
Controlling the TTL Value of Inner Payload
Header

Cisco 8000 Routers allow you to control the TTL value of inner payload header of IP-in-IP tunnel packets
before it gets forwarded to the next-hop router. This feature enables a router to forward custom formed IP-in-IP
stacked packets even if the inner packet TTL is 1. Therefore, this feature enables you to measure the link-state
and path reachability from end to end in a network.

After you enable or disable the decrement of the TTL value of the inner payload header of a packet, you do
not need to reload the line card.

Note

Configuration

To disable the decrement of the TTL value of inner payload header of an IP-in-IP packet, use the following
steps:

1. Enter the global configuration mode.

2. Disable the decrement of TTL value of inner payload header of an IP-in-IP packet.

Configuration Example

/* Enter the Global Configuration mode. */
Router# configure

/* Disable the decrement of TTL value of inner payload header of an IP-in-IP packet. */
Router(config)# hw-module profile cef ttl tunnel-ip decrement disable
Router(config)# commit

Starting from Release 7.3.3, Cisco IOS XR 8000 router supports a maximum of 16 IP-in-IP decap tunnels
with unique source addresses. If 15 unique tunnel sources are configured that is rounded to 95% of the tunnel
hardware resource OOR threshold level. As a result, the OOR State displays Red in show controllers npu
resources sipidxtbl location all command output.

Note

Controlling the TTL Value of Inner Payload Header
1



Associated Commands

• hw-module profile cef ttl tunnel-ip decrement disable

• IP-in-IP Decapsulation, on page 2
• ECMP Hashing Support for Load Balancing, on page 10

IP-in-IP Decapsulation
IP-in-IP encapsulation involves the insertion of an outer IP header over the existing IP header. The source
and destination address in the outer IP header point to the endpoints of the IP-in-IP tunnel. The stack of IP
headers is used to direct the packet over a predetermined path to the destination, provided the network
administrator knows the loopback addresses of the routers transporting the packet. This tunneling mechanism
can be used for determining availability and latency for most network architectures. It is to be noted that the
entire path from source to the destination does not have to be included in the headers, but a segment of the
network can be chosen for directing the packets.

In IP-in-IP encapsulation and decapsulation has two types of packets. The original IP packets that are
encapsulated are called Inner packets and the IP header stack added while encasulation are called the Outer
packets.

The router only supports decapsulation and no encapsulation. Encapsulation is done by remote routers.Note

The following topology describes a use case where IP-in-IP encapsulation and decapsulation are used for
different segments of the network from source to destination. The IP-in-IP tunnel consists of multiple routers
that are used to decapsulate and direct the packet through the data center fabric network.

Figure 1: IP-in-IP Decapsulation Through a Data Center Network

The following illustration shows how the stacked IPv4 headers are decapsulated as they traverse through the
decapsulating routers.

Figure 2: IP Header Decapsulation

Controlling the TTL Value of Inner Payload Header
2

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/Interfaces/b-interfaces-hardware-component-cr-8000/gre-tunnel-interface-commands.html#wp1217724771


Stacked IP Header in an Encapsulated Packet

The encapsulated packet has an outer IPv4 header that is stacked over the original IPv4 header, as shown in
the following illustration.

Figure 3: Encapsulated Packet

Configuration

You can use the following sample configuration in the routers to decapsulate the packet as it traverses the
IP-in-IP tunnel:

Controlling the TTL Value of Inner Payload Header
3

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation



Router(config)# interface loopback 0
Router(config-if)# ipv4 address 127.0.0.1/32
Router(config-if)# no shutdown
Router(config-if)# interface tunnel-ip 10
Router(config-if)# ipv4 unnumbered loopback 1
Router(config-if)# tunnel mode ipv4 decap
Router(config-if)# tunnel source loopback 0

• tunnel-ip: configures an IP-in-IP tunnel interface.

• ipv4 unnumbered loopback address: enables ipv4 packet processing without an explicit address, except
for loopback address.

