

Cisco Crosswork Situation Manager

7.2.x Developer Guide
Powered by Moogsoft AIOps 7.2

Cisco Crosswork Situation Manager 7.2.x Developer Guide

2

Table of Contents

Developer Guide .. 3

Graze API .. 3
Stats API .. 3
Moobot Modules ... 4
Programmatic LAM ... 4
Graze API .. 4

Architecture ... 5
Configure Tomcat .. 5
API Definition .. 5
Authentication Troubleshooting ... 5
Endpoints .. 6
HTTP Status and Error Codes ... 89
Situation Action Codes .. 90
Alert Action Codes ... 91
Stats API... 91

Moobot Modules .. 157
Threads and Global Scope ... 157
Moobot Modules ... 157
Using External Modules ... 158
onLoad Function ... 159
Config ... 160
ExternalDb ... 177
Graph Topology ... 184
Logger .. 189
Mailer ... 191
MoogDb V2 .. 192
Moolet Informs .. 235
Moolet Information API ... 239
Process .. 241
RabbitMQ ... 242
REST.V2 .. 246
Utilities .. 257

Programmatic LAM .. 260
Before You Begin .. 260
Configure the LAM ... 260
Example LAM Configuration .. 260

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

3

Developer Guide
The Developer Guide provides resources for developers who want to perform advanced functions or build

applications that integrate with Cisco Crosswork Situation Manager.

If you want to build a new integration or create a custom reporting dashboard, this guide outlines how you can

expose API endpoints to invoke various actions and functionality.

You can use the following APIs and modules:

 Graze API: Main API that can call retrieve data, update data and call actions in Cisco Crosswork Situation

Manager.

 Stats API: API that you can use to retrieve statistics from Cisco Crosswork Situation Manager for reporting

and dashboards.

 Moobot Modules: You can create bots to perform automated tasks and expose functions in different

Moolets.

 Programmatic LAM: You can use this custom polling LAM to accept API calls and parse the responses into

Cisco Crosswork Situation Manager events.

You can also use these APIs to perform tasks such as Situation enrichment. See section Enrichment in the Cisco

Crosswork Situation Manager Implementor Guide for more information.

Graze API

You can use the Graze API to perform actions including the following:

 Assign and de-assign alerts.

 Create and close Situations.

 Add processes and services.

 Create and update SAML realms.

 Create and delete maintenance windows.

The Graze API is useful if you want to perform repeated actions. For example, sending repeated cURL commands

using a script. For example, you can create a ticketing integration to enable bi-directional communication between

Cisco Crosswork Situation Manager and a ticketing system. Refer to the Cisco Crosswork Situation Manager

Integration Guide for available ticketing integrations.

An integration can raise and close Cisco Crosswork Situation Manager alerts in line with ticketing events, assign

users and replicate comments. For all available endpoints see Graze API.

Stats API

You can use the Stats API to retrieve statistics about:

 Your Cisco Crosswork Situation Manager system's performance.

 Teams' performance.

 Individual users' performance.

You can use this statistical data to populate dashboards. For example, you can use call

getNewEventsPerSituationsStats to see the noise reduction from events to Situations for your Cisco

Crosswork Situation Manager system.

These endpoints have been designed and optimized for Grafana. See Stats API for all available endpoints. See the

Grafana Setup Tutorial in Cisco Crosswork Integration Guide for more installation and configuration instructions.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

4

Moobot Modules

You can create and configure Moobot modules to perform automated tasks and expose functions including:

 Access external databases.

 Access an external RESTful API via HTTP.

 Read configuration files within LAMbots and Moobots.

 Build a key value dictionary shared across Moobots.

 Query and manipulate entities in the Cisco Crosswork Situation Manager databases. See MoogDb V2 for all available

methods.

 Send an email in response to events occurring in Cisco Crosswork Situation Manager.

For more information see Moobot Modules.

Programmatic LAM

The Programmatic LAM is a custom polling LAM. It is an advanced version of the REST Client LAM. The REST Client

LAM accepts a single API call and parses the responses it receives into Cisco Crosswork Situation Manager events.

The Programmatic LAM can accept multiple calls but you must define the processing yourself in the LAMbot using

JavaScript.

For more information see Programmatic LAM.

Graze API

 Architecture

 Configure Tomcat

 API Definition

 Authentication Troubleshooting

 Endpoints

— Alerts

— Situations

— User Management

— Security Realms

— Dashboards and Reporting

— Workflow

— POST Parameters

— form-urlencoded

— application/json

 HTTP Status and Error Codes

The Graze API acts as an integration point for external services and exposes selected Cisco Crosswork Situation

Manager functionality to authorized external clients.

As you would with any API, use caution when employing the Graze API. Excessive requests can impact overall

system performance. Take special care when using getSituationIds and getAlertIds. Overusing these

endpoints can have a negative impact on the backend datastore.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

5

To work with a Graze API expert on your solution, you can engage Cisco Technical Services. Otherwise contact

Cisco Support.

Architecture

The Graze API is implemented as a set of servlets running in the Cisco Crosswork Situation Manager Tomcat instance

that handles external Graze requests, making the UI servlet calls directly via cross-contexts.

Configure Tomcat

You must configure Tomcat to allow cross-context calls to be made by adding the following to the context.xml

file in the Tomcat $APPSERVER_HOME/conf directory:

<Context crossContext="true">

API Definition

All Graze requests use the following URL format, where <server> is the hostname of the machine running the UI :

https://<server>/graze/v1/<request_type>

For example:

https://localhost/graze/v1/authenticate

All requests (other than authenticate) require a basic authentication header or a valid auth_token. A valid

authenticate request must be successfully made before any Graze API request is used without a basic

authentication header.

Inactive sessions will be logged out after one hour, and a new authenticate request must be made to get a

new valid auth_token.

Note:

If you are making regular Graze requests within a one hour timeframe, you are considered active and your session

will not expire.

Authentication Troubleshooting

If an error occurs during Graze login authentication, the following output is returned:

{"message":"User is not authenticated","statusCode":3001}

As a security precaution, no more specific information is returned. This prevents information being provided to

potential attackers as to which part of the authentication failed (for example 'Password incorrect').

Entries in the log file catalina.out (at WARN level) provide more information on authentication errors:

1. The user is not assigned the Grazer role:

User [john] does not have graze permission

2. No user of that name:

User [NotAUser] account unknown in database

3. Incorrect password:

Password incorrect for user [graze]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

6

Endpoints

Alerts

addAlertCustomInfo

A POST request that adds and merges custom information for a specified alert.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

custom_info JSON Object A JSON Object containing the custom information.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/addAlertCustomInfo" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_id" : 9, "custom_info" : {
"field1" : "value1" , "field2" : "value2" , "field3" :
["item1","item2","item3"] , "field4" : {"field4-1" : "value4-1","field4-2"
: "value4-2"} }}'

Successful return:

NO RESPONSE TEXT

assignAlert

A POST request that assigns the moderator to the alert for a specified alert ID and user ID.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

user_id Number The user ID.

username String A valid username.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

7

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/assignAlert"
-H "Content-Type: application/json; charset=UTF-8" -d '{"alert_id" : 7,
"username" : "network1" }'

Successful return:

NO RESPONSE TEXT

addAlertToSituation

A POST request that adds a specified alert to a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request

alert_id Number The alert ID

sitn_id Number The Situation ID

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

curl Command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/addAlertToSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_id" : 16, "sitn_id" : 7 }'

Successful Return:

NO RESPONSE TEXT

assignAndAcknowledgeAlert

A POST request that assigns and acknowledges the moderator to the alert for a specified alert ID and user ID.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

user_id Number The user ID.

username String A valid username.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

closeAlert

A POST request that closes one or more alerts.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

8

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number A single alert ID.

alert_ids Number list A list of alert IDs.

thread_entry_comment String Optional comment.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/closeAlert"
-H "Content-Type: application/json; charset=UTF-8" -d '{"alert_ids" :
[78,234,737],"thread_entry_comment" : "Closing as agreed during team
discussion 1/1/2018" }'

Successful return:

NO RESPONSE TEXT

deassignAlert

A POST request that de-assigns the current moderator from the alert for a specified alert ID.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/deassignAlert" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_id" : 7}'

Successful return:

NO RESPONSE TEXT

getAlertActions

A GET request that returns the actions for alerts, ordered most recent last. You can use the from and to arguments

to specify a period that you want to retrieve alert actions for. If you do not specify these, actions for all dates and

times are returned.

Request Parameters

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

9

Name Type Required Description

auth_token String No A valid auth_token returned from the authenticate request.

alert_ids Number

list

No List of alert IDs.

start Integer Yes Starting row from which data should be included.

limit Integer Yes Maximum number of actions you want to return.

actions Number

list

No List of action codes. If no action codes are specified, all action codes are

returned. See Alert Action Codes for a list of action codes and their

descriptions. Only action codes 8 (Alert Resolved) and 9 (Alert Closed) are

valid.

from Number No Start time (in Unix epoch time) of the period you want to retrieve alert actions

for.

to Number No End time (in Unix epoch time) of the period you want to retrieve alert actions for.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object which contains alert details from the following:

Name Type Description

uid Number User ID.

action_code Number

list

Code for the action in the JSON object. See Alert Action Codes for a list of action codes and

their descriptions.

description String Description of the action.

details String Details of the action.

type String Type of action.

alert_id Integer Alert ID.

timed_at Integer Time stamp of the action.

Example

Example cURL command to return the first 50 actions for alert IDs 1, 2, 3, and 6 for action codes 8 (Alert Resolved)

and 9 (Alert Closed):

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertActions"
--data-urlencode 'alert_ids=[1, 2, 3, 6]' --data-urlencode 'actions=[8,
9]' --data-urlencode 'limit=50' --data-urlencode 'start=0'

Example cURL command to return the first 50 actions for action codes 8 (Alert Resolved) and 9 (Alert Closed)

between Unix epoch times 1553861746 and 1553872546:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertActions"
--data-urlencode 'actions=[8, 9]' --data-urlencode 'limit=50' --data-
urlencode 'start=0' --data-urlencode 'from=1553861746' --data-urlencode
'to=1553872546'

Successful return request:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

10

[{

 "uid": 49,

 "action_code": 8,

 "description": "Alert Resolved",

 "details": {},

 "alert_id": 1,

 "timed_at": 1557504393

 }, {

 "uid": 49,

 "action_code": 9,

 "description": "Alert Closed",

 "details": {},

 "alert_id": 1,

 "timed_at": 1557504912

 }

}]

getAlertDetails

A GET request that returns details, such as Description or Severity, of a specified alert.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object which contains alert details from the following:

Name Type Description

active_sitn_list Number

list

A list of Situation IDs of the active Situations to which this alert belongs.

agent String The agent name associated with this alert. *

agent_location String The agent location associated with this alert. *

alert_id Number The alert ID.

class String The class associated with this alert. *

count Number The number of times that this alert has occurred.

custom_info JSON

Object

A JSON Object containing the custom information.

description String The description associated with this alert. *

entropy Number The entropy value of the alert, the measure of probability that an alert will

arrive in the system at any given time.

This is a value between 0 (very certain) and 1 (very uncertain).

external_id String The external ID associated with this alert. *

first_event_time Number The timestamp (in Unix epoch time) of the first occurrence of this alert.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

11

int_last_event_time Number The internal Cisco Crosswork Situation Manager timestamp (in Unix epoch

time) of the last occurrence of this alert.

last_event_time Number The timestamp (in Unix epoch time) of the last occurrence of this alert.

last_state_change Number The timestamp (in Unix epoch time) of the last status change of this alert.

manager String The manager name associated with this alert. *

owner Number The User ID of the user that this alert is assigned to.

severity Number The alert's severity as an integer:

0 Clear

1 Indeterminate

2 Warning

3 Minor

4 Major

5 Critical

signature String The unique alert identifier.

significance Number The alert's significance as an integer:

0 Collateral

1 Related

2 Impacting

3 Causal

source String The source associated with this alert. *

source_id String The source ID associated with this alert. *

state Number Indicates the lifecycle state of the alert.

type String The type associated with this alert. *

* = These details are derived from the input event text field, via the LAMs.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertDetails"
--data-urlencode "alert_id=3968"

Successful request return:

{

 "active_sitn_list":[1],

 "agent":"TestBed",

 "agent_location":"localhost",

 "alert_id":10,

 "class":"WebMon",

 "count":2,

 "custom_info":null,

 "description":"Web Server HTTPD is DOWN",

 "external_id":"12345",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

12

 "first_event_time":1416307126,

 "int_last_event_time":1416307188,

 "last_event_time":1416307131,

 "last_state_change":1416307144,

 "manager":"WebMon",

 "owner":2, "severity":0,

 "signature":"SIG:Web Server Down Trap:xldn1458pap:10",

 "significance":3,

 "source":"xldn1458pap",

 "source_id":"xldn1458pap",

 "state":9,

 "type":"HTTPDDown"

}

getAlertIds

A GET request that returns the total number of alerts, and a list of the alert IDs for a specified alert filter and a limit.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

query String A JSON or SQL like alert filter.

limit Number The maximum number of alert IDs to return.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object which contains alert details from the following:

Name Type Description

total_alerts Number The total number of alerts, or unique alerts.

alert_ids Number list A list of the alert IDs.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertIds" --
data-urlencode 'query=agent!=SYSLOG and description matches "AUTH-
SERVICE"' --data-urlencode 'limit=20'

Successful request return:

{"total_alerts":20,"alert_ids":[78,234,737,1253,1459,1733,2166,2653,2855,3
133,3414,3538,3729,3905,3991,4110,4160,4536,4692,4701]}

SQL-like Filters

You can now use SQL-like filter conditions similar to URL or Cookbook filters instead of JSON formatted filters:

Example cURL request to get the first 20 alert_ids with query: agent != SYSLOG AND description matches 'AUTH-

SERVICE':

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertIds" --
data-urlencode 'query=agent!=SYSLOG and description matches "AUTH-
SERVICE"' --data-urlencode 'limit=20'

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

13

removeAlertFromSituation

A POST request that removes a specified alert from a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

sitn_id Number The Situation ID.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/removeAlertFromSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_id" : 16, "sitn_id" : 7 }'

Successful return:

NO RESPONSE TEXT

resolveAlerts

A POST request that resolves one or more alerts.

Request Arguments

Name Type Required Description

alert_ids Number list Yes List of IDs of the alerts you want to resolve.

thread_entry_comment String No Comment you want to add to the resolved alerts.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

status Boolean Whether or not the alerts were resolved.

resolved_alerts Number list List of IDs of alerts that were resolved.

failed_alerts Number list List of IDs of alerts that failed to be resolved.

Example

Example cURL command to set alerts 45, 76, and 352 as resolved with the comment 'Resolved':

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/resolveAlerts" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_ids" : [45,76,352],
"thread_entry_comment" : "Resolved"}'

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

14

Example return showing that alerts 45, 76 and 352 were successfully resolved and no alerts failed:

{"status":true,"resolved_alerts":[45,76,352],"failed_alerts":[]}

setAlertAcknowledgeState

A POST request that acknowledges or unacknowledges the moderator to the alert for a specified alert ID and

acknowledge state.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

acknowledged Number The acknowledge state (0 for unacknowledged, 1 for acknowledged).

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setAlertAcknowledgeState" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_id" : 7, "acknowledged" : 1
}'

Successful return:

NO RESPONSE TEXT

setAlertSeverity

A POST request that sets the severity level for a specified Alert.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

alert_id Number The alert ID.

severity Number The alert's severity as an integer:

0 Clear

1 Indeterminate

2 Warning

3 Minor

4 Major

5 Critical

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

15

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setAlertSeverity" -H "Content-Type:
application/json; charset=UTF-8" -d '{"alert_id" : 7, "severity" : 5 }'

Successful return:

NO RESPONSE TEXT

Situations

addSigCorrelationInfo

A POST request that associates the external client with a specified Situation. This allows Cisco Crosswork Situation

Manager to filter events and send only those of interest to an external system.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

service_name String The name of the external service (for example, ServiceNow).

resource_id String The ID of the external service entity to associate with this Situation.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/addSigCorrelationInfo" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 3, "service_name" : "my
service 7", "resource_id" : "my resource 7"}'

Successful return:

NO RESPONSE TEXT

addSituationCustomInfo

A POST request that adds and merges custom information for a specified Situation.

Note:

This method has superseded the now deprecated method addCustomInfo.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

16

custom_info JSON Object A JSON Object containing the custom information.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/addSituationCustomInfo" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 5, "custom_info" : {
"field1" : "value1" , "field2" : "value2" , "field3" :
["item1","item2","item3"] , "field4" : {"field4-1" : "value4-1","field4-2"
: "value4-2"} }}'

Successful return:

NO RESPONSE TEXT

addThreadEntry

A POST request that adds a new entry to an existing thread in a Situation.

Threads are comments or 'story activity' on Situations.

This endpoint returns the entry ID of the newly created thread entry.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number Situation ID.

thread_name String Name of the existing thread.

entry String Description of the new entry you want to add to the thread. For example, 'And another

thing...'.

resolving_step Boolean Whether or not the thread entry you are adding is a resolving step.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

entry_id Number ID of the new thread entry.

Example

Example cURL request to add a new entry to thread "Support" in Situation 3:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/addThreadEntry" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 3, "thread_name" :
"Support", "entry" : "Test Entry", "resolving_step" : true}'

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

17

Successful request return providing the ID of the thread entry that has been created:

{"entry_id":27}

assignAndAcknowledgeSituation

A POST request that assigns and acknowledges the moderator to the Situation for a specified situation ID and user

ID.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request

sitn_id Number The Situation ID

user_id Number The User ID

username String A valid username

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

assignSituation

A POST request that assigns the moderator to the Situation for a specified Situation ID and user ID.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

user_id Number The User ID.

username String A valid username.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/assignSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 7, "user_id" : 3 }'

Successful return:

NO RESPONSE TEXT

assignTeamsToSituation

A POST request that assigns one or more teams to a Situation. Once successfully run, Cisco Crosswork Situation

Manager marks the Situation as overridden and the Teams Manager Moolet can no longer modify its team

assignment. See Teams Manager Moolet for more information.Teams Manager Moolet

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

18

The endpoint replaces any teams previously assigned to the Situation. You can also use it to unassign all teams from

a Situation.

Request Arguments

Include either team_ids or team_names.

Name Type Description

sitn_id Number The Situation ID.

team_ids List A list of team IDs to assign to the Situation. Specify an empty list to unassign all teams from

the Situation.

team_names List A list of team names to assign to the Situation. Specify an empty list to unassign all teams

from the Situation.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object with one of the following, depending on the input:

Name Type Description

team_ids List A list of team IDs assigned to the Situation.

team_names List A list of team names assigned to the Situation.

Examples

cURL command 1:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/assignTeamsToSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 1 , "team_ids" : [1, 2
]}'

Return to cURL command 1:

{"team_ids" : [1,2]}

cURL command 2:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/assignTeamsToSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 2 , "team_names" : [
"Team1", "Team2"]}'

Return to cURL command 1:

{"team_names" : ["Team1", "Team2"]}

Unassign example:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/assignTeamsToSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 1 , "team_ids" : []}'

Return to unassign example:

{"team_ids" : []}

closeSituation

A POST request that closes a specified Situation that is currently open, and optionally closes alerts in the Situation.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

19

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

resolution Number Determines what to do with the Situation's alerts:

0 Close no alerts.

1 Close all alerts in this Situation.

2 Close only alerts unique to this Situation.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/closeSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 7, "resolution" : 0 }'

Successful return:

NO RESPONSE TEXT

createSituation

A POST request that creates a manual Situation. The Situation description is set with the description

parameter. The following Situation settings are pre-set and not configurable here:

• Status: Opened

• Moderator: none assigned

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

description String The new Situation description.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object with the following:

Name Type Description

sitn_id Number The new Situation ID.

Example

cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

20

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/createSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"description" : "This is my
description 12345"}'

Successful request return:

{"sitn_id":2300}

createThread

A POST request that creates a new thread for a specified Situation.

Threads are comments or 'story activity' on Situations.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The ID of the Situation having a new thread created.

thread_name String The name for the new thread.

 Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/createThread" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 1, "thread_name" : "My
thread 0958"}'

Successful return:

NO RESPONSE TEXT

createThreadEntry

Note

This endpoint has been superseded. Use addThreadEntry instead. All new functionality will be delivered in

addThreadEntry.

A POST request that creates a new entry in an existing thread in a Situation.

Threads are comments or 'story activity' on Situations.

This endpoint returns a Boolean indicating whether or not the thread entry was created successfully.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number Situation ID.

thread_name String Name of the existing thread.

entry String Description of the new entry you want to create in the thread. For example, 'And

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

21

another thing...'.

resolving_step Boolean Whether or not the thread entry you are creating is a resolving step.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

 Type Description

Boolean Whether or not the new thread entry was created successfully.

Example

Example cURL request to create a new entry in thread "Support" in Situation 3:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/createThreadEntry" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 3, "thread_name" :
"Support", "entry" : "Test Entry", "resolving_step" : true}'

Successful request return showing that the new thread entry was successfully created:

true

deassignSituation

A POST request that that de-assigns the current moderator from the Situation for a specified Situation ID.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

 Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/deassignSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 7}'

Successful return:

NO RESPONSE TEXT

getActiveSituationIds

A GET request that returns the total number of active Situations, and a list of their Situation IDs. Active Situations are

those that are not Closed, Resolved or Dormant.

Request Argument

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

22

auth_token String A valid auth_token returned from the authenticate request.

There are no other arguments, as this method returns data on all active Situations.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

total_situations Number The total number of active Situations.

sitn_ids Number list A list of the active Situation IDs.

Example

Successful request return:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getResolvingThreadEntries

A GET request that returns thread entries for a specified Situation that have been marked as resolving steps. Threads

are comments or 'story activity' on Situations. Operators can mark one or more thread entries as steps that were

used to resolve a Situation.

You can select specific thread entries to return using start and limit values. If not, their default values return

the first 100 entries. The entries returned are ordered by most recent first.

Request Arguments

Name Type Required

auth_token String No

sitn_id Number Yes

start Number No

limit Number No

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number Situation ID.

resolving_entries List A list of resolving thread entries. See below.

The resolving_entries list contains the following sub-parameters:

Name Type Description

entry_text String Text of the resolving entry.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

23

user_id Number ID of the user that created the resolving entry.

thread_name String Name of the thread that the resolving entry is in.

time Number Timestamp (in Unix epoch time) of when the resolving entry was created.

entry_id Number ID of the resolving thread entry.

Example

Example cURL command requesting the first 100 resolving thread entries in Situation 358:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getResolvingThreadEntries" --data-urlencode
"sitn_id=358"

Example cURL command requesting the first 10 resolving thread entries in Situation 358:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getResolvingThreadEntries" --data-urlencode
"sitn_id=358" --data-urlencode "start=0" --data-urlencode "limit=10"

Successful request return showing the three resolving thread entries in Situation 358:

{"sitn_id":358,

"resolving_entries":

[

{"entry_text":"hah","user_id":3,"thread_name":"Support","time":1549387456,
"entry_id":1722},

{"entry_text":"asdfdsf","user_id":3,"thread_name":"Support","time":1549385
762,"entry_id":1721},

{"entry_text":"sdfsdf\n","user_id":3,"thread_name":"Support","time":154938
5747,"entry_id":1720}

]

}

mergeSituations

A POST request that merges multiple specified Situations. You can configure whether to the new Situation

supersedes the original Situations or not using the supersede_original parameter.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

situations Integer A comma-separated list of the Situations you want to merge.

supersede_original Boolean Determines whether the original merged Situations are superseded by the new

Situation.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object with the following:

Name Type Description

sitn_id Number The new Situation ID.

Example

A cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

24

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/mergeSituations?auth_token=c4316d2cac524b96a1e
4c787b68f7e3f&situations=%5B31%2C32%2C33%5D&supersede_original=false"

Successful request return:

{"sitn_id":30}

getPrcLabels

A GET request that retrieves probable root cause (PRC) information for all alerts or specified alerts within a Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Integer The Situation ID.

alert_ids Number list A list of the alert IDs (optional).

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getPrcLabels?sitn_id=1&alert_ids=[1,2,3,4]"

Successful return:

{

 "non_causal":

 [2,3],

 "unlabelled":

 [4],

 "causal":

 [1]

}

getResolvingThreadEntries

A GET request that returns thread entries that have been marked as resolving steps for a specified Situation. Threads

are comments or 'story activity' on Situations. Operators can mark one or more thread entries as resolving steps.

You can select specific thread entries to return using start and limit values. If not, their default values return

the first 100 entries. The entries returned are ordered by most recent first.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number Situation ID.

start Number Number of the first thread resolving entry to return (default = 0). Optional.

limit Number Maximum number of resolving thread entries to return (default = 100). Optional.

Return Parameters

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

25

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number Situation ID.

resolving_entries List A list of resolving thread entries. See below.

The resolving_entries list contains the following sub-parameters:

Name Type Description

entry_text String Text of the resolving entry.

user_id Number ID of the user that created the resolving entry.

thread_name String Name of the thread that the resolving entry is in.

time Number Timestamp (in Unix epoch time) of when the resolving entry was created.

entry_id Number ID of the resolving thread entry.

Example

Example cURL command requesting the first 100 resolving thread entries in Situation 358:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getResolvingThreadEntries" --data-urlencode
"sitn_id=358"

Example cURL command requesting the first 10 resolving thread entries in Situation 358:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getResolvingThreadEntries" --data-urlencode
"sitn_id=358" --data-urlencode "start=0" --data-urlencode "limit=10"

Successful request return showing the three resolving thread entries in Situation 358:

{"sitn_id":358,

"resolving_entries":

[

{"entry_text":"hah","user_id":3,"thread_name":"Support","time":1549387456,
"entry_id":1722},

{"entry_text":"asdfdsf","user_id":3,"thread_name":"Support","time":1549385
762,"entry_id":1721},

{"entry_text":"sdfsdf\n","user_id":3,"thread_name":"Support","time":154938
5747,"entry_id":1720}

]

}

getSigCorrelationInfo

A GET request that retrieves all correlation information related to a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Return Parameter

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

26

HTTP code HTTP status or error code indicating request success or failure

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X GET -u graze:graze -k -v
"https://localhost/graze/v1/getSigCorrelationInfo?sitn_id=5" -H "Content-
Type: application/json; charset=UTF-8"

Successful return:

 [

 {

 "sig_id": 1,

 "service_name": "Example1",

 "external_id": "Example1",

 "properties": "{"Example1":"Example1"}

 },

 {

 "sig_id": 2,

 "service_name": "Example2",

 "external_id": "Example2",

 "properties": "{"Example2":"Example2"}

 }

]

getSimilarSituationIds

A GET request that returns the total number of similar Situations, and a list of their Situation IDs, for a specified

Situation filter and a limit.

Request Arguments

Name Type Description

sitn_id Number ID of the Situation that you want to retrieve similar Situations for.

auth_token String A valid auth_token returned from the authenticate request.

limit Number Maximum number of Situation IDs to return.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

similiarity_ids Number list List of IDs of the similar Situations.

sig_id Number ID of the Situation that you requested to retrieve similar Situations for.

Example

Example cURL request to get the first 10 Situation IDs that are similar to Situation ID 1043:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSimilarSituationIds" --data-urlencode
'sitn_id=1043' --data-urlencode 'limit=10'

Successful request return:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

27

{"similarity_ids":[43,156,177,221,576,1026,1327], "sig_id":1043}

getSimilarSituations

A GET request that returns the details of similar Situations for a specified Situation, a filter and a limit.

Request Arguments

Name Type Description

sitn_id Number ID of the Situation that you want to retrieve similar Situations for.

auth_token String A valid auth_token returned from the authenticate request.

limit Number Maximum number of Situation IDs to return.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

similarities Array A list with similarity details. For each similar Situation:

sim_sig_id: ID of the similar situation.

similarity: Similarity value.

resolving_steps_count: Number of resolving steps that the similar situation

has.

similar_count Number Number of similar Situations.

sig_id Number ID of the Situation that you requested to retrieve similar Situations for.

Example

Example cURL request to get the first 20 Situation IDs that are similar to Situation ID 38:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSimilarSituations" --data-urlencode
'"sitn_id"=38' --data-urlencode 'limit=20'

Successful request return:

{"similarities":[{"sim_sig_id":39,"similarity":1.0,"resolving_steps_count"
:0},{"sim_sig_id":40,"similarity":1.0,"resolving_steps_count":0}],"similar
_count":2,"sig_id":38}

getSituationActions

A GET request that returns the actions for Situations, ordered most recent last. You can use the from and to

arguments to specify a period that you want to retrieve Situation actions for. If you do not specify these, actions for

all dates and times are returned.

Request Arguments

Name Type Required

auth_token String No

sitn_ids Array Yes

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

28

start Integer Yes

limit Integer Yes

actions Array No

from Number No

to Number No

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing an array of the following:

Name Type Description

uid Number User ID.

action_code Number

list

Code for the action in the JSON object. See Situation Action Codes for a list of action codes

and their descriptions.

description String Description of the action.

details String Details of the action.

type String Type of action.

sig_id Integer The Situation ID.

timed_at Integer Time stamp of the action.

Examples

Example cURL command to retrieve the first three actions for Situations 1, 2, 3 and 6:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationActions" --data-urlencode
'sitn_ids=[1, 2, 3, 6]' --data-urlencode 'actions=[1]' --data-urlencode
'limit=3' --data-urlencode 'start=0'

Example cURL command to retrieve the first 50 actions for Situations 1, 2, 3 and 6 between Unix epoch times

1553861746 and 1553872546:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationActions" --data-urlencode
'sitn_ids=[1, 2, 3, 6]' --data-urlencode 'actions=[1]' --data-urlencode
'limit=50' --data-urlencode 'start=0' --data-urlencode 'from=1553861746' -
-data-urlencode 'to=1553872546'

Successful request return:

 "activities": [{

 "uid": 2,

 "action_code": 1,

 "description": "Situation Created",

 "details": {},

 "type": "event",

 "sig_id": 1,

 "timed_at": 1507039842

 }, {

 "uid": 2,

 "action_code": 14,

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

29

 "description": "Added Alerts To Situation",

 "details": {}

 "alerts": [1, 2]

 }]

 }

getSituationAlertIds

A GET request that returns the total number of alerts, and a list of the alert IDs for a specified Situation. This can be

either all alerts or just those alerts unique to the Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

for_unique_alerts Boolean Indicates the alerts to get from the Situation:

true = get only alerts unique to the Situation.

false = get all alerts in the Situation (default).

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

total_alerts Number The total number of alerts, or unique alerts.

alert_ids Number list A list of the alert IDs.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationAlertIds" --data-urlencode
"sitn_id=1" --data-urlencode "for_unique_alerts=false"

Successful request return:

{"total_alerts":232,"alert_ids":[6,10,17,19,22,26,27,29,32,43,44,45,47,52,
67,68,79,81,83,84,96,102,105,108,109,111,113,115,116,125,135,136,138,140,1
42,143,147,151,152,153,165,175,177,178,180,181,188,192,193,207,211,213,217
,223,225,232,238,239,240,244,255,258,259,269,270,272,274,284,293,303,314,3
18,335,357,363,369,374,375,388,398,414,428,430,434,442,443,448,449,450,479
,480,485,486,492,494,504,505,510,511,518,521,529,556,558,563,570,580,594,5
96,599,601,603,628,655,656,661,664,674,684,691,705,714,715,719,720,728,732
,734,750,776,777,781,788,794,808,819,830,835,838,844,857,858,860,861,877,8
82,885,887,890,892,893,900,901,906,912,914,918,926,936,937,959,971,972,984
,994,1004,1013,1016,1019,1020,1023,1033,1043,1045,1068,1076,1082,1083,1085
,1099,1119,1124,1135,1137,1143,1147,1171,1185,1201,1207,1217,1225,1231,123
8,1254,1271,1272,1274,1280,1282,1290,1292,1301,1320,1321,1322,1324,1326,13
27,1331,1332,1333,1362,1379,1402,1414,1423,1433,1443,1454,1468,1472,1473,1
481,1491,1510,1512,1517,1520,1522,1532,1534]}

getSituationDescription

A GET request that returns the description for a specified Situation.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

30

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number The Situation ID.

description String The text in the Situation's description field.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationDescription" --data-urlencode
'sitn_id=1'

Successful request return:

{"sitn_id" : "1", "description" : "SyslogLamCookbook source"}

getSituationHosts

A GET request that returns the hosts for a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

for_unique_alerts Boolean Optional setting to return hosts for Situations with unique alerts. Defaults to false.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

hosts JSON Object An array of all hosts that sent alerts contained in the specified Situation.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationHosts" --data-urlencode
'sitn_id=1'

Successful request return:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

31

{

 hosts:[

 "xldn1204pap",

 "xldn1215pap",

 "xldn1220pap",

 "vxldn1230pap",

 "xldn1241pap",

 "xldn1252pap",

 "xldn1271pap",

 "xldn1278pap",

 "xldn1297pap",

 "xldn1299pap"

]

}

getSituationDetails

A GET request that returns the details for a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

hosts JSON Object An array of the details for the specified Situation.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationDetails" --data-urlencode
'sitn_id=1'

Successful request return:

{

 "category":"Detected",

 "created_at":1415814620,

 "custom_info":null,

 "description":"Sigaliser situation",

 "first_event_time":1415814600,

 "internal_priority":0,

 "last_event_time":1415814619,

 "last_state_change":1415868947,

 "moderator_id":2,

 "sitn_id":3,

 "status":1,

 "story_id":3,

 "superseded_by":null,

 "total_alerts":1403,

 "total_unique_alerts":1403

}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

32

getSituationIds

A GET request that returns the total number of Situations, and a list of their Situation IDs, for a specified Situation

filter and a limit.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

query String A JSON or SQL like Situation filter.

limit Number Maximum number of Situation IDs to return.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

total_situations Number The total number of Situations, or unique Situations.

sitn_ids Number list A list of the Situation IDs.

Example

Example cURL request to get the first 20 Situation IDs with query:description = 'test1' or queue = 5:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationIds"
--data-urlencode 'query=description="test1" or queue = 5' --data-urlencode
'limit=20'

Successful request return:

{"total_situations":7,"sitn_ids":[87,121,128,278,523,1003,1519]}

getSituationProcesses

A GET request that returns a list of process names for a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

processes List A list of the Situation's process names.

Example

cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

33

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationProcesses" --data-urlencode
'sitn_id=1'

Successful request return, with a primary process name defined:

{"processes":["Knowledge Management","Online Transaction Processing","Web
Content Management","40GbE","8-bit Unicode Transcoding Platform"]}

getSituationServices

A GET request that returns a list of external service names for a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

services List A list of the Situation's service names.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationServices" --data-urlencode
'sitn_id=1'

Successful request return, with a primary service name defined:

{"services":["Cloud Management Platform","Geographic Information
Systems","Knowledge Management","Online Transaction Processing","Storage
Subsystem","Web Content Management","0-bit Emulation","40GbE","8-bit
Unicode Transcoding Platform"]}

getSituationTopology

A GET request that returns a JSON object in NetJSON format that represents nodes affected by the Situation.

Request Arguments

Name Type Required Description

sitn_id Number Yes Situation ID.

context Number No Number, between 0 and 4, of contextual hops from the nodes directly affected

within the Situation to other nodes to be included in the returned object. See

Vertex Entropy Clustering Algorithm Guide for more information on

contextual hops.Vertex Entropy

0 = only nodes directly affected by the Situation. Default.

4 = nodes that are up to four hops away from the nodes directly affected by the

Situation.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

34

properties List of

strings

No List of the node properties to be returned. Valid properties are:

severity: Refer Severity in Implementor Guide of the node.

prc: Whether this node is the probable root cause of the alert.

service: Service affected by the node.

context: Number of contextual hops between this node and a node directly

affected by the Situation. A context of 0 means that the node is directly

affected.

description: Description of the node.

vertex_entropy: Vertex Entropy of the node.

field_name String No Attribute of the alert that defines the node. The default is the alert 'source' but

you can specify any valid alert field, including custom_info attributes. For

example, field_name=custom_info.eventDetails.line.

Response

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

links Integer List of links associated with the Situation.

links.source String Source node of the link.

links.target String Target node of the link.

nodes Array Array of nodes associated with the Situation and their properties. The nodes

included depends on the setting of the request property context.

nodes.id String Node ID

nodes.properties Array Object containing the properties requested.

See http://netjson.org/ for more information on the topology data format.

Example

The following topology diagram shows the nodes affected by Situation ID 14, with a context of 1. In this example,

each node represents a host in a network and the Situation represents a network outage. It shows six nodes directly

affected by the Situation, their color depending on their severity, and one node which is one hop away, shown in

gray.

http://netjson.org/

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

35

The following cURL request demonstrates a request to return nodes affected by the Situation and nodes that are one

hop away. The returned object is to contain the properties of severity, Vertex Entropy, Probable Root Cause (PRC),

service, anddescription.

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationTopology" --data-urlencode
"sitn_id=14" "context=1"
"properties"=["severity","vertex_entropy","prc","service","description"]

The successful response returns the following topology information for this Situation. The response always returns

the node names in lower case. Note that there is no PRC value for the node that is not directly affected by the

Situation. In this example, consider investigating node "host2835" as the cause of the Situation because it has a high

severity and a high PRC.

{

 "links": [

 {

 "source": "host2728",

 "target": "host2736"

 },

 {

 "source": "host2728",

 "target": "host1156"

 },

 {

 "source": "host2835",

 "target": "host2728"

 },

 {

 "source": "host2801",

 "target": "host2827"

 },

 {

 "source": "host2800",

 "target": "host2801"

 },

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

36

 {

 "source": "host2801",

 "target": "host2835"

 },

 {

 "source": "host2835",

 "target": "host2736"

 }

],

 "nodes": [

 {

 "id": "host2835",

 "properties": {

 "severity": 5,

 "prc": 0.9862626716344282,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.1794592472207979

 }

 },

 {

 "id": "host2736",

 "properties": {

 "severity": 4,

 "prc": 0.42722191049803876,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.08976540495989357

 }

 },

 {

 "id": "host2728",

 "properties": {

 "severity": 3,

 "prc": 0.007672752075071621,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.1794592472207979

 }

 },

 {

 "id": "host2827",

 "properties": {

 "severity": 5,

 "prc": 0.4262762946261391,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.05343516483103129

 }

 },

 {

 "id": "host2801",

 "properties": {

 "severity": 5,

 "prc": 0.42722511225514104,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.23927899629439717

 }

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

37

 },

 {

 "id": "host2800",

 "properties": {

 "severity": 5,

 "prc": 0.4269879766269776,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.05343516483103129

 }

 },

 {

 "id": "host1156",

 "properties": {

 "severity": null,

 "prc": null,

 "service": "",

 "context": 1,

 "description": "",

 "vertex_entropy": 0.05343516483103129

 }

 }

]

}

getSituationVisualization

A GET request that returns information on the origin and cause of a specified Situation.

