
Hosting Applications on IOS XR

This section explains the different kinds of application hosting, and demonstrates how a simple application,
such as iPerf, can be hosted natively or in a third-party container on IOS XR.

• Application Hosting in IOS XR Container, on page 1
• Container Application Hosting, on page 1
• Customize Docker Run Options Using Application Manager, on page 7
• Using Vagrant for Hosting Applications, on page 11

Application Hosting in IOS XR Container
You can create your own container on IOS XR, and host applications within the container. The applications
can be developed using any Linux distribution. This is well suited for applications that use system libraries
that are different from that provided by the IOS XR root file system.

Selecting the Type of Application Hosting

You can select an application hosting type, depending on your requirement and the following criteria.

• Resources: If you need to manage the amount of resources consumed by the hosted applications, you
must choose the container model, where constraints can be configured. In a native model, you can only
deploy applications that use allotted resources, which are shared with internal IOS XR processes.

• Choice of Environment: Applications to be hosted natively must be built with the Wind River Linux 7
distribution that is offered by IOS XR. If you decide to choose the Linux distribution that is to be used
for building your applications, then you must choose the container model. When you host an application
using the container model, you can pre-package it prior to deployment.

Container Application Hosting
This section introduces the concept of container application hosting and describes its workflow.

Container application hosting makes it possible for applications to be hosted in their own environment and
process space (namespace) within a Linux container on Cisco IOSXR. The application developer has complete
control over the application development environment, and can use a Linux distribution of choice. The
applications are isolated from the IOS XR control plane processes; yet, they can connect to networks outside
XR through the XR GigE interfaces. The applications can also easily access local file systems on IOS XR.
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This figure illustrates the workflow for creating a Linux container for application hosting. For the complete
configuration procedure, see Running iPerf as a Container Application, on page 3.

Figure 1: Container Application Hosting Workflow

There are two components in container application hosting:

• Linux server: This is the server you use to develop your application, to bring up the Linux Container
(LXC), and to prepare the container environment.

• Router: This is the router running the 64-bit IOSXR that is used to host your container with the application
you want to run.

1. On the Linux server, bring up the LXC, and do the following:

a. Prepare the container environment and the required libraries.

b. Shut down the LXC.

2. Connect to the router running IOS XR, and copy the root file system.

3. Create the configuration file for the container in .xml format. This file specifies the attributes for the
container, such as name of the container, default namespace, and so on.

Hosting Applications on IOS XR
2

Hosting Applications on IOS XR
Container Application Hosting



If you specify a network namespace (third-party), then by default, the LXC is launched in that namespace.Note

4. Launch the LXC on the router.

5. Log into the LXC on the router through IOS XR console access.

6. Manually start the application, or configure the application to start automatically when the LXC is launched.

You can use a container, like a Linux box, to install and host applications for users.

Running iPerf as a Container Application
As an example of container application hosting, you can install an iPerf client within a LXC on IOS XR, and
check its connectivity with an iPerf server installed within an LXC on another router, as described in this
section.

Topology

The following illustration describes the topology used in this example.

Figure 2: iPerf as a Container Application

iPerf server is installed on Router A, and iPerf client is installed on Router B. Both installations are done
within containers on the 64-bit IOS XR. The iPerf client communicates with the iPerf server through the
interfaces offered by IOS XR.

Prerequisites

Ensure that you have configured the two routers as shown in the topology.

Configuration Procedure

To run iPerf as a container application, follow these steps:

1. Log into Router A, and enter the XRNNS.
RP/0/RP0/CPU0:ios# run
[xr-vm_node0_RP0_CPU0:~]$

2. Launch the LXC.
[xr-vm_node0_RP0_CPU0:~]$virsh -c lxc+tcp://10.11.12.15:16509/ -e ^Q console demo1

3. Log into the LXC when prompted.
Connected to domain demo
Escape character is ^Q
Kernel 3.14.23-WR7.0.0.2_standard on an x86_64
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host login: Password:

4. Install the iPerf server within the LXC on Router A.
[root@host ~]#apt-get install iperf

5. Perform Steps 1 to 4 to install the iPerf client on Router B.

6. Verify the iPerf server installation on Router A.
[root@host ~]#iperf -v

iperf version 2.0.5 (08 Jul 2010) pthreads

Similarly, verify the iPerf client installation on Router B.

7. Bind the Loopback0 interface on Router A to the iPerf server, and launch the iPerf server instance.

In this example, 1.1.1.1 is the assigned Loopback0 interface address of Router A, and 57730 is the port
number used for communication.
[root@host ~]#iperf -s -B 1.1.1.1 -p 57730
Server listening on TCP port 57730
Binding to local address 1.1.1.1
TCP window size: 85.3 KByte (default)

8. Launch the iPerf client instance on Router B, by specifying the same port number used for the iPerf server,
and the management IP address of Router A.

In this example, 192.168.122.213 is the management IP address of Router A, and 57730 is the port number
used to access the iPerf server.
[root@host ~]#iperf -c 192.168.122.213 -p 57730
------------------------------------------------------------
Client connecting to 192.168.122.213, TCP port 57730
TCP window size: 85.0 KByte (default)
------------------------------------------------------------
[ 3] local 192.168.122.1 port 46974 connected with 192.168.122.213 port 57730
[ ID] Interval Transfer Bandwidth
[ 3] 0.0-10.0 sec 146 MBytes 122 Mbits/sec

To use UDP, instead of TCP, to communicate with the iPerf server, use the following command.
[root@host ~]#iperf -c 192.168.122.213 -p 57730 -u
------------------------------------------------------------
Client connecting to 192.168.122.213, UDP port 57730
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
------------------------------------------------------------
[ 3] local 192.168.122.1 port 41466 connected with 192.168.122.213 port 57730
[ ID] Interval Transfer Bandwidth
[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[ 3] Sent 893 datagrams
[ 3] Server Report:
[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.233 ms 0/ 893 (0%)
[root@hostB ~]#

9. Ping the iPerf server from the iPerf client on Router B.
[root@host ~]#/bin/ping 192.164.168.10
PING 192.164.168.10 (192.164.168.10) 56(84) bytes of data.
64 bytes from 192.164.168.10: icmp_seq=1 ttl=255 time=13.0 ms
64 bytes from 192.164.168.10: icmp_seq=2 ttl=255 time=2.14 ms
64 bytes from 192.164.168.10: icmp_seq=3 ttl=255 time=2.21 ms
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The iPerf client hosted on Router B can access the iPerf server hosted on Router A.

Using Docker for Hosting Applications on Cisco IOS XR
Like an LXC, docker is a container used for hosting applications on Cisco IOS XR. Docker provides isolation
for application processes from the underlying host processes on XR by using Linux network namespaces.

Need for Docker on Cisco IOS XR

Docker is becoming the industry-preferred packagingmodel for applications in the virtualization space. Docker
provides the foundation for automating application life cycle management.

Docker follows a layered approach that consists of a base image at the bottom that supports layers of applications
on top. The base images are available publicly in a repository, depending on the type of application you want
to install on top. You can manipulate docker images by using the docker index and registry.

Docker provides a git-like workflow for developing container applications and supports the "thin update"
mechanism, where only the difference in source code is updated, leading to faster upgrades. Docker also
provides the "thin download" mechanism, where newer applications are downloaded faster because of the
sharing of common base docker layers between multiple docker containers. The sharing of docker layers
between multiple docker containers leads to lower footprint for docker containers on XR.

