successful or not.

If the API call was not successful (isOk == NO),
this string describes the error.

Example Usage

// make an api call
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
SVMStatus status = svm.start();
// if an error occurred
if (status.isOk == NO) {
// display the error description
NSLog(@"Error occurred: %@" + status.errorString);
2-16
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Table 2-7 Stats API Hash Keys and Descriptions

Stats Hash Key Stats Description

announcement_session_id Video session announcement ID.

announcement_session_title Session announcement name.

compressedChannelAnnouncementsReceived The number of compressed channel announcement messages received.

num_channel_announcement_igmp_restarts The number if IGMP restarts performed on the channel announcement
listener.

num_channel_announcement_version_mismatches The number of channel announcements received from an incompatible
Streamer version.

num_channel_announcements_received Total number of multicast channel announcement messages received.

num_dropped_video_frames Total number of video frames dropped.

num_license_key_mismatches The number of channel announcements received where the license keys
did not match.

num_ts_discontinuities Total number of MPEG2-TS packet discontinuities.

protection_windows Total number of protection windows sent.

session_link_indicator Health of the Wi-Fi network connection. Ranges from 0 (poor) to 10
(excellent).

session_uptime Length of time the session has been active (in seconds).

total_num_bytes_written Total number of video bytes played.

window_error Total number of protection windows with more packets per window
than can be supported by Cisco StadiumVision Mobile.

window_no_loss Total number of protection windows with no dropped video packets.

window_recovery_failures Total number of protection windows that could not recover dropped
packets. Recovery failure occurs when the number of received repair
packets is less than the number of dropped video packets.

window_recovery_successes Total number of protection windows with recovered video packets.

window_warning Total number of protection windows with more packets per window
than the recommended value.
2-17
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Video Player Activity API Summary

The "SVMVideoVideoController" class can be extended and customized. Table 2-8 lists the
SVMVideoPlayerActivity API methods and descriptions. Additional API methods and details are listed
in the Doxygen build.

Table 2-8 Video View Controller API Summary

NS Notification Events

The StadiumVision Mobile SDK broadcasts the following iOS NSNotification events for use by the
client application (listed in Table 2-9).

Return Type API Method Name API Method Description

SVMStatus* playLive Moves the video playback buffer pointer to the head ("live") offset position
in the video playback buffer. This convenience method acts as a wrapper for
the "seekAbsolute" API method; making "playLive()" equivalent to
"seekAbsolute(0)".

SVMStatus* playVideoChannel: Starts playback of a particular video channel, changing channels on
subsequent calls.

SVMStatus* rewindForDuration: Rewinds the video playback buffer pointer relative to the current playback
buffer offset position.

SVMStatus* seekAbsolute: Moves the video playback buffer pointer relative to the starting "live" video
playback buffer offset position. The SVM SDK currently buffers 30 seconds
of previously played video data that can be used for playing previously
recorded video data.

• A positive duration value moves the video play-head away from the
latest "live" video data in the video history buffer.

• Should a duration be given that is larger than the available size of the
video history buffer, then the SVM SDK moves the video play-head to
the end of the video history buffer.

SVMStatus* seekRelative: Moves the video playback buffer pointer relative to the current video
playback buffer offset position. The SVM SDK currently buffers 30 seconds
of previously played video data that can be used for playing previously
recorded video data.

• A positive duration value forwards the video play-head towards the
latest "live" video data in the video history buffer.

• Should a duration be given (positive or negative) that is larger than the
available size of the video history buffer, then the SVM SDK moves the
video play-head as far as possible within the video history buffer.

void setRenderVideoView: Sets the iOS UI video view where video frames will get rendered.