Request Arguments

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

sitn_id Number Yes Situation ID.

Response

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

sig_id Integer Situation ID.

origin String Process that caused the Situation to be created, for example, cookbook or manual_merge.

cause Object Cause of the Situation. This varies depending on how the Situation was created.

Examples

A cURL request to return the information on the origin and cause of Situation ID 358:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSituationVisualization" --data-urlencode
"sitn_id=358"

A successful response for a Situation created by a Cookbook Recipe returns the following information:

{

 "origin": "cookbook",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

38

 "cause": {

 "cookbook_name": "Default Cookbook",

 "recipe_id": 4,

 "cookbook_id": 7,

 "recipe_name": "Recipe 1",

 "reference_event_id": 6

 },

 "sig_id": 1

}

A successful response for a manually created Situation returns the following information:

{

 "origin": "Manual Creation",

 "cause": {"uid": 3},

 "sig_id": 6

}

A successful response when two Situations have been merged returns the following information:

{

 "origin": "Manual Merge",

 "cause": {

 "uid": 3,

 "merged_sigs": [

 8,

 7

]

 },

 "sig_id": 9

}

If there is no Situation visualization data, the response returns the following information:

{

 "additional": {

 "debugMessage":
"com.moogsoft.servletutils.CGeneralServerException:
com.moogsoft.services.CGeneralServiceException: No visualize data found
for Situation ID [2323]"

 },

 "message": "Internal server error",

 "statusCode": 1000

}

getThreadEntries

A GET request that returns thread entries for a specified Situation. Threads are comments or 'story activity' on

Situations.

You can select specific thread entries to return using start and limit values. If not, their default values return

the first 100 entries. The entries returned are ordered by most recent first.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number Situation ID.

thread_name String Name of the thread to get entries from.

start Number Number of the first thread entry to return (default = 0).

limit Number Maximum number of thread entries to return (default = 100).

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

39

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

entries List A list of thread entries. See below.

sitn_id Number Situation ID.

thread_name String Name of the thread that the entries are from.

The entries list contains the following sub-parameters:

Name Type Description

entry_text String Text of the entry.

user_id Number User ID of the user that created the entry.

time Number Timestamp (in Unix epoch time) of when the entry was created.

entry_id Number ID of the thread entry.

Example

Example cURL command requesting the first 10 thread entries on thread "Support" in Situation 358:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getThreadEntries"
--data-urlencode "sitn_id=358" --data-urlencode "thread_name=Support" --
data-urlencode "start=0" --data-urlencode "limit=10"

Successful request return showing the two thread entries on thread "Support" in Situation 358:

{"entries":

[

{"entry_text":"Test Entry","user_id":4,"time":1549455051, "entry_id" : 2},

{"entry_text":"Test Entry", "user_id":4, "time":1549455053, "entry_id" :
1}

],

"sitn_id":358,"thread_name":"Support"

}

getTopPrcDetails

A GET request that retrieves the top most likely causal alerts, based on their Probable Root Cause value, for a

specified Situation ID.

You can select the maximum number of causal alerts to return using a limit value. If not specified, the endpoint

only returns the alert with the highest root cause probability.

The entries returned are ordered with the highest root cause probability first, irrespective of whether they have been

labelled causal or are unlabelled. Alerts marked as symptoms are excluded from the return.

Request Argument

Name Type Required Description

sitn_id Integer Yes ID of the Situation you want to retrieve the Probable Root Cause details for.

limit Integer No Maximum number of causal or unlabelled alerts to return.

Response

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

40

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing multiple sets of the following data:

Name Type Description

rc_probability Number Root cause probability of the alert.

rc_label Integer Label defining whether the alert is causal or not:

1 = causal

0 = unlabelled

-1 = symptom

description String Description of the alert.

alert_id Integer Alert ID.

Request Example

A cURL request to retrieve the top three causal alerts with the highest root cause probability in Situation 145:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTopPrcDetails"
--data-urlencode 'sitn_id=145' --data-urlencode 'limit=3'

Response Example

A successful response returns the top three causal or unlabelled alerts:

{

 "alerts": [

 {

 "rc_probability":0.9933107459030244,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":1,

 "alert_id":53

 },

 {

 "rc_probability":0.9933092393241993,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":1,

 "alert_id":8

 },

 {

 "rc_probability":0.22480057080448923,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":0,

 "alert_id":39

 }

]

}

removeSigCorrelationInfo

A DELETE request that removes all correlation information related to a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

41

serviceName String The service name (optional).

externalId String The external ID (optional).

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/removeSigCorrelationInfo" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 3, "service_name" : "my
service 7", "external_id" : "my resource 7"}'

A successful return is an HTTP 200 response.

resolveSituation

A POST request that resolves a specified Situation that is currently open.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/resolveSituation" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 5}'

Successful return:

NO RESPONSE TEXT

setPrcLabels

A POST request that sets the probable root cause (PRC) labels for specified alerts within a Situation. You must

specify at least one alert ID and a PRC level for the alert.

You can mark alerts as causal, non_causal or unlabelled within a Situation. An alert can have different PRC levels

within different Situations.

Request Arguments

Name Type Description

sitn_id Number The Situation ID.

alert_ids Number list A list of the alert IDs.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

42

causal

non_causal

unlabelled

List PRC levels.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -POST -u graze:graze -k -v "https://localhost/graze/v1/setPrcLabels"
--data-urlencode "sitn_id=1" --data-urlencode "causal=[1]" --data-
urlencode "non_causal=[2,3]" --data-urlencode "unlabelled=[4]"

Successful return:

NO RESPONSE TEXT

setResolvingThreadEntry

A POST request that sets or clears a thread entry in a Situation as a resolving step.

Threads are comments or 'story activity' on Situations.

This endpoint returns a Boolean indicating whether the thread entry was successfully set or cleared as a resolving

step.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

entry_id String ID of the thread entry.

resolving_step Boolean Whether you are setting or clearing the thread entry as a resolving step.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

 Type Description

Boolean Whether or not the thread entry was successfully set or cleared as a resolving step.

Example

Example cURL request to set thread entry 28 as a resolving step:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setResolvingThreadEntry" -H "Content-Type:
application/json; charset=UTF-8" -d '{"entry_id" : 28, "resolving_step" :
true}'

Successful request return showing that the thread entry was successfully set as a resolving step:

true

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

43

setSituationAcknowledgeState

A POST request that acknowledges or unacknowledges the moderator to the Situation for a specified Situation ID

and acknowledged state.

Request Arguments

Name Type Description

sitn_id Number The Situation ID.

acknowledged Number The acknowledge state (0 for unacknowledged, 1 for acknowledged).

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setSituationAcknowledgeState" -H "Content-
Type: application/json; charset=UTF-8" -d '{"sitn_id" : 64, "acknowledged"
: 1 }'

Successful return:

NO RESPONSE TEXT

setSituationDescription

A POST request that sets the description for a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

description String The description text to be applied to the Situation.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setSituationDescription" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 6, "description" : "This
is my description 12345"}'

Successful return:

NO RESPONSE TEXT

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

44

setSituationProcesses

A POST request that applies a list of processes to a specified Situation.

Any other processes already associated with the Situation are removed.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

process_list List A list of process names as text strings (for example, ["P1","P2"]). If any processes

supplied do not exist in the database, they are created and assigned to the Situation.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setSituationProcesses" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 7, "process_list" :
["Knowledge Management", "90nm Manufacturing"]}'

Successful return:

NO RESPONSE TEXT

setSituationServices

A POST request that applies a list of external services to a specified Situation.

Any other services already associated with the Situation are removed.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID.

service_list List A list of service names as text strings (for example, ["S1","S2"]). If any services

supplied do not exist in the database, they are created and assigned to the Situation.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/setSituationServices" -H "Content-Type:
application/json; charset=UTF-8" -d '{"sitn_id" : 8, "service_list" :
["Knowledge Management", "90nm Manufacturing"]}'

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

45

Successful return:

NO RESPONSE TEXT

User Management

applyNewLicense

A POST request that allows a Cisco Crosswork Situation Manager license to be added via Graze.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

license String A valid license key.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/applyNewLicence" -H "Content-Type:

application/json; charset=UTF-8" -d '{"license" : "<your license key>"}'

Successful request return:

HTTP/2 200

authenticate

A GET request that provides the auth_token required by all other Graze API requests which do not provide the basic

authentication header. Graze users can have multiple concurrent Graze sessions with the same username and

password.

Request Arguments

Name Type Description

username String A valid Cisco Crosswork Situation Manager username.

password String The username's corresponding password.

Return Parameter

Name Type Description

auth_token String A session ID for use in subsequent requests.

Example

cURL command:

curl -k -v
"https://localhost/graze/v1/authenticate?username=graze&password=graze"

Successful request return:

{"auth_token":"878b3ec57d464aee80d09893221be8e8"}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

46

All requests (other than authenticate) require a valid auth_token or basic authentication header. Therefore

before any Graze API request is used, a valid authenticate request must be successfully made unless basic

authentication headers are used.

Inactive sessions will be logged out after one hour, and a new authenticate request must be made to get a

new valid auth_token.

Note:

If you are making regular Graze requests within a one hour timeframe you are considered active and your session

does not expire.

createTeam

A POST request that creates a new team.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

name String Mandatory - the new team (unique) name.

alert_filter String The team alerts filter. Either a SQL like filter or an JSON representation of

the filter.

services JSON List List of the team services names or IDs.

sig_filter String The situation filters. Either a SQL like filter or an JSON representation of the

filter.

landing_page String The team default landing page.

active Boolean False if the team is inactive, true if the team is active. Default is true.

description String The team description.

users List of numbers or

strings

The team users (either IDs or usernames).

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object with the following:

Name Type Description

team_id Number The new team ID

Example

cURL command:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createTeam"
-H "Content-Type: application/json; charset=UTF-8" -d '{"name" : "my team
name 1", "alert_filter" : "manager = \"my_manager\" and (class =
\"my_class_12345\" or external_id = \"my_ext_12345\")", "services" :
["Identity Management","Yellow Pages"], "sig_filter" : "description =
\"my_description_12345\" or queue = 50", "landing_page" :
{"type":"situations","id":"open"}, "active" : true, "description" : "The
team description 12345", "users" : ["user1","user2","user3"]}'

Successful request return:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

47

{"team_id":16}

createUser

A POST request that creates a new user.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

username String Mandatory - the new user (unique) login username.

password String The new user password (only valid for DB realm).

active Boolean true if the user active, false if the user inactive, default to true.

email String The user email address.

fullname String The user full name.

roles JSON list That list should contain either the list the role IDs or the role names, for

example, "roles":["Super User"].

primary_group String or Number The user primary group name or primary group ID.

department String or number The user department ID or name.

joined Number The time the user joined (in Unix time).

timezone String The user timezone.

contact_num String The user phone number.

session_expiry Number The number of minutes after which the user session will expire. Defaults

to the system default.

competencies JSON list A list with the user competencies. Each competency should have have

name or cid and ranking. That is, something like:

[

 {"name":"SunOS", "ranking": 40},

 {"name":"SAP", "ranking": 50},

 {"name":"EMC", "ranking": 60}

]

teams JSON list of

numbers or strings

List of the user teams. The list should contains either the list of the teams

ID or the teams name.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object with the following:

Name Type Description

user_id Number The new user ID

Example

cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

48

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createUser"
-H "Content-Type: application/json; charset=UTF-8" -d '{"username" :
"johndoe1", "roles" : ["Super User", "Operator"], "password" : "johndoe1",
"active" : true, "email" : "johndoe@moogsoft.com", "fullname" : "John
Doe", "primary_group" : "Network", "department" : "Support", "joined" :
1494951621, "timezone" : "Europe/London", "contact_num" : "555-1234",
"session_expiry" : null, "competencies" : [{"name":"SunOS", "ranking":
40},{"name":"SAP", "ranking": 50},{"name":"EMC", "ranking": 60}], "teams"
: ["my team 1","my team 2","my team 3"], "properties" : null}'

Successful request return:

{"user_id":777}

getTeam

A GET request that returns a team's details by team ID or name.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

team_id Integer The unique ID of the team to retrieve information about.

name String The name of a valid team to retrieve information about.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL commands:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeam?team_id=1"

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeam?name=Cloud DevOps"

Successful request return:

{

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [

 3

],

 "sig_filter": "",

 "landing_page": null,

 "description": "Example Team",

 "active": true,

 "team_id": 1,

 "services": [],

 "users": [

 "admin"

],

 "name": "Cloud DevOps",

 "service_ids": []

}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

49

getTeamsForService

A GET request to return all teams related to the service with the specified ID or name.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

service_id String The ID of the service.

name String The name of the service.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL commands:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamsForService?service_id=1"

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamsForService?service_name=web"

Successful request return:

[

 {

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [

 3

],

 "sig_filter": "",

 "name": "Cloud DevOps",

 "landing_page": "",

 "description": "Example Team",

 "active": true,

 "service_ids": [

 1,

 2,

 3,

 4,

 5,

 6,

 7,

 8,

 9,

 10,

 11

],

 "team_id": 1,

 "services": [

 "Commerce",

 "Compute",

 "CRM",

 "Database",

 "Mobile",

 "Networking",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

50

 "Remote",

 "Social",

 "Storage",

 "Switch",

 "Web"

],

 "users": [

 "admin"

]

 }

]

getTeamSituationIds

A GET request that returns the total number of Situations that are assigned to a team, and a list of their Situation IDs.

Request Argument

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

team_name String The name of an existing team.

There are no other arguments, as this method returns data on all Situations assigned to a team.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

total_situations Number The total number of Situations assigned to a team.

sitn_ids Number list A list of Situation IDs of the Situations assigned to a team.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamSituationIds" --data-urlencode
"team_name=Cloud Devops"

Successful request return:

{"total_situations":35,"sitn_ids":[20,21,39,55,85,119,145,180,208,233,244,
275,305,358,460,461,485,518,574,575,592,616,666,695,696,740,800,892,919,96
0,992,993,1027,1047,1092]}

getTeamSituationStats

A GET request that returns the number of active Situations assign to a team over time.

Request Argument

Name Type Description

teams Array An array of team IDs (optional). If no teams are provided, the endpoint returns data for the top 10

teams.

from Number The time from when the data points will be collected. This is a timestamp from epoch in seconds.

to Number The time until when the data points will be collected. This is a timestamp from epoch in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

51

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team

datapoints Number array A array containing multiple nested arrays of datapoint (timestamp + value)

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamSituationStats" --data-urlencode
'teams=[1,2]' --data-urlencode 'from=1513508950' --data-urlencode
'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "Cloud DevOps"

}, {

 "datapoints": [],

 "target": "Database"

}]

getUserInfo

A GET request that returns information about a specified user.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

user_id Number The user ID of the user to get information about.

username String A valid username.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

52

Name Type Description

user_id Number The user's ID.

full_name String The full name of the user.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUserInfo" --
data-urlencode "user_id=57"

Successful request return:

{"full_name":"Lonnie Holmes","user_id":57}

getUserRoles

Fetches the user's roles from the database.

Request Argument

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

user_id Number The user's ID.

username String A valid username.

Return parameter

Type Description

NativeObject A Javascript object containing Role ID, Role name and Role description.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUserRoles" --
data-urlencode "username=bigfish917"

Successful request return:

[{"id" : 2, "name" : "Administrator", "description" : "Administrator"},
{"id" : 4, "name" : "Operator", "description" : "Operator"}, {"id" : 5,
"name" : "Customer", "description" : "Customer"}]

getUsers

Fetches a list of all users in the database.

Request Argument

Name Type Description

auth_token String

(Mandatory)

A valid auth_token returned from the authenticate request.

limit Integer

(Optional)

The maximum number of results to return. Default is 1000.

Return parameter

Type Description

NativeObject A JSON list of all users, displaying uid, teams, fullname and username.

Example

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

53

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUsers" --data-
urlencode "limit=3"

Successful request return:

[

 {

 "uid": 3,

 "teams": [

 "Cloud DevOps"

],

 "fullname": "Administrator",

 "username": "admin"

 },

 {

 "uid": 6,

 "teams": [],

 "fullname": "Nagios",

 "username": "Nagios"

 },

 {

 "uid": 5,

 "teams": [],

 "fullname": "Webhook",

 "username": "Webhook"

 }

]

getUserTeams

Fetches the team names and IDs associated with the specified user ID or username.

Request Argument

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

user_id Number A valid user ID.

username String A valid username.

Return parameter

Type Description

NativeObject A Javascript object containing Team ID and Team name.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUserTeams"
--data-urlencode "username=admin"

Successful request return:

[{"id" : 11, "name" : "Team1"}, {"id" : 12, "name" : "Team2"}, {"id" : 2,
"name" : "Team3"}, {"id" : 6, "name" : "Team4"}, {"id" : 10, "name" :
"Team5"}]

updateTeam

A POST request that modifies an existing team.

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

54

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

team_id Number The team ID (required).

name String The new team name. Exclude this attribute to leave Cisco Crosswork Situation

Manager as it is.

alert_filter String The new team alerts filter. Either a SQL like filter or an JSON representation of the

filter. Exclude this attribute to leave Cisco Crosswork Situation Manager as it is.

services JSON List List of the team services names or IDs. Exclude this attribute to leave Cisco

Crosswork Situation Manager as it is.

sig_filter String The situation filters. Either a SQL like filter or an JSON representation of the filter.

Exclude this attribute to leave Cisco Crosswork Situation Manager as it is.

landing_page String The team default landing page. Exclude this attribute to leave Cisco Crosswork

Situation Manager as it is.

active Boolean False if the team is inactive, true if the team is active. Default to true. Exclude this

atttribute to leave Cisco Crosswork Situation Manager as is.

description String The team description. Exclude this attribute to leave Cisco Crosswork Situation

Manager as it is.

users List of numbers

or strings

The team users (either IDs or usernames). Exclude this attribute to leave Cisco

Crosswork Situation Manager as it is.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateTeam"
-H "Content-Type: application/json; charset=UTF-8" -d '{"team_id" : 16,
"name" : "my team name RENAMED", "active" : true, "description" : "The
team description", "users" : []}'

Successful return:

NO RESPONSE TEXT

updateUser

A POST request that modifies an existing user.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

username String Username for user to be edited. Required (optional if user ID is used).

uid Long User ID for user to be edited. Required (optional if username used).

password String The new user password (only valid for DB realm). Optional.

active Boolean true if the user active, false if the user inactive. Defaults to true.

Optional.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

55

email String User's email address. Optional.

fullname String User's full name. Optional.

roles JSON list A list that should contain either the list of the role IDs or the role names, for

example, "roles":["Super User"]. Optional.

primary_group String or Number User's primary group name or primary group ID. Optional.

department String or number User's department ID or name. Optional.

timezone String User's timezone. Optional.

contact_num String User's phone number. Optional.

session_expiry Number Number of minutes after which the user session will expire. Default to

system default. Optional.

competencies JSON list A list with the user competencies. Optional. Each competency should have

have name or cid and ranking. That is, something like:

[

 {"name":"SunOS", "ranking": 40},

 {"name":"SAP", "ranking": 50},

 {"name":"EMC", "ranking": 60}

]

teams JSON list of

numbers or strings

List of the user teams. The list should contains either the list of the teams

ID or the teams name. Optional.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateUser"
-H "Content-Type: application/json; charset=UTF-8" -d '{"uid" : 5,
"active" : true, "password" : "test", "roles" : ["Super User",
"Operator"], "teams" : ["my team 1"], "competencies" : [{"name":"SunOS",
"ranking": 40},{"name":"SAP", "ranking": 50},{"name":"EMC", "ranking":
60}], "session_expiry" : null, "properties" : null, "contact_num" : "555-
123456", "timezone" : "Europe/London", "fullname" : "John Doe",
"department" : "Support", "primary_group" : "Network", "email" :
"test@test.com"}'

Successful request return:

NO RESPONSE TEXT

Security Realms

createSecurityRealm

A POST request that creates a new security realm from an Identity Provider (IdP) URL. The request also adds the

realm configuration you provide.

Warning:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

56

Warn any users who logged into Cisco Crosswork Situation Manager using the default realm before using this

request. The system may log out users when the new realm becomes active.

Request Arguments

Name Type Description

name String

(Required)

Name of the security realm.

type String

(Required)

Security realm type. This must be "SAML2".

active Boolean

(Required)

Determines whether the new realm is active in Cisco Crosswork Situation Manager

on creation.

You can create an inactive realm for testing purposes. For example, you can verify if

a security realm with that name already exists or if it fails.

configuration JSON

Object

(Required)

JSON object containing the realm configuration. For information on the configuration

properties, see Security Configuration Reference.Security Configuration Reference

Upload your IdP metadata file using idpMetadata or specify the location of the file

using idpMetadataUrl. For example:

"idpMetadataUrl":"http://<location_of_idp_metadata>"

"idpMetadata":"<raw_ipd_metadata.xml>"

Response

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command example to create a SAML realm that maps users to the default user mappings and has a maximum

authentication lifetime of 60 seconds:

curl -X POST \

 -u graze:graze \

 -k -v "https://localhost/graze/v1/createSecurityRealm" \

 -d {"name"="mySamlRealm",
"type"="SAML2","active="true","configuration"=

 {

"idpMetadataUrl":"http://exampleIdP:18080/auth/realms/master/protocol/saml
/descriptor",

 "defaultRoles":["Operator"],

 "defaultTeams":["Cloud DevOps"],

 "defaultGroup":"End-User",

 "existingUserMappingField":"username",

 "username":"$username",

 "email":"$email",

 "fullname":"$firstname $lastname",

 "maximumAuthenticationLifetime":60

 }

}

A successful request returns an HTTP200response.

file://document/preview/11687%23UUID34c1daabda9eb021bd2a4ba43eda683b

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

57

getSecurityRealm

A GET request that returns a JSON object containing the names and configuration details of active security realms.

Request Arguments

None required.

Response

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command to return the configuration of any active security realm in Cisco Crosswork Situation Manager:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSecurityRealms"

Successful requests return a JSON object representing the active realms. The following example shows a test SAML

realm and a Google realm:

{

 "Test Saml Realm": {

 "configuration": {

 "defaultGroup":"EndUser",

 "realmType":"SAML2",

 "existingUserMappingField":"username",

"spMetadataFile":"/usr/share/moogsoft/config/keycloak.my_sp_metadata.xml",

 "defaultRoles":["Operator"],

 "defaultTeams":["Cloud DevOps"],

 "fullname":"$FirstName $LastName",

 "email":"$Email",

"idpMetadataFile":"/usr/share/moogsoft/config/keycloak.my_idp_metadata.xml
",

 "username":"$Email",

 "maximumAuthenticationLifetime":60},

 "name":"Test Saml Realm",

 "active":true,

 "type":"SAML2"

 }

 ,"Google realm": {

 "configuration": {

 "realmType":"GOOGLE"},

 "name":"Google realm",

 "active":true,"type":"GOOGLE"}

}

updateSecurityRealm

A POST request that updates an existing security realm in the database.

Warning

Warn any users who logged into Cisco Crosswork Situation Manager using the default realm before using this

request. The system may log out users when the updated realm becomes active.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

58

name String

(Required)

Name of the security realm.

type String Security realm type. This must be "SAML2".

active Boolean Determines whether the new realm is active or not.

configuration JSON

Object

JSON object containing the realm configuration. You must include all mandatory

configuration properties; otherwise the request returns an error. For information on

the configuration properties, see Security Configuration Reference.Security

Configuration Reference

Response

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command to update a SAML realm with a new X509 certificate:

curl -X POST \

 -u graze:graze \

 -k -v "https://localhost/graze/v1/updateSecurityRealm" \

 -d {"name"="mySamlRealm"

 -d 'configuration=

 {

 "idpMetadata":"<?xml version=\"1.0\" encoding=\"UTF-
8\"?>\r\n<EntitiesDescriptor Name=\"urn:keycloak\"
xmlns=\"urn:oasis:names:tc:SAML:2.0:metadata\"\r\nxmlns:dsig=\"http:\/\/ww
w.w3.org\/2000\/09\/xmldsig#\">\r\n<EntityDescriptor
entityID=\"http:\/\/moogsaml:18080\/auth\/realms\/master\">\r\n<IDPSSODesc
riptor
WantAuthnRequestsSigned=\"true\"\r\nprotocolSupportEnumeration=\"urn:oasis
:names:tc:SAML:2.0:protocol\">\r\n<KeyDescriptor
use=\"signing\">\r\n<dsig:KeyInfo>\r\n<dsig:KeyName>l8ddhI8SroeNnlq0TkTxIj
2VI-
0bvr2QfG_o32jWeKI<\/dsig:KeyName>\r\n<dsig:X509Data>\r\n<dsig:X509Certific
ate>MIICmzCCAYMCBgFk8A9vMjANBgkqhkiG9w0BAQsFADARMQ8wDQYDVQQDDAZtYXN0ZXIwHh
cNMTgwNzMxMTExNjQwWhcNMjgwNzMxMTExODIwWjARMQ8wDQYDVQQDDAZtYXN0ZXIwggEiMA0G
CSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCOliZ3dBu696slYduAb1BMuvR1bMdTKVBMICWaEE
cS8Rzw8gWthPQpw2e202LjOeu4VkTVmEEAUa2IrLS4QpYgyhOuzapcIGF4kB0ARebalWa7C9od
9%2BeTqWgvXPrDOkzp7g%2B%2Ba5yvtKxE3ieUORPpACvLWcbkMwyb%2Be5V8%2Bz8n4263Uol
8srSaxLsm\/oTozJNwbG%2BbzV8JQHU3xFV5nFbyNySvc%2B\/B7tDFZuJC5BMu6bwi\/rPqp5
OMcuB1W%2BxCcX7IYPphnBjRWNyQJD3gRCkjrujISkTEcqpZEjR79isbofQaPDi5TSjglPD5rr
0OWMVqv91a1\/pVN2y0y%2BRlT8HAgMBAAEwDQYJKoZIhvcNAQELBQADggEBAAgRhWYKESVsTR
AUVYzHYptd3\/eX47%2BTVXhjPO0ORLUJbHtfhgohtyejd6ohazkcSgMy6%2BwaeVojqq4Q\/t
zCOW2EAqO9QOQdaBWOPxDXhJ9TGQJE2E28SS2Gg6paAMfRmtA7c6xXii%2BYfLo3PG1SSc\/sG
e4KIPKflkqqDEqEeaY1olPZU2bLnpMSIui2nK1crE2%2Bt9apLWAGosah6scMGZ9vTrtOVrNuh
B2LuU3cvRQWrUBaQuXQsBV7Q6a8lkrrZ6rjAIbO4vcEL4yjQpnA%2BhetuhBlGPQj6ntuhdnmo
KmWYY97wk8eXwblhQxg8GUyfqabfOAKwiGAklxgkexm20M=<\/dsig:X509Certificate>\r\
n<\/dsig:X509Data>\r\n<\/dsig:KeyInfo>\r\n<\/KeyDescriptor>\r\n\r\n<Single
LogoutService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protoc
ol\/saml\"
\/>\r\n<SingleLogoutService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindi
ngs:HTTP-
Redirect\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/pr
otocol\/saml\" \/>\r\n<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent<\/NameIDFormat>\r\n<NameIDFormat>urn:oasis:names:tc:SAML
:2.0:nameid-
format:transient<\/NameIDFormat>\r\n<NameIDFormat>urn:oasis:names:tc:SAML:

file://document/preview/11687%23UUID34c1daabda9eb021bd2a4ba43eda683b

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

59

1.1:nameid-
format:unspecified<\/NameIDFormat>\r\n<NameIDFormat>urn:oasis:names:tc:SAM
L:1.1:nameid-format:emailAddress<\/NameIDFormat>\r\n<SingleSignOnService
Binding=\"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protoc
ol\/saml\"
\/>\r\n<SingleSignOnService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindi
ngs:HTTP-
Redirect\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/pr
otocol\/saml\"
\/>\r\n<SingleSignOnService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindi
ngs:SOAP\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/pr
otocol\/saml\"
\/>\r\n<\/IDPSSODescriptor>\r\n<\/EntityDescriptor>\r\n<\/EntitiesDescript
or>",

 "defaultRoles":["Operator"],

 "defaultTeams":["Cloud DevOps"],

 "defaultGroup":"End-User",

 "existingUserMappingField":"username",

 "username":"$username",

 "email":"$email",

 "fullname":"$firstname $lastname",

 "maximumAuthenticationLifetime":60

 }'

cURL command to deactivate an active SAML realm:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/updateSecurityRealm" -d "name=mySamlRealm" -d
"active=false"

Successful return:

A successful request returns an HTTP 200 response.

Dashboards and Reporting

getMTTAStats

A GET request that returns the Mean Time To Acknowledge a situation in the system over time.

Request Argument

Name Type Description

from Number The time from when the data points will be collected. A timestamp from epoch in seconds.

to Number The time until when the data points will be collected. A timestamp from epoch in seconds.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String "mtt_acknowledge"

datapoints Number array An array containing multiple nested arrays of datapoints (timestamp + value).

Example

cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

60

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTAStats" --
data-urlencode 'from=1513508950' --data-urlencode 'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "mtt_acknowledge"

}]

getMTTDStats

A GET request that returns the Mean Time To Detect a situation in the system over time.

Request Argument

Name Type Description

from Number The time from when the data points will be collected. A timestamp from epoch in seconds.

to Number The time until when the data points will be collected. A timestamp from epoch in seconds.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String "mtt_detect"

datapoints Number array An array containing multiple nested arrays of datapoints (timestamp + value).

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTDStats" --
data-urlencode 'from=1513508950' --data-urlencode 'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

61

 "target": "mtt_detect"

}]

getMTTRStats

A GET request that returns the Mean Time To Resolve a Situation in the system over time.

Request Argument

Name Type Description

from Number The time from when the data points will be collected. A timestamp from epoch in seconds.

to Number The time until when the data points will be collected. A timestamp from epoch in seconds.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String "mtt_resolve"

datapoints Number array A array containing multiple nested arrays of datapoint (timestamp + value)

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTRStats" --
data-urlencode 'from=1513508950' --data-urlencode 'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "mtt_resolve"

}]

getReassignedSituationStats

A GET request that returns the number of situations reassigned in the system over time.

Request Argument

Name Type Description

from Number Time from when the data points will be collected. A timestamp from epoch in seconds.

to Number Time until when the data points will be collected. A timestamp from epoch in seconds.

Return Parameters

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

62

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reassigned Situation"

datapoints Number array A array containing multiple nested arrays of datapoint (timestamp + value)

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReassignedSituationStats" --data-urlencode
'from=1513508950' --data-urlencode 'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "Reassigned Situation"

}]

getReoccurringSituationStats

A GET request that returns the percentage of reoccurring situations in the system over time.

Request Argument

Name Type Description

from Number Time from when the data points will be collected. A timestamp from epoch in seconds.

to Number Time until when the data points will be collected. A timestamp from epoch in seconds.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reoccurring Situation"

datapoints Number array An array containing multiple nested arrays of datapoints (timestamp + value).

Example

cURL command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

63

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReoccurringSituationStats" --data-urlencode
'from=1513508950' --data-urlencode 'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "Reoccurring Situation"

}]

getServiceSituationStats

A GET request that returns the number of active Situations impacting a service over time.

Request Argument

Name Type Description

services Array An array of services IDs (optional). If no services are provided, the endpoint returns empty

data.

from Number Time from when the data points will be collected.A timestamp from epoch in seconds.

to Number Time until when the data points will be collected.A timestamp from epoch in seconds.

aggregation String Can be one of:

"none" - No aggregation of results.

"sum" - Aggregation of all services provided.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the service

datapoints Number array A array containing multiple nested arrays of datapoint (timestamp + value)

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getServiceSituationStats" --data-urlencode
'services=[1,2]' --data-urlencode 'from=1513508950' --data-urlencode
'to=1513595370' --data-urlencode 'aggregation=sum'

Successful request return:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

64

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "Service A"

}, {

 "datapoints": [],

 "target": "Service B"

}]

getSeveritySituationStats

A GET request that returns the number of situations by severity.

Request Argument

Name Type Description

severity Array An array of severity IDs. Optional. If not given, returns a default set of severities: Clear,

Indeterminate, Warning, Minor, Major, Critical.

from Number Time from when the data points will be collected. A timestamp from epoch in seconds.

to Number Time until when the data points will be collected. A timestamp from epoch in seconds.

aggregation String Can be one of:

"none" - No aggregation of results.

"sum" - Aggregation of all severities provided.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the status.

datapoints Number array An array containing multiple nested arrays of datapoints (timestamp + value).

Example

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSeveritySituationStats" --data-urlencode
'from=1516216020' --data-urlencode 'to=1516282420' --data-urlencode
'severity=[0, 1]' --data-urlencode 'aggregation=sum'

Successful request return:

[{

 "datapoints": [

 [92.0, 1516008478000],

 [666.0, 1516030078000]

],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

65

 "target": "Major"

}, {

 "datapoints": [

 [1.0, 1515947278000],

 [35.0, 1515958078000],

 [63.0, 1515976078000],

 [241.0, 1515994078000],

 [4.0, 1516015678000]

],

 "target": "Minor"

}]

getStatusSituationStats

A GET request that returns the number of situations by status.

Request Argument

Name Type Description

status Array An array of status IDs. Optional. If not given, returns a default set of statuses: Opened,

Unassigned, Assigned, Acknowledged, Unacknowledged, Resolved.

from Number Time from when the data points will be collected.A timestamp from epoch in seconds.

to Number Time until when the data points will be collected.A timestamp from epoch in seconds.

aggregation String Can be one of:

"none" - No aggregation of results.

"sum" - Aggregation of all statuses provided.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the status.

datapoints Number array An array containing multiple nested arrays of datapoints (timestamp + value).

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getStatusSituationStats" --data-urlencode
'from=1515943678' --data-urlencode 'to=1516030078' --data-urlencode
'status=[1, 2]' --data-urlencode 'aggregation=sum'

Successful request return:

[{

 "datapoints": [

 [92.0, 1516008478000],

 [666.0, 1516030078000]

],

 "target": "Opened"

}, {

 "datapoints": [

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

66

 [1.0, 1515947278000],

 [35.0, 1515958078000],

 [63.0, 1515976078000],

 [241.0, 1515994078000],

 [4.0, 1516015678000]

],

 "target": "Assigned"

}]

getSystemSituationStats

A GET request that returns the number of active Situations in the system over time.

Request Argument

Name Type Description

from Number The time from when the data points will be collected. A timestamp from epoch in seconds.

to Number The time until when the data points will be collected. A timestamp from epoch in seconds.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String "System"

datapoints Number array An array containing multiple nested arrays of datapoints (timestamp + value).

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSystemSituationStats" --data-urlencode
'from=1513508950' --data-urlencode 'to=1513595370'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "Open Situations"

}]

getTeamSituationStats

A GET request that returns the number of active Situations assigned to a team over time.

Request Argument

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

67

teams Array An array of team IDs (optional). If no teams are provided, the endpoint returns empty data.

from Number The time from when the data points will be collected. A timestamp from epoch in seconds.

to Number The time until when the data points will be collected. A timestamp from epoch in seconds.

aggregation String Can be one of:

"none" - No aggregation of results.

"sum" - Aggregation of all teams provided.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number array A array containing multiple nested arrays of datapoint (timestamp + value).

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamSituationStats" --data-urlencode
'teams=[1,2]' --data-urlencode 'from=1513508950' --data-urlencode
'to=1513595370' --data-urlencode 'aggregation=sum'

Successful request return:

[{

 "datapoints": [

 [2.0, 1513657700000],

 [9.0, 1513661300000],

 [1.0, 1513664900000],

 [4.0, 1513668500000],

 [3.0, 1513672100000],

 [2.0, 1513675700000],

 [2.0, 1513679300000],

 [9.0, 1513682900000],

 [1.0, 1513686500000]

],

 "target": "Cloud DevOps"

}, {

 "datapoints": [],

 "target": "Database"

}]

Workflow

addProcess

A POST request that adds a new process to the database.

Processes are external business entities related to business activities that are affected by the incidents that Cisco

Crosswork Situation Manager captures in Situations.

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

68

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

name String The process name.

description String The process description. Optional.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addProcess"
-H "Content-Type: application/json; charset=UTF-8" -d '{"name" : "new proc
1", "description" : "This is my description 12345"}'

Successful return:

NO RESPONSE TEXT

addService

A POST request that adds a new external service to the database.

An external service is a business entity monitored by Cisco Crosswork Situation Manager via Event streams.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

name String The service name.

description String The service description. Optional.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addService"
-H "Content-Type: application/json; charset=UTF-8" -d '{"name" : "new svc
1", "description" : "This is my description 12345"}'

Successful return:

NO RESPONSE TEXT

createMaintenanceWindow

A POST request that creates a maintenance window. The maintenance window filters alerts caused by a known

period of maintenance.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

69

auth_token String

(Optional)

A valid auth_token returned from the authenticate

request.

name String

(Required)

Name of the maintenance window.

description String

(Required)

Description of the maintenance window.

filter String

(Required)

JSON or SQL-like filter for alerts to match. The filter must be in

JSON format, that is, the same format used in alert and Situation

filters in the database.

start_date_time Epoch

Seconds

(Number)

(Required)

Start time of themaintenancewindow. This must be in epoch time

and may be up to 5 years in the future.

duration Seconds

(Number)

(Required)

Duration of the maintenance window in seconds. The minimum

duration is 1 second and the maximum is 157784630 seconds (5

years).

forward_alerts Boolean

(Required)

Defines whether or not alerts should be forwarded to the next

Moolet in the processing chain.

recurring_period Number

(Optional)

Whether or not this is a recurring maintenance window. Set this to:

1 for a recurring maintenance window.