Docker Architecture on Cisco IOS XR

The following figure illustrates the docker architecture on IOS XR.

Figure 3: Docker on IOS XR

The docker containers are created alongside the LXC on XR. To create and manage the containers, you can
use the XR bash shell. This is where the docker client is installed. The application binaries for the applications
to be hosted are installed inside the docker container.

Hosting Applications in Docker Containers

The following figure illustrates the workflow for hosting applications in Docker containers on IOS XR.
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Figure 4: Docker Workflow for Application Hosting

1. The docker file in the source repository is used to build the application binary file on your (docker engine
build) host machine.

2. The application binary file is pushed into the docker image registry.

3. The application binary file is pulled from the docker image registry and copied to the docker container
on XR (docker engine target host).

4. The application is built and hosted in the docker container on XR.

Updating Applications in Docker Containers

The following figure illustrates the workflow for updating applications hosted in docker containers.

Figure 5: Docker Workflow for Updating Applications

1. The application update is generated as a base libs update file (delta update file) and pushed to the docker
image registry.

2. The delta update file (containing only the difference in application code) is pulled from the docker image
registry and copied to the docker containers on XR (docker engine target host).

3. The docker containers are restarted with the delta update file.
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Customize Docker Run Options Using Application Manager
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

You can now leverage Application
Manager to efficiently overwrite
default docker runtime
configurations, tailoring them to
specific parameters like CPU usage,
security settings, and health checks.
You can thus optimize application
performance, maintain fair resource
allocation amongmultiple dockers,
and establish non-default network
security settings to meet specific
security requirements. Additionally,
you can accurately monitor and
reflect the health of individual
applications.

This feature modifies the
docker-run-opts option command.

Release 24.1.1Customize Docker Run Options
Using Application Manager

With this feature, runtime options for docker containerized applications on IOS-XR can be configured during
launch using the appmgr activate" command. AppMgr, which oversees docker containerized applications,
ensures that these runtime options can effectively override default configurations, covering aspects like CPU,
security, and health checks during the container launch.

This feature introduces multiple runtime options that allow users to customize different parameters of docker
containers. The configuration of these runtime options is flexible, as users can use either command or Netconf
for the configuration process. Regardless of the chosen method, runtime options must be added to
docker-run-opts as needed.

The following are the docker run option commands introduced in IOS-XR software release 24.1.1.

Table 2: Docker Run Options

DescriptionDocker Run Option

Number of CPUs--cpus

CPUs in which to allow execution (0-3, 0,1)--cpuset-cpus

Drop Linux capabilities--cap-drop

Sets the username or UID--user, -u

Add additional groups to run--group-add

Run to check health--health-cmd
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DescriptionDocker Run Option

Time between running the check--health-interval

Consecutive failures needed to report unhealthy--health-retries

Start period for the container to initialize before
starting health-retries countdown

--health-start-period

Maximum time to allow one check to run--health-timeout

Disable any container-specified HEALTHCHECK--no-healthcheck

Add a custom host-to-IP mapping (host:ip)--add-host

Set custom DNS servers--dns

Set DNS options--dns-opt

Set custom DNS search domains--dns-search

Container NIS domain name--domainname

Tune host's OOM preferences (-1000 to 1000)--oom-score-adj

Option to set the size of /dev/shm--shm-size

Run an init inside the container that forwards signals
and reaps processes

--init

Set meta data on a container--label, -l

Read in a line delimited file of labels--label-file

Tune container pids limit (set -1 for unlimited)--pids-limit

Working directory inside the container--work-dir

Ulimit options--ulimit

Mount the container's root filesystem as read only--read-only

Mount volumes from the specified container(s)--volumes-from

Signal to stop the container--stop-signal

Timeout (in seconds) to stop a container--stop-timeout

Prior to IOS-XR software release 24.1.1, only the below mentioned docker run option commands were
supported.

Table 3: Docker Run Options

DescriptionDocker Run Option

Publish a container's port(s) to the host--publish
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DescriptionDocker Run Option

Overwrite the default ENTRYPOINT of the image--entrypoint

Expose a port or a range of ports--expose

Add link to another container--link

Set environment variables--env

Read in a file of environment variables--env-file

Connect a container to a network--network

Container host name--hostname

Keep STDIN open even if not attached--interactive

Allocate a pseudo-TTY--tty

Publish all exposed ports to random ports--publish-all

Bind mount a volume--volume

Attach a filesystem mount to the container--mount

Restart policy to apply when a container exits--restart

Add Linux capabilities--cap-add

Logging driver for the container--log-driver

Log driver options--log-opt

Run container in background and print container ID--detach

Memory limit--memory

Memory soft limit--memory-reservation

CPU shares (relative weight)--cpu-shares

Sysctl options--sysctl

Restrictions and Limitations

• For the options --mount and --volume, only the following values can be configured:

• "/var/run/netns"

• "/var/lib/docker"

• "/misc/disk1"

• "/disk0"

• The maximum allowed size for shm-size option is 64 Mb.
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Configuration

This section provides the information on how to configure the docker run time options.

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
appmgr.
Router#appmgr application alpine_app activate type docker source alpine docker-run-opts
"-it –pids-limit 90" docker-run-cmd "sh"
Router#

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
Netconf.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-appmgr-cfg>

<applications>
<application>
<application-name>alpine_app</application-name>
<activate>
<type>docker</type>

<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it

--pids-limit=90</docker-run-opts>
</activate>

</application>
</applications>

</appmgr>
</config>

</edit-config>

Verification

This example shows how to verify the docker run time option configuration.
Router# show running-config appmgr
Thu Mar 23 08:22:47.014 UTC
appmgr
application alpine_app
activate type docker source alpine docker-run-opts "-it –pids-limit 90" docker-run-cmd

"sh"
!
!

You can also use docker inspect container id to verify the docker run time option configuration.
Router# docker inspect 25f3c30eb424
[

{
"PidsLimit": 90,

}
]

Hosting Applications on IOS XR
10

Hosting Applications on IOS XR
Customize Docker Run Options Using Application Manager



Using Vagrant for Hosting Applications
You can use vagrant on a host device of your choice, for hosting applications as described in the following
sections.

IOS-XR software version 6.x.x and above is not supported on Vagrant.Note

Pre-requisites for Using Vagrant

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system. We recommend Version 1.8.6.

• Latest version of a virtual box for your operating system. We recommend Version 5.1+.

• Minimum of 5 GB of RAM with two cores.

• (Optional) If you are using the Windows Operating System, we recommend that you download the Git
bash utility for running the commands.

Setting up an Application Development Topology By Using Vagrant
For the sake of illustration, we will use a simple two-node topology, where an instance of Cisco IOS XR
behaves as one node (rtr), and an instance of Ubuntu (hypervisor) behaves as the other (devbox). We will
use the devbox to develop the app topology and deploy it on the rtr.

Figure 6: Application Development Topology

Procedure

To create an application development topology on vagrant, follow these steps.

1. Generate an API key and a CCO ID by using the steps described on Github.

2. Download the latest stable version of the IOS-XRv vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box
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$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7. Navigate to the vagrant-xrdocs repository and locate the lxc-app-topo-bootstrap directory.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ simple-mixed-topo/
lxc-app-topo-bootstrap/ README.md single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls lxc-app-topo-bootstrap/
configs/ scripts/ Vagrantfile

8. (Optional) View the contents of the vagrant file in the lxc-app-topo-bootstrap directory.

