
Implementing BGP

Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free
interdomain routing between autonomous systems. An autonomous system is a set of routers under a single
technical administration. Routers in an autonomous system can use multiple Interior Gateway Protocols (IGPs)
to exchange routing information inside the autonomous system and an EGP to route packets outside the
autonomous system.

This module provides conceptual and configuration information on BGP.

You can programmatically configure BGP and retrieve operational data using
openconfig-network-instance.yang OpenConfig data model. To get started with using data models, see
the .

Tip

• Prerequisites for Implementing BGP, on page 3
• BGP Functional Overview, on page 3
• Disabling Per Neighbor TCP MSS, on page 135
• Configuring Discard Extra Paths, on page 137
• Configuring Per Neighbor TCP MSS, on page 138
• Disabling Per Neighbor TCP MSS, on page 140
• Configure BGP Route Filtering by Route Policy, on page 142
• Configure BGP Attribute Filtering, on page 143
• Configure BGP Next-Hop Trigger Delay, on page 144
• Disable Next-Hop Processing on BGP Updates, on page 145
• Configure BGP Community and Extended-Community Advertisements, on page 146
• Configure BGP Cost Community, on page 148
• Configure Software to Store Updates from Neighbor, on page 150
• BGP Persistence, on page 151
• BGP Graceful Maintenance, on page 152
• Bring Router or Link Back into Service, on page 160
• Show Command Outputs to Verify BGP Graceful Maintenance, on page 160
• Bring Router or Link Back into Service, on page 161
• Show Command Outputs to Verify BGP Graceful Maintenance, on page 161
• Flow-tag propagation, on page 163
• Neighbor Capability Suppression, on page 171
• BGP Dynamic Neighbors, on page 172

Implementing BGP
1

• Remote AS List, on page 174
• Maximum-peers and Idle-watch timeout, on page 175
• Resetting Neighbors Using BGP Inbound Soft Reset, on page 176
• Resetting Neighbors Using BGP Outbound Soft Reset, on page 176
• Reset Neighbors Using BGP Hard Reset, on page 177
• Clearing Caches, Tables, and Databases, on page 178
• Display System and Network Statistics, on page 178
• Display BGP Process Information, on page 180
• Configure iBGP Multipath Load Sharing , on page 182
• Originate Prefixes with AiGP, on page 183
• Configure BGP Accept Own, on page 185
• Configuring BGP Link-state, on page 187
• Configuring BGP Permanent Network, on page 188
• How to Advertise Permanent Network, on page 190
• Enable BGP Unequal Cost Recursive Load Balancing, on page 192
• Configuring BGP Large Communities, on page 195
• Enabling BGP: Example, on page 200
• Displaying BGP Update Groups: Example, on page 201
• BGP Neighbor Configuration: Example , on page 201
• BGP Confederation: Example , on page 202
• BGP Route Reflector: Example, on page 204
• BGP Route Reflector: Example, on page 204
• BGP MDT Address Family Configuration: Example, on page 205
• BGP Nonstop Routing Configuration: Example, on page 205
• Best-External Path Advertisement Configuration: Example, on page 205
• Primary Backup Path Installation: Example, on page 206
• iBGP Multipath Loadsharing Configuration: Example, on page 206
• Discard Extra Paths Configuration: Example, on page 206
• Verify Per Neighbor TCP MSS: Examples, on page 206
• Originating Prefixes With AiGP: Example, on page 209
• BGP Accept Own Configuration: Example, on page 209
• BGP Unequal Cost Recursive Load Balancing: Example, on page 210
• Flow-tag propagation, on page 212
• Restrictions for Flow-Tag Propagation, on page 212
• Configuring Destination-Based Flow-Tag Propagation, on page 213
• Configure Software to Store Updates from Neighbor, on page 216
• Configuring BGP Route Dampening, on page 217
• Apply Policy When Updating Routing Table, on page 218
• Configure BGP Route Filtering by Route Policy, on page 220
• Configure Destination-based RTBH Filtering , on page 221
• Resilient Hashing and Flow Auto-Recovery, on page 223
• Persistent Loadbalancing , on page 224
• BGP Selective Multipath, on page 226
• Remove and Replace Private AS Numbers from AS Path in BGP, on page 228
• BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing, on page 229
• BGP Multi-Instance and Multi-AS, on page 229

Implementing BGP
2

Implementing BGP

• BGP Prefix Origin Validation Based on RPKI, on page 230
• BGP Update Message Error Handling, on page 232
• BGP Attribute Filtering, on page 233
• BGP Error Handling and Attribute Filtering Syslog Messages, on page 233
• BGP-RIB Feedback Mechanism for Update Generation, on page 234
• Configure BGP Large Communities, on page 234
• Resetting an eBGP Session Immediately Upon Link Failure, on page 239
• Management Information Base (MIBs) for BGP, on page 239
• Virtual Routing Forwarding Next Hop Routing Policy, on page 240

Prerequisites for Implementing BGP
You must be in a user group associated with a task group that includes the proper task IDs. The command
reference guides include the task IDs required for each command. If you suspect user group assignment is
preventing you from using a command, contact your AAA administrator for assistance.

BGP Functional Overview
BGP uses TCP as its transport protocol. Two BGP routers form a TCP connection between one another (peer
routers) and exchange messages to open and confirm the connection parameters.

BGP routers exchange network reachability information. This information is mainly an indication of the full
paths (BGP autonomous system numbers) that a route should take to reach the destination network. This
information helps construct a graph that shows which autonomous systems are loop free and where routing
policies can be applied to enforce restrictions on routing behavior.

Any two routers forming a TCP connection to exchange BGP routing information are called peers or neighbors.
BGP peers initially exchange their full BGP routing tables. After this exchange, incremental updates are sent
as the routing table changes. BGP keeps a version number of the BGP table, which is the same for all of its
BGP peers. The version number changes whenever BGP updates the table due to routing information changes.
Keepalive packets are sent to ensure that the connection is alive between the BGP peers and notification
packets are sent in response to error or special conditions.

ASN change for BGP process is not currently supported via commit replace.Note

BGP Router Identifier
For BGP sessions between neighbors to be established, BGP must be assigned a router ID. The router ID is
sent to BGP peers in the OPEN message when a BGP session is established.

BGP attempts to obtain a router ID in the following ways (in order of preference):

• By means of the address configured using the bgp router-id command in router configuration mode.

• By using the highest IPv4 address on a loopback interface in the system if the router is booted with saved
loopback address configuration.

Implementing BGP
3

Implementing BGP
Prerequisites for Implementing BGP

• By using the primary IPv4 address of the first loopback address that gets configured if there are not any
in the saved configuration.

If none of these methods for obtaining a router ID succeeds, BGP does not have a router ID and cannot establish
any peering sessions with BGP neighbors. In such an instance, an error message is entered in the system log,
and the show bgp summary command displays a router ID of 0.0.0.0.

After BGP has obtained a router ID, it continues to use it even if a better router ID becomes available. This
usage avoids unnecessary flapping for all BGP sessions. However, if the router ID currently in use becomes
invalid (because the interface goes down or its configuration is changed), BGP selects a new router ID (using
the rules described) and all established peering sessions are reset.

We strongly recommend that the bgp router-id command is configured to prevent unnecessary changes to
the router ID (and consequent flapping of BGP sessions).

Note

BGP Maximum Prefix - Discard Extra Paths
IOS XR BGP maximum-prefix feature imposes a maximum limit on the number of prefixes that are received
from a neighbor for a given address family. Whenever the number of prefixes received exceeds the maximum
number configured, the BGP session is terminated, which is the default behavior, after sending a cease
notification to the neighbor. The session is down until a manual clear is performed by the user. The session
can be resumed by using the clear bgp command. It is possible to configure a period after which the session
can be automatically brought up by using the maximum-prefix command with the restart keyword. The
maximum prefix limit can be configured by the user. Default limits are used if the user does not configure
the maximum number of prefixes for the address family. .

Discard Extra Paths

An option to discard extra paths is added to the maximum-prefix configuration. Configuring the discard extra
paths option drops all excess prefixes received from the neighbor when the prefixes exceed the configured
maximum value. This drop does not, however, result in session flap.

The benefits of discard extra paths option are:

• Limits the memory footstamp of BGP.

• Stops the flapping of the peer if the paths exceed the set limit.

When the discard extra paths configuration is removed, BGP sends a route-refresh message to the neighbor
if it supports the refresh capability; otherwise the session is flapped.

On the same lines, the following describes the actions when the maximum prefix value is changed:

• If the maximum value alone is changed, a route-refresh message is sourced, if applicable.

• If the new maximum value is greater than the current prefix count state, the new prefix states are saved.

• If the new maximum value is less than the current prefix count state, then some existing prefixes are
deleted to match the new configured state value.

There is currently no way to control which prefixes are deleted.

Implementing BGP
4

Implementing BGP
BGP Maximum Prefix - Discard Extra Paths

Configure Discard Extra Paths
The discard extra paths option in the maximum-prefix configuration allows you to drop all excess prefixes
received from the neighbor when the prefixes exceed the configured maximum value. This drop does not,
however, result in session flap.

The benefits of discard extra paths option are:

• Limits the memory footstamp of BGP.

• Stops the flapping of the peer if the paths exceed the set limit.

When the discard extra paths configuration is removed, BGP sends a route-refresh message to the neighbor
if it supports the refresh capability; otherwise the session is flapped.

• When the router drops prefixes, it is inconsistent with the rest of the network, resulting in possible routing
loops.

• If prefixes are dropped, the standby and active BGP sessions may drop different prefixes. Consequently,
an NSR switchover results in inconsistent BGP tables.

• The discard extra paths configuration cannot co-exist with the soft reconfig configuration.

• When the system runs out of physical memory, bgp process exits and you must manually restart bpm.
To manually restart, use the process restart bpm command.

Note

Perform this task to configure BGP maximum-prefix discard extra paths.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. address-family { ipv4 | ipv6 } unicast
5. maximum-prefix maximum discard-extra-paths
6. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:
RP/0/# configure

Enters .

Step 2 router bgp as-number

Example:
RP/0/(config)# router bgp 10

Implementing BGP
5

Implementing BGP
Configure Discard Extra Paths

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
RP/0/(config-bgp)# neighbor 10.0.0.1

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 address-family { ipv4 | ipv6 } unicast

Example:
RP/0/(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 5 maximum-prefix maximum discard-extra-paths

Example:
RP/0/(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths

Configures a limit to the number of prefixes allowed.

Configures discard extra paths to discard extra paths when the maximum prefix limit is exceeded.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Example

The following example shows how to configure discard extra paths feature for the IPv4 address
family:

RP/0//CPU0:router# configure
RP/0//CPU0:router(config)# router bgp 10
RP/0//CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0//CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0//CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths
RP/0//CPU0:router(config-bgp-vrf-af)# commit

The following screen output shows details about the discard extra paths option:

RP/0//CPU0:ios# show bgp neighbor 10.0.0.1

BGP neighbor is 10.0.0.1
Remote AS 10, local AS 10, internal link

Implementing BGP
6

Implementing BGP
Configure Discard Extra Paths

Remote router ID 0.0.0.0
BGP state = Idle (No best local address found)
Last read 00:00:00, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:00, attempted 0, written 0
Second last write 00:00:00, attempted 0, written 0
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd not set last full not set pulse count 0
Last write pulse rcvd before reset 00:00:00
Socket not armed for io, not armed for read, not armed for write
Last write thread event before reset 00:00:00, second last 00:00:00
Last KA expiry before reset 00:00:00, second last 00:00:00
Last KA error before reset 00:00:00, KA not sent 00:00:00
Last KA start before reset 00:00:00, second last 00:00:00
Precedence: internet
Multi-protocol capability not received
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 0 secs

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1 Filter-group: 0.0 No Refresh request being processed
Route refresh request: received 0, sent 0
0 accepted prefixes, 0 are bestpaths
Cumulative no. of prefixes denied: 0.
Prefix advertised 0, suppressed 0, withdrawn 0
Maximum prefixes allowed 10 (discard-extra-paths) <<<<<<<<<<<<<<<<<<<<<
Threshold for warning message 75%, restart interval 0 min
AIGP is enabled
An EoR was not received during read-only mode
Last ack version 1, Last synced ack version 0
Outstanding version objects: current 0, max 0
Additional-paths operation: None
Send Multicast Attributes

Connections established 0; dropped 0
Local host: 0.0.0.0, Local port: 0, IF Handle: 0x00000000
Foreign host: 10.0.0.1, Foreign port: 0
Last reset 00:00:00

Restrictions
These restrictions apply to the discard extra paths feature:

• When the router drops prefixes, it is inconsistent with the rest of the network, resulting in possible routing
loops.

• If prefixes are dropped, the standby and active BGP sessions may drop different prefixes. Consequently,
an NSR switchover results in inconsistent BGP tables.

• The discard extra paths configuration cannot co-exist with the soft reconfig configuration.

BGP Labeled Unicast
The BGP Labeled Unicast (LU) feature, also known as unified MPLS, provides MPLS transport between
Provider Edge (PE) routers that are separated by either many IGP boundaries (intra-AS) or bymany autonomous

Implementing BGP
7

Implementing BGP
Restrictions

systems (inter-AS). Using autonomous systems border routers (ASBRs), you can advertise loopback prefixes
of PEs and their MPLS label bindings: iBGP between area border routers (ABRs) and eBGP between
autonomous system border routers. You can use Multihop eBGP between the PEs if they are in different
autonomous systems (ASes) to exchange the VPN routes. You can run 6PE and other services between the
PEs that have BGP LU connectivity.

The BGP LU feature lowers the IGP labeled prefix scale and adjacency scale values. If the router is not being
configured with BGP LU, it is necessary to prevent lowering of scale values. Hence it is mandatory to configure
the hw-module command before you enable the BGP LU feature. Restart the router for the hw-module
command configuration to take effect.

Restrictions

• Cisco 8000 supports only per-vrf label mode.

• You can use LDP or Segment Routing (SR) as the transport underlay. You cannot use TE as the transport
underlay.

• BGP PIC edge feature is not supported.

• L3VPN and 6VPE over BGP LU feature is not supported.

• BGP PIC core feature is supported.

Supported features

The following features are supported:

• BGP LU with inter-AS option C

• 6PE over MPLS transport using LDP or Segment Routing.

• BGP PIC core

Topology

Figure 1: BGP Labeled Unicast (Intra-Autonomous System) Control Plane and Data Plane

Implementing BGP
8

Implementing BGP
BGP Labeled Unicast

The above diagram explains how PE1 is connected with PE2 through MPLS connectivity. PE1 and PE2 are
separated bymany areas within the sameAS. Consider three network areas OSPF1, OSPF2, and OSPF3. Each
of these areas is running separate OSPFs. LDP acts as transport between each of these areas. To establish a
connection between the Provider Edge routers PE1 and PE2, send iBGP from PE2 to PE1 through P3, ASBR2,
P1 and ASBR1, P2. PE1must learn the loopback address of PE2 to establish a connection between the loopback
address of PE1 and the loopback address of PE2.

The loopback address of PE2 which is 10.1.1.7 advertises a BGP label through iBGP to ASBR2. This address
is advertised as an implicit null label. The ASBR2 allocates a local label 14003 for the loopback address
10.1.1.7 and sends it to ASBR1. ASBR1 allocates its own label 14005 to the loopback address 10.1.1.7 and
sends it to PE1. PE1 has learnt the prefix of loopback address 10.1.1.7 and the BGP label 14005. The BGP
next hop for PE1 is ASBR1. When PE1 sends traffic to PE2, PE1 adds two labels: the BGP-LU label and
transport LDP label. The transport LDP label 24000, is above the BGP-LU label 14005. PE1 imposes the
transport LDP label and the BGP-LU label when PE1 transmits an IP packet destined to the loopback address
10.1.1.7. The transport LDP label carries the packet to ASBR1. ASBR1 receives the IP packet. It contains
only the BGP-LU label, 14005. ASBR1 swaps the BGP-LU label from 14005 to 14003 and imposes transport
LDP label 24001 and sends the IP packet to ASBR2. ASBR2 receives the packet. The BGP-LU label for the
loopback address 10.1.1.7 in ASBR2 is implicit null. Only the transport label is pushed to 24002. ASBR2
transmits the transport label that carries the transport to PE2.

Figure 2: BGP Labeled Unicast (Intra-Autonomous System Option C) Control Plane and Data Plane

ASBR2 prefers IGPMPLS path over BGP path 10.1.1.7. It advertises LDP local label as BGP label to ASBR1.
A LDP swap operation takes place on ASBR2.

The above figure explains how PE1 is connected with PE2 through MPLS connectivity using eBGP. In the
above-mentioned scenario, eBGP exists between ASBR1 and ASBR2. PE2 advertises the BGP-LU label
which has a value of implicit null to ASBR2 through iBGP. The loopback address is known to ASBR2 through
the IGP. ASBR2 prefers the IGP path with ldp label 24002. ASBR2 allocates local label 24004 to loopback
10.1.1.7. It advertises the local label 24004 to ASBR1. ASBR1 creates a local label 14005 and advertises it
to PE1. Now, PE1 is aware of the loopback address 10.1.1.7. The IP packet has two labels: the BGP label
14005 and the transport label 24000. PE1 transmits the IP packet to ASBR1. The IP packet received by ASBR1
has only the BGP LU label 14005. ASBR1 swaps BGP-LU label from 14005 to 24004. The IP packet reaches
ASBR2 where LDP label 24002 is pushed and transmits the packet to PE2.

Implementing BGP
9

Implementing BGP
BGP Labeled Unicast

Figure 3: 6PE over BGP LU (Inter-AS Option C) Control Plane and Data Plane

The above illustration explains how PE1 is connected with PE2 through MPLS connectivity using Multihop
eBGP between multiple ASes. Multihop BGP exists between PE1 and PE2. PE1 and PE2 can exchange 6PE
routes on the multihop eBGP with the labels. The label value for 6PE is v6 explicit null. When PE2 advertises
v6 prefix 10::2/128, the label is always the explicit null label. The BGP label and LDP label constitute the
top two labels. The 6PE label constitutes the bottom label which is v6 explicit null. The v6 packet reaches
PE1 with destination IP 10:2. The label imposition takes place here. The 6PE label of value 2 is imposed first,
the BGP label 14005 is imposed next, and then the next hop LDP label 14005 for the BGP LU next hop is
imposed. ASBR1 swaps BGP-LU label from 14005 to 24004 and forwards the packet to ASBR2. ASBR2
adds LDP label on top of 6PE label 2 and forwards it to P3 where LDP label is POPed, so PE2 receives packet
with 6PE explicit null label only. PE2 performs a v6 lookup and forwards the packet.

Configure BGP Labeled Unicast

Router(config)# hw-module profile cef bgplu enable
Router(config)# router bgp 1
Router(config-bgp)# bgp router-id 2001:DB8::1
Router(config-bgp)# address-family ipv6 unicast
Router(config-bgp-af)# redistribute connected route-policy set-lbl-idx
Router(config-bgp-af)# allocate-label all
Router(config-bgp-af)# exit
Router(config-bgp)# neighbor 2001:DB8::2
Router(config-bgp)# remote-as 1
Router(config-bgp)# update-source Loopback 0
Router(config-bgp)# address-family ipv6 labeled-unicast
Router(config-bgp)# route-policy pass-all in
Router(config-bgp)# route-policy pass-all out

/* Note: Restart the router for the hw-module command configuration to take effect. */

Running Configuration

!
hw-module profile cef bgplu enable
!
router bgp 1
bgp router-id 2001:DB8::1
address-family ipv6 unicast
redistribute connected route-policy set-lbl-idx

Implementing BGP
10

Implementing BGP
BGP Labeled Unicast

allocate-label all
!
neighbor 2001:DB8::2
remote-as 1
update-source Loopback0

!
address-family ipv6 labeled-unicast
route-policy pass-all in
route-policy pass-all out
!

Verification

SME to provide the show output required below.
Router # show bgp ipv6 unicast labels
Network Next Hop Rcvd Label Local Label

Router# show bgp ipv6 unicast labels
Network Next Hop Rcvd Label Local Label

Convergence for BGP Labeled Unicast PIC Edge
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature improves the convergence time of BGP
labeled unicast (LU) routes to subseconds when an ingress
provider edge router fails or loses PE router connectivity,
and another PE router needs to be connected. This feature
minimizes traffic drops when the primary paths fail for
the BGP LU routes.

Release 7.7.1Convergence for
BGP Labeled
Unicast PIC Edge

BGP Labeled Unicast (LU) PIC Edge feature enables you to create and store both the primary and backup
path in the Routing Information Base (RIB), Forwarding Information Base (FIB), and Cisco Express
Forwarding. When the router detects a failure, the backup or alternate path immediately takes over, thus this
feature enables fast failover and convergence in subseconds.

For BGP LU PIC Edge to work, the edge iBGP devices, such as ingress PEs and Autonomous System Border
Router (ASBR), must support BGP PIC and must receive backup BGP next hop.

The topology diagram given below illustrates the Convergence for BGP Labeled Unicast PIC Edge feature.
The topology is explained as follows:

• The BGP LU PIC Edge feature is enabled on a provider edge router, PE1.

• PE1 learns the BGP LU prefix from the remote PE router, PE2.

• PE1 routes traffic through the Area Border Routers, ABR1, ABR2 and ABR3. If one of them fails, the
preprogrammed backup of the failed ABR routes the traffic.

• PE1 routes traffic through the Area Border Routers, ABR1, ABR2 and ABR3.

• PE2 is marked as the backup or alternate next hop and is programmed into the FIB of PE1.

Implementing BGP
11

Implementing BGP
Convergence for BGP Labeled Unicast PIC Edge

• When PE1 learns PE2 is not reachable through ABR1, it immediately changes the BGP next hop for the
PE1's prefix to ABR2.

• The switchover occurs in less than a second regardless of the number of prefixes.

• Subsecond convergence occurs although updates to multiple BGP prefixes are pending.

Topology

Figure 4: BGP LU PIC Edge

Guidelines and Limitations

This feature supports BGPmultipaths that allows the router to install multiple internal BGP paths andmultiple
external BGP paths to the forwarding table. The multiple paths enable BGP to load balance traffic across
multiple links.

The convergence time is independent of the BGP LU route scale.

Configure Convergence for BGP Labeled Unicast PIC Edge

Perform the following steps to configure Convergence for BGP Labeled Unicast PIC Edge:

Implementing BGP
12

Implementing BGP
Convergence for BGP Labeled Unicast PIC Edge

• Configure BGP labeled unicast and attach route-policy to BGP address families.

• Configure BGP labeled unicast multipath and attach route-policy to BGP address families

Router(config)# route-policy BGP-PIC-EDGE
Router(config-rpl)# set path-selection backup 1 install
Router(config-rpl)# end-policy
Router(config)# end
Router(config)# router bgp 200
Router(config-bgp)# bgp router-id 10.0.0.1
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# additional-paths receive
Router(config-bgp-af)# additional-paths send
Router(config-bgp-af)# additional-paths selection route-policy BGP-PIC-EDGE

/*Perform the following steps to configure BGP labeled unicast multipath and attach
route-policy to BGP address families: */
Router(config)# route-policy BGP-PIC-EDGE-MULTIPATH
Router(config-rpl)# set path-selection backup 1 install multipath-protect
Router(config)# end-policy
Router(config)# router bgp 200
Router(config)# bgp router-id 192.168.1.0
Router(config)# address-family ipv4 unicast
Router(config)# maximum-paths ibgp 2
Router(config)# additional-paths receive
Router(config)# additional-paths send
Router(config)# additional-paths selection route-policy BGP-PIC-EDGE-MULTIPATH

Running Configuration

route-policy BGP-PIC-EDGE
set path-selection backup 1 install
end-policy
router bgp 200
bgp router-id 192.168.1.0
address-family ipv4 unicast
additional-paths receive
additional-paths send
additional-paths selection route-policy BGP-PIC-EDGE

route-policy BGP-PIC-EDGE-MULTIPATH
set path-selection backup 1 install multipath-protect
end-policy
router bgp 200
bgp router-id 192.168.1.0
address-family ipv4 unicast
maximum-paths ibgp 2
additional-paths receive
additional-paths send
additional-paths selection route-policy BGP-PIC-EDGE-MULTIPATH

Verification

Verify that the backup path is established.
Router# show cef 192.0.2.1/32
192.168.0.0/32, version 31, internal 0x5000001 0x40 (ptr 0x901d2370) [1], 0x0 (0x90d2beb8),
0xa08 (0x91c74378)
Prefix Len 32, traffic index 0, precedence n/a, priority 4
via 203.0.113.1/32, 3 dependencies, recursive [flags 0x6000] << Primary Path

Implementing BGP
13

Implementing BGP
Convergence for BGP Labeled Unicast PIC Edge

path-idx 0 NHID 0x0 [0x90319650 0x0]
recursion-via-/32
next hop 192.51.100.1/32 via 24006/0/21
next hop 209.165.200.225/32 Hu0/0/0/25 labels imposed {24002 24000}
next hop 10.0.0.1/32 Hu0/0/0/26 labels imposed {24002 24000}
via 203.0.113.2/32, 2 dependencies, recursive, backup [flags 0x6100] << Backup Path
path-idx 1 NHID 0x0 [0x903197b8 0x0]
recursion-via-/32
next hop 209.165.200.225/32 via 24005/0/21
next hop 192.51.100.1/32 Hu0/0/0/25 labels imposed {24001 24000}
next hop 10.0.0.1/32 Hu0/0/0/26 labels imposed {24001 24000}

Black Box Monitoring
Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature enables you to set up forwarding path on the
router that you can use to probe customer circuits for
system metrics specific to the network devices. Such
monitoring helps you to keep up the service level
agreements with your customers.

Release 7.3.2Black Box
Monitoring

This feature uses a technique whereby a dummy BGP session is established across the GRE encapsulation
and decapsulation infrastructure. To terminate the dummy BGP session, the router peers to an address that is
configured on the peering fabric which is peering to itself.

The router must peer to an address which is configured on the PF, peering to itself in essence. The only way
to make this work is by plugging two interfaces into one another with a physical cable. After two interfaces
are connected to one another place one of them into a VRF so that the BGP session is brought up. A router
does not attempt to establish a BGP session to itself normally, so you must separate the routing table using a
VRF. On the other interface it is a 'normal' interface in the global vrf with the same configuration that is
typically on a PF peering interface.

Configuration Example

Perform the following steps to configure BGP and GRE tunnel..
/* Configure the Local Proxy ARP on the Bundle-Ether interfaces.*/
Router(config)# interface Bundle-Ether1.1
Router(config-if)# ipv4 address 10.1.1.1 255.255.255.240
Router(config-if)# local-proxy-arp
Router(config-if)# encapsulation dot1q 12
Router(config-if)# ipv4 access-group acl-aa ingress

Router(config-if)# exit

Implementing BGP
14

Implementing BGP
Black Box Monitoring

Router(config)# interface Bundle-Ether2.1
Router(config-if)# vrf aa
Router(config-if-vrf)# ipv4 address 10.1.1.2 255.255.255.240
Router(config-if-vrf)# local-proxy-arp
Router(config-if-vrf)# encapsulation dot1q 12

/* Configure a bundle on FortyGigE interfaces.*/
Router(config)# interface FortyGigE 0/0/0/46
Router(config-if)# bundle id 1 mode on
Router(config-if)# exit
Router(config)# interface FortyGigE0/0/0/47
Router(config-if)# bundle id 2 mode on

/* Configure the access list.*/
Router(config-if)# ipv4 access-list acl-aa
Router(config-if)# 1 permit icmp any host 10.1.1.1 echo-reply
Router(config-if)# 2 permit ipv4 any any nexthop1 ipv4 100.100.2.2
Router(config-if)# 10 permit tcp any eq bgp any
Router(config-if)# 20 permit tcp any any eq bgp

/* Configure BGP.*/
Router(config)# router bgp 100
Router(config-bgp)# bgp router-id 10.10.10.10
Router(config-bgp)# bgp log neighbor changes detail
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp)# maximum-paths ebgp 64
Router(config-bgp)# maximum-paths ibgp 64

/* Apply route policy. */
Router(config)# address-family vpnv4 unicast
Router(config-af)# vrf aa
Router(config-af)# rd auto
Router(config-af)# exitexit
Router(config)# address-family ipv4 unicast
Router(config)# exit
Router(config)# neighbor 10.1.1.1
Router(config-nbr)# remote-as 200
Router(config-nbr)# ebgp-multihop 4
Router(config-nbr)# exit
Router(config)# address-family ipv4 unicast
Router(config-af)#send-community-ebgp
Router(config-af)# route-policy pass-all in
Router(config-af)# route-policy pass-all out

/* Configure loopback interfaces. */
Router(config)# interface Loopback1001
Router(config-if)# ipv4 address 10.10.10.10 255.255.255.255
Router(config)# exit
Router(config)# interface Loopback1002
Router(config-if)# vrf aa
Router(config-if-vrf)# ipv4 address 10.10.10.10 255.255.255.255

/* Configure a class map. */
Router(config)# class-map type traffic match-all aa
Router(config-cmap)# match protocol gre
Router(config-cmap)# match destination-address ipv4 10.10.10.10 255.255.255.255
Router(config-cmap)# end-class-map

/* Configure a policy map. */
Router(config)# policy-map type pbr pmap1
Router(config-pmap)# class type traffic aa
Router(config-pmap-c)# decapsulate gre
Router(config-pmap-c)# class type traffic class-default

Implementing BGP
15

Implementing BGP
Black Box Monitoring

Router(config-pmap-c)# end-policy-map

/* Configure VRF policy. */
Router(config)# vrf-policy
Router(config-vrf)# vrf default address-family ipv4 policy type pbr input pmap1
Router(config)# interface tunnel-ip 1100
Router(config-if)#ipv4 unnumbered Loopback1001
Router(config-if)#tunnel mode gre ipv4 encap
Router(config-if)#tunnel source Loopback1001
Router(config-if)#tunnel destination 200.1.2.1
Router(config-if)#logging events link-status

Running Configuration

interface Bundle-Ether1.1
ipv4 address 10.1.1.1 255.255.255.240
local-proxy-arp
encapsulation dot1q 12
ipv4 access-group aa-acl ingress

interface Bundle-Ether2.1
vrf aa
ipv4 address 10.1.1.2 255.255.255.240
local-proxy-arp
encapsulation dot1q 12

interface FortyGigE0/0/0/46
bundle id 1 mode on

interface FortyGigE0/0/0/47
bundle id 2 mode on
ipv4 access-list aa-acl
1 permit icmp any host 10.1.1.1 echo-reply
2 permit ipv4 any any nexthop1 ipv4 100.100.2.2
10 permit tcp any eq bgp any
20 permit tcp any any eq bgp

router bgp 100
bgp router-id 10.10.10.10
bgp log neighbor changes detail
address-family ipv4 unicast
maximum-paths ebgp 64
maximum-paths ibgp 64
!
address-family vpnv4 unicast
!
vrf aa
rd auto
address-family ipv4 unicast
!
neighbor 10.1.1.1
remote-as 200
ebgp-multihop 4
address-family ipv4 unicast
send-community-ebgp
route-policy pass-all in
route-policy pass-all out

interface Loopback1001
ipv4 address 10.10.10.10 255.255.255.255
RP/0/RP0/CPU0:SF-DD#sh run int loopback 1002
interface Loopback1002

Implementing BGP
16

Implementing BGP
Black Box Monitoring

vrf aa
ipv4 address 10.10.10.10 255.255.255.255

class-map type traffic match-all aa
match protocol gre
match destination-address ipv4 10.10.10.10 255.255.255.255
end-class-map

policy-map type pbr pmap1
class type traffic aa
decapsulate gre
class type traffic class-default
end-policy-map
!
vrf-policy
vrf default address-family ipv4 policy type pbr input pmap1

interface tunnel-ip1100
ipv4 unnumbered Loopback1001
tunnel mode gre ipv4 encap
tunnel source Loopback1001
tunnel destination 200.1.2.1
logging events link-status

Verification

Verify the configuration of black box monitoring.
Router# show bgp vrf aa neighbors
BGP neighbor is 10.1.1.1, vrf aa
Remote AS 200, local AS 100, external link
Remote router ID 200.1.2.1
BGP state = Established, up for 00:12:35
NSR State: None
Last read 00:00:30, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:30, attempted 19, written 19
Second last write 00:01:30, attempted 19, written 19
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd Sep 29 05:50:49.983 last full not set pulse count 30
Last write pulse rcvd before reset 00:00:00

Connections established 1; dropped 0
Local host: 10.1.1.2, Local port: 52660, IF Handle: 0x00000000
Foreign host: 10.1.1.1, Foreign port: 179
Last reset 00:00:00
External BGP neighbor may be up to 4 hops away.