Table 2-9 NSNotification Event Properties

Event Constant Description

kSVMVideoEventNotification Constant defining the video event generated by the StadiumVision Mobile API.

kSVMVideoOpenState Occurs when the video player initially opens the video channel session.
2-18
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
The following source code registers to receive the Cisco video notifications:

#include "StadiumVisionMobile.h"
// register to handle the video buffering events
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoEvent:)
 name:kSVMVideoEventNotification
 object:nil];

The following source code handles the Cisco video notifications:

#include "StadiumVisionMobile.h"

// video event notification handler
 (void)onVideoEvent:(NSNotification*)notification {
 // get the passed "SVMEvent" object
 SVMEvent *event = [notification object];

// determine the video event type
 switch (event.type) {
 case kSVMEventTypeVideoBufferingActive:
 // activate the UI "buffering" indicator
 break;
 case kSVMEventTypeVideoBufferingInactive:
 // deactivate the UI "buffering" indicator
 break;
 }
}

The following example shows how to subscribe to receive the video player broadcast notifications:

// subscribe to receive video channel state change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoChannelStateChanged:)
 name:kSVMVideoPlayerChannelStateChange
 object:nil];

The following example shows how to parse the video player broadcast notifications for (1) the video
channel name and (2) the video channel state:

// get the video channel state dictionary from the notification
NSDictionary *stateDict = [notify userInfo];

// get the video channel name
NSString *videoChannelName = [stateDict objectForKey:kSVMVideoPlayerChannelNameKey];

// get the video channel state
NSString *videoChannelState = [stateDict objectForKey:kSVMVideoPlayerChannelStateKey];

kSVMVideoPlayState Occurs when the video player starts playing the video channel.

kSVMVideoRewindState Occurs when the video player rewinds (seeks backwards) within the video history
buffer.

kSVMVideoLiveState Occurs when the video player moves the play-head to the beginning "live" position.

kSVMVideoPauseState Occurs when the video player pauses video playback.

kSVMVideoStopState Occurs when the video player stop video playback.

kSVMVideoCloseState Occurs when the video player closes the video channel session.

Table 2-9 NSNotification Event Properties (continued)

Event Constant Description
2-19
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
// determine the video channel state
if ([videoChannelState isEqualToString:kSVMVideoPlayState] == YES) {
 // video player is now playing
 NSLog(@"### VIDEO PLAYER: PLAYING");
} else if ([videoChannelState isEqualToString:kSVMVideoStopState] == YES) {
 // video player is now stopped
 NSLog(@"### VIDEO PLAYER: STOPPED");
}

Video Player State Flags

The SVM video player class ("SVMVideoViewController") provides a set of state flags that the inherited
video player class (ie: "MyVideoViewController") can use to monitor the current video player state:

• BOOL isOpen;

• BOOL isPlaying;

• BOOL isAppActive;

• BOOL isVisible;

• BOOL isBackgroundPlaybackAllowed;

• BOOL isEventsRegistered;

• BOOL isEventHandlersRegistered

Table 2-10 provides a description of each state flag provided by the StadiumVision Mobile video player
("SVMVideoViewController"):

Table 2-10 Video Player State Flags

State Flag Description

isAppActive Boolean flag indicating when the container iOS app is in the
foreground.

isBackgroundPlaybackAllowed Boolean flag indicating if the video player is allowed to continue
rendering the audio and video channels when the video player view
has lost focus ("allowPlaybackWhenViewDisappears").

isEventHandlersRegistered Boolean flag indicating whether the notification event handlers
have been registered.

isEventsRegistered Boolean flag indicating when an event is registered.

isOpen Boolean flag indicating that the video player has opened a session
for video channel playback.

isPlaying Boolean flag indicating when the video player is currently playing
a video channel.

isVisible Boolean flag indicating when the video player view is visible. This
is useful when the video player is allowed to continue playing the
audio / video channels when the video player has lost focus
("allowPlaybackWhenViewDisappears").
2-20
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Video Player Background Audio

Starting Cisco StadiumVision Mobile SDK Release 1.3, the SVM video player
("SVMVideoViewController") provides a mode that allows the video player to continue rendering the
audio and video channels when the video player view has lost focus. This mode allows the audio to still
be played even when the user navigates away from the video player screen (view controller) to a different
app screen; causing the video player to be hidden.