The vagrant file (Vagrantfile) contains the two node topology for application development. You can
modify this by using a vi editor, if required.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd lxc-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ cat Vagrantfile
# -*- mode: ruby -*-
# vi: set ft=ruby :

# All Vagrant configuration is done below. The "2" in Vagrant.configure
# configures the configuration version (we support older styles for
# backwards compatibility). Please don't change it unless you know what
# you're doing.

Vagrant.configure(2) do |config|
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config.vm.define "rtr" do |node|
node.vm.box = "IOS-XRv"

# gig0/0/0 connected to "link1"
# auto_config is not supported for XR, set to false

node.vm.network :private_network, virtualbox__intnet: "link1", auto_config
:

false

#Source a config file and apply it to XR

node.vm.provision "file", source: "configs/rtr_config", destination: "/hom

e/vagrant/rtr_config"

node.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end

end

config.vm.define "devbox" do |node|
node.vm.box = "ubuntu/trusty64"

# eth1 connected to link1
# auto_config is supported for an ubuntu instance

node.vm.network :private_network, virtualbox__intnet: "link1", ip: "11.1.1

.20"

end

end

You have successfully created an application development topology on vagrant. See Deploying an Application
Development Topology by Using Vagrant, on page 13 for information on deploying the topology on vagrant.

Deploying an Application Development Topology by Using Vagrant
This section describes how you can deploy an application development topology on vagrant for creating and
hosting your applications.

Procedure

To deploy an application development topology on vagrant, follow these steps.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 11, before proceeding with the following steps.

Note

1. Ensure you are in the lxc-app-topo-bootstrap directory, and launch the vagrant instance.
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annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant up

Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
==> rtr: Checking for guest additions in VM...

rtr: No guest additions were detected on the base box for this VM! Guest
rtr: additions are required for forwarded ports, shared folders, host only
rtr: networking, and more. If SSH fails on this machine, please install
rtr: the guest additions and repackage the box to continue.
rtr:
rtr: This is not an error message; everything may continue to work properly,
rtr: in which case you may ignore this message.

==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
==> devbox: Checking for guest additions in VM...

devbox: The guest additions on this VM do not match the installed version of
devbox: VirtualBox! In most cases this is fine, but in rare cases it can
devbox: prevent things such as shared folders from working properly. If you see
devbox: shared folder errors, please make sure the guest additions within the
devbox: virtual machine match the version of VirtualBox you have installed on
devbox: your host and reload your VM.
devbox:
devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
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==> devbox: Mounting shared folders...
devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/lxc-app-topo-bootstrap

==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still
run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
==> rtr:
==> rtr: IMPORTANT: READ CAREFULLY
==> rtr: The Software is subject to and governed by the terms and conditions
==> rtr: of the End User License Agreement and the Supplemental End User
==> rtr: License Agreement accompanying the product, made available at the
==> rtr: time of your order, or posted on the Cisco website at
==> rtr: www.cisco.com/go/terms (collectively, the 'Agreement').
==> rtr: As set forth more fully in the Agreement, use of the Software is
==> rtr: strictly limited to internal use in a non-production environment
==> rtr: solely for demonstration and evaluation purposes. Downloading,
==> rtr: installing, or using the Software constitutes acceptance of the
==> rtr: Agreement, and you are binding yourself and the business entity
==> rtr: that you represent to the Agreement. If you do not agree to all
==> rtr: of the terms of the Agreement, then Cisco is unwilling to license
==> rtr: the Software to you and (a) you may not download, install or use the
==> rtr: Software, and (b) you may return the Software as more fully set forth
==> rtr: in the Agreement.

You have successfully deployed the two nodes, rtr and devbox on your host machine.

2. To access the XR router console, check the port number that maps to the guest port number 22.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

You need to use port number 2223 to SSH to the rtr node (XR).
3. Access the XR router console (rtr console) through SSH.

The password for vagrant@localhost is vagrant.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios#

You are at the XR router console, or the console of the rtr node in this example.
4. Check the GigE interface IP address of the rtr.
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You will need the GigE interface IP address to access the rtr console from the devbox console at a later
stage.

RP/0/RP0/CPU0:ios# show ipv4 interface gigabitEthernet 0/0/0/0 brief
Wed Aug 31 04:00:48.006 UTC

Interface IP-Address Status Protocol
GigabitEthernet0/0/0/0 11.1.1.10 Up Up

To access the XR Linux shell from the rtr console, use the run command.

RP/0/RP0/CPU0:ios# run
Wed Aug 31 04:01:45.119 UTC

[xr-vm_node0_RP0_CPU0:~]$

Note

5. Exit the rtr console, and access the devbox console through SSH.

RP/0/RP0/CPU0:ios# exit
Connection to localhost closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information disabled due to load higher than 1.0

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

25 packages can be updated.
12 updates are security updates.

vagrant@vagrant-ubuntu-trusty-64:~$

6. Verify if you can access the rtr console from the devbox console, by pinging the GigE interface of the
rtr.

Use the GigE interface IP address you retrieved in Step 12.

vagrant@vagrant-ubuntu-trusty-64:~$ ping 11.1.1.10 -c 2
PING 11.1.1.10 (11.1.1.10) 56(84) bytes of data.
64 bytes from 11.1.1.10: icmp_seq=1 ttl=255 time=40.2 ms
64 bytes from 11.1.1.10: icmp_seq=2 ttl=255 time=6.67 ms

--- 11.1.1.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 6.670/23.457/40.245/16.788 ms
vagrant@vagrant-ubuntu-trusty-64:~$
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To access the XR Linux console, exit the devbox console and run the vagrant ssh rtr command from the
lxc-app-topo-bootstrap directory.

vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Thu Jul 21 05:51:28 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$

Note

You have successfully deployed an application development topology on your host device.

Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant
This section describes how you can host a Wind river Linux (WRL7) application natively by using vagrant.

Native Application Hosting Topology

For the sake of illustration, we will use the three vagrant instance topology as shown in the following figure.

Figure 7: Native Application Hosting Topology on a Vagrant Box

Procedure

Use the following steps to host an application natively on IOS XR.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 11, before proceeding with the following steps.

Note

1. Verify if you have the IOS-XRv and the ciscoxr/appdev-xr6.1.1 vagrant boxes installed on your
machine.
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annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant box list
IOS-XRv (virtualbox, 0)
ciscoxr/appdev-xr6.1.1 (virtualbox, 1.0)
ubuntu/trusty64 (virtualbox, 20160602.0.0)

2. Clone the vagrant-xrdocs repository.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

3. Navigate to the vagrant-xrdocs/native-app-topo-bootstrap directory and launch the vagrant instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd native-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant up

Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
Bringing machine 'wrl7_build' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...

...
==> rtr: Machine booted and ready!
==> rtr: Checking for guest additions in VM...

rtr: No guest additions were detected on the base box for this VM! Guest
rtr: additions are required for forwarded ports, shared folders, host only
rtr: networking, and more. If SSH fails on this machine, please install
rtr: the guest additions and repackage the box to continue.
rtr:
rtr: This is not an error message; everything may continue to work properly,
rtr: in which case you may ignore this message.