BGP Labeled Unicast Version 6

Overview of BGP Labeled Unicast

The BGP Labeled Unicast (LU) feature, also known as unified MPLS, provides MPLS transport between
Provider Edge (PE) routers that are separated by either many IGP boundaries (intra-AS) or bymany autonomous
systems (inter-AS). Using autonomous systems border routers (ASBRs), you can advertise loopback prefixes
of PEs and their MPLS label bindings: iBGP between area border routers (ABRs) and eBGP between
autonomous system border routers. You can use Multihop eBGP between the PEs if they are in different

Implementing BGP
17

Implementing BGP
BGP Labeled Unicast Version 6

autonomous systems (ASes) to exchange the VPN routes. You can run 6PE and other services between the
PEs that have BGP LU connectivity.

The BGP LU feature lowers the IGP labeled prefix scale and adjacency scale values. If the router is not being
configured with BGP LU, it is necessary to prevent lowering of scale values. Hence it is mandatory to configure
the hw-module command before you enable the BGP LU feature. Restart the router for the hw-module
command configuration to take effect.

The BGP Labeled Unicast Version 6 (BGP LU v6) feature extends the BGP Labeled Unicast (LU) functionality
over IPv6.

Restrictions

• 6VPE over BGP LU feature is not supported.

• Inter-AFI is not supported.

• BGP PIC core feature is not supported.

• Coexistence of 6PE with the same neighbor is not supported.

• Coexistence of BGP LU version 6 IPv6 unicast-address family is not supported.

• VPNV6 over BGP LU v6 is not supported.

• Link-local addresses are not supported.

• Rewrite cases, in which BGP LU is itself the transport, is not supported.

• Carrier Supporting Carrier Version 6 is not supported.

• Inter-AS Option-C with BGP LU Version 6 is not supported.

Configure BGP Labeled Unicast Version 6

Router(config)# hw-module profile cef bgplu enable
Router(config)# router bgp 1
Router(config-bgp)# bgp router-id 2001:DB8::1
Router(config-bgp)# address-family ipv6 unicast
Router(config-bgp-af)# redistribute connected route-policy set-lbl-idx
Router(config-bgp-af)# allocate-label all
Router(config-bgp-af)# exit
Router(config-bgp)# neighbor 2001:DB8::2
Router(config-bgp)# remote-as 1
Router(config-bgp)# update-source Loopback 0
Router(config-bgp)# address-family ipv6 labeled-unicast
Router(config-bgp)# route-policy pass-all in
Router(config-bgp)# route-policy pass-all out
Router(config-bgp)# commit

Reload the router for the hw-module profile cef bgplu enable command to take effect.Note

Running Configuration

hw-module profile cef bgplu enable
router bgp 1

Implementing BGP
18

Implementing BGP
BGP Labeled Unicast Version 6

bgp router-id 2001:DB8::1
address-family ipv6 unicast
redistribute connected route-policy set-lbl-idx
allocate-label all
exit
neighbor 2001:DB8::2
remote-as 1
update-source Loopback 0
address-family ipv6 labeled-unicast
route-policy pass-all in
route-policy pass-all out

Verification

Verify that the BGP LU has been configured.
Router# show hw-module profile cef
Thu Jun 17 00:06:32.974 UTC
--
Knob Status Applied Action
--
BGPLU Configured Yes None
LPTS ACL Unconfigured Yes None
Dark Bandwidth Unconfigured Yes None
MPLS Per Path Stats Unconfigured Yes None
Tunnel TTL Decrement Unconfigured Yes None
High-Scale No-LDP-Over-TE Unconfigured Yes None
IPv6 Hop-limit Punt Unconfigured Yes None
IP Redirect Punt Unconfigured Yes None

Verify the details of route paths along with the BGP and transport label information.
Router# show cef ipv6 192:168:9::80/128
Wed Jun 16 07:42:04.789 UTC
192:168:9::80/128, version 27, internal 0x5000001 0x40 (ptr 0x93f2d478) [1], 0x0 (0x93ef6cc0),
0xa08 (0x9460a8a8)
Updated Jun 16 07:36:00.189
Prefix Len 128, traffic index 0, precedence n/a, priority 4, encap-id 0x1001000000001
via 10:0:1::51/128, 3 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0x94720660 0x0]
recursion-via-/128
next hop 10:0:1::51/128 via 16061/0/21
next hop fe80::7af8:c2ff:fee4:20c0/128 Hu0/0/0/27 labels imposed {16061 25001}

/*
16061 - Transport Label
25001 – BGP Label
*/

Verify the BGP LU version 6 routes and BGP label information in BGP process.
Router# show bgp ipv6 unicast labels
Wed Jun 16 07:34:58.968 UTC
BGP router identifier 10.0.1.50, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0800000 RD version: 6
BGP main routing table version 6
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Implementing BGP
19

Implementing BGP
BGP Labeled Unicast Version 6

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Rcvd Label Local Label

*> 192:168::/64 192:168:1::70 nolabel 24006
*>i192:168:9::80/128 10:0:1::51 25001 nolabel

Processed 2 prefixes, 2 paths

BGP Default Limits
BGP imposes maximum limits on the number of neighbors that can be configured on the router and on the
maximum number of prefixes that are accepted from a peer for a given address family. This limitation safeguards
the router from resource depletion caused by misconfiguration, either locally or on the remote neighbor. The
following limits apply to BGP configurations:

• The default maximum number of peers that can be configured is 4000. The default can be changed using
the bgp maximum neighbor command. The limit range is 1 to 15000. Any attempt to configure
additional peers beyond the maximum limit or set the maximum limit to a number that is less than the
number of peers currently configured will fail.

• To prevent a peer from flooding BGP with advertisements, a limit is placed on the number of prefixes
that are accepted from a peer for each supported address family. The default limits can be overridden
through configuration of the maximum-prefix limit command for the peer for the appropriate address
family. The following default limits are used if the user does not configure the maximum number of
prefixes for the address family:

• IPv4 Unicast: 1048576

• IPv4 Labeled-unicast: 131072

• IPv4 Tunnel: 1048576

• IPv6 Unicast: 524288

• IPv6 Labeled-unicast: 131072

• IPv4 Multicast: 131072

• IPv6 Multicast: 131072

• IPv4 MVPN: 2097152

• VPNv4 Unicast: 2097152

• IPv4 MDT: 131072

• VPNv6 Unicast: 1048576

• L2VPN EVPN: 2097152

A cease notificationmessage is sent to the neighbor and the peering with the neighbor is terminated when
the number of prefixes received from the peer for a given address family exceeds the maximum limit
(either set by default or configured by the user) for that address family.

It is possible that the maximum number of prefixes for a neighbor for a given address family has been
configured after the peering with the neighbor has been established and a certain number of prefixes
have already been received from the neighbor for that address family. A cease notification message is
sent to the neighbor and peering with the neighbor is terminated immediately after the configuration if

Implementing BGP
20

Implementing BGP
BGP Default Limits

the configured maximum number of prefixes is fewer than the number of prefixes that have already been
received from the neighbor for the address family.

BGP Next Hop Tracking
BGP receives notifications from the Routing Information Base (RIB) when next-hop information changes
(event-driven notifications). BGP obtains next-hop information from the RIB to:

• Determine whether a next hop is reachable.

• Find the fully recursed IGP metric to the next hop (used in the best-path calculation).

• Validate the received next hops.

• Calculate the outgoing next hops.

• Verify the reachability and connectedness of neighbors.

BGP is notified when any of the following events occurs:

• Next hop becomes unreachable

• Next hop becomes reachable

• Fully recursed IGP metric to the next hop changes

• First hop IP address or first hop interface change

• Next hop becomes connected

• Next hop becomes unconnected

• Next hop becomes a local address

• Next hop becomes a nonlocal address

Reachability and recursed metric events trigger a best-path recalculation.Note

Event notifications from the RIB are classified as critical and noncritical. Notifications for critical and noncritical
events are sent in separate batches. However, a noncritical event is sent along with the critical events if the
noncritical event is pending and there is a request to read the critical events.

• Critical events are related to the reachability (reachable and unreachable), connectivity (connected and
unconnected), and locality (local and nonlocal) of the next hops. Notifications for these events are not
delayed.

• Noncritical events include only the IGPmetric changes. These events are sent at an interval of 3 seconds.
A metric change event is batched and sent 3 seconds after the last one was sent.

The next-hop trigger delay for critical and noncritical events can be configured to specify a minimum batching
interval for critical and noncritical events using the nexthop trigger-delay command. The trigger delay is
address family dependent.

Implementing BGP
21

Implementing BGP
BGP Next Hop Tracking

The BGP next-hop tracking feature allows you to specify that BGP routes are resolved using only next hops
whose routes have the following characteristics:

• To avoid the aggregate routes, the prefix length must be greater than a specified value.

• The source protocol must be from a selected list, ensuring that BGP routes are not used to resolve next
hops that could lead to oscillation.

This route policy filtering is possible because RIB identifies the source protocol of route that resolved a next
hop as well as the mask length associated with the route. The nexthop route-policy command is used to
specify the route-policy.

Next Hop as the IPv6 Address of Peering Interface
BGP can carry IPv6 prefixes over an IPv4 session. The next hop for the IPv6 prefixes can be set through a
nexthop policy. In the event that the policy is not configured, the nexthops are set as the IPv6 address of the
peering interface (IPv6 neighbor interface or IPv6 update source interface, if any one of the interfaces is
configured).

If the nexthop policy is not configured and neither the IPv6 neighbor interface nor the IPv6 update source
interface is configured, the next hop is the IPv4 mapped IPv6 address.

IPv6 Multiprotocol BGP Peering Using a Global Address

When all ECMP links are shutdown except any one of the interfaces, the next-hop is changed from global
address to link-local address which leads to traffic loss of all flows for a few seconds transient time.

You can then configure the set next-hop ipv6-global command under the BGP table-policy to avoid traffic
loss over an undisturbed path.

BGP installs global ipv6 address nexthop for multipath routes and install linklocal and ifhandle for single
path route to connect ebgp neighbor directly. You can configure the set next-hop ipv6-global command
under the BGP table-policy as follows to set the global ipv6 address nexthop:

route-policy RESILIENT-HASH-V6
if destination in (1000:1000::/32 le 128) or destination in (2000:1000::/32 le 128) then
set load-balance ecmp-consistent
set next-hop ipv6-global
pass

endif
pass

end-policy

Scoped IPv4 Table Walk
To determine which address family to process, a next-hop notification is received by first de-referencing the
gateway context associated with the next hop, then looking into the gateway context to determine which
address families are using the gateway context. The IPv4 unicast address families share the same gateway
context, because they are registered with the IPv4 unicast table in the RIB. As a result, the global IPv4 unicast
table processed when an IPv4 unicast next-hop notification is received from the RIB. A mask is maintained
in the next hop, indicating the next hop belongs to IPv4 unicast. This scoped table walk localizes the processing
in the appropriate address family table.

Implementing BGP
22

Implementing BGP
Next Hop as the IPv6 Address of Peering Interface

Reordered Address Family Processing
The software walks address family tables based on the numeric value of the address family. When a next-hop
notification batch is received, the order of address family processing is reordered to the following order:

• IPv4 tunnel

• VPNv4 unicast

• IPv4 labeled unicast

• IPv4 unicast

• IPv4 multicast

• IPv6 unicast

New Thread for Next-Hop Processing
The critical-event thread in the spkr process handles only next-hop, Bidirectional Forwarding Detection (BFD),
and fast-external-failover (FEF) notifications. This critical-event thread ensures that BGP convergence is not
adversely impacted by other events that may take a significant amount of time.

show, clear, and debug Commands
The show bgp nexthops command provides statistical information about next-hop notifications, the amount
of time spent in processing those notifications, and details about each next hop registered with the RIB. The
clear bgp nexthop performance-statistics command ensures that the cumulative statistics associated with
the processing part of the next-hop show command can be cleared to help in monitoring. The clear bgp
nexthop registration command performs an asynchronous registration of the next hop with the RIB.

The debug bgp nexthop command displays information on next-hop processing. The out keyword provides
debug information only about BGP registration of next hops with RIB. The in keyword displays debug
information about next-hop notifications received from RIB. The out keyword displays debug information
about next-hop notifications sent to the RIB.

BGP Configuration
BGP in Cisco IOS XR software follows a neighbor-based configuration model that requires that all
configurations for a particular neighbor be grouped in one place under the neighbor configuration. Peer groups
are not supported for either sharing configuration between neighbors or for sharing update messages. The
concept of peer group has been replaced by a set of configuration groups to be used as templates in BGP
configuration and automatically generated update groups to share update messages between neighbors.

Configuration Modes

BGP configurations are grouped into modes. The following sections show how to enter some of the BGP
configuration modes. From a mode, you can enter the ? command to display the commands available in that
mode.

Router Configuration Mode

The following example shows how to enter router configuration mode:

Router# configuration

Implementing BGP
23

Implementing BGP
Reordered Address Family Processing

Router(config)# router bgp 140
Router(config-bgp)#

Router Address Family Configuration Mode

The following example shows how to enter router address family configuration mode:

Router(config)# router bgp 112
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)#

Neighbor Configuration Mode

The following example shows how to enter neighbor configuration mode:

Router(config)# router bgp 140
Router(config-bgp)# neighbor 10.0.0.1
Router(config-bgp-nbr)#

VRF Configuration Mode

The following example shows how to enter VPN routing and forwarding (VRF) configuration mode:

Router(config)# router bgp 140
Router(config-bgp)# vrf vrf_A
Router(config-bgp-vrf)#

VRF Neighbor Configuration Mode

The following example shows how to enter VRF neighbor configuration mode:

Router(config)# router bgp 140
Router(config-bgp)# vrf vrf_A
Router(config-bgp-vrf)# neighbor 11.0.1.2
Router(config-bgp-vrf-nbr)#

VRF Neighbor Address Family Configuration Mode

The following example shows how to enter VRF neighbor address family configuration mode:

RP/0/(config)# router bgp 112
RP/0/(config-bgp)# vrf vrf_A
RP/0/(config-bgp-vrf)# neighbor 11.0.1.2
RP/0/(config-bgp-vrf-nbr)# address-family ipv4 unicast
RP/0/(config-bgp-vrf-nbr-af)#

VPNv6 Address Family Configuration Mode

The following example shows how to enter VPNv6 address family configuration mode:

Router(config)# router bgp 150
Router(config-bgp)# address-family vpnv6 unicast

Implementing BGP
24

Implementing BGP
Router Address Family Configuration Mode

Router(config-bgp-af)#

L2VPN Address Family Configuration Mode

The following example shows how to enter L2VPN address family configuration mode:

Router(config)# router bgp 100
Router(config-bgp)# address-family l2vpn vpls-vpws
Router(config-bgp-af)#

Neighbor Submode
Cisco IOS XR BGP uses a neighbor submode to make it possible to enter configurations without having to
prefix every configuration with the neighbor keyword and the neighbor address:

• Cisco IOS XR software has a submode available for neighbors in which it is not necessary for every
command to have a “neighbor x.x.x.x” prefix:

In Cisco IOS XR software, the configuration is as follows:

Router(config-bgp)# neighbor 192.23.1.2
Router(config-bgp-nbr)# remote-as 2002
Router(config-bgp-nbr)# address-family ipv4 unicast

• An address family configuration submode inside the neighbor configuration submode is available for
entering address family-specific neighbor configurations. In the Cisco IOSXR software, the configuration
is as follows:

Router(config-bgp)# neighbor 2002::2
Router(config-bgp-nbr)# remote-as 2023
Router(config-bgp-nbr)# address-family ipv6 unicast
Router(config-bgp-nbr-af)# next-hop-self
Router(config-bgp-nbr-af)# route-policy one in

Configuration Templates
The af-group, session-group, and neighbor-group configuration commands provide template support for
the neighbor configuration in Cisco IOS XR software.

The af-group command is used to group address family-specific neighbor commands within an IPv4, IPv6,
address family. Neighbors that have the same address family configuration are able to use the address family
group (af-group) name for their address family-specific configuration. A neighbor inherits the configuration
from an address family group by way of the use command. If a neighbor is configured to use an address family
group, the neighbor (by default) inherits the entire configuration from the address family group. However, a
neighbor does not inherit all of the configuration from the address family group if items are explicitly configured
for the neighbor. The address family group configuration is entered under the BGP router configuration mode.
The following example shows how to enter address family group configuration mode

Router(config)# router bgp 140
Router(config-bgp)# af-group afmcast1 address-family ipv4 unicast
Router(config-bgp-afgrp)#

Implementing BGP
25

Implementing BGP
L2VPN Address Family Configuration Mode

The session-group command allows you to create a session group from which neighbors can inherit address
family-independent configuration. A neighbor inherits the configuration from a session group by way of the
use command. If a neighbor is configured to use a session group, the neighbor (by default) inherits the entire
configuration of the session group. A neighbor does not inherit all of the configuration from a session group
if a configuration is done directly on that neighbor. The following example shows how to enter session group
configuration mode:

Router# router bgp 140
Router(config-bgp)# session-group session1
Router(config-bgp-sngrp)#

The neighbor-group command helps you apply the same configuration to one or more neighbors. Neighbor
groups can include session groups and address family groups and can comprise the complete configuration
for a neighbor. After a neighbor group is configured, a neighbor can inherit the configuration of the group
using the use command. If a neighbor is configured to use a neighbor group, the neighbor inherits the entire
BGP configuration of the neighbor group.

The following example shows how to enter neighbor group configuration mode:

Router(config)# router bgp 123
Router(config-bgp)# neighbor-group nbrgroup1
Router(config-bgp-nbrgrp)#

The following example shows how to enter neighbor group address family configuration mode:

Router(config)# router bgp 140
Router(config-bgp)# neighbor-group nbrgroup1
Router(config-bgp-nbrgrp)# address-family ipv4 unicast
Router(config-bgp-nbrgrp-af)#

• However, a neighbor does not inherit all of the configuration from the neighbor group if items are
explicitly configured for the neighbor. In addition, some part of the configuration of the neighbor group
could be hidden if a session group or address family group was also being used.

Configuration grouping has the following effects in Cisco IOS XR software:

• Commands entered at the session group level define address family-independent commands (the same
commands as in the neighbor submode).

• Commands entered at the address family group level define address family-dependent commands for a
specified address family (the same commands as in the neighbor-address family configuration submode).

• Commands entered at the neighbor group level define address family-independent commands and address
family-dependent commands for each address family (the same as all available neighbor commands),
and define the use command for the address family group and session group commands.

Template Inheritance Rules
In Cisco IOS XR software, BGP neighbors or groups inherit configuration from other configuration groups.

For address family-independent configurations:

• Neighbors can inherit from session groups and neighbor groups.

Implementing BGP
26

Implementing BGP
Template Inheritance Rules

• Neighbor groups can inherit from session groups and other neighbor groups.

• Session groups can inherit from other session groups.

• If a neighbor uses a session group and a neighbor group, the configurations in the session group are
preferred over the global address family configurations in the neighbor group.

For address family-dependent configurations:

• Address family groups can inherit from other address family groups.

• Neighbor groups can inherit from address family groups and other neighbor groups.

• Neighbors can inherit from address family groups and neighbor groups.

Configuration group inheritance rules are numbered in order of precedence as follows:

1. If the item is configured directly on the neighbor, that value is used. In the example that follows, the
advertisement interval is configured both on the neighbor group and neighbor configuration and the
advertisement interval being used is from the neighbor configuration:

Router(config)# router bgp 140
Router(config-bgp)# neighbor-group AS_1
Router(config-bgp-nbrgrp)# advertisement-interval 15
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor 10.1.1.1
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# use neighbor-group AS_1
Router(config-bgp-nbr)# advertisement-interval 20

The following output from the show bgp neighbors command shows that the advertisement interval used
is 20 seconds:

Router# show bgp neighbors 10.1.1.1

BGP neighbor is 10.1.1.1, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 20 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:00:14, due to BGP neighbor initialized
External BGP neighbor not directly connected.

2. Otherwise, if an item is configured to be inherited from a session-group or neighbor-group and on the
neighbor directly, then the configuration on the neighbor is used. If a neighbor is configured to be inherited

Implementing BGP
27

Implementing BGP
Template Inheritance Rules

from session-group or af-group, but no directly configured value, then the value in the session-group or
af-group is used. In the example that follows, the advertisement interval is configured on a neighbor group
and a session group and the advertisement interval value being used is from the session group:

Router(config)# router bgp 140
Router(config-bgp)# session-group AS_2
Router(config-bgp-sngrp)# advertisement-interval 15
Router(config-bgp-sngrp)# exit
Router(config-bgp)# neighbor-group AS_1
Router(config-bgp-nbrgrp)# advertisement-interval 20
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor 192.168.0.1
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# use session-group AS_2
Router(config-bgp-nbr)# use neighbor-group AS_1

The following output from the show bgp neighbors command shows that the advertisement interval used
is 15 seconds:

Router# show bgp neighbors 192.168.0.1

BGP neighbor is 192.168.0.1, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 15 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:03:23, due to BGP neighbor initialized
External BGP neighbor not directly connected.

3. Otherwise, if the neighbor uses a neighbor group and does not use a session group or address family group,
the configuration value can be obtained from the neighbor group either directly or through inheritance.
In the example that follows, the advertisement interval from the neighbor group is used because it is not
configured directly on the neighbor and no session group is used:

Router(config)# router bgp 150
Router(config-bgp)# session-group AS_2
Router(config-bgp-sngrp)# advertisement-interval 20
Router(config-bgp-sngrp)# exit
Router(config-bgp)# neighbor-group AS_1
Router(config-bgp-nbrgrp)# advertisement-interval 15
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor 192.168.1.1
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# use neighbor-group AS_1

Implementing BGP
28

Implementing BGP
Template Inheritance Rules

The following output from the show bgp neighbors command shows that the advertisement interval used
is 15 seconds:

Router# show bgp neighbors 192.168.1.1

BGP neighbor is 192.168.2.2, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 15 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
Inbound path policy configured
Policy for incoming advertisements is POLICY_1
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:01:14, due to BGP neighbor initialized
External BGP neighbor not directly connected.

To illustrate the same rule, the following example shows how to set the advertisement interval to 15 (from
the session group) and 25 (from the neighbor group). The advertisement interval set in the session group
overrides the one set in the neighbor group. The inbound policy is set to POLICY_1 from the neighbor
group.

Routerconfig)# router bgp 140
Router(config-bgp)# session-group ADV
Router(config-bgp-sngrp)# advertisement-interval 15
Router(config-bgp-sngrp)# exit
Router(config-bgp)# neighbor-group ADV_2
Router(config-bgp-nbrgrp)# advertisement-interval 25
Router(config-bgp-nbrgrp)# address-family ipv4 unicast
Router(config-bgp-nbrgrp-af)# route-policy POLICY_1 in
Router(config-bgp-nbrgrp-af)# exit
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# exit
Router(config-bgp)# neighbor 192.168.2.2
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# use session-group ADV
Router(config-bgp-nbr)# use neighbor-group ADV_2

The following output from the show bgp neighbors command shows that the advertisement interval used
is 15 seconds:

Router# show bgp neighbors 192.168.2.2

BGP neighbor is 192.168.2.2, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue

Implementing BGP
29

Implementing BGP
Template Inheritance Rules

Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 15 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:02:03, due to BGP neighbor initialized
External BGP neighbor not directly connected.

4. Otherwise, the default value is used. In the example that follows, neighbor 10.0.101.5 has the minimum
time between advertisement runs set to 30 seconds (default) because the neighbor is not configured to use
the neighbor configuration or the neighbor group configuration:

Router(config)# router bgp 140
Router(config-bgp)# neighbor-group AS_1
Router(config-bgp-nbrgrp)# remote-as 1
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor-group adv_15
Router(config-bgp-nbrgrp)# remote-as 10
Router(config-bgp-nbrgrp)# advertisement-interval 15
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor 10.0.101.5
Router(config-bgp-nbr)# use neighbor-group AS_1
Router(config-bgp-nbr)# exit
Router(config-bgp)# neighbor 10.0.101.10
Router(config-bgp-nbr)# use neighbor-group adv_15

The following output from the show bgp neighbors command shows that the advertisement interval used
is 30 seconds:

Router# show bgp neighbors 10.0.101.5

BGP neighbor is 10.0.101.5, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 30 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.2
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:00:25, due to BGP neighbor initialized
External BGP neighbor not directly connected.

Implementing BGP
30

Implementing BGP
Template Inheritance Rules

The inheritance rules used when groups are inheriting configuration from other groups are the same as the
rules given for neighbors inheriting from groups.

Viewing Inherited Configurations
You can use the following show commands to view BGP inherited configurations:

show bgp neighbors

Use the show bgp neighbors command to display information about the BGP configuration for neighbors.

• Use the configuration keyword to display the effective configuration for the neighbor, including any
settings that have been inherited from session groups, neighbor groups, or address family groups used
by this neighbor.

• Use the inheritance keyword to display the session groups, neighbor groups, and address family groups
from which this neighbor is capable of inheriting configuration.

The show bgp neighbors command examples that follow are based on this sample configuration:

Router(config)# router bgp 142
Router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
Router(config-bgp-afgrp)# next-hop-self
Router(config-bgp-afgrp)# route-policy POLICY_1 in
Router(config-bgp-afgrp)# exit
Router(config-bgp)# session-group GROUP_2
Router(config-bgp-sngrp)# advertisement-interval 15
Router(config-bgp-sngrp)# exit
Router(config-bgp)# neighbor-group GROUP_1
Router(config-bgp-nbrgrp)# use session-group GROUP_2
Router(config-bgp-nbrgrp)# ebgp-multihop 3
Router(config-bgp-nbrgrp)# address-family ipv4 unicast
Router(config-bgp-nbrgrp-af)# weight 100
Router(config-bgp-nbrgrp-af)# send-community-ebgp
Router(config-bgp-nbrgrp-af)# exit
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor 192.168.0.1
Router(config-bgp-nbr)# remote-as 2
Router(config-bgp-nbr)# use neighbor-group GROUP_1
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# use af-group GROUP_3
Router(config-bgp-nbr-af)# weight 200

show bgp neighbors

Use the show bgp neighbors command to display information about the BGP configuration for neighbors.

• Use the configuration keyword to display the effective configuration for the neighbor, including any
settings that have been inherited from session groups, neighbor groups, or address family groups used
by this neighbor.

• Use the inheritance keyword to display the session groups, neighbor groups, and address family groups
from which this neighbor is capable of inheriting configuration.

The show bgp neighbors command examples that follow are based on this sample configuration:

Router(config)# router bgp 142

Implementing BGP
31

Implementing BGP
Viewing Inherited Configurations

Router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
Router(config-bgp-afgrp)# next-hop-self
Router(config-bgp-afgrp)# route-policy POLICY_1 in
Router(config-bgp-afgrp)# exit
Router(config-bgp)# session-group GROUP_2
Router(config-bgp-sngrp)# advertisement-interval 15
Router(config-bgp-sngrp)# exit
Router(config-bgp)# neighbor-group GROUP_1
Router(config-bgp-nbrgrp)# use session-group GROUP_2
Router(config-bgp-nbrgrp)# ebgp-multihop 3
Router(config-bgp-nbrgrp)# address-family ipv4 unicast
Router(config-bgp-nbrgrp-af)# weight 100
Router(config-bgp-nbrgrp-af)# send-community-ebgp
Router(config-bgp-nbrgrp-af)# exit
Router(config-bgp-nbrgrp)# exit
Router(config-bgp)# neighbor 192.168.0.1
Router(config-bgp-nbr)# remote-as 2
Router(config-bgp-nbr)# use neighbor-group GROUP_1
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# use af-group GROUP_3
Router(config-bgp-nbr-af)# weight 200

show bgp af-group

Use the show bgp af-group command to display address family groups:

• Use the configuration keyword to display the effective configuration for the address family group,
including any settings that have been inherited from address family groups used by this address family
group.

• Use the inheritance keyword to display the address family groups from which this address family group
is capable of inheriting configuration.

• Use the users keyword to display the neighbors, neighbor groups, and address family groups that inherit
configuration from this address family group.

The show bgp af-group sample commands that follow are based on this sample configuration:

Router(config)# router bgp 140
Router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
Router(config-bgp-afgrp)# remove-private-as
Router(config-bgp-afgrp)# route-policy POLICY_1 in
Router(config-bgp-afgrp)# exit
Router(config-bgp)# af-group GROUP_1 address-family ipv4 unicast
Router(config-bgp-afgrp)# use af-group GROUP_2
Router(config-bgp-afgrp)# maximum-prefix 2500 75 warning-only
Router(config-bgp-afgrp)# default-originate
Router(config-bgp-afgrp)# exit
Router(config-bgp)# af-group GROUP_2 address-family ipv4 unicast
Router(config-bgp-afgrp)# use af-group GROUP_3
Router(config-bgp-afgrp)# send-community-ebgp
Router(config-bgp-afgrp)# send-extended-community-ebgp
Router(config-bgp-afgrp)# capability orf prefix both

The following example displays sample output from the show bgp af-group command using the
configuration keyword. This example shows from where each configuration item was inherited. The
default-originate command was configured directly on this address family group (indicated by []). The

Implementing BGP
32

Implementing BGP
show bgp af-group

remove-private-as command was inherited from address family group GROUP_2, which in turn inherited
from address family group GROUP_3:

Router# show bgp af-group GROUP_1 configuration

af-group GROUP_1 address-family ipv4 unicast
capability orf prefix-list both [a:GROUP_2]
default-originate []
maximum-prefix 2500 75 warning-only []
route-policy POLICY_1 in [a:GROUP_2 a:GROUP_3]
remove-private-AS [a:GROUP_2 a:GROUP_3]
send-community-ebgp [a:GROUP_2]
send-extended-community-ebgp [a:GROUP_2]

The following example displays sample output from the show bgp af-group command using the users
keyword:

Router# show bgp af-group GROUP_2 users

IPv4 Unicast: a:GROUP_1

The following example displays sample output from the show bgp af-group command using the inheritance
keyword. This shows that the specified address family group GROUP_1 directly uses the GROUP_2 address
family group, which in turn uses the GROUP_3 address family group:

Router# show bgp af-group GROUP_1 inheritance

IPv4 Unicast: a:GROUP_2 a:GROUP_3

show bgp session-group

Use the show bgp session-group command to display session groups:

• Use the configuration keyword to display the effective configuration for the session group, including
any settings that have been inherited from session groups used by this session group.

