

Verified Scalability Guide for Cisco APIC, Releases 5.1(1) and 5.1(2), Multi-Site, Release 3.1(1), and Cisco Nexus 9000 Series ACI-Mode Switches, Releases 15.1(1) and 15.1(2)

```Overview 2
```

New and Changed Information 2
General Scalability Limits 2
Multiple Fabric Options Scalability Limits 7
Cisco ACI vPod Scalability Limits 7
Cisco ACI Multi-Site Scalability Limits 8
Fabric Topology, SPAN, Tenants, Contexts (VRFs), External EPGs, Bridge Domains, Endpoints, and Contracts

```Scalability Limits 10
```

VMM Scalability Limits 37
Layer 4 - Layer 7 Scalability Limits 39
AD, TACACS, RBAC Scalability Limits 40
Cisco Mini ACI Fabric and Virtual APICs Scalability Limits 40
Cisco Cloud APIC Scalability Limits 41
Cisco ACI and UCSM Scalability 42
QoS Scalability Limits 43
PTP Scalability Limits 43
NetFlow Scale 44

Revised: May 17, 2024

Overview

This guide contains the maximum verified scalability limits for Cisco Application Centric Infrastructure (Cisco ACI) parameters in the following releases:

- Cisco Application Policy Infrastructure Controller (Cisco APIC), releases 5.1(1) and 5.1(2)
- Cisco ACI Multi-Site, release 3.1(1)
- Cisco Nexus 9000 Series ACI-Mode Switches, releases 15.1(1) and 15.1(2)

These values are based on a profile where each feature was scaled to the numbers specified in the tables. These numbers do not represent the theoretically possible Cisco ACI fabric scale.

New and Changed Information

The following changes have been made to this document since initial release:

Date	Changes
February 2, 2023	Updated "Number of EIGRP neighbors" scale.
May 11, 2022	Added dual-stack scale for "Number of L3 Outs".
April 29, 2022	Updated "Number of External Route Reflectors between Pods" scale. Updated "Number of External EPGs" and "Number of External EPGs per L3 Out" scale with examples for clarity.
April 21, 2022	Added "DHCP relay addresses per BD across all labels" scale.
March 25, 2022	Updated "PTP Scalability Limits" section.
March 15, 2022	Updated "Maximum number of Data Plane policers at the interface level" scale numbers.
February 25, 2022	Updated "Number of source EPGs in tenant SPAN sessions" if both Access and Tenant SPAN are configured.
December 17, 2021	Added NetFlow scale numbers.
October 22, 2021	First release of this document.

General Scalability Limits

- L2 Fabric: L2 Fabric in this document refers to an ACI fabric that contains only BDs with Scaled L2 Only mode (formerly known as Legacy mode). See Bridging > Bridge Domain Options > Scaled L2 Only Mode - Legacy Mode in APIC Layer 2 Configuration Guide for details about Scaled L2 Only mode.
- L3 Fabric: The ACI L3 fabric solution provides a feature-rich highly scalable solution for public cloud and large enterprise. With this design, almost all supported features are deployed at the same time and are tested as a solution. The scalability numbers listed in this section are multi-dimensional scalability numbers. The fabric scalability numbers represent the overall number of objects created on the fabric. The per-leaf scale numbers are the objects created and presented on an individual leaf switch. The fabric level scalability numbers represent APIC cluster scalability and the tested upper limits. Some of the per-leaf scalability numbers are subject to hardware restrictions. The per-leaf scalability numbers are the maximum limits tested and supported by leaf switch hardware. This does not necessarily mean that every leaf switch in the fabric was tested with maximum scale numbers.
- Stretched Fabric: Stretched fabric allows multiple fabrics (up to 3) distributed in multiple locations to be connected as a single fabric with a single management domain. The scale for the entire stretched fabric remains the same as for a single site fabric. For example a L3 stretched fabric will support up to 400 leaf switches total which is the maximum number of leaf switches supported on a single site fabric. Parameters only relevant to stretched fabric are mentioned in the tables below.
- Multi-Pod: Multi-Pod enables provisioning a more fault-tolerant fabric comprised of multiple Pods with isolated control plane protocols. Also, Multi-Pod provides more flexibility with regard to the full mesh cabling between leaf and spine switches. For example, if leaf switches are spread across different floors or different buildings, Multi-Pod enables provisioning multiple Pods per floor or building and providing connectivity between Pods through spine switches.

Multi-Pod uses a single APIC cluster for all the Pods; all the Pods act as a single fabric. Individual APIC controllers are placed across the Pods but they are all part of a single APIC cluster.

- Multi-Site: Multi-Site is the architecture interconnecting and extending the policy domain across multiple APIC cluster domains. As such, Multi-Site could also be named as Multi-Fabric, since interconnects separate Availability Zones (Fabrics) and managed by an independent APIC controller cluster. An ACI Multi-Site Orchestrator is part of the architecture and is used to communicate with the different APIC domains to simplify the management of the architecture and the definition of inter-site policies.

Leaf Switches and Ports

The maximum number of leaf switches is 400 per Pod and 500 total in Multi-Pod fabric. The maximum number of physical ports is 24,000 per fabric. The maximum number of remote leaf (RL) switches is 128 per fabric, with total number of BDs deployed on all remote leaf switches in the fabric not exceeding 60,000 . The total number of BDs on all RLs is equal to the sum of BDs on each RL.
If Remote Leaf Pod Redundancy policy is enabled, we recommended that you disable the Pre-emption flag in the APIC for all scaled up RL deployments. In other words, you must wait for BGP CPU utilization to fall under 50% on all spine switches before you initiate pre-emption.

Breakout Ports

The N9K-C9336C-FX2 switch supports up to 34 breakout ports in both 10G or 25G mode.

