
Cisco Open Plug-n-Play Agent Configuration Guide, Cisco IOS Release
15SY

Open Plug-n-Play Agent 2

Finding Feature Information 2

Prerequisites for Open Plug-n-Play Agent 2

Restrictions for Open Plug-n-Play Agent 3

Information About Open Plug-n-Play Agent 3

How to Configure Open Plug-n-Play Agent 17

Configuration Examples for Open Plug-n-Play Agent 30

Trouble Shooting and Debugging 31

Glossary 31

Additional References for Open Plug-n-Play Agent 31

Feature Information for Open Plug-n-Play Agent 32

Revised: December 16, 2014,

Open Plug-n-Play Agent
Cisco Open Plug-n-Play agent is a software application running on a Cisco IOS or IOS-XE device. When a device is powered on
for the first time, the Open Plug-n-Play agent discovery process, which is embedded in the device, wakes up in the absence of the
startup configuration file and attempts to discover the address of the Open Plug-n-Play server. The Open Plug-n-Play agent uses
methods like DHCP, Domain Name System (DNS), and others to acquire the desired IP address of the Open Plug-n-Play server.

The Open Plug-n-Play agent converges existing solutions into a unified agent and adds functionality to enhance the current deployment
solutions.

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see
Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in
this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this
module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature
Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Open Plug-n-Play Agent
• Cisco Open Plug-n-Play (PnP) deployment method depends on the type of discovery process as required by the customer.

• Deploy the discovery mechanism, either a DHCP server discovery process or a Domain Name Server (DNS) discovery process,
before launching the PnP.

• Configure the DHCP server or the DNS server before deploying the PnP.

• Ensure that the PnP server talks to the PnP agent.

• The PnP agent enforces the PnP server to send user credentials for every request. Cisco recommends the usage of HTTP secure
(HTTPS) protocol.

Note • The terms Cisco Open Plug-n-Play, Plug-n-Play, PnP are interchangeably used in this guide and all
mean the same.

• The terms PnP agent, agent, and deployment agent are interchangeably used in this guide and all
mean the same.

• The terms PnP server, server, and deployment server are interchangeably used in this guide and all
mean the same.

2

https://tools.cisco.com/bugsearch/search
http://www.cisco.com/go/cfn

Restrictions for Open Plug-n-Play Agent
• Cisco Open Plug-n-Play (PnP) agent facilitates HTTP, Extensible Messaging and Presence Protocol (XMPP) and HTTP secure
(HTTPS) transport based communication with the server.

• HTTPS cannot be used on platforms where crypto-enabled images are not supported (also, do not use Secure Sockets Layer
[SSL] or Transport Layer Security [TLS] protocols if crypto-enabled images are used).

Information About Open Plug-n-Play Agent

Open Plug-n-Play Deployment Solution
The Cisco initiated Open Plug-n-Play (PnP) deployment solution supports the concept of redirection and includes a PnP agent, a PnP
server, and other components. Simplified deployment process of any Cisco device automates the following deployment related
operational tasks:

• Establishing initial network connectivity for the device

• Delivering device configuration

• Delivering software and firmware images

• Delivering licenses

• Delivering deployment script files

• Provisioning local credentials

• Notifying other management systems about deployment related events

Simplified deployment reduces the cost and complexity and increases the speed and security of deployments.

Cisco Open Plug-n-Play (PnP) agent is a software application that is running on a Cisco IOS or IOS-XE device. The PnP agent
together with the PnP deployment server provides effortless deployment services. When a device is powered on for the first time, the
PnP agent process wakes up in the absence of the startup config and attempts to discover the address of the PnP server. The PnP agent
uses methods like DHCP, Domain Name System (DNS), and others to acquire the desired IP address of the PnP server. When the
PnP agent successfully acquires the IP address, it initiates a long lived, bidirectional layer 3 connection with the server and waits for
a message from the server. The PnP server application sends messages to the agent requesting for information and services to be
performed on the device.

The PnP agent converges existing solutions into a unified agent and adds functionality to enhance the current solutions. The main
objectives of PnP agent are:

• Provide consistent day 1 deployment solution for all the deployment scenarios.

• Add new features to improve existing solutions.

• Provide day 2 management framework mainly in the context of configuration and image upgrades.

Plug-n-Play Features

Some of the features that the Cisco Open Plug-n-Play (PnP) agent provides today are:

3

• Day 0 boot strapping—Configuration, image, licenses, and other files

• Day 2 management—Configuration and image upgrades and on-going monitoring of Simple Network Management Protocol
(SNMP) and syslog messages.

• Open communication protocol—Enables customers and partners to write applications

• XML based payload over HTTP and Extensible Messaging and Presence Protocol (XMPP) between the server and the agent

• Security—Authentication and encrypted communication channel between the management app and the agent

• Deployment and management of devices behind firewall and Network Address Translation (NAT).

• Support for one-to-one and one-to-many communication

• Support for policy based deployment (product ID or location of the device)

• Deployment based on unique ID (Unique Device Identifier [UDI] or MAC)

• Unified solution across Cisco platforms (including IOS classic)

• Support for various deployment scenarios and use cases

• Zero-touch when possible, low-touch when needed

Plug-n-Play Agent Services and Capabilities

The services and capabilities of the Cisco Open Plug-n-Play (PnP) agent are as follows:

1 Backoff

2 CLI execution

3 Configuration upgrade

4 Device information

5 File transfer

6 Image install

7 License install

8 PnP tagging

9 Script execution

10 Topology information

4

The PnP server provides an optional checksum tag to be used in the image installation and config upgrade
service requests by the PnP agent. When the checksum is provided in the request, the image install process
compares the checksum against the current running image checksum.

If the checksums are same, the image being installed or upgraded is the same as the current image running
on the device. The image install process will not perform any other operation in this scenario.

If the checksums are not same, then the new image will be copied to the local file system, and checksum
will again be calculated and compared against the checksum provided in the request. If same, the process
will continue to install the new image or upgrade the device to new image. If now, the checksums are not
same, the process will exit with error.

Note

Backoff

A Cisco IOS device that supports PnP protocol (that uses HTTP transport), requires the PnP agent to send the work request to the
PnP server continuously. In case the PnP server does not have any scheduled or outstanding PnP service for the PnP agent to execute,
the continuous no operation work requests exhausts both network bandwidth and device resource. This PnP backoff service allows
the PnP server to inform the PnP agent to rest for the specified time and call back later.