==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160907.0.0'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...

devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
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devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
...
==> wrl7_build: Checking if box 'ciscoxr/appdev-xr6.1.1' is up to date...
==> wrl7_build: Clearing any previously set forwarded ports...
==> wrl7_build: Fixed port collision for 22 => 2222. Now on port 2201.
==> wrl7_build: Clearing any previously set network interfaces...
==> wrl7_build: Preparing network interfaces based on configuration...

wrl7_build: Adapter 1: nat
==> wrl7_build: Forwarding ports...

wrl7_build: 22 (guest) => 2201 (host) (adapter 1)
==> wrl7_build: Booting VM...
==> wrl7_build: Waiting for machine to boot. This may take a few minutes...

wrl7_build: SSH address: 127.0.0.1:2201
wrl7_build: SSH username: vagrant
wrl7_build: SSH auth method: private key
wrl7_build: Warning: Remote connection disconnect. Retrying...

...
==> wrl7_build: Welcome to the IOS XR Application Development (AppDev) VM that provides
a WRL7 based native environment to build appli

cations for IOS XR (Release
6.1.1) platforms.

4. Verify if the WRL7 build instance has launched.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr running (virtualbox)
devbox running (virtualbox)
wrl7_build running (virtualbox)
...

5. Access the WRL7 build instance through SSH, and retrieve the source code of the application you want
to host natively.

In this example, we fetch the source code for the iPerf application.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh wrl7_build

---------------------------------------------------------------------------------------------

localhost:~$ wget https://iperf.fr/download/source/iperf-2.0.9-source.tar.gz
--2016-09-13 01:54:58-- https://iperf.fr/download/source/iperf-2.0.9-source.tar.gz
Resolving iperf.fr... 194.158.119.186, 2001:860:f70a::2
Connecting to iperf.fr|194.158.119.186|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 277702 (271K) [application/x-gzip]
Saving to: 'iperf-2.0.9-source.tar.gz'

100%[=================================================================>] 277,702
153KB/s in 1.8s

2016-09-13 01:55:01 (153 KB/s) - 'iperf-2.0.9-source.tar.gz' saved [277702/277702]

-----------------------------------------------------------------------------------------

localhost:~$ ls
iperf-2.0.9-source.tar.gz
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localhost:~$

6. Copy the source code tar ball to the /usr/src/rpm/SOURCES/ build location.
localhost:~$ sudo cp /home/vagrant/iperf-2.0.9-source.tar.gz /usr/src/rpm/SOURCES/

7. Retrieve the XML spec file (iperf.spec) for building the RPM.
localhost:~$ wget http://10.30.110.214/iperf.spec
--2016-09-13 01:58:44-- http://10.30.110.214/iperf.spec
Connecting to 10.30.110.214:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 609
Saving to: 'iperf.spec'

100%[===========================================================>] 609 --.-K/s
in 0s

2016-09-13 01:58:45 (38.2 MB/s) - 'iperf.spec' saved [609/609]

------------------------------------------------------------------------------------------------
localhost:~$ ls
iperf-2.0.9-source.tar.gz iperf.spec

8. Build the RPM by using the retrieved spec file.
localhost:~$ sudo rpmbuild -ba iperf.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.59743
+ umask 022
+ cd /usr/lib64/rpm/../../src/rpm/BUILD
+ cd /usr/src/rpm/BUILD
+ rm -rf iperf-2.0.9
+ /bin/tar -xf -
...
Requires: libc.so.6()(64bit) libc.so.6(GLIBC_2.14)(64bit) libc.so.6(GLIBC_2.2.5)(64bit)

libc.so.6(GLIBC_2.3)(64bit) libc.so.6(GLIBC_2.7)(64bit)
libgcc_s.so.1()(64bit) libgcc_s.so.1(GCC_3.0)(64bit) libm.so.6()
(64bit) libm.so.6(GLIBC_2.2.5)(64bit) libpthread.so.0()(64bit)
libpthread.so.0(GLIBC_2.2.5)(64bit) libpthread.so.0(GLIBC_2.3.2)(64bit)
librt.so.1()(64bit) librt.so.1(GLIBC_2.2.5)(64bit) libstdc++.so.6()(64bit)
libstdc++.so.6(CXXABI_1.3)(64bit) libstdc++.so.6(GLIBCXX_3.4)(64bit) rtld(GNU_HASH)
Checking for unpackaged file(s): /usr/lib64/rpm/check-files
/usr/lib64/rpm/../../../var/tmp/iperf-root
Wrote: /usr/src/rpm/SRPMS/iperf-2.0.9-XR_6.1.1.src.rpm
Wrote: /usr/src/rpm/RPMS/x86_64/iperf-2.0.9-XR_6.1.1.x86_64.rpm
...

localhost:~$ ls -l /usr/src/rpm/RPMS/x86_64/
total 48
-rw-r--r-- 1 root root 48118 Sep 13 02:03 iperf-2.0.9-XR_6.1.1.x86_64.rpm

9. Transfer the RPM file to XR.

a. Note down the port number on XR for transferring the RPM file.
localhost:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
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provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

b. Access the WRL7 build instance, and copy the RPM file by using the SCP command with the port
number of XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh wrl7_build
Last login: Tue Sep 13 01:49:37 2016 from 10.0.2.2

localhost:~$ scp -P 2222 /usr/src/rpm/RPMS/x86_64/iperf-2.0.9-XR_6.1.1.x86_64.rpm
vagrant@10.0.2.2:/home/vagrant/
vagrant@10.0.2.2's password:
iperf-2.0.9-XR_6.1.1.x86_64.rpm

10. Install the application (iPerf) on XR.

a. Access XR through SSH.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Fri Sep 9 19:20:56 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$

b. Verify the presence of the RPM file on XR.
xr-vm_node0_RP0_CPU0:~$ ls -l iperf-2.0.9-XR_6.1.1.x86_64.rpm
-rw-r--r-- 1 vagrant vagrant 48118 Sep 13 06:33 iperf-2.0.9-XR_6.1.1.x86_64.rpm

c. Install iPerf by using yum.
xr-vm_node0_RP0_CPU0:~$ sudo yum install -y iperf-2.0.9-XR_6.1.1.x86_64.rpm
Loaded plugins: downloadonly, protect-packages, rpm-persistence
Setting up Install Process
Examining iperf-2.0.9-XR_6.1.1.x86_64.rpm: iperf-2.0.9-XR_6.1.1.x86_64
Marking iperf-2.0.9-XR_6.1.1.x86_64.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package iperf.x86_64 0:2.0.9-XR_6.1.1 will be installed
--> Finished Dependency Resolution

...

Total size: 103 k
Installed size: 103 k
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : iperf-2.0.9-XR_6.1.1.x86_64

Installed:
iperf.x86_64 0:2.0.9-XR_6.1.1

Complete!
xr-vm_node0_RP0_CPU0:~$

d. Verify iPerf installation.
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xr-vm_node0_RP0_CPU0:~$ iperf -v
iperf version 2.0.9 (1 June 2016) pthreads

11. Test the natively installed application (iPerf) on XR.

a. Access the XR router console and configure the Third-party Application (TPA) access for outside
networks.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# config
Tue Sep 13 06:46:56.368 UTC
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source loopback 0
RP/0/RP0/CPU0:ios(config)# commit
Tue Sep 13 06:47:04.642 UTC
RP/0/RP0/CPU0:ios(config)# end
RP/0/RP0/CPU0:ios# bash -c ip route
Tue Sep 13 06:47:43.792 UTC
default dev fwdintf scope link src 1.1.1.1
10.0.2.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 10.0.2.15

b. Exit the XR router console, and launch the iPerf server on XR.
RP/0/RP0/CPU0:ios# exit
Connection to localhost closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Tue Sep 13 06:44:53 2016 from 10.0.2.2

xr-vm_node0_RP0_CPU0:~$ iperf -s -u
------------------------------------------------------------
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)
------------------------------------------------------------

12. Install the iPerf (client) on devbox.

a. Access devbox through SSH.

xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/native-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-92-generic x86_64)
...