The background audio mode is disabled in the "SVMVideoViewController" by default. The following
example shows how to set the "SVMVideoViewController" mode that allows the video player to continue
rendering audio and video when the "SVMVideoViewController" loses focus (is not visible):

// create the video view controller
self.videoViewController = [[MyVideoViewController alloc] init];

// allow the video player to continue playing when the video view disappears
[self.videoViewController allowPlaybackWhenViewDisappears:YES];

Video Player Channel Inactive Callback

To detect that a currently playing video channel has become invalid (due to Streamer server admin
changes), the SVM video player ("SVMVideoViewController") provides a callback to tell the video
player sub-class (ie: "MyVideoViewController") that the currently playing channel is no longer valid.

When a channel becomes invalid, playback of the video channel is automatically stopped.

To receive these callbacks, the "onCurrentChannelInvalid" method must be overridden by the
'SVMVideoViewController' sub-class (ie: "MyViewViewController"). The following example shows the
method signature and implementation of this overridden callback method:

// OVERRIDDEN by the 'SVMVideoViewController' sub-class; indicates that the current
channel is invalid
- (void)onCurrentChannelInvalid
{
 NSLog(@"Current channel is no longer valid: dismissing video view controller");

 // dismiss this modal video view controller
 [self dismissModalViewControllerAnimated:YES];
}

Receiving Service Up and Down Notifications

Beginning with Release 2.0, Cisco StadiumVision Mobile SDK includes a mechanism to determine if
the Cisco StadiumVision Mobile service is available or not. The SDK provides an indicator to the
application indicating if the StadiumVision Mobile service is up or down. This indication should be used
by the application to indicate to the user whether the StadiumVision Mobile service is available or not.
Service is declared ‘down’ by the SDK when any of the following are true:

• The SVM SDK detects that the video quality is poor.

• The SVM SDK detects that no valid, licensed channels are available.

• The mobile device’s Wi-Fi interface is disabled.

Poor video quality can occur when the user is receiving a weak Wi-Fi signal; causing data loss. There
are two different ways that the iOS app can get the "Service State" from the SVM SDK:

• Register to receive the "Service Up/Down" notifications.

• Fetch the current service state from the SDK on-demand.
2-21
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
When the app receives the "Service Down" notification, the SDK will supply a bitmap containing the
reasons why the service was declared as ‘down’ by the SDK. The ‘reasons’ bitmap is given in Table 2-11:

Note For additional Service Down Notification details, refer to “Cisco StadiumVision Mobile SDK Best
Practices” section on page 1-9.

The following example shows how to register to receive the "Service Up/Down" notifications from the
StadiumVision Mobile SDK:

#import "StadiumVisionMobile.h"

// subscribe to receive service state up / down change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onServiceStateChanged:)
 name:kSVMServiceStateChangedNotification
 object:nil];

// handle the received service state notifications
- (void)onServiceStateChanged:(NSNotification*)notify
{
 // get the service state dictionary from the notification
 NSDictionary *serviceStateDict = [notify userInfo];

 // get the service state integer value
 NSNumber *serviceStateNumber = [serviceStateDict
objectForKey:kSVMServiceStateObjectKey];
 NSUInteger serviceState = [serviceStateNumber unsignedIntegerValue];

 // if the service state is down
 if (serviceState == kSVMServiceStateDown) {
 // service state is down
 NSLog(@"*** SERVICE STATE: DOWN");

 // get the service state down reasons bitmap
 NSNumber *reasonsNumber = [serviceStateDict
objectForKey:kSVMServiceStateChangeReasonsObjectKey];
 NSUInteger reasonsBitmap = [reasonsNumber unsignedIntegerValue];

 // determine the reason(s) why the service state went down
 if (reasonsBitmap & kSVMServiceDownReasonSDKNotRunning) {
 NSLog(@"SERVICE DOWN: SVM SDK was stopped");
 } else if (reasonsBitmap & kSVMServiceDownReasonWiFiDown) {
 NSLog(@"SERVICE DOWN: WiFi connection is down");
 } else if (reasonsBitmap & kSVMServiceDownReasonNoChannels) {
 NSLog(@"SERVICE DOWN: No valid licensed SVM channels available");
 } else if (reasonsBitmap & kSVMServiceDownReasonPoorQuality) {
 NSLog(@"SERVICE DOWN: Poor quality conditions detected");
 }