CLI Execution

Cisco IOS supports two modes of command execution—EXEC mode and global configuration mode. Most of the EXEC commands
are one-time commands, such as show commands, which show the current configuration status, and clear commands, which clear
counters or interfaces. The EXEC commands are not saved when a device reboots. Configuration modes allow user to make changes
to the running configuration. If you save the configuration, these commands are saved when a device reboots.

For show command request and response details and for all PnP configuration commands, seeCisco Open
Plug-n-Play Agent Command Reference.

Note

Configuration Upgrade

There are two types of configuration upgrades that can happen in a Cisco device—copying a new configuration files to startup
configuration and copying new configuration files to running configuration.

Copying a new configuration files to startup configuration— The new configuration file is copied from the file server to the device
through copy command and file check is performed to check the validity of the file. If the file is valid, then the file is copied to startup
configuration. Backing up the previous configuration file will be done if there is enough disk space available. The new configuration
is seen when the device reloads again.

Copying new configuration files to running configuration— The new configuration file is copied from the file server to the device
through copy command or configure replace command. Configuration file replace and rollback may leave the system in an unstable
state if rollback is performed efficiently. So configuration upgrade by copying the files is preferred.

Device Information

The PnP agent provides capability to extract device inventory and other important information to the PnP server on request. The
following five types of device-profile requests are supported:

1 all—returns complete inventory information, which includes unique device identifier (UDI), image, hardware and file system
inventory data.

5

2 filesystem— returns file system inventory information, which includes file system name and type, local size in bytes, free size in
bytes, read flag, and write flag.

3 hardware— returns hardware inventory information, which includes hostname, vendor string, platform name, processor type,
hardware revision, main memory size, I/O memory size, board ID, board rework ID, processor revision, midplane revision, and
location.

4 image—returns image inventory information, which includes version string, image name, boot variable, return to rommon reason,
bootloader variable, configuration register, configuration register on next boot, and configuration variable.

5 UDI— returns device UDI.

File Transfer

The PnP file server hosts files that can be copied over by the deploying devices in the network. The file server can be a dedicated
server hosting files or a part of the device hosting the PnP server. The PnP agent uses standard file transfer protocols to copy files
from the remote file server to the device. If the device is running a crypto image then secured file transfer protocols such as SFTP,
SCP, HTTPS are supported. For devices running non-crypto images, the PnP agent supports unsecured copy protocols such as FTP,
TFTP, HTTP.

Image Install

Image installation service enables a PnP-enabled device to perform image upgrade on receiving a request from the PnP server.

An Image Install request can be classified for the following types of devices:

1 Standalone devices
2 High availability devices
3 Stackable devices
4 Cisco Catalyst 6000 devices

Standalone Devices
When the PnP agent on a standalone device receives a request from the PnP server, the agent parses the XML payload and identifies
the request as an Image Upgrade request. The agent then creates an ImageInstall process, which identifies the request as a standalone
image install request. The PnP agent populates the data structure defined by the ImageInstall service and passes it to the ImageInstall
service.

The ImageInstall service then performs the following operations to successfully load the device with the new image:

1 Copies the image from the file server to a local disk (the file server information is provided by the PnP server in the request).
2 Configures the device to load the new image on next reload by executing the boot system command.
3 Reloads the device and sends a message to the PnP server.

High-Availability Devices
When the PnP agent is installed on a high-availability device, once ImageInstall service gets the data structure, the agent determines
that the request is for a high-availability device. The active route processor (RP) which is running the PnP agent performs all the
operations needed to install the image on both active and standby devices.

The ImageInstall service then performs the following operations to successfully load the devices with the new image:

1 Copies the image from the file server to a local disk of the device that is running the active RP. Information about the file server,
image location, and destination is populated in the data structure.

To reload the standby device with the same new image, the PnP agent running on the active device copies the image to the local
disk on the standby device.

2 Configures the active device to load the new image on next reload by executing the boot system command.

6

This causes the startup configuration to be synchronized with the standby device. Now, both active and standby devices have the
same new image configured.

3 Sends a message to the PnP server that the active device is reloading the standby device.

When the standby device comes up and reaches stateful switchover (SSO) state, the active device sends a message to the PnP
server that it is going to reload itself, and then undergoes a reload.

This causes a switchover to the standby device, which becomes the new active device.

Both active and standby devices are now running the new image.

Stackable devices

Cisco Catalyst 6000 devices

License Install

Cisco IOS automates installation of new licenses on PnP enabled Cisco devices. The PnP server sends work request to install new
licenses on the Cisco device. When the PnP agent receives license install work request, it installs the new license on the device,
configures the boot level, and reloads the device. The new license is applied when the device reloads. Once the service is completed,
PnP agent sends success or failure work response to the PnP server.

PnP Tagging

Cisco IOS provides capability to assign tags to the devices for better grouping and tracking of all Cisco devices. The PnP agent
provides XML service for configuring the tag information on the device and for propagating the tag information within the network
using Cisco Discovery Protocol (CDP). The purpose of this service is for the PnP agents to get to know their tag information and to
pass on this information to the PnP server upon request.

Script Execution

Cisco IOS provides capability to execute IOS shell scripts on all Cisco devices. Scripts can be executed by the PnP agent to perform
post–install activities on the device. The script is copied from the file server by the agent and is executed on the running system. The
post–install activities performed by these scripts consists of crypto key generation and other runtime configuration on the device.

Topology Information

By default, every Cisco device on the network runs Cisco Discovery Protocol (CDP). Through CDP, devices in the network discover
their immediate neighbors and populate their databases with the attributes learnt or derived through the protocol. This neighbor
information is stored in the database and is available on demand by the device to the PNP server. Typical neighbor information
comprises neighboring device ID, software version, hardware platform, interface ip, and the port on which CDP messages are sent
or received.

Plug-n-Play Agent

The Cisco Open Plug-n-Play (PnP) agent is an embedded software component that is present in all Cisco network devices that support
simplified deployment architecture. The PnP agent understands and interacts only with a PnP server. The PnP agent first tries to
discover a PnP server, with which it can communicate. Once a server is found and connection established, the agent performs
deployment related activities like configuration, image, license, and file updates by communicating with the server. It also notifies
the server of all interesting deployment related events like out-of-band configuration changes and a new device connection on an
interface.