13. Install iPerf application.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install iperf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:

Hosting Applications on IOS XR
22

Hosting Applications on IOS XR
Hosting a Wind River Linux (WRL7) Application Natively By Using Vagrant



iperf
...

14. Test the iPerf application on devbox.

a. Configure TPA route to XR from devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo ip route add 1.1.1.1/32 via 11.1.1.10
vagrant@vagrant-ubuntu-trusty-64:~$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=15.1 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=3.81 ms
^C
--- 1.1.1.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 3.817/9.480/15.143/5.663 ms

b. Test if the iPerf client on devbox can communicate with the iPerf server on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ iperf -c 1.1.1.1 -u
------------------------------------------------------------
Client connecting to 1.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
------------------------------------------------------------
[ 3] local 11.1.1.20 port 34348 connected with 1.1.1.1 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[ 3] Sent 893 datagrams
[ 3] Server Report:
[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.256 ms 0/ 893 (0%)

You have successfully built an application RPM and hosted it natively by using vagrant.

Hosting an Application within a Linux Container (LXC) by Using Vagrant
This section describes how you can host an application within your own Linux container (LXC) by using
vagrant.

Workflow for Deploying Your LXC Container

The workflow for launching your container on IOS XR is described in this section and illustrated in the
following topology.

Figure 8: LXC Container Deployment Workflow
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1. Build the container rootfs tar ball on devbox.

2. Transfer the rootfs tar ball to IOS XR (rtr).

3. Launch the rootfs by running the virsh command.

Procedure

To host your application within your own container, use the following steps.

Ensure you have created an application development topology as described in Setting up an Application
Development Topology By Using Vagrant, on page 11, before proceeding with the following steps.

Note

1. Navigate to the lxc-app-topo-bootstrap directory and ensure the vagrant instance is running. If not,
launch the vagrant instance.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr aborted (virtualbox)
devbox aborted (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant up
Bringing machine 'rtr' up with 'virtualbox' provider...
Bringing machine 'devbox' up with 'virtualbox' provider...
==> rtr: Clearing any previously set forwarded ports...
==> rtr: Clearing any previously set network interfaces...
==> rtr: Preparing network interfaces based on configuration...

rtr: Adapter 1: nat
rtr: Adapter 2: intnet

==> rtr: Forwarding ports...
rtr: 57722 (guest) => 2222 (host) (adapter 1)
rtr: 22 (guest) => 2223 (host) (adapter 1)

==> rtr: Running 'pre-boot' VM customizations...
==> rtr: Booting VM...
==> rtr: Waiting for machine to boot. This may take a few minutes...

rtr: SSH address: 127.0.0.1:2222
rtr: SSH username: vagrant
rtr: SSH auth method: private key
rtr: Warning: Remote connection disconnect. Retrying...
...

==> rtr: Machine booted and ready!
...
==> rtr: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> rtr: flag to force provisioning. Provisioners marked to run always will still run.
==> devbox: Checking if box 'ubuntu/trusty64' is up to date...
==> devbox: A newer version of the box 'ubuntu/trusty64' is available! You currently
==> devbox: have version '20160801.0.0'. The latest is version '20160826.0.1'. Run
==> devbox: `vagrant box update` to update.
==> devbox: Clearing any previously set forwarded ports...
==> devbox: Fixed port collision for 22 => 2222. Now on port 2200.
==> devbox: Clearing any previously set network interfaces...
==> devbox: Preparing network interfaces based on configuration...
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devbox: Adapter 1: nat
devbox: Adapter 2: intnet

==> devbox: Forwarding ports...
devbox: 22 (guest) => 2200 (host) (adapter 1)

==> devbox: Booting VM...
==> devbox: Waiting for machine to boot. This may take a few minutes...

devbox: SSH address: 127.0.0.1:2200
devbox: SSH username: vagrant
devbox: SSH auth method: private key
devbox: Warning: Remote connection disconnect. Retrying...
devbox: Warning: Remote connection disconnect. Retrying...

==> devbox: Machine booted and ready!
...

devbox: Guest Additions Version: 4.3.36
devbox: VirtualBox Version: 5.0

==> devbox: Configuring and enabling network interfaces...
==> devbox: Mounting shared folders...

devbox: /vagrant => C:/Users/annseque/vagrant-xrdocs/lxc-app-topo-bootstrap
==> devbox: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> devbox: flag to force provisioning. Provisioners marked to run always will still
run.

==> rtr: Machine 'rtr' has a post `vagrant up` message. This is a message
==> rtr: from the creator of the Vagrantfile, and not from Vagrant itself:
==> rtr:
==> rtr:
==> rtr: Welcome to the IOS XRv (64-bit) Virtualbox.
==> rtr: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> rtr: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> rtr: to determine the port that maps to guestport 22,
==> rtr: then: 'ssh vagrant@localhost -p <forwarded port>'
...
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant status
Current machine states:

rtr running (virtualbox)
devbox running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

2. Access the devbox through SSH and install LXC tools.

To launch an LXC container, you need the following, which can be obtained by installing LXC tools:

• A container rootfs tar ball

• An XML file to launch the container using virsh/libvirt

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Thu Sep 1 03:55:29 UTC 2016

System load: 0.99 Processes: 94
Usage of /: 3.9% of 39.34GB Users logged in: 0
Memory usage: 14% IP address for eth0: 10.0.2.15
Swap usage: 0% IP address for eth1: 11.1.1.20
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Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

25 packages can be updated.
12 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

------------------------------------------------------------------------------------------------
Last login: Wed Aug 31 04:02:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get update
Ign http://archive.ubuntu.com trusty InRelease
Get:1 http://security.ubuntu.com trusty-security InRelease [65.9 kB]
...
Get:33 http://archive.ubuntu.com trusty-backports/universe Translation-en [36.8 kB]
Hit http://archive.ubuntu.com trusty Release
...
Hit http://archive.ubuntu.com trusty/universe Translation-en
Ign http://archive.ubuntu.com trusty/main Translation-en_US
Ign http://archive.ubuntu.com trusty/multiverse Translation-en_US
Ign http://archive.ubuntu.com trusty/restricted Translation-en_US
Ign http://archive.ubuntu.com trusty/universe Translation-en_US
Fetched 4,022 kB in 16s (246 kB/s)
Reading package lists... Done

----------------------------------------------------------------------------------------------
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get -y install lxc
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc-templates python-distro-info python-lxml
python-requestbuilder python-setuptools python3-lxc qemu-utils sharutils
uidmap

Suggested packages:
cgmanager-utils wodim cdrkit-doc btrfs-tools lvm2 lxctl qemu-user-static
python-lxml-dbg bsd-mailx mailx