• Use the inheritance keyword to display the session groups from which this session group is capable of
inheriting configuration.

• Use the users keyword to display the session groups, neighbor groups, and neighbors that inherit
configuration from this session group.

The output from the show bgp session-group command is based on the following session group configuration:

Router(config)# router bgp 113
Router(config-bgp)# session-group GROUP_1
Router(config-bgp-sngrp)# use session-group GROUP_2
Router(config-bgp-sngrp)# update-source Loopback 0
Router(config-bgp-sngrp)# exit
Router(config-bgp)# session-group GROUP_2
Router(config-bgp-sngrp)# use session-group GROUP_3
Router(config-bgp-sngrp)# ebgp-multihop 2
Router(config-bgp-sngrp)# exit
Router(config-bgp)# session-group GROUP_3

Implementing BGP
33

Implementing BGP
show bgp session-group

Router(config-bgp-sngrp)# dmz-link-bandwidth

The following is sample output from the show bgp session-group command with the configuration keyword
in session group configuration mode:

Router# show bgp session-group GROUP_1 configuration

session-group GROUP_1
ebgp-multihop 2 [s:GROUP_2]
update-source Loopback0 []
dmz-link-bandwidth [s:GROUP_2 s:GROUP_3]

The following is sample output from the show bgp session-group command with the inheritance keyword
showing that the GROUP_1 session group inherits session parameters from the GROUP_3 and GROUP_2
session groups:

Router# show bgp session-group GROUP_1 inheritance

Session: s:GROUP_2 s:GROUP_3

The following is sample output from the show bgp session-group command with the users keyword showing
that both the GROUP_1 andGROUP_2 session groups inherit session parameters from the GROUP_3 session
group:

Router# show bgp session-group GROUP_3 users

Session: s:GROUP_1 s:GROUP_2

show bgp session-group

Use the show bgp session-group command to display session groups:

• Use the configuration keyword to display the effective configuration for the session group, including
any settings that have been inherited from session groups used by this session group.

• Use the inheritance keyword to display the session groups from which this session group is capable of
inheriting configuration.

• Use the users keyword to display the session groups, neighbor groups, and neighbors that inherit
configuration from this session group.

The output from the show bgp session-group command is based on the following session group configuration:

Router(config)# router bgp 113
Router(config-bgp)# session-group GROUP_1
Router(config-bgp-sngrp)# use session-group GROUP_2
Router(config-bgp-sngrp)# update-source Loopback 0
Router(config-bgp-sngrp)# exit
Router(config-bgp)# session-group GROUP_2
Router(config-bgp-sngrp)# use session-group GROUP_3
Router(config-bgp-sngrp)# ebgp-multihop 2
Router(config-bgp-sngrp)# exit
Router(config-bgp)# session-group GROUP_3
Router(config-bgp-sngrp)# dmz-link-bandwidth

Implementing BGP
34

Implementing BGP
show bgp session-group

The following is sample output from the show bgp session-group command with the configuration keyword
in session group configuration mode:

Router# show bgp session-group GROUP_1 configuration

session-group GROUP_1
ebgp-multihop 2 [s:GROUP_2]
update-source Loopback0 []
dmz-link-bandwidth [s:GROUP_2 s:GROUP_3]

The following is sample output from the show bgp session-group command with the inheritance keyword
showing that the GROUP_1 session group inherits session parameters from the GROUP_3 and GROUP_2
session groups:

Router# show bgp session-group GROUP_1 inheritance

Session: s:GROUP_2 s:GROUP_3

The following is sample output from the show bgp session-group command with the users keyword showing
that both the GROUP_1 andGROUP_2 session groups inherit session parameters from the GROUP_3 session
group:

Router# show bgp session-group GROUP_3 users

Session: s:GROUP_1 s:GROUP_2

show bgp neighbor-group

Use the show bgp neighbor-group command to display neighbor groups:

• Use the configuration keyword to display the effective configuration for the neighbor group, including
any settings that have been inherited from neighbor groups used by this neighbor group.

• Use the inheritance keyword to display the address family groups, session groups, and neighbor groups
from which this neighbor group is capable of inheriting configuration.

• Use the users keyword to display the neighbors and neighbor groups that inherit configuration from this
neighbor group.

The examples are based on the following group configuration:

Router(config)# router bgp 140
Router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
Router(config-bgp-afgrp)# remove-private-as
Router(config-bgp-afgrp)# soft-reconfiguration inbound
Router(config-bgp-afgrp)# exit
Router(config-bgp)# af-group GROUP_2 address-family ipv4 unicast
Router(config-bgp-afgrp)# use af-group GROUP_3
Router(config-bgp-afgrp)# send-community-ebgp
Router(config-bgp-afgrp)# send-extended-community-ebgp
Router(config-bgp-afgrp)# capability orf prefix both
Router(config-bgp-afgrp)# exit
Router(config-bgp)# session-group GROUP_3
Router(config-bgp-sngrp)# timers 30 90
Router(config-bgp-sngrp)# exit

Implementing BGP
35

Implementing BGP
show bgp neighbor-group

Router(config-bgp)# neighbor-group GROUP_1
Router(config-bgp-nbrgrp)# remote-as 1982
Router(config-bgp-nbrgrp)# use neighbor-group GROUP_2
Router(config-bgp-nbrgrp)# address-family ipv4 unicast
Router(config-bgp-nbrgrp-af)# exit
Router(config-nbrgrp)# exit
Router(config-bgp)# neighbor-group GROUP_2
Router(config-bgp-nbrgrp)# use session-group GROUP_3
Router(config-bgp-nbrgrp)# address-family ipv4 unicast
Routerconfig-bgp-nbrgrp-af)# use af-group GROUP_2
Router(config-bgp-nbrgrp-af)# weight 100

The following is sample output from the show bgp neighbor-group command with the configuration
keyword. The configuration setting source is shown to the right of each command. In the output shown
previously, the remote autonomous system is configured directly on neighbor group GROUP_1, and the send
community setting is inherited from neighbor group GROUP_2, which in turn inherits the setting from address
family group GROUP_3:

Router# show bgp neighbor-group GROUP_1 configuration

neighbor-group GROUP_1
remote-as 1982 []
timers 30 90 [n:GROUP_2 s:GROUP_3]
address-family ipv4 unicast []
capability orf prefix-list both [n:GROUP_2 a:GROUP_2]
remove-private-AS [n:GROUP_2 a:GROUP_2 a:GROUP_3]
send-community-ebgp [n:GROUP_2 a:GROUP_2]
send-extended-community-ebgp [n:GROUP_2 a:GROUP_2]
soft-reconfiguration inbound [n:GROUP_2 a:GROUP_2 a:GROUP_3]
weight 100 [n:GROUP_2]

The following is sample output from the show bgp neighbor-group commandwith the inheritance keyword.
This output shows that the specified neighbor group GROUP_1 inherits session (address family-independent)
configuration parameters from neighbor group GROUP_2. Neighbor group GROUP_2 inherits its session
parameters from session group GROUP_3. It also shows that the GROUP_1 neighbor group inherits IPv4
unicast configuration parameters from the GROUP_2 neighbor group, which in turn inherits them from the
GROUP_2 address family group, which itself inherits them from the GROUP_3 address family group:

Router# show bgp neighbor-group GROUP_1 inheritance

Session: n:GROUP-2 s:GROUP_3
IPv4 Unicast: n:GROUP_2 a:GROUP_2 a:GROUP_3

The following is sample output from the show bgp neighbor-group command with the users keyword. This
output shows that the GROUP_1 neighbor group inherits session (address family-independent) configuration
parameters from the GROUP_2 neighbor group. The GROUP_1 neighbor group also inherits IPv4 unicast
configuration parameters from the GROUP_2 neighbor group:

Router# show bgp neighbor-group GROUP_2 users

Session: n:GROUP_1
IPv4 Unicast: n:GROUP_1

Implementing BGP
36

Implementing BGP
show bgp neighbor-group

No Default Address Family
BGP does not support the concept of a default address family. An address family must be explicitly configured
under the BGP router configuration for the address family to be activated in BGP. Similarly, an address family
must be explicitly configured under a neighbor for the BGP session to be activated under that address family.
It is not required to have any address family configured under the BGP router configuration level for a neighbor
to be configured. However, it is a requirement to have an address family configured at the BGP router
configuration level for the address family to be configured under a neighbor.

Neighbor Address Family Combinations
For default VRF, both IPv4 Unicast and IPv4 Labeled-unicast address families are supported under the same
neighbor.

For non-default VRF, both IPv4 Unicast and IPv4 Labeled-unicast address families are not supported under
the same neighbor. However, the configuration is accepted on the router with the following error:
bgp[1051]: %ROUTING-BGP-4-INCOMPATIBLE_AFI : IPv4 Unicast and IPv4 Labeled-unicast Address
families together are not supported under the same neighbor.

When one BGP session has both IPv4 unicast and IPv4 labeled-unicast AFI/SAF, then the routing behavior
is nondeterministic. Therefore, the prefixes may not be correctly advertised. Incorrect prefix advertisement
results in reachability issues. In order to avoid such reachability issues, you must explicitly configure a route
policy to advertise prefixes either through IPv4 unicast or through IPv4 labeled-unicast address families.

Routing Policy Enforcement
External BGP (eBGP) neighbors must have an inbound and outbound policy configured. If no policy is
configured, no routes are accepted from the neighbor, nor are any routes advertised to it. This added security
measure ensures that routes cannot accidentally be accepted or advertised in the case of a configuration
omission error.

This enforcement affects only eBGP neighbors (neighbors in a different autonomous system than this router).
For internal BGP (iBGP) neighbors (neighbors in the same autonomous system), all routes are accepted or
advertised if there is no policy.

Note

Table Policy
The table policy feature in BGP allows you to configure traffic index values on routes as they are installed in
the global routing table. This feature is enabled using the table-policy command and supports the BGP policy
accounting feature.

BGP policy accounting uses traffic indices that are set on BGP routes to track various counters.

Table policy also provides the ability to drop routes from the RIB based on match criteria. This feature can
be useful in certain applications and should be used with caution as it can easily create a routing ‘black hole’
where BGP advertises routes to neighbors that BGP does not install in its global routing table and forwarding
table.

Implementing BGP
37

Implementing BGP
No Default Address Family

BGP Update Group
When a change to the configuration occurs, the router automatically recalculates update group memberships
and applies the changes.

For the best optimization of BGP update group generation, we recommend that the network operator keeps
outbound routing policy the same for neighbors that have similar outbound policies. This feature contains
commands for monitoring BGP update groups.

BGP Update Generation and Update Groups
The BGP Update Groups feature separates BGP update generation from neighbor configuration. The BGP
Update Groups feature introduces an algorithm that dynamically calculates BGP update group membership
based on outbound routing policies. This feature does not require any configuration by the network operator.
Update group-based message generation occurs automatically and independently.

BGP Cost Community
The BGP cost community is a nontransitive extended community attribute that is passed to internal BGP
(iBGP) and confederation peers but not to external BGP (eBGP) peers. The cost community feature allows
you to customize the local route preference and influence the best-path selection process by assigning cost
values to specific routes. The extended community format defines generic points of insertion (POI) that
influence the best-path decision at different points in the best-path algorithm.

How BGP Cost Community Influences the Best Path Selection Process
The cost community attribute influences the BGP best-path selection process at the point of insertion (POI).
By default, the POI follows the Interior Gateway Protocol (IGP) metric comparison. When BGP receives
multiple paths to the same destination, it uses the best-path selection process to determine which path is the
best path. BGP automatically makes the decision and installs the best path in the routing table. The POI allows
you to assign a preference to a specific path when multiple equal cost paths are available. If the POI is not
valid for local best-path selection, the cost community attribute is silently ignored.

Cost communities are sorted first by POI then by community ID. Multiple paths can be configured with the
cost community attribute for the same POI. The path with the lowest cost community ID is considered first.
In other words, all cost community paths for a specific POI are considered, starting with the one with the
lowest cost community. Paths that do not contain the cost community cost (for the POI and community ID
being evaluated) are assigned the default community cost value (2147483647). If the cost community values
are equal, then cost community comparison proceeds to the next lowest community ID for this POI.

To select the path with the lower cost community, simultaneously walk through the cost communities of both
paths. This is done by maintaining two pointers to the cost community chain, one for each path, and advancing
both pointers to the next applicable cost community at each step of the walk for the given POI, in order of
community ID, and stop when a best path is chosen or the comparison is a tie. At each step of the walk, the
following checks are done:

If neither pointer refers to a cost community,
Declare a tie;

Elseif a cost community is found for one path but not for the other,
Choose the path with cost community as best path;

Elseif the Community ID from one path is less than the other,
Choose the path with the lesser Community ID as best path;

Elseif the Cost from one path is less than the other,

Implementing BGP
38

Implementing BGP
BGP Update Group

Choose the path with the lesser Cost as best path;
Else Continue.

Paths that are not configured with the cost community attribute are considered by the best-path selection
process to have the default cost value (half of the maximum value [4294967295] or 2147483647).

Note

Applying the cost community attribute at the POI allows you to assign a value to a path originated or learned
by a peer in any part of the local autonomous system or confederation. The cost community can be used as a
“tie breaker” during the best-path selection process.Multiple instances of the cost community can be configured
for separate equal cost paths within the same autonomous system or confederation. For example, a lower cost
community value can be applied to a specific exit path in a network with multiple equal cost exit points, and
the specific exit path is preferred by the BGP best-path selection process. .

The cost community comparison in BGP is enabled by default. Use the bgp bestpath cost-community ignore
command to disable the comparison.

Note

Cost Community Support for Aggregate Routes and Multipaths
The BGP cost community feature supports aggregate routes and multipaths. The cost community attribute
can be applied to either type of route. The cost community attribute is passed to the aggregate or multipath
route from component routes that carry the cost community attribute. Only unique IDs are passed, and only
the highest cost of any individual component route is applied to the aggregate for each ID. If multiple component
routes contain the same ID, the highest configured cost is applied to the route. For example, the following
two component routes are configured with the cost community attribute using an inbound route policy:

• 10.0.0.1

• POI=IGP

• cost community ID=1

• cost number=100

• 192.168.0.1

• POI=IGP

• cost community ID=1

• cost number=200

If these component routes are aggregated or configured as a multipath, the cost value 200 is advertised,
because it has the highest cost.

If one or more component routes do not carry the cost community attribute or the component routes are
configured with different IDs, then the default value (2147483647) is advertised for the aggregate or
multipath route. For example, the following three component routes are configured with the cost
community attribute using an inbound route policy. However, the component routes are configured with
two different IDs.

• 10.0.0.1

Implementing BGP
39

Implementing BGP
Cost Community Support for Aggregate Routes and Multipaths

POI=IGP•

• cost community ID=1

• cost number=100

• 172.16.0.1

• POI=IGP

• cost community ID=2

• cost number=100

• 192.168.0.1

• POI=IGP

• cost community ID=1

• cost number=200

The single advertised path includes the aggregate cost communities as follows:

{POI=IGP, ID=1, Cost=2147483647} {POI-IGP, ID=2, Cost=2147483647}

Influencing Route Preference in a Multiexit IGP Network
This figure shows an IGP network with two autonomous system boundary routers (ASBRs) on the edge. Each
ASBR has an equal cost path to network 10.8/16.

Figure 5: Multiexit Point IGP Network

Both paths are considered to be equal by BGP. If multipath loadsharing is configured, both paths to the routing
table are installed and are used to balance the load of traffic. If multipath load balancing is not configured,
the BGP selects the path that was learned first as the best path and installs this path to the routing table. This
behavior may not be desirable under some conditions. For example, the path is learned from ISP1 PE2 first,
but the link between ISP1 PE2 and ASBR1 is a low-speed link.

The configuration of the cost community attribute can be used to influence the BGP best-path selection process
by applying a lower-cost community value to the path learned by ASBR2. For example, the following
configuration is applied to ASBR2:

Implementing BGP
40

Implementing BGP
Influencing Route Preference in a Multiexit IGP Network

Router(config)# route-policy ISP2_PE1
Router(config-rpl)# set extcommunity cost (1:1)

The preceding route policy applies a cost community number of 1 to the 10.8.0.0 route. By default, the path
learned from ASBR1 is assigned a cost community number of 2147483647. Because the path learned from
ASBR2 has a lower-cost community number, the path is preferred.

Adding Routes to the Routing Information Base
If a nonsourced path becomes the best path after the best-path calculation, BGP adds the route to the Routing
Information Base (RIB) and passes the cost communities along with the other IGP extended communities.

When a route with paths is added to the RIB by a protocol, RIB checks the current best paths for the route
and the added paths for cost extended communities. If cost-extended communities are found, the RIB compares
the set of cost communities. If the comparison does not result in a tie, the appropriate best path is chosen. If
the comparison results in a tie, the RIB proceeds with the remaining steps of the best-path algorithm. If a cost
community is not present in either the current best paths or added paths, then the RIB continues with the
remaining steps of the best-path algorithm.

BGP DMZ Aggregate Bandwidth
Table 3: Feature History Table

Feature DescriptionRelease InformationFeature Name

The demilitarized zone (DMZ) link-bandwidth extended
community allows BGP to send traffic over multiple
internal BGP (iBGP) learned paths. The traffic that is sent
is proportional to the bandwidth of the links that are used
to exit the autonomous system. By default, iBGP
propagates DMZ link-bandwidth community. This feature
minimizes the risk of exposure of the community
parameters, which are used to control the routing policy in
the service provider network, to networks zones where
they are not recognized or not required.

Release 7.3.2Removal of
Link-Bandwidth
Extended
Community to
iBGP Peers

BGP supports aggregating dmz-link bandwidth values of external BGP (eBGP) multipaths when advertising
the route to interior BGP (iBGP) peer.

There is no explicit command to aggregate bandwidth. The bandwidth is aggregated if following conditions
are met:

• The network has multipaths and all the multipaths have link-bandwidth values.

• The next-hop attribute set to next-hop-self. The next-hop attribute for all routes advertised to the specified
neighbor to the address of the local router.

• There is no out-bound policy configured that might change the dmz-link bandwidth value.

• If the dmz-link bandwidth value is not known for any one of the multipaths (eBGP or iBGP), the dmz-link
value for all multipaths including the best path is not downloaded to routing information base (RIB).

• The dmz-link bandwidth value of iBGP multipath is not considered during aggregation.

Implementing BGP
41

Implementing BGP
Adding Routes to the Routing Information Base

• The route that is advertised with aggregate value can be best path or add-path.

• Add-path does not qualify for DMZ link bandwidth aggregation as next hop is preserved. Configuring
next-hop-self for add-path is not supported.

• For VPNv4 and VPNv6 afi, if dmz link-bandwidth value is configured using outbound route-policy,
specify the route table or use the additive keyword. Else, this will lead to routes not imported on the
receiving end of the peer.

extcommunity-set bandwidth dmz_ext
1:8000

end-set
!
route-policy dmz_rp_vpn
set extcommunity bandwidth dmz_ext additive <<< 'additive' keyword.
pass

end-policy

Removal of Link-Bandwidth Extended Community to iBGP Peers

The demilitarized zone (DMZ) link-bandwidth extended community allows BGP to send traffic over multiple
internal BGP (iBGP) learned paths. The traffic that is sent is proportional to the bandwidth of the links that
are used to exit the autonomous system. By default, iBGP propagates DMZ link-bandwidth community. The
Removal of Link-Bandwidth Extended Community to iBGP Peers feature provides the flexibility to remove
the DMZ link-bandwidth community tominimize the risk of exposure of the community parameters to networks
zones where they are not recognized or unnecessary.

Configuration Example

Perform the following steps to allow users to be able to configure route-policy to remove the extended
communities.

/* Delete all the extended communities. */
Router(config)# route-policy dmz_del_all
Router(config-rpl)# delete extcommunity bandwidth all
Router(config-rpl)# pass
Router(config-rpl)# end-policy

/* Delete only the extended communities that match an extended community mentioned in the
list. */
Router(config)# route-policy dmz_CE1_del_non_match
Router(config-rpl)# if destination in (10.9.9.9/32) then
Router(config-rpl-if)# delete extcommunity bandwidth in (10:7000)
Router(config-rpl-if)# endif
Router(config-rpl)# pass
Router(config-rpl)# end-policy

/* Delete all the extended communities. */
Router(config)# route-policy dmz_del_param2($a,$b)
Router(config-rpl)# if destination in (10.9.9.9/32) then
Router(config-rpl-if)# delete extcommunity bandwidth in ($a:$b)
Router(config-rpl-if)# endif
Router(config-rpl)# pass
Router(config-rpl)# end-policy

Verification

Verify the configuration that allows the user to remove a particular extended community.

Implementing BGP
42

Implementing BGP
BGP DMZ Aggregate Bandwidth

Router# show bgp 10.9.9.9/32
Fri Aug 27 13:15:05.833 EDT
BGP routing table entry for 10.9.9.9/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 15 15
Last Modified: Aug 27 13:06:45.000 for 00:08:21
Paths: (3 available, best #1)
Advertised IPv4 Unicast paths to peers (in unique update groups):
13.13.13.5
Path #1: Received by speaker 0
Advertised IPv4 Unicast paths to peers (in unique update groups):
13.13.13.5
10
10.10.10.1 from 10.10.10.1 (192.168.0.1)
Origin incomplete, metric 0, localpref 100, valid, external, best, group-best, multipath
Received Path ID 0, Local Path ID 1, version 15
Extended community: LB:10:48
Origin-AS validity: (disabled)
Path #2: Received by speaker 0
Not advertised to any peer
10
11.11.11.3 from 11.11.11.3 (192.168.0.3)
Origin incomplete, metric 0, localpref 100, valid, external, multipath
Received Path ID 0, Local Path ID 0, version 0
Extended community: LB:10:48
Origin-AS validity: (disabled)
Path #3: Received by speaker 0
Not advertised to any peer
10
12.12.12.4 from 12.12.12.4 (192.168.0.4)
Origin incomplete, metric 0, localpref 100, valid, external, multipath
Received Path ID 0, Local Path ID 0, version 0
Extended community: LB:10:48
Origin-AS validity: (disabled)

22:35 30-09-2021

Configuring BGP DMZ Aggregate Bandwidth: Example
This is a sample configuration for Border Gateway Protocol Demilitarized Zone (BGP DMZ) link bandwidth.
Consider the topology, R1---(iBGP)---R2---(iBGP)---R3:

1. On R1:
bgp: prefix p/n has:
path 1(bestpath) with LB value 100
path 2(ebgp multipath) with LB value 30
path 3(ebgp multipath) with LB value 50

When best path is advertised to R2, send aggregated dmz-link bandwidth value of 180; aggregated value
of paths 1, 2 and 3.

2. On R2:
bgp: prefix p/n has:
path 1(bestpath) with LB value 60
path 2(ebgp multipath) with LB value 200
path 3(ebgp multipath) with LB value 50

When best path is advertised to R3, send aggregated dmz-link bandwidth value of 310; aggregated value
of paths 1, 2 and 3.

3. On R3:

Implementing BGP
43

Implementing BGP
Configuring BGP DMZ Aggregate Bandwidth: Example

bgp: prefix p/n has:
path 1(bestpath) with LB 180 {learned from R1}
path 2(ibgp multipath) with LB 310 {learned from R2}

Configuring Policy-based Link Bandwidth: Example
This is a sample configuration for policy-based DMZ link bandwidth. The link-bandwidth ext-community
can be set on a per-path basis either at the neighbor-in or neighbor-out policy attach-points. The
dmz-link-bandwidth knob is configured under eBGP neighbor configuration mode. All paths received from
that particular neighbor will be marked with the link-bandwidth extended community when sent to iBGP
peers.

1. Configure inbound or outbound route-policy.
extcommunity-set bandwidth dmz_ext
1:1290400000

end-set
!
route-policy dmz_rp
set extcommunity bandwidth dmz_ext
pass

end-policy
!

neighbor 10.0.101.1
remote-as 1001
address-family ipv4 unicast
route-policy dmz_rp in <<< Inbound route-policy.
route-policy pass out
!

2. Configure dmz-link-bandwidth under BGP neighbor.
neighbor 10.0.101.2
remote-as 1001
dmz-link-bandwidth <<< Under neighbor.
address-family ipv4 unicast
route-policy pass in
route-policy pass out
!

64-ECMP Support for BGP
IOS XR supports configuration of up to 64 equal cost multipath (ECMP) next hops for BGP. 64-ECMP is
required in networks, where overloaded routers can load balance the traffic over as many as 64 LSPs.

BGP Best Path Algorithm
BGP routers typically receivemultiple paths to the same destination. The BGP best-path algorithm determines
the best path to install in the IP routing table and to use for forwarding traffic. This section describes the Cisco
IOS XR software implementation of BGP best-path algorithm, as specified in Section 9.1 of the Internet
Engineering Task Force (IETF) Network Working Group draft-ietf-idr-bgp4-24.txt document.

The BGP best-path algorithm implementation is in three parts:

• Part 1—Compares two paths to determine which is better.

Implementing BGP
44

Implementing BGP
Configuring Policy-based Link Bandwidth: Example

• Part 2—Iterates over all paths and determines which order to compare the paths to select the overall best
path.

• Part 3—Determines whether the old and new best paths differ enough so that the new best path should
be used.

The order of comparison determined by Part 2 is important because the comparison operation is not transitive;
that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and
C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This
nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the
same neighboring autonomous system (AS) and not among all paths.

Note

Comparing Pairs of Paths
Perform the following steps to compare two paths and determine the better path:

1. If either path is invalid (for example, a path has the maximum possible MED value or it has an
unreachable next hop), then the other path is chosen (provided that the path is valid).

2. If the paths have unequal pre-bestpath cost communities, the path with the lower pre-bestpath cost
community is selected as the best path.

3. If the paths have unequal weights, the path with the highest weight is chosen.

The weight is entirely local to the router, and can be set with the weight command or using a routing policy.Note

4. If the paths have unequal local preferences, the path with the higher local preference is chosen.

If a local preference attribute was received with the path or was set by a routing policy, then that value is used
in this comparison. Otherwise, the default local preference value of 100 is used. The default value can be
changed using the bgp default local-preference command.

Note

5. If one of the paths is a redistributed path, which results from a redistribute or network command, then
it is chosen. Otherwise, if one of the paths is a locally generated aggregate, which results from an
aggregate-address command, it is chosen.

Step 1 through Step 4 implement the “Path Selection with BGP”of RFC 1268.Note

6. If the paths have unequal AS path lengths, the path with the shorter AS path is chosen. This step is
skipped if bgp bestpath as-path ignore command is configured.

When calculating the length of the AS path, confederation segments are ignored, and AS sets count as 1.Note

Implementing BGP
45

Implementing BGP
Comparing Pairs of Paths

eiBGP specifies internal and external BGP multipath peers. eiBGP allows simultaneous use of internal and
external paths.

Note

7. If the paths have different origins, the path with the lower origin is selected. Interior Gateway Protocol
(IGP) is considered lower than EGP, which is considered lower than INCOMPLETE.

8. If appropriate, the MED of the paths is compared. If they are unequal, the path with the lower MED is
chosen.

A number of configuration options exist that affect whether or not this step is performed. In general,
the MED is compared if both paths were received from neighbors in the same AS; otherwise the MED
comparison is skipped. However, this behavior is modified by certain configuration options, and there
are also some corner cases to consider.

If the bgp bestpath med always command is configured, then theMED comparison is always performed,
regardless of neighbor AS in the paths. Otherwise, MED comparison depends on the AS paths of the
two paths being compared, as follows:

• If a path has no AS path or the AS path starts with an AS_SET, then the path is considered to be
internal, and the MED is compared with other internal paths.

• If the AS path starts with an AS_SEQUENCE, then the neighbor AS is the first AS number in the
sequence, and the MED is compared with other paths that have the same neighbor AS.

• If the AS path contains only confederation segments or starts with confederation segments followed
by an AS_SET, then the MED is not compared with any other path unless the bgp bestpath med
confed command is configured. In that case, the path is considered internal and the MED is
compared with other internal paths.

• If the AS path starts with confederation segments followed by an AS_SEQUENCE, then the
neighbor AS is the first AS number in the AS_SEQUENCE, and the MED is compared with other
paths that have the same neighbor AS.

If no MED attribute was received with the path, then the MED is considered to be 0 unless the bgp bestpath
med missing-as-worst command is configured. In that case, if no MED attribute was received, the MED is
considered to be the highest possible value.

Note

9. If one path is received from an external peer and the other is received from an internal (or confederation)
peer, the path from the external peer is chosen.

10. If the paths have different IGP metrics to their next hops, the path with the lower IGP metric is chosen.

11. If the paths have unequal IP cost communities, the path with the lower IP cost community is selected
as the best path.

12. If all path parameters in Step 1 through Step 10 are the same, then the router IDs are compared. If the
path was received with an originator attribute, then that is used as the router ID to compare; otherwise,
the router ID of the neighbor from which the path was received is used. If the paths have different router
IDs, the path with the lower router ID is chosen.

Implementing BGP
46

Implementing BGP
Comparing Pairs of Paths

Where the originator is used as the router ID, it is possible to have two paths with the same router ID. It is
also possible to have two BGP sessions with the same peer router, and therefore receive two paths with the
same router ID.

Note

13. If the paths have different cluster lengths, the path with the shorter cluster length is selected. If a path
was not received with a cluster list attribute, it is considered to have a cluster length of 0.

14. Finally, the path received from the neighbor with the lower IP address is chosen. Locally generated
paths (for example, redistributed paths) are considered to have a neighbor IP address of 0.

Order of Comparisons
The second part of the BGP best-path algorithm implementation determines the order in which the paths
should be compared. The order of comparison is determined as follows:

1. The paths are partitioned into groups such that within each group the MED can be compared among all
paths. The same rules as inComparing Paths section are used to determine whetherMED can be compared
between any two paths. Normally, this comparison results in one group for each neighbor AS. If the bgp
bestpath med always command is configured, then there is just one group containing all the paths.

2. The best path in each group is determined. Determining the best path is achieved by iterating through all
paths in the group and keeping track of the best one seen so far. Each path is compared with the best-so-far,
and if it is better, it becomes the new best-so-far and is compared with the next path in the group.