7

Plug-n-Play Server

The Cisco Open Plug-n-Play (PnP) server is a central server that encodes the logic of managing and distributing deployment information
(images, configurations, files, and licenses) for the devices being deployed. The server communicates with the agent on the device
that supports the simplified deployment process using a specific deployment protocol.

Figure 1: Simplified Deployment Server

The PnP server also communicates with proxy servers like deployment applications on smart phones and PCs, or other PnP agents
acting as Neighbor Assisted Provisioning Protocol (NAPP) servers, and other types of proxy deployment servers like VPN gateways.

The PnP server can redirect the agent to another deployment server. A common example of redirection is a PnP server redirecting a
device to communicate with it directly after sending the bootstrap configuration through a NAPP server. A PnP server can be hosted
by an enterprise. This solution allows for a cloud based deployment service provided by Cisco. In this case, a device discovers and
communicates with Cisco’s cloud based deployment service for initial deployment. After that, it can be redirected to the customer’s
deployment server.

In addition to communicating with the devices, the server interfaces with a variety of external systems like Authentication, Authorizing,
and Accounting (AAA) systems, provisioning systems, and other management applications.

Plug-n-Play Agent Deployment

The following steps indicate the Cisco Open Plug-n-Play (PnP) agent deployment on Cisco devices:

1 The Cisco device, having PnP agent contacts the PnP server requesting for a task, that is, the PnP Agent sends its unique device
identifier (UDI) along with a request for work.

2 The PnP server if it has any task for the device, sends a work request. For example, image install, config upgrade, and so on.

3 When the PnP agent receives the work request, executes the task and sends back a reply to the PnP server about the task status,
whether it is a success or error, and the corresponding information requested.

8

Plug-n-Play Agent Network Topology

Figure 2: Network Topology of Cisco Open Plug-n-Play Agent Deployment

Plug-n-Play Agent Initialization

The Cisco Open Plug-n-Play (PnP) agent software is currently available on all Cisco IOS and IOS XE platforms, and is enabled by
default. The PnP agent can be initiated on a device by the following ways:

Absence of Startup Configuration

9

New Cisco devices are shipped to customers with no startup configuration file in the NVRAM of the devices. When a new device is
connected to a network and powered on, the absence of a startup configuration file on the device will automatically trigger the Open
Plug-n-Play (PnP) agent to discover the PnP server IP address.

Figure 3: State Diagram for PnP Trigger with no Startup Configuration

CLI Configuration for Open Plug-n-Play Agent
Network administrators may use CLI configuration mode to initiate the Open Plug-n-Play (PnP) agent process at any time. By
configuring a PnP profile through CLI, a network administrator can start and stop the PnP agent on a device. When the PnP profile
is configured with CLI, the device starts the PnP agent process which, in turn, initiates a connection with the PnP server using the IP
address in the PnP profile.

Figure 4: State Diagram for PnP Trigger with CLI Configured PnP Profile

Open Plug-n-Play Agent Deployment Solutions
This section discusses the functionality of the Cisco Open Plug-n-Play (PnP) agent, exposed to the PnP server, for device deployment
andmanagement. The PnP agent deployment solution comprises the discovery process initiated by the agent, communication between
the device, agent, and the server, and the PnP agent services. The PnP solution is described in detail in the following sections:

Plug-n-Play Agent Discovery Process

The Cisco Open Plug-n-Play (PnP) agent discovery phase results in acquiring the IP address of the PnP server. When a system boots
up without a startup configuration file, the device will not have the IP configuration required to connect to the IP network. In such a
scenario, DHCP discovery process is used to obtain the IP parameters needed for the device to have IP connectivity.

When the device boots up, the absence of any startup config on the NVRAM triggers the PnP discovery agent to acquire the IP address
of the PnP server. In order to acquire the IP address of the PnP server, the PnP agent goes through one of the following discovery
mechanisms:

1 PnP discovery through DHCP server

2 PnP discovery through DHCP snooping

3 PnP discovery through DNS lookup

4 PnP proxy for layer 2 and layer 3 devices

5 PnP deployment application

10

Plug-n-Play Discovery through DHCP Server
Device with no startup configuration in the NVRAM triggers the Cisco Open Plug-n-Play (PnP) agent to initiate a DHCP discovery
process which acquires the IP configuration from the DHCP server required for the device. The DHCP server can be configured to
insert additional information using vendor specific option 43 upon receiving option 60 from the device with the string ‘cisco pnp’, to
pass on the IP address or hostname of the PnP server to the requesting device. When the DHCP response is received by the device,
the PnP agent extracts the option 43 from the response to get the IP address or the hostname of the PnP server. PnP agent then uses
this IP address or hostname to communicate with the PnP server.

Figure 5: DHCP Discovery Process for PnP server

Assumptions:

• New devices can reach DHCP server

• Customer is willing to configure DHCP server for network devices

Plug-n-Play Discovery through DHCP Snooping
If a third party DHCP server cannot be configured to insert any vendor specific options, an existing Cisco Open Plug-n-Play (PnP)
enabled device can be configured to snoop in to the DHCP response and insert PnP specific option 43 with the PnP server IP address.

11

Before inserting the option 43, the snooping agent verifies if the DHCPmessage is from a Cisco device in the network. The remaining
DHCP discovery process is same as described in the previous section.

Figure 6: DHCP Snooping by PnP Server

Assumptions:

• New devices can reach DHCP server

• Customer is not willing to configure DHCP server for network devices

• Upstream switch (SW) is configured to snoop DHCP and insert PnP server IP

Plug-n-Play Discovery through DNS Lookup
When the DHCP discovery fails to get the IP address of the Cisco Open Plug-n-Play (PnP) server, the agent falls back on Domain
Name System (DNS) lookup method. PnP agent then uses a preset deployment server name. The agent obtains the domain name of
the customer network from the DHCP response and constructs the fully qualified domain name (FQDN). The following FQDN is

12

constructed by the PnP agent using a preset deployment server name and the domain name information for the DHCP response,
deployment.customer.com. The agent then looks up the local name server and tries to resolve the IP address for the above FQDN.