General Scalability Limits

Table 1: General Scalability Limits for L3 Fabrics

Configurable Options	L3 Fabric	Large L3 Fabric
Number of APIC controllers Note \quad * denotes preferred cluster size. While the higher number of controllers is supported, the preferred size is based on the number of leaf switches in the environment.	3* or 4 node APIC cluster	5*, 6, or 7 node APIC cluster
Number of leaf switches	80 for 3-node cluster 200 for 4-node cluster	300 for 5- or 6-node cluster 500 for 7-node cluster
Number of tier-2 leaf switches per Pod in Multi-Tier topology Note The total number of leaf switches from all tiers should not exceed the "Number of leaf switches" listed above	80 for 3-node cluster 100 for 4-node cluster	100
Number of spine switches	Maximum spines per Pod: 6. Total spines per fabric: 24.	Maximum spines per Pod: 6. Total spines per fabric: 24.
Number of FEXs	20 FEXs per leaf switch 576 ports per leaf switch 650 FEXs per fabric	20 FEXs per leaf switch 576 ports per leaf switch 650 FEXs per fabric
Number of tenants	1,000	3,000
Number of Layer 3 (L3) contexts (VRFs)	1,000	3,000
Number of contracts/filters	- 10,000 contracts - 10,000 filters	- 10,000 contracts - 10,000 filters
Number of endpoint groups (EPGs)	For a fabric with a single Tenant: 4,000 For a fabric with multiple Tenants: 500 per Tenant, up to 15,000 total across all Tenants	For a fabric with a single Tenant: 4,000 For a fabric with multiple Tenants: 500 per Tenant, up to 15,000 total across all Tenants
Number of Isolation enabled EPGs	400	400
Number of bridge domains (BDs)	15,000	15,000

Configurable Options	L3 Fabric	Large L3 Fabric
Number of OSPF sessions + EIGRP (for external connection)	3,000	3,000
Number of Multicast routes	32,000	32,000
Number of Multicast routes per VRF	32,000	32,000
Number of static routes to a single SVI/VRF	5,000	5,000
Number of static routes on a single leaf switch	10,000	10,000
Number of vCenters	- 200 VDS - 50 AVS - 50 Cisco ACI Virtual Edge	- 200 VDS - 50 AVS - 50 Cisco ACI Virtual Edge
Number of Service Chains	1,000	1,000
Number of L4-L7 devices	30 managed or 50 unmanaged physical HA pairs, 1,200 virtual HA pairs (1,200 maximum per fabric)	30 managed or 50 unmanaged physical HA pairs, 1,200 virtual HA pairs (1,200 maximum per fabric)
Number of ESXi hosts - VDS	3,200	3,200
Number of ESXi hosts - AVS	3,200 (Only 1 AVS instance per host)	3,200 (Only 1 AVS instance per host)
Number of ESXi hosts - AVE	3,200 (Only 1 AVE instance per host)	3,200 (Only 1 AVE instance per host)
Number of VMs	Depends upon server scale	Depends upon server scale
Number of configuration zones per fabric	30	30
Number of BFD sessions per leaf switch	256 Minimum BFD timer required to support this scale: - minTx: 50 - minRx:50 - multiplier:3	256 Minimum BFD timer required to support this scale: - minTx: 50 - minRx: 50 - multiplier:3
Multi-Pod Note $\quad *$ denotes preferred cluster size.	- 3* or 4 node APIC cluster - 6 Pods - 80 for 3-node cluster 200 for 4-node cluster	- 5* or 6 node APIC cluster, 6 Pods, 200 leaf switches max per Pod, 300 leaf switches max overall - 7 node APIC cluster, 12 Pods, 400 leaf switches max per Pod, 500 leaf switches max overall

Configurable Options	L3 Fabric	Large L3 Fabric
L3 EVPN Services over Fabric WAN - GOLF (with and without OpFlex)	1,000 VRFs, 60,000 routes in a fabric	1,000 VRFs, 60,000 routes in a fabric
Layer 3 Multicast routes	32,000	32,000
Number of Routes in Overlay-1 VRF	1,000	1,000

Table 2: General Scalability Limits for L2 Fabrics

Configurable Options	L2 Fabric Scale
Number of APIC controllers $*$ N denotes preferred cluster size. While the higher number of controllers is supported, the preferred size is based on the number of leaf switches in the environment.	$3 *$ or 4 node APIC cluster
Number of leaf switches	80
Number of tier-2 leaf switches per Pod in Multi-Tier topology	80
Number of spine switches per fabric	24
Number of FEXs	20 FEXs per leaf switch
Number of tenants	650 FEXs per fabric
Number of endpoint groups (EPGs)	1,000
Number of Routes in Overlay-1 VRF	For a fabric with multiple Tenants: 500 per Tenant, up to 21,000 total across all Tenants
Number of configuration zones per fabric	21,000
Number of Pods in Multi-Pod	30

Multiple Fabric Options Scalability Limits

Stretched Fabric

Configurable Options	Per Fabric Scale
Maximum number of fabrics that can be a stretched fabric	3
Maximum number of Route Reflectors	6

Multi-Pod

Configurable Options	Per Fabric Scale
Maximum number of Pods	12
Maximum number of leaf switches per Pod	400
Maximum number of leaf switches overall	500
Maximum number of Route Reflectors for L3Out	24
Number of External Route Reflectors between Pods	- For 1-3 Pods: Up to 3 external route reflectors We recommend full mesh for external BGP peers instead of using external route reflectors when possible - For 4 or more Pods: Up to 4 external route reflectors We recommend using external route reflectors instead of full mesh We recommend that the external route reflectors are distributed across Pods so that in case of any failure there are always at least two Pods with external route reflectors still reachable

Cisco ACI vPod Scalability Limits

Cisco ACI vPod Scalability Limits

Configurable Options	Scale
Number of vPods	6
Number of Cisco ACI Virtual Edge (AVE) instances per vPod	32
Number of Virtual Ethernet Ports (vEThs) per AVE in vPod	32
Number of EPGs per vPod	256

Configurable Options	Scale
Number of EPGs across all vPods	864
Number of EPGs across all physical and virtual pods	15,000
Number of filters per ACI Virtual Edge	128
Number of contracts per ACI Virtual Edge *The total number of filters used by all contracts must not exceed the filter limit above	36

Cisco ACI Multi-Site Scalability Limits

Stretched Vs. Non-Stretched

Stretched in Multi-Site means that the fabric has stretched objects such as EPGs, BDs, VRFs, or subnets across multiple sites or has cross-site contracts between EPGs.

Non-Stretched in Multi-Site means all objects such as EPG, contract, and BD are local to a site only and do not cross the local-site boundary.