3. A set of paths is formed containing the best path selected from each group in Step 2. The overall best path
is selected from this set of paths, by iterating through them as in Step 2.

Best Path Change Suppression
The third part of the implementation is to determine whether the best-path change can be suppressed or
not—whether the new best path should be used, or continue using the existing best path. The existing best
path can continue to be used if the new one is identical to the point at which the best-path selection algorithm
becomes arbitrary (if the router-id is the same). Continuing to use the existing best path can avoid churn in
the network.

This suppression behavior does not complywith the IETFNetworkingWorkingGroup draft-ietf-idr-bgp4-24.txt
document, but is specified in the IETF Networking Working Group draft-ietf-idr-avoid-transition-00.txt
document.

Note

The suppression behavior can be turned off by configuring the bgp bestpath compare-routerid command.
If this command is configured, the new best path is always preferred to the existing one.

Otherwise, the following steps are used to determine whether the best-path change can be suppressed:

1. If the existing best path is no longer valid, the change cannot be suppressed.

2. If either the existing or new best paths were received from internal (or confederation) peers or were locally
generated (for example, by redistribution), then the change cannot be suppressed. That is, suppression is
possible only if both paths were received from external peers.

Implementing BGP
47

Implementing BGP
Order of Comparisons

3. If the paths were received from the same peer (the paths would have the same router-id), the change cannot
be suppressed. The router ID is calculated using rules in Comparing Pairs of Paths section.

4. If the paths have different weights, local preferences, origins, or IGP metrics to their next hops, then the
change cannot be suppressed. Note that all these values are calculated using the rules in Comparing Pairs
of Paths section..

5. If the paths have different-length AS paths and the bgp bestpath as-path ignore command is not
configured, then the change cannot be suppressed. Again, the AS path length is calculated using the rules
in Comparing Pairs of Paths section.

6. If theMED of the paths can be compared and theMEDs are different, then the change cannot be suppressed.
The decision as to whether the MEDs can be compared is exactly the same as the rules in Comparing
Pairs of Paths section, as is the calculation of the MED value.

7. If all path parameters in Step 1 through Step 6 do not apply, the change can be suppressed.

Administrative Distance
An administrative distance is a rating of the trustworthiness of a routing information source. In general, the
higher the value, the lower the trust rating.

Normally, a route can be learned throughmore than one protocol. Administrative distance is used to discriminate
between routes learned from more than one protocol. The route with the lowest administrative distance is
installed in the IP routing table. By default, BGP uses the administrative distances shown in BGP Default
Administrative Distances section.

Table 4: BGP Default Administrative Distances

FunctionDefault
Value

Distance

Applied to routes learned from eBGP.20External

Applied to routes learned from iBGP.200Internal

Applied to routes originated by the router.200Local

Distance does not influence the BGP path selection algorithm, but it does influence whether BGP-learned
routes are installed in the IP routing table.

Note

In most cases, when a route is learned through eBGP, it is installed in the IP routing table because of its
distance (20). Sometimes, however, two ASs have an IGP-learned back-door route and an eBGP-learned
route. Their policy might be to use the IGP-learned path as the preferred path and to use the eBGP-learned
path when the IGP path is down.

Implementing BGP
48

Implementing BGP
Administrative Distance

Figure 6: Back Door Example

In Back Door Example section, Routers A and C and Routers B and C are running eBGP. Routers A and B
are running an IGP (such as Routing Information Protocol [RIP], Interior Gateway Routing Protocol [IGRP],
Enhanced IGRP, or Open Shortest Path First [OSPF]). The default distances for RIP, IGRP, Enhanced IGRP,
and OSPF are 120, 100, 90, and 110, respectively. All these distances are higher than the default distance of
eBGP, which is 20. Usually, the route with the lowest distance is preferred.

Router A receives updates about 160.10.0.0 from two routing protocols: eBGP and IGP. Because the default
distance for eBGP is lower than the default distance of the IGP, Router A chooses the eBGP-learned route
from Router C. If you want Router A to learn about 160.10.0.0 from Router B (IGP), establish a BGP back
door. See .

In the following example, a network back-door is configured:

Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# network 160.10.0.0/16 backdoor

Router A treats the eBGP-learned route as local and installs it in the IP routing table with a distance of 200.
The network is also learned through Enhanced IGRP (with a distance of 90), so the Enhanced IGRP route is
successfully installed in the IP routing table and is used to forward traffic. If the Enhanced IGRP-learned
route goes down, the eBGP-learned route is installed in the IP routing table and is used to forward traffic.

Although BGP treats network 160.10.0.0 as a local entry, it does not advertise network 160.10.0.0 as it normally
would advertise a local entry.

Route Dampening
Route dampening is a BGP feature that minimizes the propagation of flapping routes across an internetwork.
A route is considered to be flapping when it is repeatedly available, then unavailable, then available, then
unavailable, and so on.

For example, consider a network with three BGP autonomous systems: autonomous system 1, autonomous
system 2, and autonomous system 3. Suppose the route to network A in autonomous system 1 flaps (it becomes
unavailable). Under circumstances without route dampening, the eBGP neighbor of autonomous system 1 to
autonomous system 2 sends a withdraw message to autonomous system 2. The border router in autonomous
system 2, in turn, propagates the withdrawal message to autonomous system 3. When the route to network A
reappears, autonomous system 1 sends an advertisement message to autonomous system 2, which sends it to

Implementing BGP
49

Implementing BGP
Route Dampening

autonomous system 3. If the route to network A repeatedly becomes unavailable, then available, many
withdrawal and advertisement messages are sent. Route flapping is a problem in an internetwork connected
to the Internet, because a route flap in the Internet backbone usually involves many routes.

Minimize Flapping
The route dampening feature minimizes the flapping problem as follows. Suppose again that the route to
network A flaps. The router in autonomous system 2 (in which route dampening is enabled) assigns network
A a penalty of 1000 and moves it to history state. The router in autonomous system 2 continues to advertise
the status of the route to neighbors. The penalties are cumulative.When the route flaps so often that the penalty
exceeds a configurable suppression limit, the router stops advertising the route to network A, regardless of
how many times it flaps. Thus, the route is dampened.

The penalty placed on network A is decayed until the reuse limit is reached, upon which the route is once
again advertised. At half of the reuse limit, the dampening information for the route to network A is removed.

No penalty is applied to a BGP peer reset when route dampening is enabled, even though the reset withdraws
the route.

Note

BGP Routing Domain Confederation
One way to reduce the iBGP mesh is to divide an autonomous system into multiple sub-autonomous systems
and group them into a single confederation. To the outside world, the confederation looks like a single
autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other
autonomous systems in the same confederation. Although the peers in different autonomous systems have
eBGP sessions, they exchange routing information as if they were iBGP peers. Specifically, the next hop,
MED, and local preference information is preserved. This feature allows you to retain a single IGP for all of
the autonomous systems.

BGP Optimal Route Reflector
BGP-ORR (optimal route reflector) enables virtual route reflector (vRR) to calculate the best path from a
route reflector (RR) client's point of view.

BGP ORR calculates the best path by:

1. Running SPF multiple times in the context of its RR clients or RR clusters (set of RR clients)

2. Saving the result of different SPF runs in separate databases

3. Using these databases to manipulate BGP best path decision and thereby allowing BGP to use and announce
best path that is optimal from the client’s point of view

Enabling the ORR feature increases the memory footprint of BGP and RIB. With increased number of vRR
configured in the network, ORR adversely impacts convergence for BGP.

Note

Implementing BGP
50

Implementing BGP
Minimize Flapping

In an autonomous system, a BGP route reflector acts as a focal point and advertises routes to its peers (RR
clients) along with the RR's computed best path. Since the best path advertised by the RR is computed from
the RR's point of view, the RR's placement becomes an important deployment consideration.

With network function virtualization (NFV) becoming a dominant technology, service providers (SPs) are
hosting virtual RR functionality in a cloud using servers. A vRR can run on a control plane device and can
be placed anywhere in the topology or in a SP data center. Cisco IOS XRv 9000 Router can be implemented
as vRR over a NFV platform in a SP data center. vRR allows SPs to scale memory and CPU usage of RR
deployments significantly. Moving a RR out of its optimal placement requires vRRs to implement ORR
functionality that calculates the best path from a RR client's point of view.

BGP ORR offers these benefits:

• Calculates the bestpath from the point of view of a RR client.

• Enables vRR to be placed anywhere in the topology or in a SP data center.

• Allows SPs to scale memory and CPU usage of RR deployments.

Use Case
Consider a BGP Route Reflector topology where:

• Router R1, R2, R3, R4, R5 and R6 are route reflector clients

• Router R1 and R4 advertise 6/8 prefix to vRR

Figure 7: BGP-ORR Topology

Implementing BGP
51

Implementing BGP
Use Case

vRR receives prefix 6/8 from R1 and R4. Without BGP ORR configured in the network, the vRR selects R4
as the closest exit point for RR clients R2, R3, R5, and R6, and reflects the 6/8 prefix learned from R4 to these
RR clients R2, R3, R5, and R6. From the topology, it is evident that for R2 the best path is R1 and not R4.
This is because the vRR calculates best path from the RR's point of view.

When the BGP ORR is configured in the network, the vRR calculates the shortest exit point in the network
from R2’s point of view (ORR Root: R2) and determines that R1 is the closest exit point to R2. vRR then
reflects the 6/8 prefix learned from R1 to R2.

Configuring BGP ORR includes:

• enabling ORR on the RR for the client whose shortest exit point is to be determined

• applying the ORR configuration to the neighbor

Enabling ORR on vRR for R2 (RR client)

For example to determine shortest exit point for R2; configure ORR on vRR with an IP address of R2 that is
192.0.2.2. Use 6500 as AS number and g1 as orr (root) policy name:

router bgp 6500
address-family ipv4 unicast
optimal-route-reflection g1 192.0.2.2

commit

Applying the ORR configuration to the neighbor

Next, apply the ORR policy to BGP neighbor R2 (this enables RR to advertise best path calculated using the
root IP address, 192.0.2.2, configured in orr (root) policy g1 to R2):

router bgp 6500
neighbor 192.0.2.2
address-family ipv4 unicast
optimal-route-reflection g1

commit

Configuring MPLS Traffic-Engineering on Root Router

The root routers advertise the Multi Protocol Label Switching (MPLS) TE router-ID that matches with the
configured root address on the RR. So, you must configure the root router with a minimal MPLS TE
configuration to advertise this MPLS TE router-ID. The minimal set of commands that you need to configure
depends on the operating system of the root router.

The following is a sample configuration on the root router:
router isis 100

is-type level-2-only

net 49.0001.0000.0000.0001.00

distribute link-state

metric-style wide

mpls traffic-eng level-2-only

Implementing BGP
52

Implementing BGP
Use Case

mpls traffic-eng router-id Loopback0

!

mpls traffic-eng

Verification

To verify whether R2 received the best exit, execute the show bgp <prefix> command (from R2) in EXEC
mode. In the above example, R1 and R4 advertise the 6/8 prefix; run the show bgp 6.0.0.0/8 command:
R2# show bgp 6.0.0.0/8
Tue Apr 5 20:21:58.509 UTC
BGP routing table entry for 6.0.0.0/8
Versions:
Process bRIB/RIB SendTblVer
Speaker 8 8

Last Modified: Apr 5 20:00:44.022 for 00:21:14
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
192.0.2.1 (metric 20) from 203.0.113.1 (192.0.2.1)
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 1, version 8
Originator: 192.0.2.1, Cluster list: 203.0.113.1

The above show output states that the best path for R2 is through R1, whose IP address is 192.0.2.1 and the
metric of the path is 20.

Execute the show bgp command from the vRR to determine the best path calculated for R2 by ORR. R2 has
its own update-group because it has a different best path (or different policy configured) than those of other
peers:
VRR#show bgp 6.0.0.0/8
Thu Apr 28 13:36:42.744 UTC
BGP routing table entry for 6.0.0.0/8
Versions:
Process bRIB/RIB SendTblVer
Speaker 13 13
Last Modified: Apr 28 13:36:26.909 for 00:00:15
Paths: (2 available, best #2)
Advertised to update-groups (with more than one peer):
0.2
Path #1: Received by speaker 0
ORR bestpath for update-groups (with more than one peer):
0.1
Local, (Received from a RR-client)
192.0.2.1 (metric 30) from 192.0.2.1 (192.0.2.1)
Origin incomplete, metric 0, localpref 100, valid, internal, add-path
Received Path ID 0, Local Path ID 2, version 13
Path #2: Received by speaker 0
Advertised to update-groups (with more than one peer):
0.2
ORR addpath for update-groups (with more than one peer):
0.1
Local, (Received from a RR-client)
192.0.2.4 (metric 20) from 192.0.2.4 (192.0.2.4)
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best

Implementing BGP
53

Implementing BGP
Use Case

Received Path ID 0, Local Path ID 1, version 13

Path #1 is advertised to update-group 0.1. R2 is in update-group 0.1.Note

Execute the show bgp command for update-group 0.1 verify whether R2 is in update-group 0.1.
VRR#show bgp update-group 0.1
Thu Apr 28 13:38:18.517 UTC

Update group for IPv4 Unicast, index 0.1:
Attributes:
Neighbor sessions are IPv4
Internal
Common admin
First neighbor AS: 65000
Send communities
Send GSHUT community if originated
Send extended communities
Route Reflector Client
ORR root (configured): g1; Index: 0
4-byte AS capable
Non-labeled address-family capable
Send AIGP
Send multicast attributes
Minimum advertisement interval: 0 secs
Update group desynchronized: 0
Sub-groups merged: 0
Number of refresh subgroups: 0
Messages formatted: 5, replicated: 5
All neighbors are assigned to sub-group(s)
Neighbors in sub-group: 0.2, Filter-Groups num:1
Neighbors in filter-group: 0.2(RT num: 0)
192.0.2.2

For further verification, check the contents of the table created on vRR as a result of configuring the g1 policy.
From R2’s point of view, the cost of reaching R1 is 20 and the cost of reaching R4 is 30. Therefore, the closest
and best exit for R2 is through R1:
VRR#show orrspf database g1
Thu Apr 28 13:39:20.333 UTC

ORR policy: g1, IPv4, RIB tableid: 0xe0000011
Configured root: primary: 192.0.2.2, secondary: NULL, tertiary: NULL
Actual Root: 192.0.2.2, Root node: 2000.0100.1002.0000

Prefix Cost
203.0.113.1 30
192.0.2.1 20
192.0.2.2 0
192.0.2.3 30
192.0.2.4 30
192.0.2.5 10
192.0.2.6 20

Number of mapping entries: 8

Implementing BGP
54

Implementing BGP
Use Case

RPL - if prefix is-best-path/is-best-multipath
Border Gateway Protocol (BGP) routers receive multiple paths to the same destination. As a standard, by
default the BGP best path algorithm decides the best path to install in IP routing table. This is used for traffic
forwarding.

BGP assigns the first valid path as the current best path. It then compares the best path with the next in the
list. This process continues, until BGP reaches the end of the list of valid paths. This contains all rules used
to determine the best path. When there are multiple paths for a given address prefix, BGP:

• Selects one of the paths as the best path as per the best-path selection rules.

• Installs the best path in its forwarding table. Each BGP speaker advertises only the best-path to its peers.

The advertisement rule of sending only the best path does not convey the full routing state of a destination,
present on a BGP speaker to its peers.

Note

After the BGP speaker receives a path from one of its peers; the path is used by the peer for forwarding packets.
All other peers receive the same path from this peer. This leads to a consistent routing in a BGP network. To
improve the link bandwidth utilization, most BGP implementations choose additional paths satisfy certain
conditions, as multi-path, and install them in the forwarding table. Incoming packets for such are load-balanced
across the best-path and the multi-path(s). You can install the paths in the forwarding table that are not
advertised to the peers. The RR route reflector finds out the best-path and multi-path. This way the route
reflector uses different communities for best-path and multi-path. This feature allows BGP to signal the local
decision done by RR or Border Router. With this new feature, selected by RR using community-string (if
is-best-path then community 100:100). The controller checks which best path is sent to all R's. Border Gateway
Protocol routers receive multiple paths to the same destination. While carrying out best path computation
there will be one best path, sometimes equal and few non-equal paths. Thus, the requirement for a best-path
and is-equal-best-path.

The BGP best path algorithm decides the best path in the IP routing table and used for forwarding traffic. This
enhancement within the RPL allows creating policy to take decisions. Adding community-string for local
selection of best path. With introduction of BGP Additional Path (Add Path), BGP now signals more than the
best Path. BGP can signal the best path and the entire path equivalent to the best path. This is in accordance
to the BGP multi-path rules and all backup paths.

Remotely Triggered Blackhole Filtering with RPL Next-hop Discard
Configuration

Remotely triggered black hole (RTBH) filtering is a technique that provides the ability to drop undesirable
traffic before it enters a protected network. RTBH filtering provides a method for quickly dropping undesirable
traffic at the edge of the network, based on either source addresses or destination addresses by forwarding it
to a null0 interface. RTBH filtering based on a destination address is commonly known as Destination-based
RTBH filtering.Whereas, RTBH filtering based on a source address is known as Source-based RTBH filtering.

RTBH filtering is one of the many techniques in the security toolkit that can be used together to enhance
network security in the following ways:

• Effectively mitigate DDoS and worm attacks

Implementing BGP
55

Implementing BGP
RPL - if prefix is-best-path/is-best-multipath

• Quarantine all traffic destined for the target under attack

• Enforce blocklist filtering

Configure Destination-based RTBH Filtering
RTBH is implemented by defining a route policy (RPL) to discard undesirable traffic at next-hop using set
next-hop discard command.

RTBH filtering sets the next-hop of the victim's prefix to the null interface. The traffic destined to the victim
is dropped at the ingress.

The set next-hop discard configuration is used in the neighbor inbound policy. When this config is applied
to a path, though the primary next-hop is associated with the actual path but the RIB is updated with next-hop
set to Null0. Even if the primary received next-hop is unreachable, the RTBH path is considered reachable
and will be a candidate in the bestpath selection process. The RTBH path is readvertised to other peers with
either the received next-hop or nexthop-self based on normal BGP advertisement rules.

A typical deployment scenario for RTBH filtering would require running internal Border Gateway Protocol
(iBGP) at the access and aggregation points and configuring a separate device in the network operations center
(NOC) to act as a trigger. The triggering device sends iBGP updates to the edge, that cause undesirable traffic
to be forwarded to a null0 interface and dropped.

Consider below topology, where a rogue router is sending traffic to a border router.

Figure 8: Topology to Implement RTBH Filtering

Configurations applied on the Trigger Router

Configure a static route redistribution policy that sets a community on static routes marked with a special tag,
and apply it in BGP:
route-policy RTBH-trigger
if tag is 777 then
set community (1234:4321, no-export) additive
pass

else
pass

endif
end-policy

router bgp 65001
address-family ipv4 unicast
redistribute static route-policy RTBH-trigger
!
neighbor 192.168.102.1
remote-as 65001

Implementing BGP
56

Implementing BGP
Configure Destination-based RTBH Filtering

address-family ipv4 unicast
route-policy bgp_all in
route-policy bgp_all out

Configure a static route with the special tag for the source prefix that has to be block-holed:
router static
address-family ipv4 unicast
10.7.7.7/32 Null0 tag 777

Configurations applied on the Border Router

Configure a route policy that matches the community set on the trigger router and configure set next-hop
discard:
route-policy RTBH
if community matches-any (1234:4321) then
set next-hop discard

else
pass

endif
end-policy

Apply the route policy on the iBGP peers:
router bgp 65001
address-family ipv4 unicast
!
neighbor 192.168.102.2
remote-as 65001
address-family ipv4 unicast
route-policy RTBH in
route-policy bgp_all out

Default Address Family for show Commands
Most of the show commands provide address family (AFI) and subaddress family (SAFI) arguments (see
RFC 1700 and RFC 2858 for information on AFI and SAFI). The Cisco IOS XR software parser provides the
ability to set the afi and safi so that it is not necessary to specify them while running a show command. The
parser commands are:

• set default-afi { ipv4 | ipv6 | all }

• set default-safi { unicast | multicast | all }

The parser automatically sets the default afi value to ipv4 and default safi value to unicast . It is necessary
to use only the parser commands to change the default afi value from ipv4 or default safi value from unicast
. Any afi or safi keyword specified in a show command overrides the values set using the parser commands.
Use the following show default-afi-safi-vrf command to check the currently set value of the afi and safi.

TCP Maximum Segment Size
Maximum Segment Size (MSS) is the largest amount of data that a computer or a communication device can
receive in a single, unfragmented TCP segment. All TCP sessions are bounded by a limit on the number of

Implementing BGP
57

Implementing BGP
Default Address Family for show Commands

bytes that can be transported in a single packet; this limit is MSS. TCP breaks up packets into chunks in a
transmit queue before passing packets down to the IP layer.

The TCP MSS value is dependent on the maximum transmission unit (MTU) of an interface, which is the
maximum length of data that can be transmitted by a protocol at one instance. The maximum TCP packet
length is determined by both theMTU of the outbound interface on the source device and theMSS announced
by the destination device during the TCP setup process. The closer the MSS is to the MTU, the more efficient
is the transfer of BGP messages. Each direction of data flow can use a different MSS value.

Per Neighbor TCP MSS
The per neighbor TCP MSS feature allows you to create unique TCP MSS profiles for each neighbor. Per
neighbor TCP MSS is supported in two modes: neighbor group and session group. Before, TCP MSS
configuration was available only at the global level in the BGP configuration.

The per neighbor TCP MSS feature allows you to:

• Enable per neighbor TCP MSS configuration.

• Disable TCP MSS for a particular neighbor in the neighbor group or session group using the
inheritance-disable command.

• Unconfigure TCP MSS value. On unconfiguration, TCP MSS value in the protocol control block (PCB)
is set to the default value.

The default TCPMSS value is 536 (in octets) or 1460 (in bytes). TheMSS default
of 1460 means that TCP segments the data in the transmit queue into 1460-byte
chunks before passing the packets to the IP layer.

Note

To configure per neighbor TCPMSS, use the tcp mss command under per neighbor, neighbor group or session
group configuration.

For detailed configuration steps, see the Configuring Per Neighbor TCP MSS section.

For detailed steps to disable per neighbor TCP MSS, see the Disabling Per Neighbor TCP MSS section.

BGP Keychains
BGP keychains enable keychain authentication between two BGP peers. The BGP endpoints must both comply
with draft-bonica-tcp-auth-05.txt and a keychain on one endpoint and a password on the other endpoint does
not work.

BGP is able to use the keychain to implement hitless key rollover for authentication. Key rollover specification
is time based, and in the event of clock skew between the peers, the rollover process is impacted. The
configurable tolerance specification allows for the accept window to be extended (before and after) by that
margin. This accept window facilitates a hitless key rollover for applications (for example, routing and
management protocols).

The key rollover does not impact the BGP session, unless there is a keychain configuration mismatch at the
endpoints resulting in no common keys for the session traffic (send or accept).

Implementing BGP
58

Implementing BGP
Per Neighbor TCP MSS

BGP Nonstop Routing
The Border Gateway Protocol (BGP) Nonstop Routing (NSR) with Stateful Switchover (SSO) feature enables
all bgp peerings to maintain the BGP state and ensure continuous packet forwarding during events that could
interrupt service. Under NSR, events that might potentially interrupt service are not visible to peer routers.
Protocol sessions are not interrupted and routing states are maintained across process restarts and switchovers.

BGP NSR provides nonstop routing during the following events:

• Route processor switchover

• Process crash or process failure of BGP or TCP

BGP NSR is enabled by default. Use the nsr disable command to turn off BGP
NSR. The no nsr disable command can also be used to turn BGP NSR back on
if it has been disabled.

In case of process crash or process failure, NSR will be maintained only if nsr
process-failures switchover command is configured. In the event of process
failures of active instances, the nsr process-failures switchover configures
failover as a recovery action and switches over to a standby route processor (RP)
or a standby distributed route processor (DRP) thereby maintaining NSR. An
example of the configuration command is RP/0/RSP0/CPU0:router(config) # nsr
process-failures switchover

The nsr process-failures switchover command maintains both the NSR and
BGP sessions in the event of a BGP or TCP process crash. Without this
configuration, BGP neighbor sessions flap in case of a BGP or TCP process crash.
This configuration does not help if the BGP or TCP process is restarted in which
case the BGP neighbors are expected to flap.

When the l2vpn_mgr process is restarted, the NSR client (te-control) flaps between
the Ready and Not Ready state. This is the expected behavior and there is no
traffic loss.

Note

During route processor switchover and In-Service System Upgrade (ISSU), NSR is achieved by stateful
switchover (SSO) of both TCP and BGP.

NSR does not force any software upgrades on other routers in the network, and peer routers are not required
to support NSR.

When a route processor switchover occurs due to a fault, the TCP connections and the BGP sessions are
migrated transparently to the standby route processor, and the standby route processor becomes active. The
existing protocol state is maintained on the standby route processor when it becomes active, and the protocol
state does not need to be refreshed by peers.

Events such as soft reconfiguration and policy modifications can trigger the BGP internal state to change. To
ensure state consistency between active and standby BGP processes during such events, the concept of post-it
is introduced that act as synchronization points.

BGP NSR provides the following features:

• NSR-related alarms and notifications

Implementing BGP
59

Implementing BGP
BGP Nonstop Routing

• Configured and operational NSR states are tracked separately

• NSR statistics collection

• NSR statistics display using show commands

• XML schema support

• Auditing mechanisms to verify state synchronization between active and standby instances

• CLI commands to enable and disable NSR

• Support for 5000 NSR sessions

BGP Best-External Path
The best–external path functionality supports advertisement of the best–external path to the iBGP and Route
Reflector peers when a locally selected bestpath is from an internal peer. BGP selects one best path and one
backup path to every destination. By default, selects one best path . Additionally, BGP selects another bestpath
from among the remaining external paths for a prefix. Only a single path is chosen as the best–external path
and is sent to other PEs as the backup path. BGP calculates the best–external path only when the best path is
an iBGP path. If the best path is an eBGP path, then best–external path calculation is not required.

The procedure to determine the best–external path is as follows:

1. Determine the best path from the entire set of paths available for a prefix.

2. Eliminate the current best path.

3. Eliminate all the internal paths for the prefix.

4. From the remaining paths, eliminate all the paths that have the same next hop as that of the current best
path.

5. Rerun the best path algorithm on the remaining set of paths to determine the best–external path.

BGP considers the external and confederations BGP paths for a prefix to calculate the best–external path.
BGP advertises the best path and the best–external path as follows:

• On the primary PE—advertises the best path for a prefix to both its internal and external peers

• On the backup PE—advertises the best path selected for a prefix to the external peers and advertises the
best–external path selected for that prefix to the internal peers

BGP Prefix Independent Convergence
BGP Prefix Independent Convergence (PIC) feature enables the activation of a backup path in the event of
the primary path failure.

Networks use Fast reroute (FRR) to calculate the next best path (backup path) and store it in BGP and IP
Routing Information Bases (RIBs). The RIBs share the backup path information with the Forwarding
Information Base (FIB). BGP PIC feature uses the backup path information in the FIB to quickly switch to
this path during network failure, provided the line cards are enabled for PIC.

Implementing BGP
60

Implementing BGP
BGP Best-External Path

Drawbacks of Using Prefix-Dependent Convergence

In a standard BGP network, a BGP router advertises only its best path to a destination prefix. Hence, in an
autonomous system, routers running BGP are not aware of all the possible paths to a destination prefix. In
the event of a link or network failure that causes the best path to fail, the following process takes place:

1. The affected BGP router advertising the failed best path, announces a withdrawal of the path.

2. The BGP routers receiving the best path withdrawal from the affected BGP router, withdraw their own
best paths, and recalculate their best paths to the destination prefix.

3. The BGP routers advertise their recalculated best paths to all neighboring routers.

4. Each BGP router that receives a new best path from its neighboring BGP router, again evaluates its own
best path, and possibly withdraws and recalculates its best path.

5. The BGP routers that recalculate their best paths, again advertise the new paths in the network.

Because this process repeats until all the BGP routers have the best path to the destination prefix, convergence
of the network takes a lot of time. This form of convergence is known as prefix-dependent convergence. If
route reflectors are configured in the network, then convergence takes even longer.

Benefits of Using Prefix-Independent Convergence

When prefix-independent convergence is configured in a BGP network, all BGP routers advertise their best
external paths to a destination prefix. This indicates that all BGP routers are aware of multiple best external
paths to a destination prefix.

Each BGP router selects a backup path from the available best external paths, and downloads it to its FIB.
Hence, the FIB on each BGP router contains a best path and a best external path to a destination prefix. In the
event of a link or network failure that causes the best path to fail, the FIB on the affected BGP router can
switch all its routes using the failed path to the best external path, in a single operation. Because this form of
convergence takes minimal time, it is preferred in large scale network deployments.

Using Prefix-Independent Convergence with Route Reflectors

For traffic from the customer edge router to a remote provider edge router, the BGP local-pref attribute is
used to select the primary path (from a primary PE) and the backup path (from the backup PE). Even though
the remote provider edge router receives the backup (best external) path from the backup PE, when the backup
PE receives the iBGP best path from the primary PE, it withdraws the backup path from the core network.
Hence, the primary and backup (best external) paths must be pre-programmed in the network for PIC to work.

When the primary path fails, the delay in convergence is because of the following process that takes place:

1. The primary PE sends a request to the provider core network for withdrawing the primary path.

2. The backup PE advertises the backup (best external) path as the new primary (best) path.

3. The remote PE recalculates its primary paths on receiving the withdrawal request from the primary PE,
and the new primary path from the backup PE.

4. Traffic resumes in the network after all prefixes in the FIB are updated with the new primary path.

Hence, convergence is slow because it depends on prefixes advertised by the PE routers.

By introducing prefix-independent convergence, the following changes take place:

• Primary and backup paths are pre-programmed in the RIB and FIB.

Implementing BGP
61

Implementing BGP
BGP Prefix Independent Convergence

• All provider edge routers receive the backup path from the FIB.

• In the event of primary path failure, the FIBmodifies LDIs to include the backup path and instantly divert
traffic along this route.

To use BGP PIC feature with route reflectors, the provider edge routers must be configured with unique route
distinguishers (RDs) within the context of a VRF. Else, the paths from different PEs are considered to be
belonging to the same network, and the route reflector cannot accurately calculate the best backup path.

Note

Backup Path Selection Process

Use the following procedure to identify the best backup path to be programmed in the RIB and FIB.

1. Use the best path algorithm to identify the best path from the available set of paths for a prefix.

2. Eliminate the best path.

3. Eliminate all paths that have the same next hop as the best path.

4. Rerun the best path algorithm on the remaining set of paths to identify the best backup path.

Configure BGP PIC in Provider Edge Networks
This section describes the procedure to configure BGP PIC for provider edge networks.

Topology

Consider the topology shown in the following illustration.

Figure 9: Prefix Independent Convergence in Provider Edge Networks

For traffic from the customer edge router CE to the provider edge router PE3, the BGP local-pref attribute
is used to select CE-PE1-PE3 as the primary path, and CE-PE2-PE3 as the backup path. PE1-P-PE2 is the
best internal path for the provider core network.