The following NEW packages will be installed:
bridge-utils cgmanager cloud-image-utils debootstrap dnsmasq-base euca2ools
genisoimage libaio1 libboost-system1.54.0 libboost-thread1.54.0 liblxc1
libmnl0 libnetfilter-conntrack3 libnspr4 libnss3 libnss3-nssdb librados2
librbd1 libseccomp2 libxslt1.1 lxc lxc-templates python-distro-info
python-lxml python-requestbuilder python-setuptools python3-lxc qemu-utils
sharutils uidmap

0 upgraded, 30 newly installed, 0 to remove and 52 not upgraded.
Need to get 6,469 kB of archives.
After this operation, 25.5 MB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/main libaio1 amd64 0.3.109-4 [6,364 B]
...
Get:30 http://archive.ubuntu.com/ubuntu/ trusty-updates/main debootstrap all
1.0.59ubuntu0.5 [29.6 kB]
Fetched 6,469 kB in 22s (289 kB/s)
Selecting previously unselected package libaio1:amd64.
(Reading database ... 62989 files and directories currently installed.)
Preparing to unpack .../libaio1_0.3.109-4_amd64.deb ...
...
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Setting up lxc (1.0.8-0ubuntu0.3) ...
lxc start/running
Setting up lxc dnsmasq configuration.
Processing triggers for ureadahead (0.100.0-16) ...
Setting up lxc-templates (1.0.8-0ubuntu0.3) ...
Setting up libnss3-nssdb (2:3.23-0ubuntu0.14.04.1) ...
Setting up libnss3:amd64 (2:3.23-0ubuntu0.14.04.1) ...
Setting up librados2 (0.80.11-0ubuntu1.14.04.1) ...
Setting up librbd1 (0.80.11-0ubuntu1.14.04.1) ...
Setting up qemu-utils (2.0.0+dfsg-2ubuntu1.27) ...
Setting up cloud-image-utils (0.27-0ubuntu9.2) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...

3. Verify that the LXC was properly installed.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --version
1.0.8

4. Create the LXC container with a standard Ubuntu base template and launch it in devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-create -t ubuntu --name xr-lxc-app
Checking cache download in /var/cache/lxc/trusty/rootfs-amd64 ...
Installing packages in template: ssh,vim,language-pack-en
Downloading ubuntu trusty minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
...
Generation complete.
Setting up perl-modules (5.18.2-2ubuntu1.1) ...
Setting up perl (5.18.2-2ubuntu1.1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.9) ...
Processing triggers for initramfs-tools (0.103ubuntu4.4) ...
Download complete
Copy /var/cache/lxc/trusty/rootfs-amd64 to /var/lib/lxc/xr-lxc-app/rootfs ...
Copying rootfs to /var/lib/lxc/xr-lxc-app/rootfs ...
Generating locales...
en_US.UTF-8... up-to-date

Generation complete.
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
Creating SSH2 ECDSA key; this may take some time ...
Creating SSH2 ED25519 key; this may take some time ...
update-rc.d: warning: default stop runlevel arguments (0 1 6) do not match ssh
Default-Stop values (none)
invoke-rc.d: policy-rc.d denied execution of start.

Current default time zone: 'Etc/UTC'
Local time is now: Thu Sep 1 04:46:22 UTC 2016.
Universal Time is now: Thu Sep 1 04:46:22 UTC 2016.

##
# The default user is 'ubuntu' with password 'ubuntu'!
# Use the 'sudo' command to run tasks as root in the container.
##

5. Verify if the LXC container has been successfully created.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-ls --fancy
NAME STATE IPV4 IPV6 AUTOSTART
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------------------------------------------
xr-lxc-app STOPPED - - NO

6. Start the LXC container.

You will be prompted to log into the LXC container. The login credentials are ubuntu/ubuntu.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo lxc-start --name xr-lxc-app
<4>init: plymouth-upstart-bridge main process (5) terminated with status 1
...

xr-lxc-app login: ubuntu
Password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ubuntu@xr-lxc-app:~$

7. Install your application within the LXC container.

For the sake of illustration, in this example we will install the iPerf application.

ubuntu@xr-lxc-app:~$ sudo apt-get -y install iperf
[sudo] password for ubuntu:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 56.3 kB of archives.
After this operation, 174 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/universe iperf amd64 2.0.5-3 [56.3 kB]
Fetched 56.3 kB in 16s (3,460 B/s)
Selecting previously unselected package iperf.
(Reading database ... 14648 files and directories currently installed.)
Preparing to unpack .../iperf_2.0.5-3_amd64.deb ...
Unpacking iperf (2.0.5-3) ...
Setting up iperf (2.0.5-3) ...
ubuntu@xr-lxc-app:~$

8. Change the SSH port inside the container and verify that it has been correctly assigned.

When you deploy your container to IOS XR, it shares the network namespace with XR. Since IOS XR
already uses Ports 22 and 57722 for other purposes, you must pick some other port number for your
container.

ubuntu@xr-lxc-app:~$ sudo sed -i s/Port\ 22/Port\ 58822/ /etc/ssh/sshd_config
[sudo] password for ubuntu:

ubuntu@xr-lxc-app:~$ cat /etc/ssh/sshd_config | grep Port
Port 58822
ubuntu@xr-lxc-app:~$
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9. Shut the container down.
ubuntu@xr-lxc-app:~$ sudo shutdown -h now
ubuntu@xr-lxc-app:~$
Broadcast message from ubuntu@xr-lxc-app

(/dev/lxc/console) at 5:17 ...

The system is going down for halt NOW!
<4>init: tty4 main process (369) killed by TERM signal
...
wait-for-state stop/waiting
* Asking all remaining processes to terminate...
...done.

* All processes ended within 1 seconds...
...done.

* Deactivating swap...
...done.

mount: cannot mount block device /dev/sda1 read-only
* Will now halt

10. Assume the root user role.

vagrant@vagrant-ubuntu-trusty-64:~$ sudo -s
root@vagrant-ubuntu-trusty-64:~# whoami
root

11. Navigate to the /var/lib/lxc/xr-lxc-app/ directory and package the rootfs into a tar ball.

root@vagrant-ubuntu-trusty-64:~# cd /var/lib/lxc/xr-lxc-app/
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# ls
config fstab rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app# cd rootfs
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# tar -czvf
xr-lxc-app-rootfs.tar.gz *
tar: dev/log: socket ignored
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

12. Transfer the rootfs tar ball to the home directory (~/ or /home/vagrant) and verify if the transfer is
successful.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# mv *.tar.gz /home/vagrant
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# ls -l /home/vagrant
total 120516
-rw-r--r-- 1 root root 123404860 Sep 1 05:22 xr-lxc-app-rootfs.tar.gz
root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs#

13. Create an LXC spec XML file for specifying attributes required to launch the LXC container with the
application.

You must navigate to the /home/vagrant directory on devbox and use a vi editor to create the XML
file. Save the file as xr-lxc-app.xml.