Figure 7: DNS Lookup for deployment.customer.com

Assumptions:

• New devices can reach DHCP server

• Customer deployed PnP server in the network with the name “pnpserver”

Plug-n-Play Proxy Server for Layer 3 and Layer 2 Devices
In the absence of DHCP or Domain Name System (DNS) servers, an existing up and running Cisco Open Plug-n-Play (PnP) enabled
device in the neighborhood network can be configured to act as a PnP Neighbor Assisted Provisioning Protocol (NAPP) server.

The NAPP server is part of PnP discovery phase. This server is invoked when the PnP autonomic networking based discovery, DHCP,
DNS, Cisco cloud service discovery mechanisms fail to connect to the PnP server.

13

This device listens to a specific port for any incoming PnP messages. The Cisco device which is trying to come up as a PnP device
sends a UDP broadcast message to its network every 30 min for ten times. Hence, if the device does not receive a response, the
broadcasts stop after 300 min.

Figure 8: DNS Lookup for Layer 3 and Layer 2 Devices

When the device hosting the proxy server process receives the incoming broadcasts, it verifies the version field in the request and
forwards the request to the PnP server if version validation is successful. The proxy server process also caches the unique device
identifier (UDI) of the requesting client coming in via incoming datagram before forwarding the request to PnP server.

14

Upon receiving the configlet datagram from PnP server, the proxy server validates UDI in the incoming datagram with the entries in
the UDI cache. If validation is successful, proxy server process broadcasts the datagram to a specific port number reserved for the
proxy client processes to receive datagrams.

Upon receiving the datagrams, devices running proxy client processes, parse the incoming datagram for the target UDI. If the target
UDI in the datagram matches the UDI of the device, proxy client process proceeds with framing, error control and configuring the
configlet.

If the target UDI in the datagram fails to match UDI of the device, the packet is dropped.

Plug-n-Play Agent Deployment Application
A Cisco device can alternatively be manually configured by the network administrator using a deployment application running on
their PC or on a smart phone. The PC or the smart phone can be connected to the device using an USB or an Ethernet cable.

Figure 9: Manually Configured PnP Agent

Plug-n-Play Agent Deployment Protocol

The Cisco Open Plug-n-Play (PnP) agent deployment protocol is based on Extensible Messaging and Presence Protocol (XMPP).
The following are the main features of an XMPP based deployment protocol:

• Simplicity and extensibility: XMPP offers a simple and light–weight messaging infrastructure based on XML. XMPP is also
highly extensible to add any additional messaging semantics as needed for different capabilities.

• Rich set of existing services: XMPP already has a rich set of services defined like capabilities exchange, file transfers, and so
on.

• Support for workflow: In addition to a simple request and response mechanism, XMPP offers the capability to execute a
messaging workflow. This is useful when there is a need to implement features like certificate enrollments.

• Suitability for future capabilities: XMPP provides an extensible messaging framework for simplified deployment infrastructure.
In future, messaging between two or more devices or between a device and a management application behind the deployment
server can be easily accomplished with XMPP.

15

Though the deployment application protocol is based on XMPP, it can be run over different transports. These transports include
Ethernet and IP with Transport Layer Security (TLS). Layer 2 transport is typically used between a deployment agent and a proxy
deployment server like a deployment application or as a deployment agent acting as a proxy. Transport between an agent and a server
is over an IP connection with TLS for security. Transport between a proxy deployment server and a deployment server is also over
IP with TLS.

Plug-n-Play Agent Application Protocol
The Cisco Open Plug-n-Play (PnP) agent application protocol is an XML-based protocol that defines a mechanism that allows network
devices to be monitored and controlled by a remote application. The PnP agent is a software module running on a Cisco device. The
PnP server is an application running as the network manager that remotely manages the network devices. The main features of the
PnP protocol are as follows:

1 Supports both HTTP and Extensible Messaging and Presence Protocol (XMPP) protocols

2 Supports Transport Level Security (TLS) based encryption for both HTTP and XMPP

3 Uses HTTP secure (HTTPS) certificate for TLS handshake

4 Enables long lived bi-directional connection using XMPP

5 Supports presence capabilities to know up and down events using XMPP

6 Supports one-to-one and one-to-many messaging using XMPP

Plug-n-Play Transport over Ethernet
Cisco Open Plug-n-Play (PnP) agent uses the Ethernet based transport in the following two scenarios:

• Deployment agent communicating with a deployment application on a PC: In this case, the PC is connected to the device
being deployed using an Ethernet cable. The deployment application advertises itself as a deployment server supporting Ethernet
transport.

• Deployment agent communicating with an already deployed device acting as a proxy deployment server: In this case, the
new device being deployed has an Ethernet connection to an already deployed device. The deployment agent on the deployed
device responds to the discovery requests and acts as a proxy deployment server for the new device.

Once discovery is complete, the deployment agent starts an unsecured XML stream with the deployment server over Ethernet. This
protocol reserves an Ethertype (0xXX TBD) for this purpose. The deployment agent and the server then negotiate to use Extensible
Authentication Protocol–Transport Layer Security (EAP-TLS) to protect the communication and complete the EAP-TLS session
establishment. The deployment server then authenticates the device with the HTTP secure (HTTPS) certificate or some other supported
mechanism.

Plug-n-Play Transport over IP
In Cisco Open Plug-n-Play (PnP) agent, the transport over IP is identical to standard Extensible Messaging and Presence Protocol
(XMPP) transport between an XMPP client and an XMPP server. The deployment agent opens TCP connection to the deployment
server and starts an XML stream of messages. The server can request the use of Transport Layer Security (TLS) at this time. The
agent closes the existing XML stream, initiates a TLS connection to the server, and then restarts the XML stream. The server can
request agent authentication over the TLS connection. Refer to RFC 3920 for the transport details for XMPP connections over IP.

Plug-n-Play Agent Security

Security to all Cisco Open Plug-n-Play (PnP) devices is provided at both transport level as well as the application level. The following
sections describe the security mechanisms in detail:

Plug-n-Play Transport Layer 3 Security

16

Pre-XMPP-handshake TLS connection on port 5223

The Extensible Messaging and Presence Protocol (XMPP) has port 5223 reserved for explicit Secure Socket Layer (SSL) based
connections that can be used for the pre-XMPP-handshake Transport Layer Security (TLS) connection establishment in Cisco Open
Plug-n-Play (PnP) solution network. This requires that the crypto-enabled image is running on the Cisco devices.