 // show the service down message

Table 2-11 Service Down Reason Notification

Service Down Reason Constant

Poor video quality networking conditions detected kSVMServiceDownReasonPoorQuality

Wi-Fi connection is down kSVMServiceDownReasonWiFiDown

No valid SVM channels have been detected kSVMServiceDownReasonNoChannels
2-22
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
 [self showServiceDownMessage];
 } else if (serviceState == kSVMServiceStateUp) {
 // service state is up
 NSLog(@"*** SERVICE STATE: UP");
 }
}

Getting the Current Service Up or Down State On Demand

The "getServiceState" API method can be used to fetch the current service state from the SDK. The
method signature of the "getServiceState" API call is given below:

// api call to fetch the current svm 'service state' on-demand
- (SVMServiceState)getServiceState;

The following example show how to fetch the current service state from the SVM SDK using the
"getServiceState" API call:

#import "StadiumVisionMobile.h"

// get the svm api context
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// get the current svm service state
SVMServiceState state = [svm getServiceState];

// determine the current service state
if (serviceState == kSVMServiceStateUp) {
 // service state is up
 NSLog(@"*** SERVICE STATE: UP");
} else if (serviceState == kSVMServiceStateDown) {
 // service state is down
 NSLog(@"*** SERVICE STATE: DOWN");
}

In-Venue Detection

Cisco StadiumVision Mobile SDK Release 1.3 provides a mechanism to detect whether the mobile
device is connected within the SVM-enabled venue or not. There are two different ways that the iOS app
can get this "In-Venue Detection" state from the SVM SDK:

1. Register to receive the "In-Venue Detection" notifications.

2. Fetch the current "In-Venue" state from the SDK on-demand.

Receiving In-Venue Detection Notifications

The following example shows how to register to receive the "Service Up/Down" notifications from the
SVM SDK:

// subscribe to receive in-venue connection change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVenueConnectionChanged:)
 name:kSVMVenueConnectionUpdateNotification
 object:nil];

// handle the venue connection changed event
- (void)onVenueConnectionChanged:(NSNotification*)notify
{
 // get the in-venue detection dictionary from the notification
 NSDictionary *inVenueDetectionDict = [notify userInfo];
2-23
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
 // get the in-venue detection value
 NSNumber *inVenueDetectionNumber = [inVenueDetectionDict
objectForKey:kSVMVenueConnectionStateObjectKey];
 BOOL isConnectedToVenue = [inVenueDetectionNumber boolValue];

 // log whether we are inside the venue
 NSLog(@"###### Venue Connection Updated: %@", (isConnectedToVenue ? @"INSIDE" :
@"OUTSIDE"));
}

Get the Current In-Venue State On-Demand

The "isConnectedToVenue" API method can be used to fetch the current in-venue state from the SDK.
The method signature of the "isConnectedToVenue" API call is given below:

// returns whether the device is connected to the licensed SVM venue or not
- (BOOL)isConnectedToVenue;

The following example shows how to fetch the current service state from the SVM SDK using the
"getServiceState" API call:

// get a reference to the svm api
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// get whether the device is currently connected to the SVM licensed venue
BOOL isConnectedToVenue = [svm isConnectedToVenue];

// log whether the device is currently connected to the SVM licensed venue
NSLog(@"###### Venue Connection State: %@", (isConnectedToVenue ? @"INSIDE" :
@"OUTSIDE"));

Set the SDK Configuration at Run-Time

Previously, the Cisco StadiumVision Mobile SDK could only be configured by using a JSON-formatted
config file ("cisco_svm.cfg") bundled within the iOS app. Starting with Release 2.0, the application can
set the SDK configuration at run-time through an API method. This allows the application to
dynamically configure the SDK. For example, the application can fetch the SDK configuration
information from a network connection, and then pass that configuration to the SDK.