• tunnel mode ipv4 decap: enables IP-in-IP decapsulation.

• tunnel source: indicates the source address for the IP-in-IP decap tunnel with respect to the router
interface.

You can configure the tunnel destination only if you want to decapsulate packets from a particular destination.
If no tunnel destination is configured, then all the ip-in-ip ingress packets on the configured interface are
decapsulated.

Note

Running Configuration

Router# show running-config interface tunnel-ip 10
...
interface tunnel-ip 10
ipv4 unnumbered loopback 1
tunnel mode ipv4 decap

Extended ACL to Match the Outer Header for IP-in-IP Decapsulation

Starting with Cisco IOS XR Software Release 7.0.14, extended ACL has to match on the outer header for
IP-in-IP Decapsulation. Extended ACL support reduces mirrored traffic throughput. This match is based only
on the IPv4 protocol, and extended ACL is applied to the received outermost IP header, even if the outer
header is locally terminated.

Sample configuration:
Router#show running-config interface bundle-Ether 50.5
Tue May 26 12:11:49.017 UTC
interface Bundle-Ether50.5
ipv4 address 101.1.5.1 255.255.255.0
encapsulation dot1q 5
ipv4 access-group ExtACL_IPinIP ingress
ipv4 access-group any_dscpegg egress
!

Router#show access-lists ipv4 ExtACL_IPinIP hardware ingress location$
Tue May 26 12:11:55.940 UTC
ipv4 access-list ExtACL_IPinIP
10 permit ipv4 192.168.0.0 0.0.255.255 any ttl gt 150
11 deny ipv4 172.16.0.0 0.0.255.255 any fragments
12 permit ipv4 any any

Controlling the TTL Value of Inner Payload Header
4

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation



Decapsulation Using Tunnel Source Direct
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

Tunnel source direct allows you to
decapsulate the tunnels on any L3
interface on the router.

You can use the tunnel source
direct configuration command to
choose the specific IP Equal-Cost
Multipath (ECMP) links for
troubleshooting, when there are
multiple IP links between two
devices.

Release 7.5.3Decapsulating Using Tunnel
Source Direct

To debug faults in various large networks, you may have to capture and analyze the network traffic at a packet
level. In datacenter networks, administrators face problems with the volume of traffic and diversity of faults.
To troubleshoot faults in a timely manner, DCN administrators must identify affected packets inside large
volumes of traffic. They must track them across multiple network components, analyze traffic traces for fault
patterns, and test or confirm potential causes.

In some networks, IP-in-IP decapsulation is currently used in networkmanagement, to verify ECMP availability
and to measure the latency of each path within a datacenter.

The Network Management System (NMS) sends IP-in-IP (IPv4 or IPv6) packets with a stack (multiple) of
predefined IPv4 or IPv6 headers (device IP addresses). The destination device at each hop removes the outside
header, performs a lookup on the next header, and forwards the packets if a route exists.

Using the tunnel source direct command, you can choose the specific IP Equal-Cost Multipath (ECMP)
links for troubleshooting, when there are multiple IP links between two devices.

You can programmatically configure andmanage the Ethernet interfaces using openconfig-ethernet-if.yang
and openconfig-interfaces.yang OpenConfig data models. To get started with using data models, see the
Programmability Configuration Guide for Cisco 8000 Series Routers.

Tip

Guidelines and Limitations

The following guidelines are applicable to this feature.

• The tunnel source direct command is supported only with the tunnel mode as decap (when an
administrator uses the IP-in-IP decapsulation).

• The source-direct tunnel is always operationally up unless it is administratively shut down. The directly
connected interfaces are identified using the show ip route direct command.

• The tunnel source direct command is supported only in IP-in-IP tunneling decap mode.

• All Layer 3 interfaces that are configured on the device are supported.

