

© 2023 Cisco and/or its affiliates. All rights reserved. Page 1 of 97

Cisco Crosswork Hierarchical
Controller 7.0

NBI and SHQL Reference Guide

April 2023

© 2023 Cisco and/or its affiliates. All rights reserved. Page 2 of 97

Introducing Crosswork Hierarchical Controller APIs

Cisco Crosswork Hierarchical Controller offers an extensive set of APIs as a northbound interface to

service orchestrators, OSSs, and Inventory systems. These APIs are essential tools to automate operational

workflows, planning scenarios, and administrative tasks. These APIs can be used to retrieve information,

provision services and resources, build the network and register for notifications.

Crosswork Hierarchical Controller makes use of multiple technologies for these APIs:

● RESTCONF – based on YANG models defined for NETCONF

● REST with JSON in body

● REST with SHQL in body

API Architecture and Technologies

RESTCONF/YANG Protocol Introduction

The RESTCONF protocol is an HTTP-based protocol that provides a programmatic interface for accessing

data defined in YANG 1.0 [RFC 6020] or YANG 1.1 [RFC 7950] using the data store concepts defined in

the Network Configuration Protocol (NETCONF) [RFC 6241] and further extended in NMDA [RFC 8342].

The main reasons for selecting RESTCONF include:

● The capability of mapping HTTP CRUD operations to provide a model-driven API.

● The ability to use a ubiquitous REST architecture used by many Web applications.

● The ability to use and mix various standard data models defined in the YANG modeling language

produced by multiple SDOs. This potentially allows an implementor a choice of SDN architectures,

namely IETF ACTN, ONF TAPI, and MEF TAPI.

Crosswork Hierarchical Controller’s RESTCONF implementation consists of the following resources:

● +restconf}/data (Data API): Create/Retrieve/Update/Delete (CRUD) based API for the entire

configuration data tree defined in the YANG data models.

● +restconf}/operations (Operations API): RPC-based API entry to trigger RPC defined in YANG.

● +restconf}/data/ietf-restconf-monitoring:restconf-state/streams (Notifications API):

RESTCONF API to discover possible Notification streams as defined in RESTCONF protocol. See

Device Management for more information.

● +restconf}/yang-library-version: This mandatory leaf identifies the revision date of the "ietf-

yang-library" YANG module that is implemented by this server.

As per RFC 8040, the RESTCONF implementation supports JSON encoding for YANG data [RFC 7951].

The server accepts “application/yang-data+json”.

Query Filtering

According to the RESTCONF specification, each operation allows zero or more query parameters to be

present in the request URI. Specifically, query operations’ parameters are described in Section 4.8 of [RFC

8040]. The following table describes the supported query parameters.

Table 1. Supported Query Parameters

https://tools.ietf.org/html/rfc8040#section-4.8
https://tools.ietf.org/html/rfc8040#section-4.8

© 2023 Cisco and/or its affiliates. All rights reserved. Page 3 of 97

Name Methods Description

content GET Select config and/or non-config data resources

depth GET Request limited subtree depth in the reply content

fields GET Request a subsect of the target resource content

Transport Security

Data Integrity

Crosswork Hierarchical Controller serves all NBI-accessed data over TLS [RFC 5246] – a transport-layer

providing data integrity and confidentiality. Any client accessing Crosswork Hierarchical Controller MUST

support TLS 1.2 and above.

Server Authentication

Crosswork Hierarchical Controller NBI presents an X.509v3 certificate upon establishing a TLS connection

with a client.

A client MUST support certificate validation as per RESTCONF [RFC 8040 Section 2]. The RESTCONF client

MUST either (1) use X.509 certificate path validation [RFC5280] to verify the integrity of the RESTCONF

server's TLS certificate or (2) match the server's TLS certificate with a certificate obtained by a trusted

mechanism (e.g., a pinned certificate). If the X.509 certificate path validation fails and the presented X.509

certificate does not match a certificate obtained by a trusted mechanism, the connection MUST be

terminated, as described in Section 7.2.1 of [RFC5246].

NOTE: For the purpose of testing, a client may disable certificate validation to check interface functionality.

Client Authentication

Crosswork Hierarchical Controller client authentication is based on HTTP Basic Authentication [RFC 7617].

A client must present a username and password over the established TLS connection. More specifically, a

client must use an Authorization header using a Basic authentication scheme. For further information, see

the HTTP Authentication Scheme Registry [RFC 7235].

API Endpoints

Crosswork Hierarchical Controller supports APIs for receiving notifications, information, and provisioning

services.

● Device manager: Various APIs that allow you to manage adapters, devices and credentials

● Get inventory: Get optical devices and routers, their cards, ports, and their attributes.

● Get performance counters: Get L2 performance (throughput) counters per specific port or link.

● Cross links: Various APIs to administer cross links.

● Shared risk: Various APIs that allow you to administer shared risk policies and rules.

● Generic queries: Use SHQL commands to query any data from the Crosswork Hierarchical

Controller model.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 4 of 97

Object IDs

Any reference to specific objects in the APIs uses object IDs. IDs can be used for a network, site, node, TP

(termination point), LSP, service, link, network access, or VLAN.

The implementation by Crosswork Hierarchical Controller for these IDs is the GUID. The GUID is a unique

identifier of any object in the model and it can be retrieved as the object ID using the relevant GET API.

Once retrieved, it can be used as the object reference further on.

Device Management

Crosswork Hierarchical Controller provides APIs to administer device management.

You can access the Device Manager API using Swagger:

● https://<host>/api/v2/apps/device-manager-srv/rest/doc

The APIs include:

● Get all adapters

● Get adapter configuration schema

● Get adapter device schema

● Get all devices

● Add device to Crosswork Hierarchical Controller

● Assign device to adapter

● Update device's adapter configuration

● Unassign device from adapter

● Update device name

● Assign device to Site

● Get device status

● Get a device

● Remove device from Crosswork Hierarchical Controller

● Get credentials keys' names and types

● Add new credentials

● Update credentials

● Delete credentials

● Get the parameters schema for the specified credentials type

Get Adapters

Use this API to get the list of all the adapters. The guid in the response is the adapterGuid used in several

of the other device manager methods.

Request Method

GET

Request URL

© 2023 Cisco and/or its affiliates. All rights reserved. Page 5 of 97

https://example-host/api/v2/apps/device-manager-srv/rest/adapter

Request Parameters

None

Response Example

[

 {

 "guid": "cisco_ios_xr",

 "enabled": true,

 "config": {

 "polling": 300,

 "concurrency": 1,

 "ssh_config": {

 "enabled": false,

 "connect_timeout": 10,

 "command_timeout": 10

 },

 "file_bringer": {

 "enabled": false,

 "location": "",

 "file_type": "XX"

 },

 "collection_parameters": {

 "enable_igp_isis": true,

 "enable_stats": true,

 "enable_vrf": true,

 "enable_lldp": true,

 "enable_mpls": true,

 "enable_snmp": true,

 "igp_isis_priority": 1,

 "igp_seed_routers": true

 }

 }

 },

 {

 "guid": "juniper_os_1",

 "enabled": true,

 "config": {

 "polling": 300,

 "concurrency": 1,

 "ssh_config": {

 "enabled": false,

© 2023 Cisco and/or its affiliates. All rights reserved. Page 6 of 97

 "connect_timeout": 10,

 "command_timeout": 10

 },

 "file_bringer": {

 "enabled": false,

 "location": "",

 "file_type": "XX"

 },

 "collection_parameters": {

 "enable_igp_isis": true,

 "enable_igp_ospf": true,

 "enable_stats": true,

 "enable_vrf": true,

 "enable_lldp": true,

 "enable_mpls": true,

 "enable_snmp": true,

 "igp_isis_priority": 1,

 "igp_seed_routers": true

 }

 }

 }

]

Get Adapter Configuration Schema

Use this API to retrieve the adapter's configuration schema.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/

adapter/{adapterGuid}/adapter-schema

Request Parameters

Parameter Name Data Type Description

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Response Example

{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

 "polling": {

© 2023 Cisco and/or its affiliates. All rights reserved. Page 7 of 97

 "type": "integer",

 "minimum": 0,

 "default": 300,

 "title": "Polling Cycle [sec]",

 "description": "Poll every X seconds"

 },

 "concurrency": {

 "type": "integer",

 "default": 1,

 "title": "Number of concurrent routers collected"

 },

 "ssh_config": {

 "type": "object",

 "title": "SSH Configuration Parameters",

 "properties": {

 "enabled": {

 "type": "boolean",

 "default": false,

 "title": "Enable Tunnel"

 },

 "host": {

 "type": "string",

 "title": "Tunnel Host"

 },

 "port": {

 "type": "integer",

 "title": "Tunnel Port"

 },

 "tunnel_credentials_key": {

 "type": "string",

 "title": "Tunnel Credentials Key",

 "credentials-types": [

 "SSH_USER_PASSWORD"

]

 },

 "connect_timeout": {

 "type": "integer",

 "default": 10,

 "title": "Router Connect timeout"

 },

 "command_timeout": {

 "type": "integer",

© 2023 Cisco and/or its affiliates. All rights reserved. Page 8 of 97

 "default": 10,

 "title": "Router Command timeout"

 }

 },

 "additionalProperties": false

 },

 "file_bringer": {

 "type": "object",

 "title": "File Bringer Parameters",

 "properties": {

 "enabled": {

 "type": "boolean",

 "default": false,

 "title": "Enable File Bringer"

 },

 "location": {

 "type": "string",

 "title": "File Server Location",

 "description": "\"[sftp|file]://<server>:<port>/<absolute path>\"",

 "default": ""

 },

 "file_type": {

 "title": "File Type",

 "enum": [

 "XX",

 "XX"

],

 "default": "XX"

 },

 "authentication": {

 "type": "string",

 "credentials-types": [

 "SFTP"

]

 }

 },

 "additionalProperties": false

 },

 "collection_parameters": {

 "type": "object",

 "title": "Collection Parameters",

 "properties": {

© 2023 Cisco and/or its affiliates. All rights reserved. Page 9 of 97

 "enable_igp_isis": {

 "type": "boolean",

 "default": false,

 "title": "Enable IGP IS-IS Collection"

 },

 "enable_stats": {

 "type": "boolean",

 "default": false,

 "title": "Enable Stats Collection"

 },

 "enable_vrf": {

 "type": "boolean",

 "default": false,

 "title": "Enable VRF Collection"

 },

 "enable_lldp": {

 "type": "boolean",

 "default": false,

 "title": "Enable LLDP Collection"

 },

 "enable_mpls": {

 "type": "boolean",

 "default": false,

 "title": "Enable MPLS Tunnels Collection"

 },

 "enable_snmp": {

 "type": "boolean",

 "default": false,

 "title": "Enable SNMP Collection"

 },

 "igp_isis_priority": {

 "type": "integer",

 "default": 1,

 "title": "IGP IS-IS Priority"

 },

 "igp_seed_routers": {

 "type": "boolean",

 "default": true,

 "title": "Collect only IGP IS-IS seed routers"

 }

 },

 "additionalProperties": false

© 2023 Cisco and/or its affiliates. All rights reserved. Page 10 of 97

 }

 },

 "additionalProperties": false,

 "required": [

 "polling"

]

}

Get Adapter Device Schema

Use this API to retrieve the device configuration schema of a specific adapter.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/adapter/{adpaterGuid}/device-

schema

Request Parameters

Parameter Name Data Type Description

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Response Example

{

 "type": "object",

 "properties": {

 "host": {

 "type": "string"

 },

 "port": {

 "type": "integer",

 "default": 22

 },

 "direct_connect": {

 "type": "boolean",

 "default": false,

 "title": "Direct Connect (avoid tunnel if configured)"

 },

 "authentication": {

 "type": "string",

 "credentials-types": [

 "SSH_USER_PASSWORD"

]