Implementing BGP
62

Implementing BGP
Configure BGP PIC in Provider Edge Networks

Before you Begin

Before you can configure the BGP PIC feature, ensure that you have configured the following:

1. The loopback and network interfaces as per the topology.

2. The VRFs for the provider core network.

Configuration

Use the configuration in this section to configure BGP PIC feature for the illustrated topology.

Router PE1

For traffic from Router CE to Router PE3, the eBGP path from Router CE is stored as the primary path on
Router PE1.

Configure Router PE1 to install the backup (best external) path advertised by Router PE2, and the period for
which the local label must be retained on convergence, as shown.
Router(config)# router bgp 10
Router(config-bgp)# vrf foo
Router(config-bgp-vrf)# address-family ipv4 unicast
Router(config-bgp-vrf-af)# additional-path install
Router(config-bgp-vrf-af)# label-retention 10

Router PE2

Configure Router PE2 to install and advertise the backup CE-PE2 path as the best external path.
Router(config)# router bgp 10
Router(config-bgp)# vrf foo
Router(config-bgp-vrf)# address-family ipv4 unicast
Router(config-bgp-vrf-af)# advertise-best-external label-alloc-mode
Router(config-bgp-vrf-af)# additional-path install

Router PE3

The iBGP path from Router PE1 (CE-PE1) is stored as the primary path on Router PE3. Configure the iBGP
backup path CE-PE2 as shown.
Router(config)# router bgp 10
Router(config-bgp)# vrf foo
Router(config-bgp-vrf)# address-family ipv4 unicast
Router(config-bgp-vrf-af)# additional-path install

Verify BGP PIC

Run the following commands on Router PE3 to verify the BGP PIC feature in operation.

1. Verify the presence of the backup path in the FIB.
Router# show cef 1.1.1.1/32 detail
Fri Oct 10 10:24:33.079 UTC
1.1.1.1/32, version 1, internal 0x40000001 (0xa94c0574) [1], 0x0 (0x0), 0x0
(0x0)
Updated Oct 9 16:49:06.795
Prefix Len 32, traffic index 0, precedence routine (0)
gateway array (0xa8d9b130) reference count 4, flags 0x80200, source rib
(3),
[1 type 3 flags 0x901101 (0xa8ec6b90) ext 0x0 (0x0)]
LW-LDI[type=0, refc=0, ptr=0x0, sh-ldi=0x0]
Level 1 - Load distribution: 0

Implementing BGP
63

Implementing BGP
Configure BGP PIC in Provider Edge Networks

[0] via 12.24.0.1, recursive
via 12.24.0.1, 3 dependencies, recursive
next hop 12.24.0.1 via 12.24.0.1/32
via 12.24.0.2, 3 dependencies, recursive, backup
next hop 12.24.0.2 via 12.24.0.2/32
Load distribution: 0 (refcount 1)
Hash OK Interface Address
0 Y MgmtEth0/RP0/CPU0/0 12.24.0.1

2. Verify the presence of the backup (best external) path for BGP.
Router# show bgp vrf foo 206.1.1.1/32
BGP routing table entry for 206.1.1.1/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 6 6
Local Label: 3
Paths: (1 available, best #1)
Advertised to peers (in unique update groups):
100.100.100.1
Path #1: Received by speaker 0
1.1.1.1 from 1.1.1.1 (200.200.200.1)
Origin incomplete, metric 0, localpref 100, weight 32768, valid,
internal, best
2.2.2.2 from 2.2.2.2 (100.100.100.1)
Origin incomplete, metric 0, localpref 100, weight 32768, valid,
external, backup, best-external

Configure BGP PIC between Autonomous Systems
This section describes the procedure to configure BGP PIC between autonomous systems. .

BGP PIC is supported only for Option A and Option B scenarios. The following section describes a sample
configuration for Option B.

Note

Topology

For example, consider the topology shown in the following illustration.

Figure 10: Prefix-Independent Convergence between Autonomous Systems

Implementing BGP
64

Implementing BGP
Configure BGP PIC between Autonomous Systems

For traffic from Router PE1 to Router PE2, ASBR1 is the primary router and ASBR2 is the backup router.
The ASBR1-ASBR3 eBGP path is the primary path. The ASBR2-ASBR4 eBGP path is the backup path. For
traffic from Router PE2 to Router PE1, ASBR3 is the primary router and ASBR4 is the backup router. The
ASBR3-ASBR1 eBGP path is the primary path and the ASBR4-ASBR2 eBGP path is the backup path.

Before you Begin

Before you can configure the BGP PIC feature, ensure that you have configured the loopback and network
interfaces as per the illustrated topology.

Configuration

Use the configuration in this section to configure BGP PIC feature for the illustrated topology.

Router ASBR1

Configure Router ASBR1 to install the backup (best external) path advertised by Router ASBR2, and the
period for which the local label must be retained on convergence, as shown.
Router(config)# router bgp 10
Router(config-bgp)# address-family vpnv4 unicast
Router(config-bgp-af)# additional-path install
Router(config-bgp-af)# label-retention 10

The provided configuration is for traffic from Router PE1 to Router PE2. Similarly, configure Router ASBR3
for traffic from Router PE2 to Router PE1.

Router ASBR2

Configure Router ASBR2 to install and advertise the ASBR2-ASBR4 backup (best external) path, as shown.
Router(config)# router bgp 10
Router(config-bgp)# address-family vpnv4 unicast
Router(config-bgp-af)# advertise-best-external label-alloc-mode
Router(config-bgp-af)# additional-path install

The provided configuration is for traffic from Router PE1 to Router PE2. Similarly, configure Router ASBR4
for traffic from Router PE2 to Router PE1.

Verify BGP PIC

Run the following commands on Router PE2 (for traffic from Router PE1 to Router PE2) or on Router PE1
(for traffic from Router PE2 to Router PE1) to verify the BGP PIC feature in operation.

1. Verify the presence of the backup path in the FIB.
Router# show cef 1.1.1.1/32 detail

Fri Oct 10 10:24:33.079 UTC
1.1.1.1/32, version 1, internal 0x40000001 (0xa94c0574) [1], 0x0 (0x0), 0x0
(0x0)
Updated Oct 9 16:49:06.795
Prefix Len 32, traffic index 0, precedence routine (0)
gateway array (0xa8d9b130) reference count 4, flags 0x80200, source rib
(3),
[1 type 3 flags 0x901101 (0xa8ec6b90) ext 0x0 (0x0)]
LW-LDI[type=0, refc=0, ptr=0x0, sh-ldi=0x0]
Level 1 - Load distribution: 0
[0] via 12.24.0.1, recursive
via 12.24.0.1, 3 dependencies, recursive

Implementing BGP
65

Implementing BGP
Configure BGP PIC between Autonomous Systems

next hop 12.24.0.1 via 12.24.0.1/32
via 12.24.0.2, 3 dependencies, recursive, backup
next hop 12.24.0.2 via 12.24.0.2/32
Load distribution: 0 (refcount 1)
Hash OK Interface Address
0 Y MgmtEth0/RP0/CPU0/0 12.24.0.1

2. Verify the presence of the backup (best external) path for BGP.
Router# show bgp vrf foo 206.1.1.1/32

BGP routing table entry for 206.1.1.1/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 6 6
Local Label: 3
Paths: (1 available, best #1)
Advertised to peers (in unique update groups):
100.100.100.1
Path #1: Received by speaker 0
1.1.1.1 from 1.1.1.1 (200.200.200.1)
Origin incomplete, metric 0, localpref 100, weight 32768, valid,
internal, best
2.2.2.2 from 2.2.2.2 (100.100.100.1)
Origin incomplete, metric 0, localpref 100, weight 32768, valid,
external, backup, best-external

Command Line Interface (CLI) Consistency for BGP Commands
The Border Gateway Protocol (BGP) commands use disable keyword to disable a feature. The keyword
inheritance-disable disables the inheritance of the feature properties from the parent level.

BGP Additional Paths
Table 5: Feature History Table

Feature DescriptionRelease
Information

Feature Name

This features allows flexibility and granular control of the
advertisement of additional paths based on the neighbor
outbound policy configuration.

This is done by allowing configuration of combinations
diff erent path selection procedures unlike singular path
selection, and extending neighbor outpound policy to have
finer control of the path types to be advertised.

This feature enables operational efficiency to manage
additional paths and reduce scale of the paths in a typical
clustered network architecture.

Without this feature, the path scale limitation of the
memory is impacted, and control plane convergence issues
develop because of the excessive number of paths.

Release 7.3.15Additonal path control per
neighbor

Implementing BGP
66

Implementing BGP
Command Line Interface (CLI) Consistency for BGP Commands

The Border Gateway Protocol (BGP) Additional Paths feature modifies the BGP protocol machinery for a
BGP speaker to be able to send multiple paths for a prefix. This gives 'path diversity' in the network. The add
path enables BGP prefix independent convergence (PIC) at the edge routers.

BGP add path enables add path advertisement in an iBGP network and advertises the following types of paths
for a prefix:

• Backup paths—to enable fast convergence and connectivity restoration.

• Group-best paths—to resolve route oscillation.

• All paths—to emulate an iBGP full-mesh.

iBGP Multipath Load Sharing
When a Border Gateway Protocol (BGP) speaking router that has no local policy configured, receives multiple
network layer reachability information (NLRI) from the internal BGP (iBGP) for the same destination, the
router will choose one iBGP path as the best path. The best path is then installed in the IP routing table of the
router. The iBGP Multipath Load Sharing feature enables the BGP speaking router to select multiple iBGP
paths as the best paths to a destination. The best paths or multipaths are then installed in the IP routing table
of the router.

Configure iBGP Multipath Load Sharing
Perform this task to configure the iBGP Multipath Load Sharing:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family {ipv4|ipv6} {unicast|multicast}
4. maximum-paths ibgp number

5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family {ipv4|ipv6} {unicast|multicast}

Implementing BGP
67

Implementing BGP
iBGP Multipath Load Sharing

Example:
Router(config-bgp)# address-family ipv4 multicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 4 maximum-paths ibgp number

Example:
Router(config-bgp-af)# maximum-paths ibgp 30

Configures the maximum number of iBGP paths for load sharing.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

iBGP Multipath Loadsharing Configuration: Example

The following is a sample configuration where 30 paths are used for loadsharing:

router bgp 100
address-family ipv4 multicast
maximum-paths ibgp 30
!
!
end

Accumulated IGP Attribute for BGP
Table 6: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature enables you to implement multiple contiguous
BGPAutonomous Systems under a single administration.

You can allow BGP to make its routing decisions based
on the IGP metric just as an IGP would do.

Release 7.3.2Accumulated IGP
Attribute for BGP

Overview of BGP AIGP

The Accumulated IGP (AIGP) Attribute for BGP is an optional non-transitive BGP path Attribute. IANA
assigned the attribute type code for the AIGP attribute. The value field of the AIGP attribute is defined as a
set of Type/Length/Value elements (TLVs). The AIGP TLV contains the Accumulated IGP metric.

Implementing BGP
68

Implementing BGP
Accumulated IGP Attribute for BGP

The AIGP feature is required in the network to simulate the current OSPF behavior of computing the distance
associated with a path. OSPF or LDP carries the prefix or label information only in the local area. Then, BGP
carries the prefix label to all the remote areas by redistributing the routes into BGP at area boundaries. The
routes or labels are then advertised using LSPs. The next hop for the route is changed at each ABR to local
router which removes the need to leak OSPF routes across area boundaries. The bandwidth available on each
of the core links is mapped to OSPF cost, hence it is imperative that BGP carries this cost correctly between
each of the PEs. This functionality is achieved by using the AIGP.

Originate Prefixes with AIGP

Origination of routes with the accumulated interior gateway protocol (AIGP) metric is controlled by
configuration. AIGP attributes are attached to redistributed routes that satisfy following conditions.

• The protocol redistributing the route is enabled for AIGP.

• The route is an interior gateway protocol (IGP) route redistributed into border gateway protocol (BGP).
The value assigned to the AIGP attribute is the value of iGP next hop to the route or as set by a
route-policy.

• The route is a static route redistributed into BGP. The value assigned is the value of next hop to the route
or as set by a route-policy.

• The route is imported into BGP through network statement. The value assigned is the value of next hop
to the route or as set by a route-policy.

Configuration Examples

Originate prefixes with AIGP.

Router(config)# route-policy aip_policy
Router(config-rpl)# set aigp-metric igp-cost
Router(config-rpl)# exit
Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# redistribute ospf route-policy aip_policy

Running Configuration

route-policy aip_policy
set aigp-metric igp-cost
!
router bgp 100
address-family ipv4 unicast
redistribute ospf route-policy aip_policy

Verification

Verify the status of the AIGP attribute.
Router# show bgp 10.0.0.1
Thu Sep 30 21:21:15.279 EDT
BGP routing table entry for 10.0.0.1/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 4694 4694
Last Modified: Sep 30 21:20:09.000 for 00:01:06

Implementing BGP
69

Implementing BGP
Accumulated IGP Attribute for BGP

Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
192.168.0.1 (metric 2) from 192.168.0.1 (192.168.0.6)
Received Label 24000
Origin IGP, localpref 80, aigp metric 900, valid, internal, best, group-best, labeled-unicast
Received Path ID 1, Local Path ID 1, version 4694
Originator: 192.168.0.6, Cluster list: 192.168.0.1
Total AIGP metric 902 <-- AIGP attribute received.

Accumulated Interior Gateway Protocol Attribute
The Accumulated Interior Gateway Protocol (AiGP)Attribute is an optional non-transitive BGP Path Attribute.
The attribute type code for the AiGPAttribute is to be assigned by IANA. The value field of the AiGPAttribute
is defined as a set of Type/Length/Value elements (TLVs). The AiGP TLV contains the Accumulated IGP
Metric.

The AiGP feature is required in the 3107 network to simulate the current OSPF behavior of computing the
distance associated with a path. OSPF/LDP carries the prefix/label information only in the local area. Then,
BGP carries the prefix/lable to all the remote areas by redistributing the routes into BGP at area boundaries.
The routes/labels are then advertised using LSPs. The next hop for the route is changed at each ABR to local
router which removes the need to leak OSPF routes across area boundaries. The bandwidth available on each
of the core links is mapped to OSPF cost, hence it is imperative that BGP carries this cost correctly between
each of the PEs. This functionality is achieved by using the AiGP.

BGP Accept Own
The BGP Accept Own feature enables handling of self-originated VPN routes, which a BGP speaker receives
from a route-reflector (RR). A "self-originated" route is one which was originally advertized by the speaker
itself. As per BGP protocol [RFC4271], a BGP speaker rejects advertisements that were originated by the
speaker itself. However, the BGP Accept Own mechanism enables a router to accept the prefixes it has
advertised, when reflected from a route-reflector that modifies certain attributes of the prefix. A special
community called ACCEPT-OWN is attached to the prefix by the route-reflector, which is a signal to the
receiving router to bypass the ORIGINATOR_ID and NEXTHOP/MP_REACH_NLRI check. Generally, the
BGP speaker detects prefixes that are self-originated through the self-origination check (ORIGINATOR_ID,
NEXTHOP/MP_REACH_NLRI) and drops the received updates. However, with the Accept Own community
present in the update, the BGP speaker handles the route.

One of the applications of BGP Accept Own is auto-configuration of extranets within MPLS VPN networks.
In an extranet configuration, routes present in one VRF is imported into another VRF on the same PE. Normally,
the extranet mechanism requires that either the import-rt or the import policy of the extranet VRFs be modified
to control import of the prefixes from another VRF. However, with Accept Own feature, the route-reflector
can assert that control without the need for any configuration change on the PE. This way, the Accept Own
feature provides a centralized mechanism for administering control of route imports between different VRFs.

BGP Accept Own is supported only for VPNv4 and VPNv6 address families in neighbor configuration mode.

Route-Reflector Handling Accept Own Community and RTs

TheACCEPT_OWNcommunity is originated by the InterAS route-reflector (InterAS-RR) using an outbound
route-policy. To minimize the propagation of prefixes with the ACCEPT_OWN community attribute, the
attribute will be attached on the InterAS-RR using an outbound route-policy towards the originating PE. The

Implementing BGP
70

Implementing BGP
Accumulated Interior Gateway Protocol Attribute

InterAs-RR adds the ACCEPT-OWN community and modifies the set of RTs before sending the new Accept
Own route to the attached PEs, including the originator, through intervening RRs. The route is modified via
route-policy.

Accept Own Configuration Example

In this configuration example:

• PE11 is configured with Customer VRF and Service VRF.

• OSPF is used as the IGP.

• VPNv4 unicast and VPNv6 unicast address families are enabled between the PE and RR neighbors and
IPv4 and IPv6 are enabled between PE and CE neighbors.

The Accept Own configuration works as follows:

1. CE1 originates prefix X.

2. Prefix X is installed in customer VRF as (RD1:X).

3. Prefix X is advertised to IntraAS-RR11 as (RD1:X, RT1).

4. IntraAS-RR11 advertises X to InterAS-RR1 as (RD1:X, RT1).

5. InterAS-RR1 attaches RT2 to prefix X on the inbound and ACCEPT_OWN community on the outbound
and advertises prefix X to IntraAS-RR31.

6. IntraAS-RR31 advertises X to PE11.

7. PE11 installs X in Service VRF as (RD2:X,RT1, RT2, ACCEPT_OWN).

Implementing BGP
71

Implementing BGP
BGP Accept Own

Remote PE: Handling of Accept Own Routes

Remote PEs (PEs other than the originator PE), performs bestpath calculation among all the comparable
routes. The bestpath algorithm has been modified to prefer an Accept Own path over non-Accept Own path.
The bestpath comparison occurs immediately before the IGP metric comparison. If the remote PE receives
an Accept Own path from route-reflector 1 and a non-Accept Own path from route-reflector 2, and if the paths
are otherwise identical, the Accept Own path is preferred. The import operates on the Accept Own path.

Configuring BGP Accept Own
Perform this task to configure BGP Accept Own:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. update-source type interface-path-id

6. address-family {vpnv4 unicast | vpnv6 unicast}
7. accept-own [inheritance-disable]

DETAILED STEPS

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
Router(config)#router bgp 100

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
Router(config-bgp)#neighbor 10.1.2.3

Step 3

Assigns a remote autonomous system number to the
neighbor.

remote-as as-number

Example:

Step 4

Router(config-bgp-nbr)#remote-as 100

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source type interface-path-id

Example:
Router(config-bgp-nbr)#update-source Loopback0

Step 5

Specifies the address family as VPNv4 or VPNv6 and enters
neighbor address family configuration mode.

address-family {vpnv4 unicast | vpnv6 unicast}

Example:

Step 6

Implementing BGP
72

Implementing BGP
Configuring BGP Accept Own

PurposeCommand or Action
Router(config-bgp-nbr)#address-family vpnv6 unicast

Enables handling of self-originated VPN routes containing
Accept_Own community.

accept-own [inheritance-disable]

Example:

Step 7

Use the inheritance-disable keyword to disable the "accept
own" configuration and to prevent inheritance of
"acceptown" from a parent configuration.

Router(config-bgp-nbr-af)#accept-own

BGP Link-State
BGPLink-State (LS) is an Address Family Identifier (AFI) and Sub-address Family Identifier (SAFI) originally
defined to carry interior gateway protocol (IGP) link-state information through BGP. The BGPNetwork Layer
Reachability Information (NLRI) encoding format for BGP-LS and a new BGP Path Attribute called the
BGP-LS attribute are defined in RFC7752. The identifying key of each Link-State object, namely a node,
link, or prefix, is encoded in the NLRI and the properties of the object are encoded in the BGP-LS attribute.

IGPs do not use BGP LS data from remote peers. BGP does not download the received BGP LS data to any
other component on the router.

Note

An example of a BGP-LS application is the Segment Routing Path Computation Element (SR-PCE). The
SR-PCE can learn the SR capabilities of the nodes in the topology and the mapping of SR segments to those
nodes. This can enable the SR-PCE to perform path computations based on SR-TE and to steer traffic on
paths different from the underlying IGP-based distributed best-path computation.

The following figure shows a typical deployment scenario. In each IGP area, one or more nodes (BGP speakers)
are configured with BGP-LS. These BGP speakers form an iBGP mesh by connecting to one or more
route-reflectors. This way, all BGP speakers (specifically the route-reflectors) obtain Link-State information
from all IGP areas (and from other ASes from eBGP peers).

Implementing BGP
73

Implementing BGP
BGP Link-State

https://datatracker.ietf.org/doc/rfc7752

Exchange Link State Information with BGP Neighbor

The following example shows how to exchange link-state information with a BGP neighbor:

Router# configure
Router(config)# router bgp 1
Router(config-bgp)# neighbor 10.0.0.2
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# address-family link-state link-state
Router(config-bgp-nbr-af)# exit

IGP Link-State Database Distribution

A given BGP node may have connections to multiple, independent routing domains. IGP link-state database
distribution into BGP-LS is supported for both OSPF and IS-IS protocols in order to distribute this information
on to controllers or applications that desire to build paths spanning or including these multiple domains.

To distribute OSPFv2 link-state data using BGP-LS, use the distribute link-state command in router
configuration mode.

Router# configure
Router(config)# router ospf 100
Router(config-ospf)# distribute link-state instance-id 32

Implementing BGP
74

Implementing BGP
BGP Link-State

Usage Guidelines and Limitations

• BGP-LS supports IS-IS and OSPFv2.

• The identifier field of BGP-LS (referred to as the Instance-ID) identifies the IGP routing domain where
the NLRI belongs. The NLRIs representing link-state objects (nodes, links, or prefixes) from the same
IGP routing instance must use the same Instance-ID value.

• When there is only a single protocol instance in the network where BGP-LS is operational, we recommend
configuring the Instance-ID value to 0.

• Assign consistent BGP-LS Instance-ID values on all BGP-LS Producers within a given IGP domain.

• NLRIs with different Instance-ID values are considered to be from different IGP routing instances.

• Unique Instance-ID values must be assigned to routing protocol instances operating in different IGP
domains. This allows the BGP-LS Consumer (for example, SR-PCE) to build an accurate segregated
multi-domain topology based on the Instance-ID values, even when the topology is advertised via BGP-LS
by multiple BGP-LS Producers in the network.

• If the BGP-LS Instance-ID configuration guidelines are not followed, a BGP-LS Consumer may see
duplicate link-state objects for the same node, link, or prefix when there are multiple BGP-LS Producers
deployed. This may also result in the BGP-LS Consumers getting an inaccurate network-wide topology.

Configuring BGP Link-state
To exchange BGP link-state (LS) information with a BGP neighbor, perform these steps:

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 3 neighbor ip-address

Example:

Router(config-bgp)# neighbor 10.0.0.2

Configures a CE neighbor. The ip-address argument must be a private address.

Step 4 remote-as as-number

Implementing BGP
75

Implementing BGP
Configuring BGP Link-state

Example:

Router(config-bgp-nbr)# remote-as 1

Configures the remote AS for the CE neighbor.

Step 5 address-family link-state link-state

Example:

Router(config-bgp-nbr)# address-family link-state link-state

Distributes BGP link-state information to the specified neighbor.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Domain Distinguisher
To configure unique identifier four-octet ASN, perform these steps:

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 3 address-family link-state link-state

Example:

Router(config-bgp)# address-family link-state link-state

Enters address-family link-state configuration mode.

Implementing BGP
76

Implementing BGP
Configuring Domain Distinguisher

Step 4 domain-distinguisher unique-id

Example:

Router(config-bgp-af)# domain-distinguisher 1234

Configures unique identifier four-octet ASN. Range is from 1 to 4294967295.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Permanent Network
BGP permanent network feature supports static routing through BGP. BGP routes to IPv4 or IPv6 destinations
(identified by a route-policy) can be administratively created and selectively advertised to BGP peers. These
routes remain in the routing table until they are administratively removed. A permanent network is used to
define a set of prefixes as permanent, that is, there is only one BGP advertisement or withdrawal in upstream
for a set of prefixes. For each network in the prefix-set, a BGP permanent path is created and treated as less
preferred than the other BGP paths received from its peer. The BGP permanent path is downloaded into RIB
when it is the best-path.

The permanent-network command in global address family configurationmode uses a route-policy to identify
the set of prefixes (networks) for which permanent paths is to be configured. The advertise permanent-network
command in neighbor address-family configuration mode is used to identify the peers to whom the permanent
paths must be advertised. The permanent paths is always advertised to peers having the advertise
permanent-network configuration, even if a different best-path is available. The permanent path is not advertised
to peers that are not configured to receive permanent path.

The permanent network feature supports only prefixes in IPv4 unicast and IPv6 unicast address-families under
the default Virtual Routing and Forwarding (VRF).

Restrictions

These restrictions apply while configuring the permanent network:

• Permanent network prefixes must be specified by the route-policy on the global address family.

• You must configure the permanent network with route-policy in global address family configuration
mode and then configure it on the neighbor address family configuration mode.

• When removing the permanent network configuration, remove the configuration in the neighbor address
family configuration mode and then remove it from the global address family configuration mode.

Implementing BGP
77

Implementing BGP
BGP Permanent Network

Configuring BGP Permanent Network
Perform this task to configure BGP permanent network. You must configure at least one route-policy to
identify the set of prefixes (networks) for which the permanent network (path) is to be configured.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 prefix-set prefix-set-name

Example:

Router(config)# prefix-set PERMANENT-NETWORK-IPv4
Router(config-pfx)# 1.1.1.1/32,
Router(config-pfx)# 2.2.2.2/32,
Router(config-pfx)# 3.3.3.3/32
Router(config-pfx)# end-set

Enters prefix set configuration mode and defines a prefix set for contiguous and non-contiguous set of bits.

Step 3 exit

Example:

Router(config-pfx)# exit

Exits prefix set configuration mode and enters global configuration mode.

Step 4 route-policy route-policy-name

Example:

Router(config)# route-policy POLICY-PERMANENT-NETWORK-IPv4
Router(config-rpl)# if destination in PERMANENT-NETWORK-IPv4 then
Router(config-rpl)# pass
Router(config-rpl)# endif

Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 5 end-policy

Example:

Router(config-rpl)# end-policy

Ends the definition of a route policy and exits route policy configuration mode.

Step 6 router bgp as-number

Example:

Implementing BGP
78

Implementing BGP
Configuring BGP Permanent Network

Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode.

Step 7 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 8 permanent-network route-policy route-policy-name

Example:

Router(config-bgp-af)# permanent-network route-policy POLICY-PERMANENT-NETWORK-IPv4

Configures the permanent network (path) for the set of prefixes as defined in the route-policy.

Step 9 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 10 show bgp {ipv4 | ipv6} unicast prefix-set

Example:

show bgp ipv4 unicast

(Optional) Displays whether the prefix-set is a permanent network in BGP.

Advertise Permanent Network
Perform this task to identify the peers to whom the permanent paths must be advertised.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Implementing BGP
79

Implementing BGP
Advertise Permanent Network

Step 2 router bgp as-number

Example:
Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode.

Step 3 neighbor ip-address

Example:

Router(config-bgp)# neighbor 10.255.255.254

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 4713

Assigns the neighbor a remote autonomous system number.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 6 advertise permanent-network

Example:

Router(config-bgp-nbr-af)# advertise permanent-network

Specifies the peers to whom the permanent network (path) is advertised.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 8 show bgp {ipv4 | ipv6} unicast neighbor ip-address

Example:

Router# show bgp ipv4 unicast neighbor 10.255.255.254

(Optional) Displays whether the neighbor is capable of receiving BGP permanent networks.

Implementing BGP
80

Implementing BGP
Advertise Permanent Network

BGP-RIB Feedback Mechanism for Update Generation
TheBorder Gateway Protocol-Routing InformationBase (BGP-RIB) feedbackmechanism for update generation
feature avoids premature route advertisements and subsequent packet loss in a network. This mechanism
ensures that routes are installed locally, before they are advertised to a neighbor.

BGPwaits for feedback fromRIB indicating that the routes that BGP installed in RIB are installed in forwarding
information base (FIB) before BGP sends out updates to the neighbors. RIB uses the the BCDL feedback
mechanism to determine which version of the routes have been consumed by FIB, and updates the BGP with
that version. BGP will send out updates of only those routes that have versions up to the version that FIB has
installed. This selective update ensures that BGP does not send out premature updates resulting in attracting
traffic even before the data plane is programmed after router reload, LC OIR, or flap of a link where an
alternate path is made available.

To configure BGP to wait for feedback from RIB indicating that the routes that BGP installed in RIB are
installed in FIB, before BGP sends out updates to neighbors, use the update wait-install command in router
address-family IPv4 or router address-family VPNv4 configurationmode. The show bgp, show bgp neighbors,
and show bgp process performance-statistics commands display the information from update wait-install
configuration.

Default-originate Under VRF
BGP advertises default routes to provider-edge neighbors, based on per-VRF configuration.

User-Defined Martian Address Check
When you configure BGP on a Cisco 8000 Series Router, you can prevent routers from accessing certain sites
with certain IP address prefixes. These routers drop packets from such IP addresses, and such IP addresses
are known as Martian addresses. However, you can enable routers with BGP IPv4 address-family or BGP
IPv6 address-family configuration to access these sites by configuring the command default-martian-check
disable. These sites are sites with certain IPv4 and IPv6 prefixes as follows:

• IPv4 address prefixes

• 0.0.0.0/8

• 127.0.0.0/8

• 224.0.0.0/4

• IPv6 address prefixes

• ::

• ::0002 - ::ffff

• ::ffff:a.b.c.d

• fe80:xxxx

• ffxx:xxxx

Implementing BGP
81

Implementing BGP
BGP-RIB Feedback Mechanism for Update Generation

Restrictions

Routers with OSPF or IS-IS Protocols cannot access these sites even by having the default-martian-check
disable command configured.

Configuration Example

To allow routes from Martian addresses, use the following steps:

1. Enter BGP IPv4 or BGP IPv6 address-family configuration mode.

2. Configure the address-family modifier as a unicast address.

3. Disable the Martian address check.

Configuration

/* Enter BGP IPv4 or BGP IPv6 address-family configuration mode. */
Router# configure
Router(config)# router bgp 100

/* Configure the address-family modifier as unicast. */
Router(config-bgp)# address-family ipv4 unicast

/* Disable the martian address check. */
Router(config-bgp-af)# default-martian-check disable
Router(config-bgp-af)# commit

Verification

To verify if you have enabled or disabled a Martian address check, you can use the show bgp ipv4 unicast
command or show bgp ipv6 unicast command:
Router# show bgp ipv6 unicast
BGP router identifier 2.2.2.1, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0800000 RD version: 29
BGP main routing table version 29
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
Dampening enabled
BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*>i::/0 1:1:1:1:1:1:1:1 100 0 i
* i192:1::/112 1.1.1.1 0 100 0 ?
*>i 1:1:1:1:1:1:1:1 0 100 0 ?
* iff11:1123::/64 1.1.1.1 2 100 0 ?
*>i 1:1:1:1:1:1:1:1 2 100 0 ?