The total number of stretched and non-stretched objects must not exceed the maximum verified scalability limit for that object, which are listed in their respective sections in this guide.

Note For maximum scale Multi-Site configurations with many features enabled simultaneously, it is recommended that those configurations be tested in a lab before deployment.

Multi-Site General Scalability Limits

Configurable Options	Scale
Sites	12
Pods per site	12
Leaf switches per site	400 in a single pod 500 across all pods in Multi-Pod fabrics
Total leaf switches across all sites	Sites $*$ Leaf switches per site For example, 6,000 if every site is deployed as a Multi-Pod fabric.

Multi-Site Object Scale

Configurable Options	Scale
Number of Schemas	80

Configurable Options	Scale
Templates per Schema	10
Application Profiles per Schema	200
Policy Objects per Schema	1,000
Contract Preferred Group (BD/EPG combinations)	500
Multi-Site Orchestrator Users (nonparallel*) *Multi-Site Orchestrator processes requests sequentially from multiple users even if they are deploying different schemas.	50

Multi-Site Scalability Limits for Stretched Objects

Configurable Options	Scale (Stretched)
Tenants	400
VRFs	1,000
BDs	4,000
Contracts	4,000
Endpoints	150,000 including: $\bullet 100,000-l e a r n e d ~ f r o m ~ o t h e r ~ s i t e s ~$
EPGs	$50,000-$ locally learned in site-local
Isolated EPGs	4,000
Microsegment EPGs	400
IGMP Snooping	400
Layer-3 multicast routes	8,000
L3Out external EPGs	8,000
Subnets	500
Number of L4-L7 logical devices	8,000
Number of graph instances	400
Number of device clusters per tenant	250
Number of interfaces per device cluster	10

Configurable Options	Scale (Stretched)
Number of graph instances per device cluster	125

Multi-Site VRF/BD VNID Translation Scale

Configurable Options	Scale
Fixed spines	21,000
Modular spines	42,000

Fabric Topology, SPAN, Tenants, Contexts (VRFs), External EPGs, Bridge Domains, Endpoints, and Contracts Scalability Limits

The following table shows the mapping of the "ALE/LSE Type" to the corresponding ToR switches. This information is helpful to determine which ToR switch is affected when we use the terms ALE v1, ALE v2, LSE, or LSE2 in remaining sections.

Note
In the following table, the N9K-C9336C-FX2 and N9K-C93360YC-FX2 switches are listed as LSE for scalability limits purposes only; the switches support LSE2 platform features. Consult specific feature documentation for the full list of supported devices.

ALE/LSE Type	ACI-Supported ToR switches
ALE v2	- N9K-C9396TX + N9K-M6PQ - N9K-C93128TX + N9K-M6PQ - N9K-C9396PX + N9K-M6PQ - N9K-C9372TX 64K - N9K-C9332PQ - N9K-C9372PX
LSE	- N9K-C93108TC-EX - N9K-C93180YC-EX - N9K-C93180LC-EX - N9K-C9336C-FX2 - N9K-C93216TC-FX2 - N9K-C93240YC-FX2 - N9K-C93360YC-FX2

ALE/LSE Type	ACI-Supported ToR switches
LSE2	- N9K-C93108TC-FX - N9K-C93180YC-FX - N9K-C9348GC-FXP - N9K-C93600CD-GX - N9K-C9364C-GX

- Unless explicitly called out, LSE represents both LSE and LSE2 and ALE represents both ALE v1 and ALE v2 in the rest of this document.
- The High Policy Profile listed in the following sections is supported only on Cisco Nexus N9K-C93180YC-FX, N9K-C93600CD-GX, and N9K-C9364C-GX switches with 32GB of RAM.
- High IPv4 EP Scale-This profile is recommended to be used only for the ACI border leaf (BL) switches in Multi-Domain (ACI-SDA) Integration. It provides enhanced IPv4 EP and LPM scales specifically for these BLs and has specific hardware requirements.

Fabric Topology

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of PCs, vPCs	320 (with FEX HIF)	N/A
Number of encapsulations per access port, PC, vPC (non-FEX HIF)	3,000	N/A
Number of encapsulations per FEX HIF, PC, vPC	20	N/A
Number of member links per PC, vPC* *vPC total ports = 32, 16 per leaf	16	N/A
Number of ports x VLANs (global scope and no FEX HIF)	64,000 168,000 (when using legacy BD mode)	N/A
Number of ports x VLANs (FEX HIFs and/or local scope)	ALE v2: 9,000 LSE and LSE2: 10,000	400,000
Number of static port bindings	ALE v2: 30,000 For LSE and LSE2: 60,000	N/A
Number of VMACs	For LSE and LSE2: 510	

Configurable Options	Per Leaf Scale	Per Fabric Scale
STP	All VLANs	N/A
Mis-Cabling Protocol (MCP)	256 VLANs per interface	N/A
	2,000 logical ports (port x VLAN) per leaf	

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of endpoints (EPs)		16 -slot and 8 -slot modular spine switches: Max. 450,000 Proxy Database Entries in the fabric, which can be translated into any one of the following: - 450,000 MAC-only EPs (each EP with one MAC only) - 225,000 IPv4 EPs (each EP with one MAC and one IPv4) - 150,000 dual-stack EPs (each EP with one MAC, one IPv4, and one IPv6) The formula to calculate in mixed mode is as follows: $\# \mathrm{MAC}+\# \mathrm{IPv} 4+\# \mathrm{IPv} 6<=450,000$ NOTE: Four fabric modules are required on all spines in the fabric to support above scale.
		4-slot modular spine switches: Max. 360,000 Proxy Database Entries in the fabric, which can be translated into any one of the following: - 360,000 MAC-only EPs (each EP with one MAC only) - 180,000 IPv4 EPs (each EP with one MAC and one IPv4) - 120,000 dual-stack EPs (each EP with one MAC, one IPv4, and one IPv6) The formula to calculate in mixed mode is as follows: $\# \mathrm{MAC}+\# \mathrm{IPv} 4+\# \mathrm{IPv} 6<=360,000$ NOTE: Four fabric modules are required on all spines in the fabric to support above scale.