© 2023 Cisco and/or its affiliates. All rights reserved. Page 11 of 97

 },

 "enabled": {

 "type": "boolean",

 "default": false

 }

 },

 "additionalProperties": false,

 "required": [

 "enabled",

 "host",

 "port"

]

}

Get All Devices

Use this API to get all devices for a specific adapter. The device_manager_guid returned in the response

is used as the deviceGuid in the relevant device manager APIs.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/device?adapter={adpaterGuid}

Request Parameters

Parameter Name Data Type Description

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Response Example

[

 {

 "device_manager_guid": "0a9af2d2-324a-45dd-895e-9e6edb2f9d39",

 "inventory_type": "ROUTER",

 "device_model_guid": "IN/cisco_ios_xr/ROUTER-xrv-p1",

 "name": "cisco_1",

 "adapters": {

 "cisco_ios_xr": {

 "adapter_guid": "cisco_ios_xr",

 "config": {

 "port": 22,

 "direct_connect": true,

 "enabled": true,

 "host": "10.1.0.58",

© 2023 Cisco and/or its affiliates. All rights reserved. Page 12 of 97

 "authentication": "Cisco"

 },

 "enabled": false

 }

 },

 "identifiers": {

 "host_name": "10.1.0.58",

 "tid": null,

 "serial": null,

 "loopback_mac": null,

 "loopback_ip": null,

 "extra": {}

 },

 "site": null,

 "pending_delete": false,

 "enabled": false

 },

 {

 "device_manager_guid": "9988749383",

 "inventory_type": "ROUTER",

 "device_model_guid": "IN/cisco_ios_xr/ROUTER-xrv-p2",

 "name": "cisco_2",

 "adapters": {

 "cisco_ios_xr": {

 "adapter_guid": "cisco_ios_xr",

 "config": {

 "port": 22,

 "direct_connect": true,

 "enabled": true,

 "host": "10.1.0.71",

 "authentication": "Cisco"

 },

 "enabled": false

 }

 },

 "identifiers": {

 "host_name": "10.1.0.71",

 "tid": null,

 "serial": null,

 "loopback_mac": null,

 "loopback_ip": null,

 "extra": {}

© 2023 Cisco and/or its affiliates. All rights reserved. Page 13 of 97

 },

 "site": null,

 "pending_delete": false,

 "enabled": false

 }

]

Add Device to Crosswork Hierarchical Controller

Use this API to add a device to Crosswork Hierarchical Controller.

Request Method

POST

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/device

Request Parameters

None

Request Body

Parameter Name Data Type Description

description string The device name.

site string The site or specify null for no site.

Request Body Example

{

 "name": "router-a",

 "site": null

}

Response Example

{

 "device_manager_guid": "a2087abe-5753-4387-b372-f8cfb571bb1e"

}

Assign Device to Adapter

Use this API to assign a device to an adapter.

Request Method

POST

Request URL

https://example-host/api/v2/apps/device-manager-

srv/rest/device/{deviceGuid}/adapters/{adapterGuid}

Request Parameters

© 2023 Cisco and/or its affiliates. All rights reserved. Page 14 of 97

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Request Body

Parameter Name Data Type Description

description string The adapter's device parameters. The schema can be retrieved
with the Get Adapter Device Schema API.

Ensure that you add the parameters that are marked as
required. In this schema example:

 "required": [

 "enabled",

 "host",

 "port"

]

Request Body Example

{

 "host": "1.1.1.1",

 "port": 22,

 "enabled": false

}

Response Example

201 Successful

Update Device Adapter Configuration

Use this API to update the device adapter configuration.

Request Method

PUT

Request URL

https://example-host/api/v2/apps/device-manager-

srv/rest/device/{deviceGuid}/adapters/{adapterGuid}

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Request Body

© 2023 Cisco and/or its affiliates. All rights reserved. Page 15 of 97

Parameter Name Data Type Description

description string The adapter's device parameters. The schema can be retrieved
with the Get Adapter Device Schema API.

Ensure that you add the parameters that are marked as
required. In this schema example:

 "required": [

 "enabled",

 "host",

 "port"

]

Request Body Example

{

 "host": "1.1.1.1",

 "port": 22,

 "enabled": true

}

Response Example

200 Successful

Unassign Device from Adapter

Use this API to unassign a device from an adapter. The device is not deleted from the network.

Request Method

DELETE

Request URL

https://example-host/api/v2/apps/device-manager-

srv/rest/device/{deviceGuid}/adapters/{adapterGuid}

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Response Example

200 Successful

Update Device Name

Use this API to update the device name.

Request Method

PUT

© 2023 Cisco and/or its affiliates. All rights reserved. Page 16 of 97

Request URL

https://example-host/api/v2/apps/device-manager-

srv/rest/device/{deviceGuid}/name/{name}

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

adapterGuid string The adapter guid. Use the guid returned by the Get Adapters
method.

Response Example

200 Successful

Assign Device to Site

Use this API to assign a device to site.

Request Method

PUT

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/device/{deviceGuid}/site

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

Request Body

Parameter Name Data Type Description

guid string The site GUID.

Request Body Example

{

 "guid": "ST/e7df76d7a9cb"

}

Response Example

200 Successful operation.

Get Device Status

Use this API to get device status.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device_manager/rest/device/%7bdeviceGuid%7d/site

© 2023 Cisco and/or its affiliates. All rights reserved. Page 17 of 97

https://example-host/api/v2/apps/device-manager-srv/rest/device/{deviceGuid}/status

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

Response Example

{

 "adapte-name": {

 "last-successfull-discovery": "2020-05-04T17:50:15.530Z"

 }

}

Get a Device

Use this API to get a device.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/ device/{deviceGuid}

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

Response Example

{

 "device_manager_guid": "83ce57e9-a82b-488a-994b-f8c4191f0158",

 "inventory_type": null,

 "device_model_guid": null,

 "name": "router-a",

 "adapters": {

 "cisco_ios_xr": {

 "adapter_guid": "cisco_ios_xr",

 "config": {

 "host": "1.1.1.2",

 "port": 22,

 "enabled": false

 },

 "enabled": false

 }

 },

© 2023 Cisco and/or its affiliates. All rights reserved. Page 18 of 97

 "identifiers": {

 "host_name": null,

 "tid": null,

 "serial": null,

 "loopback_mac": null,

 "loopback_ip": null,

 "extra": {}

 },

 "site": null,

 "pending_delete": false,

 "enabled": false

}

Remove Device from Crosswork Hierarchical Controller

Use this API to remove the device from Crosswork Hierarchical Controller.

Request Method

DELETE

Request URL

https://example-host/api/v2/apps/device-manager-

srv/rest/device/{deviceGuid}?force=true

Request Parameters

Parameter Name Data Type Description

deviceGuid string The device guid. Use the device_manager_guid returned by
the Get All Devices method.

force string Whether to remove the device from the system even if it is
assigned to an adapter.

Response Example

200 OK!

Get Credentials

Use this API to get all configured credentials keys' names and types.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/credentials?type={type}

Request Parameters

Parameter Name Data Type Description

type array[string] SSH_USER_PASSWORD, SSH_PUBLIC_KEY, HTTP,
SNMP_COMMUNITY, SFTP

© 2023 Cisco and/or its affiliates. All rights reserved. Page 19 of 97

Response Example

[

 {

 "name": "A",

 "type": "SSH_USER_PASSWORD"

 },

 {

 "name": "Cisco",

 "type": "SSH_USER_PASSWORD"

 },

 {

 "name": "junos",

 "type": "SSH_USER_PASSWORD"

 }

]

Add New Credentials

Use this API to add new credentials.

Request Method

POST

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/credentials/{name}

Request Parameters

Parameter Name Data Type Description

name string The credential name.

Request Body

Parameter Name Data Type Description

type array[string] SSH_USER_PASSWORD, SSH_PUBLIC_KEY, HTTP,
SNMP_COMMUNITY, SFTP

config description The credentials parameters structure as described by the Get
Credentials API.

Request Body Example

{

 "type": "SSH_USER_PASSWORD",

 "config": {}

}

Response Example

201 Successful Operation

© 2023 Cisco and/or its affiliates. All rights reserved. Page 20 of 97

Update Credentials

Use this API to update credentials.

Request Method

PUT

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/credentials/{name}

Request Parameters

Parameter Name Data Type Description

name string The credential name.

Request Body

Parameter Name Data Type Description

type array[string] SSH_USER_PASSWORD, SSH_PUBLIC_KEY, HTTP,
SNMP_COMMUNITY, SFTP

config description The credentials parameters structure as described by the Get
Credentials API.

Request Body Example

{

 "type": "SSH_USER_PASSWORD",

 "config": {}

}

Response Example

200 Successful Operation

Delete Credentials

Use this API to delete credentials.

Request Method

DELETE

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/ credentials/{name}

Request Parameters

Parameter Name Data Type Description

name string The credential name.

Response Example

200 Successful

© 2023 Cisco and/or its affiliates. All rights reserved. Page 21 of 97

Get the Parameters Schema for the Specified Credentials Type

Use this API to get the parameters schema for the specified credentials type.

Request Method

GET

Request URL

https://example-host/api/v2/apps/device-manager-srv/rest/XXX

Request Parameters

Parameter Name Data Type Description

type array[string] SSH_USER_PASSWORD, SSH_PUBLIC_KEY, HTTP,
SNMP_COMMUNITY, SFTP

Response Example

{

 "type": "object",

 "properties": {

 "username": {

 "title": "Username",

 "type": "string"

 },

 "password": {

 "title": "Password",

 "type": "string",

 "encrypted": true

 }

 },

 "required": [

 "username",

 "password"

]

}

Physical Inventory

The physical inventory API provides information on devices attributes, slots, cards, and ports.

This API supports optical devices only.

Get Physical Inventory

The API accepts two queries:

● Device ID – get full list of devices or specific device by its ID.

● Full – get detailed device inventory or only its ID (full=true/false).

Request Method

GET

© 2023 Cisco and/or its affiliates. All rights reserved. Page 22 of 97

Request URL

/api/v2/apps/network-inventory-app/rest/devices/

Request Header

Accept: application/yang-data+json

Content-Type: application/yang-data+json

Response Example

{

 "id": "XX-01011",

 "type": "ONE",

 "desc": "XX-01011",

 "vendor_model": "ciena_6500",

 "tid": "TID111",

 "serial_number": "[Shelf-1 [1-XX,2-XX]]",

 "SHELF": [

 {

 "id": "1",

 "type": "SHELF",

 "desc": "6500 14-Slot Converged Optical Shelf Assembly, OCP",

 "vendor_model": "ciena_6500",

 "tid": "XX-01011",

 "aid": "SHELF-1",

 "clei": "WWW",

 "serial_number": "SSS",

 "FAN": [

 {

 "id": "FAN-1-1",

 "type": "FAN",

 "desc": "XX-01011/MNG-EQPT/FAN-1-1 (FAN), ctype=\"Fan Rear Exhaust

High Flow Cooling\")",

 "vendor_model": "ciena_6500",

 "tid": "XX-01011",

 "aid": "FAN-1-1",

 "clei": "WWW",

 "part_number": "NNN",

 "serial_number": "MMM"

 }

],

 "CARD": [

 {

 "id": "1-1",

 "type": "CARD",

© 2023 Cisco and/or its affiliates. All rights reserved. Page 23 of 97

 "desc": "XX-01011/1-1 (OTSC), ctype=\"2x10G OTR 4x XFP\")",

 "vendor_model": "ciena_6500",

 "tid": "XX-01011",

 "aid": "OOO-1-1",

 "clei": "WWW",

 "part_number": "MM",

 "serial_number": "NNN",

 "PORT": [

 {

 "id": "1-1-1",

 "type": "PORT",

 "desc": "XX-01011/1-1-1 (P10GSOEL), ctype=\"OC192

SR1/I64.1 10GBASE-LR/LW OTU2 10GFC 1200SMLLL 1310 nm XFP\")",

 "vendor_model": "ciena_6500",

 "tid": "XX-01011",

 "aid": "UU-1-1-1",

 "clei": "WWW",

 "pluggable": "PLUGGABLE",

 "part_number": "NNNA",

 "serial_number": "MMM"

 },

 },

 "POWER_SUPPLY": [

 {

 "id": "PWR-1-17-1",

 "type": "POWER_SUPPLY",

 "desc": "XX-01011/MNG-EQPT/PWR-1-17-1 (PWR), ctype=\"Power Card

60A breakered\")",

 "vendor_model": "ciena_6500",

 "tid": "XX-01011",

 "aid": "PWR-1-17-1",

 "clei": "WWWD",

 "part_number": "NNNA",

 "serial_number": "MMM"

 },

]

 }

]

}

Response Parameters

© 2023 Cisco and/or its affiliates. All rights reserved. Page 24 of 97

The response contains information on all device inventory modules:

● Device – all device level attributes

● Shelf – one or more shelves

● Fan – fan trays

● Card – all pluggable, line and aggregation cards, including transceivers

● Port – all physical ports

● Power supply – all power modules

Performance Counters

The Crosswork Hierarchical Controller performance API is based on a non-SDO data model authored by

Cisco. The SDOs lack a network-level, performance data model allowing NBI access to raw performance

counters of managed network objects.