BGP Multipath Enhancements
• Overwriting of next-hop calculation for multipath prefixes is not allowed. The next-hop-unchanged

multipath command disables overwriting of next-hop calculation for multipath prefixes.

Implementing BGP
82

Implementing BGP
BGP Multipath Enhancements

• The ability to ignore as-path onwards while computing multipath is added. The bgp multipath as-path
ignore onwards command ignores as-path onwards while computing multipath.

When multiple connected routers start ignoring as-path onwards while computing multipath, it causes routing
loops. Therefore, you should not configure the bgp multipath as-path ignore onwards command on routers
that can form a loop.

Figure 11: Topology to illustrate formation of loops

Consider three routers R1, R2 and R3 in different autonomous systems (AS-1, AS-2, and AS-3). The routers
are connected with each other. R1 announces a prefix to R2 and R3. Both R2 and R3 are configured with
multipath and also with bgp multipath as-path ignore onwards command. Since R3 is configured as multipath,
R2 will send part of its traffic to R3. Similarly, R3 will send part of its traffic to R2. This creates a forwarding
loop between R3 and R2. Therefore, to avoid such forwarding loops you should not configure the bgp
multipath as-path ignore onwards command on connected routers.

Overview of BGP Monitoring Protocol
The BGPMonitoring Protocol (BMP) feature enables monitoring of BGP speakers (called BMP clients). You
can configure a device to function as a BMP server, which monitors either one or several BMP clients, which
in turn, has several active peer sessions configured. You can also configure a BMP client to connect to one
or more BMP servers. The BMP feature enables configuration of multiple BMP servers (configured as primary
servers) to function actively and independent of each other, simultaneously to monitor BMP clients.

The BMP Protocol provides access to the Adjacent Routing Information Base, Incoming (Adj-RIB-In) table
of a peer on an ongoing basis and a periodic dump of certain statistics that the monitoring station can use for
further analysis. The BMP provides pre-policy view of the Adj-RIB-In table of a peer.

There can be several BMP servers configured globally across all the BGP instances. The BMP severs configured
are common across multiple speaker instances and each BGP peer in an instance can be configured for

Implementing BGP
83

Implementing BGP
Overview of BGP Monitoring Protocol

monitoring by all or a subset of the BMP servers, giving a 'any-to-any' map between BGP peers and BMP
servers from the point of view of a BGP speaker. If a BMP server is configured before any of the BGP peers
come up, then the monitoring will start as soon as the BGP peers come up. A BMP server configuration can
be removed only when there are no BGP peers configured to be monitored by that particular BMP server.

Sessions between BMP clients and BMP servers operate over plain TCP (no encryption/encapsulation). If a
TCP session with the BMP server is not established, the client retries to connect every 7 seconds.

The BMP server does not send anymessages to its clients (BGP speakers). Themessage flow is in one direction
only—from BGP speakers to the BMP servers

A maximum of eight BMP servers can be configured on the router. Each BMP server is specified by a server
ID and certain parameters such as IP address, port number, etc are configurable. Upon successful configuration
of a BMP server with host and port details, the BGP speaker attempts to connect to BMP Server. Once the
TCP connection is setup, an Initiation message is sent as first message.

The bmp server command enables the user to configure multiple—independent and asynchronous—BMP
server connections.

All neighbors for a BGP speaker need not necessarily be BMP clients. BMP clients are the ones that have
direct TCP connection with a BMP server. Each of these BGP speakers can have many BGP neighbors or
peers. Under a BGP speaker, if any of its neighbors are configured for BMP monitoring, only that particular
peer router's messages are sent to BMP servers.

The session connection to BMP server is attempted after an initial-delay at the BMP client. This initial-delay
can be configured. If the initial-delay is not configured, then the default connection delay of 7 seconds is used.
Configuring the initial delay becomes significant under certain circumstances where, if multiple BMP servers'
states toggle closely and refresh delay is so small, then this might result in redundant route-refreshes being
generated. This causes considerable network traffic and load on the device. Having different initial delays
can reduce the load spike on the network and router.

After the initial delay, TCP connection to BMP servers are attempted. Once the server connections are up, it
is checked if there are any peers enabled for monitoring. Once a BGP peer that is already being monitored is
in the “ESTAB” state, speaker sends a “peer-up” message for that peer to the BMP server. After the BGP
peer receives a route-refresh request, neighbor sends the updates. This route refresh is initiated based on a
delay configured for each BMP server. This is called route refresh delay. When there are multiple neighbors
to be monitored, each neighbor is set a refresh delay based upon the BMP server they are enabled for. Once
all the BGP neighbors have sent the updates in response to the refresh requests, the tables will be up to date
in the BMP Server. If a neighbor establishes connection after BMP monitoring has begun, it does not require
a route-refresh request. All received routes from that neighbor is sent to BMP servers.

In the case of BMP Pre Inbound Policy Route monitoring, when a new BMP server comes up, route refresh
requests are sent to the peer router by the BGP speaker. However, in the case of BMP Post Inbound Policy
Route Monitoring route refresh request are not sent to the peer routers when the new BMP server comes up
because the BMP table is used for update generation.

Note

It is advantageous to batch up refresh requests to BGP peers, if several BMP servers are activated in quick
succession. Use the bmp server initial-refresh-delay command to configure a delay in triggering the refresh
mechanism when the first BMP server comes up. If other BMP servers come online within this time-frame,
only one set of refresh requests is sent to the BGP peers. You can also configure the bmp server
initial-refresh-delay skip command to skip all refresh requests from BGP speakers and just monitor all
incoming messages from the peers.

Implementing BGP
84

Implementing BGP
Overview of BGP Monitoring Protocol

In a client-server configuration, it is recommended that the resource load of the devices be kept minimal and
adding excessive network traffic must be avoided. In the BMP configuration, you can configure various delay
timers on the BMP server to avoid flapping during connection between the server and client.

BGP—Multiple Cluster IDs
The BGP—Multiple Cluster IDs feature allows an iBGP neighbor (usually a route reflector) to have multiple
cluster IDs: a global cluster ID and additional cluster IDs that are assigned to clients (neighbors). Prior to the
introduction of this feature, a device could have a single, global cluster ID.

When a network administrator configures per-neighbor cluster IDs:

• The loop prevention mechanism based on a CLUSTER_LIST is automatically modified to take into
account multiple cluster IDs.

• A network administrator can disable client-to-client route reflection based on cluster ID.

Restriction

The BGP Multiple Cluster-IDs feature only works in default VRF.

BGP Flowspec Overview
The BGP flow specification (flowspec) feature allows you to rapidly deploy and propagate filtering and
policing functionality among many BGP peer routers to mitigate the effects of a distributed denial-of-service
(DDoS) attack over your network.

BGP Flowspec feature allows you to construct instructions to match a particular flow with IPv4 and IPv6
source, IPv4 and IPv6 destination, L4 parameters and packet specifics such as length, fragment, destination
port and source port, actions that must be taken, such as dropping the traffic, or policing it at a definite rate,
or redirect the traffic, through a BGP update. In the BGP update, the flowspec matching criteria is represented
by Network Layer Reachability Information (BGP NLRI) and the actions are represented by BGP extended
communities.

You can use the BGP Flowspec feature for mitigation of DDoS attack. When a DDoS attack occurs on a
particular host inside a network, you can send a flowspec update to the border routers so that the attack traffic
can be policed or dropped, or even redirected elsewhere. For example, to an appliance that cleans the traffic
by filtering out the bad traffic and forward only the good traffic toward the affected host.

Once flowspecs have been received by a router and programmed in applicable line cards, any active L3 ports
on those line cards start processing ingress traffic according to flowspec rules.

The BGP Flowspec feature cannot coexist with MAP-E and PBR on a given interface. If you configure BGP
Flowspec with PBR, the router does not display any error or system message. The router ignores the BGP
Flowspec configuration and the feature will not function.

Flow Specifications
A flow specification is an n-tuple consisting of several matching criteria that can be applied to IP traffic. A
given IP packet matches the defined flow if it matches all the specified criteria.

Every flow-spec route is effectively a rule, consisting of a matching part (encoded in the NLRI field) and an
action part (encoded as a BGP extended community). The BGP flowspec rules are converted internally to
equivalent C3PL policy representing match and action parameters. The match and action support can vary

Implementing BGP
85

Implementing BGP
BGP—Multiple Cluster IDs

based on underlying platform hardware capabilities. Sections Supported Matching Criteria and Actions and
Traffic Filtering Actions provide information on the supported match (tuple definitions) and action parameters.

Up to 2,000 flowspec rules are supported in Cisco 8000.Note

Supported Matching Criteria and Actions

Table 7: Feature History Table

DescriptionRelease NameFeature Name

This release introduces additional
BGP FlowSpec actions for
enhanced security against
distributed denial-of-service
(DDoS) attacks.

• Redirect Nexthop VRF only:
Redirects the traffic to a
different Autonomous System
Number (ASN).

• Rate Limit and Redirect IPv4
or IPv6 Nexthop: Redirects
the traffic to the indicated
nexthop IPv4 or IPv6 address.
Policer rate regulates the
traffic.

• Rate Limit and Redirect
Nexthop VRF: Redirects the
traffic to the next hop IPv4
address through a VRF.
Policer rate regulates the
traffic. This action is
supported only on Q200
Silicon One ASIC.

Release 7.3.3Additional BGP FlowSpec Actions
for Enhanced Security

Implementing BGP
86

Implementing BGP
Supported Matching Criteria and Actions

Table 8: Feature History Table

DescriptionRelease NameFeature Name

A BGP flow specification consists
of several matching criteria
encoded in the NLRI that is applied
to IP traffic. A given IP packet must
match all the specified criteria.
Network layer reachability
information (NLRI) exchanges
routing information and matching
criteria between BGP peers,
indicating how to reach the
destination.

The following NLRI types are
supported:

• Type 7: IPv4 or IPv6 ICMP
type

• Type 8: IPv4 or IPv6 ICMP
code

• Type 9: IPv4 TCP flags (2
bytes include reserved bits)

• Type 10: IPv4 Packet length

• Type 11: IPv4 or IPv6 DSCP

• Type 12: IPv4 fragmentation
bits

Release 7.3.15BGP FlowSpec NLRI types

This feature provides information
on the actions that can be associated
with a BGP flow. The traffic
filtering flow specification is
applied based on the specified rule.
The following extended community
values that can be used to specify
particular action:

• Set DSCP

• Redirect IPv4 or IPv6 next
hop

Release 7.3.15BGP FlowSpec Actions

Restrictions

BGP Flowspec statistics are not supported when there is Redirect Nexthop VRF.

BGP Flowspec statistics are supported when there is a policer rate limit.

Implementing BGP
87

Implementing BGP
Supported Matching Criteria and Actions

BGP Flowspec statistics are supported in Redirect action only when a policer is attached. BGP Flowspec
statistics is not supported for Redirect action alone.

L3VPN VRF is not supported. However, plain VRF is supported.

Overview

A flow specification NLRI type may include several components such as destination prefix, source prefix,
protocol, ports, and so on. This NLRI is treated as an opaque bit string prefix by BGP. Each bit string identifies
a key to a database entry with which a set of attributes can be associated. This NLRI information is encoded
using MP_REACH_NLRI and MP_UNREACH_NLRI attributes. Whenever the corresponding application
does not require Next-Hop information, this is encoded as a 0-octet length Next Hop in theMP_REACH_NLRI
attribute, and ignored. The NLRI field of the MP_REACH_NLRI and MP_UNREACH_NLRI is encoded as
a 1- or 2-octet NLRI length field followed by a variable-length NLRI value. The NLRI length is expressed
in octets.

The flow specification NLRI type consists of several optional sub-components. A specific packet is considered
to match the flow specification when it matches the intersection and of all the components present in the
specification. The following are the supported component types or tuples that you can define:

Value Input MethodDescription and Syntax ConstructionQoS Match FieldsBGP
Flowspec
NLRI type

Prefix lengthDefines the destination prefix to match.
Prefixes are encoded in the BGP UPDATE
messages as a length in bits followed by
enough octets to contain the prefix
information.

Encoding: <type (1 octet), prefix length (1
octet), prefix>

Syntax:

match destination-address {ipv4 | ipv6}
address/mask length

IPv4 or IPv6
destination address

Type 1

Prefix lengthDefines the source prefix to match.

Encoding: <type (1 octet), prefix-length (1
octet), prefix>

Syntax:

match source-address {ipv4 | ipv6}
address/mask length

IPv4 or IPv6 source
address

Type 2

Single value

Multi-value
range is
not
supported

Note

Contains a set of {operator, value} pairs that
are used to match the IP protocol value byte
in IP packets.

Encoding: <type (1 octet), [op, value]+>

Syntax:

match protocol {protocol-value|[min-value
- max-value]}

IPv4 last next header
or IPv6 protocol

Type 3

Implementing BGP
88

Implementing BGP
Supported Matching Criteria and Actions

Multi-value rangeDefines a list of {operation, value} pairs that
matches source or destination TCP or UDP
ports. Values are encoded as 1- or 2-byte
quantities. Port, source port, and destination
port components evaluate to FALSE if the IP
protocol field of the packet has a value other
than TCP or UDP. If the packet is fragmented
and this is not the first fragment, or if the
system in unable to locate the transport
header.

Encoding: <type (1 octet), [op, value]+>

Syntax:

match source-port{source-port-value
|min-value -max-value}

match
destination-port{destination-port-value
|min-value -max-value}

IPv4 or IPv6 source
or destination port

Type 4

Multi-value rangeDefines a list of {operation, value} pairs used
to match the destination port of a TCP or UDP
packet. Values are encoded as 1- or 2-byte
quantities.

Encoding: <type (1 octet), [op, value]+>

Syntax:

match destination-port
{destination-port-value |[min-value -
max-value]}

IPv4 or IPv6
destination port

Type 5

Multi-value rangeDefines a list of {operation, value} pairs used
to match the source port of a TCP or UDP
packet. Values are encoded as 1- or 2-byte
quantities.

Encoding: <type (1 octet), [op, value]+>

Syntax:

match source-port {source-port-value
|[min-value - max-value]}

IPv4 or IPv6 Source
port

Type 6

Implementing BGP
89

Implementing BGP
Supported Matching Criteria and Actions

Single value

Multi-value
range is
not
supported

Note

Defines a list of {operation, value} pairs used
to match the type field of an ICMP packet.
Values are encoded using a single byte. The
ICMP type and code specifiers evaluate to
FALSE whenever the protocol value is not
ICMP.

Encoding: <type (1 octet), [op, value]+>

Syntax:

match{ipv4 | ipv6}icmp-type {value |
min-value -max-value}

IPv4 or IPv6 ICMP
type

Type 7

Single value

Multi-value
range is
not
supported

Note

Defines a list of {operation, value} pairs used
to match the code field of an ICMP packet.
Values are encoded using a single byte.

Syntax:

Encoding: <type (1 octet), [op, value]+>

match{ipv4 | ipv6}icmp-type {value |
min-value -max-value}

IPv4 or IPv6 ICMP
code

Type 8

Bit maskBitmask values can be encoded as a 1- or
2-byte bitmask. When a single byte is
specified, it matches byte 13 of the TCP
header, which contains bits 8 through 15 of
the 4th 32-bit word. When a 2-byte encoding
is used, it matches bytes 12 and 13 of the TCP
header with the data offset field having a
"don't care" value. As with port specifier, this
component evaluates to FALSE for packets
that are not TCP packets. This type uses the
bitmask operand format, which differs from
the numeric operator format in the lower
nibble.

Encoding: <type (1 octet), [op, bitmask]+>

Syntax:

match tcp-flag value bit-mask mask_value

IPv4 or IPv6 TCP
flags (2 bytes include
reserved bits)

Reserved
and NS
bit not
supported

Note

Type 9

Implementing BGP
90

Implementing BGP
Supported Matching Criteria and Actions

Multi-value rangeMatch on the total IP packet length (excluding
Layer 2, but including IP header). Values are
encoded using 1- or 2-byte quantities.

Encoding: <type (1 octet), [op, value]+>

Syntax:

matchpacket length {packet-length-value
|min-value -max-value}

IPv4 Packet length

Note • Reserved
and
NS
bit
not
supported

• IPv4
or
IPv6
support
is
available
for
the
packets
that
are
not
the
first
fragment
packets.

Type 10

Multi-value rangeDefines a list of (operation, value) pairs used
to match the 6-bit DSCP field. Values are
encoded using a single byte, whereas the two
most significant bits are zero and the six least
significant bits contain the DSCP value.

The DSCP does not contain
Flowspec statistics.

Note

Encoding: <type (1 octet), [op, value]+>

Syntax:

match dscp {dscp-value |min-value -
max-value}

IPv4 or IPv6 DSCPType 11

Implementing BGP
91

Implementing BGP
Supported Matching Criteria and Actions

Bit maskIdentifies a fragment-type as the match
criterion for a class map.

Encoding: <type (1 octet), [op, bitmask]+>

Syntax:

match fragment type [is-fragment]

IPv4 Fragmentation
bits

IPv4
support
is
available
for the
packets
that are
not the
first
fragment
packets.

IPv6
BGP
flowspec
does not
supports
Type 12
NRLI.

Note

Type 12

In a given flowspec rule, 2-tuple action combinations can be specified without restrictions. However, mixing
address family between matching criterion and actions are not allowed. For example, IPv4 matches cannot
be combined with IPv6 actions and vice versa.

Traffic Filtering Actions
The default action for a traffic filtering flow specification is to accept IP traffic that matches that particular
rule. The following extended community values can be used to specify particular actions:

The BGP flowspec actions rate limit and redirect are not supported together.

The BGP flowspec action redirect is supported only for nexthop IPv4 and IPv6 not with nexthop VRF IPv4
and IPv6.

Note

DescriptionPBR
Action

Extended
Community

Type

Implementing BGP
92

Implementing BGP
Traffic Filtering Actions

The traffic-rate extended community is a non-transitive extended
community across the autonomous-system boundary and uses
following extended community encoding:

The first two octets carry the 2-octet id, which can be assigned from
a 2-byte AS number. When a 4-byte AS number is locally present,
the 2 least significant bytes of such an AS number can be used. This
value is informational. The remaining 4 octets carry the rate
information in IEEE floating point [IEEE.754.1985] format, bytes
per second. A traffic-rate of 0 should result on all traffic for the
particular flow to be discarded.

Command syntax

police rate < > | drop

Drop

Police

traffic-rate 0

traffic-rate
<rate>

0x8006

The traffic marking extended community instructs a system tomodify
the differentiated service code point (DSCP) bits of a transiting IP
packet to the corresponding value. This extended community is
encoded as a sequence of 5 zero bytes followed by the DSCP value
encoded in the 6 least significant bits of 6th byte.

Command syntax

set dscp <6 bit value>

Set
DSCP

traffic-marking0x8009

Announces the reachability of one or more flowspec NLRI. When a
BGP speaker receives an UPDATE message with the redirect-to- IP
extended community it is expected to create a traffic filtering rule for
every flow-spec NLRI in the message that has this path as its best
path. The filter entry matches the IP packets described in the NLRI
field and redirects them or copies them towards the IPv4 or IPv6
address specified in the Network Address of Next-Hop field of the
associated MP_REACH_NLRI.

The redirect-to-IP extended community is valid with
any other set of flow-spec extended communities except
if that set includes a redirect-to-VRF extended
community (type 0x8008) and in that case the
redirect-to-IP extended community should be ignored.

Note

Redirect IP NH is supported only in default VRF.Note

Command syntax

redirect {ipv4 | ipv6} next-hop {ipv4-address | ipv6-address}

Redirect
IPv4 or
IPv6
Nexthop

Redirect IP NH0x0800

BGP Flowspec Client-Server Controller Model
The BGP Flowspec model comprises of a client and a server Controller. The Controller is responsible for
sending or injecting the flowspec NRLI entry. The client (acting as a BGP speaker) receives that NRLI and
programs the hardware forwarding to act on the instruction from the Controller. An illustration of this model
is provided below.

BGP Flowspec Client

Implementing BGP
93

Implementing BGP
BGP Flowspec Client-Server Controller Model

Here, the Controller on the left-hand side injects the flowspec NRLI, and the client on the right-hand side
receives the information, sends it to the flowspec manager, configures the ePBR (Enhanced Policy-based
Routing) infrastructure, which in turn programs the hardware from the underlaying platform in use.

BGP Flowspec Controller

The Controller is configured using CLI to provide an entry for NRLI injection.

Configure BGP Flowspec
The following sections show how to configure BGP Flowspec feature.

Implementing BGP
94

Implementing BGP
Configure BGP Flowspec

Figure 12: BGP Flowspec

The controller or the server with IP address 10.2.3.4 sends the Flowspec NLRI to the client with IP address
10.2.3.3. The NLRI consists of matching criteria, the client processes based on this criteria. Traffic is dropped
or accepted based on the configured criteria.

The following section describes how you can configure BGP Flowspec on the client:

/*Configure BGP Flowspec */
Router(config)# flowspec
Router(config-flowspec)# address-family ipv4
Router(config-flowspec-af)# local-install interface-all
Router(config-flowspec-af)# exit
Router(config-flowspec)# address-family ipv6
Router(config-flowspec-af)# local-install interface-all
Router(config-flowspec-af)# exit

/* Configure the policy to accept all presented routes without modifying the routes */
Router(config)# route-policy pass-all
Router(config)# pass
Router(config)# end-policy

/* Configure the policy to reject all presented routes without modifying the routes */
Router(config)# route-policy drop-all
Router(config)# drop
Router(config)# end-policy

/* Configure BGP towards flowspec server */
Router(config)# router bgp 1
Router(config-bgp)# nsr
Router(config-bgp)# bgp router-id 10.2.3.3
Router(config-bgp)# address-family ipv4 flowspec
Router(config-bgp-af)# exit
Router(config-bgp)# address-family ipv6 flowspec
Router(config-bgp-af)# exit
Router(config-bgp)# neighbor 10.2.3.4
Router(config-bgp-nbr)# remote-as 1

Implementing BGP
95

Implementing BGP
Configure BGP Flowspec

Router(config-bgp-nbr)# address-family ipv4 flowspec
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy drop-all out
Router(config-bgp-af)# exit
Router(config-bgp-nbr)# address-family ipv6 flowspec
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy drop-all out
Router(config-bgp-nbr-af)# exit
Router(config-bgp-nbr)# update-source Loopback0

/* Disable BGP Flowspec */
Router(config)# interface bundle-ether 3.1
Router(config-subif)# ipv4 flowspec disable
Router(config-subif)# ipv6 flowspec disable

The following section describes how you can configure BGP Flowspec on the server:
/* Configure the policy to accept all presented routes without modifying the routes */
Router(config)# route-policy pass-all
Router(config)# pass
Router(config)# end-policy

/* Configure the policy to reject all presented routes without modifying the routes */
Router(config)# route-policy drop-all
Router(config)# drop
Router(config)# end-policy

/* Configure BGP towards flowspec client */
Router(config)# router bgp 1
Router(config-bgp)# nsr
Router(config-bgp)# bgp router-id 10.2.3.4
Router(config-bgp)# address-family ipv4 flowspec
Router(config-bgp-af)# exit
Router(config-bgp)# address-family ipv6 flowspec
Router(config-bgp-af)# exit
Router(config-bgp)# neighbor 10.2.3.3
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# address-family ipv4 flowspec
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy pass-all out
Router(config-bgp-nbr-af)# exit
Router(config-bgp-nbr)# update-source Loopback0

/* Configure IPv4 flowspec to be advertised to client. Define traffic classes. */
Router(config)# class-map type traffic match-all ipv4_fragment
Router(config-cmap)# match destination-address ipv4 10.2.1.1 255.255.255.255
Router(config-cmap)# match source-address ipv4 172.16.0.1 255.255.255.255

Router(config-cmap)# end-class-map
Router(config)# class-map type traffic match-all ipv4_icmp
Router(config-cmap)# match destination-address ipv4 10.2.1.1 255.255.255.255
Router(config-cmap)# match source-address ipv4 172.16.0.1 255.255.255.255
Router(config-cmap)# end-class-map

/* Define a policy map and associate it with traffic classes.
Router(config)# policy-map type pbr scale_ipv4
Router(config-pmap)# class type traffic ipv4_fragment
Router(config-pmap-c)# drop
Router(config-pmap-c)# exit
Router(config-pmap)# class type traffic ipv4_icmp
Router(config-pmap-c)# exit
Router(config-pmap)# class type traffic class-default
Router(config-pmap-c)# end-policy-map
Router(config)# flowspec

Implementing BGP
96

Implementing BGP
Configure BGP Flowspec

Router(config)# address-family ipv4
Router(config-af)# service-policy type pbr scale_ipv4

/* Configure IPv6 flowspec to be advertised to client. Define traffic classes. */
Router(config)# class-map type traffic match-all ipv6_tcp
Router(config-cmap)# match destination-address ipv6 70:1:1::5a/128
Router(config-cmap)# match source-address ipv4 ipv6 80:1:1::5a/128
Router(config-cmap)# match destination-port 22
Router(config-cmap)# match source-port 4000
Router(config-cmap)# end-class-map
Router(config)# class-map type traffic match-all ipv6_icmp
Router(config-cmap)# match destination-address ipv6 70:2:1::1/128
Router(config-cmap)# match source-address ipv4 ipv6 80:2:1::1/128
Router(config-cmap)# end-class-map

/* Define a policy map and associate it with traffic classes.
Router(config)# policy-map type pbr scale_ipv6
Router(config-pmap)# class type traffic ipv6_tcp
Router(config-pmap-c)# exit
Router(config-pmap)# class type traffic ipv6_icmp
Router(config-pmap-c)# exit
Router(config-pmap)# class type traffic class-default
Router(config-pmap-c)# end-policy-map
Router(config)# flowspec
Router(config)# address-family ipv6
Router(config-af)# service-policy type pbr scale_ipv6

/* Class map configuration with DSCP */
Router(config-map)# class-map type traffic match-all class_dscp_5
Router(config-cmap)# match destination-address ipv4 192.0.2.254 255.255.255.0
Router(config-cmap)# match dscp 10-12

/* Policy map configuration with IPv4 Redirect and Rate Limiter */
Router(config-pmap)#class type traffic class_dscp_5
Router(config-pmap-c)#redirect ipv4 nexthop 10.26.245.2
Router(config-pmap-c)#police rate 5 mbps
Router(config-pmap-c)# root

Running Configuration

/* Client-side configuration */

flowspec
address-family ipv4
local-install interface-all
!
address-family ipv6
local-install interface-all
!
!
route-policy pass-all
pass
end-policy
!
route-policy drop-all
drop
end-policy
!
router bgp 1
nsr
bgp router-id 10.2.3.3
address-family ipv4 flowspec
!

Implementing BGP
97

Implementing BGP
Configure BGP Flowspec

address-family ipv6 flowspec
!
neighbor 10.2.3.4
remote-as 1
address-family ipv4 flowspec
route-policy pass-all in
route-policy drop-all out
!
address-family ipv6 flowspec
route-policy pass-all in
route-policy drop-all out
!
update-source Loopback0
!
!
vrf vrf1
address-family ipv4 unicast
import route-target
4787:13
!
export route-target
4787:13
!
!
address-family ipv6 unicast
import route-target
4787:13
!
export route-target
4787:13
!
!
!
router static
vrf vrf1
address-family ipv4 unicast
10.0.0.0/8 200.255.55.2
!
!
!
/* Disable the flowspec. This is optional configuration */
interface Bundle-Ether3.1
ipv4 flowspec disable
ipv6 flowspec disable
!
/* Server-side Configuration */
route-policy pass-all
pass
end-policy
!
route-policy drop-all
drop
end-policy
!
router bgp 1
nsr
bgp router-id 10.2.3.4
address-family ipv4 flowspec
!
address-family ipv6 flowspec
!
neighbor 10.2.3.3
remote-as 1
address-family ipv4 flowspec

Implementing BGP
98

Implementing BGP
Configure BGP Flowspec

route-policy drop-all in
route-policy pass-all out
exit
update-source Loopback0
!
!
class-map type traffic match-all ipv4_fragment
match destination-address ipv4 10.2.1.1 255.255.255.255
end-class-map
!
class-map type traffic match-all ipv4_icmp
match destination-address ipv4 10.2.1.1 255.255.255.255
match source-address ipv4 172.16.0.1 255.255.255.255
end-class-map
!
policy-map type pbr scale_ipv4
class type traffic ipv4_fragment
drop
!
class type traffic ipv4_icmp
!
!
class type traffic class-default
!
end-policy-map
!
flowspec
address-family ipv4
service-policy type pbr scale_ipv4
!
!
class-map type traffic match-all ipv6_tcp
match destination-address ipv6 70:1:1::5a/128
match source-address ipv6 80:1:1::5a/128
match protocol tcp
match destination-port 22
match source-port 4000
end-class-map
!
class-map type traffic match-all ipv6_icmp
match destination-address ipv6 70:2:1::1/128
match source-address ipv6 80:2:1::1/128
end-class-map
!
policy-map type pbr scale_ipv6
class type traffic ipv6_tcp
!
!
class type traffic ipv6_icmp
!
!
class type traffic class-default
!
!
flowspec
address-family ipv6
service-policy type pbr scale_ipv6
!
!

Verification

The following show output displays the status of the flowspec from the client side.

Implementing BGP
99

Implementing BGP
Configure BGP Flowspec

Router# show bgp ipv4 flowspec
GP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 7506
BGP main routing table version 7506
BGP NSR Initial initsync version 130 (Reached)
BGP NSR/ISSU Sync-Group versions 7506/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*>iDest:10.1.1.1/32,Proto:=6,DPort:=80,SPort:=3000,Length:=200,DSCP:=10/176
0.0.0.0 10 0 ?
*>iDest:10.1.1.2/32,Proto:=6,DPort:=80,SPort:=3000,Length:=200,DSCP:=10/176
0.0.0.0 10 0 ?
*>iDest:10.1.1.3/32,Proto:=6,DPort:=80,SPort:=3000,Length:=200,DSCP:=10/176
0.0.0.0 10 0 ?
*>iDest:10.1.1.4/32,Proto:=6,DPort:=80,SPort:=3000,Length:=200,DSCP:=10/176
0.0.0.0 10 0 ?
*>iDest:10.1.1.5/32,Proto:=6,DPort:=80,SPort:=3000,Length:=200,DSCP:=10/176
0.0.0.0 10 0 ?