For non-crypto or non-crypto-enabled images, TLS security choice is not possible. One alternative minimum security is to have the
PnP agent initiate the connection to the specified trusted PnP server on port 5222.

Plug-n-Play Application Level Security

XMPP SASL

All newCisco Open Plug-n-Play (PnP) agents and servers uses ExtensibleMessaging and Presence Protocol (XMPP) as the application
protocol for all PnP operations. The XMPP provides two in-band application-level securities—Transport Layer Security (TLS) and
Simple Authentic and Security Layer (SASL).

The in-band TLS handshake requires significant infrastructure changes in OS system architecture level which might not be needed
if the pre-XMPP-handshake TLS connection is secure enough. In-band TLS is not possible for non-crypto enabled images.

The in-band SASL validation can be used to validate some customized security exchange. The content of the SASL should be
configurable. Some constant XMPP jabber–id related information should be avoided during the SASL validation to avoid presence
leaking or resource leaking.

Authentication and Authorization between Plug-n-Play Agent and Server
Once the Cisco Open Plug-n-Play (PnP) deployment agent discovers the PnP server, the agent engages the server in a Transport Layer
Security (TLS) handshake. In order to authenticate itself to the server, the agent presents its HTTP secure (HTTPS) certificate. The
administrator for the PnP server sets device authentication mechanisms which are acceptable for a particular deployment.

The deployment server presents its certificate to the deployment agent so that the agent can authenticate the server. Irrespective of
whether the agent is able to verify the server certificate, the agent engages the deployment server in a post-TLS authorization exchange.
In this exchange the agent requests the server to present its server authorization token. In response to this request the server presents
the authorization token it had obtained from Cisco. The agent verifies the signature on the authorization token. If the authorization
token is specific to a Unique Device Identifier (UDI), the agent also ensures its UDI is listed in the authorization-token. At the end
of this step, a secure communication channel is established between the deployment agent and the server. This secure communication
channel is leveraged by the server to send deployment information to the agent.

How to Configure Open Plug-n-Play Agent

Configuring Open Plug-n-Play Agent Profile
Perform the following task to create an Open Plug-n-Play (PnP) agent profile:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

17

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for
the PnP agent profile. Profile names cannot be duplicated.

Exits the PnP profile initialization mode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 4

Configuring Open Plug-n-Play Agent Device
Perform the following task to create an Open Plug-n-Play (PnP) agent device:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the
PnP agent profile. Profile names cannot be duplicated.

Configures the PnP agent on the device.device {username username } {password {0
| 7} password}

Step 4

• Establishes a username and password based authentication
system.

18

PurposeCommand or Action

Example:

Device(config-pnp-init)# device username
sjohn password 0 Tan123

• username—User ID

• password—Password that a user enters

• 0—Specifies that an unencrypted password or secret (depending
on the configuration) follows.

• 7—Specifies that an encrypted (hidden) password follows.

Exits the PnP profile initialization mode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Open Plug-n-Play Reconnect Factor
Perform the following task to configure the time to wait before attempting to reconnect a session in either fixed-interval-backoff,
exponential-backoff, or random-exponential-backoff mode:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the PnP
agent profile. Profile names cannot be duplicated.

Specifies the time for the PnP agent initiator profile to wait before
attempting to reconnect a session.

reconnect [pause-time
[exponential-backoff-factor [random]]]

Step 4

Example:

Device(config-pnp-init)# reconnect 100
2 random

• The pause-time value is the time to wait, in seconds, before
attempting to reconnect after a connection is lost. The range is
from 1 to 2000000. The default is 60.

19

PurposeCommand or Action

• Exponential backoff factor value is the value that triggers the
reconnect attempt exponentially. The range is from 2 to 9.

Exits the PnP profile initializationmode and returns to privileged EXEC
mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Open Plug-n-Play HTTP Transport Profile
Perform the following task to create a HTTP transport profile of the Open Plug-n-Play (PnP) agent manually on a device.

Both IPv4 and IPv6 addresses can be used for PnP server IP configuration. Alternately, a hostname can also be used in the configuration
to connect to the PnP server. Every profile can have one primary server and a backup server configuration. The PnP agent attempts
to initiate a connection with the primary server first and if it fails, it will try the backup server. If the backup server fails, the PnP
agent will attempt to connect to the primary server again. This will continue until a connection is established with one of the servers.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name for
the PnP agent profile. Profile names cannot be duplicated.

Creates a HTTP transport configuration for the PnP agent profile
based on the hostname of the server on which the PnP agent is
deployed.

transport http host host-name [port port-number]
[source interface-type]

Example:

Device(config-pnp-init)# transport http host

Step 4

• The value of the host specifies the host name, port, and
source of the server.

hostname-1 port 1 source gigabitEthernet
0/0/0 • The value of the port-number specifies the port that is used.

20

PurposeCommand or Action

• The value of the interface-type specifies the interface on
which the agent is connected to the server.

Creates a HTTP transport configuration for the PnP agent profile
based on the IPv4 address of the server on which the PnP agent
is deployed.

transport http ipv4 ipv4-address [port port-number
] [source interface-type]

Example:

Device(config-pnp-init)# transport http ipv4

Step 5

10.0.1.0 port 221 source gigabitEthernet
0/0/0

Creates a HTTP transport configuration for the PnP agent profile
based on the IPv6 address of the server on which the PnP agent
is deployed.

transport http ipv6 ipv6-address [port port-number
] [source interface-type interface-number]

Example:

Device(config-pnp-init)# transport http ipv6

Step 6

2001:DB8:1::1 port 331 source gigabitEthernet
0/0/1

Exits the PnP profile initializationmode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Open Plug-n-Play HTTPS Transport Profile
Perform the following task to create a HTTP Secure (HTTPS) transport profile of the Open Plug-n-Play (PnP) agent manually on a
device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

21

PurposeCommand or Action

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name
for the PnP agent profile. Profile names cannot be
duplicated.

Creates a HTTPS transport configuration for the PnP agent
profile based on the hostname of the server on which the PnP
agent is deployed.

transport https host host-name [port port-number
][source interface-type][localcert trustpoint-name
][remotecert trustpoint-name]

Step 4

Example:

Device(config-pnp-init)# transport https host

• The value of localcert specifies the trustpoint used for
client-side authentication during the transport layer
security (TLS) handshake.

example.com port 231 source gigabitEthernet 0/0/0
localcert abc remotecert xyz • The value of remotecert specifies the trustpoint used for

server certificate validation.

