
NX-API Developer Sandbox

• NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2), on page 1
• NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later, on page 13

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)

About the NX-API Developer Sandbox
The NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OS CLI commands
into equivalent XML or JSON payloads, and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request, and Response— as shown
in the figure.

Figure 1: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API
REST, and a command type, such as XML or JSON. The available command type options vary depending
on the selected message format.

NX-API Developer Sandbox
1

When you type or paste one or more CLI commands into the Command pane, the web form converts the
commands into an API payload, checking for configuration errors, and displays the resulting payload in the
Request pane. If you then choose to post the payload directly from the Sandbox to the switch, using the POST
button in the Command pane, the Response pane displays the API response.

Conversely, when you type an NX-API REST designated name (DN) and payload into the Command pane
and select the nx-api restMessage format and the model Command type, Developer Sandbox checks
the payload for configuration errors, then the Response pane displays the equivalent CLIs.

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.
For example, configuring a BGP router requires first enabling BGP with the feature bgp command.
Similarly, configuring an OSPF router requires first enabling OSPF with the feature ospf command.
This also applies to evpn esi multihoming, which enables its dependent commands such as evpn
multihoming core-tracking. For more information about enabling features to access feature dependent
commands, see the Cisco Nexus 9000 Configuration GuidesCisco Nexus 3000 Configuration Guides.

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

• CLI to model or xml conversion will not happen for OSPFv2 interface commands until you explicitly
enable OSPF on interface by configuring router instance and area using [no] ip router ospf <tag> area
{<area-id-ip> | <area-id-int>} [secondaries none] command.

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

• When you use XML or JSON as the Message Type for CLI input, you can use semicolon to separate
multiple commands on the same line. However, when you use JSON RPC as the Message Type for CLI
input, you cannot enter multiple commands on the same line and separate them with a semicolon (;).

For example, assume that you want to send show hostname and show clock commands through JSON
RPC as the following.

In the Sandbox, you enter the CLIs as follows.
show hostname ; show clock

In the JSON RPC request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname ; show clock",
"version": 1

},
"id": 1

}
]

When you send the request, the response returns the following error.

NX-API Developer Sandbox
2

NX-API Developer Sandbox
Guidelines and Limitations

https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/series.html#Configuration

{
"jsonrpc": "2.0",
"error": {
"code": -32602,
"message": "Invalid params",
"data": {
"msg": "Request contains invalid special characters"

}
},
"id": 1

}

This situation occurs because the Sandbox parses each command in a JSON RPC request as individual
items and assigns an ID to each. When using JSON RPC requests, you cannot use internal punctuation
to separate multiple commands on the same line. Instead, enter each command on a separate line and the
request completes sucessfully.

Continuing with the same example, enter the commands as follows in the NX-API CLI.
show hostname
show clock

In the request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname",
"version": 1

},
"id": 1

},
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 2

}
]

The response completes successfully.
[
{
"jsonrpc": "2.0",
"result": {
"body": {
"hostname": "switch-1"

}
},
"id": 1

},
{
"jsonrpc": "2.0",
"result": {
"body": {
"simple_time": "12:31:02.686 UTC Wed Jul 10 2019\n",
"time_source": "NTP"

}
},

NX-API Developer Sandbox
3

NX-API Developer Sandbox
Guidelines and Limitations

"id": 2
}

]

Configuring the Message Format and Command Type
The Message Format and Command Type are configured in the upper right corner of the Command pane
(the top pane). ForMessage Format, choose the format of the API protocol that you want to use. The Developer
Sandbox supports the following API protocols:

Table 1: NX-OS API Protocols

DescriptionProtocol

A standard lightweight remote procedure call (RPC) protocol that can be used to deliver
NX-OSCLI commands in a JSONpayload. The JSON-RPC 2.0 specification is outlined
by jsonrpc.org.

json-rpc

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML payload.

xml

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
a JSON payload.

json

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. For more information about the Cisco Nexus 3000 and 9000 Series NX-API
REST SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

nx-api rest

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

nx yang

When the Message Format has been chosen, a set of Command Type options are presented just below the
Message Format control. The Command Type setting can constrain the input CLI and can determine the
Request and Response format. The options vary depending on the Message Format selection. For each
Message Format, the following table describes the Command Type options:

Table 2: Command Types

Command typeMessage format

• cli — show or configuration commands

• cli-ascii — show or configuration commands, output without
formatting

json-rpc

NX-API Developer Sandbox
4

NX-API Developer Sandbox
Configuring the Message Format and Command Type

http://www.jsonrpc.org
https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Command typeMessage format

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

xml

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

json

• cli — configuration commands

• model — DN and corresponding payload.

nx-api rest

• json — JSON structure is used for payload

• xml — XML structure is used for payload

nx yang

Output Chunking

In order to handle large show command output, some NX-API message formats support output chunking for
show commands. In this case, an Enable chunk mode checkbox appears below the Command Type control
along with a session ID (SID) type-in box.

When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate
command response. In order to retrieve the next chunk of the response message, you must send an NX-API
request with SID set to the session ID of the previous response message.

NX-API Developer Sandbox
5

NX-API Developer Sandbox
Configuring the Message Format and Command Type

Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI".

Only configuration commands are supported.

Tip

Step 1 Configure the Message Format and Command Type for the API protocol you want to use.

For detailed instructions, see Configuring the Message Format and Command Type, on page 4.

Step 2 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at the bottom
of the top pane.

Step 3 Click the Convert at the bottom of the top pane.

NX-API Developer Sandbox
6

NX-API Developer Sandbox
Using the Developer Sandbox

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are present, a
descriptive error message appears in the Response pane.

Step 4 When a valid payload is present in the Request pane, you can click POST to send the payload as an API call to the
switch.

The response from the switch appears in the Response pane.

Clicking POST commits the command to the switch, which can result in a configuration or state change.Warning

NX-API Developer Sandbox
7

NX-API Developer Sandbox
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Step 5 You can copy the contents of the Request or Response pane to the clipboard by clicking Copy in the pane.
Step 6 You can obtain a Python implementation of the request on the clipboard by clicking Python in the Request pane.

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI".

Tip

SUMMARY STEPS

1. Select nx-api rest as the Message Format and model as the Command Type.
2. Enter a DN and payload into the text entry box in the top pane. Then click on the Convert button below

the top pane.

DETAILED STEPS

Step 1 Select nx-api rest as the Message Format and model as the Command Type.

Example:

NX-API Developer Sandbox
8

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Step 2 Enter a DN and payload into the text entry box in the top pane. Then click on the Convert button below the top pane.

Example:

For this example, the DN is api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

NX-API Developer Sandbox
9

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

When you click on the Convert button, the CLI equivalent appears in the CLI pane as shown in the following image.

NX-API Developer Sandbox
10

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

NX-API Developer Sandbox
11

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Developer Sandbox cannot convert all payloads into equivalent CLIs, even if the Sandbox converted the CLIs
to NX-API REST payloads. The following is a list of possible sources of error that can prevent a payload from
completely converting to CLI commands:

Table 3: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to the
attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element 'l1PhysIf'

The payload contains an attribute that does not exist in
the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",

"fakeattribute": "totallyFake"

}
}

}
]

}
}

]
}

}

The Error Pane will return an error related to the
unsupported MO.

Example:

CLI

Error The entire subtree of "sys/dhcp"
is not converted.

The payload includes MOs that aren't yet supported for
conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled": "yes"

}
}

}
]

}
}

]
}

}

Note

NX-API Developer Sandbox
12

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

About the NX-API Developer Sandbox
The Cisco NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OSCLI commands
into equivalent XML or JSON payloads and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request (middle pane), and Response
(bottom pane) — as shown in the figure below. The designated name (DN) field is located between the
Command and Request panes (seen in the figure below located between the POST and Send options).

The Request pane also has a series of tabs. Each tab represents a different language: Python, Python3, Java,
JavaScript, and Go-Lang. Each tab enables you to view the request in the respective language. For example,
after converting CLI commands into an XML or JSON payload, click the Python tab to view the request in
Python, which you can use to create scripts.

Figure 2: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane enable you to choose a supported API, such as NX-API REST, an input type,
such as model (payload) or CLI, and a message format, such as XML or JSON. The available options vary
depending on the chosen method.