Configurable Options	Per Leaf Scale	Per Fabric Scale
		Fixed spine switches:
		Max. 180,000 Proxy Database Entries in the fabric, which can be translated into any one of the following:
		- 180,000 MAC-only EPs (each EP with one MAC only)
		- 90,000 IPv4 EPs (each EP with one MAC and one $\operatorname{IPv} 4$)
		- 60,000 dual-stack EPs (each EP with one MAC, one IPv4, and one IPv6)
		The formula to calculate in mixed mode is as follows:
		\#MAC + \#IPv4 + \#IPv6 < = 180,000

Configurable Options	Per Leaf Scale	Per Fabric Scale
	Default (Dual Stack) profile: - ALE v2: - MAC: 12,000 - IPv4: 12,000 or - IPv6: 6,000 or - IPv4: 4,000 IPv6: 4,000 Default profile or High LPM profile: - LSE or LSE2: - MAC: 24,000 - IPv4: 24,000 - IPv6: 12,000 IPv4 scale profile: - LSE and LSE2: - MAC: 48,000 - IPv4: 48,000 - IPv6: Not supported - ALE v2: Not supported High Dual Stack scale profile: - LSE: - MAC: 64,000 - IPv4: 64,000 -IPv6: 24,000 - LSE2: - MAC: 64,000 - IPv4: 64,000 - IPv6: 48,000 - ALE v2: Not supported High Policy profile:	

Configurable Options	Per Leaf Scale	Per Fabric Scale
	- LSE2 (N9K-C93180YC-FX, N9K-C93600CD-GX, and N9K-C9364C-GX switches with 32GB of RAM only): - MAC: 24,000 - IPv4: 24,000 - IPv6: 12,000 - LSE (N9K-C9336C-FX2 and N9K-C93180YC-EX): - MAC: 16,000 - IPv4: 16,000 -IPv6: 8,000 High IPv4 EP Scale profile: - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): - MAC: 24,000 - IPv4 local: 24,000 - IPv4 total: 280,000 - IPv6: 12,000 - Not supported on LSE1 Multicast Heavy profile: - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): - MAC: 24,000 - IPv4 local: 24,000 - IPv4 total: 64,000 -IPv6: 4,000 - Not supported on LSE1	

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of Multicast Routes	Default (Dual Stack), IPv4 Scale, High LPM, High Policy or High IPv4 EP scale profiles: 8,000 with (S,G) scale not exceeding 4,000 High Dual Stack profile: - LSE: 512 - LSE2: 32,000 with (S,G) scale not exceeding 16,000 Multicast Heavy profile: - LSE: not supported - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): 90,000 with (S,G) scale not exceeding 72,000	128,000
Number of Multicast Routes per VRF	Default (Dual Stack), IPv4 Scale, High LPM, High Policy or High IPv4 EP scale profiles: 8,000 with (S,G) scale not exceeding 4,000 High Dual Stack profile: - LSE: 512 - LSE2: 32,000 with (S,G) scale not exceeding 16,000 Multicast Heavy profile: - LSE: not supported - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): 32,000	32,000

Configurable Options	Per Leaf Scale	Per Fabric Scale
IGMP snooping L2 multicast routes - For IGMPv2, route scale is for (*, G) only - For IGMPv3, route scale is for both (S, G) and (*, G) Note IGMP snooping entries are created per BD (2 receivers that join the same group from 2 different BDs consume 2 separate entries).	Default (Dual Stack), IPv4, High LPM, High Policy, or High IPv4 EP scale profiles: 8,000 High Dual Stack profile: - LSE: 512 - LSE2: 32,000 Multicast Heavy profile: - LSE: not supported - LSE2: 32,000	32,000
Number of IPs per MAC	4,096	4,096
Number of Host-Based Routing Advertisements	30,000 host routes per border leaf	N/A
SPAN	ALE-based ToR switches: - 4 unidirectional or 2 bidirectional access/tenant sessions - 4 unidirectional or 2 bidirectional fabric sessions LSE-based ToR switches: - 32 unidirectional or 16 bidirectional sessions (fabric, access, or tenant)	N/A
Number of ports per SPAN session Note \quad This is also the total number of unique ports (fabric and access) that can be used as SPAN sources across all SPAN sessions combined	ALE-based ToR switches: - All leaf access ports could be in one session. - All leaf fabric ports could be in one session. LSE/LSE2-based ToR switches: - 63 - total number of unique ports (fabric + access) across all types of span sessions	N/A

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of source EPGs in tenant SPAN sessions Note The numbers listed in this row assume that only tenant SPAN is configured. If both, Access and Tenant SPAN are configured, the following formula applies for both ingress and egress SPAN: $E+P+E * P+E P P+V 6 F e P P$ $+0.5 *$ v $4 \mathrm{FePP}<=230$ Where: - e- Number of source EPGs in Tenant SPAN - P -Number of source Ports in access SPAN without any filters - Epp-Number of (Epg,Port) Pairs in access SPAN with EPG filter only (no filter group) - v4FePp—Number of (v4 filter entry, Port) Pairs in access SPAN with filter group - v6FePp—Number of (v6 Filter entry, Port) Pairs in access SPAN with filter group	ALE-based ToR switches: - 230 ingress direction +50 egress direction LSE-based ToR switches: - 230 bidirectional - 460 unidirectional (230 ingress +230 egress)	N/A
Maximum number of SPAN ACL filter TCAM entries SPAN filters are supported on -EX, -FX, and -FX2 TORs only. SPAN filters are not supported in the following: - Fabric ports - Fabric and tenant SPAN sessions - Spine switches	- IPv4: 480 -IPv6: 240 Total number of TCAM entries is calculated using the following formula: (IPv4-filters)* (IPv4-filter-source-groups) +2 * (IPv6-filters)* (IPv6-filter-source-groups) +2 * (no-filter-source-groups)	N/A