0 for a one-time maintenance window.

If not specified, defaults to 0. If you set this property to 1, you

must specify recurring_period_units.

recurring_period_units Number

(Optional)

Specifies the recurring period of the maintenance window, in days,

weeks or months. Defaults to 0 ifrecurring_periodis set

to0.Valid values are:

2 = daily

3 = weekly

4 = monthly

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object with the following:

Name Type Description

window_id Number The new maintenance window ID.

Example

Example cURL request to create a window, which recurs once a month (from its start_date_time), with a filterwhere

thesource is 'server1' and the external ID is one of 'value1', 'value2', or 'value3':

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

70

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/createMaintenanceWindow" -H "Content-Type:
application/json; charset=UTF-8" -d '{"name":"window1",
"description":"window1 description here", "filter": "source = \"server1\"
and external_id in (\"value1\", \"value2\", \"value3\")",
"start_date_time": 1473849237, "duration": 55800, "forward_alerts": false,
"recurring_period": 1, "recurring_period_units": 4}'

Example cURL request to create a one-time maintenance window, which is filtered when thesource is equal to

'hostWhichIsDown':

curl "https://<YOUR_HOSTNAME>:8080/graze/v1/createMaintenanceWindow" -H
"Content-Type: application/json; charset=UTF-8" --insecure -X POST -v --
data '{"auth_token": "<YOUR_GRAZE_AUTH_TOKEN>", "name": "my_window_1",
"description": "This is my description", "filter": { "column": "source",
"op": 0, "value": "hostWhichIsDown", "type": "LEAF" }, "start_date_time":
1473849237, "duration": 55800, "forward_alerts": false}

Successful request return:

{"window_id":16}

deleteMaintenanceWindow

A POST request that deletes a single maintenance window.

Parameter Type Required Description

auth_token String No A valid auth_token returned from the authenticate request.

id Number Yes ID of the maintenance window you want to delete.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

Example cURL request to delete maintenance window 123:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/deleteMaintenanceWindow" -H "Content-Type:
application/json; charset=UTF-8" -d '{"id"[123]}'

Successful return:

NO RESPONSE TEXT

deleteMaintenanceWindows

A POST request that deletes maintenance windows that match the specified filter.

Parameter Type Description

auth_token String A valid auth_token returned from the authenticate request.

filter String ID of the maintenance window to delete.

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

71

cURL request to delete maintenance windows that match the filter where the ID is 3 or 4:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/deleteMaintenanceWindows" -H "Content-Type:
application/json; charset=UTF-8" -d '{"filter":"id in (3,4)"}'

Example cURL request to delete maintenance windows that match the filter where the host is "CSF_RD_243:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/deleteMaintenanceWindows" -H "Content-Type:
application/json; charset=UTF-8" -d '{"filter":"host matches
\"CSF_RD_243\""}'

Successful return:

NO RESPONSE TEXT

findMaintenanceWindows

A GET request that returns maintenance windows that match a filter.

Request Arguments

Parameter Type Description

auth_token String A valid auth_token returned from the authenticate request.

filter String SQL or JSON filter.

limit Number The number of windows to fetch (defaults to 100).

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/findMaintenanceWindows" --data-urlencode
'filter=description matches "My"' --data-urlencode 'limit=2'

Successful request return:

{"windows":[{"filter":"{ \"column\": \"type\", \"op\": 10, \"value\":
\"KnownErrorType1234\", \"type\": \"LEAF\"
}","duration":3600,"recurring_period":1,"del_flag":false,"forward_alerts":
false,"last_updated":1499425460,"name":"My window
1","updated_by":5,"description":"My description
1","id":1,"recurring_period_units":3,"start_date_time":1499425427},{"filte
r":"{ \"column\": \"description\", \"op\": 10, \"value\":
\"FireInServerRoom\", \"type\": \"LEAF\"
}","duration":3600,"recurring_period":0,"del_flag":false,"forward_alerts":
false,"last_updated":1499425489,"name":"My second
window","updated_by":5,"description":"Technical details
here","id":2,"recurring_period_units":0,"start_date_time":1499425462}]}

getIntegrationConfig

A GET request that exports the configuration and mapping needed for an integration in JSON format.

The exported JSON file can be saved as a duplicate configuration of the original integration. For example, you can

modify and save the returned object as webhook_lam_custom.conf. Run it with this command:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

72

$MOOGSOFT_HOME/bin/webhook_lam --config=webhook_lam_custom.conf

Request Arguments

Parameter Type Description

auth_token String A valid auth_token returned from the authenticate request.

integration_id Number A unique identifier given to each integration by Cisco Crosswork Situation Manager.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getIntegrationConfig?integration_id=1"

Successful requests return aJSON object:

{

 "config": {

 "filter": {

 "presend": "WebhookLam.js"

 },

 "process": "webhook_lam_webhook1",

 "conversions": {

 "sevConverter": {

 "output": "INTEGER",

 "lookup": "severity",

 "input": "STRING"

 },

 "stringToInt": {

 "output": "INTEGER",

 "input": "STRING"

 }

 },

 "mapping": {

 "catchAll": "overflow",

 "rules": [

 {

 "name": "signature",

 "rule": "$signature"

 },

 {

 "name": "source_id",

 "rule": "$source_id"

 },

 {

 "name": "external_id",

 "rule": "$external_id"

 },

 {

 "name": "manager",

 "rule": "$manager"

 },

 {

 "name": "source",

 "rule": "$source"

 },

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

73

 {

 "name": "class",

 "rule": "$class"

 },

 {

 "name": "agent",

 "rule": "$LamInstanceName"

 },

 {

 "name": "agent_location",

 "rule": "$agent_location"

 },

 {

 "name": "type",

 "rule": "$type"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "sevConverter"

 },

 {

 "name": "description",

 "rule": "$description"

 },

 {

 "name": "agent_time",

 "rule": "$agent_time",

 "conversion": "stringToInt"

 }

]

 },

 "agent": {

 "name": "webhook_lam_webhook1"

 },

 "monitor": {

 "address": "localhost",

 "authentication_cache": true,

 "use_ssl": false,

 "auto_port_assign": true,

 "authentication_type": "basic",

 "rpc_response_timeout": 20,

 "lists_contain_multiple_events": true,

 "proxy": "https://freida7/events/webhook_webhook1",

 "accept_all_json": true,

 "port": 51000,

 "name": "Webhook Lam Monitor (Webhook1)",

 "num_threads": 5,

 "rest_response_mode": "on_receipt",

 "class": "CRestMonitor"

 },

 "constants": {

 "severity": {

 "0": 2,

 "moog_lookup_default": 1,

 "3": 5,

 "5": 4,

 "CLEAR": 0,

 "2": 3,

 "MAJOR": 4,

 "CRITICAL": 5,

 "MINOR": 3,

 "INDETERMINATE": 1,

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

74

 "1": 2

 }

 }

 }

}

getMaintenanceWindows

A GET request that returns maintenance windows based on the window ID and how many should be fetched. Only

returns active recurring windows and scheduled maintenance windows, not expired or deleted maintenance

windows.

Request Arguments

Parameter Type Description

auth_token String A valid auth_token returned from the authenticate request.

start Number The start point for where to fetch windows from, that is, 0 to start at the first, 10 to start at

the 11th.

limit Number The number of windows to fetch.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

Example cURL command to return the first 20 maintenance windows:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getMaintenanceWindows" --data-urlencode
'start=0' --data-urlencode 'limit=20'

Successful return:

{"windows":[{"filter":"{ \"column\": \"type\", \"op\": 10, \"value\":
\"KnownErrorType1234\", \"type\": \"LEAF\"
}","duration":3600,"recurring_period":1,"del_flag":false,"forward_alerts":
false,"last_updated":1499425460,"name":"My window
1","updated_by":5,"description":"My description
1","id":1,"recurring_period_units":3,"start_date_time":1499425427},{"filte
r":"{ \"column\": \"description\", \"op\": 10, \"value\":
\"FireInServerRoom\", \"type\": \"LEAF\"
}","duration":3600,"recurring_period":0,"del_flag":false,"forward_alerts":
false,"last_updated":1499425489,"name":"My second
window","updated_by":5,"description":"Technical details
here","id":2,"recurring_period_units":0,"start_date_time":1499425462}]}

getProcesses

A GET request that returns the list of processes.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. Required.

limit Integer The maximum number of results that are returned. Optional. Default is 1000.

Return Parameters

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

75

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

process_id Number The ID of the process.

name String The name of the process.

description String The description of the process.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getProcesses"

Successful request return:

[

 {

 "process_id": 1,

 "name": "Example1",

 "description": "Example1"

 },

 {

 "process_id": 2,

 "name": "Example2",

 "description": "Example2"

 },

 {

 "process_id": 3,

 "name": "Example3",

 "description": "Example3"

 }

]

getServices

A GET request that returns the list of services.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. Required.

limit Integer The maximum number of results that are returned. Optional. Default is 1000.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

service_id Number The ID of the service.

name String The service name.

Example

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

76

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getServices"

Successful request return:

[{

 "service_id": 15,

 "name": "Service A"

}, {

 "service_id": 4,

 "name": "Service B"

}]

getSeverities

A GET request that returns the list of possible severities and severity IDs.

No Requested Arguments

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

severity_id Number The ID of the severity.

name String The severity name.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSeverities"

Successful request return:

[{

 "name": "Clear",

 "severity_id": 0

}, {

 "name": "Indeterminate",

 "severity_id": 1

}, {

 "name": "Warning",

 "severity_id": 2

}, {

 "name": "Minor",

 "severity_id": 3

}, {

 "name": "Major",

 "severity_id": 4

}, {

 "name": "Critical",

 "severity_id": 5

}]

getStats

A GET request that list all endpoints available with their description.

No Requested Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

77

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getStats"

Successful request return:

[{

 "endpoint": "getTeamSituationStats",

 "description": "returns the number of active situations assign to
a team over time",

 "display_name": "Open Situations by Team",

 "parameters": {

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 }

 }

}, {

 "endpoint": "getServiceSituationStats",

 "description": "returns the number of active situations impacting
a service over time",

 "display_name": "Open Situations by Service",

 "parameters": {

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

78

 "services": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getServices",

 "value": "service_id"

 },

 "type": "mapped",

 "required": false

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 }

 }

}, {

 "endpoint": "getSystemSituationStats",

 "description": "returns the number of active situations in the
system over time",

 "display_name": "Open Situations",

 "parameters": {

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 }

 }

}, {

 "endpoint": "getStatusSituationStats",

 "description": "returns the number of active situations with
specified status over time",

 "display_name": "Situations by Status",

 "parameters": {

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

 "status": {

 "mapping": {

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

79

 "display_value": "name",

 "endpoint": "getStatuses",

 "value": "status_id"

 },

 "type": "mapped",

 "required": false

 }

 }

}, {

 "endpoint": "getSeveritySituationStats",

 "description": "returns the number of active situations with
specified severity over time",

 "display_name": "Open Situations by severity",

 "parameters": {

 "severity": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getSeverities",

 "value": "severity_id"

 },

 "type": "mapped",

 "required": "false"

 },

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 }

 }

}, {

 "endpoint": "getMTTAStats",

 "description": "returns the mean time to acknowledge a situation
over time",

 "display_name": "Mean Time To Acknowledge situations",

 "parameters": {

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

80

 "type": "Long",

 "required": true

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 }

 }

}, {

 "endpoint": "getMTTDStats",

 "description": "returns the mean time to detect a situation over
time",

 "display_name": "Mean Time To Detect situations",

 "parameters": {

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 },

 "to": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long",

 "required": true

 }

 }

}, {

 "endpoint": "getMTTRStats",

 "description": "returns the mean time to resolve a situation over
time",

 "display_name": "Mean Time To Resolve situations",

 "parameters": {

 "teams": {

 "mapping": {

 "display_value": "name",

 "endpoint": "getTeams",

 "value": "team_id"

 },

 "type": "mapped",

 "required": false

 },

 "from": {

 "description": "A timestamp from epoch in
seconds",

 "type": "Long ",

 "required ": true

 },

 "to ": {

 "description ": "A timestamp from epoch in seconds
",

 "type ": "Long ",

 "required ": true

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

81

 }

 }

}, {

 "endpoint ": "getReassignedSituationStats ",

 "description ": "returns the number of situations that have been
reassigned over time ",

 "display_name ": "Reassigned situations ",

 "parameters ": {

 "teams ": {

 "mapping ": {

 "display_value ": "name ",

 "endpoint ": "getTeams ",

 "value ": "team_id "

 },

 "type ": "mapped ",

 "required ": false

 },

 "from ": {

 "description ": "A timestamp from epoch in seconds
",

 "type ": "Long ",

 "required ": true

 },

 "to ": {

 "description ": "A timestamp from epoch in seconds
",

 "type ": "Long ",

 "required ": true

 }

 }

}]

getStatuses

A GET request that returns a list of statuses that can apply to Situations and their IDs.

No Requested Arguments

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return an array of JSON objects containing the following:

Name Type Description

status_id Number The ID of the status.

name String The status name.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getStatuses"

Successful request return:

[{

 "status_id": 1,

 "name": "Opened"

}, {

 "status_id": 2,

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

82

 "name": "Unassigned"

}, {

 "status_id": 3,

 "name": "Assigned"

}, {

 "status_id": 4,

 "name": "Acknowledged"

}, {

 "status_id": 5,

 "name": "Unacknowledged"

}, {

 "status_id": 6,

 "name": "Active"

}, {

 "status_id": 7,

 "name": "Dormant"

}, {

 "status_id": 8,

 "name": "Resolved"

}, {

 "status_id": 9,

 "name": "Closed"

}, {

 "status_id": 10,

 "name": "SLA Exceeded"

}]

getSystemStatus

A GET request that returns current system status information for all processes.

Request Argument

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

There are no other arguments, as this method returns data on all processes.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

component String Represents the name of a component within the process. May not be

present, depending on the process.

instance String The instance name.

last_heartbeat Number The timestamp (in Unix epoch time) of the last process heartbeat. 0 is a

special value indicating that a heartbeat has never been received.

missed_heartbeats Number The number of missed process heartbeats. -1 is a special value

indicating that a heartbeat has never been received.

process_name String The process name.

processes List A list of the processes, with status information.

reserved Boolean Indicates whether the process is reserved:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

83

true = a reserved process

false = process not reserved

A reserved process is a process that is usually required for Cisco

Crosswork Situation Manager to be working properly.

running Boolean Indicates whether the process is running or not:

true = running

false = not running

service_name String The service name.

display_name String The name of the service in the configuration.

type String The type of the service, for example, lam, servlets, moog_farmd.

passive Boolean Indicates whether the service is passive in a HA environment:

true = passive

false = active

stoppable Boolean Indicates whether or not the service can be stopped:

true = stoppable

false = not stoppable

ha_conf JSON

Object

A Json blob containing the HA configuration.

additional_health_info JSON

Object

Additional health information. The pools section includes health

information for processes with an internal pool.

Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSystemStatus"

Successful request return:

{

 "processes": [{

 "running": true,

 "sub_components": {

 "moogpoller": {

 "run_on_startup": true,

 "instance": "",

 "service_name": "apache-tomcat",

 "display_name": "servlets",

 "type": "servlets",

 "last_heartbeat": 1491385834300,

 "passive": false,

 "running": true,

 "component": "moogpoller",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 0,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

84

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": false,

 "group": "servlets"

 }

 },

 "moogsvr": {

 "run_on_startup": true,

 "instance": "",

 "service_name": "apache-tomcat",

 "display_name": "servlets",

 "type": "servlets",

 "last_heartbeat": 1491385825246,

 "passive": false,

 "running": true,

 "component": "moogsvr",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 0,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": false,

 "group": "servlets"

 }

 }

 },

 "instance": "",

 "reserved": true,

 "service_name": "apache-tomcat",

 "stoppable": true,

 "missed_heartbeats": 0,

 "display_name": "servlets",

 "type": "servlets",

 "last_heartbeat": 1491385834300,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": false,

 "group": "servlets"

 },

 "passive": false

 }, {

 "running": false,

 "instance": "",

 "last_missed_heartbeat": 1491385820601,

 "reserved": false,

 "stoppable": false,

 "missed_heartbeats": 10,

 "display_name": "test_lam",

 "type": "lam",

 "last_heartbeat": 1491382820601,

 "additional_health_info": {

 "thread_pool_queue_size": 0,

 "published_events": {

 "last_5_minutes": 130,

 "last_10_minutes": 130,

 "last_minute": 130

 }

 },

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

85

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "test_lam"

 },

 "passive": false

 "sub_components": {

 "SituationMgr": {

 "run_on_startup": true,

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "passive": false,

 "running": false,

 "component": "SituationMgr",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 10,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 },

 "AlertBuilder": {

 "run_on_startup": true,

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "passive": false,

 "running": false,

 "component": "AlertBuilder",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 10,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 },

 "TeamsMgr": {

 "run_on_startup": true,

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

86

 "last_heartbeat": 1491382821669,

 "passive": false,

 "running": false,

 "component": "TeamsMgr",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 10,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 }

 },

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "additional_health_info": {

 "event_processing_metric": 0.65

 },

"passive": false,

"running": false,

"reserved": true,

"stoppable": true,

"missed_heartbeats": 10,

"ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 },

{

 "running": false,

 "instance": "",

 "reserved": false,

 "service_name": "restclientlamd",

 "stoppable": true,

 "display_name": "rest_client_lam",

 "type": "lam",

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "group": "rest_client_lam"

 }

 "additional_health_info": {

 "pools": {

 "MoogPoller": [{

 "removed": 0,

 "ration": 0.0,

 "busy": 0,

 "resource_type": "com.mysql.jdbc.JDBC4Connection",

 "checkout_per_second": 0.0,

 "free": 10,

 "avg_checkedout_seconds": 0.0,

 "capacity": 10

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

87

 }],

 "Message sender pool": [{

 "removed": 0,

 "ration": 0.0,

 "busy": 0,

 "resource_type": "com.moogsoft.mooms.CMoomsMessageSender",

 "checkout_per_second": 0.09997000899730081,

 "free": 10,

 "avg_checkedout_seconds": 0.002,

 "capacity": 10

 }]

 }

 }]

}

getSystemSummary

A GET request that returns a summary of current alerts and Situations in Cisco Crosswork Situation Manager.

Request Argument

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

There are no other arguments, as this method returns data on all alerts and Situations.

Return Parameters

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object system_summary, containing Cisco Crosswork Situation Manager

statistics in the following:

Name Type Description

open_sitns Number The number of open Situations in Cisco Crosswork Situation Manager.

open_sitns_down Number The number of open Situations that are trending down.

open_sitns_up Number The number of open Situations that are trending up.

avg_events_per_sitn Number The average number of events per situation.

avg_alerts_per_sitn Number The average number of alerts per situation.

service_count Number The number of services currently in Cisco Crosswork Situation Manager.

open_sigs_unassigned Number The number of situations unassigned.

total_events Number The total number of Events currently in Cisco Crosswork Situation Manager.

 Example

cURL command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSystemSummary"

Successful request return:

{"system_summary":{"total_events":61676,"open_sitns":571,"avg_events_per_s
itn":305,"open_sitns_up":565,"open_sitns_down":2,"avg_alerts_per_sitn":16,
"open_sigs_unassigned":310,"timestamp":1499425056}}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

88

updateMaintenanceWindow

A POST request that updates an existing maintenance window.

Request Arguments

Name Type Description

window_id String

(Required)

ID of the existing maintenance window.

auth_token String

(Optional)

A valid auth_token returned from the authenticate

request.

name String

(Optional)

Name of the maintenance window.

description String

(Optional)

Description of the maintenance window.

filter String

(Optional)

JSON or SQL-like filter for alerts to match. The filter must be in

JSON format, that is, the same format used in alert and Situation

filters in the database. You cannot change the filter of an active

maintenance window.

start_date_time Epoch

Seconds

(Number)

(Optional)

Start time of the maintenance window. This must be in epoch time

and may be up to 5 years in the future. You cannot change the

start_date_time of an active maintenance window.

duration Seconds

(Number)

(Optional)

Duration of the maintenance window in seconds. The minimum

duration is 1 second and the maximum is 157784630 seconds (5

years).

forward_alerts Boolean

(Optional)

Whether or not alerts are forwarded to the next Moolet in the

processing chain. If you change this from false to true, only

alerts received after the change are forwarded.

recurring_period Number

(Optional)

Whether or not this is a recurring maintenance window. Set this to:

1 for a recurring maintenance window.

0 for a one-time maintenance window.

If you change this from 0 to 1, you must specify

recurring_period_units.

recurring_period_units Number

(Optional)

Specifies the recurring period of the maintenance window, in days,

weeks or months. If you set recurring_period to 0, you must

set recurring_period_units to 0. Valid values are:

0 = a one-time maintenance window

2 = daily

3 = weekly

4 = monthly

Return Parameter

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

89

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Examples

Example cURL request to update all the parameters in the existing maintenance window 351:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/updateMaintenanceWindow" -H "Content-Type:
application/json; charset=UTF-8" -d '{"window_id":351, "name":"Updated
name", "description":"Updated Description", "filter":"source =
\"server1\"", "start_date_time":1546433400, "duration":3600,
"forward_alerts":false, "recurring_period":1, "recurring_period_units":3}'

Example cURL request to update the existing maintenance window 27 so that it will not occur again:

curl -X POST -u graze:graze -k -v
"https://localhost/graze/v1/updateMaintenanceWindow" -H "Content-Type:
application/json; charset=UTF-8" -d '{"window_id":27,
"recurring_period":0, "recurring_period_units":0}'

Successful return:

A successful request returns an HTTP 200 response.

POST Parameters

You can send POST parameters as form-urlencoded or as application/json parameters.

form-urlencoded

POST parameters can be sent as form-urlencoded parameters. To do this, the content type must be set to

application/x-www-form-urlencoded. If the character set is not set, then UTF-8 is assumed.

cURL command:

"https://localhost/graze/v1/resolveSituation?auth_token=b40244fd79aa46fba7
6c60c56d538c49&sitn_id=10" --insecure -X POST -v

application/json

POST parameters can be supplied as JSON within the body of the request. To do this, the content type must be set

to application/json. If the character set is not set, then UTF-8 is assumed.

cURL command:

"https://localhost/graze/v1/resolveSituation" -H "Content-Type:
application/json; charset=UTF-8" --insecure -X POST -v --data
'{"auth_token" : "b40244fd79aa46fba76c60c56d538c49","sitn_id" : 10}

'HTTP Status and Error Codes

The Graze API returns the following HTTP status and error codes for successful and unsuccessful requests:

HTTP Code Meaning

200 Successful request.

400 Incorrectly formatted request.

401 A request with an invalid or expired auth_code.

403 Forbidden request.

404 Not found, for example, the sitn_id could not be found because it does not exist.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

90

500 Failed request, for example, due to an invalid sitn_id.

Situation Action Codes

The getSituationActions Graze API endpoint and MoogDb V2 method can retrieve actions that happened on a given

Situation.

The table below shows the list of IDs and the matching description for each action:

Event Id Description

1 Situation Created

2 Assigned Moderator

3 Situation Resolved

4 Situation Revived

5 Situation Closed

6 Assigned Queue

7 Created By Merge

8 Used In Merge

9 Created By Split

10 Used For Split

11 Ran Tool

12 Acknowledged Situation Moderator

13 Deacknowledged Situation Moderator

14 Added Alerts To Situation

15 Added Entry To Thread

16 Changed Situation Processes

17 Changed Situation Services

18 Created Thread

19 Agreed With Thread Entry

21 Commented On Thread Entry

22 Disagreed With Thread Entry

23 Changed Situation Custom Info

24 Described Situation

25 Excluded User

26 Invited User

27 Moved Alerts To Situation

28 Removed Alerts From Situation

29 Situation Updated

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

91

30 Situation Teams Changes

31 Marked Thread Entry As Resolving

32 Unmarked Thread Entry As Resolving

33 Situation Rated

34 Situation Rating Removed

35 Situation Internal Severity Changed

36 Situation Superseding Others

37 Updated Comment On Thread Entry

38 Updated Entry Of Thread

Alert Action Codes

The getAlertActions Graze API endpoint and the MoogDb V2 method can retrieve actions that happened on a given

alert.

The table below shows the list of IDs and the matching description for each action:

Event Id Description

0 Alert Created

2 Event Added to Alert

3 Alert Assigned

4 Alert Updated

5 Alert Updated Custom Info

6 Alert Added to Situation

7 Team Updated

8 Alert Resolved

9 Alert Closed

10 Ran Tool

Stats API

You can use the Stats API endpoints to report on Cisco Crosswork Situation Manager data.

These endpoints return various statistics about teams, Situations and services. You can also fetch information on the

Mean Time to Acknowledge (MTTA), Mean Time to Detect (MTTD) and Mean Time to Resolve (MTTR).

System Endpoints

The following endpoints return data statistics relating to your Cisco Crosswork Situation Manager system:

getAlertsInNewSituationsStats

A GET request that returns the number of alerts that belong to new Situations during a given time range.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

92

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "accumulate" - gradually adds data points together over time.

"none" - no aggregation of data points.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Alerts in new situations"

datapoints Number

array

An array of data points. Each data point is an array in the format [datapoint, timestamp]:

Data point: Number of alerts.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of alerts each hour in the time period.

1 week to 1 month: Returns the number of alerts each day in the time period.

1 month to 1 year: Returns the number of alerts each week in the time period.

More than 1 year Returns the number of alerts each month in the time period.

Request Example

A cURL command that requests all alerts in new Situations over a 24 hour time range from 13.23pm on Tuesday 18th

September until 13:24pm on Wednesday 19th September 2018:

curl -G -u graze:graze -k -v
"https://freida7/graze/v1/getAlertsInNewSituationsStats" --data-urlencode
'from=1537277017' --data-urlencode 'to=1537363453'

 Response Example

A successful response indicating there were 56 alerts at13:23pm on Wednesday 19th September 2018:

[

 {"datapoints":[

 [56.0,1537359817000]

],

 "target":"Alerts in new situations"}

]

getMTTAStats

A GET request that returns the Mean Time To Acknowledge (MTTA) Situations in a system over time.

The time to acknowledge (TTA) for a Situation is the duration from the first event's inclusion in the Situation to the

time when a moderator assigns a Situation to a user in Cisco Crosswork Situation Manager.

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

93

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error codeindicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Acknowledge (MTTA)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: MTTA (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of the data points per time unit the

request returns. For example:

Less than 1 week: Returns the MTTA each hour in the time period.

1 week to 1 month: Returns the MTTA each day in the time period.

1 month to 1 year: Returns the MTTA each week in the time period.

More than 1 year: Returns the MTTA each month in the time period.

Request Example

A cURL command to return the MTTA for Cisco Crosswork Situation Manager over a 24 hour time range from

11.09am on Sunday 17th December until 11.09am on Monday 18th December 2017:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTAStats" --
data-urlencode 'from=1513508950' --data-urlencode 'to=1513595370'

Response Example

A successful response returns the MTTA in seconds for each hour:

[{

 "datapoints": [

 [312.0, 1513657700000],

 [209.0, 1513661300000],

 [101.0, 1513664900000],

 [114.0, 1513668500000],

 [203.0, 1513672100000],

 [120.0, 1513675700000],

 [201.0, 1513679300000],

 [90.0, 1513682900000],

 [100.0, 1513686500000]

],

 "target": "Mean Time to Acknowledge (MTTA)"

}]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

94

getMTTDStats

A GET request that returns the Mean Time To Detect (MTTD) Situations in the system over time. The time to detect

(TTD) for a Situation is the duration from the first event's inclusion in the Situation to the Situation creation time.

Request Arguments

Name Type Description

from Number Start of the time range. This is a Unix epoch timestamp in seconds.

to Number End of the time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error codeindicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Detect (MTTD)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: MTTD (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of the data points per time unit the

request returns. For example:

Less than 1 week: Returns the MTTD each hour in the time period.

1 week to 1 month: Returns the MTTD each day in the time period.

1 month to 1 year: Returns the MTTD each week in the time period.

More than 1 year: Returns the MTTD each month in the time period.

Request Example

A cURL request to retrieve the MTTD for Cisco Crosswork Situation Manager from 11.09am on Sunday 17th

December until 11.09am on Sunday 24th December 2017:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTDStats" --
data-urlencode 'from=1513508950' --data-urlencode 'to=1514113750'

Response Example

Successful request returns the MTTD for the 24 hour time frame:

[{

 "datapoints": [

 [272.0, 1514113750000],

],

 "target": "Mean Time to Detect (MTTD)"

}]

getMTTRStats

A GET request that returns the Mean Time To Resolve (MTTR) for Situations in the system over a given range of

time.The TTR for a Situation is the duration from the first event in the Situation to the time when a user resolved the

Situation.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

95

Request Arguments

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last data point returned is the

current state data point.

Response

Type Description

HTTP

code

HTTP status or error codeindicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Resolve (MTTR)"

datapoints Number

array

An array of data points. Each data point is an array in the format [datapoint, timestamp]:

Data point: MTTR (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the MTTR each hour in the time period.

1 week to 1 month: Returns the MTTR each day in the time period.

1 month to 1 year: Returns the MTTR each week in the time period.

More than 1 year: Returns the MTTR each month in the time period.

Request Example

A cURL request to retrieve the MTTR for Cisco Crosswork Situation Manager from 11.30am on Sunday, September

24th 2017 until 11.30am on Sunday, September24th 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTRStats" --
data-urlencode 'from=1506252610' --data-urlencode 'to=1537788610'

Response Example

A successful response indicates the MTTR for the year was 2.72 minutes:

[{

 "datapoints": [

 [163.54,1537784877233]

],

 "target":"Mean Time to Resolve (MTTR)"

}]

getNewAlertsStats

A GET request that returns the number of new alerts over a given time range.

Request Arguments

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

96

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "accumulate" - gradually adds data points together over time.

"none" - no aggregation of data points.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Alerts"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of alerts.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of alerts each hour in the time period.

1 week to 1 month: Returns the number of alerts each day in the time period.

1 month to 1 year: Returns the number of alerts each week in the time period.

More than 1 year: Returns the number of alerts each month in the time period.

Request Example

A cURL request to retrieve the number of new alerts between Wednesday, January 17th and Thursday, January 18th

2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getNewAlertsStats" --data-urlencode
'from=1516216020' --data-urlencode 'to=1516282420'

 Response Example

Successful response indicates there were 28,542 new alerts over the 24 hour time period:

[

 {"datapoints":[

 [28542.0,1523438216685]

],

 "target":"New Alerts"}

]

getNewAlertsPerSituationsStats

A GET request that returns the percentage alert to Situation noise reduction for a given time range.

Request Arguments

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

97

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Alerts per Situation"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Percentage noise reduction (alert to Situation reduction).

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the percentage noise reduction each hour in the time period.

1 week to 1 month: Returns the percentage noise reduction each day in the time period.

1 month to 1 year: Returns the percentage noise reduction each week in the time

period.

More than 1 year: Returns the percentage noise reduction each month in the time

period.

Request Example

A cURL request to retrieve the percentage noise reduction from 7.07pm on Wednesday, 17th January 2018 until

1.33pm on Thursday, 18th January 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getNewAlertsPerSituationsStats" --data-
urlencode 'from=1516216020' --data-urlencode 'to=1516282420'

 Response Example

A successful response indicating a noise reduction of 78.5% in the number of alerts to Situations:

[

 {"datapoints":[

 [78.5,1523438216685]

],

 "target":"New Alerts per Situation"}

]

getNewEventsPerAlertsStats

A GET request that returns the percentage event to alert noise reduction over a given time range.

Request Arguments

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

98

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Events per Alerts"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Percentage noise reduction (event to alert reduction).

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the percentage noise reduction each hour in the time period.

1 week to 1 month: Returns the percentage noise reduction each day in the time period.

1 month to 1 year: Returns the percentage noise reduction each week in the time

period.

More than 1 year: Returns the percentage noise reduction each month in the time

period.

Request Example

A cURL request that retrieves that event to alert noise reduction in Cisco Crosswork Situation Manager from 7.07pm

on Wednesday, 17th January until 7.07pm on Thursday, 18th January 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getNewEventsPerAlertsStats" --data-urlencode
'from=1516216020' --data-urlencode 'to=1516302431'

 Response Example

A successful response indicating a 58% noise reduction:

[

 {"datapoints":[

 [58.0,1523438216685]

],

 "target":"New Events per Alerts"}

]

getNewEventsPerSituationsStats

A GET request that returns the percentage event to Situation noise reduction over a given time range.

Request Arguments

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

99

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Events per Situation"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Percentage noise reduction (event to Situation reduction).

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the percentage noise reduction each hour in the time period.

1 week to 1 month: Returns the percentage noise reduction each day in the time period.

1 month to 1 year: Returns the percentage noise reduction each week in the time

period.

More than 1 year: Returns the percentage noise reduction each month in the time

period.

Request Example

A cURL request that retrieves the percentage noise reduction for the past month ranging from 10.28am on Sunday,

August 26th until 10.28am on Wednesday, September 26th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getNewEventsPerSituationsStats" --data-
urlencode 'from=1533103200' --data-urlencode 'to=1535695200'

 Response Example

A successful responses returns an 95% to 96% reduction in events to Situations for each week over the past month:

[

 {

 "datapoints":[

 [95.86151338591529,1535279280000],

 [95.79150698161867,1535884080000],

 [95.62050414072417,1536488880000],

 [96.08938014241262,1537093680000],

 [95.96508799542137,1537698480000]

],

 "target":"New Events per Situation"

 }

]

getNewSituationsStats

A GET request that returns the number of new Situations created over a given time range.

Request Arguments

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

100

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Situations"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of new Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of new Situations over a week from 6am on Saturday, September 1st until

6am on Saturday, September 8th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getNewSituationsStats" --data-urlencode
'from=1535781600' --data-urlencode 'to=1536386400'

 Response Example

A successful response returns the number of new Situations for each day during the week range:

[

 {"datapoints":[

 [601.0,1535781600000],

 [523.0,1535868000000],

 [597.0,1535954400000],

 [618.0,1536040800000],

 [535.0,1536127200000],

 [628.0,1536213600000],

 [618.0,1536300000000]

],

 "target":"New situations"}

]

getReassignedSituationStats

A GET request that returns the number of Situations reassigned in the system over a given range of time. A

reassigned Situation is a Situation that a user has assigned to another user at least twice.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

101

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reassigned Situation"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of reassigned Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of reassigned Situations each hour in the time

period.

1 week to 1 month: Returns the number of reassigned Situations each day in the time

period.

1 month to 1 year: Returns the number of reassigned Situations each week in the time

period.

More than 1 year: Returns the number of reassigned Situations each month in the time

period.

Request Example

A cURL request to retrieve the number of reassigned Situations over a month from 6am on Wednesday, August 1st

until 6am on Saturday, September 1st 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReassignedSituationStats" --data-urlencode
'from=1533103200' --data-urlencode 'to=1535781600'

Response Example

A successful response returns the number of reassigned Situations for each week during the month:

[{

 "datapoints": [

 [25.125,1533103200000],

 [24.1369,1533708000000],

 [25.9405,1534312800000],

 [24.8512,1534917600000],

 [25.1071,1535522400000],

],

 "target": "Reassigned Situation"

}]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

102

getReoccurringSituationStats

A GET request that returns the percentage of reoccurring situations in the system over a given time range.

Request Argument

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reoccurring Situations"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of reoccurring Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of reoccurring Situations each hour in the time

period.

1 week to 1 month: Returns the number of reoccurring Situations each day in the time

period.

1 month to 1 year: Returns the number of reoccurring Situations each week in the time

period.

More than 1 year: Returns the number of reoccurring Situations each month in the time

period.

Request Example

A cURL request to retrieve the number of reoccurring Situations from 6pm on Sunday, September 10th 2017 until

6pm on Monday, September 10th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReoccurringSituationStats" --data-urlencode
'from=1505066400' --data-urlencode 'to=1536602400'

Response Example

A successful response returns that there were 186 reoccurring Situations during the year:

[{

 "datapoints": [

 [186.0, 1537980650126],

],

 "target": "Reoccurring situations"

}]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

103

getServiceSituationStats

A GET request that returns the number of active Situations impacting a service over a given time range.

Request Argument

Name Type Description

services Array An array of services IDs. This is optional. If no services are provided, the endpoint does not

return any data.

from Number Start of the time range. This is a Unix epoch timestamp in seconds.

to Number End of the time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String Service name(s).

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations impacting services.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of Situations impacting the Commerce/Compute service between 12pm and

6pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getServiceSituationStats" --data-urlencode
'services=[1,2]' --data-urlencode 'from=1533902400' --data-urlencode
'to=1533924000' --data-urlencode 'aggregation=sum'

Response Example

A successful response returns six data points for each hour during the six hour time range:

[{

 "datapoints": [

 [95.0,1533902400000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

104

 [85.0,1533906000000],

 [47.0,1533909600000],

 [7.0,1533913200000],

 [33.0,1533916800000],

 [66.0,1533920400000]

],

 "target":"Commerce/Compute"

}]

getSeveritySituationStats

A GET request that returns the number of Situations by severity over a given time range.

Request Argument

Name Type Description

severity Array An array of severity IDs. This is optional. If not given, it returns the default set of severities:

Clear, Indeterminate, Warning, Minor, Major, Critical.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last data point

returned is the current state datapoint.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the status.

