

© 2023 Cisco and/or its affiliates. All rights reserved. Page 1 of 12

Object Renaming in Cisco
ACI

Whitepaper

Public

© 2023 Cisco and/or its affiliates. All rights reserved. Page 2 of 12

Contents
Introduction .. 3

Cisco ACI Concepts: A Refresher ... 3

Object Relations ... 4

The cost of hypothetical renaming .. 8

Why this structure? ... 8

Alternatives to renaming ... 9

Aliases ... 9

Annotations ... 10

The case of interface descriptions .. 10

Conclusion .. 12

© 2023 Cisco and/or its affiliates. All rights reserved. Page 3 of 12

Introduction

Cisco Application Centric Infrastructure (ACI) does not offer the option to rename objects after they have

been created. Therefore, choosing a sensible naming convention for objects is of paramount importance to

ensure smooth operation of ACI fabrics. Cisco provides guidelines to that effect1 in the form of best

practices. However, not everybody adheres to those best practices and as such, it is not uncommon for

Cisco's technical staff to meet the dreadful "How can I rename objects in ACI?" question. This document

explains why renaming objects is not possible and presents alternative options to alleviate an ill-fitted

naming convention.

Cisco ACI Concepts: A Refresher

Under the covers, Cisco ACI relies on an object-oriented design based on an object model. Every aspect

of ACI is stored as an object in a configuration database. Configuration items, faults, statistics, events, and

logs are all objects defined in the object model. Each object belongs to a specific class, which broadly

identifies the category (such as security and routing) to which it belongs. For example when you configure

a tenant in ACI, you actually instruct the system to instantiate an object of class fvTenant (fv stands for

fabric virtualization) and store that object somewhere in the configuration database. After an object is

instantiated (a fancy word to indicate an object of a given type has been created), it receives a

distinguished name (dn). For example when you create tenant Foo, its dn is uni/tn-Foo. That is valid for

every ACI fabric in the world. The dn of tenant Foo is always uni/tn-Foo. You can determine the dn of most

objects by right-clicking on an object in the Cisco Application Policy Infrastructure Controller (APIC) user

interface and choosing Share.

 The "Share" option in the user interface Figure 1

 The dn of tenant Foo Figure 2

A key concept to understand is that each and every dn is unique in the entire configuration database of

ACI. Duplicates never exist. Furthermore, looking at any dn reveals its place in that configuration database.

1
 https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b-Cisco-ACI-Naming-and-Numbering.html

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b-Cisco-ACI-Naming-and-Numbering.html

© 2023 Cisco and/or its affiliates. All rights reserved. Page 4 of 12

Looking at tenant Foo, we observe its dn is uni/tn-Foo. The uni prefix indicates a higher-level object. That

higher-level object is the parent of tn-Foo, and tn-Foo is therefore a child of uni. If you create VRF instance

main under tenant Foo, the dn of VRF instance main is uni/tn-Foo/ctx-main (ctx stands for context). The

VRF instance is a child of tn-Foo which is itself a child of uni. The concept of parent-child entities is very

common in database systems design. Because each dn clearly indicates the position of a given object in

the entire configuration database, readers familiar with databases have probably realized ACI stores

objects using a tree, as shown in Figure 3.

 Cisco ACI uses a tree structure to store objects Figure 3

Different techniques exist to store objects configured as a tree, each offering pros and cons. The next

sections explore further relations between objects and discusses the implications of the ACI architectural

model.

Object Relations

Continuing our journey into the ACI object model, let's now create a bridge domain called primary and

attach it to VRF instance main. Intuitively, you might think the dn of that bridge domain is going to be

uni/tn-Foo/ctx-main/BD-primary. Unfortunately, that is not the case. The dn of the bridge domain is

actually uni/tn-Foo/BD-primary! However, it is linked to VRF instance main, as show in Figure 4.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 5 of 12

 Bridge domain primary is related to VRF instance main Figure 4

If the dn of the bridge domain does not indicate the relation to VRF instance main, then what does? As

seen with tenant Foo and VRF instance main, children can themselves have children. But, they can also

point to other objects to indicate a relation to that object! That is precisely how bridge domain primary

expresses its relation to VRF instance main. If we look at the object model explorer (right-click on an object

in the GUI and choose Open in Object Store Browser), we can see bridge domain primary has children of

its own.