A sample LXC spec file to launch the application within the container is as shown.

root@vagrant-ubuntu-trusty-64:/var/lib/lxc/xr-lxc-app/rootfs# exit
exit
vagrant@vagrant-ubuntu-trusty-64:~$ pwd
/home/vagrant
vagrant@vagrant-ubuntu-trusty-64:~$ vi xr-lxc-app.xml

-------------------------------------------------------------------------------------
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<domain type='lxc' xmlns:lxc='http://libvirt.org/schemas/domain/lxc/1.0' >
<name>xr-lxc-app</name>
<memory>327680</memory>
<os>
<type>exe</type>
<init>/sbin/init</init>
</os>
<lxc:namespace>
<sharenet type='netns' value='global-vrf'/>
</lxc:namespace>
<vcpu>1</vcpu>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/lib64/libvirt/libvirt_lxc</emulator>
<filesystem type='mount'>
<source dir='/misc/app_host/xr-lxc-app/'/>
<target dir='/'/>
</filesystem>
<console type='pty'/>
</devices>
</domain>

In IOS-XR the global-vrf network namespace contains all the XR GigE or management interfaces.
The sharenet configuration in the XML file ensures that the container on being launched has native
access to all XR interfaces.

/misc/app_host/ on IOS XR is a special mount volume that is designed to provide nearly 3.9GB of
disk space. This mount volume can be used to host custom container rootfs and other large files without
occupying disk space on XR. In this example, we expect to untar the rootfs to the
/misc/app_host/xr-lxc-app/ directory.

14. Verify if the rootfs tar ball and the LXC XML spec file are present in the home directory.

root@vagrant-ubuntu-trusty-64:~# pwd
/home/vagrant
root@vagrant-ubuntu-trusty-64:~# ls -l
total 119988
-rw-r--r-- 1 root root 122863332 Jun 16 19:41 xr-lxc-app-rootfs.tar.gz
-rw-r--r-- 1 root root 590 Jun 16 23:29 xr-lxc-app.xml
root@vagrant-ubuntu-trusty-64:~#

15. Transfer the rootfs tar ball and XML spec file to XR.

There are two ways of transferring the files: Through the GigE interface (a little slower) or the
management interface. You can use the method that works best for you.

• Transfer Through the Management Interface of XR:

a. Check the port number that maps to the management port on XR.

Vagrant forwards the port number 57722 to a host port for XR over the management port. In
a virtual box, the IP address of the host (your laptop) is always 10.0.2.2 for the port that was
translated (NAT).
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
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$ vagrant port rtr
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

The output shows that port number 2222 maps to port number 57722.

b. Access devbox and use the port number 2222 to transfer the rootfs tar ball and XML spec file
to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 2 05:38:20 UTC 2016

System load: 0.49 Users logged in: 0
Usage of /: 6.4% of 39.34GB IP address for eth0: 10.0.2.15
Memory usage: 25% IP address for eth1: 11.1.1.20
Swap usage: 0% IP address for lxcbr0: 10.0.3.1
Processes: 80

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Sep 2 05:38:20 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 2222 /home/vagrant/*.*
vagrant@10.0.2.2:/misc/app_host/scratch
The authenticity of host '[10.0.2.2]:2222 ([10.0.2.2]:2222)' can't be
established.
ECDSA key fingerprint is db:25:e2:27:49:2a:7b:27:e1:76:a6:7a:e4:70:f5:f7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[10.0.2.2]:2222' (ECDSA) to the list of known hosts.
vagrant@10.0.2.2's password:
xr-lxc-app-rootfs.tar.gz

100% 234MB 18.0MB/s 00:13
xr-lxc-app.xml

100% 591 0.6KB/s 00:00
vagrant@vagrant-ubuntu-trusty-64:~$

• Transfer Through the GigE Interface of XR:

a. Determine the GigE interface IP address on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr

Hosting Applications on IOS XR
31

Hosting Applications on IOS XR
Hosting an Application within a Linux Container (LXC) by Using Vagrant



Last login: Wed Aug 31 07:09:51 2016 from 10.0.2.2
xr-vm_node0_RP0_CPU0:~$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 08:00:27:5a:29:77

inet addr:11.1.1.10 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe5a:2977/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:3 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:42 (42.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 08:00:27:13:ad:eb
inet addr:10.0.2.15 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe13:adeb/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:94 errors:0 dropped:0 overruns:0 frame:0
TX packets:66 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:13325 (13.0 KiB) TX bytes:11041 (10.7 KiB)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1496 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:302 (302.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

In this example, the IP address of the GigE interface is 11.1.1.10.

b. Copy the rootfs tar ball to XR by using the GigE interface address.
vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722
/home/vagrant/xr-lxc-app-rootfs.tar.gz
vagrant@11.1.1.10:/misc/app_host/scratch/
The authenticity of host '[11.1.1.10]:57722 ([11.1.1.10]:57722)' can't be
established.
ECDSA key fingerprint is db:25:e2:27:49:2a:7b:27:e1:76:a6:7a:e4:70:f5:f7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[11.1.1.10]:57722' (ECDSA) to the list of known
hosts.
vagrant@11.1.1.10's password:
xr-lxc-app-rootfs.tar.gz

c. Copy the XML spec file to XR by using the GigE interface address.
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vagrant@vagrant-ubuntu-trusty-64:~$ scp -P 57722 /home/vagrant/xr-lxc-app.xml
vagrant@11.1.1.10:/misc/app_host/scratch/
vagrant@11.1.1.10's password:
xr-lxc-app.xml

16. Create a directory (/misc/app_host/xr-lxc-app/)on XR (rtr) to untar the rootfs tar ball.
vagrant@vagrant-ubuntu-trusty-64:~$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh rtr
Last login: Fri Sep 2 05:49:01 2016 from 10.0.2.2

xr-vm_node0_RP0_CPU0:~$ sudo mkdir /misc/app_host/xr-lxc-app/

17. Navigate to the /misc/app_host/xr-lxc-app/ directory and untar the tar ball.
xr-vm_node0_RP0_CPU0:~$ cd /misc/app_host/xr-lxc-app/
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ sudo tar -zxf
../scratch/xr-lxc-app-rootfs.tar.gz
tar: dev/audio3: Cannot mknod: Operation not permitted
...

18. Use the XML spec file to launch the container and verify its existence on XR.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh create
/misc/app_host/scratch/xr-lxc-app.xml
Domain xr-lxc-app created from /misc/app_host/scratch/xr-lxc-app.xml

xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh list
Id Name State
----------------------------------------------------
2095 xr-lxc-app running
4932 sysadmin running
12086 default-sdr--1 running

19. Log into the container. The default login credentials are ubuntu/ubuntu.

There are two ways of logging into the container. You can use the method that works best for you:

• Logging into the container by using virsh command:

xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ virsh console xr-lxc-app
Connected to domain xr-lxc-app
Escape character is ^]
init: Unable to create device: /dev/kmsg
* Stopping Send an event to indicate plymouth is up [ OK ]
* Starting Mount filesystems on boot [ OK ]
* Starting Signal sysvinit that the rootfs is mounted [ OK ]
* Starting Fix-up sensitive /proc filesystem entries [ OK ]

xr-lxc-app login: * Starting OpenSSH server [ OK ]

Ubuntu 14.04.5 LTS xr-lxc-app tty1
xr-lxc-app login: ubuntu
Password:
Last login: Fri Sep 2 05:40:11 UTC 2016 on lxc/console
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
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ubuntu@xr-lxc-app:~$

• Logging into the container by using SSH:

Use the SSH port number you configured, 58822, and any of XR interface IP addresses to log in.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ ssh -p 58822 ubuntu@11.1.1.10
Warning: Permanently added '[11.1.1.10]:58822' (ECDSA) to the list of known hosts.
ubuntu@11.1.1.10's password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 2 07:42:37 2016
ubuntu@xr-lxc-app:~$

• To exit the container, use the press CTRL and ] keys simultaneously.