Configure the trustpoint-name using the crypto pki
trustpoint command.

Note

Creates a HTTPS transport configuration for the PnP agent
profile based on the IPv4 address of the server on which the
PnP agent is deployed.

transport https ipv4 ipv4-address [port port-number
][source interface-type][localcert trustpoint-name
][remotecert trustpoint-name]

Example:

Device(config-pnp-init)# transport https ipv4

Step 5

10.0.1.0 port 221 source gigabitEthernet 0/0/0
localcert abc remotecert xyz

Creates a HTTPS transport configuration for the PnP agent
profile based on the IPv6 address of the server on which the
PnP agent is deployed.

transport https ipv6 ipv6-address [port port-number
][source interface-type interface-number][localcert
trustpoint-name][remotecert trustpoint-name]

Example:

Device(config-pnp-init)# transport https ipv6

Step 6

2001:DB8:1::1 port 331 source gigabitEthernet
0/0/1 localcert abc remotecert xyz

Exits the PnP profile initialization mode and returns to
privileged EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Open Plug-n-Play XMPP Transport Profile
Perform the following task to create a ExtensibleMessaging and Presence Protocol (XMPP) transport profile of the Open Plug-n-Play
(PnP) agent manually on a device.

22

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a
name for the PnP agent profile. Profile names cannot
be duplicated.

Creates an XMPP transport configuration for the PnP
agent profile based on the hostname of the server on which
the PnP agent is deployed.

transport xmpp socket {host host-name | ipv4 ipv4-address|
ipv6 ipv6-address} {port port-number } {source interface-type
interface-number } {sasl plain server-jid xmpp-jabber-id}

Example:

Device(config-pnp-init)# transport xmpp socket host

Step 4

example.com port 231 sasl plain server-jid cisco123

Creates an XMPP transport configuration for the PnP
agent profile based on the IPv4 address of the server on
which the PnP agent is deployed.

transport xmpp starttls {host host-name | ipv4 ipv4-address|
ipv6 ipv6-address} {port port-number } {source interface-type
interface-number } {localcert trustpoint-name } {remotecert
trustpoint-name } {sasl plain server-jid xmpp-jabber-id}

Step 5

• The value of localcert specifies the trustpoint used
for client-side authentication during the transport
layer security (TLS) handshake.Example:

Device(config-pnp-init)# transport xmpp starttls • The value of remotecert specifies the trustpoint used
for server certificate validation.

ipv4 10.0.1.0 port 221 source gigabitEthernet 0/0/0
localcert abc remotecert xyz

Creates an XMPP transport configuration for the PnP
agent profile based on the IPv6 address of the server on
which the PnP agent is deployed.

transport xmpp tls {host host-name | ipv4 ipv4-address| ipv6
ipv6-address} {port port-number } {source interface-type
interface-number } {localcert trustpoint-name } {remotecert
trustpoint-name } {sasl plain server-jid xmpp-jabber-id}

Step 6

Example:

Device(config-pnp-init)# transport xmpp tls ipv6
2001:DB8:1::1 port 221 source gigabitEthernet 0/0/0
localcert abc remotecert xyz

23

PurposeCommand or Action

Exits the PnP profile initialization mode and returns to
privileged EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Backup Open Plug-n-Play Device
Perform the following task to create a backup profile and to enable or disable Open Plug-n-Play agent manually on a device:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the
PnP agent profile. Profile names cannot be duplicated.

Configures the PnP agent backup profile on the device.backup device {username username }
{password {0 | 7} password}

Step 4

• Establishes a username and password based authentication
system.

Example:

Device(config-pnp-init)# backup device
username sjohn password 0 Tan123

• username-User ID

• password-Password that a user enters

• 0—Specifies that an unencrypted password or secret (depending
on the configuration) follows.

• 7—Specifies that a hidden password follows.

24

PurposeCommand or Action

Exits the PnP profile initialization mode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Backup Open Plug-n-Play Reconnect Factor
Perform the following task to configure backup reconnection of the Open Plug-n-Play (PnP) agent to the server in either
fixed-interval-backoff, exponential-backoff, or random-exponential-backoff manner :

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the PnP
agent profile. Profile names cannot be duplicated.

Specifies the time for the PnP agent initiator profile to wait before
attempting to reconnect a session.

backup reconnect [pause-time
[exponential-backoff-factor [random]]]

Step 4

Example:

Device(config-pnp-init)# backup
reconnect 100 2 random

• The pause-time value is the time to wait, in seconds, before
attempting to reconnect after a connection is lost. The range is
from 1 to 2000000. The default is 60.

• Exponential backoff factor value is the value that triggers the
reconnect attempt exponentially. The range is from 2 to 9.

Exits the PnP profile initializationmode and returns to privileged EXEC
mode.

end

Example:

Device(config-pnp-init)# end

Step 5

25

Configuring Backup Open Plug-n-Play HTTP Transport Profile
Perform the following task to create a backup HTTP transport profile of the Open Plug-n-Play (PnP) agent manually on a device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name for
the PnP agent profile. Profile names cannot be duplicated.

Creates a backupHTTP transport configuration for the PnP agent
profile based on the hostname of the server on which the PnP
agent is deployed.

backup transport http host host-name [port
port-number] [source interface-type]

Example:

Device(config-pnp-init)# backup transport http

Step 4

• The value of the host specifies the host name, port, and
source of the server.

host hostname-1 port 1 source gigabitEthernet
0/0/0 • The value of the port-number specifies the port that is used.

• The value of the interface-type specifies the interface on
which the agent is connected to the server.