 Viewing the bridge domain in the Object Store browser Figure 5

Clicking View children MOs (MOs stands for managed objects, meaning any object stored in the

configuration database) reveals one interesting child called fvRsCtx. Rs here indicates "relation source"

and Ctx as seen previously refers to a VRF instance. Here is what the entire child looks like:

© 2023 Cisco and/or its affiliates. All rights reserved. Page 6 of 12

 Child fvRsCtx details Figure 6

Bridge domain primary points to VRF instance main through a child object! That child object has itself a

class and a dn of course. Every managed object possesses a series of attributes as shown in Figure 6: dn,

annotation, childAction, and so on are all attributes of a given managed object. In this particular fvRsCtx

example, attribute tDn is of particular interest. It is the target dn attribute. It points to the dn of the object

this bridge domain wants to establish a relation with. Attribute tCl represents the class of the target

relation, a fvCtx object in this case, which is therefore a VRF instance.

It is interesting to know that a target object always knows which objects are pointing to it! If we explore

VRF instance main in the Object Store Browser, we notice a child called fvRtCtx where Rt stands for

relation target this time.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 7 of 12

 Child fvRtCtx details Figure 7

Look at the tDn attribute: it points to bridge domain primary. We have essentially a linked list of objects,

each aware of relation targets and relation sources. Relations are all established using distinguished

names. Every single possible relation to and from a given object is documented in detail in the object

model reference guide2. Some objects may contain dozens and dozens of relation targets and/or sources.

Figure 8 represents a mere overview of the fvTenant object.

 Partial representation of fvTenant relations Figure 8

The entire ACI object model contains tens of thousands of objects. If you are curious and want to explore

the object model of your ACI fabric, download the PyACI project3 and run the rmetagen.py utility, pointing it

to the fabric of your choice. After a few minutes, you will have an entire representation of the object model

in the ~/.aci-meta directory. A quick Python script reveals the number of objects in an ACI fabric running

software release 6.0(1) in a lab environment:

 Exploring the object model with PyACI Figure 9

This ACI fabric's configuration contains 17,080 distinct classes of objects! When you consider that figure, it

is easy to imagine there are thousands and thousands of relation targets and sources formed between

managed objects in this fabric. Picking just one simple object (the default LLDP interface policy –

uni/infra/lldpIfP-default), we can see it contains 25 "Rt" children, indicating 25 managed objects point to

that interface policy:

2
 https://developer.cisco.com/site/apic-mim-ref-api/

3
 https://github.com/datacenter/pyaci

https://developer.cisco.com/site/apic-mim-ref-api/
https://github.com/datacenter/pyaci

© 2023 Cisco and/or its affiliates. All rights reserved. Page 8 of 12

 Children of the default LLDP interface policy Figure 10

The cost of hypothetical renaming

Imagine that you could modify the name of that default LLDP interface policy. The immediate implication is

that 25 objects must immediately be updated to point to the new dn resulting from this hypothetical

renaming. Conversely, the LLDP interface policy itself now must update all its Rt children to reflect its new

complete dn.

You probably recall that that the dn of every single managed object contains the name of the object itself.

So, if you rename lldpIfP-default to lldpIfP-somethingNew, the dn of the policy reflects that change.

Therefore, any managed object relying on the previous dn must update its corresponding attribute or

attributes accordingly. Furthermore, while the renaming process walks through the configuration tree, no

other changes to the LLDP interface policy can occur to ensure data consistency. This effectively means

locking entire portions of the configuration tree for an unknown duration. Repeat this with the many

potential simultaneous name changes and the result is an APIC busy primarily with patching relation

sources, relation targets, and distinguished names. What happens in case of failure? Does APIC roll back

all changes? How does it keep track of changes successfully executed versus those pending? Readers

should also know that APIC is a distributed cluster replicating all information in three shards. This means

renaming operations must also be replicated within the APIC cluster. This hypothetical renaming can turn

out to be very computationally expensive!

Why this structure?

You might be wondering why Cisco ACI stores information this way. Why use relation targets and sources

as children of managed objects? Why refer to distinguished names in object attributes? Why not generate

a UUID per object and build a relational database using primary and foreign keys? One immediate benefit

of this tree or graph structure is that looking at any given object directly reveals the other objects it either

depends on, or the objects that depend on this object. Accessing a managed object using its dn is

computationally inexpensive. It's similar to fetching an object using its primary key in a relational database.

This is quite practical when rendering the configuration database in the User Interface for example. If you

want to find out all bridge domains pointing to a VRF instance, there is no need to perform complex SQL

joins with lookups in multiple tables. Likewise, determining how many bridge domains this VRF instance is

the parent of is trivial: one simple lookup does the job. It also allows the APIC API to offer backend support

for advanced queries such as "return all objects of class fvTenant and their children, only if the name of the

bridge domain contains production" without requiring advanced SQL knowledge. Because ACI is built

© 2023 Cisco and/or its affiliates. All rights reserved. Page 9 of 12

around objects related to other objects, this tree or graph structure lends itself well to the job at hand. The

model trades flexibility for performance. You cannot rename objects, but you get very rapid navigation

through a potentially enormous configuration tree.