Controlling the TTL Value of Inner Payload Header
5

Controlling the TTL Value of Inner Payload Header
Decapsulation Using Tunnel Source Direct

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/b-ncs5500-interfaces-cli-reference/b-ncs5500-interfaces-cli-reference_chapter_0110.html#wp2887642008
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/b-ncs5500-interfaces-cli-reference/b-ncs5500-interfaces-cli-reference_chapter_0110.html#wp2887642008


• Platform can accept and program only certain number of IP addresses. The number of IP addresses
depends on the make of the platform linecard (LC). Each LC can have different number of Network
Processor (NP) slices and interfaces.

• Any inline modification of the tunnel source direct command like tunnel source interface|IP address
is not supported. You must delete the tunnel and recreate it.

• Only one source-direct tunnel per address-family is supported for configuration.

• Regular decapsulation tunnels which have specific source address, are supported. However, the tunnel’s
specific source address must not be part of any interface.

The following functionalities are not supported for the tunnel source direct option.

• GRE tunneling mode.

• VRF (only default VRF is supported).

• ACL and QoS on the tunnels.

• Tunnel encapsulation.

• Tunnel NetIO DLL: Decapsulation is not supported if the packet is punted to slow path.

Configuration

The tunnel source direct configures IP-in-IP tunnel decapsulation on any directly connected IP addresses.
This option is now supported only when the IP-in-IP decapsulation is used to source route the packets through
the network.

This example shows how to configure IP-in-IP tunnel decapsulation on directly connected IP addresses:
Router# configure terminal
Router(config)#interface Tunnel4
Router(config)#tunnel mode ipv4 decap
Router(config)#tunnel source direct
Router(config)#no shutdown

This example shows how to configure IP-in-IP tunnel decapsulation on IPv6 enabled networks:
Router# configure terminal
Router(config)#interface Tunnel6
Router(config)#tunnel mode ipv6 decap
Router(config)#tunnel source direct
Router(config)#no shutdown

Verifying the Configuration

The following example shows how to verify IP-in-IP tunnel decapsulation with tunnel source direct option:
Router#show running-config interface tunnel 1
interface Tunnel1
tunnel mode ipv6ipv6 decapsulate-any
tunnel source direct
no shutdown

Router#show interface tunnel 1
Tunnel1 is up Admin State: up
MTU 1460 bytes, BW 9 Kbit
Tunnel protocol/transport IPv6/DECAPANY/IPv6

Controlling the TTL Value of Inner Payload Header
6

Controlling the TTL Value of Inner Payload Header
Decapsulation Using Tunnel Source Direct



Tunnel source - direct
Tx 0 packets output, 0 bytes Rx 0 packets input, 0 bytes

Configure Tunnel Destination with an Object Group
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

You can now assign an object
group as the destination for an
IP-in-IP decapsulation tunnel.With
this functionality, you could
configure an IPv4 or IPv6 object
group consisting of multiple IPv4
or IPv6 addresses as the destination
for the tunnel instead of a single
IPv4 or IPv6 address. Using an
object group instead of a singular
IP address. This helps reduce the
configuration complexity in the
router by replacing the multiple
tunnels with one destination with a
single decapsulation tunnel that
supports a diverse range of
destinations

The feature introduces these
changes:

• CLI: New tunnel destination
command.

• YANG Data Model: New
object-group option
supported in
Cisco-IOS-XR-um-if-tunnel-cfg.yang
Cisco native model (see
GitHub).

Release 7.5.4Configure Tunnel Destination with
an Object Group

In IP-in-IP Decapsulation, the router accepts a packet on a tunneled interface only when the tunnel IP address
matches the source IP address of the incoming packets. With this implementation, the user needs to configure
separate interface tunnels for each IP address that the router needs to receive the traffic packets. This limitation
often leads to configuration overload on the router.