Current performance-counter data models in IETF are address the device level, such as ietf-interfaces,

whereas network-level data models focus on derived values, e.g., bandwidth. Cisco will implement a

standard data model once available from IETF.

The Crosswork Hierarchical Controller data model exposes raw performance counters collected from ports

and IP/MPLS LSPs. It is implemented in the form of a YANG RPC where an NBI client may trigger an

operation via the RESTCONF NBI to retrieve packet and/or octet counters to derive rate, average, etc.

URIs

You can retrieve the counters for the latest PM interval or for a specific period. The stats can be retrieved

for a specific LSP/port/link, all objects, or for a group of objects (set by POST message).

Interface Type Interface Operation Request Method URI

Performance RPC to retrieve raw performance
counters per object type in a time
range.

GET /api/v2/timeseries/stats/

Performance RPC to retrieve raw performance
counters per object type in the latest
time range.

GET /api/v2/timeseries/stats/latest

Performance RPC to retrieve raw performance
counters for specific ports (not one
and not ALL the ports)

PUT /api/v2/timeseries/stats/bulkStatsQuery

Get Performance Latest Stats

Gets the performance stats for the latest period for an object or all objects. You can specify a specific PM

type with a specific port/LSP or stream ID.

Request Method

GET

Request URL

api/v2/timeseries/stats/latest

Request Header

© 2023 Cisco and/or its affiliates. All rights reserved. Page 25 of 97

Accept: application/yang-data+json

Content-Type: application/yang-data+json

Request Parameters

Parameter Name Data Type Value Description

objGuid string The object guid.

pmType array[string] DELAY_USEC, MIN_RTT_USEC
OCTET_OUT

The PM type.

streamId numeric The stream ID.

Request Example

GET /api/v2/timeseries/stats/latest?pmType=DELAY_USEC&objGuid=PO/juniper-

northstar/LGC-LabMX960-02:ae5.0

GET /api/v2/timeseries/stats/latest?pmType=DELAY_USEC&streamId=3

Request Parameters

Parameter Name Data Type Value Description

objGuid string The object guid.

timestamp datetime The time.

deviceType string The device type, for example, ROUTER.

timePeriodSec numeric The time in seconds.

pmType array[string] DELAY_USEC, MIN_RTT_USEC
OCTET_OUT

The PM type.

value numeric The performance statistic.

streamId numeric The stream ID.

Response Example

{

 "objGuid":

"LI/lsp/f66fa3288d396e47/f66fa3288d396e47/f1e815107b715b67/f1e815107b715b67/lsp_161908

1766048",

 "timeStamp": 1622602613000,

 "deviceType": "ROUTER",

 "timePeriodSec": 0,

 "pmType": "OCTET_OUT",

 "value": 273252081213835,

 "streamId": 6

}

© 2023 Cisco and/or its affiliates. All rights reserved. Page 26 of 97

Get Performance Stats for Period

Gets the performance stats for a specific period for an object or all objects. You can specify a specific PM

type with a specific port/LSP or stream ID.

Request Method

GET

Request URL

api/v2/timeseries/stats

Request Header

Accept: application/yang-data+json

Content-Type: application/yang-data+json

Request Parameters

Parameter Name Data Type Value Description

startTimeStamp datetime The start of the period.

endTimeStamp datetime The end of the period.

objGuid string The object guid.

pmType array[string] DELAY_USEC, MIN_RTT_USEC
OCTET_OUT

The PM type.

streamId numeric The stream ID.

Request Example

GET /api/v2/timeseries/stats?startTimeStamp=1643793190000&

endTimeStamp=1643878292000&pmTypeDELAY_USEC&objGuid=

PO/r_logical/16f1596a46b13da5/7d82f458ff24bfa3

Request Parameters

Parameter Name Data Type Value Description

objGuid string The object guid.

Timestamp datetime The time.

deviceType string The device type, for example, ROUTER.

timePeriodSec numeric The time in seconds.

pmType array[string] DELAY_USEC, MIN_RTT_USEC
OCTET_OUT

The PM type.

Value numeric The performance statistic.

streamId numeric The stream ID.

Response Example

{

© 2023 Cisco and/or its affiliates. All rights reserved. Page 27 of 97

 "objGuid": "PO/r_logical/16f1596a46b13da5/7d82f458ff24bfa3",

 "timeStamp": 1643874592000,

 "deviceType": "ROUTER",

 "timePeriodSec": 859,

 "pmType": "DELAY_USEC",

 "value": 649907,

 "streamId": 5

}

{

 "objGuid": "PO/r_logical/16f1596a46b13da5/7d82f458ff24bfa3",

 "timeStamp": 1643875520000,

 "deviceType": "ROUTER",

 "timePeriodSec": 928,

 "pmType": "DELAY_USEC",

 "value": 724091,

 "streamId": 5

}

{

 "objGuid": "PO/r_logical/16f1596a46b13da5/7d82f458ff24bfa3",

 "timeStamp": 1643876484000,

 "deviceType": "ROUTER",

 "timePeriodSec": 927,

 "pmType": "DELAY_USEC",

 "value": 69079,

 "streamId": 5

}

{

 "objGuid": "PO/r_logical/16f1596a46b13da5/7d82f458ff24bfa3",

 "timeStamp": 1643877388000,

 "deviceType": "ROUTER",

 "timePeriodSec": 904,

 "pmType": "DELAY_USEC",

 "value": 665969,

 "streamId": 5

}

Send Specific Ports Performance Stats

Gets the performance stats for a specific period for specific ports (not one and not ALL the ports).

Request Method

PUT

Request URL

© 2023 Cisco and/or its affiliates. All rights reserved. Page 28 of 97

api/v2/timeseries/stats/bulkStatsQuery

Request Header

Accept: application/yang-data+json

Content-Type: application/yang-data+json

Request Parameters

Parameter
Name

Data Type Description

startTimeStamp datetime The start of the period.

endTimeStamp datetime The end of the period.

d@ports.json JSON
string

Where ports.json is list of the guids.

Request Example

POST

/api/v2/timeseries/stats/bulkStatsQuery?startTimeStamp=1659402468000&endTimeStamp=1659

802468000' -d@ports.json

Where request.json is list of the guids:

[

 "PO/r_logical/1d80163d31fa18ee/870a15983eafb41f",

 "PO/r_logical/7b4564a1ccb6e4cb/5a52cb94b8d7dbc4"

]

Response Parameters

Parameter Name Data Type Value Description

objGuid string The object guid.

timeStamp datetime The time.

deviceType string The device type, for example, ROUTER.

timePeriodSec numeric The time in seconds.

pmType array[string] DELAY_USEC, MIN_RTT_USEC,
OCTET_OUT

The PM type.

value numeric The performance statistic.

streamId numeric The stream ID.

Response Example

[

 {

 "objGuid": "PO/r_logical/7b4564a1ccb6e4cb/5a52cb94b8d7dbc4",

 "timeStamp": 1659608730000,

© 2023 Cisco and/or its affiliates. All rights reserved. Page 29 of 97

 "deviceType": "ROUTER",

 "timePeriodSec": 900,

 "pmType": "MAX_RTT_USEC",

 "value": 481463,

 "streamId": 4

 },

 {

 "objGuid": "PO/r_logical/7b4564a1ccb6e4cb/5a52cb94b8d7dbc4",

 "timeStamp": 1659608730000,

 "deviceType": "ROUTER",

 "timePeriodSec": 900,

 "pmType": "DELAY_USEC",

 "value": 443345,

 "streamId": 4

 },

 {

 "objGuid": "PO/r_logical/7b4564a1ccb6e4cb/5a52cb94b8d7dbc4",

 "timeStamp": 1659608730000,

 "deviceType": "ROUTER",

 "timePeriodSec": 900,

 "pmType": "MIN_RTT_USEC",

 "value": 441197,

 "streamId": 4

 },

 {

 "objGuid": "PO/r_logical/1d80163d31fa18ee/870a15983eafb41f",

 "timeStamp": 1659608735000,

 "deviceType": "ROUTER",

 "timePeriodSec": 900,

 "pmType": "OCTET_OUT",

 "value": 17939855810587,

 "streamId": 4

 }

Cross Links

Crosswork Hierarchical Controller provides APIs to administer cross links. For more information, see the

Cisco Crosswork Hierarchical Controller Administration Guide.

The APIs include:

● Get all adjacent cross links

● Validate all cross links

● Validate a cross link

© 2023 Cisco and/or its affiliates. All rights reserved. Page 30 of 97

● Get all manual cross links

● Get all manual cross links

● Get a cross link

● Add manual cross link to Crosswork Hierarchical Controller

● Delete a cross link

Note: If the user does not have permission to execute the API, 403 Forbidden is returned. If the wrong

credentials are used, 401 Authorization Required is returned.

Get All Adjacent Cross Links

Use this API to return port adjacencies that were discovered using automatic discovery protocols such as

LLDP, elements in this list MAY be adjacencies that were not configured and not part of the manual cross

list.

Request Method

GET

Request URL

https://example-host/api/v2/crosslinks/adjacencies

Request Parameters

None

Response Example

The response contains information on all adjacent cross links. For cross link it returns the following:

● interfaceA – deviceName, interfaceName, type, and guid

● interfaceB – deviceName, interfaceName, type, and guid

● technology (ETH or NMC)

● relatedModelObjectGuid

Validate All Cross Links

Use this API to trigger a validation all cross links. This runs a process to update the model (links and paths)

based on the latest state of cross links, router-physical links, eth links, etc. Validating all cross links (and

adding a new manual cross link) may update the path of a r-phy link and may even create the r-phy link

altogether if it did not exist before. As a result of the new manual cross link, this may find the entire optical

circuit from end-to-end.

For an Ethernet link, if there is a conflict between a manually added cross link and a cross link detected

from the network, the manually added link is removed from Cisco Crosswork Hierarchical Controller

network model. The manual link remains in the manual-links db and is re-added to the network model if

the network-discovered link disappears AND the manual link gets a positive validation after there are no

more conflicts (this is in contrast to never-conflicted manual links that appear in the network model even

without a positive validation).

This API method returns an empty result. Use the Get All Manual Cross Links method to view the updated

state.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 31 of 97

Request Method

GET

Request URL

https://example-host/api/v2/crosslinks/validate

Request Parameters

None

Response Example

None

Validate a Cross Link

Use this API to trigger a validation of a specific cross link. This API only updates the relevant validation

fields of the validated manual cross link without touching the topological model.

Request Method

GET

Request URL

https://example-host/api/v2/crosslinks/validate/{guid}

Response Parameters

Parameter Name Data Type Description

guid string The cross link guid. Use the guid returned by the Get All
Manual Cross Links method.