Alternatives to renaming

To err is human. Despite the best planning, everybody makes mistakes. Introducing a typo in the name of

an object is just a keyboard stroke away. If the typo is not immediately caught and corrected, you risk

being stuck with objects pointing to a name you did not mean to enter, thereby making operations of the

fabric more difficult.

Cisco realizes these conditions and provides several ways to alleviate that burden:

1. Aliases

2. Annotations

Aliases

Aliases come in two forms:

1. Name Aliases

2. Global API Aliases

Name aliases, or simply aliases in the GUI (Graphical User Interface), are an attribute several managed

objects possess. When configured, the GUI renders the values of the alias attribute in place of the object's

real name. You can see several examples in Figure 11.

 Using aliases in the GUI Figure 11

The GUI places the original name of the managed object between parentheses and highlights the alias

attribute. In Figure 11, the actual name of the tenant is mitogen while its alias is Peptide. Likewise for all

bridge domains and the VRF instance. This is a very convenient way to correct a mis-named object. Now,

this does not rename objects; it simply modifies an attribute of the object. The GUI is instructed to act upon

seeing a non-empty alias attribute.

Even though most objects contain the alias attribute, not every managed object does. Also, the GUI does

not render the alias attribute of every single managed object; it focuses primarily on tenant-related

managed objects. Aliases need not be unique across the configuration though. They serve a purely

cosmetic function.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 10 of 12

Global aliases are only relevant in the context of API-driven operations. When configured, a global alias

becomes a child (tagAliasInst) of the object it is attached to. The original managed object can then be

accessed using its global alias. Suppose you create global alias foo for uni/tn-Foo/ap-one/epg-web. You

can now perform API operations against EPG web using https://<apic>/api/alias/foo.json.

Annotations

Annotations (object class tagAnnotation) follow the industry-standard key:value pair metadata format. An

arbitrary number of annotations can be attached to any managed objects in the configuration database.

Annotations become children of the managed object they qualify. The GUI renders annotations for a certain

number of managed objects as shown in Figure 12 with a tenant:

 Annotating a tenant Figure 12

The GUI lets you query annotations in a central location as shown in Figure 13.

 Searching for annotations Figure 13

The case of interface descriptions

A common pain point brought forward by customers due to the inability to rename objects is how to pick

the best interface naming convention. Customers are not sure which naming convention is going to work

best for their environment and sometimes determine months into the deployment that another naming

convention would have been more suitable. Most of the times, an ill-suited interface naming convention

can be alleviated by using better interface descriptions. The easiest way to create a description for an

interface in ACI is to go to the Fabric > Inventory > Pod > Interfaces > Physical Interfaces section of the

GUI as shown in Figure 14.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 11 of 12

 Adding an interface description in the GUI Figure 14

Behind the scenes, the GUI configures an interface override policy, which you can find here:

 Interface override policy that is automatically created Figure 15

The interface description is now reflected in the GUI and on the command line as shown in Figure 16.

© 2023 Cisco and/or its affiliates. All rights reserved. Page 12 of 12

 Interface description on the command line Figure 16

Programmatic access to interface descriptions is made simple with Ansible as shown in Figure 17.

 Assigning interface descriptions with Ansible Figure 17

Conclusion

Considering how and why Cisco ACI stores runtime and configuration data, renaming objects is not

implemented due to the enormous computational cost and configuration lock nuisances that would ensue.

Renaming an object is only possible if the original object is destroyed and replaced by a new one.

Adopting a sensible naming convention is of critical importance. Should you make small mistakes despite

solid planning efforts, aliases and annotation can provide relief. If your use case revolves around naming of

interfaces, configuring suitable interface descriptions is just a simple task in the user interface or easily

done through programmatic access.

Printed in USA

Americas Headquarters

Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters

Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters

Cisco Systems International BV Amsterdam
The Netherlands

Cisco has more than 200 offices worldwide. Address, phone numbers, and fax numbers are listed on the Cisco Website at
https://www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco

trademarks, go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The

use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

https://www.cisco.com/go/offices
https://www.cisco.com/go/trademarks

	Introduction
	Cisco ACI Concepts: A Refresher
	Object Relations
	The cost of hypothetical renaming
	Why this structure?
	Alternatives to renaming
	Aliases
	Annotations

	The case of interface descriptions
	Conclusion