NX-API Developer Sandbox
13

NX-API Developer Sandbox
NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

When you choose the NXAPI-REST (DME) method, type or paste one or more CLI commands into the
Command pane,and clickConvert, the web form converts the commands into a RESTAPI payload, checking
for configuration errors, and displays the resulting payload in the Request pane. If you then choose to post
the payload directly from the sandbox to the switch (by choosing the POST option and clicking SEND), the
Response pane displays the API response. For more information, see Using the Developer Sandbox to Convert
CLI Commands to REST Payloads, on page 19

Conversely, the Cisco NX-API Developer Sandbox checks the payload for configuration errors then displays
the equivalent CLis in the Response pane. For more information, see Using the Developer Sandbox to Convert
from REST Payloads to CLI Commands, on page 21

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.
For example, configuring a BGP router requires first enabling BGP with the feature bgp command.
Similarly, configuring an OSPF router requires first enabling OSPF with the feature ospf command.
This also applies to evpn esi multihoming, which enables its dependent commands such as evpn
multihoming core-tracking. For more information about enabling features to access feature dependent
commands, see the Cisco Nexus 9000 Configuration GuidesCisco Nexus 3000 Configuration Guides.

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

• CLI to model or xml conversion will not happen for OSPFv2 interface commands until you explicitly
enable OSPF on interface by configuring router instance and area using [no] ip router ospf <tag> area
{<area-id-ip> | <area-id-int>} [secondaries none] command.

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

• When you use XML or JSON as the Message Type for CLI input, you can use semicolon to separate
multiple commands on the same line. However, when you use JSON RPC as the Message Type for CLI
input, you cannot enter multiple commands on the same line and separate them with a semicolon (;).

For example, assume that you want to send show hostname and show clock commands through JSON
RPC as the following.

In the Sandbox, you enter the CLIs as follows.
show hostname ; show clock

In the JSON RPC request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname ; show clock",
"version": 1

},
"id": 1

}
]

NX-API Developer Sandbox
14

NX-API Developer Sandbox
Guidelines and Limitations

https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/series.html#Configuration

When you send the request, the response returns the following error.
{
"jsonrpc": "2.0",
"error": {
"code": -32602,
"message": "Invalid params",
"data": {
"msg": "Request contains invalid special characters"

}
},
"id": 1

}

This situation occurs because the Sandbox parses each command in a JSON RPC request as individual
items and assigns an ID to each. When using JSON RPC requests, you cannot use internal punctuation
to separate multiple commands on the same line. Instead, enter each command on a separate line and the
request completes sucessfully.

Continuing with the same example, enter the commands as follows in the NX-API CLI.
show hostname
show clock

In the request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname",
"version": 1

},
"id": 1

},
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 2

}
]

The response completes successfully.
[
{
"jsonrpc": "2.0",
"result": {
"body": {
"hostname": "switch-1"

}
},
"id": 1

},
{
"jsonrpc": "2.0",
"result": {
"body": {
"simple_time": "12:31:02.686 UTC Wed Jul 10 2019\n",
"time_source": "NTP"

NX-API Developer Sandbox
15

NX-API Developer Sandbox
Guidelines and Limitations

}
},
"id": 2

}
]

Configuring the Message Format and Input Type
The Method, Message format, and Input type are configured in the upper right corner of the Command
pane (the top pane). For Method, choose the format of the API protocol that you want to use. The Cisco
NX-API Developer Sandbox supports the following API protocols:

Table 4: NX-OS API Protocols

DescriptionProtocol

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML or a JSON payload.

NXAPI-CLI

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. The NXAPI-REST (DME) protocol displays a drop-down list that enables you
to choose from the following methods:

• POST

• GET

• PUT

• DELETE

For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST
SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

NXAPI-REST
(DME)

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

The RESTCONF (Yang) protocol displays a drop-down list that enables you to choose
from the following methods:

• POST

• GET

• PUT

• PATCH

• DELETE

RESTCONF (Yang)

When you choose the Method, a set of Message format or Input type options are displayed in a drop-down
list. The Message format can constrain the input CLI and determine the Request and Response format. The
options vary depending on the Method you choose.