Response Example

The response returns the following for the cross link:

● guid: The link guid

● interfaceA – deviceName, interfaceName, type, and guid

● interfaceB – deviceName, interfaceName, type, and guid

● technology (ETH or NMC)

● relatedModelObjectGuid

● additionTimeEpochMillis

● description

● validated: Whether the link has been validated.

● validationResult: The validation result (VALIDATED_BY_PORT_ADJACENCY,

VALIDATED_BY_CORRELATION, NOT_CORRELATED, INCONCLUSIVE, UNKNOWN, or CONFLICT).

● lastValidationCheck: The timestamp when the link was last validated.

● lastConflictTime: This timestamp is hidden if there was never a conflict. If this is the same as the

lastValidationCheck, then the manual link is currently in conflict. If lastValidationCheck is later

© 2023 Cisco and/or its affiliates. All rights reserved. Page 32 of 97

than the lastConflictTime, then the manual link was in conflict before but is not in conflict currently.

If in addition validated is true, this manual link appears in the network model.

● conflicts: If a link is or was conflicted, the conflicts list is populated with one or two conflicting

pairs, one pair per each of the manual-link ports.

{

 "guid": "23f6e6c340268f068f817f8f9484aa54a2ba92d5d7072efd7940308f8ecc8fa5",

 "interfaceA": {

 "deviceName": "CR2.ATH",

 "interfaceName": "TenGigE0/0/1/13",

 "type": "R_PHYSICAL",

 "guid": "PO/r_physical/8ff611ed7ebcd772/2c4e6530608a213d"

 },

 "interfaceB": {

 "deviceName": "SD2ATH02",

 "interfaceName": "ETH-1-1-8",

 "type": "ETH",

 "guid": "PO/eth/ecf4e9a6bbb76cbc/86cdb5c6379e5c62"

 },

 "technology": "ETH",

 "relatedModelObjectGuid":

"LI/eth/8ff611ed7ebcd772/2c4e6530608a213d/ecf4e9a6bbb76cbc/86cdb5c6379e5c62",

 "additionTimeEpochMillis": 1666695054475,

 "description": "cross link description",

 "validated": true,

 "validationResult": "VALIDATED_BY_PORT_ADJACENCY",

 "lastValidationCheck": 1668598747209,

 "conflicts": [

 {

 "a": { "deviceName": "dev-name-of-manual-link-interfaceA", "interfaceName":

"iface-name-of-manual-link-interfaceA" },

 "b": { "deviceName": "dev-name-of-different-than-manual-link-interfaceB",

"interfaceName": "iface-name-different-than-manual-link-interfaceB" }

 },

 {

 "a": { "deviceName": "dev-name-of-manual-link-interfaceB", "interfaceName":

"iface-name-of-manual-link-interfaceB" },

 "b": { "deviceName": "dev-name-of-different-than-manual-link-interfaceA",

"interfaceName": "iface-name-different-than-manual-link-interfaceA" }

 }

]

}

© 2023 Cisco and/or its affiliates. All rights reserved. Page 33 of 97

Get All Manual Cross Links

Use this API to return an array of the manual cross links. The guid returned can be used as a request

parameter in the other cross link APIs.

Request Method

GET

Request URL

https://example-host/api/v2/crosslinks/manual

Request Parameters

None

Response Example

The response returns an array of cross links with the following:

● guid

● interfaceA – deviceName, interfaceName, type, and guid

● interfaceB – deviceName, interfaceName, type, and guid

● technology (ETH or NMC)

● relatedModelObjectGuid

● additionTimeEpochMillis

● description

● validated

● validationResult (VALIDATED_BY_PORT_ADJACENCY, VALIDATED_BY_CORRELATION,

NOT_CORRELATED, INCONCLUSIVE, UNKNOWN, CONFLICT)

● lastValidationCheck

● conflicts

{

 "guid": "23f6e6c340268f068f817f8f9484aa54a2ba92d5d7072efd7940308f8ecc8fa5",

 "interfaceA": {

 "deviceName": "CR2.ATH",

 "interfaceName": "TenGigE0/0/1/13",

 "type": "R_PHYSICAL",

 "guid": "PO/r_physical/8ff611ed7ebcd772/2c4e6530608a213d"

 },

 "interfaceB": {

 "deviceName": "SD2ATH02",

 "interfaceName": "ETH-1-1-8",

 "type": "ETH",

 "guid": "PO/eth/ecf4e9a6bbb76cbc/86cdb5c6379e5c62"

 },

© 2023 Cisco and/or its affiliates. All rights reserved. Page 34 of 97

 "technology": "ETH",

 "relatedModelObjectGuid":

"LI/eth/8ff611ed7ebcd772/2c4e6530608a213d/ecf4e9a6bbb76cbc/86cdb5c6379e5c62",

 "additionTimeEpochMillis": 1666695054475,

 "description": "cross link description",

 "validated": true,

 "validationResult": "VALIDATED_BY_PORT_ADJACENCY",

 "lastValidationCheck": 1668598747209,

 "conflicts": []

}

Get a Cross Link

Use this API to get a manual cross link.

Request Method

GET

Request URL

https://example-host/api/v2/crosslinks/manual/{guid}

Request Parameters

Parameter Name Data Type Description

guid string The cross link guid. Use the guid returned by the Get All
Manual Cross Links method.

Response Example

The response returns the following for the cross link:

● guid

● interfaceA – deviceName, interfaceName, type, and guid

● interfaceB – deviceName, interfaceName, type, and guid

● technology (ETH or NMC)

● relatedModelObjectGuid

● additionTimeEpochMillis

● description

● validated: Whether the link has been validated.

● validationResult: The validation result (VALIDATED_BY_PORT_ADJACENCY,

VALIDATED_BY_CORRELATION, NOT_CORRELATED, INCONCLUSIVE, UNKNOWN, or CONFLICT).

● lastValidationCheck: The timestamp when the link was last validated.

● lastConflictTime: This timestamp is hidden if there was never a conflict. If this is the same as the

lastValidationCheck, then the manual link is currently in conflict. If lastValidationCheck is later

than the lastConflictTime, then the manual link was in conflict before but is not in conflict currently.

If in addition validated is true, this manual link appears in the network model.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 35 of 97

● conflicts: If a link is or was conflicted, the conflicts list is populated with one or two conflicting

pairs, one pair per each of the manual-link ports.

{

 "guid": "fa6262a2f1202b4bba1dd699cc78b2cf9cc45c826487de6daad69e3fa0cf0a90",

 "interfaceA": {

 "deviceName": "CR2.BCN",

 "interfaceName": "TenGigE0/0/1/8",

 "type": "R_PHYSICAL",

 "guid": "PO/r_physical/b876eefb0f288974/146956e90f8b5b6d"

 },

 "interfaceB": {

 "deviceName": "OTN1MIL01",

 "interfaceName": "1-2-3",

 "type": "ETH",

 "guid": "PO/eth/5979a210307b1e66/fba4016fb0ebde72"

 },

 "technology": "ETH",

 "relatedModelObjectGuid":

"LI/CL/PO/r_physical/b876eefb0f288974/146956e90f8b5b6d/PO/eth/5979a210307b1e66/fba4016

fb0ebde72",

 "additionTimeEpochMillis": 1668597718579,

 "description": "example",

 "validated": false,

 "validationResult": "UNKNOWN",

 "lastValidationCheck": 1668597744370,

 "conflicts": []

}

Add Manual Cross Link to Crosswork Hierarchical Controller

Use this API to add a manual cross link to Crosswork Hierarchical Controller.

Request Method

POST

Request URL

https://example-host/api/v2/apps/crosslinks/manual

Request Parameters

None

Request Body

Parameter Name Data Type Description

interfaceA Port A

© 2023 Cisco and/or its affiliates. All rights reserved. Page 36 of 97

Parameter Name Data Type Description

deviceName string The device name.

interfaceName string The interface name.

interfaceB Port B

deviceName string The device name.

interfaceName string The interface name.

technology string The technology.

Description string The description.

Request Body Example

{

 "interfaceA": {

 "deviceName": "CR2.BCN",

 "interfaceName": "TenGigE0/0/1/8"

 },

 "interfaceB": {

 "deviceName": "OTN1MIL01",

 "interfaceName": "1-2-3"

 },

 "technology": "ETH",

 "description": "example"

}

Response Example

{"guid":"d33ac2ec12c237e3a53bef30aec690e8f1ecff1a9c600c98b406ea9be30e91b7"}

Delete a Cross Link

Use this API to delete a manual cross link. The cross link is marked as deleted and is removed when the

next validation runs.

Request Method

DELETE

Request URL

https://example-host/api/v2/crosslinks/manual/{guid}

Request Parameters

Parameter Name Data Type Description

guid string The cross link guid. Use the guid returned by the Get All
Manual Cross Links method.

Response Example

© 2023 Cisco and/or its affiliates. All rights reserved. Page 37 of 97

200 OK

Shared Risk

Crosswork Hierarchical Controller provides APIs to administer shared risk policies and rules.

You can access the Shared Risk API using Swagger: https://<host>/api/v2/apps/srlg-app/rest/doc

The APIs include:

● Get a specific policy

● Get all policies

● Create a policy

● Delete a policy

● Change the shared risk type of the policy

● Change a policy type

● Add a new rule to a policy

● Update the rule resources

● Delete a rule from a policy

Get Policies

Use this API to get the list of all the policies. This returns a list of all the policies and their rules.

Request Method

GET

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy

Request Parameters

None

Response Example

{

 "name": "policy-1",

 "shared_risk_types": [

 "Link",

 "Port",

 "Card",

 "Shelf",

 "Device"

],

 "policy_type": "MULTIPLE-LINKS",

 "rules": [

 {

 "name": "rule-1",

© 2023 Cisco and/or its affiliates. All rights reserved. Page 38 of 97

 "resources": [

 "LI/eth/000fc44c94a1f2cd/51308dfd752c1574/df753d953c1e1c8f/f8e7b20537ce03b7"

]

 },

 {

 "name": "rule99",

 "resources": [

 "inventory[.name=\"CR1.PAR\"]|port|link[.layer=\"R_LOGICAL\"]"

]

 }

]

 },

 {

 "name": "test",

 "shared_risk_types": [

 "Link",

 "Device",

 "Shelf",

 "Port",

 "Card"

],

 "policy_type": "MULTIPLE-LINKS",

 "rules": [

 {

 "name": "rule001",

 "resources": [

 "inventory[.name=\"ILA-SD1EVO01-SD1SEV01-

1\"]|port|link[.layer=\"R_LOGICAL\"]"

]

 }

]

 },

 {

 "name": "policy-3",

 "shared_risk_types": [

 "Link"

],

 "policy_type": "SINGLE-PROTECTED",

 "rules": [

 {

 "name": "rule-99",

 "resources": [

© 2023 Cisco and/or its affiliates. All rights reserved. Page 39 of 97

 "link[.layer=\"R_LOGICAL\"]"

]

 }

]

}

Get a Policy

Use this API to retrieve a policy.

Request Method

GET

Request URL

https:// example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

Response Example

{

 "name": "policy-1",

 "shared_risk_types": [

 "Link",

 "Port",

 "Card",

 "Shelf",

 "Device"

],

 "policy_type": "MULTIPLE-LINKS",

 "rules": [

 {

 "name": "rule-1",

 "resources": [

 "LI/eth/000fc44c94a1f2cd/51308dfd752c1574/df753d953c1e1c8f/f8e7b20537ce03b7"

]

 },

 {

 "name": "rule99",

 "resources": [

 "inventory[.name=\"CR1.PAR\"]|port|link[.layer=\"R_LOGICAL\"]"

]

 }

]

© 2023 Cisco and/or its affiliates. All rights reserved. Page 40 of 97

}

Create a Policy

Use this API to create a policy.