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations per severity.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Input Example

A cURL request to retrieve the sum of the major and critical Situations between 12pm on Thursday, August 9th and

12pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v
"https://daffy.moogsoft.com/graze/v1/getSeveritySituationStats" --data-
urlencode 'from=1533816000' --data-urlencode 'to=1533902400' --data-
urlencode 'severity=[5, 4]' --data-urlencode 'aggregation=sum'

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

105

Output Example

A successful response returns 24 data points, one for each hour over the 24 hour range:

[{

 "datapoints":[

 [51.0,1533816000000],

 [44.0,1533819600000],

 [88.0,1533823200000],

 [84.0,1533826800000],

 [25.0,1533830400000],

 [34.0,1533834000000],

 [82.0,1533837600000],

 [58.0,1533841200000],

 [61.0,1533844800000],

 [52.0,1533848400000],

 [15.0,1533852000000],

 [50.0,1533855600000],

 [54.0,1533859200000],

 [50.0,1533862800000],

 [81.0,1533866400000],

 [78.0,1533870000000],

 [84.0,1533873600000],

 [28.0,1533877200000],

 [54.0,1533880800000],

 [36.0,1533884400000],

 [44.0,1533888000000],

 [47.0,1533891600000],

 [60.0,1533895200000],

 [54.0,1533898800000]],

 "target":"Critical/Major"

}]

getStats

A GET request that retrieves all available Stats API endpoints along with their description and request parameters.

Request Arguments

None required.

 Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Request Example

A cURL request to return all available Stats API endpoints:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getStats"

 Response Example

A successful response with all of the endpoints, descriptions and associated parameters:

[

 {

 "endpoint":"getTeamSituationStats",

 "description":"returns the number of active situations assign to a team
over time",

 "display_name":"Open Situations by Team",

 "parameters":{

 "teams":{

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

106

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getTopTeamSituationStats",

 "description":"returns the number of active situations assign to a top
team over time",

 "display_name":"Open Situations by Top Team",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

107

 "required":true

 }

 }

},

{

 "endpoint":"getServiceSituationStats",

 "description":"returns the number of active situations impacting a
service over time",

 "display_name":"Open Situations by Service",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "services":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getServices",

 "value":"service_id"

 },

 "type":"mapped",

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getTopServiceSituationStats",

 "description":"returns the number of active situations impacting a top
service over time",

 "display_name":"Open Situations by Top Service",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

108

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getSystemSituationStats",

 "description":"returns the number of active situations in the system
over time",

 "display_name":"All Open Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getStatusSituationStats",

 "description":"returns the number of active situations with specified
status over time",

 "display_name":"Open Situations by Status",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

109

 },

 "status":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getStatuses",

 "value":"status_id"

 },

 "type":"mapped",

 "required":false

 }

 }

},

{

 "endpoint":"getSeveritySituationStats",

 "description":"returns the number of active situations with specified
severity over time",

 "display_name":"Open Situations by Severity",

 "parameters":{

 "severity":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getSeverities",

 "value":"severity_id"

 },

 "type":"mapped",

 "required":"false"

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getReoccurringSituationStats",

 "description":"returns the percentage of reoccurring situations in the
system",

 "display_name":"Reoccurring situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

110

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTAStats",

 "description":"returns the mean time to acknowledge a situation over
time",

 "display_name":"Mean Time To Acknowledge",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTDStats",

 "description":"returns the mean time to detect a situation over time",

 "display_name":"Mean Time To Detect",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTRStats",

 "description":"returns the mean time to resolve a situation over time",

 "display_name":"Mean Time To Resolve",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getReassignedSituationStats",

 "description":"returns the number of situations that have been

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

111

reassigned over time",

 "display_name":"Reassigned Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewSituationsStats",

 "description":"returns the number of new situations over time",

 "display_name":"New Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewAlertsStats",

 "description":"returns the number of new alerts over time",

 "display_name":"New Alerts",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

112

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewEventsStats",

 "description":"returns the number of new events over time",

 "display_name":"New Events",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getAlertsInNewSituationsStats",

 "description":"returns the number of alerts in new situations over
time",

 "display_name":"Alerts In New Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

113

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewEventsPerAlertsStats",

 "description":"returns the number of new events divided by the number
of new alerts over time",

 "display_name":"Reduction From Events To Alert",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewAlertsPerSituationsStats",

 "description":"returns the number of new alerts divided by the number
of new situations over time",

 "display_name":"Reduction From Alerts To Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

114

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewEventsPerSituationsStats",

 "description":"returns the number of new events divided by the number
of new situations over time",

 "display_name":"Reduction From Events To Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getReassignedSituationsPerTeamStats",

 "description":"returns the number of reassigned situations of a team
over time",

 "display_name":"Reassigned Situations by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

115

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getSeveritySituationPerTeamStats",

 "description":"returns the number of active situations with specified
severity and team over time",

 "display_name":"Open Situations by Severity by Team",

 "parameters":{

 "severity":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getSeverities",

 "value":"severity_id"

 },

 "type":"mapped",

 "required":"false"

 },

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

116

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getStatusSituationPerTeamStats",

 "description":"returns the number of situations with a specified status
and team over time",

 "display_name":"Open Situations by Status by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "status":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getStatuses",

 "value":"status_id"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

117

 },

 "type":"mapped",

 "required":"false"

 }

 }

},

{

 "endpoint":"getServiceSituationPerTeamStats",

 "description":"returns the number of active situations with specified
service and team over time",

 "display_name":"Open Situations by Service by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":true

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "services":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getServices",

 "va* Connection #0 to host freida7 left intact

lue":"service_id"

 },

 "type":"mapped",

 "required":"true"

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTAPerTeamStats",

 "description":"returns the mean time to acknowledge a situation of a
team over time",

 "display_name":"Mean Time To Acknowledge by Team",

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

118

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTRPerTeamStats",

 "description":"returns the mean time to resolve a situation of a team
over time",

 "display_name":"Mean Time To Resolve by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

119

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getReoccurringSituationPerTeamStats",

 "description":"returns the percentage of reoccurring situations of a
team over time",

 "display_name":"Reoccurring situations Per Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getCommentCountPerTeamStats",

 "description":"returns the number of comments posted on situations by
team members over time",

 "display_name":"Number of Comments by Team",

 "parameters":{

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

120

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

 }

]

getStatusSituationStats

A GET request that returns the number of Situations by status.

Request Argument

Name Type Description

status Array An array of status ids. This is optional. If not given, it returns the default set of statuses:

Opened, Unassigned, Assigned, Acknowledged, Unacknowledged, Resolved.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

121

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the status

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of opened and assigned Situations from 15.27pm on Sunday, January 14th

until 15.27pm on Monday, 15th January 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getStatusSituationStats" --data-urlencode
'from=1515943678' --data-urlencode 'to=1516030078' --data-urlencode
'status=[1, 2]' --data-urlencode 'aggregation=sum'

Response Example

A successful request returns the number of Situations for each status:

[{

 "datapoints": [

 [32.0, 1516008478000],

 [54.0, 1516030078000]

 [68.0, 1516030078000]

 [82.0, 1516030078000]

 [88.0, 1516030078000]

],

 "target": "Opened"

}, {

 "datapoints": [

 [5.0, 1515947278000],

 [12.0, 1515958078000],

 [25.0, 1515976078000],

 [31.0, 1515994078000],

 [40.0, 1516015678000]

],

 "target": "Assigned"

}]

getSystemSituationStats

A GET request that returns the number of active Situations in the system over time.

Request Argument

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

122

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint returned is the

current state datapoint.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "System"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of active Situations from 11.09am on Sunday, 17th December until 11.09am

on Monday, 18th December 2017:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSystemSituationStats" --data-urlencode
'from=1513508950' --data-urlencode 'to=1513595370'

Response Example

A successful response returns the number of active Situations every hour during that time range:

[{

 "datapoints": [

 [66.0, 1513657700000],

 [98.0, 1513661300000],

 [102.0, 1513664900000],

 [106.0, 1513668500000],

 [92.0, 1513672100000],

 [88.0, 1513675700000],

 [86.0, 1513679300000],

 [74.0, 1513682900000],

 [85.0, 1513672100000],

 [83.0, 1513675700000],

 [79.0, 1513679300000],

 [68.0, 1513686500000]

],

 "target": "Open Situations"

}]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

123

getTopServiceSituationStats

A GET request that returns the number of active Situations impacting a top service over a range of time. Top services

are the services that have the most situations impacting them.

Request Argument

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the service

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of Situations impacting top services between 12pm and midnight on Saturday,

15th September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getServiceSituationStats" --data-urlencode
'from=1537012800' --data-urlencode 'to=1536969600' --data-urlencode
'aggregation=sum'

Response Example

A successful response returns the number of Situations each hour for the 12 hour range:

[{

 "datapoints": [

 [10.0, 1538133600000],

 [12.0, 1538133600000],

 [8.0, 1538133600000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

124

 [5.0, 1538133600000],

 [9.0, 1538133600000],

 [6.0, 1538133600000],

 [10.0, 1538133600000],

 [13.0, 1538133600000],

 [11.0, 1538133600000],

 [7.0, 1538133600000],

 [9.0, 1538133600000],

 [1.0, 1538133600000]

],

 "target": "Web Service"

}, {

 "datapoints": [

 [7.0, 1538133600000],

 [3.0, 1538133600000],

 [6.0, 1538133600000],

 [14.0, 1538133600000],

 [9.0, 1538133600000],

 [8.0, 1538133600000],

 [12.0, 1538133600000],

 [11.0, 1538133600000],

 [8.0, 1538133600000],

 [4.0, 1538133600000],

 [6.0, 1538133600000],

 [3.0, 1538133600000]],

 "target": "Cloud Service"

}]

Team Endpoints

The following endpoints return data statistics relating to your Cisco Crosswork Situation Manager teams:

getCommentCountPerTeamStats

A GET request that returns the total number of comments each hour for a specific team or teams in a given time

range.

Request Arguments

Name Type Description

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint does not

return any data.

from Number Start of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

to Number End of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "sum" - for the sum of the number of the comments for all teams in the array.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

125

target String Name of the team.

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of comments.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of comments each hour in the time period.

1 week to 1 month: Returns the number of comments each day in the time period.

1 month to 1 year: Returns the number of comments each week in the time period.

More than 1 year: Returns the number of comments each month in the time period.

Request Example

A cURL request to retrieve the total number of comments for three teams each hour over a 24 hour time range from

6am on Wednesday 19th September until 6am on Thursday 20th September 2018:

curl -G -u graze:graze -k -v
"https://freida7/graze/v1/getCommentCountPerTeamStats" --data-urlencode
'teams=[1,2,3]' --data-urlencode 'from=1537336800' --data-urlencode
'to=1537423200' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of comments per hour for the Cloud DevOps, Database DevOps and

Switch DevOps teams:

[

 {"datapoints":[

 [14.0,1537357717000]],

 "target":"Cloud DevOps"},

 {"datapoints":[

 [22.0,1537357717000]],

 "target":"Database DevOps"},

 {"datapoints":[

 [10.0,1537357717000]],

 "target":"Switch DevOps"}

]

getMTTAPerTeamStats

A GET request that returns the mean time to acknowledge (MTTA) a Situation per team for a given time range.

Request Arguments

Name Type Description

teams Array An array containing a single team ID. You can only provide one team ID for this endpoint.

This is mandatory. If no teams are provided, the endpoint does not return any data.

from Number Start of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

to Number End of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

126

aggregation String "sum" - for an aggregation of all MTTA times.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Acknowledge (MTTA)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Datapoint: MTTA (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the MTTA each hour in the time period.

1 week to 1 month: Returns the MTTA each day in the time period.

1 month to 1 year: Returns the MTTA each week in the time period.

More than 1 year: Returns the MTTA each month in the time period.

Request Example

A cURL command request to find out the MTTA for the Cloud DevOps team over a year from 13.14pm on Monday

31st July 2017 until 13.14.pm on Tuesday 31st July 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getMTTAPerTeamStats" --data-urlencode
'from=1501506840' --data-urlencode 'to=1533042840' --data-urlencode
'teams=[1]' --data-urlencode 'aggregation=none'

 Response Example

A successful response shows the MTTA for the year was 3.32 minutes:

[{

 "datapoints": [

 [213.0, 1532956486000]

],

 "target": "Mean Time to Acknowledge (MTTA)"

}]

getMTTRPerTeamStats

A GET request that returns the mean time to resolve (MTTR) a Situation per team for a given time range.

Request Arguments

Name Type Description

teams Array An array containing a single team ID. You can only provide one team ID for this endpoint.

This is mandatory. If no teams are provided, the endpoint does not return any data.

from Number Start of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

127

to Number End of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

aggregation String "sum" - for an aggregation of all MTTR times.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Resolve (MTTR)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: MTTR (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the MTTR each hour in the time period.

1 week to 1 month: Returns the MTTR each day in the time period.

1 month to 1 year: Returns the MTTR each week in the time period.

More than 1 year: Returns the MTTR each month in the time period.

Request Example

A cURL request for the MTTR of the Cloud DevOps team from 9.26pm on Monday, November 6th until 2.26am on

Tuesday, November 7th 2017:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getMTTRPerTeamStats" --data-urlencode
'teams=[1]' --data-urlencode 'from=1510003600' --data-urlencode
'to=1510021600' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the MTTR each hour from 9.26pm until 2.26am:

[{

 "datapoints": [

 [101.6,1510003600000],

 [180.0,1510007200000],

 [210.6667,1510010800000],

 [85.7083,1510014400000],

 [302.5,1510018000000],

 [150.4286,1510021600000]]

],

 "target": "Mean Time to Resolve (MTTR)"

}]

getReassignedSituationsPerTeamStats

A GET request that returns the number of reassigned Situations associated with a team or multiple teams over a

given time range. A reassigned Situation is a Situation that a user has assigned to another user at least twice.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

128

Request Arguments

Name Type Description

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint does not

return any data.

from Number Start of the time range you want to collect data from. This is a Unix epoch timestamp in

seconds.

to Number End of the time range you want to collect data from. This is a Unix epoch timestamp in

seconds.

aggregation String "sum" - for an aggregation of all Situations.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team: "<team_name>"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of reassigned Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of reassigned Situations each hour in the time

period.

1 week to 1 month: Returns the number of reassigned Situations each day in the time

period.

1 month to 1 year: Returns the number of reassigned Situations each week in the time

period.

More than 1 year: Returns the number of reassigned Situations each month in the time

period.

Request Example

A cURL request to retrieve the reassigned Situations for the Cloud DevOps and Application Performance Monitoring

teams from August 1st until September 1st 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReassignedSituationsPerTeamStats" --data-
urlencode 'teams=[1,2]' --data-urlencode 'from=1533103200' --data-
urlencode 'to=1535781600'

 Response Example

A successful response returns the number of reassigned Situations for each week during that month range for both

teams:

[{

 "datapoints":[

 [4.9702,1533103200000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

129

 [4.9881,1533708000000],

 [5.0655,1534312800000],

 [4.9524,1534917600000],

 [4.9917,1535522400000]],

 "target":"Cloud DevOps"

 },

 {

 "datapoints":[

 [5.006,1533103200000],

 [5.0,1533708000000],

 [5.131,1534312800000],

 [5.0714,1534917600000],

 [4.8417,1535522400000]],

 "target":"Application Performance Monitoring"

 }]

getReoccurringSituationPerTeamStats

A GET request that returns the number of reoccurring Situations associated with a team for a given time range.

Request Argument

Name Type Description

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint does not

return any data.

from Number Start of the time range you want to collect data from. This is a Unix epoch timestamp in

seconds.

to Number End of the time range you want to collect data from. This is a Unix epoch timestamp in

seconds.

aggregation String "sum" - for an aggregation of all Situations.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reoccurring situations"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of reoccurring Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of reoccurring Situations each hour in the time

period.

1 week to 1 month: Returns the number of reoccurring Situations each day in the time

period.

1 month to 1 year: Returns the number of reoccurring Situations each week in the time

period.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

130

More than 1 year: Returns the number of reoccurring Situations each month in the time

period.

Request Example

A cURL request to retrieve the number of reoccuring Situations from 3pm on Saturday, September 1st until 3pm on

Saturday, September 8th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReoccurringSituationPerTeamStats" --data-
urlencode 'teams=[1,2]' --data-urlencode 'from=1535814000' --data-
urlencode 'to=1536418800' --data-urlencode 'aggregation=none'

 Response Example

A successful response indicates there were four reoccuring Situations at the time the request was sent:

[{"datapoints":[[4.0,1538044321144]],"target":"Reoccurring situations"}]

getServiceSituationPerTeamStats

A GET request that returns the number of Situations impacting each service for a team.

Request Argument

Name Type Description

teams Array A single team ID in an array. You can only provide one team ID for this endpoint. This is

required. If no teams are provided, the endpoint does not return any data.

from Number Start of the time range you want to collect data from. This is a Unix epoch timestamp in

seconds.

to Number End of the time range you want to collect data from. This is a Unix epoch timestamp in

seconds.

aggregation String "sum" - for an aggregation of all services.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations impacting services.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

131

Request Example

A cURL request to retrieve the number of Situations associated with the Cloud DevOps team that are impacting the

Commerce and Compute services between 12pm and 6pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getServiceSituationPerTeamStats" --data-
urlencode 'from=1533902400' --data-urlencode 'to=1533924000' --data-
urlencode 'teams=[1]' --data-urlencode 'services=[1, 2]' --data-urlencode
'aggregation=none'

 Response Example

A successful request returns the number of Situations impacting the services each hour during the six hour time

range:

[{

 "datapoints":[

 [7.0,1533902400000],

 [18.0,1533906000000],

 [18.0,1533909600000],

 [13.0,1533913200000],

 [9.0,1533916800000],

 [12.0,1533920400000]],

 "target":"Commerce"},

{

 "datapoints":[

 [14.0,1533902400000],

 [15.0,1533906000000],

 [6.0,1533909600000],

 [12.0,1533913200000],

 [1.0,1533916800000],

 [11.0,1533920400000]],

 "target":"Compute"

}]

getSeveritySituationPerTeamStats

A GET request that returns the number of Situations by severity per team for a given time range.

Request Argument

Name Type Description

teams Array A single team ID in an array. You can only provide one team ID for this endpoint. This is

required. If no teams are provided, the endpoint does not return any data.

severity Array An array of severity IDs. This is optional. If not given, it returns default set of severities:

Clear, Indeterminate, Warning, Minor, Major, Critical.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last data point

returned is the current state datapoint.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

132

code details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the status.

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations per severity.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of clear Situations for the Cloud DevOps team between between 12pm

onThursday, August 9th and 12pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getSeveritySituationPerTeamStats" --data-
urlencode 'from=1533816000' --data-urlencode 'to=1533902400' --data-
urlencode 'teams=[1]' --data-urlencode 'severity=[0]' --data-urlencode
'aggregation=none'

Response Example

A successful response returns the number of clear Situations each hour over the past 24 hours:

[{

 "datapoints":[

 [13.0,1533816000000],

 [14.0,1533819600000],

 [6.0,1533823200000],

 [10.0,1533826800000],

 [14.0,1533830400000],

 [5.0,1533834000000],

 [19.0,1533837600000],

 [17.0,1533841200000],

 [4.0,1533844800000],

 [13.0,1533848400000],

 [7.0,1533852000000],

 [15.0,1533855600000],

 [6.0,1533859200000],

 [10.0,1533862800000],

 [16.0,1533866400000],

 [20.0,1533870000000],

 [19.0,1533873600000],

 [15.0,1533877200000],

 [15.0,1533880800000],

 [5.0,1533884400000],

 [20.0,1533888000000],

 [3.0,1533891600000],

 [1.0,1533895200000],

 [4.0,1533898800000]],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

133

 "target":"Clear"

}]

getStatusSituationPerTeamStats

A GET request that returns the number of Situations by status for a team over a given time range.

Request Argument

Name Type Description

teams Array A single team ID in an array. You can only provide one team ID for this endpoint. This is

required. If no teams are provided, the endpoint does not return any data.

status Array An array of status IDs. Valid status IDs are 1 (opened), 3 (assigned), 4 (acknowledged), 5

(unacknowledged) and 8 (resolved). Other integers do not return any data.

If left empty, the request returns the number of Situations for all statuses.

from Number Start of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

to Number End of the reporting time range you want to collect data from. This is a Unix epoch

timestamp in seconds.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request with to return all Situations by status for the Cloud DevOps team from 8.30am until 2.30pm on

Saturday, September 1st 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getStatusSituationPerTeamStats" --data-
urlencode 'from=1535790600' --data-urlencode 'to=1535812200' --data-
urlencode 'teams=[1]' --data-urlencode 'status=[]' --data-urlencode
'aggregation=none'

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

134

 Response Example

A successful response returns the number of Situations by status each hour for the six hour range:

[

 {"datapoints":[

 [19.0,1535790600000],

 [20.0,1535794200000],

 [17.0,1535797800000],

 [18.0,1535801400000],

 [17.0,1535805000000],

 [17.0,1535808600000]],

 "target":"Opened"},

 {"datapoints":[

 [3.0,1535790600000],

 [7.0,1535794200000],

 [4.0,1535797800000],

 [10.0,1535801400000],

 [10.0,1535805000000],

 [2.0,1535808600000]],

 "target":"Assigned"},

 {"datapoints":[

 [3.0,1535790600000],

 [5.0,1535794200000],

 [10.0,1535797800000],

 [3.0,1535801400000],

 [5.0,1535805000000],

 [2.0,1535808600000]],

 "target":"Acknowledged"},

 {"datapoints":[

 [3.0,1535790600000],

 [3.0,1535794200000],

 [4.0,1535797800000],

 [3.0,1535801400000],

 [3.0,1535805000000],

 [2.0,1535808600000]],

 "target":"Unacknowledged"},

 {"datapoints":[

 [46.0,1535790600000],

 [48.0,1535794200000],

 [32.0,1535797800000],

 [48.0,1535801400000],

 [34.0,1535805000000],

 [36.0,1535808600000]],

 "target":"Resolved"}

]

getTeamSituationStats

A GET request that returns the number of active Situations assigned to a team for a given time range.

Request Argument

Name Type Description

teams Array An array of team IDs. This is optional. If no teams are provided, the endpoint does not

return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

135

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team .

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to return the number of active Situations assigned to the Cloud DevOps and Application Performance

Monitoring teams from midnight until 6am on Monday, 20th August 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamSituationStats" --data-urlencode
'teams=[1,2]' --data-urlencode 'from=1534723200' --data-urlencode
'to=1534744800' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of Situations assigned each hour to each team for the six hour range:

[

 {"datapoints":[

 [30.0,1534723200000],

 [20.0,1534726800000],

 [24.0,1534730400000],

 [19.0,1534734000000],

 [28.0,1534737600000],

 [23.0,1534741200000]],

 "target":"Cloud DevOps"},

 {"datapoints":[

 [26.0,1534723200000],

 [29.0,1534726800000],

 [15.0,1534730400000],

 [29.0,1534734000000],

 [25.0,1534737600000],

 [22.0,1534741200000]],

 "target":"Application Performance Monitoring"}]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

136

getTopTeamSituationStats

A GET request that returns the number of active Situations assign to top teams over a given range of time. Top teams

are those teams with the highest number of assigned Situations.

Request Argument

Name Type Description

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

aggregation String "sum" - for an aggregation of all teams provided.

"none" - for no aggregation of results.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations each hour in the time period.

1 week to 1 month: Returns the number of Situations each day in the time period.

1 month to 1 year: Returns the number of Situations each week in the time period.

More than 1 year: Returns the number of Situations each month in the time period.

Request Example

A cURL request to retrieve the number of Situations impacting top teams between 6am and 12pm onWednesday, 1st

August 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamSituationStats" --data-urlencode
'from=1533103200' --data-urlencode 'to=1533124800' --data-urlencode
'aggregation=sum'

 Response Example

A successful response returns the number of Situations per hour for the six hour time time range:

[{

 "datapoints": [

 [2.0, 1538133780000],

 [9.0, 1538133780000],

 [5.0, 1538133780000],

 [4.0, 1538133780000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

137

 [3.0, 1538133780000],

 [1.0, 1538133780000]

],

 "target": "Cloud DevOps"

}, {

 "datapoints": [

 [8.0, 1538133780000],

 [2.0, 1538133780000],

 [6.0, 1538133780000],

 [7.0, 1538133780000],

 [5.0, 1538133780000],

 [3.0, 1538133780000]

],

 "target": "Application Performance Monitoring"

}]

User Endpoints

The following endpoints return data statistics relating to your Cisco Crosswork Situation Manager users:

getAlertsMarkedPRCPerUserStats

A GET request that returns the total number of alerts marked with probable root cause (PRC) feedback by each user.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Alerts Marked PRC (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of alerts marked with PRC feedback by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of alerts marked with PRC feedback each hour in

the time period.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

138

1 week to 1 month: Returns the number of alerts marked with PRC feedback each day in

the time period.

1 month to 1 year: Returns the number of alerts marked with PRC feedback each week

in the time period.

More than 1 year: Returns the number of alerts marked with PRC feedback each month

in the time period.

Request Example

A cURL request to return the number of alerts marked with PRC feedback to users 5 and 6 from 8am until 2pm on on

Friday, 28th September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getAlertsMarkedPRCPerUserStats" --data-
urlencode 'users=[5, 6]' --data-urlencode 'from=1538121620' --data-
urlencode 'to=1538143220' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of alerts that users Alice and Ian have marked with PRC feedback each

hour during the time range:

[{

 "datapoints":[

 [22.0,1538121620000],

 [18.0,1538125220000],

 [30.0,1538128820000],

 [23.0,1538132420000],

 [29.0,1538136020000],

 [28.0,1538139620000]]

],

 "target":"Alerts Marked PRC (Alice Anderson)"

}

{

 "datapoints":[

 [34.0,1538121620000],

 [20.0,1538125220000],

 [35.0,1538128820000],

 [21.0,1538132420000],

 [19.0,1538136020000],

 [10.0,1538139620000]]

],

 "target":"Alerts Marked PRC (Ian Ince)"

}]

getAcknowledgedSituationsPerUserStats

A GET request that returns the number of Situations acknowledged by a specific user or users within a given time

range.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

139

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Acknowledged Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations acknowledged by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations acknowledged each hour in the time

period.

1 week to 1 month: Returns the number of Situations acknowledged each day in the

time period.

1 month to 1 year: Returns the number of Situations acknowledged each week in the

time period.

More than 1 year: Returns the number of Situations acknowledged each month in the

time period.

Request Example

A cURL request to return the number of Situations acknowledged by user Bob from 9am on Friday 28th September

until 3pm on Friday 28th September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getAcknowledgedSituationsPerUserStats" --data-
urlencode 'users=[6]' --data-urlencode 'from=1538121620' --data-urlencode
'to=1538143220'

 Response Example

A successful response returns the number of Situations acknowledged by Bob each hour during that time frame:

[{

 "datapoints":[

 [2.0,1538121620000],

 [3.0,1538125220000],

 [0.0,1538128820000],

 [2.0,1538132420000],

 [2.0,1538136020000],

 [2.0,1538139620000]

],

 "target":"Acknowledged Situations (Bob Bowden)"

}]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

140

getAssignedSituationsPerUserStats

A GET request that returns the number of Situations assigned to a specific user or users within a given time range.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Assigned Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations assigned to the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines number of data points per time unit the request

returns. For example:

Less than 1 week: Returns the number of Situations assigned each hour in the time

period.

1 week to 1 month: Returns the number of Situations assigned each day in the time

period.

1 month to 1 year: Returns the number of Situations assigned each week in the time

period.

More than 1 year: Returns the number of Situations assigned each month in the time

period.

Request Example

A cURL request to return the number of Situations assigned to users 10 and 11 from 11pm on Tuesday, 25th

September 2018 until 11pm on Wednesday, 26th September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getAssignedSituationsPerUserStats" --data-
urlencode 'users=[10,11]' --data-urlencode 'from=1537916400' --data-
urlencode 'to=1538002799' --data-urlencode 'aggregation=sum'

 Response Example

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

141

A successful response returns the number of Situations assigned to the users Frank and Dave each hour during the

time range:

[{

 "datapoints":[

 [10.0,1537916400000],

 [5.0,1537920000000],

 [7.0,1537923600000],

 [7.0,1537927200000],

 [7.0,1537930800000],

 [1.0,1537934400000],

 [5.0,1537938000000],

 [6.0,1537941600000],

 [9.0,1537945200000],

 [9.0,1537948800000],

 [7.0,1537952400000],

 [8.0,1537956000000]

],

 "target":"Assigned Situations (Frank Fuller/Dave Danton)"

}]

getChatOpsToolExecutedPerUserStats

A GET request that returns the number of ChatOps tools executed by a user each hour within a given time range.

Request Arguments

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

to Number Yes End of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Chat Ops Tools executed (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of ChatOps tools executed by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

142

Less than 1 week: Returns the number of ChatOps tools executed each hour in the time

period.

1 week to 1 month: Returns the number of ChatOps tools executed each day in the time

period.

1 month to 1 year: Returns the number of ChatOps tools executed each week in the

time period.

More than 1 year: Returns the number of ChatOps tools executed each month in the

time period.

Request Example

A cURL request to retrieve the total number of ChatOps tools executed by user 5 from 11pm on Sunday, 14th

October until 11pm on Monday, 15th October 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getChatOpsToolExecutedPerUserStats" --data-
urlencode 'users=[5]' --data-urlencode 'from=1539558000' --data-urlencode
'to=1539644399' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of ChatOps tools executed by the user Max each hour:

[{

 "datapoints":[

 [6.0,1539558000000],

 [24.0,1539561600000],

 [1.0,1539565200000],

 [0.0,1539568800000],

 [14.0,1539572400000],

 [10.0,1539576000000],

 [4.0,1539579600000],

 [12.0,1539583200000],

 [25.0,1539586800000],

 [8.0,1539590400000],

 [0.0,1539598043846]

],

 "target":"ChatOps Tools executed (Max Matthews)"

}]

getClosedSituationsPerUserStats

A GET request that returns the number of Situations that a user has closed each hour within a given time range.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

143

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Closed Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations closed by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situations closed each hour in the time period.

1 week to 1 month: Returns the number of Situations closed each day in the time period.

1 month to 1 year: Returns the number of Situations closed each week in the time

period.

More than 1 year: Returns the number of Situations closed each month in the time

period.

Request Example

A cURL request to return the number of Situations closed by user 12 from 6am until midnight on October 1st 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getClosedSituationsPerUserStats" --data-
urlencode 'users=[5]' --data-urlencode 'from=1538373600' --data-urlencode
'to=1538395200' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of Situations closed by user Chris each hour during the time range:

[{

 "datapoints":[

 [1.0,1539558000000],

 [1.0,1539561600000],

 [2.0,1539565200000],

 [5.0,1539568800000],

 [0.0,1539572400000],

 [7.0,1539576000000],

 [1.0,1539579600000],

 [0.0,1539583200000],

 [8.0,1539586800000],

 [6.0,1539590400000],

 [0.0,1539594000000],

 [0.0,1539597600000]

],

 "target":"Closed Situations (Chris Collins)"

}]

getCommentCountPerUserStats

A GET request that returns the number of comments left by a user or users within a given time range.

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

144

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

to Number Yes End of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Number of Comments (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of comments.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of comments each hour in the time period.

1 week to 1 month: Returns the number of comments each day in the time period.

1 month to 1 year: Returns the number of comments each week in the time period.

More than 1 year: Returns the number of comments each month in the time period.

Request Example

A cURL request to retrieve the total number of comments made by user 9 and 11 each hour from 11pm on Sunday,

14th October until 11pm on Monday, 15th October 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getCommentsPerUserStats" --data-urlencode
'users=[9,11]' --data-urlencode 'from=1539558000' --data-urlencode
'to=1539644399' --data-urlencode 'aggregation=sum'

 Response Example

A successful response returns the number of comments made by the users Ian and Sharon each hour:

[{

 "datapoints":[

 [6.0,1539558000000],

 [24.0,1539561600000],

 [1.0,1539565200000],

 [0.0,1539568800000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

145

 [14.0,1539572400000],

 [10.0,1539576000000],

 [4.0,1539579600000],

 [12.0,1539583200000],

 [25.0,1539586800000],

 [8.0,1539590400000],

 [0.0,1539598043846]

],

 "target":"Number of Comments (Ian Ince/Sharon Scott)"

}]

getInvitationsReceivedPerUserStats

A GET request that returns the number of Situation invitations received for a given user each hour within a given time

range.

Request Arguments

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

to Number Yes End of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Invitations Received (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Invitations received by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situation invitations each hour in the time

period.

1 week to 1 month: Returns the number of Situation invitations each day in the time

period.

1 month to 1 year: Returns the number of Situation invitations each week in the time

period.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

146

More than 1 year: Returns the number of Situation invitations each month in the time

period.

Request Example

A cURL request for the number of Situation invitations for users 7 and 8 from midnight on Sunday, 14th October until

6am on Monday, 15th October 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getInvitationsReceivedPerUserStats" --data-
urlencode 'users=[7,8]' --data-urlencode 'from=1539558000' --data-
urlencode 'to=1539583200' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of invitations for users 7 and 8:

[{

 "datapoints": [

 [1.0,1539558000000],

 [1.0,1539561600000],

 [2.0,1539565200000],

 [5.0,1539568800000],

 [0.0,1539572400000],

 [7.0,1539576000000],

 [1.0,1539579600000],

 [0.0,1539583200000],

 [8.0,1539586800000],

 [1.0,1539579600000],

 [2.0,1539583200000],

 [0.0,1539586800000],

],

 "target": "Invitations Received (Peter Parker/Kat Knight)"

}]

getMTTAPerUserStats

A GET request that returns the mean time it takes a user to acknowledge a Situation within a given time range.

Request Arguments

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

to Number Yes End of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

147

Name Type Description

target String "Mean Time to Acknowledge (MTTA) (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: MTTA (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the MTTA each hour in the time period.

1 week to 1 month: Returns the MTTA each day for in time period.

1 month to 1 year: Returns the MTTA each week in the time period.

More than 1 year: Returns the MTTA each month in the time period.

Request Example

A cURL request for the MTTA for user 5 from 6.34am until 2.35pm on Tuesday, 25th September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getMTTAPerUserStats" --data-urlencode
'users=[5]' --data-urlencode 'from=1537857295' --data-urlencode
'to=1537886111' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the MTTA each hour for the user Robert:

[{

 "datapoints": [

 [221,1537857295000],

 [960,1537860895000],

 [901,1537864495000],

 [1196,1537868095000],

 [671,1537871695000],

 [1241,1537875295000],

 [556,1537878895000]

],

 "target": "Mean Time to Acknowledge (MTTA)(Robert Richards)"

}]

getMTTRPerUserStats

A GET request that returns the mean time it takes a user to resolve a Situation within a given time range.

Request Arguments

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

to Number Yes End of the reporting time range you want to collect data from. This is a Unix

epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

148

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Resolve (MTTR) (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: MTTR (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the MTTR each hour in the time period.

1 week to 1 month: Returns the MTTR each day in the time period.

1 month to 1 year: Returns the MTTR each week in the time period.

More than 1 year: Returns the MTTR each month in the time period.

Request Example

A cURL request for the MTTR for user 5 from 11pm on Monday, 1st October until 5am on Tuesday, 2nd October

2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getMTTRPerUserStats" --data-urlencode
'user=[5]' --data-urlencode 'from=1538434800' --data-urlencode
'to=1538456400' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the MTTR each hour:

[{

 "datapoints": [

 [12997.0,1538434800000],

 [14025.0,1538438400000],

 [2969.0,1538442000000],

 [13125.0,1538445600000],

 [11412.0,1538449200000],

 [8264.0,1538452800000]

],

 "target": "Mean Time to Resolve (MTTR)(Oscar O'Neill)"

}]

getOpenSituationsPerUserStats

A GET request that returns the number of open Situations assigned to a user at each data point.

Request Argument

Name Type Required Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

149

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Open Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of open Situations assigned to the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situations assigned each hour in the time

period.

1 week to 1 month: Returns the number of Situations assigned each day in the time

period.

1 month to 1 year: Returns the number of Situations assigned each week in the time

period.

More than 1 year: Returns the number of Situations assigned each month in the time

period.

Request Example

A cURL request to return the number of open Situations assigned to user 6 from 9.19am on Monday, 17th September

until 16.19am on Monday, 17th September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getOpenSituationsPerUserStats" --data-
urlencode 'users=[6,7]' --data-urlencode 'from=1537175946' --data-
urlencode 'to=1537201140' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of open Situations assigned to the users Oscar and Olivia each hour

during the time range:

[{

 "datapoints":[

 [12.0,1537175946000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

150

 [8.875,1537262346000],

 [10.0,1537348746000],

 [8.9,1537435146000],

 [10.75,1537521546000],

 [9.25,1537607946000],

 [8.1667,1537694346000]

],

 "target":"Open Situations (Oscar O'Neill)"

},

{

 "datapoints":[

 [4.0,1537175946000],

 [5.0,1537262346000],

 [12.0,1537348746000],

 [7.0,1537435146000],

 [3.0,1537521546000],

 [9.0,1537607946000],

 [8.0,1537694346000]

],

 "target":"Open Situations (Andrew Anderson)"

}

]

getRatedSituationsPerUserStats

A GET request that returns the number of Situations rated by a user within a given time range.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Rated Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations rated by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

151

Less than 1 week: Returns the number of Situations rated each hour in the time period.

1 week to 1 month: Returns the number of Situations rated each day in the time period.

1 month to 1 year: Returns the number of Situations rated each week in the time period.

More than 1 year: Returns the number of Situations rated each month in the time period.

Request Example

A cURL request to return the number of Situations rated by users 5 and 7 from 3:57am until 9:57am on Thursday,

October 5th 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getRatedSituationsPerUserStats" --data-
urlencode 'users=[5,7]' --data-urlencode 'from=1538621843' --data-
urlencode 'to=1538643443'

 Response Example

A successful response returns the number of Situations rated by the users Steve and Charlie each hour during the

time range:

[{

 "datapoints":[

 [6.0,1538621843000],

 [1.0,1538625443000],

 [6.0,1538629043000],

 [5.0,1538632643000],

 [2.0,1538636243000],

 [5.0,1538639843000]

],

 "target":"Rated Situations (Steve Smith)"

 },

 {

 "datapoints":[

 [0.0,1538621843000],

 [3.0,1538625443000],

 [1.0,1538629043000],

 [6.0,1538632643000],

 [6.0,1538636243000],

 [8.0,1538639843000]

],

 "target":"Rated Situations (Charlie Copper)"

}]

getReassignedSituationsPerUserStats

A GET request that returns the number of Situations reassigned by a user within a given time range.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

152

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reassigned Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations reassigned by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situations reassigned each hour in the time

period.