You can eliminate the configuration overload on the router by assigning an object group as the tunnel destination
for IPv4 and IPv6 traffic types. That is, the router matches the source IP address of the incoming packet against
the object group available as the tunnel destination. The decapsulation tunnel accepts the incoming traffic
packets when there’s a match between the packet source and the object group. Otherwise, the router drops
the packets.

Controlling the TTL Value of Inner Payload Header
7

Controlling the TTL Value of Inner Payload Header
Configure Tunnel Destination with an Object Group

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/Interfaces/b-interfaces-hardware-component-cr-8000/m-gre-tunnel-interface-commands.html#wp1577469727
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr


Restrictions

The following restrictions are applicable to the tunnel destination with an object group feature:

• GRE tunnels don’t support configuring object groups as the tunnel destination.

• The router supports configuring tunnel destination with an object group only when the tunnel source is
tunnel source direct.

• You can configure the object group as tunnel destination only on default VRF.

• Configuring object groups as the tunnel destination isn’t applicable to tunnel encapsulation.

• Subinterfaces don’t support configuring object groups as the tunnel destination.

• Configuring object groups as the tunnel destination feature is mutually exclusive with ACL and QoS
features.

• The tunnel destination feature supports only IPv4 and IPv6 object groups.

• The router does not support changing tunnel configuration after its creation. Configure the tunnel source
direct and tunnel destination with an object group while creating the tunnel only.

Prerequisites

• Define an object group including the network elements for the tunnel destination.

• Enable the tunnel source direct feature. For more information, see decapsulation using tunnel source
direct.

Configuration Example

This section provides an example for configuring the tunnel destination with an object group:

Configuration

IPv4:

Router# configure
/* Configure the IPv4 object group */
Router(config)# object-group network ipv4 Test_IPv4
Router(config-object-group-ipv4)# 192.0.2.0/24
Router(config-object-group-ipv4)# 198.51.100.0/24
Router(config-object-group-ipv4)# 203.0.113.0/24
Router(config-object-group-ipv4)# commit
Router(config-object-group-ipv4)# exit

/* Enters the tunnel configuration mode */
Router(config)# interface tunnel TestIPv4

/* Configures the tunnel mode */
Router(config-if)# tunnel mode ipv4 decap

/* Configures the tunnel to accept all packets with destination address matching the IP
addresses on the router */
Router(config-if)# tunnel source direct

/* Configures the tunnel to accept all packets with destination address that are in the
specified object group */
Router(config-if)# tunnel destination object-group ipv4 Test_IPv4

Controlling the TTL Value of Inner Payload Header
8

Controlling the TTL Value of Inner Payload Header
Configure Tunnel Destination with an Object Group



Router(config-if)# no shutdown
Router(config-if)# commit
Router(config-if)# exit

IPv6:

Router# configure
/* Configure the IPv6 object group */
Router(config)# object-group network ipv6 Test_IPv6
Router(config-object-group-ipv6)# 2001:DB8::/32
Router(config-object-group-ipv6)# 2001:DB8::/48
Router(config-object-group-ipv6)# commit
Router(config-object-group-ipv6)# exit

/* Enters the tunnel configuration mode */
Router(config)# interface tunnel TestIPv6

/* Configures the tunnel mode */
Router(config-if)# tunnel mode ipv6 decap

/* Configures the tunnel to accept all packets with destination address matching the IP
addresses on the router */
Router(config-if)# tunnel source direct

/* Configures the tunnel to accept all packets with destination address that are in the
specified object group */
Router(config-if)# tunnel destination object-group ipv6 Test_IPv6

Router(config-if)# no shutdown
Router(config-if)# commit
Router(config-if)# exit

Running Configuration

Router# show running config object-group
object-group network ipv4 Test_IPv4
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
!
object-group network ipv6 Test_IPv6
2001:DB8::/32
2001:DB8::/48
!

Router# show interface tunnel TestIPv4
interface TunnelTestIPv4
tunnel mode ipv4 decap
tunnel source direct
tunnel destination object-group ipv4 Test_IPv4
no shutdown

!