Request Method

POST

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

Request Body

Parameter Name Data Type Description

shared_risk_types string Link, Port, Card, Shelf, Device

policy_type string SINGLE-PROTECTED or MULTIPLE-LINKS.

Request Body Example

{

 "shared_risk_types": [

 "Link"

],

 "policy_type": "SINGLE-PROTECTED"

Response Example

201 Successful Operation

Delete Policy

Use this API to delete a policy.

Request Method

DELETE

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

Response Example

200 Successful

© 2023 Cisco and/or its affiliates. All rights reserved. Page 41 of 97

Update Policy Shared Risk Types

Use this API to change the policy shared risk types.

Request Method

PUT

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}/shared_risk_types

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

Request Body

Parameter Name Data Type Description

shared_risk_types string Link, Port, Card, Shelf, Device

Request Body Example

{

 "shared_risk_types": [

 "Link"

]

}

Response Example

200 Successful Operation

Update Policy Type

Use this API to update credentials.

Request Method

PUT

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}/policy-type

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

Request Body

Parameter Name Data Type Description

policy_type string SINGLE-PROTECTED or MULTIPLE-LINKS.

Request Body Example

{

© 2023 Cisco and/or its affiliates. All rights reserved. Page 42 of 97

 "policy_type": "SINGLE-PROTECTED"

}

Response Example

200 Successful Operation

Add a Rule to a Policy

Use this API to add a rule to a policy. You can use an array of GUIDs and/or an SHQL query to create the

rule.

Request Method

POST

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}/rules{ruleName}

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

ruleName string The rule name. Use one of the rule names returned by the Get Policies
method.

Request Body

Parameter Name Data Type Description

resources array(string) A list of GUID links and/or an SHQL query.

If you use an SQHL query, make sure that the expression is valid and
returns a result. See the SQHL User Guide.

When you pass an SQHL query, ensure that you wrap "…." with a pair
of \s, for example: "link[.layer=\"R_LOGICAL\"]"

Request Body Example

{

 "resources": [

 "link[.layer=\"R_LOGICAL\"]"

]

}

or

{

 "resources": [

 "LI/guid1",

 "LI/guid2"

]

}

or

{

© 2023 Cisco and/or its affiliates. All rights reserved. Page 43 of 97

 "resources": [

 "inventory[.name=\"CR1.PAR\"]|port|link[.layer=\"R_LOGICAL\"]"

]

}

Response Example

201 Successful Operation

Update a Rule

Use this API to update the rule's resources. You can use an array of GUIDs and/or an SHQL query to create

the rule.

Request Method

PUT

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}/rules{ruleName}

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

ruleName string The rule name. Use one of the rule names returned by the Get Policies
method.

Request Body

Parameter Name Data Type Description

resources array(string) A list of GUID links and/or an SHQL query.

If you use an SQHL query, make sure that the expression is valid and
returns a result. See the SQHL User Guide.

When you pass an SQHL query, ensure that you wrap "…." with a pair
of \s, for example: "link[.layer=\"R_LOGICAL\"]"

Request Body Example

{

 "resources": [

 "link[.layer=\"R_LOGICAL\"]"

]

}

or

{

 "resources": [

 "LI/guid1",

 "LI/guid2"

]

}

© 2023 Cisco and/or its affiliates. All rights reserved. Page 44 of 97

or

{

 "resources": [

 "inventory[.name=\"CR1.PAR\"]|port|link[.layer=\"R_LOGICAL\"]"

]

}

Response Example

201 Successful Operation

Delete a Rule from a Policy

Use this API to delete a rule from a policy.

Request Method

DELETE

Request URL

https://example-host/api/v2/apps/srlg-app/rest/policy/{policyGuid}

/policy/{policyGuid}/rules/{ruleName}

Request Parameters

Parameter Name Data Type Description

policyGuid string The policy guid. Use the guid returned by the Get Policies method.

ruleName string The rule name. Use one of the rule names returned by the Get Policies
method.

Response Example

200 Successful

Generic Information Retrieval using SHQL

Crosswork Hierarchical Controller provides a specialized query language designed for network data, called

Sedona Hierarchical Query Language (SHQL). SHQL allows users to specify any query and quickly see the

results, as well as to save the query for the benefit of others.

SHQL is unique in the way that it allows users to query a multi-layer model using simple keywords.

Keywords allow for navigating the model, transitioning from one object type to another, and eliminating the

need for complex conditions.

Transitioning is when SHQL allows for retrieving a list of objects and using this to transition to related

objects, for example, retrieve all the SITES in the system and then use a language operator “|” (pipe

operator) to get all INVENTORY in those sites etc.

For example, all OMSs used by a specific LSP can be retrieved using just a ‘downward’ command that

retrieves, for the specified LSP, all links in the specified lower layer.

link[.name="my_lsp"] | downward ("OMS")

SHQL commands and syntax are described in the Crosswork Hierarchical Controller SHQL Guide.

SHQL can be used in the UI application in Crosswork Hierarchical Controller or as REST POST commands.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 45 of 97

Request Method

POST

Request URL

https://<server>/api/v2/shql

Request Example

In this example, the query gets the list of OMSs that are the underlay for all LSPs in operational state down.

link[.layer="LSP" and .operStatus="DOWN"] | downward | link[.layer="OMS" and

.operStatus="DOWN"]

Response Example

{

 "activeProtectionPriority": null,

 "bidi": true,

 "desc": null,

 "distanceMeters": null,

 "extra": null,

 "guid":

"LI/oms/af5e85ffc6049e8f/8c290fec341b62da/9bf4b791d3191519/3837d2f977f671bd",

 "inverseLinkId": null,

 "latencyMicros": null,

 "layer": "OMS",

 "name": "SD1BKL01/1-2-5&8 to SD1SLO01/1-3-5&8",

 "operStatus": "DOWN",

 "pathGroupType": "SINGLE_PATH",

 "paths": [

 {

 "guid":

"PA/oms/af5e85ffc6049e8f/8c290fec341b62da/9bf4b791d3191519/3837d2f977f671bd"

 }

],

 "portA": {

 "guid": "PO/oms/af5e85ffc6049e8f/8c290fec341b62da",

 "type": "OMS"

 },

 "portB": {

 "guid": "PO/oms/9bf4b791d3191519/3837d2f977f671bd",

 "type": "OMS"

 },

 "protectionStatus": "N_A",

 "provider": "Topogen",

 "role": "REGULAR",

 "srlgs": null,

 "teMetric": null

}

© 2023 Cisco and/or its affiliates. All rights reserved. Page 46 of 97

Introducing SQHL

SHQL - The Need

Cisco Crosswork Hierarchical Controller provides valuable information on network structure and enables

you to simulate various conditions using several dedicated applications.

You may, however, want to perform your own analytics and view the resulting reports. Querying a multi-

dimensional data model is complex and requires deep understanding of the model and advanced dev

skills. For example:

● Filter one layer by another

● Get data from different times

● Find anomalies

● Group links by attributes in multiple dimensions

The model data is multi-dimensional and includes:

● Vendors

● Topologies

● Layers

● Domains

● Status

● Time

The SHQL application solves this problem by implementing cross-queries between the layers and

dimension tables. It hides data complexity and provides a simple, yet powerful query language that enables

you to easily query the model across all these dimensions.

SHQL Overview

The SHQL application enables you to quickly create complex query commands and send them as requests

to the Crosswork Hierarchical Controller SHQL REST API. Accessed through your browser, the SHQL

application allows you to run queries and view an orderly distribution of results under their relevant column

headings. The type and number of columns are based on the properties of the object type displayed.

The application covers every functionality of the query language. Auto-completion context menus allow

you to easily select viable object types and their related properties and apply multiple conditions using a

range of operands.

SHQL allows you to manipulate the displayed information by transforming the query from one object type

to another within the same query command line. Alternatively, you can specify a collection of object types

to which all the query items are related.

Note: The term object type used in this guide is defined as an item or group of items that share the same

properties.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 47 of 97

Crosswork Hierarchical Controller Object Model

Figure 1.

SHQL Object Model

Inventory Types

Table 2. Inventory Types

Inventory Description

Optical Node An optical network element that is actively managed. This can be an amplifier, ROADM,
transponder, or muxponder.

Router A distinct instance of a router that has a loopback IP address and physical inventory.

IGP Inventory Item A logical/virtual router as an instance in router.

Power Supply A power supply module in an optical node or router.

Card Any type of pluggable card.

Shelf A chassis of a router or optical node.

Fan Tray A pluggable or manageable fan tray unit in an optical node or router.

Link Types

Table 3. Link Types

Inventory Description

Fiber Segment A physical fiber line that spans from one DUCT to another and is used as a segment in a fiber
link.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 48 of 97

Inventory Description

Fiber A chain of fiber segments that spans from one optical device to another.

OTS The logical layer used as an underlay for the OMS link.

One OTS link can be created over a fiber link.

OMS The logical layer used as an underlay for the OCH link.

One OMS link can be created over a chain of OTS links.

NMC A wavelength connection between two ROADMs over one or more OMS links, not connecting
to client ports on muxponder.

OCH A wavelength connection spanning the client port of one OEO device (transponder,
muxponder, regenerator) and another.

40 or 80 OCH links can be created on top of an OMS link.

An OCH link spans from one client port to another, where the client port is either a TDM or
ETH port.

SCH An OCH that spans from one ROADM device to another and terminates in a device and not in
a client port.

STS, OCG, OC The TDM links that span from one optical device to another, ride on top of OCH links and
terminate in TDM client ports

OTU The underlay link in the OTN layer, used for ODU links. It can ride on top of an OCH.

ODU The sub signals in OTU links.

Each OTU link can carry multiple ODU links, and ODU links can be divided into finer
granularity ODU links recursively.

ETH Link An ETH L2 link, that spans from one ETH UNI port to another, and rides on top of an ODU link.

ETH Chain A chain of ETH links.

L3 Physical An ethernet link (L2 connectivity) between two ETH ports.

This is the underlay layer for an IP subnet link between two routers.

Agg The Link Aggregation Group (LAG) where multiple ETH links are grouped to create higher BW
and a resilient link.

Logical Link A link where two IP subnets are connected over a physical link between two routers.

IGP The path calculated by the router as the shortest path between two specific nodes.

The link between two routers that carries IGP protocol messages. The link represents an IGP
adjacency.

Tunnel The MPLS RSVP, or Segment Routing tunnel created between two routers over IGP links, with
or without TE options.

L3-VPN Link The connection between two sites of a specific L3-VPN (can be a chain of LSP connections
or an IGP path).

© 2023 Cisco and/or its affiliates. All rights reserved. Page 49 of 97

Crosswork Hierarchical Controller Connection Model

For example: 10GE over 100G OTN link

Figure 2.

Connection Model

SQHL Example

This example finds if there are shared OMSs between two LSPs.

Figure 3.

SHQL Example

Using SHQL

About the SHQL Interface

In your browser, open the SHQL application by clicking its button on the sidebar.

Note: It is recommended that you use Chrome.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 50 of 97

Figure 4.

SHQL Application Button

The SHQL application interface is displayed. The field in which you insert your query is empty.

Figure 5.

SHQL Interface

Once you have run a query, you can save it for future use (see Saving Queries).

Running Queries

To run a query:

1. Enter a query command into the Query field (see Creating Queries).

2. Click Run.

The retrieved data is organized under its related tabs.

Figure 6 shows a list of results under two tabs after running the query, inventory_item.

Figure 6.

Query Screen with Inventory Item Results – Optical Node

© 2023 Cisco and/or its affiliates. All rights reserved. Page 51 of 97

Figure 7.

Query Screen with Inventory Item Results – Routers

Clicking the … adjacent to the object in the GUID column displays its properties in JSON format. The

.JSON lists the object’s properties and their values.

Figure 8.

Inventory Object in .JSON Format

© 2023 Cisco and/or its affiliates. All rights reserved. Page 52 of 97

Aborting Queries

When you run a query that takes a long time to return results you can abort the query.