1 week to 1 month: Returns the number of Situations reassigned each day in the time

period.

1 month to 1 year: Returns the number of Situations reassigned each week in the time

period.

More than 1 year: Returns the number of Situations reassigned each month in the time

period.

Request Example

A cURL request to return the number of Situations reassigned by user 5 from 11pm on Sunday, 14th October until

5am on Monday, 15th October 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getReassignedSituationsPerUserStats" --data-
urlencode 'users=[5]' --data-urlencode 'from=1539558000' --data-urlencode
'to=1539579600' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of Situations reassigned by the user Dave each hour during the time

range:

[{

 "datapoints":[

 [2.0,1539558000000],

 [3.0,1539561600000],

 [0.0,1539565200000],

 [1.0,1539568800000],

 [0.0,1539572400000],

 [3.0,1539576000000],

],

 "target":"Reassigned Situations (Dave Danton)"

}]

getResolvedSituationsPerUserStats

A GET request that returns the number of Situations resolved by a user within a given time range.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

153

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Resolved Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations resolved by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situations resolved each hour in the time

period.

1 week to 1 month: Returns the number of Situations resolved each day in the time

period.

1 month to 1 year: Returns the number of Situations resolved each week in the time

period.

More than 1 year: Returns the number of Situations resolved each month in the time

period.

Request Example

A cURL request to return the number of Situations resolved by user 5 from 8.47am until 15.04pm on October 1st

2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getResolvedSituationsPerUserStats" --data-
urlencode 'users=[5]' --data-urlencode 'from=1538380070' --data-urlencode
'to=1538402670' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of Situations resolved by the user Alice each hour during the time range:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

154

[{

 "datapoints":[

 [5.0,1538380070000],

 [3.0,1538383670000],

 [8.0,1538387270000],

 [0.0,1538390870000],

 [0.0,1538394470000],

 [8.0,1538398070000],

],

 "target":"Resolved Situations (Alice Anderson)"

}]

getViewedSituationsPerUserStats

A GET request that returns the number of Situations a user has viewed within a given time range. Cisco Crosswork

Situation Manager considers a user to have viewed a Situation if they opened the Situation Room.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Viewed Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations viewed by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of Situations viewed each hour in the time

period.

1 week to 1 month: Returns the number of Situations viewed each day in the time

period.

1 month to 1 year: Returns the number of Situations viewed each week in the time

period.

More than 1 year: Returns the number of Situations viewed each month in the time

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

155

period.

Request Example

A cURL request to return the number of viewed Situations by user 7 from 9am until 3pm on Thursday, 20th

September 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getViewedSituationsPerUserStats" --data-
urlencode 'users=[7]' --data-urlencode 'from=1537434000' --data-urlencode
'to=1537455600' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of Situations viewed by the user Charlie each hour during the time range:

[{

 "datapoints":[

 [16.0,1537434000000],

 [26.0,1537437600000],

 [18.0,1537441200000],

 [34.0,1537444800000],

 [18.0,1537448400000],

 [11.0,1537452000000]

],

 "target":"Viewed Situations (Charlie Cooper)"

}]

getWorkedSituationsPerUserStats

A GET request that returns the number of Situations a user has worked on within a given time range.

Cisco Crosswork Situation Manager considers a user to have worked on a Situation if any of the following apply:

 User has been assigned a Situation.

 User has been invited to a Situation.

 User has a left a comment on a Situation.

 User has closed a Situation.

 User has resolved a Situation.

 User has executed a ChatOps tool on a Situation.

 User has rated a Situation.

 User has added PRC data to alerts in a Situation.

Request Argument

Name Type Required Description

users Array Yes An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Yes Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number Yes End of the reporting time range. This is a Unix epoch timestamp in seconds.

If this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String No "sum" - adds data points together.

"none" - no aggregation of data points. Defaults to "none" if you provide no

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

156

aggregation option.

Response

Type Description

HTTP

code

HTTP status or error code indicating request success or failure. See HTTP Status and Error Codes for

details.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Worked Situations (full name)"

datapoints Number

array

An array of data points. Each data point is an array in the format [data point, timestamp]:

Data point: Number of Situations worked on by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

The time range you provide determines the number of data points per time unit the

request returns. For example:

Less than 1 week: Returns the number of worked Situations each hour in the time

period.

1 week to 1 month: Returns the number of worked Situations each day in the time

period.

1 month to 1 year: Returns the number of worked Situations each week in the time

period.

More than 1 year: Returns the number of worked Situations each month in the time

period.

Request Example

A cURL request to return the number of Situations worked on by user 5 from 12:22pm on Thursday 30th August until

8:22am Friday 31st August 2018:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getWorkedSituationsPerUserStats" --data-
urlencode 'users=[5]' --data-urlencode 'from=1535628143' --data-urlencode
'to=1535700143' --data-urlencode 'aggregation=none'

 Response Example

A successful response returns the number of Situations worked by the user Chris each hour during the time range:

[{

 "datapoints":[

 [12.0,1535628143000],

 [25.0,1535631743000],

 [33.0,1535635343000],

 [14.0,1535638943000],

 [1.0,1535642543000],

 [4.0,1535646143000],

 [9.0,1535649743000],

 [6.0,1535653343000],

 [37.0,1535656943000],

 [31.0,1535660543000],

 [19.0,1535664143000],

 [35.0,1535667743000],

 [36.0,1535671343000],

 [28.0,1535674943000],

 [30.0,1535678543000],

 [19.0,1535682143000],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

157

 [21.0,1535685743000],

 [30.0,1535689343000],

 [35.0,1535692943000],

 [30.0,1535696543000]

],

 "target":"Worked Situations (Chris Cole)"

}]

HTTP Status and Error Codes

The Graze API returns the following HTTP status and error codes for successful and unsuccessful requests:

HTTP Code Meaning

200 Successful request.

400 Incorrectly formatted request.

401 A request with an invalid or expired auth_code.

403 Forbidden request.

404 Not found, for example, the sitn_id could not be found because it does not exist.

500 Failed request, for example, due to an invalid sitn_id.

Moobot Modules

Within Cisco Crosswork Situation Manager data processing, Moogfarmd Moolets, LAMs and integrations use simple

computer programs called "bots" to perform automated tasks. A Moobot is a JavaScript file that is loaded at startup

by a Moolet. The Moobot exposes logic and data flow, which you can control in JavaScript, relevant to the necessary

function. LAMbots perform a similar function for LAMs and integrations.Moolets

Moobots expose the function of the Moolets allowing for extensive customization, for example in the Alert Rules

Engine where the Moobot is used to perform automation.

Threads and Global Scope

Cisco Crosswork Situation Manager is built to handle high scale environments, so individual JavaScript MooBots are

run in a multi-threaded fashion. For example, if a Moolet has ten threads, there will be ten instances of the MooBot

running. This supports high throughput of Events through the Moobot, particularly, when they are doing complex

processing. However, it does have important implications for the JavaScript concerning where the global scope (or

context) for the JavaScript program for the MooBot resides. In principle, each Moobot has its own independent

global scope. It is impossible for one Moobot's logic to interact and affect another instance of the Moobot logic. To

allow necessary communication between individual Moobot instances there are utility modules such as the Constants

module.

Moobot Modules

You can use the available Moobot modules to perform these functions:

Module Description

Config Read configuration files within LAMbots and Moobots.

Constants Build a key value dictionary shared across Moobots.

Events Set the types of Event that interest a Moobot.

ExternalDb Access external relational databases.

LoggerConfigure

Logging

Write log messages to the common Moogfarmd log file. See Configure Logging.

file://document/preview/11754%23UUID316ab03bc34c907f414f193e3546710f
file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

158

Mailer Send an email in response to events occurring in Cisco Crosswork Situation Manager.

MoogDb V2 Query and manipulate a variety of entities in the Cisco Crosswork Situation Manager database,

including alerts and Situations.

Moolet Informs Can send update messages from one Moolet to other Moolets.

Process Run and control the execution of other processes.

RabbitMQ Allows you to broadcast information on a RabbitMQ bus.

REST.V2 Access an external RESTful API via HTTP to post, read, or delete data.

Utilities Escape and unescape XML strings, convert an XML string to a JSON object and vice versa.

To use these modules, at the top of the Moobot js file, define their variables using the loadModule method.

You can also load load external JavaScript modules using the loadModule method. See below.

Examples

Throughout this section, all examples will use AlertBuilder.js to explain how Moobots function.

Step 1

When the Alert Builder starts and creates an instance of the Moolet, it creates a Moobot for every threaded instance

of the Moolet. The first action undertaken by a Moobot is to load a system wide default file called MooB.js. This

file pushes into the Global Scope using a closure, some shared functionality, which you can take advantage of in the

Moobot. You should never edit MooB.js as the file is linked to the internal implementation of the Moobots.

Step 2

The preload statements in the MooB.js closure instruct a Moobot to load into its Global Scope the available

modules. For example, they can be used to:

 Change and create structure in the moogdb database

 Listen for specific Events in the system

 Push Events out

 Log to the common log file output

 Communicate using communication methodologies such as tweets, email etc.

Before you can use any of the built in modules that correspond to the functionality Cisco provides, you need the

preload() method in the global object (MooB.js) to load the required modules.

The object exposes an API that you can use to add functionality Process

has a number of functions that you can call which allow the Moolet to run processes in the system.

After loading and running the MooB.js closure in the Moobot, the full Moobot user definable JavaScript file is

loaded and run. It is important to understand from a JavaScript concept that it is executed at start-up. The reason for

executing the script at start-up is to load any Event driven callbacks, and initialization code inside of the Moobot. For

example in the Alert Builder, for a new Event arriving in the Moolet, Cisco Crosswork Situation Manager needs to

know which functionality inside of the Moobot to run.

Using External Modules

Moobots can load external JavaScript modules. This means that modules can be reused as generic functions in

multiple Moobots.

To do this:

 Add the external JavaScript module file (BotExampleModule.js) in the

$MOOGSOFT_HOME/bots/moobots or the $MOOGSOFT_HOME/contrib directory

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

159

 Load the external JavaScript module in the Moobot by adding a line at the beginning (relative paths are

supported), for example:

MooBot.loadModule('BotExampleModule.js');

The example below shows the external JavaScript module (BotExampleModule.js). It defines a class which

takes an Alert and prints out a message:

function CPrinter()
{
 var mLogger=MooBot.loadModule('Logger');
 var self=
 {
 prettyPrint: function(alert)
 {
 mLogger.info("This is a print of " + alert.value("alert_id") + "

other info");
 }
 };
 var F=function() {};
 F.prototype=self;
 return(new F());
}

The AlertMgr.js Moobot loads the external JavaScript module BotExampleModule.js and uses the

function CPrinter (from the external JavaScript module) to send Alert details to a remote service:

MooBot.loadModule('BotExampleModule.js');
var printer = new CPrinter();

function newAlert(alert)
{
 printer.prettyPrint(alert);
}

onLoad Function

Moobots can include an onLoad function to allow commands to be run once on startup per Moobot instance. This

can be used to initialize internal variables, such as dbTypes, as shown in the code example below:

var dbTypes = null;

function onLoad()

{

 dbTypes = {

 employees: {

 type: 'mySql',

 host: '192.168.1.141',

 port: '3306',

 database: 'emp_db'

 },

 customers: {

 type: 'sqlServer',

 host: '213.32.112.17',

 database: 'customers',

 user: 'sa',

 encrypted_password:
'0rJGl5oCWpmE9Hbk32sxFgxlQV3O5cx2bx1vKNOM7YA='

 }

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

160

 };

}

Config

 Before You Begin

 Best Practice

 Error Reporting

 Examples

The Config bot module allows you to read configuration files within LAMbots and Moobots.

It retrieves valid JSON configuration files found in $MOOGSOFT_HOME/config and performs a direct read from

the file system before delivering the JSON Object to the calling bot. The module is available for all bots but can only

be used for reading and storing global configuration files.

Before You Begin

Before you use the Config bot module, ensure the following conditions are met:

 The configuration file is in valid JSON

 The configuration file is in $MOOGSOFT_HOME/config

 The configuration is present on the file system as the process running the bot

Best Practice

Follow these guidelines when using the Config bot module:

 Use the module within the constraints of the OnLoad function.

 Note that making multiple calls to the module may impact the performance of the bot.

 Keep custom configuration files in a subdirectory of $MOOGSOFT_HOME/config and name them

appropriately.

 Comment custom configuration files extensively so other users can understand the context of their use.

Error Reporting

The following error messages are returned if the configuration file cannot be opened, the contents returned are null

or if the JSON is invalid:

INFO :[CJSONCodec.java]:813 +|java.io.FileNotFoundException:
/export/src/incident/build/config/bad.conf (No such file or directory):
Unable to open file /export/src/incident/build/config/bad.conf|+

WARN :[CJSONCodec.java]:105 +|Failed to parse file
/export/src/incident/build/config/bad.conf, returned null contents|+

WARN :[CConfigModule.java]:112 +|File
[/export/src/incident/build/config/bad.conf] is either missing, unreadable
or is not valid JSON.|+

Examples

If you want to create a URL that links to Cisco Crosswork Situation Manager Situations, you can use the Config bot

module to dynamically retrieve the base URL of the Cisco Crosswork Situation Manager instance from

servlets.conf. For example:

var config = MooBot.loadModule('Config');

....

var servletsConf = config.getConfig('servlets.conf');

if (servletsConf) {

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

161

 moogURL = servletsConf.webhost;

 }

Constants

 Reference Guide

— put

— get

— contains

— remove

— eventType

 Examples

Each Moobot runs in its own thread and instances of Moobots are independent of each other. The Constants module

enables you to share logic, states or flags between Moobots. You can build a key value dictionary mapping that is

shared across Moobot instances.

There are many system wide defined Constants that are used in the Events module to define which event to listen

for. See the event types table below for more information.

The Constants module is available to load into any standard Moobot.

To use, define a new global object constants at the top of a Moobot JavaScript file:

var constants = MooBot.loadModule('Constants');

Reference Guide

You can use the following methods in the RabbitMQ Moobot module.

put

Associated the specified value with the specified key. Replaces the mapping for an existing key.

Request Argument

Name Type Description

key String The key to associate with the value.

value Object The value to associate with the key.

Return Parameter

None.

get

Returns the value mapped to a specified key.

Request Argument

Name Type Description

key String The key for which to retrieve the value.

Return Parameter

Type Description

Object The value to which the key is mapped, or null if no mapping exists.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

162

contains

Returns a positive response if the module contains an object with the specified name.

Request Argument

Name Type Description

name String The Object name.

Return Parameter

Type Description

Boolean True if the module contains the named object, otherwise false.

remove

Removes the value mapped to the specified key.

Request Argument

Name Type Description

key String The key for which the value is to be removed.

Return Parameter

None.

eventType

Returns the value of a specified event type.

Request Argument

Name Type Description

name String The name of the event type. See the list below.

Event Types

Name Passed Value Description

E_LamEvent "Event"/"Events" Raw event from a LAM

E_NewAlert "Alert"/"Alerts" New alert

E_AlertUpdate "AlertUpdate" Alert update

E_CloseAlert "AlertClose" Close alert

E_NewComment "Comment" New comment

E_NewFeedback "Feedback" New feedback

E_NewSig "Sig" New Situation

E_SigClose "SigClose" Close Situation

E_SigUpdate "SigUpdate" Updated Situation

E_SigStatus "SigStatus" Situation status

E_SigAction "SigAction" Situation action

E_ThreadEntry "ThreadEntry" A thread entry

E_NewThreadEntry "NewThreadEntry" A new thread entry

E_Summary "Summary" System summary

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

163

E_Invite "Invitation" Situation Room invitation

E_User "User" Username

E_Unknown "Unknown" An uncategorised event (error condition)

Return Parameter

Type Description

CEvent An object containing the value of the specified event type.

Examples

The following example in AlertBuilder.js shows the Constants module with two methods that allow you to post and

retrieve values from a shared scratchpad.

var count=0

constants.put("counter",count);

The variable count is set to 0 and stored using the label counter.

 put () takes the name of the variable you want to store counter, and the variable count.

You can later retrieve a value by calling the method get () and passing the name of the shared attribute you want,

which is returned as a JavaScript local variable.

var count_val=constants.get("counter");

count_val++;

constants.put("counter",count_val);

 get takes the name of the shared attribute counter.

 count_val is incremented.

 put takes the name of the variable to store, counter, and the incremented value count_val.

If nothing is stored in counter, the Moobot returns null.

The following example passes the name of an event and returns a system wide constant that identifies that type of

event when using the Events module.

constants.eventType("Event")

Events

The Events Moobot module allows you to make a Moobot driven by the occurrence of events by defining the type of

event that interests the Moobot.

The Events module is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global object events to load the Events module:

var events = MooBot.loadModule('Events');

Method

events.onEvent

The Events module has only one method, onEvent. This method points the Moobot to a supplied JavaScript

function, which is called when a specified event type occurs.

The parameters to the called function depend on the type of event that you are listening for.

In a Moobot, this method is typically the last line in a script.

The type of event adaptor chosen is specific to the type of Moobot you are building.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

164

Reference Guide

events.onEvent()

Takes the name of a valid JavaScript function in a Moobot and also event code (from the Constants module

eventType), and returns an event adaptor object

Request Arguments

Name Type Description

functionName String The name of a valid JavaScript function in the Moobot that is called when the event

arrives.

type CEvent eventType event code that specifies what type of event the Moobot is listening for. It is

typically from the Constants module.

Return Parameter

Name Type Description

CEventAdaptor Object An event adaptor object. Made active with the listen () function in-line to listen for

the event type.

Example

For the AlertBuilder MooBot:

events.onEvent("newEvent",constants.eventType("Event")).listen();

 Call the newEventJavaScript function.

 Define the Event type Event (from the Constants module), which responds to events put on the Message Bus

by a LAM.

 Call the listenfunction in-line to listen for the event type.

When the Moolet starts and loads this events Moobot, it s JavaScript file executes, initializing the Moobot to respond

in an event-driven way to events arriving.

newEvent Javascript function

The format of the function newEvent (which is called when you get an event), is as follows:

newEvent()

Request Argument

Name Type Description

event CEvent

object

An object that encapsulates all the data for the event from the Message Bus, and allows you to

forward the event to the bus, using the CEvent forward method detailed below.

CEvent forward methods

You can emulate MoogDb behavior by running the MoogDb.V2 Moobots.For example, the

alert.forward(this) line will send an alert onto the Moolets specified in the appropriate

process_output_of block within moog_farmd.conf.

You could instead remove the process_output_of lines from the AlertRulesEngine / Sigaliser / Cookbook /

Speedbird Moolets and explicitly send events / alerts / Situations on within the Moobot code using (as an example):

alert.forward("Cookbook");

The advantage of this approach is that alerts / Situations can be forwarded to different AlertRulesEngines / Sigalisers

dynamically in the Moobots (for example based on the value of the source file).

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

165

CEventAdaptor auxiliary object

This object is a utility class used by the Events module to allow for the programmatic activation of event listening. It

has one method:

listen()

Starts the event adaptor listening, which then calls the specified function when an event occurs.

Request Argument

None.

Return Parameter

Void - no value returned.

CEvent auxiliary object

This object encapsulates a generic Message Bus event object, and the contents of it are specific to the event type it

represents. You can however access the key-value pairs contained in the object, and also set the values. Its methods

include:

contains()

Returns true if the Event contains a value stored at the key name.

Request Argument

Name Type Description

name String The name of the key being queried.

Return Parameter

Type Description

Boolean True if the event has a field called name, otherwise false.

set()

Associates the specified value with the specified name in the event.

Previous key mapping has the old value replaced.

Request Argument

Name Type Description

name String The key with which the specified value is to be associated.

value Object The value associated with the key.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

value()

Returns the object stored at the key name.

Request Argument

Name Type Description

name String The name of the key to return the object from.

Return Parameter

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

166

Type Description

Object A Javascript object containing what is at the key name.

Note:

Compatibility with MoogDb and MoogDb V2 Methods and auxiliary objects listed here are compatible with the

MoogDb V2 module.

CEvents API

Cisco Crosswork Situation Manager uses the CEvents API to pass data to LAMbot functions.

The methods are as follows:

contains()

Check to see whether the payload of the CEvent contains the given key.

Request Arguments

Name Type Description

nm String The name of a potential key in the payload.

Return Parameter

Type Description

boolean Returns true if the provided key was found in the payload, or false if it was not.

evaluateFilter()

Allow an event/alert/Situation to be easily evaluated against a filter.

Request Arguments

Name Type Description

Filter String A JSON or SQL-like filter for events, alerts or Situations.

Return Parameter

Type Description

Boolean Whether the filter matches the event, alert or Situation.

Returns true if the filter matches the event, alert or Situation.

Returns false if the filter has a correct syntax but doesn't match the event, alert or Situation.

Returns null if the filter syntax is incorrect.

Example

var is_matching = situation.evaluateFilter("description LIKE 'Created
Situation'");

forward(moobot)

This will forward the CEvent down the chain configured in the moog_farmd.conf (using

process_output_of configuration), usual way of calling this is CEvent.forward(this) where this is the Moobot

that's processing the CEvent object.

Request Arguments

Name Type Description

moobot NativeObject The instance of the Moobot which is handling the CEvent object.

Return Parameter

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

167

None.

forward(target)

forward(target,...)

Takes any number of target moolets names as strings and forwards the CEvent to each of them. For example

CEvent.forward("moolet1") or CEvent.forward("moolet1", "moolet2").

Request Arguments

Name Type Description

targets Stringvarargs Any number of String Moolet names which the CEvent is going to be forwarded to.

Return Parameter

None.

getActionDetails()

A utility helper method provided to retrieve the entire alert or Situation contained in the payload of a CEvent.

Request Arguments

None

Return Parameter

Type Description

JS

NativeObject

The whole of the alert or Situation contained in the payload of the CEvent, as a NativeObject ready for

use in the Javascript for a Moobot.

getCorrelationInfo()

Returns the correlation info for a Situation, which lists all of the services which are interested in this Situation.

Request Arguments

Name Type Description

replacementValue String/integer/boolean/object/map The string or string/integer/boolean/object/map value to

replace the value stored in the custom_info field.

Return Parameter

Type Description

JS

NativeObject

An object which contains the sig_id, service_name, external_id and properties for all the correlation info

for the sig. sig_correlation_info is a one to many relationship of sigs to services.

getCustomInfo()

A helper method provided to retrieve the whole custom info object for an alert or Situation.

Request Arguments

None

Return Parameter

Type Description

JS

NativeObject

The whole custom info map for an alert or Situation as a NativeObject ready for use in the Javascript

for a Moobot.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

168

Bot.getType()

Return the Moolet type

Request Arguments

None.

Return Parameter

Type Description

Enumerated type Can be one of the following:

Examples

After de-assigning a Situation, the previous moderator_id and status are displayed.

{moderator_id=2, last_state_change=1537794561, status=1}

After resolving a Situation, the previous status 4 (acknowledged) is displayed.

{last_state_change=1537867302, status=4}

getSummaryData()

Fetches a summary of information about a system, such as the number of alerts or the service count bundled up as

key/value pairs.

Request Arguments

Name Type Description

replacementValue String/integer/boolean/object/map The string or string/integer/boolean/object/map value to

replace the value stored in the custom_info field.

Return Parameter

Type Description

JS NativeObject The summary of information about a system:

summary.alert_count - number

summary.service_count - number

summary.sig_summaries - map (contains "categories" and "queues")

summary.sig_summaries.categories - (array of objects)

summary.sig_summaries.queues - (array of objects)

categories and queues contain the following:

sig_total - number, alert_total - number, name - string

summary.sigs_down - number

summary.sigs_up - number

summary.total_events - number

summary.total_sigs - number

getTopic()

Returns the topic that the data was received on, for example "alerts" or "Situations".

Request Arguments

None

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

169

Return Parameter

Type Description

String The name of the topic that the data came from or relates to, e.g. "Situations" or "alerts".

payload()

Retrieves the whole data payload that was sent in the CEvent object. In most cases the data contained in the payload

is going to represent either a Situation or an alert, and as such will have key/value pairs which match the data

columns for each.

Request Arguments

None.

Return Parameter

Type Description

CMooMsg Enum value specifying the type of data that the Event contains and/or which topic the data was received on

from the bus.

Example

Example CEvent payload request:

logger.warning(cevent.payload().getData());

Example CEvent payload response:

{active=true, competencies=[], contact_num=, department=null,
description=Online, email=, fullname=cyber, groupname=End-User,
invitations=[], joined=1516963803, only_ldap=0, photo=-1, primary_group=1,
profile_image=null, realms=[DB], roles=[1, 3, 4, 5], session_expiry=null,
status=1, teams=[], timezone=SYSTEM, uid=6, username=cyber}

set()

Used to insert or update a value in the payload of the CEvent.

Request Arguments

Name Type Description

nm String The key to insert or change a value at.

val Object The new value to store against the key.

Return Parameter

Type Description

Boolean Whether or not the value was successfully changed.

setCustomInfo()

Set or update the whole custom info object for an alert or Situation.

Request Arguments

Name Type Description

customInfo Js NativeObject Thewhole custom info objectto set for an alert or Situation.

Return Parameter

None.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

170

setCustomInfoValue()

Updates the custom information in the database for the specified Situation or alert.

Request Arguments

Name Type Description

field String The dot-formatted field within the custom_info of the

reference alert or Situation to update.

replacementValue String/integer/boolean/object/map The string or string/integer/boolean/object/map value to

replace the value stored in the custom_info field.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

setTopic()

Set or update the topic value in the payload of the CEvent object.

Request Arguments

Name Type Description

topic String The name of a topic to set or update in the payload data.

Return Parameter

None

stringValue()

Fetch a value from inside the payload which matches the provided key as a string value.

Request Arguments

Name Type Description

name String The key for a value stored in the payload which will be used to fetch the data.

Return Parameter

Type Description

String The value from the payload that was stored alongside the key (or null if no value was found to for the provided

key) which has been converted to string format.

type()

Retrieves the type stored on the CEvent, this value indicates type of information in the payload and/or which topic the

data came from.

Request Arguments

None.

Return Parameter

Type Description

EBotEvent Enum value specifying the type of data that the Event contains and/or which topic the data was received on

from the bus.

value()

Fetch a value from inside the payload which matches the provided key.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

171

Request Arguments

Name Type Description

nm String The key for a value stored in the payload which will be used to fetch the data.

Return Parameter

Type Description

Object The value from the payload that was stored alongside the key (or null if no value was found to for the provided

key) as an Object.

Common fields for both Situations and alerts in the payload are:

 custom_info

 description

 first_event_time

 last_event_time

 last_state_change

Events (MoogDb Only)

Compatibility with MoogDb and MoogDb.V2

Methods and auxiliary objects listed here are compatible with the MoogDb module, which was removed in v4.1.14.

Information here is provided for reference only.

For methods and auxiliary objects compatible with its replacement, see the MoogDb V2 module.

Description

The events Moobot module allows you to make a Moobot driven by the occurrence of events by defining the type of

event that interests the Moobot.

The events module is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global object events to load the events module:

var events = MooBot.loadModule('Events');

Method

events.onEvent

The events module has only one method, onEvent. This method points the Moobot to a supplied JavaScript

function, which is called when a specified event type occurs.

The parameters to the called function depend on the type of event that you are listening for. In a Moobot, this method

is typically the last line in a script.

The type of event adaptor chosen is specific to the type of Moobot you are building.

Reference Guide

events.onEvent()

Takes the name of a valid JavaScript function in a Moobot and also event code (from the constants module

eventType), and returns an event adaptor object.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

172

functionName String The name of a valid JavaScript function in the Moobot that is called when the event

arrives.

type CEvent eventType event code that specifies what type of event the Moobot is listening for. It is

typically from the constants module.

Return Parameter

Name Type Description

CEventAdaptor Object An event adaptor object. Made active with the listen function in-line to listen for the

event type.

Example

For the AlertBuilder MooBot:

events.onEvent("newEvent",constants.eventType("Event")).listen();

 Call the newEvent JavaScript function.

 Define the event type event (from the Constants module), which responds to events put on the Message

Bus by a LAM.

 Call the listenfunction in-line to listen for the event type.

When the Moolet starts and loads this events Moobot, its JavaScript file executes, initialising the Moobot to respond

in an event-driven way to events arriving.

newEvent Javascript function

The format of the function newEvent (which is called when you get an event), is as follows:

function newEvent()

Request Arguments

Name Type Description

event CEvent object An object that encapsulates all the data for the event from the Message Bus.

response CResponse

object

An object to communicate back to the Moolet. The Moolet uses this response to

broadcast any updates, or any changes to the data structures on the Message Bus.

CEventAdaptor auxiliary object

This object is a utility class used by the events module to allow for the programmatic activation of event listening. It

has one method:

listen

listen()

Starts the event adaptor listening, which then calls the specified function when an event occurs.

Request Argument

None.

Return Parameter

Void - no value returned.

CEvent auxiliary object

This object encapsulates a generic Message Bus event object, and the contents of it are specific to the event type it

represents. You can however access the key-value pairs contained in the object, and also set the values. Its methods

include:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

173

contains()

Returns true if the event contains a value stored at the key name.

Request Argument

Name Type Description

name String The name of the key being queried.

Return Parameter

Type Description

Boolean True if the Event has a field called name, otherwise false.

set()

Associates the specified value with the specified name in the event. Previous key mapping has the old value

replaced.

Request Argument

Name Type Description

name String The key with which the specified value is to be associated.

value Object The value associated with the key.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

value()

Returns the object stored at the key name.

Request Argument

Name Type Description

name String The name of the key to return the object from.

Return Parameter

Type Description

Object A Javascript object containing what is at the key name.

CEvent auxiliary object

Note

The following methods only apply to the MoogDb module, which is being deprecated.

getJournalDetails()

Returns the details (if any) of the journaled operation for a Situation.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

174

Object Javascript object containing the details of the journaled operation for a Situation.

getCustomInfo

getCustomInfo()

Returns the custom information (if any) for an alert or Situation.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the custom information.

setCustomInfo()

Sets the custom information for an Alert or Situation

Request Arguments

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

customInfoJS Native object A Javascript object containing the custom information.

Return Parameter

Void - no value returned.

getCorrelationInfo()

Returns the external service correlation_info (where this has been set) for a Situation.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the correlation_info.

getSummaryData()

Returns the summary information from a statistics summary event.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the summary information.

CResponse auxiliary object

Note:

The following methods only apply to the MoogDb module, which has been deprecated.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

175

message()

Object to broadcast on.

Request Argument

Name Type Description

msg CEvent Object to broadcast on.

Return Parameter

Void - no value returned.

topic()

Topic to broadcast message on.

Request Argument

Name Type Description

topic String The topic name.

Return Parameter

Void - no value returned.

output()

Freeform message to attach.

Request Argument

Name Type Description

txt String The message as a text string.

Return Parameter

Void - no value returned.

retcode()

The retcode value must be >= 0 for a message to be sent.

Request Argument

Name Type Description

code Number Must be >= 0 for a message to be sent.

Return Parameter

Void - no value returned.

doNotPropagate()

Indicates that no propagation is needed.

Request Argument

None.

Return Parameter

Void - no value returned.

Expose Active Moolets

You can expose which Moolets are running by adding functions to a Moobot. The functions are:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

176

 Bot.isActive: Returns whether the specified Moolet is active or not.

 Bot.getActiveMoolets: Returns a list of all active Moolets in the system.

isActive

Returns whether the specified Moolet is active or not.

Request Argument

Name Type Required Description

<mooletName> String Yes Name of a Moolet.

Return Parameter

Type Description

Boolean 'true' indicates the Moolet is active, 'false' indicates it is inactive.

Example

For example, you could use the function to return a logger warning if the ServiceNow Moolet is not running:

if(Bot.isActive('ServiceNow'))

 {

 var inform = mooletInforms.create('ServiceNow');

 inform.setSubject("ticket");

 inform.setDetails({sig_id: sigId}); inform.send();

 }

else

 {

 logger.warning("ServiceNow is not running - situation " +
sigId + " was not sent");

 }

getActiveMoolets

Returns a list of all active Moolets in the Cisco Crosswork Situation Manager system.

Request Argument

None.

Return Parameter

Type Description

List A list of all active Moolets in the Cisco Crosswork Situation Manager system.

Example

You could use the function to return which Moolets are running if a specified Alert Workflow Engine Moolet is active:

var alert = moogdb.createAlert(event);

if(alert)

 {

 logger.info("New Alert Id: " + alert.value("alert_id"));

 if(Bot.isActive('AlertWorkflows'))

 {

 logger.warning("Moolets running are: \n" +
Bot.getActiveMoolets());

 }

 }

An example log might return as follows:

WARN : [3:AlertBuilder][20190301 19:05:20.808 +0000] [AlertBuilder.js:128]
+|Moolets running are: [MaintenanceWindowManager, TeamsMgr, AlertBuilder,
SituationWorkflows, Housekeeper, Default Cookbook, Indexer,

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

177

EnrichmentWorkflows, AlertWorkflows, EventWorkflows, SituationMgr,
SituationRootCause]|+

ExternalDb

Description

The ExternalDb Moobot module allows Cisco Crosswork Situation Manager to access the following external relational

databases (as well as any relational database that supports JDBC):

 MySQL

 Microsoft SQL Server

 IBM DB2

 Oracle

 PostgreSQL

With ExternalDb, Cisco Crosswork Situation Manager can retrieve information from external databases for use in

alerts and Situations and can also update information in external databases with information from Cisco Crosswork

Situation Manager.

ExternalDb is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global object externalDb to load the ExternalDb module:

var externalDb = MooBot.loadModule('ExternalDb');

externalDb is the name of the database.

Reference Guide

externalDb.connect()

Establishes connection to an external database with defined connection properties.

Request Arguments

Name Type Description

<properties> Object A Javascript object containing connection properties. See below.

Database connection properties

The ExternalDb module connect method defines connection properties as a Javascript object, which may include

the following keys:

Key Description

type The type of the database.

If type is omitted you must specify the URL, jar files and JDBC class name. To use an

external database other than those in the supported list, omit the type from the connection

properties.

host The database host name or IP address (default is: 'localhost').

database The database name.

port The port number. Default values:

MySQL - 3306

SQL Server - 1433

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

178

DB2 - 50000

Oracle - 1521

PostgreSQL - 5432

user The user name. If omitted can be specified in the URL (for some databases) or the

properties.

password The password. If omitted, it can be specified in the URL (for some databases) or the

properties.

encrypted_password Encrypted version of password (encrypted using moog_encryptor).

properties A map of key-value pairs of properties to specify the connection properties. For example,

loginTimeout for SQL Server or useCompression for MySQL.

jar_files A list of the files locations indicating the the JDBC driver jar file location.

Defaults:

SQL Server - sqljdbc4.jar

DB2 - db2jcc4.jar

Oracle - ojdbc6.jar

PostgreSql - postgresql-9.3-1102.jdbc41.jar

Assumes it will find these files in $MOOGSOFT_HOME/lib/cots/

They are not bundled in a regular Moogsoft AIOps installation.

class_name The name of the JDBC class. Defaults:

SQL Server - com.microsoft.sqlserver.jdbc.SQLServerDriver

MySQL - com.mysql.jdbc.Driver

DB2 - com.ibm.db2.jcc.DB2Driver

Oracle - oracle.jdbc.OracleDriver

PostgreSql - org.postgresql.Driver

URL JDBC specific URL. If specified, it can override other properties.

pool_properties A map of key-value pairs of properties of the connection pool that will be created. It may

be used to define the number of connections made available to the external database by

including the pool_size key.

pool_size The number of connections in the pool. Must be 1 or more, defaults to

10. Generally, this should match the number of threads configured to

run the Moobot.

Note:

You can also define connection properties in the following configuration file:

moog_external_db_details.conf

Return Parameter

Type Description

Object A Java object containing connection details, depending on the requested connection properties

Returns null if no connection is available (due to either misconfiguration or unavailability of the external

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

179

database).

Note:

The connect method can accept a single parameter with connection properties, or two parameters - one with the

generic connection properties and one specific for this connection. For example:

 var customersConnection = externalDb.connect(dbTypes.customers);

will connect to the customer database as is.

 var customersConnection = externalDb.connect(dbTypes.customers,
{user: 'admin', password: 'wrdPass'});

You can also use the name from the following configuration file: moog_external_db_details.conf

Before making a connection, make sure the relevant database JDBC connector jar(s) are located where the

configuration indicates. These are usually available for download from the database vendor.

Using the database connection:

The connection variable is a virtual connection, with the actual connections held and managed within the Java Virtual

Machine. Therefore, there is no need to manage the connection, just call the connect method before you need to use

the actual connection.

externalDb.execute()

Performs an SQL update to the database.

The execute method has one string argument:

Request Argument

Name Type Description

<argument> String SQL string argument.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

Example

employeesConnection.execute('Update pets set species="dog" where species

null');

externalDb.query()

Performs an SQL query on the external database.

The query method has one string argument:

Request Argument

Name Type Description

argument String SQL string argument.

Return Parameter

Type Description

Object A Java object which can contain the sub methods listed below

Returns null if the query fails.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

180

Response Methods

Name Description

rows() Return the number of rows.

next() Return the next row.

rewind() Go back to the first row.

hasNext() Indicate whether the current row is the last one.

row(i) Return row i (zero based index).

first() Return the first row.

type(name) Return the type of column called name (or null if no such column exists).

columnName(i) Return the name of column i (zero based index).

isNumber(name) Returns true if the column name is a numeric column.

isString(name) Returns true if the column name is a not numeric.

Row Methods

Name Description

value(name) Return the value for column named name as a string.

columns() Return the number of columns.

rewind() Go back to the first column.

hasNext() Indicate whether the current column is the last one.

next() Return the value in the next column as a string.

column(i) Return the value in column i as a string.

first() Return the value in the first column as a string.

last() Return the value in the last column as a string.

Example

var customers = customersConnection.query('Select * from customers');
while(customers.hasNext()==true)
{
 var customer=customers.next();
 var firstName = customer.value("first_name");
 var lastName = customer.value("last_name");
 logger.info(firstName + " " + lastName +" is a customer");
}

externalDb.prepare()

Perform more complicated SQL queries or updates.