Router# show interface tunnel TestIPv6
interface TunnelTestIPv6
tunnel mode ipv6 decap
tunnel source direct
tunnel destination object-group ipv6 Test_IPv6
no shutdown
!

Verification

Controlling the TTL Value of Inner Payload Header
9

Controlling the TTL Value of Inner Payload Header
Configure Tunnel Destination with an Object Group



Router# show tunnel ip ea database

----- node0_0_CPU0 -----
tunnel ifhandle 0x80022cc
tunnel source 161.115.1.2
tunnel destination address group Test_IPv4
tunnel transport vrf table id 0xe0000000
tunnel mode gre ipv4, encap
tunnel bandwidth 100 kbps
tunnel platform id 0x0
tunnel flags 0x40003400
IntfStateUp
BcStateUp
Ipv4Caps
Encap
tunnel mtu 1500
tunnel tos 0
tunnel ttl 255
tunnel adjacency flags 0x1
tunnel o/p interface handle 0x0
tunnel key 0x0, entropy length 0 (mask 0xffffffff)
tunnel QT next 0x0
tunnel platform data (nil)
Platform:
Handle: (nil)
Decap ID: 0
Decap RIF: 0
Decap Recycle Encap ID: 0x00000000
Encap RIF: 0
Encap Recycle Encap ID: 0x00000000
Encap IPv4 Encap ID: 0x4001381b
Encap IPv6 Encap ID: 0x00000000
Encap MPLS Encap ID: 0x00000000
DecFEC DecRcyLIF DecStatsId EncRcyLIF

ECMP Hashing Support for Load Balancing
The system inherently supports the n-tuple hash algorithm. The first inner header in the n-tuple hashing
includes the source port and the destination port of UDP / TCP protocol headers.

The load balancing performs these functions:

• Incoming data traffic is distributed over multiple equal-cost connections.

• Incoming data traffic is distributed over multiple equal-cost connections member links within a bundle
interface.

• Layer 2 bundle and Layer 3 (network layer) load-balancing decisions are taken on IPv4, and IPv6. If it
is an IPv4 or an IPv6 payload, then an n-tuple hashing is done.

• An n-tuple hash algorithm provides more granular load balancing and used for load balancing over
multiple equal-cost Layer 3 (network layer) paths. The Layer 3 (network layer) path is on a physical
interface or on a bundle interface.

• The n-tuple load-balance hash calculation contains:

• Source IP address

• Destination IP address

Controlling the TTL Value of Inner Payload Header
10

Controlling the TTL Value of Inner Payload Header
ECMP Hashing Support for Load Balancing



• IP Protocol type

• Router ID

• Source port

• Destination port

• Input interface

• Flow-label (for IPv6 only)

Controlling the TTL Value of Inner Payload Header
11

Controlling the TTL Value of Inner Payload Header
ECMP Hashing Support for Load Balancing



User-Defined Fields for ECMP Hashing
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

We ensure that in cases where
multiple paths are used to carry
packets from source to destination,
each path is utilized for this purpose
and no path is over-utilized or
congested. This is made possible
because we now provide
customized ECMP hashing fields
that are used for path computation.

Previously, the router relied on
fixed packet header fields for
hashing, which were not user
configurable. With additional
user-defined bytes considered for
hashing, the granularity at which
the traffic can be analyzed for
ECMP load balancing increases,
resulting in better load balancing
and path utilization.

The feature introduces these
changes:

CLI:

• cef load-balancing fields
user-data

• The show cef exact-route
command is modified with a
new user-data keyword.

• The show cef ipv4
exact-route command is
modified with a new
user-data keyword.

• The show cef ipv6
exact-route command is
modified with a new
user-data keyword.

YANG:

• New Xpath for
Cisco-IOS-XR-8000-fib-platform-cfg.yang

(see Github, YANG Data
Models Navigator).