Two different methods are provided for setting the SDK configuration at run-time:

• "setConfig"

• "setConfigWithString"

The following example shows how to set the SDK configuration using the "setConfig" API
method:
#import "StadiumVisionMobile.h"
// get the stadiumvision mobile api instance
StadiumVisionMobile *svmInstance = [StadiumVisionMobile sharedInstance];
// create the config dictionary with the set of licensing keys
NSMutableDictionary *configDict = [[[NSMutableDictionary alloc] init] autorelease];
NSMutableDictionary *licenseDict = [[[NSMutableDictionary alloc] init] autorelease];
[licenseDict setObject:@"MyVenueNameKey" forKey:@"venueName"];
[licenseDict setObject:@"MyContentOwnerKey" forKey:@"contentOwner"];
[licenseDict setObject:@"MyAppDeveloperKey" forKey:@"appDeveloper"];
[configDict setObject:licenseDict forKey:@"license"];
// update the stadiumvision mobile configuration
[svmInstance setConfig:configDict];
2-24
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Scalable File Distribution

The Cisco StadiumVision Mobile SDK libraries will support file channels that are easily accessible to
the mobile client application. Table 2-12 lists the Cisco StadiumVision Mobile scalable file distribution
API.

Data Channels

Table 2-13 lists the Cisco StadiumVision Mobile data channel APIs.

Table 2-12 Scalable File Distribution and Service API Summary

API Return Type File Service API Method Name Method Description

NSArray* getFileChannelListArray Gets a snapshot array of the currently available
file channels.

NSMutableDictionary* getFileDistributionTable Gets file distribution table details.

NSString* getFileDistributionLocalFilename Gets the local filesystem filename for any object
given its URI and the file channel.

NSString* getFileDistributionLocalFilename:forChannel Gets the local filesystem filename for any object
given its URI and the file channel.

NSString* getFileDistributionLocalFilename:forChannelN
ame

Gets local filesystem filename for any object
given its URI and the file channel name.

SVMStatus* addFileChannelListDelegate Registers a callback delegate to receive all file
channel list updates.

SVMStatus* addFileChannelObserver Registers an observer class to receive data for a
particular file channel.

SVMStatus* addFileChannelObserver:forChannel Registers an observer class to receive all file
updates for a particular file channel.

SVMStatus* addFileChannelObserver:forChannelName Registers an observer class to receive all file
updates for a particular file channel name.

SVMStatus* removeFileChannelListDelegate Unregisters the callback delegate from
receiving the file channel list updates.

SVMStatus* removeFileChannelObserver Unregisters an observer class from receiving file
for a particular file channel.

SVMStatus* removeFileChannelObserver:forChannel Unregisters an observer class from receiving
any file updates for a particular file channel.

SVMStatus* removeFileChannelObserver:forChannelName Unregisters an observer class from receiving
any file updates for a particular file channel
name.

Table 2-13 Data Distribution and Service API Summary

API Return Type Data Service API Method Name Method Description

NSArray* getDataChannelListArray Gets a snapshot array of the currently available
data channels.

SVMStatus* addDataChannelListDelegate: Registers a callback delegate to receive all data
channel list updates.
2-25
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
Adding Cisco StadiumVision Mobile Services to an iOS
App—Code Structure and Samples

The StadiumVision Mobile SDK automatically handles the following events:

• Dynamic video channel discovery and notification

• Dynamic data channel discovery and notification

• Automatic SDK shutdown/restart in response to Wi-Fi up/down events

• Automatic SDK shutdown/restart in response to iOS life-cycle events

• Management of multicast network data threads

• On-demand management of video/audio decoding threads

• Automatic statistics reporting to the StadiumVision Mobile Reporter server

SVMStatus* addDataChannelObserver: Registers an observer class to receive data for a
particular data channel.

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data
updates for a particular data channel.