For example, you may need to reuse the same SQL statement with different arguments more than once, or you may

need to use external data within the statement (and want to avoid SQL injection).

The prepare method has one string argument, where ? can be used to define parameters within the SQL.

Request Argument

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

181

<argument> String SQL string argument.

Return Parameter

Type Description

Object A prepared SQL statement object which can contain the following sub-methods listed below.

Response Methods

Name Description

set(i, value) Set parameter i (1 based index) to a value. Returns false in case of a failure.

bind(value1, value2,
value3,...)

Set parameter 1 to value 1, parameter 2 to value 2 and so on. Returns false in case of a

failure in either one.

bindCount() Return the number of parameters needed to bind. Some vendors might not support this

method in all cases -

execute(value1,
value2, value3,...)

Set parameter 1 to value 1, parameter 2 to value 2 and so on, and then execute the

prepared statement. Returns false in case of a failure in one of the stages. If value are

omitted will use the previously set or bind.

query(value1,
value2, value3,...)

Set parameter 1 to value 1, parameter 2 to value 2 and so on, and then perform the

query with the prepared statement. Returns null in case of a failure in one of the

stages. Returns a Result Set (as the one in query above) if the operation was

successful. If values are omitted, use the previously set or bind.

close() Close the prepared statement.

Note:

It is important to close the statement with this method when no longer needed.

Example

var petsChange = employeesConnection.prepare('Update pets set species=?
where breed = ?');

petsChange.set(1, 'dog');

for (var breed in ['Labrador', 'Terrier', 'Beagle', 'Boxer', 'Poodle'])

{

 petsChange.set(2, breed);

 petsChange.execute();

}

petsChange.close();

[empty]

Database Specific Information

Downloading JDBC Drivers

Note:

1. Be sure to download the correct version of the JDBC Driver for your database.

2. Ensure downloaded JDBC drivers are moved/copied to the $MOOGSOFT_HOME/lib/cots directory.

Microsoft SQL Server

JDBC driver: http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

Connection properties: http://technet.microsoft.com/en-us/library/ms378672(v=sql.110).aspx

Example declarations:

http://www.microsoft.com/enus/download/details.aspx?displaylang=en&id=11774
http://technet.microsoft.com/enus/library/ms378672(v=sql.110).aspx

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

182

testdb:

{

 type: 'sqlServer',

 host: '172.16.87.248',

 port: '1433',

 database: 'moog',

 user: 'sa',

 password: 'password'

}

or:

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/sqljdbc4.jar"],

 class_name: "com.microsoft.sqlserver.jdbc.SQLServerDriver",

 url: "jdbc:sqlserver://172.16.87.248:1433;databaseName=moog",

 properties: { user: "sa", password: "password" }

}

MySQL

JDBC Driver: Already included in Cisco Crosswork Situation Manager - no need to download.

Connection properties: http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-

properties.html

Example declarations:

testdb:

{

 type: 'mySql',

 host: '172.16.87.247',

 port: '3306',

 database: 'moog',

 user: 'root',

 password: 'm00gsoft'

}

or:

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/mysql-connector-java-
5.1.37-bin.jar"],

 class_name: "com.mysql.jdbc.Driver",

 url: "jdbc:mysql://172.16.87.247:3306/moog",

 properties: { user: "root", password: "m00gsoft" }

}

IBM DB2

JDBC Driver: http://www-01.ibm.com/support/docview.wss?uid=swg21363866

Connection properties: http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPG

G_9.1.0%2F8-1-4-2-1-0

Example declarations:

testdb:

{

 type: 'db2',

 host: '172.16.87.248',

 port: '50000',

 database: 'moog',

http://dev.mysql.com/doc/connectorj/en/connectorjreferenceconfigurationproperties.html
http://dev.mysql.com/doc/connectorj/en/connectorjreferenceconfigurationproperties.html
http://www01.ibm.com/support/docview.wss?uid=swg21363866
http://www01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPGG_9.1.0%2F814210
http://www01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPGG_9.1.0%2F814210
http://www01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPGG_9.1.0%2F814210

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

183

 user: 'db2admin',

 password: 'm00gsoft'

}

or:

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/db2jcc4.jar"],

 class_name: "com.ibm.db2.jcc.DB2Driver",

 url: "jdbc:db2://172.16.87.248:50000/moog",

 properties: { user: "db2admin", password: "m00gsoft" }

}

Oracle

JDBC Driver: http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Connection properties: http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm

Example declarations:

testdb:

{

 type: 'oracle',

 host: '172.16.87.248',

 port: '1521',

 database: 'moog',

 user: 'System',

}

or:

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/ojdbc6.jar"],

 class_name: "oracle.jdbc.OracleDriver",

 url: "jdbc:oracle:thin:System/m00gsoft@172.16.87.248:1521:moog"

}

PostgreSql

JDBC Driver: https://jdbc.postgresql.org/download.html

Connection properties: http://jdbc.postgresql.org/documentation/head/connect.html

Example declarations:

testdb:

{

 type: 'postgresql',

 host: '172.16.87.248',

 port: '5432',

 database: 'moog',

 user: 'anotherUser',

}

or:

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/postgresql-9.3-
1102.jdbc41.jar"],

http://www.oracle.com/technetwork/database/features/jdbc/index091264.html
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
https://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/documentation/head/connect.html

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

184

 class_name: "org.postgresql.Driver",

 url: "jdbc:postgresql://172.16.87.248:5432/moog",

 properties: { user: "anotherUser", password: "password" }

}

Graph Topology

The Graph Topology module uses an alternative clustering technique to refine accuracy and reliability, by using a

shortest path measurement for clustering in Cookbook Moobot recipes.

In Cisco Crosswork Situation Manager, Situations can be generated by clustering events based upon the proximity in

a network of the source devices sending the events. To do this, the source devices and their weighted connections

are mapped in a topology.

Source devices in a network are represented as points in the topology called 'nodes'. Connections between the

source devices are represented in the topology as 'edges'. Edges can be weighted to represent the connection

length. If no weight is defined for an edge, the default value is 1. The number of connections on a node is called the

'degree' of the node.

Distance

'Distance' is the shortest path between two nodes via the weighted edges (using Dijkstra's algorithm. More

information from Wikipedia).

Topology data for the Graph Topology module, which is imported into Cisco Crosswork Situation Manager using the

topology_builder utility, is in a CSV (comma separated value) file. Each edge defined in the CSV file is

treated as representing a bi-directional connection between the specified nodes.

Each entry in the file names the two nodes that are connected, and (optionally) the weighted edge number, in the

following format:

<first node>, <second node>, <weighted edge number>

If no <weighted edge number> is included, the default value of 1 is used.

Example CSV file:

host_a3,host_a1,2

host_a3,host_a2,3

host_a4,host_a1,6

host_a5,host_a1,2

host_a5,host_a4,2

host_a6,host_a1,7

host_a6,host_a2,8

host_a6,host_a4,4

host_a6,host_a5,7

host_b3,host_b2,6

host_b4,host_b1,3

host_b4,host_b3,8

host_b5,host_b3,5

host_b5,host_b4,3

host_b6,host_b5,5

Note:

This data is used in the code examples below

The data above represents the following topology, with nodes named 'host_...' and the weighted edges (see

section on distances above) between them:

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

185

The Graph Topology module is available to load into any standard MooBot.

To use, at the top of a MooBot js file, define a new global object topo to load the Graph Topology module:

var topo = MooBot.loadModule('GraphTopo');

Reference Guide

The Graph Topology module uses the following methods:

topo.loadTopology()

Load the topology into the Graph Topology module and report success or failure. A failure to load may be because

the topology_builder utility has not imported the topology data CSV file.

Request Argument

None.

Return Parameter

Type Description

Boolean true = topology loaded successfully, false = topology failed to load

Example

Request example to load a topology:

var ret = topo.loadTopology();
logger.warning("loadTopology -> " + ret);

Response if the topology loaded successfully:

WARN : ... [CLogModule.java]:99 +|loadTopology -> true|+

topo.isConnected()

Check if a specified node is part of the topology.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

186

Request Argument

Name Type Description

host String The name of the node being checked

Return Parameter

Type Description

Boolean true = node in topology, false = node not in topology

Examples

Using the example topology data above, running:

ret = topo.isConnected("host_a3");
logger.warning("isConnected 1 -> " + ret);

ret = topo.isConnected("does_not_exist");
logger.warning("isConnected 2 -> " + ret);

...returns the output below. The first node (host_a3) is in the topology, the second node (does_not_exist) is

not:

WARN : ... [CLogModule.java]:99 +|isConnected 1 -> true|+

WARN : ... [CLogModule.java]:99 +|isConnected 2 -> false|+

topo.connected()

Check if there's a path between two specified nodes.

Request Arguments

Name Type Description

host1 String The name of the first node being checked

host2 String The name of the second node being checked

Return Parameter

Type Description

Boolean true = path between nodes exists, false = no path between nodes

Examples

Using the example topology data above, running:

ret = topo.connected("host_a1", "host_a2");
logger.warning("connected 1 -> " + ret);

ret = topo.connected("host_a1", "host_b2");
logger.warning("connected 2 -> " + ret);

...returns the output below. The first path (between host_a1 and host_a2) exists, second path (between

host_a1 and host_b2) does not:

WARN : ... [CLogModule.java]:99 +|connected 1 -> true|+

WARN : ... [CLogModule.java]:99 +|connected 2 -> false|+

topo.distance()

Check the Distance (shortest path) between two specified nodes, with an optional specified maximum Distance

(radius).

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

187

Use radius to reduce the calculation time if you are not interested in long distances.

Request Arguments

Name Type Description

host1 String The name of the first node being checked

host2 String The name of the second node being checked

radius number Optional.

The maximum Distance to return a result for

Return Parameter

Type Description

Number The Distance between the two nodes. Returns -1 if:

a node is not in the topology or the two nodes are not directly or indirectly connected

the Distance is larger than the (optionally) supplied radius

Example 1

Using the example topology data above, run the following:

ret = topo.distance("host_a5", "host_a6");
logger.warning("distance 1 -> " + ret);

No radius is specified, so there is no maximum limit on the Distance (shortest path) returned.

All connections (direct and indirect) between nodes host_a5 and host_a6 are as follows:

Edge value Connection from host_a6 to host_a5

7 Direct

6 via host_a4 (2+4)

9 via host_a1 (2+7)

12 via host_a4 then host_a1 (4+6+2)

15 via host_a1 then host_a4 (7+6+2)

15 via host_a2 and host_a3, then host_a1 (8+3+2+2)

21 via host_a2 and host_a3, then host_a1 and host_a4 (8+3+2+6+2

WARN : ... [CLogModule.java]:99 +|distance 1 -> 6|+

The Distance (shortest path) between the nodes host_a5 and host_a6 is 6, and the output below is returned:

Note:

Although the direct connection between nodes host_a5 and host_a6 has an edge (weighted connection) of 7,

the shortest path is the indirect connection via node host_a4, with a Distance of 6 (2 + 4)

Example 2

Using the example topology data above, run the following:

ret = topo.distance("host_b2", "host_b6", 8);
logger.warning("distance 2 -> " + ret);

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

188

The radius is specified as 8. All connections (direct and indirect) between nodes host_b2 and host_b6 are

as follows:

Edge value Connection from host_2 to host_b6

16 via host_b3 then host_b5 (6+5+5)

22 via host_b3, then host_b4 then host_b5 (6+8+3+5)

None of the connections have a path of 8 or less, so the result is -1, and the output below is returned:

WARN : ... [CLogModule.java]:99 +|distance 2 -> -1|+

Example 3

Using the example topology data above, running:

ret = topo.distance("host_a5", "host_b5");
logger.warning("distance 3 -> " + ret);

...returns the output below. The two nodes are not connected directly or indirectly, so -1 is returned:

WARN : ... [CLogModule.java]:99 +|distance 3 -> -1|+

topo.numberOfConnections()

Count the degree (number of connections) from a specified node.

Request Argument

Name Type Description

host String The name of the node being checked.

Return Parameter

Type Description

Number The node's degree. Returns 0 if the node does not exist or has no connection.

Example

Using the example topology data above, running:

ret = topo.numberOfConnections("host_b3");
logger.warning("numberOfConnections -> " + ret);

...returns the output below. The degree of node host_b3 is 3:

WARN : ... [CLogModule.java]:99 +|numberOfConnections -> 3|+

addEdge(String sourceNode, String sinkNode)

Optional parameter: Double weight (default value=1.0)

These will add a new node to a topology/graph both in memory and in the database.

Behavior:

• if unspecified, weight will have default value 1.0

• any new nodes will saved in memory and db

• new connection will be saved in memory and db

GraphTopo:

• won't work if there already is such edge

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

189

• uses jgraph methods addVertex and addEdge

Topo:

• won't work if both nodes aren't in topology or if both nodes already are in

• does not recalculate a topology, new coordinate == old coordinate + weight

• new coordinates will be saved in memory and database

Logger

Warning:

The Logger module was deprecated for the release of Cisco Crosswork Situation Manager 7.1.0. See Configure

Logging for details on the the new Logger.Configure Logging

The Logger module sets the log level in Moogfarmd, allowing log messages to be written to the common Moogfarmd

log file. See Configure Logging for information on configuring logging.Configure Logging

For example, when you write a Moobot, you can use the Logger for debug. Writing a log message to a log file is an

IO operation, and comes with execution time cost. When developing the Moobot it can be helpful to have a number

of logging statements. Once the Moobot is operational, however, you should keep log messaging to a minimum.

The Logger module is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global object logger to load the Logger module:

var logger = MooBot.loadModule('Logger');

Reference Guide

The logmessage argument used in the Logger module is a single string.

Multiple arguments are possible using concatenation. See Examples.

Note:

printf based Logger functions have been deprecated in favour of the 'single string argument' version. For more

information click here.

logger.debug()

Sends a debug log message (the lowest severity level). For example, this can be used for logging detailed

troubleshooting information (not for production). See Examples.

Request Argument

Name Type Description

logmessage String A single string of valid JavaScript variables or objects, used to form a log message.

Return Parameter

Void - no value returned.

logger.info()

Sends an information log message (the intermediate severity level). For example, this can be used to log the

changing of a setting. See Examples.

Request Argument

Name Type Description

logmessage String A single string of valid JavaScript variables or objects, used to form a log message.

file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba
file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba
file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba
https://en.wikipedia.org/wiki/Printf_format_string

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

190

Return Parameter

Void - no value returned.

logger.warning()

Sends a warning log message (a higher severity level). For example, this can be used to log behavior which impacts

normal operation of the system. See Examples.

Request Argument

Name Type Description

logmessage String A single string of valid JavaScript variables or objects, used to form a log message.

Return Parameter

Void - no value returned.

logger.fatal()

Sends a fatal log message (the highest severity setting). For example this can be used to log extreme circumstances,

such as an unrecoverable failure that caused Moogfarmd to exit. See Examples.

Request Argument

Name Type Description

logmessage String A single string of valid JavaScript variables or objects, used to form a log message.

Return Parameter

Void - no value returned.

Examples

All the above methods work in the same way, with each sending a log message of a different severity level.

{

 var dispText= "Reset";

 var dispNum= 2;

 var aReal= 3.141593;

 var aString= "CPU@ >90%";

 var intHigh= 4;

 var intHighest= 5;

logger.debug("A debug message");

logger.info("Counter: "+ dispText);

logger.info("Severity low. Level: "+ dispNum + ". ...Pi = "+ aReal);

logger.warning("Warning: "+ aString);

logger.warning("Severity high. Level: "+ intHigh);

logger.fatal("Severity exceeds "+ intHighest + "! Restart required");

}

The above six logger arguments give the following six corresponding log messages:

DEBUG:... ...A debug message

INFO :... ...Counter: Reset

INFO :... ...Severity low. Level: 2. ...Pi = 3.141593

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

191

WARN :... ...Warning: CPU@ >90%

WARN :... ...Severity high. Level: 4

FATAL:... ...Severity exceeds 5! Restart required

Mailer

The Mailer module allows you to send an email in response to events occurring in Cisco Crosswork Situation

Manager.

You can load it into any standard Moobot. For example, you can load Mailer into Notifier.js Moobot and send users

emails if they are invited to a Situation Room.

Configure Mailer

To load the Mailer module, define a new global object mailer at the top of the Moobot JavaScript file:

var mailer = MooBot.loadModule('Mailer');

You can configure Mailer using the methods listed below.

Methods

mailer.initTransport(mailerObj)

Defines the mail server information needed to send the email in the send function.

Request Argument

Name Type Description

mailerObj Object A JSON object specifying connection properties

Example

mailer.initTransport({

 server : "smtp.mailserver.com",

 port : 2525,

 account : "user@mailserver.com",

 password : "m00gsoft",

 isEncrypted : false,

 start_tls : false,

 use_tls : false

 });

In general, use the guidelines below for the following ports:

• If using port 587, set start_tls to true and use_tls to false.

• If using port 465, set start_tls to true and use_tls to true.

• If using port 25, set start_tls to false and use_tls to false (or comment both flags out).

Note: If you do not want Mailer to send authentication credentials to the SMTP mail server, do not specify the

password field:

mailer.initTransport({server: "yourhostname", port: 25,
account:"username@emailhost.com" });

If password is omitted, an unauthenticated connection is created between Mailer and the server.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

192

mailer.send(mailMsg)

Use this method to send email. A callback function needs to be defined in the same Moobot and referenced in the

mailMsg which is executed after a successful transmission.

Request Arguments

Name Type Description

mailMsg Object A JSON object containing fields needed to populate the email.

Example

var mailMsg = {

 to : "destination@mail.com",

 subject : "MOOGsoft Situation Room Notification",

 message : "email body",

 invite : invite, // do not change

 bot : MooBot.self, // do not change

 callback: "sendSuccess", // the name of the function to run in
this Moobot

 args : [invite_id, "Sent successfully",vector] // do not
change

 };

mailer.send(mailMsg);

MoogDb V2

You can query and manipulate a variety of entities in the Cisco Crosswork Situation Manager database using the

MoogDb V2 Moobot module.

The module uses various methods to retrieve information from MoogDb and update components of Cisco Crosswork

Situation Manager including alerts, Situations, users and teams.

All MoogDb V2 methods that update the database also publish information about the appropriate updated entities on

the Configure the Message Bus, so any updated information automatically appears in Cisco Crosswork Situation

Manager when the relevant method is called.Configure the Message Bus

Load MoogDb V2

You can load the MoogDb V2 module into any standard MooBot by defining a new global object called moogdb at

the top of the JavaScript file:

var moogdb = MooBot.loadModule('MoogDb.V2');

Methods

All available MoogDb V2 methods are described in the sections below:

addAlertToSituation

Adds a specified Alert to a Situation.

Request Arguments

Name Type Description

alertId Number The Alert ID

situationId Number The Situation ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

file://document/preview/11688%23UUIDbf389986692a9aadc8f2c8a90969fddf

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

193

addCorrelationInfo

Adds correlation information (external service name and external entity ID) to a Situation.

Request Arguments

Name Type Description

situationId Number The Situation ID

service String The name of the external service, such as ServiceNow

externalId String The identifier that the entity has in the external service, which corresponds to the Situation

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

addSigCorrelationInfo

Adds correlation information (external service name and external entity ID) to a Situation. This is the recommended

method for adding correlation information to a Situation, the addCorrelationInfo method has been retained

for backwards compatibility.

Request Arguments

Name Type Description

situationId Number The Situation ID

service String The name of the external service, such as ServiceNow

externalId String The identifier that the entity has in the external service, which corresponds to the Situation

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

addProcess

Adds a new process to the database.

Processes are external business entities related to business activities that are affected by the incidents that Cisco

Crosswork Situation Manager captures in Situations.

Request Arguments

Name Type Description

process String The process name

description String The process description.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

addService()

Adds a new external service to the database.

An external service is a business entity monitored by Cisco Crosswork Situation Manager via Event streams.

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

194

Name Type Description

service String The name of the external service being added

description String The service description

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

addThreadEntry

A POST request that adds a new entry to an existing thread in a Situation. Optionally, you can specify the new entry

as being a resolving step.

Threads are comments or 'story activity' on Situations.

This endpoint returns the entry ID of the newly created thread entry.

Request Arguments

Name Type Required Description

entry String Yes Description of the new entry you want to add to the existing thread. For

example, "And another thing...".

thread_name String Yes Name of the existing thread.

user_id Nunber Yes A valid user ID.

sitn_id Number Yes Situation ID.

resolving_step Boolean No Whether or not the thread entry you are adding is a resolving step.

Defaults to false if not specified,

Return Parameter

Type Description

HTTP code HTTP status or error code indicating request success or failure.

For codes, see HTTP Status and Error Codes.

Successful requests return a JSON object containing the following:

Name Type Description

entry_id Number ID of the new thread entry.

Examples

Request to add an entry "New Entry" to thread "Support" in Situation 158 using user ID 47. The resolving step

parameter defaults to false.

158);

Request to add an entry "New Entry" to thread "Support" in Situation 58 using user ID 47. This thread entry is a

resolving step:

158, true)

Returns the new thread entry ID:

345

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

195

assignAlert

Assigns an Alert to a valid user, identified by their user ID.

Request Arguments

Name Type Description

alertId Number The Alert ID

userId Number A valid user ID

username String A valid user name

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

assignAndAcknowledgeAlert

Assigns an Alert to a valid user, identified by their user ID, and acknowledge the alert.

Request Arguments

Name Type Description

alertId Number The Alert ID

userId Number A valid user ID

username String A valid user name

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

assignAndAcknowledgeSituation

Assigns a Situation to a valid user, identified by their user ID, and acknowledge the situation.

Request Arguments

Name Type Description

situationId Number The Situation ID

userId Integer A valid user ID

username String A valid user name

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

assignModerator

Assigns a Situation to a valid user, identified by their user ID.

Request Arguments

Name Type Description

situationId Number The Situation ID

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

196

moderatorId Number A valid user ID

username String A valid user name

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

assignTeamsToSituation

Assigns one or more teams to a Situation. Once successfully run, Cisco Crosswork Situation Manager marks the

Situation as overridden and the Teams Manager Moolet can no longer modify its team assignment. See Teams

Manager Moolet for more information.

The method replaces any teams previously assigned to the Situation. You can also use it to unassign all teams from a

Situation.

Request Arguments

Include either team_ids or team_names.

Name Type Description

sitn_id Number The Situation ID.

team_ids JSON

list

A list of team IDs to assign to the Situation. Specify an empty list to unassign all teams from

the Situation.

team_names JSON

list

A list of team names to assign to the Situation. Specify an empty list to unassign all teams

from the Situation.

Return Parameter

Type Description

Native

object

A Javascript object containing a list of the team names or team IDs assigned to the Situation, depending

on the input.

Input Example 1:

var assignTeamIDs = moogdb.assignTeamsToSituation(1, { "team_ids" : [1, 2]
})

Return:

{ "team_ids" : [1, 2] }

Input Example 2:

var assignTeamNames = moogdb.assignTeamsToSituation(2, { "team_names" : [
"Team1", "Team2"] })

Return:

{ "team_names" : ["Team1", "Team2"] }

Unassign Example:

var unassignTeamIDs = moogdb.assignTeamsToSituation(1, { "team_ids" : [] }
)

Return:

{ "team_ids" : [] }

closeAlert

Closes one or more alerts.

file://document/preview/11763%23UUIDebda8c6cc2a65d6a10babbf49a500877
file://document/preview/11763%23UUIDebda8c6cc2a65d6a10babbf49a500877

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

197

Request Argument

Name Type Description

alertId Number A single alert ID

alertIds List A list of alert IDs

thread_entry_comment String Optional comment

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

Example Input

var success = moogdb.closeAlert([78,234,737], "Closing as agreed during
team discussion 1/1/2018");

closeSituation

Closes a Situation.

Request Arguments

Name Type Description

situationId Number The Situation ID

closeAlerts Constant Determines how the Alerts in the Situation are treated:

CLOSE_NO_ALERT - No Alerts are closed

CLOSE_ALL_ALERTS - All Alerts are closed

CLOSE_UNUSED_ALERTS - Only the Alerts unique to this Situation (i.e. otherwise

unused) are closed

To access these constants from a MooBot, precede them with the module name, for

example:

moogdb.CLOSE_NO_ALERT

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

createAlert

Creates or updates an Alert in the database. Optionally updates custom info for de-duplicated Alerts.

Request Arguments

Name Type Description

alert Native

object

A Javascript object containing Alert attributes, such as type, severity, etc

event CEvent A CEvent object representing the Alert, containing Alert attributes, such as

type, severity, etc

mergeCustomInfo Boolean Set this to 'true' to merge the custom_info data in this Alert with the info

held in the database

Optional

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

198

Return Parameter

Type Description

CEvent A CEvent object containing the latest version of the Alert

createMaintenanceWindow

Creates a maintenance window that filters alerts, by passing an object containing the information.

Request Arguments

Name Type Description

maintenanceWindowObj Object A map containing the following information.

name String Mandatory - The name of the maintenance window.

description String Mandatory - The description of the maintenance window.

filter String Mandatory - The filter to apply to the new alerts created.

start_date_time Number

(Epoch)

Mandatory - The time in epoch where the maintenance window will

start, up to a maximum of 5 years in the future.

duration Number

(seconds)

Mandatory - The duration in seconds where the maintenance window is

running, must be greater than zero.

forward_alerts boolean Mandatory - Whether the alert will be forwarded to situation or not.

recurring_period Number Optional - Whether or not this is a recurring maintenance window. Set

this to:

1 for a recurring maintenance window.

0 for a one-time maintenance window.

If you change this from 0 to 1, you must specify

recurring_period_units.

recurring_period_units Number Specifies the recurring period of the maintenance window, in days,

weeks or months. If you set recurring_period to 0, you must

set recurring_period_units to 0. Valid values are:

0 = a one-time maintenance window

2 = daily

3 = weekly

4 = monthly

Input example :

{

 "name": "Mike",

 "description": "A description",

 "filter": "{'column': 'source', 'op': 0, 'value': '\'Nile\'', 'type': 'LEAF'}",

 "start_date_time": 1497971059,

 "duration": 360000,

 "forward_alerts": true,

 "recurring_period": 1,

 "recurring_period_units": 2

}

Return Parameter

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

199

Type Description

Long The window ID created, or null if an error occurred.

createSituation

Creates a new Situation, containing no Alerts.

Situation settings, such as severity are defined in the following arguments:

Request Arguments

Name Type Description

moderator String A valid user name

label String The new Situation description

Return Parameter

Type Description

CEvent The newly created Situation wrapped in a CEvent object

createTeam

Create a new team, by passing an object containing team information.

Request Arguments

Name Type Description

teamObj Object A map containing the following parameters

name String Mandatory - the new team (unique) name

alert_filter String Optional - The team alerts filter. Either a SQL like filter or an JSON

representation of the filter

services JSON list Optional - List of the team services names or IDs

sig_filter String Optional - The situation filters. Either a SQL like filter or an JSON

representation of the filter

landing_page String Optional - The team default landing page

active Boolean Optional - False if the team is inactive, true if the team is active. Default to

true

description String Optional - The team description

users List of numbers or

strings

Optional - The team users (either IDs or usernames)

Input example :

{

 "name": "myTeam",

 "alert_filter": "{ \"column\": \"count\", \"op\": 1, \"value\": 1,
\"type\": \"LEAF\" }",

 "sig_filter": "{ \"column\": \"severity\", \"op\": 1, \"value\":
5, \"type\": \"LEAF\" }",

 "active": true,

 "services": [1, 2, 4],

 "users": ["user1", "user4"],

 "description": "myDescription",

 "landing_page": ""

}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

200

Return Parameter

Type Description

Integer The team id created, or null if an error occurred.

createThread

Creates a new thread for a Situation.

Threads are comments or 'story activity' on Situations.

Request Arguments

Name Type Description

situationId Number The Situation ID

thread String The name of the new thread

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

createThreadEntry

Note:

This method has been superseded. Use addThreadEntry instead. All new functionality will be delivered in

addThreadEntry.

Creates an entry on the specified thread. This method returns a Boolean indicating whether or not the thread entry

was created successfully.

Request Arguments

Name Type Description

entry String The entry as a text string

thread String The name of the thread

userId Number A valid user ID

situationId Number The Situation ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

createUser

Create a user, by passing an object containing user properties

Request Arguments

Name Type Description

userObj Object A map containing the following user information

username String Mandatory - the new user (unique) login username

password String The new user password (only valid for DB realm)

active Boolean true if the user active, false if the user inactive, default to true

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

201

email String The user email address

fullname String The user full name

roles JSON list Mandatory - List of user roles. That list should contain either the list the role

IDs or the role names. E.g "roles":["Super User"],

primary_group String or Number The user primary group name or primary group id

department String or number The user department id or name

joined Number The time the user joined (in Unix time)

timezone String The user timezone

contact_num String The user phone number

session_expiry Number The number of minutes after which the user session will expire. Default to

system default

competencies JSON list A list with the user competencies. Each competency should have have name

or cid and ranking. That is, something like:

[{"name":"SunOS", "ranking": 40},{"name":"SAP",
"ranking": 50},{"name":"EMC", "ranking": 60}]

teams JSON list of

numbers or

strings

List of the user teams. The list should contains either the list of the teams ID

or the teams name

 Example

Input:

{

 "username": "user1",

 "fullname": "firstName surName",

 "competencies": [{

 "name": "SunOS",

 "ranking": 40

 },

 {

 "name": "SAP",

 "ranking": 50

 },

 {

 "name": "EMC",

 "ranking": 60

 }

],

 "roles": ["Super User"],

 "department": 3,

 "active": true,

 "email": "user@email.com",

 "timezone": "a timezone",

 "teams": [1, 2, 4],

 "joined": 12345678,

 "contact_num": "0965412345"

}

Return Parameter

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

202

Integer The user id created, or null if an error occured

createWorkflow

Create a new Workflow at the end of the Moolet sequence. To move it, use reorderWorkflow().

Request Arguments

Name Type Description

moolet_name String

workflow_name String

description String Workflow description.

entry_filter Filter in JSON

or SQL format

The entry filter of the Workflow. Missing, null, or empty means "accept all."

sweep_up_filter Filter in JSON

or SQL format

Check the database for all objects that match the filter criteria and pass them to all

workflow actions as a list parameter. The sweep-up filter expedites entry of related

objects into the workflow.

For example if you receive a link-up alert, you can set a filter to retrieve all related

link-down alerts from the database and have the sweep up filter close them.

A missing, null, or empty argument implies no sweep-up filter.

first_match_only Boolean If True, perform workflow operations once only on each object.

operations JSON Array Required

A list of operations, each has:

Type - (ENUM/String, Required) the type of the operation. Either action, decision,

Operation_name - (String, Required for action/decision type) Operation name.

function_name - (String, Required for action/decision type) Function name.

function_args - (JS Object , action/decision types, only optional) Function

arguments.

Duration - (Integer, Required for delay type) The number of seconds before the

message goes to the next operation/Workflow/moolet.

Reset - (Boolean, Required for delay type)Reset the timer on each occurrence?

Example

var id = moogdb.createWorkflow(

{

 "moolet_name": "Alerts Workflows",

 "workflow_name": "ChangeInfoWorkflow",

 "description": "Changingthealertinformation",

 "entry_filter": {

 "column": "severity",

 "op": 5,

 "value": 3,

 "type": "LEAF"

 },

 "sweep_up_filter": {

 "column": "description",

 "op": 4,

 "value": "description",

 "type": "LEAF"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

203

 },

 "first_match_only": false,

 "operations": [{

 "type": "action",

 "function_name": "functionA",

 "function_args": {

 "admin": 2

 },

 "operation_name": "do something"

 },

 {

 "type": "delay",

 "delay": 30,

 "reset": false

 }

]

});

deAssignAlert

Deassigns an alert. Removes the user assigned to the alert and leaves it unassigned.

Request Argument

Name Type Description

alertId Number The alert ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

deleteMaintenanceWindow

Delete a single maintenance window.

Request Argument

Name Type Description

maintenanceWindowId Number The maintenance window ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

Example

Request to delete maintenance window 456:

var success = moogdb.deleteMaintenanceWindow(456)

Successful return:

true

deleteMaintenanceWindows

Delete maintenance windows that match the specified filter. The filter can be JSON or SQL (advanced). See Filter

Search Data for further information on creating filters in Cisco Crosswork Situation Manager.

Request Argument

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

204

filter String The filter to delete windows by. Something like: description matches 'maint_window_12'

limit Number The maximal number of windows to fetch. default to 100.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

Examples

Request to delete maintenance windows that match a filter:

var success = deleteMaintenanceWindows(filter, limit);

JSON filter where the description is "host375":

{ "column": "description", "op": 10, "value": "host375", "type": "LEAF" }

Advanced SQL filter where the description is "host375":

Description MATCHES "host375"

Successful return:

true

deleteWorkflow()

Deletes a Workflow moolet.

Request Arguments

Name Type Description

id Integer Required -- ID of the workflow to delete.

Response Parameter

Type Parameter

Boolean True if the operation succeeded.

getActiveSituationIds

Returns the total number of active Situations, and a list of their Situation IDs. Active Situations are those that are not

Closed, Resolved or Dormant.

Request Arguments

None. The above method returns data on all active Situations.

Return Parameter

Type Description

Native object A Javascript object containing the total and the Situation IDs

Example

Return:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getAlert

Fetches a specified alert from the database.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

205

Request Argument

Name Type Description

alertId Number The alert ID

Return Parameter

Type Description

CEvent A CEvent object containing the alert attributes, such as type, severity, etc.

getAlertActions

Retrieves the actions for one or more specified alerts or for a specified time period.

Request Arguments

Name Type Required Description

alert_ids JSON

list

No List of alert IDs.

start Number Yes Starting row from which data should be included.

limit Number Yes Maximum number of actions you want to retrieve.

actions JSON

list

No List of action codes. If no action codes are specified, all action codes are returned. See

Alert Action Codes for a list of action codes and their descriptions. Only action codes 8

(Alert Resolved) and 9 (Alert Closed) are valid.

from Number No Start time (in Unix epoch time) of the period you want to retrieve alert actions for.

to Number No End time (in Unix epoch time) of the period you want to retrieve alert actions for.

Return Parameters

Type Description

Native object A JSON object containing the alert action information.

Examples

Request:

var actions = moogdb.getAlertActions(request);

Example request object to return the first 100 actions for alert IDs 1 and 2 for action codes 9 and 10:

{

}

Example request object to return the first 100 actions for alert IDs 1 and 2 for action codes 9 and 10 between the

Unix epoch times 1553861746 and 1553872546:

{

 "alert_ids" : [1, 2],

 "limit" : 100,

 "actions" : [8, 9],

 "from" : 1553861746,

 "to" : 1553872546

}

Successful return:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

206

[{

 "uid": 49,

 "action_code": 8,

 "description": "Alert Resolved",

 "details": {},

 "alert_id": 1,

 "timed_at": 1557504393

 }, {

 "uid": 49,

 "action_code": 9,

 "description": "Alert Closed",

 "details": {},

 "alert_id": 1,

 "timed_at": 1557504912

 }

}]

getAlertCustomInfo

Retrieves any custom information from a specific alert.

Request Arguments

Name Type Description

alertId Number ID of the alert you want to retrieve custom info data from.

key String Specify the key if you are interested in a specific value. Otherwise the method returns all

custom_info information.

Return Parameter

Type Description

Number, List, String or Object A map of name-value pairs containing the new custom_info information.

getAlertIds

Retrieves all alert IDs matching the query.

Request Argument

Name Type Description

query JSON Object A JSON object containing the alert filter information.

limit Number The maximum number of alert ids to return.

Return Parameter

Type Description

NativeObject A Javascript object containing the total number of alerts and their alert IDs.

Example

Return:

{

 "total_alerts":10,

 "alert_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getSigCorrelationInfo

Retrieves all correlation information related to a specified Situation.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

207

sitn_id Number The Situation ID.

Return Parameter

Type Description

Object A Javascript object containing a list of maps of correlation info.

getSigCustomInfo

Retrieves all custom information related to a specified Situation.

Request Arguments

Name Type Description

sigId Number The Situation ID.

key String Node path for specific value to return.

Return Parameter

Type Description

Number, object, list or

string

Depends on the key but can either be a number, object, list or string containing a list of maps

of custom info.

getMaintenanceWindows

Get all maintenance windows based on the window id and how many should be fetched.

Request Argument

Name Type Description

start Number The start point for where to fetch windows from (ie, 0 to start at the first, 10 to start at the 11th)

limit Number The number of windows to fetch

Return Parameter

Type Description

NativeObject A Javascript object with a nested array.

Example

Return:

{

 "windows": [

 {

 "filter":
"{\"op\":6,\"column\":\"severity\",\"type\":\"LEAF\",\"value\":[2]}",

 "duration": 3600,

 "recurring_period": 1,

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1491917013,

 "name": "window1",

 "updated_by": 3,

 "description": "dfgvhbjk",

 "id": 1,

 "recurring_period_units": 2,

 "start_date_time": 1491916979

 }

]

}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

208

findMaintenanceWindows

Find maintenance windows based on a filter and how many should be fetched.

Request Argument

Name Type Description

filter String The filter to find windows by. Something like: description matches 'dfgvhbjk'.

limit Number The maximal number of windows to fetch. default to 100.

Return Parameter

Type Description

PublicObject A Javascript object containing the windows

Example

Return:

{

 "windows": [

 {

 "filter":
"{\"op\":6,\"column\":\"severity\",\"type\":\"LEAF\",\"value\":[2]}",

 "duration": 3600,

 "recurring_period": 1,

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1491917013,

 "name": "window1",

 "updated_by": 3,

 "description": "dfgvhbjk",

 "id": 1,

 "recurring_period_units": 2,

 "start_date_time": 1491916979

 }

]

}

getQueueName

Fetches the queue name from the database, for the given queue ID.

Request Argument

Name Type Description

queueId Number The queue ID

Return Parameter

Type Description

String Queue name

getPrcLabels

Returns probable root cause (PRC) information for all alerts or specified alerts within a specified Situation.