Release 24.2.1User-Defined Fields for ECMP
Hashing

Controlling the TTL Value of Inner Payload Header
12

Controlling the TTL Value of Inner Payload Header
User-Defined Fields for ECMP Hashing

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp2033778090
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp2033778090
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp2203255988
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3182749348
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3182749348
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3436028600
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3436028600
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model


ECMP hashing is used to distribute traffic across multiple equal-cost paths. See ECMP Hashing Support for
Load Balancing for the default static hashing algorithm details.

You can now add user-defined packet header fields for ECMP path calculation for ipv4 and ipv6 flows using
the cef load-balancing fields user-data command. Ensure you specify these user-defined fields based on the
type of traffic flow that requires load balancing. You can include the following parameters:

• Hash header: The hash header specifies which packet header is being considered for load balancing.
You can enable any or all of the available six profiles.

• IPv4: tcp, udp, non-tcp-udp

• IPv6: tcp, udp, non-tcp-udp

If any hash header profile is defined for load balancing, along with the fixed fields considered for hashing,
additional bytes in the payload are also used for path computation.

• Hashing offset: The hashing offset specifies the byte location from the end of the configured header.

• Hash size: The hash size specifies the number of bytes that is considered from the start of the hash offset
by the ECMP hashing algorithm. Range is 1 to 4 bytes.

• Location: This specifies the location of the ingress line card that receives the incoming traffic. The
user-defined hashing configuration is applied on the specified line card.

The addition of the user-defined packer header fields increases the granularity at which the traffic is analyzed
for ECMP load balancing. When multiple paths with equal cost are available for routing a specific type of
packet from a source to a destination, this granularity ensures that the intended type of traffic is evenly
distributed across these paths. This ensures all available paths are used efficiently and prevents congestion or
over-utilization of a single path.

You can also retrieve the exact-route information based on the configured user-data using the show cef
exact-route command with user-data keyword.

• When the user-defined hashing configuration is active, any additional options or optional keywords are
disregarded during the parsing of incoming packets for retrieving the user-defined bytes.

• The hashing results based on user-defined hash feature is applicable to BGP/IGP ECMP and LAG hashing.

• The use of the user-defined hashing configuration changes the load balancing behavior of GRE and
IPinIP traffic. This includes all traffic that begins with ipv4, ipv6, ipv4+udp, ipv6+udp, ipv4+tcp, and
ipv6+tcp, regardless of the payload.

Note

Configure User-Defined Fields for ECMP Hashing
The command cef load-balancing fields user-data configures the additional user-defined fields that are to
be considered for the hashing algorithm.

This example shows how to configure the additional IPv4 header fields for TCP packets:
Router# configure terminal
Router(config)#cef load-balancing fields user-data ipv4 tcp offset 5 size 3 location 0/0/CPU0
Router(config)#commit

Controlling the TTL Value of Inner Payload Header
13

Controlling the TTL Value of Inner Payload Header
Configure User-Defined Fields for ECMP Hashing

b-interfaces-config-guide-cisco8k-r24xx_chapter13.pdf#nameddest=unique_277
b-interfaces-config-guide-cisco8k-r24xx_chapter13.pdf#nameddest=unique_277


• offset 5: The payload considered for hashing starts from byte 6 from the end of TCP header.

• size 3: Three bytes of payload are considered.

• location 0/0/CPU0: Specifies the line card on which the configuration is applied.

In the above example, the sixth, seventh, and eighth bytes of the payload are considered additionally for the
hashing.

This example shows how to configure the additional IPv6 header fields for UDP packets:
Router# configure terminal
Router(config)#cef load-balancing fields user-data ipv6 udp offset 0 size 2 location 0/0/CPU0
Router(config)#commit

• offset 0: The payload considered for hashing starts from the end of UDP header.

• size 2: Two bytes of payload are considered.

• location 0/0/CPU0: Specifies the line card on which the configuration is applied.

In the above example, the first two bytes of payload of a UDP packet are considered additionally for the
hashing.