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of L4 Port Ranges	16 (8 source and 8 destination) First 16 port ranges consume a TCAM entry per range. Each additional port range beyond the first 16 consumes a TCAM entry per port in the port range. Filters with distinct source port range and destination port range count as 2 port ranges. You cannot add more than 16 port ranges at once.	N/A
Common pervasive gateway	256 virtual IPs per Bridge Domain	N/A
Maximum number of Data Plane policers at the interface level	ALE: - 64 ingress policers - 64 egress policers LSE and LSE2: - 7 ingress policers - 3 egress policers	N/A
Maximum number of Data Plane policers at EPG and interface level	128 ingress policers	N/A
Maximum number of interfaces with Per-Protocol Per-Interface (PPPI) CoPP	63	N/A
Maximum number of TCAM entries for Per-Protocol Per-Interface (PPPI) CoPP	256 One PPPI CoPP configuration may use more than one TCAM entry. The number of TCAM entries used for each configuration varies in each protocol and leaf platform. Use vsh_lc -c 'show system internal aclqos pppi copp tcam-usage' command to check on LSE/LSE2 platforms	N/A
Maximum number of SNMP trap receivers	10	10
IP SLA probes* *With 1 second probe time and 3 seconds of timeout	100	400

Configurable Options	Per Leaf Scale	Per Fabric Scale
First Hop Security (FHS)* With any combination of BDs/EPGs/EPs within the supported limit	2,000 endpoints 1,000 bridge domains	N/A
Maximum number of Q -in- Q tunnels (both QinQ core and edge combined)	1,980	N/A
Maximum number of TEP-to-TEP atomic counters (tracked by 'dbgAcPathA' object)	N/A	1,600

SR-MPLS

Configurable Options	Per Leaf Scale	Per Fabric Scale
EVPN sessions	4	100
BGP labeled unicast (LU) pairs	16	200
ECMP paths	16	N/A
Infra SR-MPLS L3Outs* * Including both, remote leaf and multi-pod	N/A	100 total, 2 per RL location
VRFs* * Including both, remote leaf and multi-pod	N/A	1,200
External EPGs	N/A	2,000 total, 100 per VRF
Interfaces	N/A	Same as fabric scale
Multi-pod remote leaf pairs	50 pairs (100 RLs total)	

Tenants

Configurable Options	Per Leaf Scale	Per Fabric Scale
Contexts (VRFs) per tenant	ALE: 50	
	LSE: 128	ALE: 50
LSE: 128		

VRFs (Contexts)

All numbers are applicable to dual stack unless explicitly called out.

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of Contexts (VRFs)	ALE: 400 LSE and LSE2: 800	3,000
Maximum ECMP (equal cost multipath) for BGP best path	64	N/A
Maximum ECMP (equal cost multipath) for OSPF best path	64	N/A
Maximum ECMP (equal cost multipath) for Static Route best path	64	N/A
Number of isolated EPGs	400	N/A
Border Leafs per L3 Out	N/A	N00
Maximum number of vzAny Provided Contracts	Shared services: Not supported	
Maximum number of vzAny Consumed Contracts	Shared services: 16 per Context (VRF)	N/A
Number of Graphs Instances per device cluster	N/A	Non-shared services: 70 per Context (VRF)

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of IP Longest Prefix Matches (LPM) entries Note The total of (\# of IPv4 prefixes) + 2*(\# of IPv6 prefixes) must not exceed the scale listed for IPv4 alone	Default (Dual Stack) profile: - ALE v2: - IPv4: 10,000 or - IPv6: 6,000 or - IPv4: 4,000, IPv6: 4,000 - IPv6 wide prefixes (>/64): 1,000 - For LSE or LSE2: - IPv4: 20,000 or - IPv6: 10,000 - IPv6 wide prefixes (>=/84): 1,000 NOTE: For LSE2 and FX2 models there's no restriction on wide prefixes. IPv4 scale profile: - For LSE or LSE2: - IPv4: 38,000 - IPv6: Not supported - ALE v2: Not supported High Dual Stack scale profile: - LSE or LSE2: - IPv4: 38,000 or - IPv6: 19,000 - IPv6 wide prefixes (>=/84): 1,000 NOTE: For LSE2 and FX2 models there's no restriction on wide prefixes. - ALE v2: Not supported	N/A

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of IP Longest Prefix Matches (LPM) entries (Continued)		N/A
NoteThe total of (\# of IPv4 prefixes) + 2*(\# of IPv6 prefixes) must not exceed the scale listed for IPv4 alone		

Configurable Options	Per Leaf Scale	Per Fabric Scale
	High LPM Scale profile - - LSE or LSE2: - IPv4: 128,000 or -IPv6: 64,000 - IPv6 wide prefixes (>=/84): 1,000 NOTE: For LSE2 and FX2 models there's no restriction on wide prefixes. - ALE v2: Not supported High Policy profile: - LSE2 (N9K-C93180YC-FX, N9K-C93600CD-GX, and N9K-C9364C-GX switches with 32GB of RAM only): - IPv4: 20,000 or - IPv6: 10,000 - LSE (N9K-C9336C-FX2 and N9K-C93180YC-EX): - IPv4: 8,000 - IPv6: 4,000 High IPv4 EP Scale profile: - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): - IPv4: 40,000 -IPv6: 20,000 - LSE1: Not supported Multicast Heavy profile: - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): - IPv4: 20,000 - IPv6: 10,000	

Configurable Options	Per Leaf Scale	Per Fabric Scale
	- LSE1: Not supported	
Maximum number of Secondary addresses per logical interface	1	1
Maximum number of L3 interfaces per Context	- 1,000 SVIs - 8 Routed interfaces - 100 sub-interfaces with or without port-channel	N/A
Maximum number of L3 interfaces	- 1,000 SVIs - 8 Routed interfaces - 1,000 sub-interfaces with or without port-channel	N/A
Maximum number of ARP entries for L3 Outs	7,500	N/A
Shared L3 Out	- IPv4 Prefixes: 2,000 or - IPv6 Prefixes: 1,000	- IPv4 Prefixes: 6,000 or - IPv6 Prefixes: 3,000
Maximum number of L3 Outs	400 For LSE and LSE2: 800	$\begin{aligned} & \text { 2,400 (single-stack) } \\ & \text { 1,800 (dual-stack) } \end{aligned}$