Request Arguments

Name Type Description

situationId Number The Situation ID

alert_ids JSON list A list of the alert IDs (Optional)

Return Parameter

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

209

Type Description

Native object A Javascript object containing the probable root cause information for the alerts in the specified Situation

Example

Input:

var alertIds = [1,2,3,4];

var prcLabels = moogdb.getPrcLabels(1, alertIds);

Return:

{

 "non_causal":

 [2,3],

 "unlabelled":

 [4],

 "causal":

 [1]

}

getProcesses

Fetches a list of processes from the database.

Request Argument

Name Type Description

limit Integer The maximum number of processes to retreive. 1000 is the default.

Return Parameter

Type Description

Native object A list of string hashmaps describing the requested processes, or null value if there is an error.

getResolvingThreadEntries

Returns thread entries that have been marked as resolving steps for the specified Situation. Threads are comments

or 'story activity' on Situations.

You can select specific thread entries to return using start and limit values. If not, the first 100 entries will be

returned. The entries returned are ordered by most recent entries first.

Request Arguments

Name Type Required Description

situationId Number Yes Situation ID.

thread String Yes Name of the thread.

start Number No Number of the first thread entry to return.

limit Number No Maximum number of thread entries to return.

Return Parameter

Type Description

Native object A Javascript object containing details of the selected thread entries.

Examples

Request to return the first 100 thread entries that are resolving steps for Situation 58:

var resolvingEntries = moogdb.getResolvingThreadEntries(58);

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

210

Request to return the first 10 thread entries that are resolving steps for Situation 58:

var resolvingEntries = moogdb.getResolvingThreadEntries(58, 0, 10);

Return:

{

 "entries": [

 {

 "uid": 3,

 "entry": "This one is important. Another comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 1,

 "entry_id": 2,

 "timed_at": 1423226829,

 "disagrees": [],

 "commenters": []

 },

 {

 "uid": 3,

 "entry": "No comment. A comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 1,

 "entry_id": 1,

 "timed_at": 1423226807,

 "disagrees": [3],

 "commenters": []

 }

],

 "total_entries": 2

}

getServices

Fetches a list of services from the database.

Request Argument

Name Type Description

limit Integer The maximum number of services to retrieve. 1000 is the default.

Return Parameter

Type Description

Native object A list of string hashmaps describing the requested services, or null value if there is an error.

getSituation

Fetches a specified Situation from the database.

Request Argument

Name Type Description

situationId Number The Situation ID

Return Parameter

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

211

Object A JavaScript object representing the Situation.

getSituationActions

Returns activity for specified Situations. Created by passing an object with the information requested. You can use

the from and to arguments to specify a period that you want to retrieve Situation actions for. If you do not specify

these, all actions are returned.

Request Arguments

Name Type Description

sitn_ids JSON

list

List of Situation IDs.

start Number Starting row from which data should be included.

limit Number Maximum number of actions you want to return.

actions JSON

list

List of action codes of actions you want to include in the return. If no action codes are

specified, all action codes are returned. See Situation Action Codes for a list of action codes

and their descriptions.

from Number Start time (in Unix epoch time) of the period you want to retrieve Situation actions for.

to Number End time (in Unix epoch time) of the period you want to retrieve Situation actions for.

Return Parameter

Type Description

Native object A Javascript object containing the activity for specified situations

Example

Input:

var actions = moogdb.getSituationActions(request);

Example request object to return the first 100 actions for Situation IDs 1, 2, and 3 for action codes 1 (Situation

Created) and 14 (Added Alerts To Situation):

{

 "sitn_ids" : [1, 2, 3],

 "start" : 0,

 "limit" : 100,

 "actions" : [1, 14]

}

Successful return:

[{

 "uid": 2,

 "action_code": 1,

 "description": "Situation Created",

 "details": {},

 "type": "event",

 "sig_id": 1,

 "timed_at": 1507039842

 }, {

 "uid": 2,

 "action_code": 14,

 "description": "Added Alerts To Situation",

 "details": {}

 "alerts": [1, 2]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

212

 }

}]

getSituationAlertIds

Returns the total number of alerts, and a list of their alert IDs for a specified Situation. This can be either all alerts or

just those alerts unique to the Situation.

Request Arguments

Name Type Description

situationId Number The Situation ID

uniqueOnly Boolean Gets alert IDs from the Situation:

true = get those alerts unique to the Situation

false = get all alerts in the Situation

Return Parameter

Type Description

Native object A Javascript object containing the total and the alert IDs

Example

Return:

{

 "total_alerts":10,

 "alert_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getSituationIds

Get all situation Ids matching the query.

Request Argument

Name Type Description

query JSON Object A JSON Object containing the alert filter information

limit Number The maximum number of situation ids to return

Return Parameter

Type Description

NativeObject A Javascript object containing the total and the Situation IDs

Example

Return:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getSituationHosts

Returns a list of host names for a specified Situation, either for all the alerts in the Situation or just for the unique

alerts.

Hosts are the names (defined in the alerts.source field in the database) for the sources of Events.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

213

situationId Number The Situation ID

uniqueOnly Boolean Gets host names for the Situation:

true = get those host names unique to the Situation

false = all host names in the Situation

Return Parameter

Type Description

Native object A Javascript array containing the host names

Example

Return:

{

 "hosts": [

 "server1",

 "server2",

 "server3",

 "server4",

 "server5",

 "server6",

 "server7"

]

}

getSituationProcesses

Returns a list of process names for a specified Situation, and the primary process name, if defined.

Request Argument

Name Type Description

situationId Number The Situation ID

Return Parameter

Type Description

Native object A Javascript array containing the process names, and the Situation's primary process, if defined

Example

Return, with a primary process name defined:

{

 "processes": [

 "Process1",

 "Process2"

],

 "primary": "Process2"

}

getSituationServices

Returns a list of external service names for a specified Situation, and the primary service name, if defined.

Request Argument

Name Type Description

situationId Number The Situation ID

Return Parameter

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

214

Type Description

Native object A Javascript array containing the service names, and the Situation's primary service, if defined

 Example

Return, with a primary service name defined:

{

 "services": [

 "Service1",

 "Service2"

],

 "primary": "Service1"

}

getSituationTopology

Returns the topology of all alerts connected to a Situation. This is sent as a JSON object in NetJSON format that

represents the nodes affected by the Situation.

Request Argument

Name Type Description

sigId Number The Situation ID

contextLevel Integer Level of contextual nodes to return

topologyPropsObj Native

array

Array of node properties to be returned. Valid properties are:

severity: Severity of the node.

prc: Whether this node is the probable root cause of the alert.

service: Service affected by the node.

context: Number of contextual hops between this node and a node directly

affected by the Situation. A context of 0means that the node is directly affected.

description: Description of the node.

vertex_entropy: Vertex Entropy of the node.

fieldName String Attribute of the alert that defines the node. The default is the alert 'source' but

you can specify any valid alert field, including custom_info attributes.

Return Parameter

Type Description

Object A JSON object in NetJSON format that represents the nodes affected by the Situation.

 Example

Return, with a primary service name defined:

{

 "links": [

 {

 "source": "host2728",

 "target": "host2736"

 },

 {

 "source": "host2728",

 "target": "host1156"

 },

 {

 "source": "host2835",

 "target": "host2728"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

215

 },

 {

 "source": "host2801",

 "target": "host2827"

 },

 {

 "source": "host2800",

 "target": "host2801"

 },

 {

 "source": "host2801",

 "target": "host2835"

 },

 {

 "source": "host2835",

 "target": "host2736"

 }

],

 "nodes": [

 {

 "id": "host2835",

 "properties": {

 "severity": 5,

 "prc": 0.9862626716344282,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.1794592472207979

 }

 },

 {

 "id": "host2736",

 "properties": {

 "severity": 4,

 "prc": 0.42722191049803876,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.08976540495989357

 }

 },

 {

 "id": "host2728",

 "properties": {

 "severity": 3,

 "prc": 0.007672752075071621,

 "service": "",

 "context": 0,

 "description": "",

 "vertex_entropy": 0.1794592472207979

 }

 },

]

}

getTeams

A GET request that returns all teams created in the Cisco Crosswork Situation Manager instance.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

216

auth_token String A valid auth_token returned from the authenticate request.

Return Parameters

Type Description

Native Object A native object containing information about all teams in Cisco Crosswork Situation Manager.

Example

Curl Command:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeams"

Successful request return:

[

 {

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [

 3

],

 "sig_filter": "",

 "landing_page": "",

 "description": "Example Team",

 "active": true,

 "team_id": 1,

 "services": [

 "Commerce",

 "Compute",

 "CRM",

 "Database",

 "Mobile",

 "Networking",

 "Remote",

 "Social",

 "Storage",

 "Switch",

 "Web"

],

 "users": [

 "admin"

],

 "name": "Cloud DevOps",

 "service_ids": [

 1,

 2,

 3,

 4,

 5,

 6,

 7,

 8,

 9,

 10,

 11

]

 },

 {

 "room_id": 2,

 "alert_filter": "",

 "user_ids": [

 3,

 5,

 7

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

217

],

 "sig_filter": "",

 "landing_page": "",

 "description": "",

 "active": true,

 "team_id": 2,

 "services": [

 "Compute",

 "Mobile",

 "Remote",

 "Storage",

 "Switch"

],

 "users": [

 "admin",

 "1",

 "3"

],

 "name": "DatabaseOps",

 "service_ids": [

 3,

 5,

 7,

 9,

 10

]

 }

]

getTeam

A GET request that returns a team's details by team ID or name.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

team_id Integer ID of the team to retrieve information about.

name String Name of a valid team to retrieve information about.

Return Parameters

Type Description

JSON Object A JSON Object containing details about the team.

Examples

Request to return the details for the team with ID 1:

var teamData = moogdb.getTeam(1);

Successful request return:

{

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [

 3

],

 "sig_filter": "",

 "landing_page": null,

 "description": "Example Team",

 "active": true,

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

218

 "team_id": 1,

 "services": [],

 "users": [

 "admin"

],

 "name": "Cloud DevOps",

 "service_ids": []

}

Example 2 (name)

Curl Command to return the details for team Cloud DevOps:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeam?name=Cloud DevOps"

Successful request return:

{

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [

 3

],

 "sig_filter": "",

 "landing_page": null,

 "description": "Example Team",

 "active": true,

 "team_id": 1,

 "services": [],

 "users": [

 "admin"

],

 "name": "Cloud DevOps",

 "service_ids": []

}

getTeamsForService

A GET request to return all teams related to the service with the specified ID or name.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

service_id String The ID of the service.

name String The name of the service.

Return Parameters

Type Description

Native

Object

A native object containing information about all teams in associated with the specified services in Cisco

Crosswork Situation Manager.

Examples

Curl Command for service_id:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamsForService?service_id=1"

Curl command for service name:

curl -G -u graze:graze -k -v
"https://localhost/graze/v1/getTeamsForService?service_name=web"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

219

Successful request return:

[

 {

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [

 3

],

 "sig_filter": "",

 "name": "Cloud DevOps",

 "landing_page": "",

 "description": "Example Team",

 "active": true,

 "service_ids": [

 1,

 2,

 3,

 4,

 5,

 6,

 7,

 8,

 9,

 10,

 11

],

 "team_id": 1,

 "services": [

 "Commerce",

 "Compute",

 "CRM",

 "Database",

 "Mobile",

 "Networking",

 "Remote",

 "Social",

 "Storage",

 "Switch",

 "Web"

],

 "users": [

 "admin"

]

 }

]

getTeamSituationIds

Get all situation Ids for the given team.

Request Argument

Name Type Description

teamName String The team name

limit Number The number of situations to return

Return Parameter

Type Description

NativeObject A Javascript object containing the total and the Situation IDs

Example

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

220

Return:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getThreadEntries

Returns thread entries for the specified Situation. Threads are comments or 'story activity' on Situations.

You can select specific thread entries to return using start and limit values. If not, the first 100 entries will be

returned. The entries returned are ordered by most recent entries first.

Request Arguments

Name Type Required

situationId Number Required

thread String Required

start Number Optional

limit Number Optional

Return Parameter

Type Description

Native object A Javascript object containing details of the selected thread entries

Examples

Request to get the thread entries for thread "Support" on Situation ID 58:

Successful return:

{

 "entries": [

 {

 "uid": 3,

 "entry": "This one is important. Another comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 58,

 "entry_id": 2,

 "timed_at": 1423226829,

 "disagrees": [],

 "commenters": []

 },

 {

 "uid": 3,

 "entry": "No comment. A comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 58,

 "entry_id": 1,

 "timed_at": 1423226807,

 "disagrees": [3],

 "commenters": []

 }

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

221

],

 "total_entries": 2

}

getUser

Fetches user information from the database, given the user ID or username.

Request Argument

Name Type Description

userId Number A valid user ID

username String A valid username

Return Parameter

Type Description

CEvent A CEvent object containing the user information

Example:

Example request:

var cevent = moogdb.getUser(6);

Example response:

{active=true, competencies=[], contact_num=, department=null,
description=Online, email=, fullname=cyber, groupname=End-User,
invitations=[], joined=1516963803, only_ldap=0, photo=-1, primary_group=1,
profile_image=null, realms=[DB], roles=[1, 3, 4, 5], session_expiry=null,
status=1, teams=[], timezone=SYSTEM, uid=6, username=cyber}

getUsers

Fetches all users from the database.

Request Argument

Name Type Description

limit Integer The number of users to return. 1000 by default.

Return Parameter

Type Description

NativeObject A JavaScript list of objects describing the users.

Example

Return:

[

 {

 "uid": 3,

 "teams": [

 "Cloud DevOps"

],

 "fullname": "Administrator",

 "username": "admin"

 },

 {

 "uid": 6,

 "teams": [],

 "fullname": "Nagios",

 "username": "Nagios"

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

222

 },

 {

 "uid": 5,

 "teams": [],

 "fullname": "Webhook",

 "username": "Webhook"

 }

]

getUserName

Fetches user information from the database, given the user ID.

Request Argument

Name Type Description

userId Number A valid user ID

Return Parameter

Type Description

String The corresponding username for the submitted user ID.

getUserRoles

Fetches the user's roles from the database.

Request Argument

Name Type Description

userid Number A valid userId

username String A valid username

Return parameter

Type Description

NativeObject A JavaScript object containing Role id, Role name and Role description

Example

Return:

[{

 "id": 1,

 "name": "Super User",

 "description": "Super User"

}, {

 "id": 3,

 "name": "Manager",

 "description": "Manager"

}, {

 "id": 4,

 "name": "Operator",

 "description": "Operator"

}]

getUserTeams

Fetches the user IDs and team names for a specified user in the database.

Request Argument

Name Type Description

userid Number A valid user ID.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

223

username String A valid username

Return parameter

Type Description

CEvent A CEvent containing the team IDs and team names.

[{

 "id": 2,

 "name": "Alpha"

}, {

 "id": 3,

 "name": "Epsilon"

}, {

 "id": 4,

 "name": "Moo_team"

}]

getWorkflowEngineMoolets

Request Arguments

None.

Return Parameter

A JSON array of moolet objects. Each object has the following:

Name Type Description

moolet_name String The Moolet name.

moolet_type ENUM/String The Moolet type: event, alert, or situation.

active Boolean Is the workflow engine that the Moolet represents active?

functions[c][d][e] JSON The available functions in the moobot - each key is the function name and the values

are:

Description (String) -- The description of the function

Decision (Boolean) -- If True, treat the result of this function as a decision,.

Arguments - (JSON) the arguments of the function, a map from the argument name

to:

Type - (ENUM/String) the type of argument - either Text, JSON or Number.

Description - Human readable description of the argument.

last_updated Integer UNIX time when the Moolet was last updated.

Example

[{

 "moolet_name": "Alerts Workflows",

 "moolet_type": "alert",

 "active": true,

 "functions": {

 "functionOne": {

 "description": "The first function",

 "decision": true,

 "arguments": {

 "severity": {

 "type": "Number",

 "description": "The severity."

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

224

 }

 }

 },

 "functionTwo": {

 "description": "The second function",

 "decision": false,

 "arguments": {

 "customInfo": {

 "type": "JSON",

 "description": "The custom info."

 },

 "key": {

 "type": "Text",

 "description": "The key within the
custom info."

 }

 }

 }

 },

 "last_updated": 1545306590

}]

getWorkflows

Get all the known workflows by moolet name.

Request Arguments

Name Type Description

mooletName String Required

Name of the moolet to retrieve workflows for.

activeOnly Boolean Return only the active workflows.

Return Parameter

JSON array of matching workflows, where each has:

Type Type

id Integer

moolet_name String

workflow_name String

sequence Integer

active Boolean

description String

entry_filter JSON filter

sweep_up_filter JSON filter

first_match_only Boolean

operations JSON list

Example

[{

 "id": 1,

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

225

 "moolet_name": "Alerts Workflows",

 "workflow_name": "ChangeInfoWorkflow",

 "sequence": 1,

 "active": true,

 "description": "Changingthealertinformation",

 "entry_filter": {

 "column": "severity",

 "op": 5,

 "value": 3,

 "type": "LEAF"

 },

 "sweep_up_filter": {

 "column": "description",

 "op": 4,

 "value": "description",

 "type": "LEAF"

 },

 "first_match_only": true,

 "operations": [{

 "type": "action",

 "function_name": "functionA",

 "operation_name": "Name of operation",

 "function_args": {

 "admin": 2

 }

 },

 {

 "type": "delay",

 "delay": 30,

 "reset": false

 }

]

}]

mergeSituations

Merges two or more Situations, superseding the originals if required, and returning the newly created Situation.

Request Arguments

Name Type Description

situationIds Native array A Javascript array containing the IDs of the Situations to merge

keepOriginals Boolean Determines what to do with the original Situations:

true = keep the original Situations

false = supersede the original Situations

Return Parameter

Type Description

CEvent A CEvent object containing the newly created Situation

moveSituationToCategory

Move a Situation into a new category.

A category represents a type of Situation, indicating how it was created or its state. See Create Shared Alert and

Situation Filters in Cisco Crosswork Situation Manager Administrator Guide for more information.Create Shared Alert

and Situation Filters

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

226

Name Type Description

situationId Number The Situation ID

category String The name of the new category

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

moveSituationToQueue

Assigns a specified Situation to a queue and writes a thread entry if required. The queue and user may be provided

as either an ID or a valid name.

Request Arguments

Name Type Description

situationId Number The Situation ID

user Object An object containing either a valid user name or ID

queue Object An object containing either a valid queue name or ID

journal String An entry to add to the journal thread, if required

Optional

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

removeAlertFromSituation

Removes a specified Alert from a Situation.

Request Arguments

Name Type Description

alertId Number The Alert ID

situationId Number The Situation ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

removeSigCorrelationInfo

Removes all correlation information related to a specified Situation.

Request Arguments

Name Type Description

auth_token String A valid auth_token returned from the authenticate request.

sitn_id Number The Situation ID

serviceName String The service name (Optional).

externalId String The external ID (Optional).

Return Parameter

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

227

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

reorderWorkflows

Reorder the sequence of Workflows within a Moolet.

Request Arguments

Argument Type Description

moolet_name String Required -- Moolet name.

workflow_IDs_sequence Array of

Integers

Required -- An ordered array of all the workflow IDs, where position 0 is the

first ID in the sequence.

Return Parameters

Type Description

Boolean True if the operation was successful.

Example

5]);

resolveSituation

Resolve a specified Situation that is currently open.

Request Argument

Name Type Description

situationId Number The Situation ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

reviveSituation

Revive (set to open) a specified Situation that is currently set to resolved.

Request Argument

Name Type Description

situationId Number The Situation ID

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

setAlertCustomInfo

Updates the custom information in the database for specified Alert.

This method can either be used with the alertInfo CEvent or with both the alertID and customInfoMap

arguments.

The merge parameter can be used alongside either methods. This determines whether to merge the new custom

information data with existing data or replace it.

Request Arguments

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

228

Name Type Description

alertId Number The Alert ID.

Note:

Can be used alongsidecustomInfoMapandmergebut notalertInfo.

alertInfo CEvent A CEvent containing alert_id and custom_infoattributes, the values of which

will be used to replace the custom_info in the specified Alert.

Note:

Can be used alongsidemergebut notalertIdorcustomInfoMap.

customInfoMap Object A map of name value pairs containing the new custom_info information.

merge Boolean Determines what is done with the custom information:

true = merge the existing data with the new data

false = replace the existing data with the new data.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

setAlertSeverity

Sets the severity level for a specified Alert.

Request Arguments

Name Type Description

alertId Number The Alert ID

severity Number The Alert's severity as an integer:

0 Clear

1 Indeterminate

2 Warning

3 Minor

4 Major

5 Critical

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

setPrcLabels

Updates the probable root cause (PRC) information for specified alerts within a Situation. You must specify at least

one alert ID and a PRC level for the alert.

You can mark alerts as causal, non_causal or unlabelled within a Situation. An alert can have different PRC levels

within different Situations.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

229

situationId Number The Situation ID

alert_ids JSON list A list of the alert IDs

causal

non_causal

unlabelled

JSON list PRC levels

Input example:

var prcLabels = { causal: [1], unlabelled: [4], non_causal: [2,3] };
moogdb.setPrcLabels(1, prcLabels);

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

setResolvingThreadEntry

Sets or clears a thread entry in a Situation as a resolving step. Threads are comments or 'story activity' on Situations.

This method returns a Boolean indicating whether the thread entry was successfully set or cleared as a resolving

step.

Request Arguments

Name Type Required

entryId Number Yes

resolving_step Boolean Yes

userId Number Yes

Return Parameter

 Type Description

Boolean Whether or not the thread entry was successfully set or cleared as a resolving step.

Examples

Request to set thread entry 32 as a resolving step using user ID 1:

var success = moogdb.setResolvingThreadEntry(32, true, 1);

Return of successful request:

true

setSigCustomInfo

Updates the custom information in the database for specified Situation.

The Situation ID and new custom information are both contained in the situationInfo CEvent.

The new custom information is contained in the customInfoMap object.

The merge parameter determines whether to merge the new custom information data with existing data or replace

it.

Request Arguments

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

230

situationId Number The Situation ID

customInfoMap Object A map of name value pairs containing the new custom_info information.

merge Boolean Determines what is done with the custom information:

true = merge the existing data with the new data

false = replace the existing data with the new data

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

setSituationProcesses

Applies a list of processes (contained in the processes Javascript array) to a specified Situation.

Any other processes already associated with the Situation are removed.

Request Arguments

Name Type Description

situationId Number The Situation ID.

processes Native

array

A Javascript array containing the process names. If any processes supplied do not exist

in the database, they are created and assigned to the Situation.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

setSituationServices

Applies a list of external services (contained in the services JavaScript array) to a specified Situation.

Any other services already associated with the Situation are removed.

Request Arguments

Name Type Description

situationId Number The Situation ID.

services Native

array

A JavaScript array containing the service names. If any services supplied do not exist in

the database, they are created and assigned to the Situation.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

updateAlert

Takes an Alert object and uses it to update the database and the MooMS bus.

Request Argument

Name Type Description

alertObject CEvent The Alert object

Return Parameter

Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

231

Boolean Indicates if the operation was successful: true = success, false = fail

updateCustomInfo

Update the custom info for an alert or Situation.

Request Argument

Name Type Description

toUpdate CEvent A CEvent representing the alert or Situation you want to update.

toMerge JavaScript

Object

The custom info to add to/replace the existing custom info field.

merge Boolean Merge the existing and new custom info if true. Replaces existing custom info if false.

Defaults to true.

For an alert you can also use the following arguments:

Name Type Description

alertId Number Alert ID of the alert you want to add custom info to.

path String Dot-notation path to the custom_info key where the info is stored. Updates existing value if

the key already exists; creates the full path if the key does not exist.

param Value Value to put at the specified key.

Return Parameter

Type Description

Boolean Indicates if the operation was successful. True = success, false = fail.

updateMaintenanceWindow

Updates a maintenance window object, by passing an object containing the maintenance window information.

Request Argument

Name Type Required Description

updatedWindow Native object Yes Maintenance window object containing the updated details.

The maintenance window object maintenanceWindowObj contains the following information:

Name Type Required Description

window_id Number Yes ID of the maintenance window.

name String Yes Name of the maintenance window.

description String Yes Description of the maintenance window.

filter String Yes Filter to apply to the new alerts created.

start_date_time Number Yes The time in epoch when the maintenance window will start, up to a

maximum of 5 years in the future.

duration Number Yes Duration, in seconds, that the maintenance window will run for. Must be

greater than zero.

forward_alerts Boolean Yes Whether or not alerts will be forwarded to a Situation.

recurring_period Number No Whether or not this is a recurring maintenance window. Set this to:

1 for a recurring maintenance window.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

232

0 for a one-time maintenance window.

If you change this from 0 to 1, you must specify

recurring_period_units.

recurring_period_units Number No Specifies the recurring period of the maintenance window, in days, weeks

or months. If you set recurring_period to 0, you must set

recurring_period_units to 0. Valid values are:

0 = a one-time maintenance window

2 = daily

3 = weekly

4 = monthly

Example

Request to update a maintenance window:

var updatedWindow = moogdb.updateMaintenanceWindow(windowToUpdate)

Where windowToUpdate is as follows:

{

 \ er1\

}

updateSituation

Takes a Situation object and uses it to update the database and the Message bus.

Request Argument

Name Type Description

situationObject CEvent The Situation object

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

updateTeam

Update the team, by passing an object containing team information.

Request Arguments

Name Type Description

teamObj Object A map containing the following team information

team_id Number Mandatory - The team ID

name String Optional - The new team name. Leave empty to leave Cisco Crosswork Situation

Manager as is

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

233

alert_filter String Optional - The new team alerts filter. Either a SQL like filter or an JSON

representation of the filter. Leave empty to leave Cisco Crosswork Situation

Manager as is

services JSON List Optional - List of the team services names or IDs. Leave empty to leave

Moogsoft AIOps as is

sig_filter String Optional - The situation filters. Either a SQL like filter or an JSON representation

of the filter. Leave empty to leave Moogsoft AIOps as is

landing_page String Optional - The team default landing page. Leave empty to leave Moogsoft AIOps

as is

active Boolean Optional - False if the team is inactive, true if the team is active. Default to true.

Leave empty to leave Moogsoft AIOps as is

description String Optional - The team description. Leave empty to leave Moogsoft AIOps as is

users List of numbers

or strings

Optional - The team users (either IDs or usernames). Leave empty to leave

Moogsoft AIOps as is

Input example

{

 "team_id" : 3,

 "name": "myTeam",

 "alert_filter": "{ \"column\": \"count\", \"op\": 1, \"value\": 1,
\"type\": \"LEAF\" }",

 "sig_filter": "{ \"column\": \"severity\", \"op\": 1, \"value\":
5, \"type\": \"LEAF\" }",

 "active": true,

 "services": [1, 2, 4],

 "users": ["user1", "user4"],

 "description": "myDescription",

 "landing_page": ""

}

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

updateUser

Update the user, by passing an object containing user information.

Request Arguments

Name Type Description

userObj Object A map containing the following user information

username String Mandatory (optional if user id used) - the user login username

uid Number Mandatory (optional if username used) - the user id

password String The new user password (only valid for DB realm)

active Boolean true if the user active, false if the user inactive, default to true

email String The user email address

fullname String The user full name

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

234

roles JSON list List of user roles. That list should contain either the list the role IDs or the role

names. For example, "roles":["Super User"],

primary_group String or

Number

The user primary group name or primary group id

department String or

number

The user department id or name

timezone String The user timezone

contact_num String The user phone number

session_expiry Number The number of minutes after which the user session will expire. Default to system

default

competencies JSON list A list with the user competencies. Each competency should have the name or cid

and ranking. That is, something like:

[

 { "name" : "SunOS" , "ranking" : 40 },

 { "name" : "SAP" , "ranking" : 50 },

 { "name" : "EMC" , "ranking" : 60 }

]

teams JSON list of

numbers or

strings

List of the user teams. The list should contains either the list of the teams ID or

the teams name.

Input example :

{

 "uid": 5,

 "fullname": "firstName surName",

 "competencies": [{

 "name": "SunOS",

 "ranking": 40

 },

 {

 "name": "SAP",

 "ranking": 50

 },

 {

 "name": "EMC",

 "ranking": 60

 }

],

 "roles": ["Super User"],

 "department": 3,

 "active": true,

 "email": "user@email.com",

 "timezone": "a timezone",

 "teams": [1, 2, 4],

 "joined": 12345678,

 "contact_num": "0965412345"

}

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

235

updateWorkflows

Update one or more existing workflows.

Request Arguments

Name Type Description

id integer The ID of the workflow to be updated.

details JSON A details object with the following fields.

Details Object

Name Type Description

workflow_name String Workflow name.

active Boolean If true, the workflow is active.

description String Workflow description.

entry_filter Filter in JSON or

SQL format

The sweep-up filter. An empty, null, or missing filter means no sweep-up.

first_match_only Boolean Perform workflow operations only once on each object.

sweep_up_filter Filter in JSON or

SQL format

The sweep-up filter. An empty, null, or missing filter means no sweep-up.

operation JSON list A list of operations, each being:

type - (ENUM/String) (Mandatory) the type of the operation. Either action,

decision, delay. Depending on the

operation_name - (String, Required for action/decision type) The operation name.

* function_name - (String, Required for action/decision type) The function name.

* function_args - (JS Object) (Optional for action/decision type) The arguments for

the action or decision function.

duration - (Integer) (Required for delay type) The amount of seconds before the

message goes to the next operation/Workflow/moolet

reset Boolean Mandatory for delay type

Return Parameter

Type Description

Boolean True if the operation was successful.

Request Example

Moolet Informs

 Before You Begin

 Configure the Module

 Reference

— create

— setSubject

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

236

— setPayload

— setDetails

— setTarget

— send

 Example

You can configure a Moolet to exchange messages about update information with other Moolets using the Moolet

Informs module. For example, after you label some alerts you can configure the module to inform the ticketing Moolet

to update the severity of a ticket based on the new label.

To enable this functionality, you add the Moolet Informs module at the start of a Moobot associated with the Moolet

you want to send inform messages from.

Before You Begin

Before you get started, ensure you have met the following requirements:

• You have a Moolet and associated Moobot you want to send inform messages from.

• You know the Moolets you want to receive the inform messages. These are your "targets".

Configure the Module

To use the Moolet Informs module:

1. Go to the Moobot associated with the source Moolet from which you want to send Inform messages. Load

the module at the top of the file:

 var mooletInforms = MooBot.loadModule('MooletInforms');

2. Create the Moolet Inform using the create method as follows, passing the target Moolets that receive

messages from this source:

 var inform = mooletInforms.create("AlertRulesEngine", "Cookbook");

 Specifying the target Moolets is not required in this step. However, you will need to specify the targets later.

 var inform = mooletInforms.create();

3. Add values to the inform using one or more of the following:

– inform.setSubject: Subject of the inform message. You can use this to enable a different workflow

within the target Moobot.

– inform.setPayload: Any CEvent object. See Events for more information.

– inform.setDetails: Details of any other data you want to send as a JSON object.

4. If you did not specify the target Moolets previously, specify them now:

– inform.setTarget: List of Moolets the messages are sent to by the Moolet.

5. There are two ways to configure how the messages are sent. If you have already set your targets:

 inform.send();

 If you have not set your targets, include them in the method call:

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

237

 inform.send("AlertRulesEngine", "Cookbook");

6. Go to the config file for each target Moolet and add an event handler to listen for the Inform messages:

 events.onEvent("informReceive",

constants.eventType("mooletInforms.ExampleMoolet")).listen();

7. There are two ways for the listening target Moolet to access the data.

 function informReceive(inform) {
 var subject = inform.getSubject();
 var payload = inform.getPayload();
 var details = inform.getDetails();
 logger.warning("Received Moolet Inform. Subject [" + subject + "]

Payload [" + payload + "] Details [" + details + "]");
}

 Alternatively, you can use the value method:

 function informReceive(inform) {
 var subject = inform.value("subject");
 var payload = inform.value("payload");
 var details = inform.value("details");
 logger.warning("Received Moolet Inform. Subject [" + subject + "]

Payload [" + payload + "] Details [" + details + "]");
}

8. You can configure the Moolet to call a specific method for different subjects in the inform messages. For

example you can configure a Remedy Moolet to listen for a specific subject in the inform message and route

the event to a function:

 events.onEvent("createNewTicket",

constants.eventType("mooletInforms.RemedyMoolet.ticketCreate")).listen();

After you have completed your configuration, inform messages are sent to your target Moolets which will call any

methods you have added.

Reference

You can use the following methods in the Moolet Informs module:

create();

Creates the Moolet inform message. You can choose to select one or more Moolet targets to receive the messages

or you can leave this empty.

Request Arguments

Name Type Required Description

targets String No A single or comma separated list of Moolet names to target.

Return Parameter

A new Moolet Inform Java object

Example

var inform = mooletInforms.create("MaintenanceWindowManager",
"AlertRulesEngine");

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

238

setSubject

Set the name of the topic for the Moolets to listen for on the Message Bus.

Request Arguments

Name Type Required Description

Subject String Yes Name of subject the Moolets listen for on the Message Bus.

Return Parameter

None

Example

inform.setSubject("subTopic");

setPayload

Any CEvent object . See Events for more information.

Request Arguments

Name Type Required Description

Payload CEvent Yes Any CEvent object that has been passed into the Moobot from the pipeline, or has been

retrieved from MoogDb.

Return Parameter

None

Example

inform.setPayload(event);

setDetails

Details of any other data you want to send in the Moolet inform message.

Request Arguments

Name Type Required Description

setDetails NativeObject Yes A JSON object containing any details you want to send.

Return Parameter

None

Example

inform.setDetails({"signature":"Loss of Signal","description":"Loss of
Signal","source":"S-DF_P2_1"});

setTarget

Set the target Moolets you want to receive the Moolet inform messages. Use this method if you did not set the target

Moolets with the create method.

Request Arguments

Name Type Required Description

targets String Yes A single or comma separated list of Moolet names to target.

Return Parameter

None

Example

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

239

inform.setTarget("AlertRulesEngine", "Cookbook");

send

Sends the Moolet inform messages to your target Moolets.

Request Arguments

Name Type Required Description

targets String No The name or names of Moolets to target this message to.

Return Parameter

None

Example

inform.send("Cookbook");

Example

An example of a Moolet Inform that sends a signature, description and source to the Cookbook Moolet:

var mooletInforms = MooBot.loadModule('MooletInforms');

var inform = mooletInforms.create();

inform.setSubject("subTopic");

inform.setPayload(event);

inform.setDetails({"signature":"Loss of Signal","description":"Loss of
Signal","source":"S-DF_P2_1"});

inform.send("Cookbook");

}

An example of how to configure the listener or target Moolet:

events.onEvent("handleEvent",
constants.eventType("mooletInforms.EmptyMoolet.event_subject")).listen();

events.onEvent("handleAlert",
constants.eventType("mooletInforms.EmptyMoolet.alert_subject")).listen();

events.onEvent("handleSig",
constants.eventType("mooletInforms.EmptyMoolet.sig_subject")).listen();

Moolet Information API

You can use the following commands in a Moobot file to obtain contextual information about the associated Moolet.

These commands are useful in automation and other workflows where you want to verify the Moolet context before

performing an action such assending data or some other action.

Bot.getType()

Return the Moolet type. If the result is Bot.WORKFLOW_ENGINE, you can call

Bot.WorkflowEngine.getMessageType() to find the workflow-engine type.

Request Arguments

None.

Return Parameter

Type Description

Enumerated type Can be one of the following:

Bot.ALERT_BUILDER

Bot.ALERT_RULE_ENGINE

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

240

Bot.COOKBOOK

Bot.EMPTY_MOOLET

Bot.NOTIFIER

Bot.SCHEDULER

Bot.SITUATION_MANAGER

Bot.TEAMS_MANAGER

Bot.WORKFLOW_ENGINE

Example

var MooletType = Bot.getType();

logger.warning(' Moolet type is ...' +MooletType);

Bot.getMooletName()

Return the Moolet type

Request Arguments

None.

Return Parameter

Type Description

String Name of the associated Moolet.

Example

if((Bot.GetType()MooletType === Bot.EMPTY_MOOLET))

 {logger.warning(Bot.getMooletName()

 + ' is an empty moolet')};

Bot.WorkflowEngine.getMessageType()

Return the workflow engine type, or null for non-workflow-engine Moolets.

Request Arguments

None.

Return Parameters

Type Description

String Can be one of the following:

Bot.WorkflowEngine.ALERT

Bot.WorkflowEngine.SITUATION

Bot.WorkflowEngine.EVENT

null (if the associated Moolet is not a workflow engine)

Example

if((Bot.getType() === Bot.WORKFLOW_ENGINE) &&
(Bot.workflowEngine.getMessageType() === Bot.workflowEngine.ALERT))

 {logger.warning('Moolet ' + Bot.getMooletName() + ' will handle
alerts')}

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

241

Process

Description

The Process module allows you to run and control the execution of another process.

The Process module is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global object proc to load the Process module:

var proc = MooBot.loadModule('Process');

Create a new process with create and access methods to run the process with arg

Then run the process in one of two ways - either run in a separate child process of moog_farmd, or runToExit

run and only return when the process exits.

Stop processes running with terminate.

These methods are detailed below.

Reference Guide

proc.create()

Defines a valid pathname to an executable file that you have permission to execute (or the user that started

Moogfarmd has permissions to execute).

Request Argument

Name Type Description

process String A pathname to an executable file (with permission).

Return Parameter

Name Type Description

processObj Object An object containing the process to run.

proc.arg()

Access a series of methods by passing strings representing command line arguments required to run the process.

Request Arguments

Name Type Description

argString Strings A list of strings representing command line arguments required to run the process.

Return Parameter

Void - no value returned

proc.run()

Takes the object returned from create and runs the process in a separate child process of moog_farmd.

Request Argument

Name Type Description

processObj Object The object returned from the create method.

Return Parameter

Type Description

Object An object containing the process results.

proc.runToExit()

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

242

Takes the object returned from create, runs the process and only returns when the process exits.

Request Argument

Name Type Description

processObj Object The object returned from the create method.