Running Configuration

The following example shows the running configuration:
Router#show running-config | include cef
Fri Jul 28 12:02:01.002 UTC
cef load-balancing fields user-data ipv4 tcp offset 5 size 3 location 0/0/CPU0
cef load-balancing fields user-data ipv6 udp offset 0 size 2 location 0/0/CPU0
Router#

Verification

The following example shows the difference in load balancing before and after applying user-defined hashing,
for a flow with data that exhibits good hashing behavior.

Before applying user-defined hashing

Router#show interfaces accounting | i IPV6_U
Protocol Pkts In Chars In Pkts Out Chars Out
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 2 144 0 0
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 0 0 3979416 1981749168
IPV6_UNICAST 4191438 2087336124 0 0
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 1 72 0 0
IPV6_UNICAST 1 72 0 0

Router#

After applying user-defined hashing

Router#show interfaces accounting | i IPV6_U
Protocol Pkts In Chars In Pkts Out Chars Out
IPV6_UNICAST 0 0 39119 19481262
IPV6_UNICAST 0 0 39801 19820898
IPV6_UNICAST 0 0 40483 20160534

Controlling the TTL Value of Inner Payload Header
14

Controlling the TTL Value of Inner Payload Header
Configure User-Defined Fields for ECMP Hashing



IPV6_UNICAST 0 0 40524 20180952
IPV6_UNICAST 0 0 40573 20205354
IPV6_UNICAST 0 0 40614 20225772
IPV6_UNICAST 0 0 39368 19605264
IPV6_UNICAST 0 0 40734 20285532
IPV6_UNICAST 0 0 40777 20306946
IPV6_UNICAST 0 0 40171 20005158
IPV6_UNICAST 0 0 40858 20347284
IPV6_UNICAST 0 0 40269 20053962
IPV6_UNICAST 0 0 41603 20718294
IPV6_UNICAST 0 0 40363 20100774
IPV6_UNICAST 0 0 40407 20122686
IPV6_UNICAST 0 0 41098 20466804
IPV6_UNICAST 850393 423495714 0 0

To view the exact route information allocated to the packets, use show cef exact-route command with
user-data keyword.

The packet contains value 0x2 in the packet position for the ipv6 packet, for which the user-defined
configuration has been added for a non-tcp-udp ipv6 flow.
Router#show cef ipv6 exact-route 100::10 60::1 flow-label 0 protocol 59 source-port 0
destination-port 0 user-data 0x2 ingress-interface HundredGigE0/0/0/2 location 0/0/cpu0
Unsupported protocol value 59
60::/16, version 1293, internal 0x1000001 0x20 (ptr 0x8b78ef00) [1], 0x400 (0x8e9cfc48),
0x0 (0x0)
Updated Aug 14 07:50:20.022
local adjacency to Bundle-Ether3.30

Prefix Len 16, traffic index 0, precedence n/a, priority 2
via Bundle-Ether3.30
via fe80::72b3:17ff:feae:d703/128, Bundle-Ether3.30, 7 dependencies, weight 0, class 0

[flags 0x0]
path-idx 7 NHID 0x0 [0x8db8bed8 0x0]
next hop fe80::72b3:17ff:feae:d703/128
local adjacency

Controlling the TTL Value of Inner Payload Header
15

Controlling the TTL Value of Inner Payload Header
Configure User-Defined Fields for ECMP Hashing



Controlling the TTL Value of Inner Payload Header
16

Controlling the TTL Value of Inner Payload Header
Configure User-Defined Fields for ECMP Hashing


	Controlling the TTL Value of Inner Payload Header
	IP-in-IP Decapsulation
	Decapsulation Using Tunnel Source Direct
	Configure Tunnel Destination with an Object Group

	ECMP Hashing Support for Load Balancing
	User-Defined Fields for ECMP Hashing
	Configure User-Defined Fields for ECMP Hashing