SVMStatus* addDataChannelObserver:forChannelName: Registers an observer class to receive all data
updates for a particular data channel name.

SVMStatus* removeDataChannelListDelegate: Unregisters the callback delegate from
receiving the data channel list updates.

SVMStatus* removeDataChannelObserver: Unregisters an observer class from receiving
data for a particular data channel.

SVMStatus* removeDataChannelObserver:forChannel: Unregisters an observer class from receiving
any data updates for a particular data channel.

SVMStatus* removeDataChannelObserver:forChannelName: Unregisters an observer class from receiving
any data updates for a particular data channel
name.

void onData Supports the "SVMDataObserver" protocol
when implemented by the customer app. This
delegate method is used as a callback from the
SVM SDK. Each callback from the SDK to the
customer app provides a received data message
on the given data channel, delivered as a byte
array (NSData).

void onDataChannelListUpdated Results in the method being called by our API to
notify you of data channel changes.

void onData:withChannelName: Results in the method being called by our API to
notify you of changes for the given channel.

Table 2-13 Data Distribution and Service API Summary (continued)

API Return Type Data Service API Method Name Method Description
2-26
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
This section describes the Cisco StadiumVision Mobile SDK workflow, and contains the following
sections:

• Starting the SDK, page 2-27

• Setting the Log Level, page 2-27

• Getting the SDK Version String, page 2-27

• Displaying the Device UUID, page 2-27

• Shutting Down the SDK (Optional), page 2-28

Starting the SDK

The StadiumVision Mobile SDK needs to be started at the application initialization by calling the "start"
API method as in the following example:

#import "StadiumVisionMobile.h"
// get a reference to the StadiumVision Mobile API
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// start the StadiumVision Mobile SDK
[svm start];

Setting the Log Level

Sets the logging output level of the SDK, with the "DEBUG" level being more verbose than the "INFO"
level. An example follows:

// start method sets logs to INFO by default
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
[svm start];

// set the desired log level
[svm setLogLevel:SVM_API_LOG_DEBUG];

Getting the SDK Version String

The example below gets the StadiumVision Mobile SDK version string:

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// get the sdk version string
NSString *sdkVersion = [svm version];

Displaying the Device UUID

The Cisco StadiumVision Mobile SDK is unable to include the MAC address in the periodic stats that it
sends to the Cisco StadiumVision Mobile Reporter because Apple does not permit applications to access
any device information that can be used to identify that device or its owner. As a substitute for the MAC
address, the SDK instead includes a SVM Device UUID (universally unique identifier) that is unique for
every device. The UUID allows Reporter data to be correlated with a specific device. In order for the
correlation to work, the mobile app must display the UUID somewhere in its menu system (for example
on the About or Help tabs).
2-27
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
The app can retrieve the UUID from the SDK via the code sample below. The getDeviceUUID method
is documented in the iOS SVM header file.

StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
NSString *deviceUUID = [svm getDeviceUUID];
NSLog(@"Device UUID is %@", deviceUUID);

Note The Cisco StadiumVision Mobile Device UUID should not be confused with the Unique Device
Identifier (UDID) that is displayed in iTunes.

Shutting Down the SDK (Optional)

The StadiumVision Mobile SDK automatically shuts-down and restarts based upon the iOS life-cycle
notifications (NSNotifications). The client iOS application does not need to explicitly stop and restart
the StadiumVision Mobile SDK. This ‘shutdown’ API is provided in case a customer use-case requires
an explicit SDK shutdown.

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// shutdown the StadiumVision Mobile SDK
[svm shutdown];

Video Player View Controller Customization
This section describes how to customize the video player, and contains the following sections:

• Default Cisco Video Player View Controller, page 2-28

• Customized Video Player, page 2-29

• Cisco Sample app Customized Video Player, page 2-5

Default Cisco Video Player View Controller

The default Cisco video player has the following features:

• Implemented as a separate iOS "UIViewController."

• Support for fullscreen and partial-screen video views.

• Video frames rendered using an iOS "UIView" and OpenGL layer (CAEAGLLayer).