External EPGs

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of External EPGs	800	ALE: 2,400 LSE: 4,000 The listed scale is calculated as a product of (Number of external EPGs)*(Number of border leaf switches for the L3Out) For example, the following combination adds up to a total of 2,000 external EPGs in the fabric (250 external EPGs * 2 border leaf switches * 4 L3Outs): - 250 External EPGs in L3out1 on leaf1 and leaf2 - 250 External EPGs in L3out2 on leaf1 and leaf2. - 250 External EPGs in L3Out3 on leaf3 and leaf4 - 250 External EPGs in L3Out4 on leaf3 and leaf4
Number of External EPGs per L3Out	250	600 The listed scale is calculated as a product of (Number of external EPGs per L3Out)*(Number of border leaf switches for the L3Out) For examples, 150 external EPGs on L3Out1 that is deployed on leaf1, leaf2, leaf3, and leaf 4 adds up to a total of 600
Maximum number of LPM Prefixes for External EPG Classification Note Maximum combined number of IPv4/IPv6 host and LPM prefixes for External EPG Classification must not exceed 64,000	ALE: 1,000 IPv4 LSE: refer to LPM scale section.	N/A

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of host prefixes for External EPG Classification Note \quadMaximum combined number of IPv4/IPv6 host and LPM prefixes for External EPG Classification must not exceed 64,000	N/A	

Configurable Options	Per Leaf Scale	Per Fabric Scale
	ALE: 1,000 LSE and LSE2: - Default Profile: - IPv4 (/32): 16,000 - IPv6 (/128): 12,000 Combined number of host prefixes and endpoints can't exceed 12,000 . - IPv4 Scale profile: - $\operatorname{IPv} 4$ (/32): 16,000 Combined number of host prefixes, mcast routes, and endpoints can't exceed 56,000. - IPv6 (/128): 0 - High Dual Stack Profile: - IPv4 (/32): 64,000 Combined number of host prefixes, mcast routes, and endpoints can't exceed 64,000. - IPv6 (/128): 24,000 (LSE) Combined number of host prefixes and endpoints can't exceed 24,000 . - IPv6 (/128): 48,000 (LSE2 only) Combined number of host prefixes and endpoints can't exceed 48,000. - High LPM Profile: - IPv4 (/32): 24,000 Combined number of host prefixes, mcast routes, and endpoints can't exceed 24,000. - IPv6 (/128): 12,000 Combined number of host prefixes and endpoints can't exceed 12,000 .	

Configurable Options	Per Leaf Scale	Per Fabric Scale
	- High Policy profile (N9K-C93180YC-FX, N9K-C93600CD-GX, and N9K-C9364C-GX switches with 32GB of RAM only): - $\operatorname{IPv} 4$ (/32): 16,000 - IPv6 (/128): 12,000 Combined number of host prefixes and endpoints can't exceed 12,000 . - High IPv4 EP Scale profile (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): - IPv4 (/32): 16,000 - IPv6 (/128): 12,000 Combined number of host prefixes and endpoints can't exceed 12,000 . - Multicast Heavy profile (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): - IPv4 (/32): 16,000 Combined number of host prefixes and endpoints can't exceed 114,000 . - IPv6 (/128): 4,000 Combined number of host prefixes and endpoints can't exceed 4,000 .	

Bridge Domains

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Configurable Options } & \text { Per Leaf Scale } & \text { Per Fabric Scale } \\
\hline \text { Maximum number of BDs } & \begin{array}{l}\text { Legacy mode: 3,500 } \\
\text { On ALE ToR switches with multicast } \\
\text { optimized mode: } 50\end{array} & 15,000 \\
\hline \begin{array}{l}\text { Maximum number of BDs with Unicast } \\
\text { Routing per Context (VRF) }\end{array} & \begin{array}{l}\text { ALE: 256 } \\
\text { LSE: } 1,000\end{array} & 1,750 \\
\hline \text { Maximum number of subnets per BD } & 1,000, \text { cannot be for all BDs. } & 1,000 \text { per BD } \\
\hline \text { Maximum number of EPGs per BD } & 3,960 & 4,000 \\
\hline \text { Number of L2 Outs per BD } & 1 & 1 \\
\hline \begin{array}{l}\text { Number of BDs with Custom MAC } \\
\text { Address }\end{array}
$$ \& 1,000

On ALE ToR switches with multicast

optimized mode: 50\end{array}\right]\)| On ALE ToR switches with multicast |
| :--- |
| optimized mode: 50 |

Endpoint Groups (Under App Profiles)

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of EPGs	Normally 3,960; if legacy mode 3,500	15,000
Maximum amount of encapsulations per EPG	1 Static leaf binding, plus 10 Dynamic VMM	N/A
Maximum Path encap binding per EPG	Equals to number of ports on the leaf	N/A
Maximum amount of encapsulations per EPG per port with static binding	One (path or leaf binding)	N/A
Maximum number of domains (physical, L2, L3)	100	N/A
Maximum number of VMM domains	N/A	- 200 VDS - 50 AVS - 50 Cisco ACI Virtual Edge
Maximum number of native encapsulations	- One per port, if a VLAN is used as a native VLAN. - Total number of ports, if there is a different native VLAN per port.	Applicable to each leaf independently
Maximum number of 802.1p encapsulations	- 1, if path binding then equals the number of ports. - If there is a different native VLAN per port, then it equals the number of ports.	Applicable to each leaf independently
Can encapsulation be tagged and untagged?	No	N/A
Maximum number of Static endpoints per EPG	Maximum endpoints	N/A
Maximum number of Subnets for inter-context access per tenant	4,000	N/A
Maximum number of Taboo Contracts per EPG	2	N/A
IP-based EPG (bare metal)	4,000	N/A
MAC-based EPG (bare metal)	4,000	N/A

Contracts

Cisco ACI supports two types of compression for policy CAM (content-addressable memory):

- Bidirectional compression ensures that bidirectional rules consume a single entry in the policy CAM and is supported starting with Cisco APIC release 3.2(1).
- Policy TCAM indirection compression enables multiple contracts to refer to the same filter rules and is supported starting with Cisco APIC release 4.0(1).

If you enable compression in release $4.0(1)$ or later, APIC will use either or both optimizations depending on the configuration. When enabling compression on -EX switches, APIC will apply bidirectional compression. The policy TCAM compression feature requires -FX leaf switches or newer.