Router# show bgp ipv6 flowspec

BGP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 1503
BGP main routing table version 1504
BGP NSR Initial initsync version 2 (Reached)
BGP NSR/ISSU Sync-Group versions 1504/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*>iDest:70:1:1::1/0-128,Source:80:1:1::1/0-128,NH:=6,DPort:=22,SPort:=4000,TCPFlags:=0x10,Length:=300,DSCP:=12/464
202:158:2::1 100 0 i
*>iDest:70:1:1::2/0-128,Source:80:1:1::2/0-128,NH:=6,DPort:=22,SPort:=4000,TCPFlags:=0x10,Length:=300,DSCP:=12/464
202:158:2::1 100 0 i
*>iDest:70:1:1::3/0-128,Source:80:1:1::3/0-128,NH:=6,DPort:=22,SPort:=4000,TCPFlags:=0x10,Length:=300,DSCP:=12/464
202:158:2::1 100 0 i
*>iDest:70:1:1::4/0-128,Source:80:1:1::4/0-128,NH:=6,DPort:=22,SPort:=4000,TCPFlags:=0x10,Length:=300,DSCP:=12/464
202:158:2::1 100 0 i
*>iDest:70:1:1::5/0-128,Source:80:1:1::5/0-128,NH:=6,DPort:=22,SPort:=4000,TCPFlags:=0x10,Length:=300,DSCP:=12/464
202:158:2::1 100 0 i

Router# show bgp vpnv4 flowspec
BGP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 5
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 5/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete

Implementing BGP
100

Implementing BGP
Configure BGP Flowspec

Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 202.158.0.1:0 (default for vrf customer_1)
*>iDest:202.158.3.2/32,Source:202.158.1.2/32/96
0.0.0.0 100 0 i
Route Distinguisher: 202.158.0.2:1
*>iDest:202.158.3.2/32,Source:202.158.1.2/32/96
0.0.0.0 100 0 i
Processed 2 prefixes, 2 paths

Router# show bgp vpnv6 flowspec
BGP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 5
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 5/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 202.158.0.1:0 (default for vrf customer_1)
*>iDest:200:158:3::2/0-128,Source:200:158:1::2/0-128,NH:=6,DPort:=22,SPort:=4000,Length:=300,DSCP:=12/440
0.0.0.0 100 0 i
Route Distinguisher: 202.158.0.2:1
*>iDest:200:158:3::2/0-128,Source:200:158:1::2/0-128,NH:=6,DPort:=22,SPort:=4000,Length:=300,DSCP:=12/440
0.0.0.0 100 0 i
Processed 2 prefixes, 2 paths

Router# show bgp ipv6 flowspec summary
BGP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 1503
BGP main routing table version 1504
BGP NSR Initial initsync version 2 (Reached)
BGP NSR/ISSU Sync-Group versions 1504/0
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.
Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer
Speaker 1504 1504 1504 1504 1504 1504
Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
200.255.1.5 0 4787 6957 2957 1504 0 0 04:48:02 0
200.255.1.6 0 50011 3015 3010 0 0 0 05:27:50 (NoNeg)
202.158.2.1 0 4787 1548 1648 1504 0 0 1d01h 750 <-- this
many flowspecs were received from server
202.158.3.1 0 4787 1683 1644 1504 0 0 1d01h 751
202.158.4.1 0 4787 1543 1649 1504 0 0 1d01h 0

Router# show bgp vpnv4 flowspec summary
BGP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 5
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 5/0
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Implementing BGP
101

Implementing BGP
Configure BGP Flowspec

Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer
Speaker 5 5 5 5 5 5
Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
202.158.2.1 0 4787 1549 1648 5 0 0 1d01h 1 <-- this
many flowspecs were received from server
202.158.3.1 0 4787 1684 1644 5 0 0 1d01h 0
202.158.4.1 0 4787 1543 1649 5 0 0 1d01h 0

Router# show bgp vpnv6 flowspec summary
BGP router identifier 202.158.0.1, local AS number 4787
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 5
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 5/0
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.
Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer
Speaker 5 5 5 5 5 5
Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
202.158.2.1 0 4787 1549 1649 5 0 0 1d01h 1 <-- this
many flowspecs were received from server
202.158.3.1 0 4787 1684 1645 5 0 0 1d01h 0
202.158.4.1 0 4787 1543 1650 5 0 0 1d01h 0

Router# show flowspec ipv4 detail
AFI: IPv4
Flow :Dest:10.1.1.1/32,Proto:=6,DPort:=80,SPort:=3000,Length:=200,DSCP:=10
Actions :Traffic-rate: 0 bps (bgp.1)
Statistics (packets/bytes)
Matched : 18174999/3707699796
Transmitted : 0/0
Dropped : 18174999/3707699796

Router# show flowspec ipv6 detail
AFI: IPv6
Flow
:Dest:70:1:1::1/0-128,Source:80:1:1::1/0-128,NH:=6,DPort:=22,SPort:=4000,TCPFlags:=0x10,Length:=300,DSCP:=12
Actions :Traffic-rate: 1000000 bps DSCP: cs1 Nexthop: 202:158:2::1 (bgp.1)
Statistics (packets/bytes)
Matched : 64091597/19483845488
Transmitted : 33973978/10328089312
Dropped : 30117619/9155756176

Router# show flowspec vrf customer_1 ipv4 detail
VRF: customer_1 AFI: IPv4
Flow :Dest:202.158.3.2/32,Source:202.158.1.2/32
Actions :Traffic-rate: 250000000 bps DSCP: cs6 Redirect: VRF dirty_dancing
Route-target: ASN2-4787:666 (bgp.1)
Statistics (packets/bytes)
Matched : 37260786850/4098686553500
Transmitted : 21304093027/2343450232970
Dropped : 15956693823/1755236320530

Router# show flowspec vrf customer_1 ipv6 detail
VRF: customer_1 AFI: IPv6
Flow
:Dest:200:158:3::2/0-128,Source:200:158:1::2/0-128,NH:=6,DPort:=22,SPort:=4000,Length:=300,DSCP:=12
Actions :Traffic-rate: 250000000 bps DSCP: cs6 Redirect: VRF dirty_dancing
Route-target: ASN2-4787:666 (bgp.1)
Statistics (packets/bytes)
Matched : 16130480136/4903665961344

Implementing BGP
102

Implementing BGP
Configure BGP Flowspec

Transmitted : 8490755776/2581189755904
Dropped : 7639724360/2322476205440

Router# show flowspec ipv4 nlri
AFI: IPv4
NLRI (hex) :0x01204601010103810605815006910bb80a81c80b810a
Actions :Traffic-rate: 0 bps (bgp.1)

Router# show flowspec ipv6 nlri
AFI: IPv6
NLRI (hex)
:0x018000007000010001000000000000000000010280000080000100010000000000000000000103810605811606910fa00981100a91012c0b810c
Actions :Traffic-rate: 1000000 bps DSCP: cs1 Nexthop: 202:158:2::1 (bgp.1)

Router# show flowspec vrf customer_1 ipv4 nlri
VRF: customer_1 AFI: IPv4
NLRI (hex) :0x0120ca9e03020220ca9e0102
Actions :Traffic-rate: 250000000 bps DSCP: cs6 Redirect: VRF dirty_dancing
Route-target: ASN2-4787:666 (bgp.1)

Router# show flowspec vrf customer_1 ipv6 nlri
VRF: customer_1 AFI: IPv6
NLRI (hex)
:0x018000020001580003000000000000000000020280000200015800010000000000000000000203810605811606910fa00a91012c0b810c
Actions :Traffic-rate: 250000000 bps DSCP: cs6 Redirect: VRF dirty_dancing
Route-target: ASN2-4787:666 (bgp.1)

Router# show policy-map transient type pbr
policy-map type pbr __bgpfs_default_IPv4
handle:0x36000004
table description: L3 IPv4 and IPv6
class handle:0x760013eb sequence 1024
match destination-address ipv4 10.1.1.1 255.255.255.255
match protocol tcp
match destination-port 80
match source-port 3000

Router# show flowspec ipv4 detail
Flow :Dest:192.0.2.254/24,DSCP:>=10&<=12
Actions :Traffic-rate: 5000000 bps Nexthop: 10.26.245.2 (bgp.1)
Statistics (packets/bytes)
Matched : 1169087/233817400
Transmitted : 369952/73990400
Dropped : 799135/159827000

Implementing BGP
103

Implementing BGP
Configure BGP Flowspec

BGP Extended Route Retention
Table 9: Feature History Table

DescriptionRelease NameFeature Name

This feature allows you to maintain
stale routing information from a
failed BGP peer for longer periods
of time than that is configured in
the Graceful Restart atribute.
However, this feature ensures that
the BGP neighbor considers the
stale routes as new routes.

Release 7.3.3BGP Extended Route Retention

When a BGP peer fails, the Extended Route Rention feature applies the route retention policy to the routes
to modify the route attributes. This feature modifies the route attributes in addition to the modification that
occur due to neighbor's inbound policy. This feature enables the use of route retention policy in place of
LLGR, when the BGP hold timer expires or when the BGP session fails to reestablish as a receiving speaker
within the configured graceful retart timer.

When you apply LLGR, you cannot remove the LLGR_STALE community when the stale route is advertised,
and the route will treat it as the least preferred. Also, stale routes may be advertised to those neighbors that
would not have advertised the LLGR capability under the following confitions:

• The neighbors must be internal (IBGP or confederation) neighbors.

• The NO_EXPORT community must be attached to the stale routes.

• The stale routes must have their LOCAL_PREF community set to zero.

This feature provides you the flexibility to advertise stale routes to eBGP neighbors and enable you to specify
local preference values for any stale route that is retained within the iBGP system.

Restrictions

• The neighbor should be capable of graceful restart.

• When the BGP neighbor fails, the graceful retart functionality is applied till the graceful restart timer is
valid.

• The Extend Route Retention feature starts, when the graceful restart timer expires,

• Soft-reconfiguration inbound configuration is a mandatory configuration. If required, configure the
inbound policy.

• The Extended Route Retention feature starts only when BGP peer goes down, that is, on the expiry of
the hold-down timer.

• For any other trigger, such as the expiry of a timer, the routes will not be indicated as stale and the routes
is purged.

• The Extended Route Retention feature is applicable only to the following address-family modes:

• IPv4 and IPv6 unicast address family mode

Implementing BGP
104

Implementing BGP
BGP Extended Route Retention

• IPv4 and IPv4 labelled unicast address family mode

• You cannot configure both LLGR and Extended Route Retention feature on the same neighbor.

• When you configure the Extended Route Retention feature, the capablity attribute is not sent.

Configuration Example

How a CLUSTER_LIST Attribute is Used
The CLUSTER_LIST propagation rules differ among releases, depending on whether the device is running
a Cisco software release generated before or after the BGP—Multiple Cluster IDs feature was implemented.
The same is true for loop prevention based on the CLUSTER_LIST.

The CLUSTER_LIST behavior is described below. Classic refers to the behavior of software released before
the multiple cluster IDs feature was implemented; MCID refers to the behavior of software released after the
feature was implemented.

CLUSTER_LIST Propagation Rules

• Classic—Before reflecting a route, the RR appends the global cluster ID to the CLUSTER_LIST. If the
received route had no CLUSTER_LIST attribute, the RR creates a new CLUSTER_LIST attribute with
that global cluster ID.

• MCID—Before reflecting a route, the RR appends the cluster ID of the neighbor the route was received
from to the CLUSTER_LIST. If the received route had no CLUSTER_LIST attribute, the RR creates a
new CLUSTER_LIST attribute with that cluster ID. This behavior includes a neighbor that is not a client
of the speaker. If the nonclient neighbor the route was received from does not have an associated cluster
ID, the RR uses the global cluster ID.

Loop Prevention Based on CLUSTER_LIST

• Classic—When receiving a route, the RR discards the route if the RR's global cluster ID is contained in
the CLUSTER_LIST of the route.

• MCID—When receiving a route, the RR discards the route if the RR's global cluster ID or any of the
cluster IDs assigned to any of the iBGP neighbors is contained in the CLUSTER_LIST of the route.

Configure a Cluster ID per Neighbor
Perform this task on an iBGP peer ,usually a route reflector, to configure a cluster ID per neighbor. Configuring
a cluster ID per neighbor causes the loop-prevention mechanism based on the CLUSTER_LIST to be
automatically modified to take into account multiple cluster IDs. Also, you gain the ability to disable
client-to-client route reflection on the basis of cluster ID. The software tags the neighbor so that you can
disable route reflection with the use of another command.

When you change a cluster ID for a neighbor, BGP automatically does an inbound soft refresh and an outbound
soft refresh for all iBGP peers.

Note

Router> enable
Router # configure terminal

Implementing BGP
105

Implementing BGP
How a CLUSTER_LIST Attribute is Used

Router(config)# router bgp 65000
Router(config-router)# neighbor 192.168.1.2
Router(config-router)# remote-as 65000
Router(config-router)# cluster-id 0.0.0.1
Router(config-router)# end

Running Configuration

!
!
router bgp 65000
neighbor 192.168.1.2
remote-as 65000
cluster-id 0.0.0.1

Verification

The following example shows that if a cluster-id is configured on any level, either global or per-neighbour,
it will be added to the active cluster IDs regardless of the neighbour state. BGP does not track the neighbour
state for this feature.

Router# show bgp process detail

BGP Process Information:
BGP is operating in STANDALONE mode
Autonomous System number format: ASPLAIN
Autonomous System: 65000
Router ID: 10.10.1.92 (manually configured)
Default Cluster ID: 10.10.1.92
Active Cluster IDs: 10.10.1.92, 10.10.3.93, 10.10.4.20

10.10.5.20, 198.51.100.254
...

Router# show configuration commit change last 1

Building configuration...
!! IOS XR Configuration 6.1.3
router bgp 65000
neighbor 198.51.100.254 <<< not operational, no AFs etc
remote-as 65000
cluster-id 198.51.100.254

!
!
end

Disable Client-to-Client Reflection for Specified Cluster IDs

When the software changes reflection state for a given cluster ID, BGP sends an outbound soft refresh to all
clients.

Note

Router# configure terminal
Router(config)# router bgp 65000
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# bgp client-to-client reflection cluster-id 0.0.0.1 disable
Router(config-bgp)# commit

Running Configuration

Implementing BGP
106

Implementing BGP
Disable Client-to-Client Reflection for Specified Cluster IDs

!
router bgp 65000

address-family ipv4 unicast
bgp client-to-client reflection cluster-id 0.0.0.1 disable

Verification

The following show command output shows that client-to-client reflection for the cluster IDs has been disabled.
Router# show bgp process
BGP Process Information:
BGP is operating in STANDALONE mode
Autonomous System number format: ASPLAIN
Autonomous System: 65000
Router ID: 0.0.0.0
Active Cluster IDs: 0.0.0.1
Fast external fallover enabled
Platform RLIMIT max: 2147483648 bytes
Maximum limit for BMP buffer size: 409 MB
Default value for BMP buffer size: 307 MB
Current limit for BMP buffer size: 307 MB
Current utilization of BMP buffer limit: 0 B
Neighbor logging is enabled
Enforce first AS enabled
Default local preference: 100
Default keepalive: 60
Non-stop routing is enabled
Update delay: 120
Generic scan interval: 60

Address family: IPv4 Unicast
Dampening is not enabled
Client reflection is not enabled in global config
Dynamic MED is Disabled
Dynamic MED interval : 10 minutes
Dynamic MED Timer : Not Running
Dynamic MED Periodic Timer : Not Running
Scan interval: 60
Total prefixes scanned: 0
Prefixes scanned per segment: 100000
Number of scan segments: 1
Nexthop resolution minimum prefix-length: 0 (not configured)
Main Table Version: 2
Table version synced to RIB: 2
Table version acked by RIB: 2
IGP notification: IGPs notified
RIB has converged: version 0
RIB table prefix-limit reached ? [No], version 0
Permanent Network Unconfigured

Node Process Nbrs Estb Rst Upd-Rcvd Upd-Sent Nfn-Rcv Nfn-Snt
node0_0_CPU0 Speaker 1 0 2 0 0 0 3

How to Implement BGP

Information About Implementing BGP
To implement BGP, you need to understand the following concepts:

Implementing BGP
107

Implementing BGP
How to Implement BGP

Adjust BGP Timers
BGP uses certain timers to control periodic activities, such as the sending of keepalive messages and the
interval after which a neighbor is assumed to be down if no messages are received from the neighbor during
the interval. The values set using the timers bgp command in router configuration mode can be overridden
on particular neighbors using the timers command in the neighbor configuration mode.

Perform this task to set the timers for BGP neighbors.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 123

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 timers bgp keepalive hold-time

Example:

Router(config-bgp)# timers bgp 30 90

Sets a default keepalive time and a default hold time for all neighbors.

Step 4 neighbor ip-address

Example:

Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 5 timers keepalive hold-time

Example:

Router(config-bgp-nbr)# timers 60 220

(Optional) Sets the keepalive timer and the hold-time timer for the BGP neighbor.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
108

Implementing BGP
Adjust BGP Timers

• Cancel —Remains in the configuration session, without committing the configuration changes.

Enabling BGP Routing
Perform this task to enable BGP routing and establish a BGP routing process. Configuring BGP neighbors is
included as part of enabling BGP routing.

At least one neighbor and at least one address family must be configured to enable BGP routing. At least one
neighbor with both a remote AS and an address family must be configured globally using the address family
and remote as commands.

Note

Before you begin

BGP must be able to obtain a router identifier (for example, a configured loopback address). At least, one
address family must be configured in the BGP router configuration and the same address family must also be
configured under the neighbor.

If the neighbor is configured as an external BGP (eBGP) peer, you must configure an inbound and outbound
route policy on the neighbor using the route-policy command.

Note

While establishing eBGP neighborship between two peers, BGP checks if the two peers are directly connected.
If the peers are not directly connected, BGP does not try to establish a relationship by default. If two BGP
peers are not directly connected and peering is required between the loop backs of the routers, you can use
the ignore-connected-check command. This command overrides the default check that BGP performs which
is to verify if source IP in BGP control packets is in same network as that of destination. In this scenario, a
TTL value of 1 is sufficient if ignore-connected-check is used.

Configuring egp-multihop ttl is needed when the peers are not directly connected and there are more routers
in between. If the egp-multihop ttl command is not configured, eBGP sets the TTL of packets carrying BGP
messages to 1 by default. When eBGP needs to be setup between routers which are more than one hop away,
you need to configure a TTL value which is at least equal to the number of hops between them. For example,
if there are 2 hops (R2, R3) between two BGP peering routers R1 and R4, you need to set a TTL value of 3.

Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 route-policy route-policy-name

Implementing BGP
109

Implementing BGP
Enabling BGP Routing

Example:

Routing(config)# route-policy drop-as-1234
Routing(config-rpl)# if as-path passes-through '1234' then
Routing(config-rpl)# apply check-communities
Routing(config-rpl)# else
Routing(config-rpl)# pass
Routing(config-rpl)# endif

(Optional) Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 3 end-policy

Example:

Routing(config-rpl)# end-policy

(Optional) Ends the definition of a route policy and exits route policy configuration mode.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 configure

Example:

RP/0/# configure

Enters mode.

Step 6 router bgp as-number

Example:

Routing(config)# router bgp 120

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 7 bgp router-id ip-address

Example:

Routing(config-bgp)# bgp router-id 192.168.70.24

Configures the local router with a specified router ID.

Step 8 address-family { ipv4 | ipv6 } unicast

Example:

Implementing BGP
110

Implementing BGP
Enabling BGP Routing

Routing(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 9 exit

Example:

Routing(config-bgp-af)# exit

Exits the current configuration mode.

Step 10 neighbor ip-address

Example:

Routing(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP
peer.

Step 11 remote-as as-number

Example:

Routing(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 12 address-family { ipv4 | ipv6 } unicast

Example:

Routing(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 13 route-policy route-policy-name { in | out }

Example:

Routing(config-bgp-nbr-af)# route-policy drop-as-1234 in

(Optional) Applies the specified policy to inbound IPv4 unicast routes.

Step 14 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
111

Implementing BGP
Enabling BGP Routing

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Multiple BGP Instances for a Specific Autonomous System
Perform this task to configure multiple BGP instances for a specific autonomous system. All configuration
changes for a single BGP instance can be committed together. However, configuration changes for multiple
instances cannot be committed together.

SUMMARY STEPS

1. configure
2. router bgp as-number [instance instance name]
3. bgp router-idip-address

4. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number [instance instance name]

Example:
RP/0/RSP0/CPU0:router(config)# router bgp 100 instance inst1

Enters BGP configuration mode for the user specified BGP instance.

Step 3 bgp router-idip-address

Example:
RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 10.0.0.0

Configures a fixed router ID for the BGP-speaking router (BGP instance).

You must manually configure unique router ID for each BGP instance.Note

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
112

Implementing BGP
Configure Multiple BGP Instances for a Specific Autonomous System

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Routing Domain Confederation for BGP
Perform this task to configure the routing domain confederation for BGP. This includes specifying a
confederation identifier and autonomous systems that belong to the confederation.

Configuring a routing domain confederation reduces the internal BGP (iBGP)mesh by dividing an autonomous
system into multiple autonomous systems and grouping them into a single confederation. Each autonomous
system is fully meshed within itself and has a few connections to another autonomous system in the same
confederation. The confederation maintains the next hop and local preference information, and that allows
you to retain a single Interior Gateway Protocol (IGP) for all autonomous systems. To the outside world, the
confederation looks like a single autonomous system.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 bgp confederation identifier as-number

Example:
Router(config-bgp)# bgp confederation identifier 5

Specifies a BGP confederation identifier.

Step 4 bgp confederation peers as-number

Example:

Router(config-bgp)# bgp confederation peers 1091
Router(config-bgp)# bgp confederation peers 1092
Router(config-bgp)# bgp confederation peers 1093
Router(config-bgp)# bgp confederation peers 1094
Router(config-bgp)# bgp confederation peers 1095
Router(config-bgp)# bgp confederation peers 1096

Specifies that the BGP autonomous systems belong to a specified BGP confederation identifier. You can associate multiple
AS numbers to the same confederation identifier, as shown in the example.

Step 5 Use the commit or end command.

Implementing BGP
113

Implementing BGP
Configure Routing Domain Confederation for BGP

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Confederation: Example

The following is a sample configuration that shows several peers in a confederation. The confederation
consists of three internal autonomous systems with autonomous system numbers 6001, 6002, and
6003. To the BGP speakers outside the confederation, the confederation looks like a normal
autonomous system with autonomous system number 666 (specified using the bgp confederation
identifier command).

In a BGP speaker in autonomous system 6001, the bgp confederation peers command marks the
peers from autonomous systems 6002 and 6003 as special eBGP peers. Hence, peers 171.16 .232.55
and 171.16 .232.56 get the local preference, next hop, and MED unmodified in the updates. The
router at 171 .19 .69.1 is a normal eBGP speaker, and the updates received by it from this peer are
just like a normal eBGP update from a peer in autonomous system 666.

router bgp 6001
bgp confederation identifier 666
bgp confederation peers
6002
6003
exit

address-family ipv4 unicast
neighbor 171.16.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.16.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 171.19.69.1
remote-as 777

In a BGP speaker in autonomous system 6002, the peers from autonomous systems 6001 and 6003
are configured as special eBGP peers. Peer 171 .17 .70.1 is a normal iBGP peer, and peer 199.99.99.2
is a normal eBGP peer from autonomous system 700.

router bgp 6002
bgp confederation identifier 666
bgp confederation peers
6001
6003
exit

address-family ipv4 unicast
neighbor 171.17.70.1

Implementing BGP
114

Implementing BGP
Configure Routing Domain Confederation for BGP

remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.19.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.19.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 171.19.99.2
remote-as 700
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

In a BGP speaker in autonomous system 6003, the peers from autonomous systems 6001 and 6002
are configured as special eBGP peers. Peer 192 .168 .200.200 is a normal eBGP peer from autonomous
system 701.

router bgp 6003
bgp confederation identifier 666
bgp confederation peers
6001
6002
exit

address-family ipv4 unicast
neighbor 171.19.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.19.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 192.168.200.200
remote-as 701
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

The following is a part of the configuration from the BGP speaker 192 .168 .200.205 from autonomous
system 701 in the same example. Neighbor 171.16 .232.56 is configured as a normal eBGP speaker
from autonomous system 666. The internal division of the autonomous system into multiple
autonomous systems is not known to the peers external to the confederation.

router bgp 701
address-family ipv4 unicast
neighbor 172.16.232.56
remote-as 666
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
exit

Implementing BGP
115

Implementing BGP
Configure Routing Domain Confederation for BGP

address-family ipv4 unicast
neighbor 192.168.200.205
remote-as 701

Resetting an eBGP Session Immediately Upon Link Failure
By default, if a link goes down, all BGP sessions of any directly adjacent external peers are immediately reset.
Use the bgp fast-external-fallover disable command to disable automatic resetting. Turn the automatic reset
back on using the no bgp fast-external-fallover disable command.

eBGP sessions flap when the node reaches 3500 eBGP sessions with BGP timer values set as 10 and 30. To
support more than 3500 eBGP sessions, increase the packet rate by using the lpts pifib hardware police
location location-id command. Following is a sample configuration to increase the eBGP sessions:

Router# configure
Router(config)# lpts pifib hardware police location 0/2/CPU0
Router(config-pifib-policer-per-node)#flow bgp configured rate 4000
Router(config-pifib-policer-per-node)#flow bgp known rate 4000
Router(config-pifib-policer-per-node)#flow bgp default rate 4000
Router(config-pifib-policer-per-node)#commit

Logging Neighbor Changes
Logging neighbor changes is enabled by default. Use the log neighbor changes disable command to turn off
logging. The no log neighbor changes disable command can also be used to turn logging back on if it has
been disabled.

Change BGP Default Local Preference Value
Perform this task to set the default local preference value for BGP paths.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 bgp default local-preference value

Example:

Implementing BGP
116

Implementing BGP
Resetting an eBGP Session Immediately Upon Link Failure

Router(config-bgp)# bgp default local-preference 200

Sets the default local preference value from the default of 100, making it either a more preferable path (over 100) or less
preferable path (under 100).

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure MED Metric for BGP
Perform this task to set the multi exit discriminator (MED) to advertise to peers for routes that do not already
have a metric set (routes that were received with no MED attribute).

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Routing(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 default-metric value

Example:

Routing(config-bgp)# default metric 10

Sets the default metric, which is used to set the MED to advertise to peers for routes that do not already have a metric set
(routes that were received with no MED attribute).

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

Implementing BGP
117

Implementing BGP
Configure MED Metric for BGP

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Weights
A weight is a number that you can assign to a path so that you can control the best-path selection process. If
you have particular neighbors that you want to prefer for most of your traffic, you can use theweight command
to assign a higher weight to all routes learned from that neighbor. Perform this task to assign a weight to routes
received from a neighbor.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Routing(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:

Routing(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:

Routing(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:

Routing(config-bgp-nbr)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 6 weight weight-value

Implementing BGP
118

Implementing BGP
Configure BGP Weights

Example:

Routing(config-bgp-nbr-af)# weight 41150

Assigns a weight to all routes learned through the neighbor.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

What to do next

You the clear bgp command for the newly configured weight to take effect.

Tune BGP Best-Path Calculation
BGP routers typically receivemultiple paths to the same destination. The BGP best-path algorithm determines
the best path to install in the IP routing table and to use for forwarding traffic. The BGP best-path comprises
of three steps:

• Step 1—Compare two paths to determine which is better.

• Step 2—Iterate over all paths and determines which order to compare the paths to select the overall best
path.

• Step 3—Determine whether the old and new best paths differ enough so that the new best path should
be used.

The order of comparison determined by Step 2 is important because the comparison operation is not transitive;
that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and
C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This
nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the
same neighboring autonomous system (AS) and not among all paths.

Note

Perform this task to change the default BGP best-path calculation behavior.

Step 1 configure

Example:

RP/0/# configure

Implementing BGP
119

Implementing BGP
Tune BGP Best-Path Calculation

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 126

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 bgp bestpath med missing-as-worst

Example:
Router(config-bgp)# bgp bestpath med missing-as-worst

Directs the BGP software to consider a missing MED attribute in a path as having a value of infinity, making this path
the least desirable path.

Step 4 bgp bestpath med always

Example:

Router(config-bgp)# bgp bestpath med always

Configures the BGP speaker in the specified autonomous system to compare MEDs among all the paths for the prefix,
regardless of the autonomous system from which the paths are received.

Step 5 bgp bestpath med confed

Example:
Router(config-bgp)# bgp bestpath med confed

Enables BGP software to compare MED values for paths learned from confederation peers.

Step 6 bgp bestpath as-path ignore

Example:
Router(config-bgp)# bgp bestpath as-path ignore

Configures the BGP software to ignore the autonomous system length when performing best-path selection.

Step 7 bgp bestpath compare-routerid

Example:
Router(config-bgp)# bgp bestpath compare-routerid

Configure the BGP speaker in the autonomous system to compare the router IDs of similar paths.

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
120

Implementing BGP
Tune BGP Best-Path Calculation

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure Aggregate Addresses
Perform this task to create aggregate entries in a BGP routing table.

For optimal CPU utilization when deploying BGP aggregate for supernet addresses with a higher scale such
as internet bgp table, it is recommended to:

• Use aggregate subnet of size not exceeding /24.

• Tune the subnet mask size based on network scale and churn.

• Use the default-originate or network 0.0.0.0 CLI instead of 0.0.0.0 as aggregate, when advertising the
default route 0.0.0.0.

Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy route-policy-name
]

Example:
Router(config-bgp-af)# aggregate-address 10.0.0.0/8 as-set

Creates an aggregate address. The path advertised for this route is an autonomous system set consisting of all elements
contained in all paths that are being summarized.

Implementing BGP
121

Implementing BGP
Configure Aggregate Addresses

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/bgp/cumulative/command/reference/b-bgp-cr-cisco8000/m-bgp-commands-8k.html#wp4929474300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/bgp/cumulative/command/reference/b-bgp-cr-cisco8000/m-bgp-commands-8k.html#wp6189725020

• The as-set keyword generates autonomous system set path information and community information from contributing
paths.

• The as-confed-set keyword generates autonomous system confederation set path information from contributing
paths.

• The summary-only keyword filters all more specific routes from updates.

• The route-policy route-policy-name keyword and argument specify the route policy used to set the attributes of
the aggregate route.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Indicate BGP Back-door Routes
Perform this task to set the administrative distance on an external Border Gateway Protocol (eBGP) route to
that of a locally sourced BGP route, causing it to be less preferred than an Interior Gateway Protocol (IGP)
route.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Implementing BGP
122

Implementing BGP
Indicate BGP Back-door Routes

Step 4 network { ip-address / prefix-length | ip-address mask } backdoor

Example:
Router(config-bgp-af)# network 172.20.0.0/16

Configures the local router to originate and advertise the specified network.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Back Door: Example

Here, Routers A and C and Routers B and C are running eBGP. Routers A and B are running an IGP
(such as Routing Information Protocol [RIP], Interior Gateway Routing Protocol [IGRP], Enhanced
IGRP, or Open Shortest Path First [OSPF]). The default distances for RIP, IGRP, Enhanced IGRP,
and OSPF are 120, 100, 90, and 110, respectively. All these distances are higher than the default
distance of eBGP, which is 20. Usually, the route with the lowest distance is preferred.

Router A receives updates about 160.10.0.0 from two routing protocols: eBGP and IGP. Because
the default distance for eBGP is lower than the default distance of the IGP, Router A chooses the
eBGP-learned route from Router C. If you want Router A to learn about 160.10.0.0 from Router B
(IGP), establish a BGP back door. See .