• To access the container directly from your host machine, ensure you forward the intended port (in this
example, 58822) to your laptop (any port of your choice), in the Vagrant file:
node.vm.network "forwarded_port", guest: 58822, host: 58822

You can then SSH to the LXC container by using the following command:
ssh -p 58822 vagrant@localhost

Note

20. Verify if the interfaces on XR are available inside the LXC container.

The LXC container operates as your own Linux server on XR. Because the network namespace is shared
between the LXC and XR, all of XR interfaces (GigE, management, and so on) are available to bind to
and run your applications.
ubuntu@xr-lxc-app:~$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 08:00:27:5a:29:77

inet addr:11.1.1.10 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe5a:2977/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:186070 errors:0 dropped:0 overruns:0 frame:0
TX packets:155519 errors:0 dropped:3 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:301968784 (301.9 MB) TX bytes:10762900 (10.7 MB)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 08:00:27:13:ad:eb
inet addr:10.0.2.15 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe13:adeb/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:170562 errors:0 dropped:0 overruns:0 frame:0
TX packets:70309 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:254586763 (254.5 MB) TX bytes:3886846 (3.8 MB)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)
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fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1496 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:155549 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:10765764 (10.7 MB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:64 errors:0 dropped:0 overruns:0 frame:0
TX packets:64 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:9400 (9.4 KB) TX bytes:9400 (9.4 KB)

21. Configure the container to communicate outside XR with other nodes in the network.

By default, the IOS-XRv vagrant box is set up to talk to the internet using a default route through your
management port. If you want the router to use the routing table to talk to other nodes in the network,
then you must configure tpa-address. This becomes the src-hint for all Linux application traffic.

In this example, we use Loopback 0 for tpa-address to ensure that the IP address for any originating
traffic for applications on the XR is a reachable IP address across your topology.
ubuntu@xr-lxc-app:~$ exit
logout
Connection to 11.1.1.10 closed.
xr-vm_node0_RP0_CPU0:/misc/app_host/xr-lxc-app$ exit
logout
Connection to 127.0.0.1 closed.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant port rtr | grep 22

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# configure
Fri Sep 2 08:03:05.094 UTC
RP/0/RP0/CPU0:ios(config)# interface loopback 0
RP/0/RP0/CPU0:ios(config-if)# ip address 1.1.1.1/32
RP/0/RP0/CPU0:ios(config-if)# exit
RP/0/RP0/CPU0:ios(config)# tpa address-family ipv4 update-source loopback 0
RP/0/RP0/CPU0:ios(config)# commit
Fri Sep 2 08:03:39.602 UTC
RP/0/RP0/CPU0:ios(config)# exit
RP/0/RP0/CPU0:ios# bash
Fri Sep 2 08:03:58.232 UTC

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
10.0.2.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 10.0.2.15

You can see the configured Loopback 0 IP address (1.1.1.1).

22. Test your application within the launched container.
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We installed iPerf in our container. We will run the iPerf server within the container, and the iPerf client
on the devbox and see if they can communicate. Basically, the hosted application within a container on
rtr should be able to talk to a client application on devbox.

a. Check if the iPerf server is running within the LXC container on XR.
[xr-vm_node0_RP0_CPU0:~]$ssh -p 58822 ubuntu@11.1.1.10
Warning: Permanently added '[11.1.1.10]:58822' (ECDSA) to the list of known hosts.
ubuntu@11.1.1.10's password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.14.23-WR7.0.0.2_standard x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 2 07:47:28 2016 from 11.1.1.10

ubuntu@xr-lxc-app:~$ iperf -s -u
------------------------------------------------------------
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 MByte (default)
------------------------------------------------------------

b. Check if XR Loopback interface is accessible on devbox. (Open a new Git bash window for this
step.)
annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd lxc-app-topo-bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ vagrant ssh devbox
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-87-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 2 05:51:19 UTC 2016

System load: 0.08 Users logged in: 0
Usage of /: 6.4% of 39.34GB IP address for eth0: 10.0.2.15
Memory usage: 28% IP address for eth1: 11.1.1.20
Swap usage: 0% IP address for lxcbr0: 10.0.3.1
Processes: 77

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

53 packages can be updated.
26 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Last login: Fri Sep 2 05:51:21 2016 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$ sudo ip route add 1.1.1.1/32 via 11.1.1.10
vagrant@vagrant-ubuntu-trusty-64:~$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=1.87 ms
64 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=10.5 ms
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64 bytes from 1.1.1.1: icmp_seq=3 ttl=255 time=4.13 ms
^C
--- 1.1.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2007ms
rtt min/avg/max/mdev = 1.876/5.510/10.520/3.661 ms

c. Install the iPerf client on devbox.
vagrant@vagrant-ubuntu-trusty-64:~$ sudo apt-get install iperf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
iperf

0 upgraded, 1 newly installed, 0 to remove and 52 not upgraded.
Need to get 56.3 kB of archives.
After this operation, 174 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ trusty/universe iperf amd64 2.0.5-3 [56.3
kB]
Fetched 56.3 kB in 10s (5,520 B/s)
Selecting previously unselected package iperf.
(Reading database ... 64313 files and directories currently installed.)
Preparing to unpack .../iperf_2.0.5-3_amd64.deb ...
Unpacking iperf (2.0.5-3) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Setting up iperf (2.0.5-3) ...

d. Launch the iPerf client on devbox and verify if it is communicating with the iPerf server within the
LXC on XR.
vagrant@vagrant-ubuntu-trusty-64:~$ iperf -u -c 1.1.1.1
------------------------------------------------------------
Client connecting to 1.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
------------------------------------------------------------
[ 3] local 11.1.1.20 port 37800 connected with 1.1.1.1 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[ 3] Sent 893 datagrams
[ 3] Server Report:
[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 1.791 ms 0/ 893 (0%)

You have successfully hosted an application within a Linux container by using vagrant.

Installing Docker on Cisco IOS XR By Using Vagrant
This section describes how you can install a Docker container on Cisco IOS XR by using Vagrant.

Setup Options for Dockers on XR

You can choose any of the following setups for using Dockers on XR.

• Public Docker-Hub registry: You can configure a public Docker-Hub with the correct DNS resolution
so that it is accessible to all users. This is the simplest form of Docker setup.

• Private Docker-Hub unsecured registry: You can configure a private Docker-Hub registry without
security, if you are planning to run the registry inside a secured part of your network.
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• Private Docker-Hub self-signed registry: You can configure a private Docker-Hub registry enabled
with TLS. This is more secure than using a local unsecured registry.

• Private Docker-Hub secured registry: You can configure a private Docker-Hub secured registry,
created using a certificate obtained from a Certificate Authority (CA) server. The steps used to set this
up are identical to a private Docker-Hub self-signed registry except for the creation of the certificate.

• Tarball image/container: You can create and configure a Docker container on your laptop and package
it as an image or a container tar ball. You can then transfer the tar ball to XR, and extract the Docker
container for use.

For information on implementing these setup options, see the XR toolbox, Part 6: Running Docker Containers
on IOS-XR (6.1.2+) section on Github.
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https://xrdocs.github.io/application-hosting/tutorials/2017-02-26-running-docker-containers-on-ios-xr-6-1-2/
https://xrdocs.github.io/application-hosting/tutorials/2017-02-26-running-docker-containers-on-ios-xr-6-1-2/
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