Configurable Options	Per Leaf Scale	Per Fabric Scale
Security TCAM size	Default scale profile: - ALE v2: 40,000 - LSE and LSE2: 64,000 IPv4 scale profile: - ALE v2: N/A - LSE and LSE2: 64,000 High Dual Stack scale profile: - ALE v2: N/A -LSE: 8,000 - LSE2: 128,000 High LPM scale profile: - ALE v2: N/A - LSE and LSE2: 8,000 High Policy profile: - LSE2 (N9K-C93180YC-FX, N9K-C93600CD-GX, and N9K-C9364C-GX switches with 32GB of RAM only): 256,000 - LSE (N9K-C9336C-FX2 and N9K-C93180YC-EX): 100,000 High IPv4 EP Scale profile: - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): 64,000 - Not supported on LSE1 Multicast Heavy profile: - LSE2 (N9K-C93180YC-FX and N9K-C93600CD-GX switches with 32GB of RAM only): 64,000 - Not supported on LSE1	N/A

Configurable Options	Per Leaf Scale	Per Fabric Scale
Software policy scale with Policy Table Compression enabled (Number of actrlRule Managed Objects)	Dual stack profile: • LSE (N9K-C9336C-FX2 only): 80,000	N/A
	•LSE2 (N9K-C93180YC-FX only): 80,000	

Endpoint Security Groups (ESG)

Configurable Options	Scale
Number of ESG per Fabric	10,000

Configurable Options	Scale
Number of ESG per VRF	1,000
Number of Selector per Leaf	4,000

FCoE NPV

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of VSANs	32	N/A
Maximum number of VFCs configured on physical ports and FEX ports	151	N/A
Maximum number of VFCs on port-channel (PC), including SAN port-channel	7	N/A
Maximum number of VFCs on virtual port-channel (vPC) interfaces, including FEX HIF vPC	151	N/A
Maximum number of FDISC per port	255	N/A
Maximum number of FDISC per leaf	1,000	N/A

FC NPV

Configurable Options	Per Leaf Scale	Per Fabric Scale
Maximum number of FC NP Uplink interfaces	48	N/A
Maximum number of VSANs	32	N/A
Maximum number of FDISC per port	255	N/A
Maximum number of FDISC per leaf	1,000	N/A
Maximum number of SAN port-channel, including VFC port-channel	7	N/A
Maximum number of members in a SAN port-channel	16	

VMM Scalability Limits

VMware

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of vCenters (VDS)	N/A	200 (Verified with a load of 10 events/minute for each vCenter)
Number of vCenters (AVS)	N/A	50
Number of vCenters (Cisco ACI Virtual Edge)	N/A	50
Datacenters in a vCenter	N/A	15
Total Number of VMM domain (vCenter, Datacenter) instances.	N/A	- 200 VDS - 50 AVS -50 Cisco ACI Virtual Edge
Number of ESX hosts per AVS	240	N/A
Number of ESX hosts running Cisco ACI Virtual Edge	150	N/A
Number of EPGs per vCenter/vDS	N/A	5,000
Number of EPGs to VMware domains/vDS	N/A	5,000
Number of EPGs per vCenter/AVS	N/A	3,500
Number of EPGs to VMware domains/AVS	N/A	3,500
Number of EPGs per vCenter/Cisco ACI Virtual Edge	N/A	VLAN Mode: 1,300 VXLAN Mode: 2,000
Number of EPGs to VMware domains and Cisco ACI Virtual Edge	N/A	VLAN Mode: 1,300 VXLAN Mode: 2,000
Number of endpoints (EPs) per AVS	10,000	10,000
Number of endpoints per VDS	10,000	10,000
Number of endpoints per vCenter	10,000	10,000
Number of endpoints per Cisco ACI Virtual Edge	10,000	10,000
Support RBAC for AVS	N/A	Yes
Support RBAC for VDS	N/A	Yes

Configurable Options	Per Leaf Scale	Per Fabric Scale
Support RBAC for Cisco ACI Virtual Edge	N/A	Yes
Number of Microsegment EPGs with vDS	400	N/A
Number of Microsegment EPGs with AVS	1,000	N/A
Number of Microsegment EPGs with Cisco ACI Virtual Edge	1,000	N/A
Number of DFW flows per vEth with AVS	10,000	N/A
Number of DFW flows per vEth with Cisco ACI Virtual Edge	10,000	N/A
Number of DFW denied and permitted flows per ESX host with AVS	250,000	N
Number of DFW denied and permitted flows per ESX host with Cisco ACI Virtual Edge	250,000	NCenter version 6.0: 500
Number of VMM domains per EPG with AVS	N/A	vCenter version 6.5: 1,000
Number of VMM domains per EPG with Cisco ACI Virtual Edge	N/A	N/A
Number of VM Attribute Tags per vCenter	N/A	

Microsoft SCVMM

Configurable Options	Per Leaf Scale (On-Demand Mode)	Per Leaf Scale (Pre-Provision Mode)	Per Fabric Scale
Number of controllers per SCVMM domain	N/A	N/A	5
Number of SCVMM domains	N/A	N/A	25
EPGs per Microsoft VMM domain	N/A	N/A	3,000
EPGs per all Microsoft VMM domains	N/A	N/A	9,000
EP/VNICs per HyperV host	N/A	10,000	100
EP/VNICs per SCVMM	3,000	N/A	N/A
Number of Hyper-V hosts	64		

Configurable Options	Per Leaf Scale (On-Demand Mode)	Per Leaf Scale (Pre-Provision Mode)	Per Fabric Scale
Number of logical switch per host	N/A	N/A	1
Number of uplinks per logical switch	N/A	N/A	4
Microsoft micro-segmentation	1,000	Not Supported	N/A

Microsoft Windows Azure Pack

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of Windows Azure Pack subscriptions	N/A	1,000
Number of plans per Windows Azure Pack instance	N/A	150
Number of users per plan	N/A	200
Number of subscriptions per user	N/A	3
VM networks per Windows Azure Pack user	N/A	3,000
VM networks per Windows Azure Pack instance	N/A	40
Number of tenant shared services/providers	N/A	40
Number of consumers of shared services	N/A	50
Number of VIPs (Citrix)	N/A	50
Number of VIPs (F5)	N/A	