To abort a query:

1. Enter a query command into the Query field (see Creating Queries).

2. Click Run. If the query will take a long time to return results, an abort option is offered.

Figure 9.

Abort Query

3. If you want to terminate the query, click Abort.

Creating Queries

You can build queries using free text, selecting an item from the auto-completion context menu or using a

combination of both. The first item you enter into the Query field is an object type.

You can use the auto-completion context menu at any location in the query syntax.

Note: Queries are not case sensitive.

To display an auto-completion context menu:

● Click inside the Query field and then do one of the following:

◦ Mac: Press Command + spacebar

◦ PC: Press Ctrl + spacebar

The menu appears.

Figure 10 shows the object type auto-completion context menu.

Figure 10.

Auto-completion Context Menu

© 2023 Cisco and/or its affiliates. All rights reserved. Page 53 of 97

Selecting an item from the menu displays it in the Query field. You can continue to build the query, adding

conditions and functions.

Incorrect input - from either free text or context menu selection - is indicated by a red icon . Hovering

over the icon indicates why the input is not viable or suggests the expected input.

Figure 11.

Input Not Viable

Sometimes, the error is a simple one of syntax, as in Figure 12.

Figure 12.

Syntax Error

Note: It is useful to look at the .JSON file of the queried object type to ascertain what input is viable.

Saving Queries

After creating a query, you can store it in the Saved Queries dropdown menu for repeated use.

To save a query:

1. When you complete writing your query, click Save As.

The following dialog box appears.

Figure 13.

Query Name Dialog Box

© 2023 Cisco and/or its affiliates. All rights reserved. Page 54 of 97

2. Type a name for the query and click Save.

Figure 14.

Saved Queries

3. Repeat steps 1 and 2 for every query you want to save.

Deleting Queries

To delete a query:

1. Select a query from the dropdown list of saved queries.

Figure 15.

Deleting Queries

2. Click Delete.

The query is removed from the list.

Sorting Columns

Retrieved data is displayed under the relevant column headings.

You can sort the items in ascending or descending order and apply filters to individual columns.

Note: Column management is handled in the same way as other Crosswork Hierarchical Controller tables.

To sort columns:

© 2023 Cisco and/or its affiliates. All rights reserved. Page 55 of 97

1. Click a column heading.

An upward pointing arrow appears.

Figure 16.

Column Contents in Descending Order

2. Click the arrow to sort the column items in ascending order. Click it again to sort the column items in

descending order.

Figure 17.

Column Contents in Ascending Order

To filter column contents:

© 2023 Cisco and/or its affiliates. All rights reserved. Page 56 of 97

1. In the column heading, click the Filter icon.

The column heading expands to display filtering options.

Figure 18.

Filter Column Contents

2. Select an option value or type a pattern into the text box to filter the column contents. The column Filter

icon changes to , indicating that a filter is applied to the column.

Figure 19.

Filter Applied to Column

Creating Conditions

You can apply conditions to an object type, using the operands described in the table below.

Conditions are generally not case sensitive. Case must be adhered to only when it’s part of a predefined

list of values.

Conditions are placed within square brackets([]).

Table 4. Operands

Operand Numerical String Description

!= ü ü Different than.

< ü Less than.

<= ü Less than or equal to.

= ü ü Equal to.

> ü Larger than.

>= ü Larger than or equal to.

contains ü Partial match.

endswith ü Ending with a given pattern.

has Item in an array.

Use to look for an item when the field is a list.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 57 of 97

Operand Numerical String Description

in ü ü Matched list of patterns.

Use when the field is a single item and the filter contains
multiple items.

intersect ü Geographical intersection of regions at a specific longitude and
latitude.

For example:

region[.geometry intersect (4.8945398, 52.3666)]

is ü Boolean (true / false) and null.

not ü Together with is, contains, endswith, startswith, to negate the
condition.

startswith ü Starting with a given pattern.

xin ü ü Matched lists of patterns for multiple properties.

~ ü String with a regular expression.

Example 1: Filtering with Operands

Figure 20. retrieves a list of routers with names that begin with CR1.

Figure 20.

Filtering Using Operand

Figure 21 shows the results.

Figure 21.

Query Results

© 2023 Cisco and/or its affiliates. All rights reserved. Page 58 of 97

Example 2: Filtering with Operands

Figure 22 retrieves the inventory where the vendor is Ciena.

Figure 22.

Filtering Using Operand

Figure 23 shows the results.

Figure 23.

Query Results

Example 3: Filtering with Operands

Figure 24 looks for links where (port_a.guid = "PO/igp/06c0868cc5601e85/06c0868cc5601e85" and

port_b.guid ="PO/igp/c3b0dc2cd3ad6406/c3b0dc2cd3ad6406") or (port_a.guid =

"PO/igp/c3b0dc2cd3ad6406/c3b0dc2cd3ad6406" and port_b.guid =

"PO/igp/06c0868cc5601e85/06c0868cc5601e85").

Figure 24.

Filtering Using Operand

Figure 25 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 59 of 97

Figure 25.

Query Results

Example 4: Filtering with Operands

Figure 26 retrieves and adds up the events captured the day before yesterday (>-2d and <-1d). The

.timeStamp property can be used with d (days), h (hours), m (months), M (minutes). S (seconds), y (years)

or w (weeks).

Figure 26.

Filtering Using Operand

Figure 27 shows the results.

Figure 27.

Query Results

Transforming/Collecting Object Types

You can add an object type to the query command and determine if the data to be retrieved is transformed

from one object type to another object type, or if the data reflects a collection of multiple object types and

their related items.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 60 of 97

● Transformation: Add a pipe (|) to the query command before adding the new object type.

Transforms the results relating to the previous object type to output for the new object type.

● Collection: Add an ampersand (&) to the query command before adding the new object type.

Retrieves all the output for all the preceding object types.

● As: Add a temporary variable. Enables you to create a query with an object type that is not related to

the preceding object type.

The table describes object types and the object types to which they are directly related.

Table 5. Object Types and Properties

Object type Object type properties

event N/A

inventory inventory_item

inventory

port

site

srlg

inventory_item inventory_item

inventory

port

site

srlg

link link

path

port

site link

srlg

region

path path

link

port port

link

inventory_item

inventory

service

srlg

region site

visual site

link

© 2023 Cisco and/or its affiliates. All rights reserved. Page 61 of 97

Object type Object type properties

risk_resource srlg_risk_resource_mtm

risk_resource

port

link

inventory_item

inventory

service port

service intent

service_intent service_intent

service

service_intent_resource

service_intent_resource service_intent_resource
service_intent

site site

inventory item

inventory

visual site

region

site_link site_link

visual_site

link

srlg srlg

port

link

inventory_item

inventory

srlg_risk_resource_mtm srlg_risk_resource_mtm

risk_resource

port

link

inventory_item

inventory

visual_site visual_site

site_link

site

region

© 2023 Cisco and/or its affiliates. All rights reserved. Page 62 of 97

Example: Object Types Transformation

Figure 28.Figure 28 shows a query built to retrieve ports belonging to the object type inventory item. The

object types are separated by a pipe (|).

Figure 28.

Query with Object Type Transformation

Figure 29 shows the results.

Figure 29.

Transformation Results

Example: Object Types Collection

Figure 30 shows a query built to retrieve sites and the inventory items the sites belong to. The object types

are separated by an ampersand (&).

Figure 30.

Query with Object Type Collection

Figure 31 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 63 of 97

Figure 31.

Collection Results

Example: As Temporary Variable

Using As allows you to use the output of a query as the input in collections.

The following figures demonstrate how to create a query built to support non-related object types using a

temporary variable.

Figure 32 shows a query command composed of an object type, link.

Figure 32.

Query

Figure 33 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 64 of 97

Figure 33.

Query Results

Figure 34 shows how to create a temporary variable using As. The variable L appears in the context menu

as a valid object type.

Figure 34.

Adding As

Figure 35 shows how to use the temporary variable L to transform a list of links to their ports, paths

and site links.

Figure 35.

Query Using as

Figure 36 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 65 of 97

Figure 36.

Results using Temporary Variable

Functions

SHQL provides several functions that allow you to precisely define the quantity, type and network layer of

the items to retrieve.

Functions are preceded by a pipe in the query command line.

You can retrieve an item and then specify whether to retrieve related items from either above or below the

layer, or from both above and below. These recursive operations are valid for port, link, site, inventory, and

visual site.

Using Retrospective plus a timestamp enables you to query a situation that existed before the present time.

For example, you can check the status of a site when it was down earlier in the day but in the present is up

and running.

In addition, SHQL functions enable you to retrieve data based on free text.

SHQL functions are described in the table below.SHQL Functions

Table 6. SHQL Functions

Function Description

downward Retrieves items from below the layer of the specified item

upward Retrieves items from above the layer of the specified item

span Retrieves items from below and above the layer of the specified item

fts Free text search. Retrieves items according to the search string you enter.

group_by Returns query results grouped by property, for example, how many ports have an OperStatus
of Up.

retrospective(@) Retrieves items from the past according to a given timestamp.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 66 of 97

Example: downward Function

The following figures demonstrate how to create a query to retrieve items from all layers below a link,

according to its GUID.

Figure 37 shows a query command composed of an object type followed by its GUID.

Figure 37.

Query Command

Figure 38 shows the results.

Figure 38.

GUID Results

Figure 39 shows nine additional items below the link layer, retrieved after adding the function downward to

the command.

Figure 39.

Results with the Function Downward

Example: retrospective Function

Figure 40 shows the query command built to retrieve the situation in the network at a specific time in the

past.

You can use different time formats:

● Absolute time: @2019-05-10 10:00:00

● Relative time in the format '-'[0-9]+[ymwdHMS]: @-10H

● Unix timestamp (ms): @1558610956000

© 2023 Cisco and/or its affiliates. All rights reserved. Page 67 of 97

Figure 40.

@ and Epoch Timestamp

Figure 41 shows the results.

Figure 41.

Timestamp Results

Example: group_by Function

Figure 42 shows the query command to group the devices by site (and count them).

Figure 42.

group_by

Figure 23 shows the results.

Figure 43.

group_by Results

© 2023 Cisco and/or its affiliates. All rights reserved. Page 68 of 97

History Function

Crosswork Hierarchical Controller keeps records of all changes in the network inventory and topology. The

changes are stored as a list of events in an event history table. An event is a record of any resource

addition (ADD), deletion (DELETE) or attribute change (UPDATE). The events are linked to the model using

the guid as an index to the objects in the model. The events table includes all the details of the changes

including the time, resource ID, object type, event type, and the value before and after the change.

A unique implementation was selected in order to include all resources that were in the model at some

point in the selected time range in the returned results. Thus, it guarantees that services or links that were

subsequently deleted are still found. For example, if you query the table to get events for all services with

specific tags for the past two weeks, the results will include the relevant services, including those that no

longer exist at the end of the period. For more information, refer to the Crosswork Hierarchical Controller

Network History Guide.

You can construct a query that uses a standard SHQL query to filter the model, then add the pipe (|) and

filter the history table. The history table can be filtered by all the entry attributes:

● Changed object guid

● Changed object type

● Change type (ADD, UPDATE, DELETE)

● Value before

● Value after

The results returned are from the event history table (whereas regular SHQL queries return results from the

objects table).

Example: history

Figure 44 shows the query command built to retrieve the events for links between two dates. You can

narrow the query results by adding in the history table options, for example, only show UPDATE events, or

search for links that went down.

Figure 44.

@ and history

Figure 45 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 69 of 97

Figure 45.

History Results

Additional Output Functions

You can add the functions described in the table below to retrieve results and display them in a specific

order. Typically, these functions are added at the end of the query command. You can also view specific

properties for the query results.