Return Parameter

Type Description

Object An object containing the process results.

proc.terminate()

Stops the created processes running (causes the process under the process object returned from create to be

terminated)

Request Argument

Name Type Description

processObj Object The object returned from the create method

Return Parameter

Void - no value returned.

Example

The following function runs an external tool toolName using the Process module:

function runTool(toolname,toolArgs,toExit)

{

var toolRun=proc.create(toolName);

 for (var argIdx = 0; argIdx < toolArgs.length ; argIdx++)

 {

 toolRun.arg(toolArgs[argIdx]);

 }

 if (toExit === true)

 {

 proc.runToExit(toolRun);

 var toolResults=toolRun.output();

 toolResults=toolResults.replace("\n","");

 return(toolResults);

 }

 else

 {

 proc.run(toolRun);

 return;

 }

}

Usage:

var toolScript = "/usr/share/moogsoft/scripts/hip_chat.py";

var toolArgs = ["--room=","Support Team", "--sigid=",sigId];

var hipChatData = runTool(toolScript,toolArgs, true);

This calls the tool runner, gets data back, runs the process as 'run to exit' (runToExit = true).

RabbitMQ

 Configure the Module

 Reference Guide

— connect

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

243

— send

— close

 Examples

The RabbitMQ module allows you to broadcast information on a RabbitMQ bus. For example, you can use it to push

alert or Situation data to a data warehouse via RabbitMQ.

You cannot connect the RabbitMQ Moobot module to the RabbitMQ instance used by Cisco Crosswork Situation

Manager.

Configure the Module

To use the RabbitMQ Moobot module:

1. Define a new global object rabbit at the top of a Moobot JavaScript file to load the module.

2. Use the connect method to create a new connection to one or more RabbitMQ brokers.

3. Use the send method to send the required information.

4. Use the close method to close the connection.

Refer to the Examples for more details.

Reference Guide

You can use the following methods in the RabbitMQ Moobot module.

connect

Establishes a connection to one or more RabbitMQ brokers with defined connection properties.

You cannot connect the RabbitMQ Moobot module to the RabbitMQ instance used by Cisco Crosswork Situation

Manager.

Request Argument

Name Type Description

<properties> Object A JavaScript object containing connection properties. See below.

RabbitMQ Connection Properties

The RabbitMQ module connect method defines connection properties as a Javascript object, which may include

the following keys:

Key Description

brokers Top-level container for one or more target RabbitMQ brokers. For each broker, define:

host: Hostname or IP address of the RabbitMQ broker.

port: Port of the RabbitMQ broker.

user Username to connect to RabbitMQ.

password Username to connect to RabbitMQ.

timeout Length of time to wait before halting a connection or read attempt, in milliseconds. Defaults to

10,000.

vhost Name of the RabbitMQ virtual host. Optional.

ssl Top-level container for the SSL configuration. Optional.

https://en.wikipedia.org/wiki/Data_warehouse

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

244

ssl_protocol The SSL protocol to use. If not specified, TLSv1.2 is used by default.

server_cert_file Name of the SSL root CA file.

client_cert_file Name of the SSL client certificate.

client_key_file Name of the SSL client key file. Must be in PKCS#8 format.

Note : Refer to Message System SSL in Cisco Crosswork Implementor Guide for more

information.Message System SSL.

Return Parameter

Type Description

Object A Java object containing connection details, depending on the requested connection properties.

Returns null if no connection can be made.

Example

{

 brokers: [

 {

 host: "rabbithost",

 port: 5672

 }

],

 user: "rabbitmq_admin",

 password: "78smr9!b",

 timeout: 10000,

 vhost: "rabbitvhost",

 ssl: {

 ssl_protocol: "TLSv1.2",

 server_cert_file: "server.pem",

 client_cert_file: "client.pem",

 client_key_file: "client.key"

 }

}

send

Sends a message to the RabbitMQ broker. Refer to the basic class in the RabbitMQ AMQP 0-9-1 Reference for a list

of keys that you can specify in the message properties.

Name Type Description

Exchange String The RabbitMQ exchange.

RoutingKey String The RabbitMQ routing key.

Properties String or Object Message properties in one of the following formats:

Plain text

JSON Object payload

JSON Array payload

Message String The message to send.

Return Parameter

None.

Examples

connection.send("direct_logs", "severity",

 {

https://www.rabbitmq.com/amqp091reference.html

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

245

 content-type : "text/xml",

 reply-to : "greetings.hi",

 headers : {"server" "app5.myapp.megacorp.com"
"cached" false}

 },

 "<Priority>1</Priority>"

)

connection.send("topic_logs", "topic", {contentType: "text/xml"},
"<Priority>1</Priority>");

close

Closes the connection to the RabbitMQ broker.

Request Argument

None.

Return Parameter

Type Description

Boolean Indicates if the close operation was successful: true = success, false = fail.

Examples

The following examples demonstrate the use of the RabbitMQ Moobot modules:

var rabbit = MooBot.loadModule('RabbitMQ');

var connection = rabbit.connect({

 brokers:[

 {

 host:"myHost",

 port:5672

 }

],

 user:"test",

 password:"test",

 timeout:10000,

 vhost:"myVHost",

 ssl:{

 ssl_protocol:"TLSv1.2",

 server_cert_file:"server.pem",

 client_cert_file:"client.pem",

 client_key_file:"client.key"

 }

});

if (connection) {

 connection.send("test", "test", {contentType: "text/xml"},
"<testKey>testValue</testKey>");

 connection.send("test", "test", {testKey: "value"});

 connection.send("test", "test", ["value"]);

 connection.send("test", "test", "testValue");

 connection.close();

}

// Load the module

var rabbit = MooBot.loadModule('RabbitMQ');

// Create a new connection

var connection = rabbit.connect({

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

246

 brokers:[

 {

 host:"rabbithost",

 port:5672

 }

],

 user:"rabbitmq_admin",

 password:"78smr9!b",

 timeout:10000,

 vhost:"rabbitvhost",

 ssl:{

 ssl_protocol:"TLSv1.2",

 server_cert_file:"server.pem",

 client_cert_file:"client.pem",

 client_key_file:"client.key"

 }

});

if (connection) {

 // Send information

 connection.send("testExchange", "testRoutingKey", ["one", "two"]);

 // Close the connection

 connection.close();

}

REST.V2

REST (Representational State Transfer) and RESTful applications use HTTP requests to post data (create and

update), read data (make queries), and delete data.

The REST.V2 Moobot module accesses an external RESTful API through HTTP or HTTPS, offering consistent usage

between the available methods and customization of HTTP requests sent.

It supports asynchronous operation (using callback functions) to send a request without blocking the JavaScript code

execution until the request is completed. It supports use of the timeout property to make the request fail after a

specified time.

REST.V2 is available to load into any standard Moobot.

To use, define a new global object REST at the top of a Moobot JavaScript file to load the module:

var REST = MooBot.loadModule('REST.V2');

Reference Guide

REST.sendGet()

Sends a HTTP GET request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory

<parameters> JSON Object Optional parameters. See below

Optional parameters

Name Type Description

params String or

Object

Either a String with the request encoded parameters or an Object with the

parameters that will get encoded by the module.

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

247

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_pa
ssword

String Encrypted version of password (encrypted using moog_encryptor).

disable_cert
ificate

 _validation

Boolean 'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callback

function

The request is sent asynchronously, returns null and the callback function is

called regardless of the success or failure of the request. See below.

success Callback

function

The request is sent asynchronously, returns null and the success function is

called only the request was successful. See below.

failure Callback

function

The request is sent asynchronously, returns null and the failure function is

called only if the request failed. See below.

timeout Number The period of time (in seconds) to wait for response before completing with timeout

error.

If 0 or less, wait indefinitely. The default is 120 seconds.

proxy String or

Object

Host, port, user, encrypted_password/password.

For example, as an object:

proxy:{

 host:"proxyhost",

 port:1223,

 user:"proxyuser",

encrypted_password:"2KctaEbJH/m8rz4WqgmZYZfdripdIs
ku7fOFJWM6YNA="

 //password: "unencrypted_plain_text_password"

}

As an object, you can either specify a Cisco encrypted password or a plain text

password, specifying both will favour the encrypted_password value.

Or, as a string, where format is <user>:<password>@<host>:<port>

proxy: "proxyuser:passw0rd@proxyhost:1223"

Only plain text passwords are supported in the string format.

Sending an asynchronous request (with callback functions)

To send a request without blocking the javascript code execution until the request is completed, define one (or more)

of the callback functions: callback, success and failure. The REST.V2 module method (send...) then

returns null, and sends the request in another thread.

Return Parameters

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful

status_code Number The HTTP status code of the request

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

248

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text

Currently, binary response is not supported

headers Object The response HTTP headers

Sending an asynchronous request (with callback functions) returns null. Once the request has completed, the

callback function(s) are called with the reply object as the first (optional) parameter and the request object as the

second (optional) parameter.

Examples

Each of the following gives details on the Cisco home page:

Synchronous request

var rc = REST.sendGet('http://www.Cisco.com');

Asynchronous request

function restSuccess(rc)

{

 var response = JSON.parse(rc.response);

 logger.info("number = " + response.records[0].number);

}

function restFailed(rc, req)

{

 var response = JSON.parse(rc.response);

 logger.info("URL:" + req.url +" failed - Msg:" + response.status_msg);

}

REST.sendGet({url: "http://www.Cisco.com",

 success: restSuccess,

 failure: restFailed});

Response

{

 "status_code": 200,

 "success": true,

 "response": "<!DOCTYPE html>... </body></html>",

 "status_msg": "OK",

 "headers": {

 "Transfer-Encoding": [

 "chunked"

],

 "Keep-Alive": [

 "timeout=15, max=100"

],

 "Server": [

 "Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.10 with Suhosin-
Patch mod_ssl/2.2.22 OpenSSL/1.0.1"

],

 "Connection": [

 "Keep-Alive"

],

 "Vary": [

 "Accept-Encoding"

],

 "Date": [

 "Fri, 30 Jan 2015 12:37:13 GMT"

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

249

],

 "Content-Type": [

 "text/html"

],

 "X-Powered-By": [

 "PHP/5.3.10-1ubuntu3.10"

]

 }

}

REST.sendPost()

Sends a HTTP POST request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory

<parameters> JSON Object Optional parameters. See below

Optional parameters

Name Type Description

params String or

Object

Either a string with the request encoded parameters or an object with the

parameters that will get encoded by the module.

content_type String The content type of the body.

body String or

Object

The request body. Either a string (that will be sent as is) or an object. If the

content_type

sent as JSON. Otherwise it will be sent as URL encoded.

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_pas
sword

String Encrypted version of password (encrypted using moog_encryptor).

disable_certi
ficate

 _validation

Boolean 'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callback

function

The request is sent asynchronously, returns null and the callback function is

called regardless of the success or failure of the request. See below.

success Callback

function

The request is sent asynchronously, returns null and the success function is

called only the request was successful. See below.

failure Callback

function

The request is sent asynchronously, returns null and the failure function is

called only if the request failed. See below.

timeout Number The period of time (in seconds) to wait for response before completing with timeout

error.

If 0 or less, wait indefinitely. The default is 120 seconds.

proxy String or

Object

Host, port, user, encrypted_password/password.

For example, as an object:

proxy:{

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

250

 host:"proxyhost",

 port:1223,

 user:"proxyuser",

encrypted_password:"2KctaEbJH/m8rz4WqgmZYZfdripdIsku7
fOFJWM6YNA="

 //password: "unencrypted_plain_text_password"

}

As an object, you can either specify a Cisco encrypted password or a plain text

password, specifying both will favour the encrypted_password value.

Or, as a string, where format is <user>:<password>@<host>:<port>

proxy: "proxyuser:passw0rd@proxyhost:1223"

Only plain text passwords are supported in the string format.

Sending an asynchronous request (with callback functions)

To send a request without blocking the JavaScript code execution until the request is completed, define one (or

more) of the callback functions: callback, success and failure. The REST.V2 module method (send...)

then returns null, and sends the request in another thread.

Return Parameters

Sending an asynchronous request (with Callback functions) returns null. See above.

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful.

status_code Number The HTTP status code of the request.

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text. Binary response is not supported.

 headers Object The response HTTP headers.

Sending an asynchronous request (with callback functions) returns null. Once the request has completed, the

callback function(s) are called with the reply object as the first (optional) parameter and the request object as the

second (optional) parameter.

Examples

Each of the following accesses DuckDuckGo and searches for 'Cisco'.

Synchronous request:

var rc = REST.sendPost('https://api.duckduckgo.com/',

{q:'Cisco', format:'json', pretty:1});

Asynchronous request:

REST.sendPost({url: 'https://api.duckduckgo.com/',

 body: {q:'Cisco', format:'json', pretty:1},

 timeout: 4.2,

 callback: function(rc) {

 ...

 }});

Here, the request has a timeout set of 4.2 seconds.

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

251

Responses

For the synchronous request, and for the asynchronous request if it doesn't time out:

{

 "status_code": 200,

 "success": true,

 "response": "{ \"DefinitionSource\" : \"\", \"Heading\" : \"\",
\"ImageWidth\" : 0, ... : \"\"}",

 "status_msg": "OK",

 "headers": {

 "Transfer-Encoding": [

 "chunked"

],

 "Strict-Transport-Security": [

 "max-age=0"

],

 "Cache-Control": [

 "max-age=1"

],

 "Server": [

 "nginx"

],

 "X-DuckDuckGo-Results": [

 "1"

],

 "X-DuckDuckGo-Locale": [

 "en_US"

],

 "Connection": [

 "keep-alive"

],

 "Expires": [

 "Fri, 30 Jan 2015 12:44:47 GMT"

],

 "Date": [

 "Fri, 30 Jan 2015 12:44:46 GMT"

],

 "Content-Type": [

 "application/x-javascript"

]

 }

}

...if the asynchronous request times out:

{

 "status_code": 408,

 "success": false,

 "status_msg": "Request Time-Out"

}

REST.sendPut()

Sends a HTTP PUT request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory.

<parameters> JSON Object Optional parameters. See below.

 Optional parameters

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

252

Name Type Description

params String or

Object

Either a string with the request encoded parameters or an object with the

parameters that will get encoded by the module.

content_type String The content type of the body.

body String or

Object

The request body. Either a string (that will be sent as is) or an object. If the

content_type

body will be sent as JSON. Otherwise it will be sent as URL encoded.

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_password String Encrypted version of password (encrypted using moog_encryptor).

disable_certificate

 _validation

Boolean 'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callback

function

The request is sent asynchronously, returns null and the callback

function is called regardless of the success or failure of the request. See

below.

success Callback

function

The request is sent asynchronously, returns null and the success

function is called only the request was successful. See below.

failure Callback

function

The request is sent asynchronously, returns null and the failure

function is called only if the request failed. See below.

timeout Number The period of time (in seconds) to wait for response before completing with

timeout error.

If 0 or less, wait indefinitely. The default is 120 seconds.

Sending an asynchronous request (with callback functions)

To send a request without blocking the JavaScript code execution until the request is completed, define one (or

more) of the callback functions: callback, success and failure. The REST.V2 module method (send...)

then returns null, and sends the request in another thread.

Return Parameters

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful.

status_code Number The HTTP status code of the request.

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text.

Binary response is not supported.

headers Object The response HTTP headers.

Sending an asynchronous request (with callback functions) returns null. Once the request has completed, the

callback function(s) are called with the reply object as the first (optional) parameter and the request object as the

second (optional) parameter.

Example

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

253

The following stores the specified information at the URL (similar to a file upload):

Request

var rc = REST.sendPut('http://api.acme.com/reportIncident',
'{"incident":"broken fan","location":"office2"}');

Response

{

 "status_code": 204,

 "success": true,

 "response": "",

 "status_msg": "No Content",

 "headers": {

 "Connection": [

 "keep-alive"

],

 "Date": [

 "Fri, 30 Jan 2015 12:55:59 GMT"

]

 }

}

When POSTing or PUTting URL encoded data (a content-type of "application/x-www-form-

objects will need to be either split into individual key:value pairs suitable for url encoding or simply JSON stringify the

object in its entirety. Stringifying the object will require the receiver to be able to parse the string value back to an

object if needed. If the receiver cannot do this parsing then the object will need to be broken into key value pairs. For

example, to send the entire alert custom_info object as part of a URL-encoded body:

 var custom_info = alert.getCustomInfo();

 var payload;

 try {

 payload = JSON.stringify(custom_info);

 }

 catch(e) {

 payload = null;

 }

 var postParams={

 "body" : payload,

 "content_type" : "application/x-www-form-

 };

 var request = rest.sendPost(postParams);

REST.sendDelete()

Sends an HTTP DELETE request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory.

<parameters> JSON Object Optional parameters. See below.

Optional parameters

Name Type Description

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

254

params String or

Object

Either a string with the request encoded parameters or an object with the

parameters that will get encoded by the module.

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_password String Encrypted version of password (encrypted using moog_encryptor).

disable_certificate

 _validation

Boolean 'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callback

function

The request is sent asynchronously, returns null and the callback

function is called regardless of the success or failure of the request. See

below.

success Callback

function

The request is sent asynchronously, returns null and the success

function is called only the request was successful. See below.

failure Callback

function

The request is sent asynchronously, returns null and the failure

function is called only if the request failed. See below.

timeout Number The period of time (in seconds) to wait for response before completing

with timeout error.

If 0 or less, wait indefinitely. The default is 120 seconds.

Sending an asynchronous request (with callback functions)

To send a request without blocking the javascript code execution until the request is completed, define one (or more)

of the callback functions: callback, success and failure. The REST.V2 module method (send...) then

returns null, and sends the request in another thread.

Return Parameters

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful.

status_code Number The HTTP status code of the request.

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text.

Binary response is not supported.

 headers Object The response HTTP headers.

Sending an asynchronous request (with callback functions) returns null. Once the request has completed, the

callback function(s) are called with the reply object as the first (optional) parameter and the request object as the

second (optional) parameter.

Example

The following sends a delete request to the specified URL, with additional headers criteria:

Request:

var rc =
REST.sendDelete({url:"http://moogbox2:9090/deletePassport/123456789","head

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

255

ers":{"user-agent":"moobot","accept":"text/plain","accept-language":"en-
US"}});;

Response

{

 "status_code": 200,

 "success": true,

 "response": "{\t\"remoteId\": 33,\t\"weight\":
0.8240487528964877,\t\"location\": {\t\t\"latitude\":
147.3387699946761,\t\t\"longitude\": -7.957067163661122\t}}",

 "status_msg": "OK",

 "headers": {

 "Transfer-Encoding": [

 "chunked"

],

 "Connection": [

 "keep-alive"

],

 "Date": [

 "Fri, 30 Jan 2015 12:49:44 GMT"

],

 "Content-Type": [

 "application/json"

]

 }

}

REST.send()

A generic send request for sending other HTTP methods as part of the request properties ('GET', 'HEAD', etc.).

Optional parameters for synchronous and asynchronous requests are available as described in the above methods.

Example

The following returns time/date information from the Cisco server:

Request

var rc = REST.send({method: 'HEAD', url: 'http://www.Cisco.com/'});

logger.warning("rc: " + JSON.stringify(rc, null, "\t"));

var date = rc.headers.Date[0];

logger.warning("date " + date);

Response

{

 "status_code": 204,

 "success": true,

 "response": "",

 "status_msg": "OK",

 "headers": {

 "Keep-Alive": [

 "timeout=15, max=100"

],

 "Server": [

 "Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.10 with Suhosin-
Patch mod_ssl/2.2.22 OpenSSL/1.0.1"

],

 "Connection": [

 "Keep-Alive"

],

 "Vary": [

 "Accept-Encoding"

],

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

256

 "Date": [

 "Fri, 30 Jan 2015 13:00:33 GMT"

],

 "Content-Type": [

 "text/html"

],

 "X-Powered-By": [

 "PHP/5.3.10-1ubuntu3.10"

]

 }

}

Proxy Examples

The following examples show how to configure Cisco Crosswork Situation Manager Moobots when a proxy server is

used for connection to Cisco.

You can define a proxy in the following ways:

proxy: "proxyuser:passw0rd@proxyhost:1223"

proxy: "proxyhost:1223"

proxy: {

 host: "proxyhost",

 port: 1223

 }

Situation Manager

The following example shows how to update the Situation Manager to send a REST.V2 updateSituation message

through a proxy server.

1. Edit the Situation Manager Moobot file, located

at$MOOGSOFT_HOME/bots/moobots/SituationMgr.js.

2. Modify theupdateSitnfunction to utilize the POST action. For example:

 function updateSitn(situation)
{
 var sig_id = situation.value("sig_id");
 logger.warning("Update Situation Processed: " + sig_id);
 doPOST(sig_id);
}

3. Insert the proxy block into the POST action. For example:

function doPOST(sig_id)

{

 var request = REST.sendPost({

 url:"http://surveilanceserver_84:9090/reportAntiSoc",

 params: {

 crime: "Graffiti"

 },

 proxy: {

 host: "proxyserver",

 port : 3128,

 user : "username",

encrypted_password:"zm0lxjTGiAhp6LrpM49+kr4SDtHj/fq16+i+hD1MG4c="

 },

 callback: function(response, request)

 {

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

257

 if (response.success) {

 logger.warning("4764 CALLBACK SUCCESS
("+sig_id+") RESPONSE - ("+response.status_code +" -
"+response.response+") REQUEST - "+ JSON.stringify(request));

 } else {

 logger.warning("4764 CALLBACK FAILURE
("+sig_id+") RESPONSE - ("+response.status_code +" - "+response.response+"
- "+response.status_msg+") REQUEST -

 " + request.status_code + " " +
request.response + " " + request.status_msg);

 }

 }

 });

 logger.warning("4764 POST REQUEST SENT FOR "+sig_id+" ...");

}

ServiceNow

The following example demonstrates how to configure the ServiceNow ticketing integration when Cisco Crosswork

Situation Manager is installed on-prem and ServiceNow is in the cloud, and the two systems communicate through a

proxy server.

1. Edit the ServiceNow Moobot file, located at $MOOGSOFT_HOME/bots/moobots/ServiceNow-2.0-

Geneva.js and define a variable containing the proxy details. For example:

 var proxy = {
 host: 'proxy-app.company.com',
 timeout:60,
 port: 8080
 }

2. Add the proxy to the POST actions in theAddToWorkNotesandresolveIncidentfunctions. For

example:

 var rc = REST.sendPost({
 'url': url,
 'body': JSON.stringify(urlParameters),
 'user': user,
 'password': password,
 'content_type': "application/json",
 'proxy': proxy,
 'disable_certificate_validation': true
 });

Utilities

The Utilities module is a JavaScript utility that allows you to escape XML so that Cisco Crosswork Situation Manager

correctly interprets control characters as data, not markup.

You can also use the module to convert an XML string to a JSON object, which is easier to manipulate in JavaScript.

You can convert a JSON object to XML for external communication that requires XML input.

Load the Utilities Module

You can load the Utilities module into any standard Moobot or LAMbot.

To use, define a global object utilities at the top of a Moobot or LAMbot js file to load the Utilities module:

Moobots

var utilities = MooBot.loadModule('Utilities');

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

258

LAMbots

var utilities = LamBot.loadModule('Utilities');

Command Reference

utilities.escapeXML()

Escapes an XML string. Certain characters will not parse correctly if they are not escaped:

Unescaped character Escaped string

" "

' '

< <

> >

& &

Request Argument

Name Type Description

value String The string to escape.

Example

var unescapedXML = 'my content requires "< and > "';

var escapedXML = '<tag>' + utilities.escapeXML(unescapedXML) + '</tag>';

The variable escapedXML now contains:

<tag>my content requires "< and > "</tag>

utilities.unescapeXML()

Unescapes an XML string.

Name Type Description

value String The string to unescape.

Example

var escapedXML = '<tag>my content requires "< and >
"</tag>';

var unescapedXML = utilities.unescapeXML(escapedXML);

The variable unescapedXML now contains:

<tag>my content requires "< and > "</tag>

utilities.xmlToJSON()

Converts an XML string to a JSON object.

Name Type Description

value XML string The XML to convert to JSON.

Example

var xmlExample = '<alerts>' +
 '<alert enriched="false">' +
 '<id>1</id>' +
 '<description>Alert 1</description>' +
 '<host>email.moogsoft.com</host>' +
 '<severity>5</severity>' +
 '</alert>' +

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

259

 '<alert enriched="true">' +
 '<id>2</id>' +
 '<description>Alert 2</description>' +
 '<host>calendar.moogsoft.com</host>' +
 '<severity>2</severity>' +
 '</alert>' +
 '</alerts>';

var alerts = utilities.xmlToJSON(xmlExample);

The variable alerts now contains:

{

 "alerts":{

 "alert":

 [

 {

 "severity":5,

 "host":"email.moogsoft.com",

 "description":"Alert 1",

 "id":1,

 "enriched":false

 },

 {

 "severity":2,

 "host":"calendar.moogsoft.com",

 "description":"Alert 2",

 "id":2,

 "enriched":true

 }

]

 }

}

utilities.jsonToXML

Converts a JSON object to an XML string. You can only use the utility to convert JSON objects, not arrays.

Name Type Description

value JSON object The JSON object to convert to XML.

Example

var jsonObjectExample =
{
 "data": {
 "alerts":
 [
 {
 "enriched": "false",
 "id": "1",
 "description": "Alert 1",
 "host": "email.moogsoft.com",
 "severity": "5"
 },
 {
 "enriched": "true",
 "id": "2",
 "description": "Alert 2",
 "host": "calendar.moogsoft.com",
 "severity": "2"
 }
]

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

260

 }
};

var convertedXML = utilities.jsonToXML(jsonObjectExample);

The variable convertedXML now contains:

<data>
 <alerts>
 <severity>5</severity>
 <enriched>false</enriched>
 <host>email.moogsoft.com</host>
 <description>Alert 1</description>
 <id>1</id>
 </alerts>
 <alerts>
 <severity>2</severity>
 <enriched>true</enriched>
 <host>calendar.moogsoft.com</host>
 <description>Alert 2</description>
 <id>2</id>
 </alerts>
</data>

Programmatic LAM

The Programmatic LAM is a custom polling LAM. It is an advanced version of the REST Client LAM. The REST Client

LAM accepts a single API call and parses the responses it receives into Cisco Crosswork Situation Manager events.

The Programmatic LAM can accept multiple calls but you must define the processing yourself in the LAMbot using

JavaScript.

Before You Begin

Before you start to configure the LAM, ensure you have met the following requirements:

You have the details of the API to query.

You can write JavaScript.

Configure the LAM

Edit the configuration file to control the behavior of the Programmatic LAM. You can find the file at

$MOOGSOFT_HOME/config/programmatic_lam.conf.

 Configure the behavior of the LAM:

— request_interval: Length of time to wait between calls to the execute method, in seconds. Defaults to 60.

— num_threads: Number of worker threads to use for processing events. Defaults to 5.

 Optionally configure the LAM identification and logging details in the agent and log_config sections of the

file:

— name: Identifies events the LAM sends to the Message Bus.

— capture_log: Name and location of the LAM's log file.

— configuration_file: Name and location of the LAM's process log configuration.

Example LAM Configuration

An example Programmatic LAM configuration is as follows:

monitor:

{

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

261

 name : "Programmatic LAM",

 request_interval : 60,

 num_threads : 5

 agent:

 {

 name : "ProgrammaticLam",

 capture_log : "$MOOGSOFT_HOME/log/data-
capture/programmatic_lam.log"

 },

 log_config:

 {

 configuration_file :
"$MOOGSOFT_HOME/config/logging/custom.log.json"

 }

}

Configure the LAMbot

You must configure the Programmatic LAMbot with JavaScript code to process and filter events and send them to

the Message Bus.

You can find the LAMbot file at $MOOGSOFT_HOME/bots/lambots/ProgrammaticLam.js.It contains

the following functions.

onLoad

The LAMbot calls the onLoad function when it is first initialized. Use it to set up any structures and variables required

for subsequent processing.

execute

The execute function takes an argument, programmaticApi. It allows you to pass state information from one execute

call to another. For example, if you are polling an endpoint that requires a time variable, you can pass the last time

value so that the next poll can start from that value.

The state is saved to the MoogDb database for use during failover from active to passive in a HA environment. When

passive becomes active the LAMbot reads the state from the database and uses the correct information in its next

poll.

The execute function calls the following modules:

REST.V2: Use this module to query an external endpoint. See REST.V2 for more information.

ExternalDb: Use this module to execute queries on databases that support JDBC connections. See ExternalDb for

more information.

The execute function contains the following methods:

getState: Allows you to pass state information from one execute call to another. State is automatically set by the

return object of the execute function call. For example: return { events [], state { } };

captureLog: Allows you to write raw event data to the log file defined in the capture_log property in the LAM's

configuration file.

Example Return Object

An example return object from the execute function containing an event with description, class and host information

is as follows:

return {

 "events": [{ "description":"Loss of Signal","class":"Gigabit
Ethernet","host":"S-CARP282" }],

 "state": { "last_poll_time": 649077928 }

};

Cisco Crosswork Situation Manager 7.2.x Developer Guide

Developer Guide

262

presend

The LAMbot calls the presend function every time it assembles an event to publish on the Message Bus. If the

function returns true, the event is published on the bus. If it returns false, the event is discarded. Moogfarmd

processes published events and turns them into alerts and Situations.

Use the presend function to define the conditions in which events will and will not be published. You can also use the

function to partition event streams for differential processing in a distributed environment.

	Developer Guide
	Graze API
	Stats API
	Moobot Modules
	Programmatic LAM
	Graze API
	Architecture
	Configure Tomcat
	API Definition
	Authentication Troubleshooting
	Endpoints
	Alerts
	addAlertCustomInfo
	assignAlert
	addAlertToSituation
	assignAndAcknowledgeAlert
	closeAlert
	deassignAlert
	getAlertActions
	getAlertDetails
	getAlertIds
	SQL-like Filters
	removeAlertFromSituation
	resolveAlerts
	setAlertAcknowledgeState
	setAlertSeverity
	Situations
	addSigCorrelationInfo
	addSituationCustomInfo
	addThreadEntry
	assignAndAcknowledgeSituation
	assignSituation
	assignTeamsToSituation
	closeSituation
	createSituation
	createThread
	createThreadEntry
	deassignSituation
	getActiveSituationIds
	getResolvingThreadEntries
	mergeSituations
	getPrcLabels
	getResolvingThreadEntries
	getSigCorrelationInfo
	getSimilarSituationIds
	getSimilarSituations
	getSituationActions
	getSituationAlertIds
	getSituationDescription
	getSituationHosts
	getSituationDetails
	getSituationIds
	getSituationProcesses
	getSituationServices
	getSituationTopology
	getSituationVisualization
	getThreadEntries
	getTopPrcDetails
	removeSigCorrelationInfo
	resolveSituation
	setPrcLabels
	setResolvingThreadEntry
	setSituationAcknowledgeState
	setSituationDescription
	setSituationProcesses
	setSituationServices
	User Management
	applyNewLicense
	createUser
	getTeam
	getTeamsForService
	getTeamSituationIds
	getTeamSituationStats
	getUserInfo
	getUserRoles
	getUsers
	getUserTeams
	updateTeam
	updateUser
	Security Realms
	createSecurityRealm
	getSecurityRealm
	updateSecurityRealm
	Dashboards and Reporting
	getMTTAStats
	getMTTDStats
	getMTTRStats
	getReassignedSituationStats
	getReoccurringSituationStats
	getServiceSituationStats
	getSeveritySituationStats
	getStatusSituationStats
	getSystemSituationStats
	getTeamSituationStats
	Workflow
	addProcess
	addService
	createMaintenanceWindow
	deleteMaintenanceWindow
	deleteMaintenanceWindows
	findMaintenanceWindows
	getIntegrationConfig
	getMaintenanceWindows
	getProcesses
	getServices
	getSeverities
	getStats
	getStatuses
	getSystemStatus
	getSystemSummary
	updateMaintenanceWindow
	POST Parameters
	form-urlencoded
	application/json

	'HTTP Status and Error Codes
	Situation Action Codes
	Alert Action Codes
	Stats API
	System Endpoints
	getAlertsInNewSituationsStats
	getMTTAStats
	getMTTDStats
	getMTTRStats
	getNewAlertsStats
	getNewAlertsPerSituationsStats
	getNewEventsPerAlertsStats
	getNewEventsPerSituationsStats
	getNewSituationsStats
	getReassignedSituationStats
	getReoccurringSituationStats
	getServiceSituationStats
	getSeveritySituationStats
	getStats
	getStatusSituationStats
	getSystemSituationStats
	getTopServiceSituationStats
	Team Endpoints
	getCommentCountPerTeamStats
	getMTTAPerTeamStats
	getMTTRPerTeamStats
	getReassignedSituationsPerTeamStats
	getReoccurringSituationPerTeamStats
	getServiceSituationPerTeamStats
	getSeveritySituationPerTeamStats
	getStatusSituationPerTeamStats
	getTeamSituationStats
	getTopTeamSituationStats
	User Endpoints
	getAlertsMarkedPRCPerUserStats
	getAcknowledgedSituationsPerUserStats
	getAssignedSituationsPerUserStats
	getChatOpsToolExecutedPerUserStats
	getClosedSituationsPerUserStats
	getCommentCountPerUserStats
	getInvitationsReceivedPerUserStats
	getMTTAPerUserStats
	getMTTRPerUserStats
	getOpenSituationsPerUserStats
	getRatedSituationsPerUserStats
	getReassignedSituationsPerUserStats
	getResolvedSituationsPerUserStats
	getViewedSituationsPerUserStats
	getWorkedSituationsPerUserStats
	HTTP Status and Error Codes

	Moobot Modules
	Threads and Global Scope
	Moobot Modules
	Examples

	Using External Modules
	onLoad Function
	Config
	Before You Begin
	Best Practice
	Error Reporting
	Examples
	Constants
	Reference Guide
	put
	get
	contains
	remove
	eventType
	Event Types
	Examples
	Events
	Method
	Reference Guide
	newEvent()
	CEvent forward methods
	CEventAdaptor auxiliary object
	listen()
	CEvent auxiliary object
	contains()
	set()
	value()
	CEvents API
	contains()
	evaluateFilter()
	forward(target,...)
	getActionDetails()
	getCorrelationInfo()
	getCustomInfo()
	Bot.getType()
	getSummaryData()
	getTopic()
	payload()
	set()
	setCustomInfo()
	setCustomInfoValue()
	setTopic()
	stringValue()
	type()
	value()
	Events (MoogDb Only)
	Reference Guide
	events.onEvent()
	CEventAdaptor auxiliary object
	listen()
	CEvent auxiliary object
	contains()
	set()
	value()
	CEvent auxiliary object
	getJournalDetails()
	getCustomInfo()
	setCustomInfo()
	getCorrelationInfo()
	getSummaryData()
	CResponse auxiliary object
	message()
	topic()
	output()
	retcode()
	Expose Active Moolets
	isActive
	getActiveMoolets

	ExternalDb
	Description
	Reference Guide
	externalDb.connect()
	externalDb.execute()
	externalDb.query()
	externalDb.prepare()
	Database Specific Information

	Graph Topology
	Distance
	Reference Guide
	topo.loadTopology()
	topo.isConnected()
	topo.connected()
	topo.distance()
	topo.numberOfConnections()
	addEdge(String sourceNode, String sinkNode)

	Logger
	Reference Guide
	logger.debug()
	logger.info()
	logger.warning()
	logger.fatal()

	Mailer
	Configure Mailer
	Methods
	mailer.send(mailMsg)

	MoogDb V2
	Load MoogDb V2
	Methods
	addAlertToSituation
	addCorrelationInfo
	addSigCorrelationInfo
	addProcess
	addService()
	addThreadEntry
	assignAlert
	assignAndAcknowledgeAlert
	assignAndAcknowledgeSituation
	assignModerator
	assignTeamsToSituation
	closeAlert
	closeSituation
	createAlert
	createMaintenanceWindow
	createSituation
	createTeam
	createThread
	createThreadEntry
	createUser
	createWorkflow
	deAssignAlert
	deleteMaintenanceWindow
	deleteMaintenanceWindows
	deleteWorkflow()
	getActiveSituationIds
	getAlert
	getAlertActions
	getAlertCustomInfo
	getAlertIds
	getSigCorrelationInfo
	getSigCustomInfo
	getMaintenanceWindows
	findMaintenanceWindows
	getQueueName
	getPrcLabels
	getProcesses
	getResolvingThreadEntries
	getServices
	getSituation
	getSituationActions
	getSituationAlertIds
	getSituationIds
	getSituationHosts
	getSituationProcesses
	getSituationServices
	getSituationTopology
	getTeams
	getTeam
	getTeamsForService
	getTeamSituationIds
	getThreadEntries
	getUser
	getUsers
	getUserName
	getUserTeams
	getWorkflowEngineMoolets
	getWorkflows
	mergeSituations
	moveSituationToCategory
	moveSituationToQueue
	removeAlertFromSituation
	removeSigCorrelationInfo
	reorderWorkflows
	resolveSituation
	reviveSituation
	setAlertCustomInfo
	setAlertSeverity
	setPrcLabels
	setResolvingThreadEntry
	setSigCustomInfo
	setSituationProcesses
	setSituationServices
	updateAlert
	updateCustomInfo
	updateMaintenanceWindow
	updateSituation
	updateTeam
	updateUser
	updateWorkflows

	Moolet Informs
	Before You Begin
	Configure the Module
	Reference
	create();
	setSubject
	setPayload
	setDetails
	setTarget
	send
	Example

	Moolet Information API
	Bot.getType()
	Bot.getMooletName()
	Bot.WorkflowEngine.getMessageType()

	Process
	Description
	Reference Guide

	RabbitMQ
	Configure the Module
	Reference Guide
	Examples

	REST.V2
	Reference Guide
	REST.sendGet()
	REST.sendPost()
	REST.sendPut()
	REST.sendDelete()
	REST.send()
	Proxy Examples

	Utilities
	Load the Utilities Module
	Command Reference
	utilities.escapeXML()
	utilities.unescapeXML()
	utilities.xmlToJSON()
	utilities.jsonToXML

	Programmatic LAM
	Before You Begin
	Configure the LAM
	Example LAM Configuration
	Configure the LAMbot