Creates a backupHTTP transport configuration for the PnP agent
profile based on the IPv4 address of the server on which the PnP
agent is deployed.

backup transport http ipv4 ipv4-address [port
port-number] [source interface-type]

Example:

Device(config-pnp-init)# backup transport http

Step 5

ipv4 10.0.1.0 port 221 source gigabitEthernet
0/0/0

26

PurposeCommand or Action

Creates a backupHTTP transport configuration for the PnP agent
profile based on the IPv6 address of the server on which the PnP
agent is deployed.

backup transport http ipv6 ipv6-address [port
port-number] [source interface-type interface-number
]

Example:

Device(config-pnp-init)# backup transport http

Step 6

ipv6 2001:DB8:1::1 port 331 source
gigabitEthernet 0/0/1

Exits the PnP profile initializationmode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Backup Open Plug-n-Play HTTPS Transport Profile
Perform the following task to create a backup HTTPS transport profile of the Open Plug-n-Play (PnP) agent manually on a device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name
for the PnP agent profile. Profile names cannot be
duplicated.

Creates a HTTPS backup transport configuration for the PnP
agent profile based on the hostname of the server on which
the PnP agent is deployed.

backup transport https host host-name [port port-number
][source interface-type][localcert trustpoint-name
][remotecert trustpoint-name]

Step 4

Example:

Device(config-pnp-init)# backup transport https

• The value of localcert specifies the trustpoint used for
client-side authentication during the transport layer
security (TLS) handshake.

27

PurposeCommand or Action

• The value of remotecert specifies the trustpoint used
for server certificate validation.

host example.com port 231 source gigabitEthernet
0/0/0 localcert abc remotecert xyz

Creates a HTTPS backup transport configuration for the PnP
agent profile based on the IPv4 address of the server on
which the PnP agent is deployed.

backup transport https ipv4 ipv4-address [port
port-number][source interface-type][localcert
trustpoint-name][remotecert trustpoint-name]

Example:

Device(config-pnp-init)# backup transport https

Step 5

ipv4 10.0.1.0 port 221 source gigabitEthernet
0/0/0 localcert abc remotecert xyz

Creates a HTTPS backup transport configuration for the PnP
agent profile based on the IPv6 address of the server on
which the PnP agent is deployed.

backup transport https ipv6 ipv6-address [port
port-number][source interface-type interface-number
][localcert trustpoint-name][remotecert trustpoint-name
]

Step 6

Example:

Device(config-pnp-init)# backup transport https
ipv6 2001:DB8:1::1 port 331 source gigabitEthernet
0/0/1 localcert abc remotecert xyz

Exits the PnP profile initialization mode and returns to
privileged EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Backup Open Plug-n-Play XMPP Transport Profile
Perform the following task to create a backup Extensible Messaging and Presence Protocol (XMPP) transport profile of the Open
Plug-n-Play (PnP) agent manually on a device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

28

PurposeCommand or Action

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a
name for the PnP agent profile. Profile names
cannot be duplicated.

Creates an XMPP transport configuration for the PnP
agent profile based on the hostname of the server on
which the PnP agent is deployed.

backup transport xmpp socket {host host-name | ipv4
ipv4-address| ipv6 ipv6-address} {port port-number } {source
interface-type interface-number } {sasl plain server-jid
xmpp-jabber-id}

Step 4

Example:

Device(config-pnp-init)# backup transport xmpp socket
host example.com port 231 sasl plain server-jid
cisco123

Creates an XMPP transport configuration for the PnP
agent profile based on the IPv4 address of the server on
which the PnP agent is deployed.

backup transport xmpp starttls {host host-name | ipv4
ipv4-address| ipv6 ipv6-address} {port port-number } {source
interface-type interface-number } {localcert trustpoint-name

Step 5

} {remotecert trustpoint-name } {sasl plain server-jid
xmpp-jabber-id} • The value of localcert specifies the trustpoint used

for client-side authentication during the transport
layer security (TLS) handshake.

Example:

Device(config-pnp-init)# backup transport xmpp
• The value of remotecert specifies the trustpoint used
for server certificate validation.starttls ipv4 10.0.1.0 port 221 source

gigabitEthernet 0/0/0 localcert abc remotecert xyz

Creates an XMPP transport configuration for the PnP
agent profile based on the IPv6 address of the server on
which the PnP agent is deployed.

backup transport xmpp tls {host host-name | ipv4
ipv4-address| ipv6 ipv6-address} {port port-number } {source
interface-type interface-number } {localcert trustpoint-name
} {remotecert trustpoint-name } {sasl plain server-jid
xmpp-jabber-id}

Step 6

Example:

Device(config-pnp-init)# backup transport xmpp tls
ipv6 2001:DB8:1::1 port 221 source gigabitEthernet
0/0/0 localcert abc remotecert xyz

Exits the PnP profile initialization mode and returns to
privileged EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Open Plug-n-Play Agent Tag
Perform the following task to create an Open Plug-n-Play (PnP) agent tag information:

29

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Use the pnp tag command to configure the tag for the device. The
neighboring Cisco devices will receive this tag information through Cisco
Discovery Protocol (CDP).

pnp tag tag-name

Example:

Device(config)# pnp tag xyz

Step 3

If there is an existing tag for the device, the tag name can be only
changed when the xml schema is sent by the PnP server to change
the tag name. The tag name cannot be overwritten.

Note

• String of alphanumeric characters that specify a name for the PnP
agent tag.

Exits the global configuration mode and returns to privileged EXEC mode.end

Example:

Device(config)# end

Step 4

Configuration Examples for Open Plug-n-Play Agent

Configuring Open Plug-n-Play Agent
The following example shows how to configure Cisco Open Plug-n-Play (PnP) agent and the output of the show pnp profile command:

Device> enable
Device# configure terminal
Device(config)# pnp profile test
Device(config-pnp-init)# device user pnpagent2@ejabberd.test password 0 cisco
Device(config-pnp-init)# transport xmpp socket ipv4 172.19.193.60 port 5222 sasl plain server-jid
pnpserver2.ejabberd.test
Device(config-pnp-init)# end
Device# show pnp profile

Initiator Profile test: 0 open connections: 0 closing connections
Encap: xmpp11
WSSE header is not required. Configured authorization level is 1
Countdown: Security Unlock 0, Service Lock: 0, Service Req Wait: 0, Proxy Req Wait 0, Service Resp Ack:

0

30

Max message (RX) is 50 Kbytes
XEP Faults are sent
Idle timeout infinite
Keepalive not configured
Reconnect time 60 seconds
Primary transport: xmpp socket to host 172.19.193.60, port 5222

Not connected, next reconnect attempt in 52 seconds

Device#

Trouble Shooting and Debugging
To run the debugging on the Open Plug-n-Play (PnP) server, start the server, configure the PnP profile and PnP transport. That is,
start the service interaction between PnP agent and PnP server.