The function order is significant and must appear in the following order:

● fibre talk set > view > operands > asc/desc > limit > after

For example:

● This query is invalid: port | limit(10) | asc(.name)

● This query is valid: port | asc(.name) | limit(10)

Output functions are preceded by a pipe (|).

Table 7. Output Functions

Function Description

add_counters Displays the total number per attribute value for the specified object type.

after (GUID) Displays only the results that follow the item with the specified GUID.

asc (column) Displays results in ascending natural order

desc (column) Displays results in descending natural order

group_by

limit(#) Limits the number of displayed results

view Displays the specified properties (with the labels provided) for the query results.

Example: after

Figure 46 shows a query built to retrieve only items that follow the item with the specified GUID.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 70 of 97

Figure 46.

After Output Function

Figure 47 shows the results.

Figure 47.

After Output Results

Example 1: add_counters

Figure 48 shows a query built to retrieve the total number of each of the link layers. Adding | limit (0) to the

query limits the response to the counters only.

Figure 48.

add_counters Function

Figure 49 shows the results.

Figure 49.

add_counters Results

© 2023 Cisco and/or its affiliates. All rights reserved. Page 71 of 97

Example 2: add_counters

Figure 50 shows a query built to retrieve the total number of each of the link layers and the total number of

links in each of the operational statuses (UP, DOWN or N_A). Adding | limit (0) to the query limits the

response to the counters only.

Figure 50.

add_counters Function

Figure 51 shows the results.

Figure 51.

add_counters Results

Example 1: view

Figure 52 shows a query built to retrieve the port guid, name, device.name and teMetric for IGP ports.

Figure 52.

View Output Function

Figure 53 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 72 of 97

Figure 53.

View Output Results

Example 2: view

Figure 54 shows a query built to retrieve the link guid and the number of paths in the link, when the link is

not in a FIBER or FIBER_SEGMENT layer.

Figure 54.

View Output Function

Figure 55 shows the results.

Figure 55.

View Output Results

Example 3: view

Figure 56 shows a query built to retrieve the link guid and port names when the link is not in a FIBER or

FIBER_SEGMENT layer. The output is limited to 20 entries.

Figure 56.

View Output Function

Figure 57 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 73 of 97

Figure 57.

View Output Results

Example 4: view

Figure 58 shows a query built to count the hops for the specified path.

Figure 58.

View Output Function

Figure 59 shows the results.

Figure 59.

View Output Results

Complex Examples

Complex Example 1

The following figures demonstrate how to get OMS links that causes LSPs to fail.

The query command includes the following:

site[.name="DUB"] | inventory_item | port | link[.layer="LSP"] as w; site[.name="BEL"] | inventory_item |

port | link[.layer="LSP" and .guid in w] | downward("OMS") | link[.layer="OMS" and

.operStatus="DOWN"]

Get all LPSs between sites DUB and BEL:

● Use | to transform from one object type to another.

● Use alias and in to reduce the list to only those between DUB to BEL.

Down to OMS links and filter by operational state:

● Use ‘downward’ function.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 74 of 97

● Use layer name in function (downward (“OMS”)) to limit the downward to a specific level.

Figure 60.

Query Results

Figure 61.

Query Results

Complex Example 2

The following figures demonstrate how to get the current list of OMSs.

The query command includes the following:

link[.name="CR1.DUB:CR1.BEL:lsp_0"] | downward | link[.layer="OMS"]

Get all OMSs used by specific LSP:

● Get LSP by its name.

● Downward to OMSs used by this LSP.

The query command that includes the following:

Figure 62.

Query Command

© 2023 Cisco and/or its affiliates. All rights reserved. Page 75 of 97

Figure 63.

Query Results

If you want to track the LSP path change over time, you can use for example, @-1d:

Figure 64.

Query Command

Complex Example 3

The following figures demonstrate how to find shared risk between two IP links.

The query command includes the following:

link[.name="10.40.0.157 to 10.40.0.158"] | downward | link[.layer="OMS"] as p;

link[.name="10.40.0.154 to 10.40.0.153"] | downward | link[.layer="OMS"] as w; link[.guid in p and .guid

in w]

Get OMSs of the first IP logical link:

● Filter by link name, downward to its OMSs, and alias it as p.

Get OMSs of the second IP logical link:

● Filter by link name, downward to its OMSs, and alias it as w.

Get all shared OMS links:

● Get links that appear in both groups.

Figure 65.

Query Command

© 2023 Cisco and/or its affiliates. All rights reserved. Page 76 of 97

Figure 66.

Query Results

Complex Example 4

The following figures demonstrate how to find free ports for services in a site.

The query command that includes the following:

site[.name contains "MIL"] | inventory_item | port[.type="ETH"] | link | port as p; site[.name contains

"MIL"] | inventory_item | port[.type="ETH" and .guid not in p]

Get all ETH ports of specific site used by links:

● Get site ports, transform to links and then to ports, and alias it as p.

Get all ports that are not in use by links:

● Get site ports, transform to ports, filter out those that appear in p.

Figure 67.

Query Command

Figure 68.

Query Results

Try It Yourself

Try and create your own complex query.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 77 of 97

Figure 69 shows an example that includes:

● Operands

● Transformations

● Collections

● Functions

Figure 69.

Complex Query

Table 8. Breakdown of Complex Query

Item Type See...

site Object type Object Types and Properties

[.guid = "ST/31105c202abd"] | Condition (operand =) Operands

downward Function SHQL Functions

| inventory_item Transformation object typ Transforming/Collecting Object
Types

| port Transformation object type Transforming/Collecting Object
Types

| link | Transformation object type Transforming/Collecting Object
Types

 upward Function SHQL Functions

| link[.layer in ("LSP", "E_LINE")] | Transformation object type + condition
(operand in)

Transforming/Collecting Object
Types

limit(20) Function Output Functions

& port & inventory_item & site| Collections of object types Transforming/Collecting Object
Types

upward Function SHQL Functions

Figure 70 shows the results.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 78 of 97

Figure 70.

Complex Query Results

Use Time Machine

The time machine provides a snapshot of the state of the network as it was at a date in the past. In this

mode, all applications reflect data and analysis that apply to this point in time.

You can use the time machine query the model as at a date in the past.

To change the model date:

© 2023 Cisco and/or its affiliates. All rights reserved. Page 79 of 97

1. In the applications bar in Crosswork Hierarchical Controller, select SHQL.

2. Click Live, select a date and click Confirm.

3. Run the required query.

Object Type Properties

The following sections list all the properties aligned with the different object types.