• Customizable by extending the "SVMVideoViewController" class.

• The Cisco Sample app uses a customized video player.
2-28
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
Customized Video Player

To customize the video player, extend the "SVMVideoViewController" base class as in the following
example:

#import "SVMVideoViewController.h";

@interface MyVideoViewController : SVMVideoViewController {
}

Figure 2-14 Video Player Customization

Video Channels
This section describes the Cisco StadiumVision Mobile SDK video channels and contains the following
sections:

• Presenting the Video Channel List, page 2-29

• Playing a Video Channel, page 2-30

• Getting the Video Channel List, page 2-30

• Seeking Within the Video Buffer, page 2-30

• Video Player View Controller Customization, page 2-28

Presenting the Video Channel List

Table 2-14 lists the "SVMChannel" video channel objects containing all of the information needed to
display the channel list to the user.

Table 2-14 SVMChannel Object Properties

SVMChannel Property Property Description

appDeveloper Name of the application developer.

bandwidthKbps Nominal video stream bandwidth (in kbps).

channelText Complete text description of the video channel.

contentOwner Name of the content owner.

name Name of the video channel.
2-29
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
Playing a Video Channel

The example below demonstrates these actions:

• Selects a channel from the locally saved channel list.

• Presents the video view controller modally.

• Commands the video view controller to play the selected channel.

#import "StadiumVisionMobile"

// get the user-selected video channel object
SVMChannel *selectedChannel = [videochannelList objectAtIndex:0];

NSLog(@"Selected Video Channel = %@", selectedChannel.name);

// create the video view controller
MyVideoViewController *myVC = [[MyVideoViewController alloc] init];

// present the modal video view controller
myVC.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
[self presentModalViewController:myVC animated:YES];

// play the selected video channel
[myVC playVideoChannel:selectedChannel];

Getting the Video Channel List

The client application registers to receive callback whenever the video channel list is updated, as in the
following example:

// register to receive video channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addVideoChannelListDelegate:self];

The StadiumVision Mobile SDK will callback the client application with any video channel list updates.

#import "StadiumVisionMobile.h"
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>
// video channel handler (array of 'SVMChannel' objects)
 -(void)onVideoChannelListUpdated:(NSArray*)channelList;

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in the device RAM. The following example jumps
backwards 20 seconds in the video buffer (instant replay).

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// rewind 20 seconds
[svm rewindForDuration:-20000];

sessionNum Session number of the channel.

venueName Name of the venue.

Table 2-14 SVMChannel Object Properties (continued)

SVMChannel Property Property Description
2-30
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
The example below jumps back to the top of the video buffer ("live" video playback):

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
// play at the "live" video offset
[svm playLive];

Data Channels
This section describes the Cisco StadiumVision Mobile SDK data channels and contains the following
sections:

• Getting the Data Channel List, page 2-31

• Observing a Data Channel, page 2-31

Getting the Data Channel List

In the following example, the client application registers to receive callback whenever the data channel
list is updated.

// register to receive data channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addDataChannelListDelegate:self];

In this example, the StadiumVision Mobile SDK will callback the client application with any data
channel list updates:

#import "StadiumVisionMobile.h"

// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>

// data channel handler (array of 'SVMChannel' objects)
 (void)onDataChannelListUpdated:(NSArray*)channelList;

Observing a Data Channel

In the following example, the registered class needs to implement the "SVMDataObserver" protocol:

#import "SVMDataObserver.h"
@interface DataChannelViewController : UIViewController <SVMDataObserver>

In this example, the "onData:withChannelName" method is called to push the received data to the
registered class:

-(void)onData:(NSData*)data withChannelName:(NSString *)channelName {
 // convert the data bytes into a string
 NSString *dataStr = [[NSString alloc] initWithBytes:[data bytes]
 length:[data length]
 encoding:NSUTF8StringEncoding];

 // display the data bytes and associated channel name
 NSLog(@"ChannelListViewController: onData callback: "
 "channelName = %@, data = %@", channelName, dataStr);

 [dataStr release];}
2-31
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
EVS C-Cast Integration

Note Cisco StadiumVision Mobile is supported with EVS C-Cast version 2.x only. EVS C-Cast version 3.x is
not supported.