Layer 4 - Layer 7 Scalability Limits

Configurable Options (L4-L7 Configurations)	Per Leaf Scale	Per Fabric Scale
Maximum number of L4-L7 logical device clusters	N/A	1,200
Maximum number of graph instances	N/A	1,000
Number of device clusters per tenant	N/A	30

Configurable Options (L4-L7 Configurations)	Per Leaf Scale	Per Fabric Scale
Number of interfaces per device cluster	N/A	Any
Number of graph instances per device cluster	N/A	500
Deployment scenario for ASA (transparent or routed)	N/A	Yes
Deployment scenario for Citrix - One arm with SNAT/etc.	N/A	Yes
Deployment scenario for F5 - One arm with SNAT/etc.	N/A	

AD, TACACS, RBAC Scalability Limits

Configurable Options	Per Leaf Scale	Per Fabric Scale
Number of ACS/AD/LDAP authorization domains	N/A	4 tested (16 maximum /server type)
Number of login domains	N/A	15 (can go beyond).
Number of security domains/APIC	N/A	15 (can go beyond).
Number of security domains in which the tenant resides	N/A	4 (can go beyond).
Number of priorities	N/A	4 tested (16 per domain)
Number of shell profiles that can be returned.	N/A	8,000 local / 8,000 remote (32 domains total)
Number of users	N/A	500 connections / NGNIX simultaneous REST logins
Number of simultaneous logins	N/A	

Cisco Mini ACI Fabric and Virtual APICs Scalability Limits

Property	Maximum Scale
Multicast Groups	200
BGP + OSPF Sessions	25
Number of Graphs Instances	20

Property	Maximum Scale
Maximum number of L4-L7 logical device clusters	3 Physical or 10 Virtual
Number of Pods	1
GOLF VRF, Route Scale	N/A
Tenants	25
Endpoints	20,000
Bridge domains (BDs)	1,000
Endpoint groups (EPGs)	1,000
VRFs	25
Number of Leafs	4
Number of Spines	2,000
Contracts	

Cisco Cloud APIC Scalability Limits

This section contains scalability numbers for Cisco ACI cloud deployments. The scalability limits differ based on whether it's a single cloud site or a multi-cloud deployment.

Single Cloud Site

This section contains scalability numbers for a single cloud site deployment. The same scale numbers apply to both, AWS or Azure, cloud providers.

Table 3: Single Cloud Site

Configurable Options	Scale
Number of Tenants	20
Number of Application Profiles	500
Number of EPGs	500
Number of cloud Endpoints	1,000
Number of VRFs	20
Cloud Context Profiles	40
Number of Contracts	1,000
Number of L4-L7 Service Graphs	200

Configurable Options	Scale
Number of L4-L7 Services Devices (AWS ALB)	100
Number of hub networks for Transit Gateway (TGW)	2
Number of Transit Gateways per hub network	2
Number of restricted domains (security domain with restricted role)	32

Multi-Cloud Deployments

This section contains scalability numbers for multi-cloud deployments. The same scale numbers apply to each cloud site (AWS or Azure) with intersite connectivity provided by the ACI Multi-Site Orchestrator. Total number of stretched and non-stretched objects must not exceed the maximum verified scalability limit for that object.

Table 4: Multi-Cloud Deployments

Configurable Options	Scale
Number of cloud sites	2
Number of managed regions per site	4
Number of CSRs per site	4
Number of CSRs per region	2
Number of Tenants	5
Number of EPGs	250
Number of cloud endpoints	500
Number of VRFs	10
Cloud Context Profiles (VPC/VNET)	40
Number of Contracts	200

Cisco ACI and UCSM Scalability

The following table shows verified scalability numbers for Cisco Unified Computing System with Cisco ACI ExternalSwitch app.

Configurable Options	Scale
Number of UCSMs per APIC cluster	12
Number of VMM Domains per UCSM	4
Number of VLANs + PVLAN per UCSM	4,000

Configurable Options	Scale
Number of vNIC Templates per UCSM	16

OoS Scalability Limits

The following table shows QoS scale limits. The same numbers apply for topologies with or without remote leafs as well as with COS preservation and MPOD policy enabled.

QoS Mode	QoS Scale
Custom QoS Policy with DSCP	7
Custom QoS Policy with DSCP and Dot1P	7
Custom QoS Policy with Dot1P	38
Custom QoS Policy via a Contract	38

PTP Scalability Limits

The following table shows Precision Time Protocol (PTP) scale limits.

Configurable Options	Scale (IEEE 1588 Default Profile)	Scale (AES67, SMPTE-2059-2)	
Number of leaf switches connected to a single spine with PTP globally enabled	128	40	
Number of ACI switches connected to the same tier-1 leaf switch (multi-tier topology) with PTP globally enabled	16	16	
Number of access ports with PTP enabled on a leaf switch	Note For improved performance on 1G interfaces with N9K-C93108TC-FX3P switches, the maximum number of 1G interfaces should not exceed 10 out of 25	Note	For improved performance on 1G interfaces with N9K-C3108TC-FX3P switches, the maximum number of 1G interfaces should not exceed 10 out of 25
Number of PTP peers per access port	PTP Mode Multicast (Dynamic/Master): peers PTP Mode Unicast Master: 1 peer	PTP Mode Multicast (Dynamic/Master): 2 peers PTP Mode Unicast Master: 1 peer	
Number of PTP peers per leaf switch	26	26	

NetFlow Scale

Configurable Options	Scale
Exporters per leaf switch	2
NetFlow monitor policies under BDs per leaf switch	100
NetFlow monitor policies under L3Outs per leaf switch	120
Maximum number of records per collect interval	20,000

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE. EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at: $\mathrm{http}: / / \mathrm{www} . c i s c o . c o m / \mathrm{go} /$ softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/warranty. US Federal Communications Commission Notices are found here http://www.cisco.com/c/en/us/products/us-fcc-notice.html.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)
© 2020-2024 Cisco Systems, Inc. All rights reserved.
> -1|lı|l. CISCO. Cisco Systems, Inc. USA

Asia Pacific Headquarters Europe Headquarters CiscoSystems(USA)Pte.Ltd. CiscoSystemsInternationaIBV Singapore Amsterdam,TheNetherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