The following table describes the Input/Command type options for each Message format:

NX-API Developer Sandbox
16

NX-API Developer Sandbox
Configuring the Message Format and Input Type

https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Table 5: Command Types

Input/Command typeMessage formatMethod

• cli — show or configuration commands

• cli-ascii — show or configuration commands,
output without formatting

• cli-array — show commands. Similar to cli, but
with cli_array, data is returned as a list of one
element, or an array, within square brackets, [].

json-rpcNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

xmlNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

Beginning with Cisco NX-OS Release
9.3(3), the cli_show_array command is
recommended over the cli_show
command.

Note

• cli_show_array — show commands. Similar to
cli_show, but with cli_show_array, data is
returned as a list of one element, or an array,
within square brackets [].

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

jsonNXAPI-CLI

NX-API Developer Sandbox
17

NX-API Developer Sandbox
Configuring the Message Format and Input Type

Input/Command typeMessage formatMethod

• cli — CLI to model conversion

• model — Model to CLI conversion.

NXAPI-REST (DME)

• json — JSON
structure is used for
payload

• xml — XML
structure is used for
payload

RESTCONF (Yang)

Output Chunking

JSON and XML NX-API message formats enable you to receive large show command responses in 10-MB
chunks. When received, the chunks are concatenated to create a valid JSON object or XML structure. To view
a sample script that demonstrates output chunking, click the following link and choose the directory that
corresponds to Release 9.3x: Cisco NX-OS NXAPI.

For chunk JSON mode, the browser or python script part does not provide the valid JSON output (there will
be no closing tags). To use chunk mode and get valid JSON, use the script provided in the directory.

Note

You receive the first chunk in the immediate command response, which also includes a sid field that contains
a session Id. To retrieve the next chunk, you enter the session Id from the previous chunk in the SID text box.
You repeat the process until reaching the last response, which is indicated by the eoc (end of content) value
in the sid field.

Chunk mode is available when using the NXAPI-CLI method with the JSON or XML format type and the
cli_show, cli_show_array, or cli_show_ascii command type. For more information about configuring the
chunk mode, see the Chunk Mode Fields table.

NX-API supports a maximum of 2 chunking sessions.Note

Table 6: Chunk Mode Fields

DescriptionField Name

Click to place a check mark in the Enable Chunk Mode check box to
enable chunking. When you enable chunk mode, responses that exceed
10 MB are sent in multiple chunks of up to 10 MB in size.

Enable Chunk Mode

Enter the session Id of the previous response in the SID text box to
retrieve the next chunk of the response message.

Only alphanumeric characters and ‘_’ are allowed. Invalid
characters receive an error.

Note

SID

NX-API Developer Sandbox
18

NX-API Developer Sandbox
Configuring the Message Format and Input Type

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to REST Payloads

• Online help is available by clicking the help icons (?) next to the field names located in the upper-right
corner of the Cisco NX-API Developer Sandbox window.

• For additional details, such as response codes and security methods, see the NX-API CLI chapter.

• Only configuration commands are supported.

Tip

The Cisco NX-API Developer Sandbox enables you to convert CLI commands to REST payloads.

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

The Input type drop-down list appears.

Step 2 Click the Input type drop-down list and choose cli.
Step 3 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at the bottom
of the top pane.

NX-API Developer Sandbox
19

NX-API Developer Sandbox
Using the Developer Sandbox

Step 4 Click Convert.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are present, a
descriptive error message appears in the Response pane.

Step 5 (Optional) To send a valid payload as an API call to the switch, click Send.

The response from the switch appears in the Response pane.

Clicking Send commits the command to the switch, which can result in a configuration or state change.Warning

Step 6 (Optional) To obtain the DN for an MO in the payload:

a. From the Request pane, choose POST.

b. Click the Convert drop-down list and choose Convert (with DN).

The payload appears with with a dn field that contains the DN that corresponds to each MO in the payload.

Step 7 (Optional) To overwrite the current configuration with a new configuration:

a. Click the Convert drop-down list and choose Convert (for Replace). The Request pane displays a payload with a
status field set to replace.

b. From the Request pane, choose POST.

c. Click Send.

NX-API Developer Sandbox
20

NX-API Developer Sandbox
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

The current configuration is replaced with the posted configuration. For example, if you start with the following
configuration:

interface eth1/2
description test
mtu 1501

Then use Convert (for Replace) to POST the following configuration:

interface eth1/2
description testForcr

The mtu configuration is removed and only the new description (testForcr) is present under the interface. This change
is confirmed when entering show running-config .