The steps below describe a high level workflow of how an Cisco StadiumVision Mobile powered C-Cast
app gains access to the XML timeline and media files.

1. Register a callback to be notified when a file channel becomes available, using
addFileChannelDelegate

2. Register to receive the channel notification using
[svm addFileChannelObserver:self forChannelName:@"something"]

3. (Optional) Listen for file channel list updates and potentially register using
(void)onFileChannelListUpdated:(NSMutableDictionary *)fileChannelList {}

4. Handle the file reception (movies/thumbnails/timeline) using
(void)onFile:(NSData *)file withChannelName:(NSString *)channelName {}

5. Check if a file channel is already available, using getFileChannelListArray

6. If a channel is already available or when a callback notification is received, register a file channel
observer, using addFileChannelObserver

7. Check if a file with the name ccast-timeline.xml is already available, using
getFileDistributionLocalFilename

8. If ccast-timeline.xml is not yet available wait for additional files to arrive, using onFile(). Each time
onFile() is called do a corresponding check with getFileDistributionLocalFilename to see if the
new file is ccast-timeline.xml.

9. Once ccast-timeline.xml has been received, parse it using the steps in chapter 5 (How to build the
media path) of the C-Cast API spec, then build the media path for all media files. Contact James
Stellphlug (j.stellpflug@evs.com) to obtain the C-Cast API documentation.

10. For each file media path, remove the path prefix so that only the filename remains. For example:
http://www.mydomain.com/videos/abc/def/ghi/abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8
becomes
abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8

11. For each filename cycle through onFile() and getFileDistributionLocalFilename until all files
have been received.

12. Be prepared for ccast-timeline.xml to change at any time. Repeat steps 7-9 whenever it changes.
2-32
Cisco StadiumVision Mobile SDK Programmer’s Guide

	2
	Cisco StadiumVision Mobile API for Apple iOS
	Introduction to Cisco StadiumVision Mobile SDK for iOS
	Cisco StadiumVision Mobile and iOS Developer Tools
	Download and Unpack the SDK
	Getting Started with the iOS Sample App
	Compile the Sample App
	Customize the Sample App

	Cisco Sample app Customized Video Player
	Embed the Cisco StadiumVision Mobile SDK in an Existing App

	Integration Checklist
	Configuration Files
	Field of Use Configuration
	Wi-Fi Access Point Configuration
	How Cisco StadiumVision Mobile Fits into the iOS Framework
	Client Application Integration Overview
	iOS Model View Controller (MVC) Design Pattern
	Cisco StadiumVision Mobile iOS API Class Overview
	Video View Controller Inheritance
	Cisco StadiumVision Mobile Application Classes

	Customer Application Roles
	Cisco StadiumVision Mobile Methods and Functions for iOS

	Cisco StadiumVision Mobile iOS API Summary
	Return Status Object
	Video Player Activity API Summary
	NS Notification Events
	Video Player State Flags
	Video Player Background Audio
	Video Player Channel Inactive Callback
	Receiving Service Up and Down Notifications
	Getting the Current Service Up or Down State On Demand
	In-Venue Detection
	Receiving In-Venue Detection Notifications
	Get the Current In-Venue State On-Demand
	Set the SDK Configuration at Run-Time
	Scalable File Distribution
	Data Channels
	Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples

	Starting the SDK
	Setting the Log Level
	Getting the SDK Version String
	Displaying the Device UUID
	Shutting Down the SDK (Optional)
	Video Player View Controller Customization

	Default Cisco Video Player View Controller
	Customized Video Player
	Video Channels

	Presenting the Video Channel List
	Playing a Video Channel
	Getting the Video Channel List
	Seeking Within the Video Buffer
	Data Channels

	Getting the Data Channel List
	Observing a Data Channel
	EVS C-Cast Integration