inventory_item Properties

Table 9. inventory_item properties

inventory_item properties

.accessIdentifier

.cardStatus

.cardType

.children

.childrenPorts

.desc

.deviceFamily

.deviceType

domainName

.equipState

.extra

.formFactor

.guid

.hasRoadm

© 2023 Cisco and/or its affiliates. All rights reserved. Page 80 of 97

inventory_item properties

.id

igpType

.isisInfo

.isisInfo.areaAddresses

.isisInfo.instanceIdentifier

.isisInfo.isDiscoveredL1

.isisInfo.isDiscoveredL2

.isisInfo.systemId

.isisInfo.topologyIdentifier

.managementIp

.modelNumber

.name

.oui

.parent

.partNumber

.pluggability

.provider

.reachabilityStatus

routerId

.serialNumber

.site

.softwareVersion

.supportedLambdas

.supportedPhysicalLayers

.supportedReacabilityMeters

.supportedSpeeds

.tags

.topologyId

.tunableType

.tunedLambda

.type

.vendor

© 2023 Cisco and/or its affiliates. All rights reserved. Page 81 of 97

port Properties

Table 10. port properties

port properties

.adminGroups

.adminGroups.groupNumber

.adminGroups.name

.adminStatus

.aggRateBps

.ceInterfaceIp

.cePeRoutingProtocols

.channelNum

.childRole

.containingService

.desc

.device

.egressBandwidthProfile

.egressBandwidthProfile.cbsKb

.egressBandwidthProfile.cir

.egressBandwidthProfile.ebsKb

.egressBandwidthProfile.eir

.egressBandwidthProfile.qosPolicy

.ethPortType

.evcEgressBandwidthProfile

.evcEgressBandwidthProfile.cbsKb

.evcEgressBandwidthProfile.cir

.evcEgressBandwidthProfile.ebsKb

.evcEgressBandwidthProfile.eir

.evcEgressBandwidthProfile.qosPolicy

.evcIngressBandwidthProfilePerEvc

.evcIngressBandwidthProfilePerEvc.cbsKb

.evcIngressBandwidthProfilePerEvc.cir

.evcIngressBandwidthProfilePerEvc.ebsKb

© 2023 Cisco and/or its affiliates. All rights reserved. Page 82 of 97

port properties

.evcIngressBandwidthProfilePerEvc.eir

.evcIngressBandwidthProfilePerEvc.qosPolicy

.exportRts

.extra

.guid

.hasServiceEndPointCapability

.id

.ifIndex

.igpInstanceName

.igpMetric

.importRts

.ingressBandwidthProfile

.ingressBandwidthProfile.cbsKb

.ingressBandwidthProfile.cir

.ingressBandwidthProfile.ebsKb

.ingressBandwidthProfile.eir

.ingressBandwidthProfile.qosPolicy

.ipAddress

.isLoopback

.isManagement

.isRouterId

.isStatsDummy

.isisInfo

.isisInfo.isisLevel

.isisInfo.netPrefixMetric

.isisInfo.portType

.lambdaNm

.links

.lowerPorts

.mappedCeTags

.mappedSvlan

mappingType

© 2023 Cisco and/or its affiliates. All rights reserved. Page 83 of 97

port properties

.maxLinkBandwidth

.maxReservableLinkBandwidth

.mediaFrameType

.memberCount

.mtuSize

.name

.nonPrimaryIps

.ocType

.oduId

.oduPolarization

.oduType

.operStatus

ospfInfo

.otuType

.packetOpticalDetails

.packetOpticalDetails.availableBandwidth

.parent

.pdhType

.physicalAddress

.portCapibilities

.primaryIp

.protectionType

.provider

.range

.relDirection

.relPort

.rfParams

.routeDistinguisher

.rsvpReservedBandwidthBps

.rsvpStaticBandwidthBps

.spanLoss

.speedBps

© 2023 Cisco and/or its affiliates. All rights reserved. Page 84 of 97

port properties

.srPrefixSids

.srlgs

.stsType

.tags

.teMetric

.type

.unreservedLinkBwForPriorityIndex

.upperPorts

.vcatStsType

.vlan

.vpnRole

.vrfName

.vtTye

.ycableType

link Properties

Table 11. link properties

link properties

.activeProtectionPriority

.adjacencySegmentInfo

.adminGroupConstraints

.bindingSid

.candidatePaths

.color

.deploymentType

.desc

.distanceMeters

.desc

.evcPerformanceProfile

.extra

.geometry

.guid

© 2023 Cisco and/or its affiliates. All rights reserved. Page 85 of 97

link properties

.holdPriority

.id

.inverseLinkId

.isApproximated

.isBidi

.isCeVlanCosPreservation

.latencyMicros

.layer

.lineType

.lspTechnology

.mappingStatus

.name

.numberOfFibers

.operStatus

.owner

.pathGroupType

.paths

.portA

.portB

.prefixSegmentInfo

.protectedLayer

.protectionStatus

.provider

.role

.rxLabel

.segmentType

.setupPriority

.sidIndex

.sidLabel

.signalType

.speedBps

.srAdjacencySids

© 2023 Cisco and/or its affiliates. All rights reserved. Page 86 of 97

link properties

.srlgs

.tags

.teMetric

.txLabel

.usedByHops

.vcId

site Properties

Table 12. site properties

site properties

.extra

.guid

.id

.latitude

.longitude

.name

.parent

service Properties

Table 13. service properties

service properties

.adminStatus

.anyToAnyOrHubRouteTarget

.containedPorts

.customerDetails

.customerName

.desc

.extra

.guid

.id

.name

.operStatus

© 2023 Cisco and/or its affiliates. All rights reserved. Page 87 of 97

service properties

.provider

.serviceIntent

.serviceIntentRelation

.spokeRouteTarget

.tags

.type

.vpnTopology

service_intent Properties

Table 14. service_intent properties

service_intent properties

.adminState

.anyToAnyDetails

.anyToAnyDetails.minimumSites

.anyToAnyDetails.routeTarget

.baseTemplate

.customerName

.dataForNonMultiplexedService

.dataForNonMultiplexedService.ethPortType

.deploymentInfo.lastStatusChangeTimeStamp

.deploymentInfo.operation

.deploymentInfo.phase

.desc

.extra

.guid

.holdPriority

.hubAndSpokeDetails

.hubAndSpokeDetails.hubRouteTarget

.hubAndSpokeDetails.minimumHubSites

.hubAndSpokeDetails.minimumSpokeSites

.hubAndSpokeDetails.spokeRouteTarget

.id

© 2023 Cisco and/or its affiliates. All rights reserved. Page 88 of 97

service_intent properties

.ipAddressAllocationPolicy

.isOamPmCollectionEnabled

.isRemoved

.isTemplate

.name

.oduType

.pathComputationSettings

.pathComputationSettings.backupPathOptimization

.pathComputationSettings.includeLinkStates

.pathComputationSettings.mainPathOptimization

.protectionSettings

.protectionSettings.protectionPolicy

.protectionSettings.resourceDiversityFor1Plus1

.protectionSettings.resourceDiversityFor1Plus1.diversedResources

.protectionSettings.resourceDiversityFor1Plus1.diversityPolicy

.provider

.qosSettings

.qosSettings.cbsKb

.qosSettings.cir

.qosSettings.ebsKb

.qosSettings.eir

.qosSettings.qosPolicy

.resourceAllocationPolicy

.routeDistinguisher

.setupPriority

.srData

.tunnelType

.type

.underlayTech

.underlayTech.allowedNni

.underlayTech.ipMpls

.underlayTech.ipMpls.allowedNni

© 2023 Cisco and/or its affiliates. All rights reserved. Page 89 of 97

service_intent properties

.underlayTech.ipMpls.tunnelResilliency

.underlayTech.ipMpls.tunnelTypes

.underlayTech.mplsTp

.underlayTech.mplsTp.allowedNni

.underlayTech.mplsTp.tunnelResilliency

.underlayTech.mplsTp.tunnelUsageConstraints

.underlayTech.otn

.underlayTech.otn.allowedNni

.underlayTech.otn.serviceTunnelRate

.underlayTech.otn.serviceTunnelType

.underlayTech.selectedTech

.underlayTech.tunnelResilliency

.underlayTech.tunnelTypes

.underlayTech.wdm

.underlayTech.wdm.allowedNni

.vlanManipulation

.vpnTopology

service_intent_resource Properties

Table 15. service_intent_resource Properties

service_intent_resource properties

.constraintCompliance

.extra

.guid

.id

.includeType

.layer1Info

.layer1Info.tunnelRate

.layer2Info

.layer2Info.mappedCeTags

.layer2Info.qos

.layer2Info.qos.cbsKb

© 2023 Cisco and/or its affiliates. All rights reserved. Page 90 of 97

service_intent_resource properties

.layer2Info.qos.cir

.layer2Info.qos.ebsKb

.layer2Info.qos.eir

.layer2Info.qos.qosPolicy

.layer3Info

.layer3Info.cePeSettings

.layer3Info.cePeSettings.bgpRoutingDetails

.layer3Info.cePeSettings.bgpRoutingDetails.autonomousSystem

.layer3Info.cePeSettings.bgpRoutingDetails.peeringIp

.layer3Info.cePeSettings.ospfRoutingDetails

.layer3Info.cePeSettings.ospfRoutingDetails.metric

.layer3Info.cePeSettings.ospfRoutingDetails.ospfArea

.layer3Info.cePeSettings.routingMethod

.layer3Info.cePeSettings.staticRoutingDetails

.layer3Info.cePeSettings.staticRoutingDetails.entries.adminPreference

.layer3Info.cePeSettings.staticRoutingDetails.entries.ipPrefix

.layer3Info.cePeSettings.staticRoutingDetails.entries.nextHop

.layer3Info.ipAddress

.layer3Info.l3VpnRole

.order

.protectionRole

.resource

.resourceDiversity

.serviceIntent

.tag

.type

event Properties

Table 16. event properties

event properties

.count

.data

© 2023 Cisco and/or its affiliates. All rights reserved. Page 91 of 97

event properties

.guid

.lastUpdate

.machineId

.severity

.subType

.timeStamp

.type

.username

srlg Resource Properties

Table 17. srlg properties

srlg properties

.externalId

.extra

.guid

.id

.name

.ordinal

.provider

.srlgs

path Properties

Table 18. path properties

path properties

.ecmpWeight

.extra

.guid

.hops

.id

.link

.priority

.provider

© 2023 Cisco and/or its affiliates. All rights reserved. Page 92 of 97

path properties

.srPathSegments

.tunPortA

.tunPortB

site_link Properties

Table 19. site_link properties

site_link properties

.depth

.guid

.id

.isCrossLink

.layer

.links

.name

.siteA

.siteB

.status

.tags

.utilization

visual_site Properties

Table 20. visual_site properties

visual_site properties

.depth

.guid

.id

.isOnlyAmplifiers

.latitude

.longitude

.name

.oneSize

.parent

© 2023 Cisco and/or its affiliates. All rights reserved. Page 93 of 97

visual_site properties

.reachabilityStatus

.routerSize

.site

.tags

inventory Properties

Table 21. inventory properties

inventory properties

.accessIdentifier

.cardStatus

.cardType

.children

.childrenPorts

.desc

.deviceFamily

.deviceType

.equipState

.extra

.formFactor

.guid

.hasRoadm

.isisInfo

.isisInfo.areaAddresses

.isisInfo.instanceIdentifier

.isisInfo.isDiscoveredL1

.isisInfo.isDiscoveredL2

.isisInfo.isisInstanceName

.isisInfo.systemId

.isisInfo.topologyIdentifier

.managementIp

.modelNumber

.name

© 2023 Cisco and/or its affiliates. All rights reserved. Page 94 of 97

inventory properties

.oui

.parent

.partNumber

.pluggability

.ports

.provider

.reachabilityStatus

.routerId

.serialNumber

.site

.softwareVersion

.srCapabilities

.srlgs

.supportedLambdas

.supportedPhysicalLayers

.supportedReacabilityMeters

.supportedSpeeds

.tags

.topologyId

.tunableType

.tunedLambda

.type

.unitType

.vendor

srlg_risk_resource_mtm Properties

Table 22. srlg_risk_resource_mtm properties

srlg_risk_resource_mtm properties

.guid

.id

.inventoryItem

.link

© 2023 Cisco and/or its affiliates. All rights reserved. Page 95 of 97

srlg_risk_resource_mtm properties

.port

.provider

.srlg

risk_resource Properties

Table 23. risk_resource properties

risk_resource properties

.inventoryItem

.guid

.provider

.link

.srlg

.port

region Properties

Table 24. region properties

region properties

.geometry

.guid

.id

.name

.overlay

history Properties

Table 25. history properties

history properties

.action

.changes

.objGuid

.objName

.objSubtype

.objType

.timestamp

© 2023 Cisco and/or its affiliates. All rights reserved. Page 96 of 97

Creating SHQL Widgets

About SHQL Widgets

You can create customized widgets, rapidly with no development efforts and no software delivery. The

widget query runs when opening the SHQL Dashboard application and the widgets are displayed. The

widget also has a refresh button to run the query manually.

Creating SHQL Widgets

The widget attributes are:

● Title: The name of the SHQL widget as it appears in the SHQL Dashboard.

● Query: Must be up to 5 views, and limit(100).

● Visual mode:

◦ Pie/bar – when the query contains counters only

◦ Graph – when the query contains timestamp and counters

◦ Table – when the query returns a list

● ‘About’ text.

● Optional: Additional query to be used as a drill down into a widget (can be automatically generated

(removing the counter and limit).

© 2023 Cisco and/or its affiliates. All rights reserved. Page 97 of 97

To create an SHQL widget:

1. In the applications bar in Crosswork Hierarchical Controller, select SHQL Widgets.

2. Click + New SHQL Widget.

Figure 71.

Creating New Widget

3. Select the Type. This can be Table, Graph, or Pie.

Depending on the type of widget selected, guidance is provided on the SHQL permitted.

Appendix

Glossary

Term Description

RESTCONF A protocol based on HTTP for configuring data defined in YANG version 1 or YANG version
1.1 using the datastore concepts defined in the Network Configuration Protocol (NETCONF)

	Introducing Crosswork Hierarchical Controller APIs
	API Architecture and Technologies
	RESTCONF/YANG Protocol Introduction
	Query Filtering
	Transport Security
	Data Integrity
	Server Authentication
	Client Authentication

	API Endpoints
	Object IDs
	Device Management
	Get Adapters
	Get Adapter Configuration Schema
	Get Adapter Device Schema
	Get All Devices
	Add Device to Crosswork Hierarchical Controller
	Assign Device to Adapter
	Update Device Adapter Configuration
	Unassign Device from Adapter
	Update Device Name
	Assign Device to Site
	Get Device Status
	Get a Device
	Remove Device from Crosswork Hierarchical Controller
	Get Credentials
	Add New Credentials
	Update Credentials
	Delete Credentials
	Get the Parameters Schema for the Specified Credentials Type

	Physical Inventory
	Get Physical Inventory

	Performance Counters
	URIs
	Get Performance Latest Stats
	Get Performance Stats for Period
	Send Specific Ports Performance Stats

	Cross Links
	Get All Adjacent Cross Links
	Validate All Cross Links
	Validate a Cross Link
	Get All Manual Cross Links
	Get a Cross Link
	Add Manual Cross Link to Crosswork Hierarchical Controller
	Delete a Cross Link

	Shared Risk
	Get Policies
	Get a Policy
	Create a Policy
	Delete Policy
	Update Policy Shared Risk Types
	Update Policy Type
	Add a Rule to a Policy
	Update a Rule
	Delete a Rule from a Policy

	Generic Information Retrieval using SHQL
	Request Method
	Request URL
	Request Example
	Response Example

	Introducing SQHL
	SHQL - The Need
	SHQL Overview
	Crosswork Hierarchical Controller Object Model
	Inventory Types
	Link Types

	Crosswork Hierarchical Controller Connection Model
	SQHL Example

	Using SHQL
	About the SHQL Interface
	Running Queries
	Aborting Queries
	Creating Queries
	Saving Queries
	Deleting Queries

	Sorting Columns
	Creating Conditions
	Example 1: Filtering with Operands
	Example 2: Filtering with Operands
	Example 3: Filtering with Operands
	Example 4: Filtering with Operands

	Transforming/Collecting Object Types
	Example: Object Types Transformation
	Example: Object Types Collection
	Example: As Temporary Variable

	Functions
	Example: downward Function
	Example: retrospective Function
	Example: group_by Function

	History Function
	Example: history

	Additional Output Functions
	Example: after
	Example 1: add_counters
	Example 2: add_counters
	Example 1: view
	Example 2: view
	Example 3: view
	Example 4: view

	Complex Examples
	Complex Example 1
	Complex Example 2
	Complex Example 3
	Complex Example 4
	Try It Yourself

	Use Time Machine

	Object Type Properties
	inventory_item Properties
	port Properties
	link Properties
	site Properties
	service Properties
	service_intent Properties
	service_intent_resource Properties
	event Properties
	srlg Resource Properties
	path Properties
	site_link Properties
	visual_site Properties
	inventory Properties
	srlg_risk_resource_mtm Properties
	risk_resource Properties
	region Properties
	history Properties

	Creating SHQL Widgets
	About SHQL Widgets
	Creating SHQL Widgets

	Appendix
	Glossary