Step 8 (Optional) To copy the contents of a pane, such as the Request or Response pane, click Copy. The contents o the
respective pane is copied to the clipboard.

Step 9 (Optional) To convert the request into an of the formats listed below, click on the appropriate tab in the Request pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
TheCiscoNX-APIDeveloper Sandbox enables you to convert REST payloads to correspondingCLI commands.
This option is only available for the NXAPI-REST (DME) method.

• Online help is available by clicking help icons (?) next to the Cisco NX-API Developer Sandbox field
names. Click a help icon get information about the respective field.

For additional details, such as response codes and security methods, see the chapter NX-API CLI.

• The top-right corner of the Cisco NX-API Developer Sandbox contains links for additional information.
The links that appear depend on the Method you choose. The links that appear for the NXAPI-REST
(DME) method:

• NX-API References—Enables you to access additional NX-API documentation.

• DME Documentation—Enables you to access the NX-API DME Model Reference page.

• Model Browser—Enables you to access Visore, the Model Browser. Note that you might have to
manually enter the IP address for your switch to access the Visore page:

https://management-ip-address/visore.html.

Tip

NX-API Developer Sandbox
21

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

Example:

Step 2 Click the Input Type drop-down list and choose model.
Step 3 Enter the designated name (DN) that corresponds to the payload in the field above the Request pane.
Step 4 Enter the payload in the Command pane.
Step 5 Click Convert.

Example:

For this example, the DN is /api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

NX-API Developer Sandbox
22

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

When you click on the Convert button, the CLI equivalent appears in the CLI pane as shown in the following image.

NX-API Developer Sandbox
23

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

NX-API Developer Sandbox
24

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Cisco NX-API Developer Sandbox cannot convert all payloads into equivalent CLIs, even if the sandbox
converted the CLIs to NX-API REST payloads. The following is a list of possible sources of error that can prevent
a payload from completely converting to CLI commands:

Table 7: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to the
attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element 'l1PhysIf'

The payload contains an attribute that does not exist in
the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",

"fakeattribute": "totallyFake"

}
}

}
]

}
}

]
}

}

The Error Pane will return an error related to the
unsupported MO.

Example:

CLI

Error The entire subtree of "sys/dhcp"
is not converted.

The payload includes MOs that aren't yet supported for
conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled": "yes"

}
}

}
]

}
}

]
}

}

Note

NX-API Developer Sandbox
25

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Using the Developer Sandbox to Convert from RESTCONF to json or XML

• Online help is available by clicking the help icon (?) in the upper-right corner of the Cisco NX-API
Developer Sandbox window.

• Click on the Yang Documentation link in the upper right corner of the Sandbox window to go to the
Model Driven Programmability with Yang page.

• Click on theYang Models link in the upper right corner of the Sandbox window to access the YangModels
GitHub site.

Tip

Step 1 Click the Method drop-down list and choose RESTCONF (Yang).

Example:

Step 2 Click Message format and choose either json or xml.
Step 3 Enter a command in the text entry box in the top pane.
Step 4 Choose a message format.
Step 5 Click Convert.

Example:

NX-API Developer Sandbox
26

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

For this example, the command is logging level netstack 6 and the message format is json:

Example:

For this example, the command is logging level netstack 6 and the message format is xml:

NX-API Developer Sandbox
27

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

When converting a negated CLI to a Yang payload using the XML or JSON message format, the sandbox throws
a warning and disables the Send option. The warning message that appears depends on the message format:

• For the XMLmessage format— "This is a Netconf payload as it is being generated for DELETE operation(s),
hence SEND option is disabled for Restconf!"

• For the JSON message format—"This is a gRPC payload as it is being generated for DELETE operation(s),
hence SEND option is disabled for Restconf!"

Note

Step 6 You can also convert the request into the following formats by clicking on the appropriate tab in the Request pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

The Java-generated script does not work if you choose the PATCH option from the drop-down menu in the area
above the Request tab. This is a known limitation with Java and is expected behavior.

Note

NX-API Developer Sandbox
28

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

	NX-API Developer Sandbox
	NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Command Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to REST Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

	NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Input Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to REST Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
	Using the Developer Sandbox to Convert from RESTCONF to json or XML