Capture the debugs by executing the debug pnp service command.

Glossary
NAPP Server: The Cisco Open Plug-n-Play (PnP) Neighbor Assisted Provisioning Protocol (NAPP) server that is part of PnP
discovery phase. This is a PnP enabled device in the neighborhood that can be configured to act as a PnP proxy server.

PnP Agent: An embedded agent on the device to automate deployment process

PnP Helper Applications: Applications on smart phones and personal computers that facilitate deployment. PnP helper applications
are not specific to a customer or device and can be used in any deployment scenario. May be needed in limited scenarios

PnP Protocol: Protocol between the PnP agent and PnP server. This is an open protocol allowing third-party development of PnP
servers

PnP Server: A central server that manages and distributes deployment information (images, configurations, files, and licenses) for
the devices being deployed. Open Plug-n-Play (PnP) server provides a north bound interface for management applications and
communicates with the PnP agents on the devices using the PnP protocol.

Additional References for Open Plug-n-Play Agent

Related Documents

Document TitleRelated Topic

Cisco IOS Master Command List, All
Releases

Cisco IOS commands

Cisco IOS PnP Command ReferencePnP commands: Complete command syntax, command mode, command history,
defaults, usage guidelines, and examples

Standards and RFCs

TitleStandard/RFC

Extensible Messaging and Presence Protocol (XMPP): CoreRFC 6120

31

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/en/US/docs/ios-xml/ios/pnp/command/nm-pnp-cr-book.html

MIBs

MIBs LinkMIB

To locate and download MIBs for selected platforms, Cisco
software releases, and feature sets, use Cisco MIB Locator
found at the following URL:

http://www.cisco.com/go/mibs

• CISCO-BULK-FILE-MIB

• CISCO-DATA-COLLECTION-MIB

• CISCO-PROCESS-MIB

• Expression-MIB

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/support/index.htmlThe Cisco Support and Documentationwebsite provides online
resources to download documentation, software, and tools.
Use these resources to install and configure the software and
to troubleshoot and resolve technical issues with Cisco products
and technologies. Access to most tools on the Cisco Support
and Documentation website requires a Cisco.com user ID and
password.

Feature Information for Open Plug-n-Play Agent
The following table provides release information about the feature or features described in this module. This table lists only the
software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent
releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature
Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

32

http://www.cisco.com/go/mibs
http://www.cisco.com/support
http://www.cisco.com/go/cfn

Table 1: Feature Information for Open Plug-n-Play Agent

Feature InformationReleasesFeature Name

The Cisco Open Plug-n-Play agent converges
existing solutions into a unified agent and adds
functionality to enhance the current deployment
solutions.

The following commands were introduced or
modified by this feature:

backup device, backup profile, backup
reconnect, backup transport http, backup
transport https, backup transport xmpp
socket, backup transport xmpp starttls,
backup transport xmpp tls, device, pnp,
profile, reconnect (pnp), transport http,
transport https, transport xmpp socket,
transport xmpp starttls, and transport xmpp
tls.

Cisco IOS Release 15.2(1)SYOpen Plug-n-Play Agent

33

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITEDWARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDINGANYOTHERWARRANTYHEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS"WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSEANDNONINFRINGEMENTORARISING FROMACOURSEOFDEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

© Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks

Europe HeadquartersAsia Pacific HeadquartersAmericas Headquarters
Cisco Systems International BV
Amsterdam, The Netherlands

Cisco Systems (USA) Pte. Ltd.
Singapore

Cisco Systems, Inc.
San Jose, CA 95134-1706
USA

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the
Cisco Website at www.cisco.com/go/offices.

	Cisco Open Plug-n-Play Agent Configuration Guide, Cisco IOS Release 15SY
	Open Plug-n-Play Agent
	Finding Feature Information
	Prerequisites for Open Plug-n-Play Agent
	Restrictions for Open Plug-n-Play Agent
	Information About Open Plug-n-Play Agent
	Open Plug-n-Play Deployment Solution
	Plug-n-Play Features
	Plug-n-Play Agent Services and Capabilities
	Plug-n-Play Agent
	Plug-n-Play Server
	Plug-n-Play Agent Deployment
	Plug-n-Play Agent Network Topology
	Plug-n-Play Agent Initialization
	Absence of Startup Configuration
	CLI Configuration for Open Plug-n-Play Agent

	Open Plug-n-Play Agent Deployment Solutions
	Plug-n-Play Agent Discovery Process
	Plug-n-Play Discovery through DHCP Server
	Plug-n-Play Discovery through DHCP Snooping
	Plug-n-Play Discovery through DNS Lookup
	Plug-n-Play Proxy Server for Layer 3 and Layer 2 Devices
	Plug-n-Play Agent Deployment Application

	Plug-n-Play Agent Deployment Protocol
	Plug-n-Play Agent Application Protocol
	Plug-n-Play Transport over Ethernet
	Plug-n-Play Transport over IP

	Plug-n-Play Agent Security
	Plug-n-Play Transport Layer 3 Security
	Plug-n-Play Application Level Security
	Authentication and Authorization between Plug-n-Play Agent and Server

	How to Configure Open Plug-n-Play Agent
	Configuring Open Plug-n-Play Agent Profile
	Configuring Open Plug-n-Play Agent Device
	Configuring Open Plug-n-Play Reconnect Factor
	Configuring Open Plug-n-Play HTTP Transport Profile
	Configuring Open Plug-n-Play HTTPS Transport Profile
	Configuring Open Plug-n-Play XMPP Transport Profile
	Configuring Backup Open Plug-n-Play Device
	Configuring Backup Open Plug-n-Play Reconnect Factor
	Configuring Backup Open Plug-n-Play HTTP Transport Profile
	Configuring Backup Open Plug-n-Play HTTPS Transport Profile
	Configuring Backup Open Plug-n-Play XMPP Transport Profile
	Configuring Open Plug-n-Play Agent Tag

	Configuration Examples for Open Plug-n-Play Agent
	Configuring Open Plug-n-Play Agent

	Trouble Shooting and Debugging
	Glossary
	Additional References for Open Plug-n-Play Agent
	Feature Information for Open Plug-n-Play Agent