In the following example, a network back-door is configured:

Router(config)# router bgp 100
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# network 160.10.0.0/16 backdoor

Router A treats the eBGP-learned route as local and installs it in the IP routing table with a distance
of 200. The network is also learned through Enhanced IGRP (with a distance of 90), so the Enhanced
IGRP route is successfully installed in the IP routing table and is used to forward traffic. If the

Implementing BGP
123

Implementing BGP
Indicate BGP Back-door Routes

Enhanced IGRP-learned route goes down, the eBGP-learned route is installed in the IP routing table
and is used to forward traffic.

Although BGP treats network 160.10.0.0 as a local entry, it does not advertise network 160.10.0.0
as it normally would advertise a local entry.

Set BGP Administrative Distance
An administrative distance is a rating of the trustworthiness of a routing information source. In general, the
higher the value, the lower the trust rating. Normally, a route can be learned through more than one protocol.
Administrative distance is used to discriminate between routes learned from more than one protocol. The
route with the lowest administrative distance is installed in the IP routing table. By default, BGP uses the
administrative distances shown in here:

Table 10: BGP Default Administrative Distances

FunctionDefault
Value

Distance

Applied to routes learned from eBGP.20External

Applied to routes learned from iBGP.200Internal

Applied to routes originated by the router.200Local

Distance does not influence the BGP path selection algorithm, but it does influence whether BGP-learned
routes are installed in the IP routing table.

Note

Perform this task to specify the use of administrative distances that can be used to prefer one class of route
over another.

Step 1 configure

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 distance bgp external-distance internal-distance local-distance

Implementing BGP
124

Implementing BGP
Set BGP Administrative Distance

Example:

Router(config-bgp-af)# distance bgp 20 20 200

Sets the external, internal, and local administrative distances to prefer one class of routes over another. The higher the
value, the lower the trust rating.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Neighbor Group and Neighbors
Perform this task to configure BGP neighbor groups and apply the neighbor group configuration to a neighbor.
A neighbor group is a template that holds address family-independent and address family-dependent
configurations associated with the neighbor.

After a neighbor group is configured, each neighbor can inherit the configuration through the use command.
If a neighbor is configured to use a neighbor group, the neighbor (by default) inherits the entire configuration
of the neighbor group, which includes the address family-independent and address family-dependent
configurations. The inherited configuration can be overridden if you directly configure commands for the
neighbor or configure session groups or address family groups through the use command.

You can configure an address family-independent configuration under the neighbor group. An address
family-dependent configuration requires you to configure the address family under the neighbor group to
enter address family submode. From neighbor group configuration mode, you can configure address
family-independent parameters for the neighbor group. Use the address-family commandwhen in the neighbor
group configuration mode. After specifying the neighbor group name using the neighbor group command,
you can assign options to the neighbor group.

All commands that can be configured under a specified neighbor group can be configured under a neighbor.Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Implementing BGP
125

Implementing BGP
Configure BGP Neighbor Group and Neighbors

Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 exit

Example:
Router(config-bgp-af)# exit

Exits the current configuration mode.

Step 5 neighbor-group name

Example:
Router(config-bgp)# neighbor-group nbr-grp-A

Places the router in neighbor group configuration mode.

Step 6 remote-as as-number

Example:
Router(config-bgp-nbrgrp)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 7 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp-nbrgrp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 8 route-policy route-policy-name { in | out }

Example:
Router(config-bgp-nbrgrp-af)# route-policy drop-as-1234 in

(Optional) Applies the specified policy to inbound IPv4 unicast routes.

Step 9 exit

Example:
Router(config-bgp-nbrgrp-af)# exit

Exits the current configuration mode.

Step 10 exit

Example:

Implementing BGP
126

Implementing BGP
Configure BGP Neighbor Group and Neighbors

Router(config-bgp-nbrgrp)# exit

Exits the current configuration mode.

Step 11 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP
peer.

Step 12 use neighbor-group group-name

Example:
Router(config-bgp-nbr)# use neighbor-group nbr-grp-A

(Optional) Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 14 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Neighbor Configuration: Example

The following example shows howBGP neighbors on an autonomous system are configured to share
information. In the example, a BGP router is assigned to autonomous system 109, and two networks
are listed as originating in the autonomous system. Then the addresses of three remote routers (and
their autonomous systems) are listed. The router being configured shares information about networks
172 .16 .0.0 and 192.168 .7.0 with the neighbor routers. The first router listed is in a different
autonomous system; the second neighbor and remote-as commands specify an internal neighbor
(with the same autonomous system number) at address 172 .26 .234.2; and the third neighbor and
remote-as commands specify a neighbor on a different autonomous system.

route-policy pass-all
pass
end-policy
router bgp 109
address-family ipv4 unicast
network 172.16.0.0 255.255.0.0
network 192.16831.7.0 255.255.0.0

Implementing BGP
127

Implementing BGP
Configure BGP Neighbor Group and Neighbors

neighbor 172.16.200.1
remote-as 167
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-out out
neighbor 172.26.234.2
remote-as 109
exit

address-family ipv4 unicast
neighbor 172.26.64.19
remote-as 99
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Configure Route Reflector for BGP
Perform this task to configure a route reflector for BGP.

All the neighbors configured with the route-reflector-clientcommand are members of the client group, and
the remaining iBGP peers are members of the nonclient group for the local route reflector.

Together, a route reflector and its clients form a cluster. A cluster of clients usually has a single route reflector.
In such instances, the cluster is identified by the software as the router ID of the route reflector. To increase
redundancy and avoid a single point of failure in the network, a cluster can have more than one route reflector.
If it does, all route reflectors in the cluster must be configured with the same 4-byte cluster ID so that a route
reflector can recognize updates from route reflectors in the same cluster. The bgp cluster-id command is used
to configure the cluster ID when the cluster has more than one route reflector.

The bgp cluster-id option is used in this task to configure the router as one of the route reflectors serving the
cluster. The cluster-id option is also available in the BGP neighbor address-family (config-bgp-nbr-af) mode.
To enable a router to accept BGP routes which have the same first cluster-ID as the router’s own cluster-ID
in the list of cluster-IDs, use the cluster-id allow-equal command. You must use this command with care to
avoid routing loops.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 bgp cluster-id cluster-id

Example:

Implementing BGP
128

Implementing BGP
Configure Route Reflector for BGP

Router(config-bgp)# bgp cluster-id 192.168.70.1

Configures the local router as one of the route reflectors serving the cluster. It is configured with a specified cluster ID
to identify the cluster.

Step 4 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 5 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 2003

Creates a neighbor and assigns a remote autonomous system number to it.

Step 6 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 7 route-reflector-client

Example:
Router(config-bgp-nbr-af)# route-reflector-client

Configures the router as a BGP route reflector and configures the neighbor as its client.

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Route Reflector: Example

The following example shows how to use an address family to configure internal BGP peer 10.1.1.1
as a route reflector client for unicast prefixes:

router bgp 140
address-family ipv4 unicast
neighbor 10.1.1.1
remote-as 140
address-family ipv4 unicast

Implementing BGP
129

Implementing BGP
Configure Route Reflector for BGP

route-reflector-client
exit

Understanding BGP MD5 Authentication
BGP provides a mechanism, known as Message Digest 5 (MD5) authentication, for authenticating a TCP
segment between two BGP peers by using a clear text or encrypted password.

MD5 authentication is configured at the BGP neighbor level. BGP peers using MD5 authentication are
configured with the same password. If the password authentication fails, then the packets are not transmitted
along the segment.

Redistributing iBGP Routes into IGP
Perform this task to redistribute iBGP routes into an Interior Gateway Protocol (IGP), such as Intermediate
System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF).

Use of the bgp redistribute-internal command requires the clear route * command to be issued to reinstall
all BGP routes into the IP routing table.

Note

Redistributing iBGP routes into IGPs may cause routing loops to form within an autonomous system. Use
this command with caution.

Caution

Procedure

PurposeCommand or Action

configureStep 1

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

Router(config)# router bgp 120

Step 2

Allows the redistribution of iBGP routes into an IGP, such
as IS-IS or OSPF.

bgp redistribute-internal

Example:

Step 3

Router(config-bgp)# bgp redistribute-internal

commitStep 4

Set BGP Administrative Distance
An administrative distance is a rating of the trustworthiness of a routing information source. In general, the
higher the value, the lower the trust rating. Normally, a route can be learned through more than one protocol.

Implementing BGP
130

Implementing BGP
Understanding BGP MD5 Authentication

Administrative distance is used to discriminate between routes learned from more than one protocol. The
route with the lowest administrative distance is installed in the IP routing table. By default, BGP uses the
administrative distances shown in here:

Table 11: BGP Default Administrative Distances

FunctionDefault
Value

Distance

Applied to routes learned from eBGP.20External

Applied to routes learned from iBGP.200Internal

Applied to routes originated by the router.200Local

Distance does not influence the BGP path selection algorithm, but it does influence whether BGP-learned
routes are installed in the IP routing table.

Note

Perform this task to specify the use of administrative distances that can be used to prefer one class of route
over another.

Step 1 configure

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 distance bgp external-distance internal-distance local-distance

Example:

Router(config-bgp-af)# distance bgp 20 20 200

Sets the external, internal, and local administrative distances to prefer one class of routes over another. The higher the
value, the lower the trust rating.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

Implementing BGP
131

Implementing BGP
Set BGP Administrative Distance

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Discard Extra Paths
Perform this task to configure BGP maximum-prefix discard extra paths.

Procedure

PurposeCommand or Action

Enters Glpobal configuration mode.configure

Example:

Step 1

Router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
Router(config)# router bgp 10

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
Router(config-bgp)# neighbor 10.0.0.1

Step 3

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 4

Router(config-bgp-nbr)# address-family ipv4 unicast

Configures a limit to the number of prefixes allowed.maximum-prefix maximum discard-extra-pathsStep 5

Example: Configures discard extra paths to discard extra paths when
the maximum prefix limit is exceeded.Router(config-bgp-nbr-af)# maximum-prefix 1000

discard-extra-paths

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
132

Implementing BGP
Configuring Discard Extra Paths

Configuring Per Neighbor TCP MSS
Perform this task to configure TCP MSS under neighbor group, which is inherited by a neighbor.

Step 1 configure

Example:
Router# configure

Enters .

Step 2 router bgp as-number

Example:
Router(config)# router bgp 10

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family ipv4 unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 4 exit

Example:
Router(config-bgp-af)# exit

Exits router address family configuration mode, and returns to BGP configuration mode.

Step 5 neighbor-group name

Example:

Router(config-bgp)# neighbor-group n1

Enters neighbor group configuration mode.

Step 6 tcp mss segment-size

Example:

Router(config-bgp-nbrgrp)# tcp mss 500

Configures TCP maximum segment size. The range is from 68 to 10000.

Step 7 address-family ipv4 unicast

Example:
Router(config-bgp-nbrgrp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 8 exit

Example:

Implementing BGP
133

Implementing BGP
Configuring Per Neighbor TCP MSS

Router(config-bgp-nbrgrp-af)# exit

Exits router address family configuration mode.

Step 9 exit

Example:
Router(config-bgp-nbrgrp)# exit

Exits the neighbor group configuration mode.

Step 10 neighbor ip-address

Example:
Router(config-bgp)# neighbor 10.0.0.2

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP
peer.

Step 11 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 1

Creates a neighbor and assigns a remote autonomous system (AS) number to it.

• Range for 2-byte autonomous system numbers (ASNs) is 1 to 65535.

• Range for 4-byte autonomous system numbers (ASNs) in asplain format is 1 to 4294967295.

• Range for 4-byte autonomous system numbers (ASNs) is asdot format is 1.0 to 65535.65535.

Step 12 use neighbor-group group-name

Example:
Router(config-bgp-nbr)# use neighbor-group n1

Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13 address-family ipv4 unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Router(config-bgp-nbr-af)#

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 14 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Implementing BGP
134

Implementing BGP
Configuring Per Neighbor TCP MSS

Disabling Per Neighbor TCP MSS
Perform this task to disable TCP MSS for a particular neighbor under neighbor group.

Step 1 configure

Example:
Router# configure

Step 2 router bgp as-number

Example:
Router(config)# router bgp 10

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family ipv4 unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 4 exit

Example:
Router(config-bgp-af)# exit

Exits router address family configuration mode, and returns to BGP configuration mode.

Step 5 neighbor-group name

Example:

Router(config-bgp)# neighbor-group n1

Enters neighbor group configuration mode.

Step 6 tcp mss segment-size

Example:
Router(config-bgp-nbrgrp)# tcp mss 500

Configures TCP maximum segment size. The range is from 68 to 10000.

Step 7 address-family ipv4 unicast

Example:
Router(config-bgp-nbrgrp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 8 exit

Example:

Implementing BGP
135

Implementing BGP
Disabling Per Neighbor TCP MSS

Router(config-bgp-nbrgrp-af)# exit

Exits router address family configuration mode.

Step 9 exit

Example:
Router(config-bgp-nbrgrp)# exit

Exits the neighbor group configuration mode.

Step 10 neighbor ip-address

Example:

Router(config-bgp)# neighbor 10.0.0.2

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP
peer.

Step 11 remote-as as-number

Example:

Router(config-bgp-nbr)# remote-as 1

Creates a neighbor and assigns a remote autonomous system (AS) number to it.

• Range for 2-byte autonomous system numbers (ASNs) is 1 to 65535.

• Range for 4-byte autonomous system numbers (ASNs) in asplain format is 1 to 4294967295.

• Range for 4-byte autonomous system numbers (ASNs) is asdot format is 1.0 to 65535.65535.

Step 12 use neighbor-group group-name

Example:

Router(config-bgp-nbr)# use neighbor-group n1

Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13 tcp mss inheritance-disable

Example:
Router(config-bgp-nbr)# tcp mss inheritance-disable

Disables TCP MSS for the neighbor.

Step 14 address-family ipv4 unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Router(config-bgp-nbr-af)#

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 15 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

Implementing BGP
136

Implementing BGP
Disabling Per Neighbor TCP MSS

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring Discard Extra Paths
Perform this task to configure BGP maximum-prefix discard extra paths.

Procedure

PurposeCommand or Action

Enters Glpobal configuration mode.configure

Example:

Step 1

Router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
Router(config)# router bgp 10

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
Router(config-bgp)# neighbor 10.0.0.1

Step 3

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 4

Router(config-bgp-nbr)# address-family ipv4 unicast

Configures a limit to the number of prefixes allowed.maximum-prefix maximum discard-extra-pathsStep 5

Example: Configures discard extra paths to discard extra paths when
the maximum prefix limit is exceeded.Router(config-bgp-nbr-af)# maximum-prefix 1000

discard-extra-paths

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
137

Implementing BGP
Configuring Discard Extra Paths

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Per Neighbor TCP MSS
Perform this task to configure TCP MSS under neighbor group, which is inherited by a neighbor.

Step 1 configure

Example:
Router# configure

Enters .

Step 2 router bgp as-number

Example:
Router(config)# router bgp 10

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family ipv4 unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 4 exit

Example:
Router(config-bgp-af)# exit

Exits router address family configuration mode, and returns to BGP configuration mode.

Step 5 neighbor-group name

Example:

Router(config-bgp)# neighbor-group n1

Enters neighbor group configuration mode.

Step 6 tcp mss segment-size

Example:

Router(config-bgp-nbrgrp)# tcp mss 500

Configures TCP maximum segment size. The range is from 68 to 10000.

Step 7 address-family ipv4 unicast

Implementing BGP
138

Implementing BGP
Configuring Per Neighbor TCP MSS

Example:
Router(config-bgp-nbrgrp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 8 exit

Example:
Router(config-bgp-nbrgrp-af)# exit

Exits router address family configuration mode.

Step 9 exit

Example:
Router(config-bgp-nbrgrp)# exit

Exits the neighbor group configuration mode.

Step 10 neighbor ip-address

Example:
Router(config-bgp)# neighbor 10.0.0.2

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP
peer.

Step 11 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 1

Creates a neighbor and assigns a remote autonomous system (AS) number to it.

• Range for 2-byte autonomous system numbers (ASNs) is 1 to 65535.

• Range for 4-byte autonomous system numbers (ASNs) in asplain format is 1 to 4294967295.

• Range for 4-byte autonomous system numbers (ASNs) is asdot format is 1.0 to 65535.65535.

Step 12 use neighbor-group group-name

Example:
Router(config-bgp-nbr)# use neighbor-group n1

Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13 address-family ipv4 unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Router(config-bgp-nbr-af)#

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 14 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

Implementing BGP
139

Implementing BGP
Configuring Per Neighbor TCP MSS

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Disabling Per Neighbor TCP MSS
Perform this task to disable TCP MSS for a particular neighbor under neighbor group.

Step 1 configure

Example:
Router# configure

Step 2 router bgp as-number

Example:
Router(config)# router bgp 10

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family ipv4 unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 4 exit

Example:
Router(config-bgp-af)# exit

Exits router address family configuration mode, and returns to BGP configuration mode.

Step 5 neighbor-group name

Example:

Router(config-bgp)# neighbor-group n1

Enters neighbor group configuration mode.

Step 6 tcp mss segment-size

Example:
Router(config-bgp-nbrgrp)# tcp mss 500

Configures TCP maximum segment size. The range is from 68 to 10000.

Step 7 address-family ipv4 unicast

Implementing BGP
140

Implementing BGP
Disabling Per Neighbor TCP MSS

Example:
Router(config-bgp-nbrgrp)# address-family ipv4 unicast

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 8 exit

Example:
Router(config-bgp-nbrgrp-af)# exit

Exits router address family configuration mode.

Step 9 exit

Example:
Router(config-bgp-nbrgrp)# exit

Exits the neighbor group configuration mode.

Step 10 neighbor ip-address

Example:

Router(config-bgp)# neighbor 10.0.0.2

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP
peer.

Step 11 remote-as as-number

Example:

Router(config-bgp-nbr)# remote-as 1

Creates a neighbor and assigns a remote autonomous system (AS) number to it.

• Range for 2-byte autonomous system numbers (ASNs) is 1 to 65535.

• Range for 4-byte autonomous system numbers (ASNs) in asplain format is 1 to 4294967295.

• Range for 4-byte autonomous system numbers (ASNs) is asdot format is 1.0 to 65535.65535.

Step 12 use neighbor-group group-name

Example:

Router(config-bgp-nbr)# use neighbor-group n1

Specifies that the BGP neighbor inherit configuration from the specified neighbor group.

Step 13 tcp mss inheritance-disable

Example:
Router(config-bgp-nbr)# tcp mss inheritance-disable

Disables TCP MSS for the neighbor.

Step 14 address-family ipv4 unicast

Example:

Implementing BGP
141

Implementing BGP
Disabling Per Neighbor TCP MSS

Router(config-bgp-nbr)# address-family ipv4 unicast

Router(config-bgp-nbr-af)#

Specifies the IPv4 address family unicast and enters address family configuration mode.

Step 15 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Route Filtering by Route Policy
Perform this task to configure BGP routing filtering by route policy.

Step 1 configure

Step 2 route-policy name

Example:

Router(config)# route-policy drop-as-1234
Router(config-rpl)# if as-path passes-through '1234' then
Router(config-rpl)# apply check-communities
Router(config-rpl)# else
Router(config-rpl)# pass
Router(config-rpl)# endif

(Optional) Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 3 end-policy

Example:

Router(config-rpl)# end-policy

(Optional) Ends the definition of a route policy and exits route policy configuration mode.

Step 4 router bgp as-number

Example:

Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 5 neighbor ip-address

Implementing BGP
142

Implementing BGP
Configure BGP Route Filtering by Route Policy

Example:

Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 6 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 7 route-policy route-policy-name { in | out }

Example:

Router(config-bgp-nbr-af)# route-policy drop-as-1234 in

Applies the specified policy to inbound routes.

Step 8 commit

Configure BGP Attribute Filtering
SUMMARY STEPS

1. configure
2. router bgp as-number

3. attribute-filter group attribute-filter group name

4. attribute attribute code { discard | treat-as-withdraw }

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Implementing BGP
143

Implementing BGP
Configure BGP Attribute Filtering

Step 3 attribute-filter group attribute-filter group name

Example:
Router(config-bgp)# attribute-filter group ag_discard_med

Specifies the attribute-filter group name and enters the attribute-filter group configuration mode, allowing you to configure
a specific attribute filter group for a BGP neighbor.

Step 4 attribute attribute code { discard | treat-as-withdraw }

Example:
Router(config-bgp-attrfg)# attribute 24 discard

Specifies a single or a range of attribute codes and an associated action. The allowed actions are:

• Treat-as-withdraw— Considers the update message for withdrawal. The associated IPv4-unicast or MP_REACH
NLRIs, if present, are withdrawn from the neighbor's Adj-RIB-In.

• Discard Attribute— Discards this attribute. The matching attributes alone are discarded and the rest of the Update
message is processed normally.

Configure BGP Next-Hop Trigger Delay
Perform this task to configure BGP next-hop trigger delay. The Routing Information Base (RIB) classifies
the dampening notifications based on the severity of the changes. Event notifications are classified as critical
and noncritical. This task allows you to specify the minimum batching interval for the critical and noncritical
events.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. nexthop trigger-delay { critical delay | non-critical delay }
5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Implementing BGP
144

Implementing BGP
Configure BGP Next-Hop Trigger Delay

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 nexthop trigger-delay { critical delay | non-critical delay }

Example:
Router(config-bgp-af)# nexthop trigger-delay critical 15000

Sets the critical next-hop trigger delay.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Disable Next-Hop Processing on BGP Updates
Perform this task to disable next-hop calculation for a neighbor and insert your own address in the next-hop
field of BGP updates. Disabling the calculation of the best next hop to use when advertising a route causes
all routes to be advertised with the network device as the next hop.

Next-hop processing can be disabled for address family group, neighbor group, or neighbor address family.Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Implementing BGP
145

Implementing BGP
Disable Next-Hop Processing on BGP Updates

Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 206

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 6 next-hop-self

Example:
Router(config-bgp-nbr-af)# next-hop-self

Sets the next-hop attribute for all routes advertised to the specified neighbor to the address of the local router. Disabling
the calculation of the best next hop to use when advertising a route causes all routes to be advertised with the local network
device as the next hop.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Community and Extended-Community
Advertisements

Perform this task to specify that community/extended-community attributes should be sent to an eBGP
neighbor. These attributes are not sent to an eBGP neighbor by default. By contrast, they are always sent to

Implementing BGP
146

Implementing BGP
Configure BGP Community and Extended-Community Advertisements

iBGP neighbors. This section provides examples on how to enable sending community attributes. The
send-community-ebgp keyword can be replaced by the send-extended-community-ebgp keyword to
enable sending extended-communities.

If the send-community-ebgp command is configured for a neighbor group or address family group, all
neighbors using the group inherit the configuration. Configuring the command specifically for a neighbor
overrides inherited values.

BGP community and extended-community filtering cannot be configured for iBGP neighbors. Communities
and extended-communities are always sent to iBGP neighbors under VPNv4, MDT, IPv4, and IPv6 address
families.

Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 address-family{ipv4 {labeled-unicast | unicast | mdt | | mvpn | rt-filter | tunnel} | ipv6 {labeled-unicast | mvpn |
unicast}}

Example:
Router(config-bgp-nbr)# address-family ipv6 unicast

Enters neighbor address family configuration mode for the specified address family. Use either ipv4 or ipv6 address
family keyword with one of the specified address family sub mode identifiers.

IPv6 address family mode supports these sub modes:

• labeled-unicast

Implementing BGP
147

Implementing BGP
Configure BGP Community and Extended-Community Advertisements

• mvpn

• unicast

IPv4 address family mode supports these sub modes:

• labeled-unicast

• mdt

• mvpn

• rt-filter

• tunnel

• unicast

Step 6 Use one of these commands:

• send-community-ebgp
• send-extended-community-ebgp

Example:
Router(config-bgp-nbr-af)# send-community-ebgp

or
Router(config-bgp-nbr-af)# send-extended-community-ebgp

Specifies that the router send community attributes or extended community attributes (which are disabled by default for
eBGP neighbors) to a specified eBGP neighbor.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configure BGP Cost Community
BGP receives multiple paths to the same destination and it uses the best-path algorithm to decide which is the
best path to install in RIB. To enable users to determine an exit point after partial comparison, the cost
community is defined to tie-break equal paths during the best-path selection process. Perform this task to
configure the BGP cost community.

Step 1 configure

Implementing BGP
148

Implementing BGP
Configure BGP Cost Community

Example:

RP/0/# configure

Enters mode.

Step 2 route-policy name

Example:

Router(config)# route-policy costA

Enters route policy configuration mode and specifies the name of the route policy to be configured.

Step 3 set extcommunity cost { cost-extcommunity-set-name | cost-inline-extcommunity-set } [additive]

Example:

Router(config)# set extcommunity cost cost_A

Specifies the BGP extended community attribute for cost.

Step 4 end-policy

Example:

Router(config)# end-policy

Ends the definition of a route policy and exits route policy configuration mode.

Step 5 router bgp as-number

Example:

Router(config)# router bgp 120

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 6 Do one of the following:

• default-information originate
• aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy

route-policy-name]

Applies the cost community to the attach point (route policy).

Step 7 Do one of the following:

• neighbor ip-address remote-as as-number
• route-policy route-policy-name { in | out }

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
149

Implementing BGP
Configure BGP Cost Community

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 9 show bgp ip-address

Example:

Router# show bgp 172.168.40.24

Displays the cost community in the following format:

Cost: POI : cost-community-ID : cost-number

Configure Software to Store Updates from Neighbor
Perform this task to configure the software to store updates received from a neighbor.

The soft-reconfiguration inbound command causes a route refresh request to be sent to the neighbor if the
neighbor is route refresh capable. If the neighbor is not route refresh capable, the neighbor must be reset to
relearn received routes using the clear bgp soft command.

Storing updates from a neighbor works only if either the neighbor is route refresh capable or the
soft-reconfiguration inbound command is configured. Even if the neighbor is route refresh capable and the
soft-reconfiguration inbound command is configured, the original routes are not stored unless the always
option is used with the command. The original routes can be easily retrieved with a route refresh request.
Route refresh sends a request to the peer to resend its routing information. The soft-reconfiguration inbound
command stores all paths received from the peer in an unmodified form and refers to these stored paths during
the clear. Soft reconfiguration is memory intensive.

Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. address-family { ipv4 | ipv6 } unicast
5. soft-reconfiguration inbound [always]
6. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Implementing BGP
150

Implementing BGP
Configure Software to Store Updates from Neighbor

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 5 soft-reconfiguration inbound [always]

Example:
Router(config-bgp-nbr-af)# soft-reconfiguration inbound always

Configures the software to store updates received from a specified neighbor. Soft reconfiguration inbound causes the
software to store the original unmodified route in addition to a route that is modified or filtered. This allows a “soft clear”
to be performed after the inbound policy is changed.

Soft reconfiguration enables the software to store the incoming updates before apply policy if route refresh is not supported
by the peer (otherwise a copy of the update is not stored). The always keyword forces the software to store a copy even
when route refresh is supported by the peer.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Persistence
BGP persistence enables the local router to retain routes that it has learnt from the configured neighbor even
after the neighbor session is down. BGP persistence is also referred as Long Lived Graceful Restart (LLGR).
LLGR takes effect after graceful restart (GR) ends or immediately if GR is not enabled. LLGR ends either
when the LLGR stale timer expires or when the neighbor sends the end-of-RIB marker after it has revised its

Implementing BGP
151

Implementing BGP
BGP Persistence

routes. When LLGR for a neighbor ends, all routes from that neighbor that are still stale will be deleted. The
LLGR capability is signaled to a neighbor in the BGP OPEN message if it has been configured for that
neighbor. LLGR differs from graceful restart in the following ways.

• It can be in effect for a much longer time than GR

• LLGR stale routes are least preferred during route selection (bestpath computation).

• An LLGR stale route will be advertised with the LLGR_STALE community attached if it is selected as
best path. It will not be advertised at all to routers that are not LLGR capable.

• LLGR stale routes will not be deleted when the forwarding path to the neighbor is detected to be down.

• An LLGR stale route will not be deleted if the BGP session to the neighbor goes down multiple times
even if that neighbor does not re-advertise the route.

• Any route that has the NO_LLGR community will not be retained.

BGP will not pass the updates containing communities 65535:6, 65535:7 to its neighbors until the neighbors
negotiate BGP persistence capabilities. The communities 65535:6 and 65535:7 are reserved for LLGR_STALE
and NO_LLGR respectively, BGP behavior maybe unpredictable if you have configured these communities
prior to release 5.2.2. We recommend not to configure the communities 65535:6 and 65535:7.

The BGP persistence feature is supported only on the following AFIs:

• VPNv4 and VPNv6

• RT constraint

• Flow spec (IPv4, IPv6, VPNv4 and VPNv6)

• IPv4 and IPv6 address family

BGP Persistence Configuration: Example
This example sets long lived graceful restart (LLGR) stale-time of 16777215 on BGP neighbor 10.3.3.3.

router bgp 100
neighbor 10.3.3.3
remote-as 30813
update-source Loopback0
graceful-restart stalepath-time 150
address-family vpnv4 unicast
long-lived-graceful-restart capable
long-lived-graceful-restart stale-time send 16777215 accept 16777215
!
address-family vpnv6 unicast
long-lived-graceful-restart capable
long-lived-graceful-restart stale-time send 16777215 accept 16777215

BGP Graceful Maintenance
When a BGP link or router is taken down, other routers in the network find alternative paths for the traffic
that was flowing through the failed router or link, if such alternative paths exist. The time required before all
routers involved can reach a consensus about an alternate path is called convergence time. During convergence

Implementing BGP
152

Implementing BGP
BGP Persistence Configuration: Example

time, traffic that is directed to the router or link that is down is dropped. The BGP Graceful Maintenance
feature allows the network to perform convergence before the router or link is taken out of service. The router
or link remains in service while the network reroutes traffic to alternative paths. Any traffic that is yet on its
way to the affected router or link is still delivered as before. After all traffic has been rerouted, the router or
link can safely be taken out of service.

The Graceful Maintenance feature is helpful when alternate paths exist and these alternate paths are not known
to routers at the time that the primary paths are withdrawn. The feature provides these alternate paths before
the primary paths are withdrawn. The feature is most helpful in networks where convergence time is long.
Several factors, such as large routing tables and presence of route reflectors, can result in longer convergence
time.

When a BGP router or link is brought into service, the possibility of traffic loss during convergence also exists,
although it is less than when a router or link is taken out of service. The BGP Graceful Maintenance feature
can also be used in this scenario.

Restrictions for BGP Graceful Maintenance
The following restrictions apply for BGP Graceful Maintenance:

• If the affected router is configured to send the GSHUT community attribute, then other routers in the
network that receive it must be configured to interpret it. You must match the community with a routing
policy and set a lower preference.

• The LOCAL_PREF attribute is not sent to another AS. Therefore, the LOCAL_PREF option cannot be
used on an eBGP link.

This restriction does not apply to eBGP links between member-ASs of an AS
confederation.

Note

• Alternative routes must exist in the network, otherwise advertising a lower preference has no effect. For
example, there is no advantage in configuring Graceful Maintenance for a singly-homed customer router
which does not have alternate routes.

• If time consuming policies exist, either at the output of the sending router or at the input of the receiving
router, the Graceful Maintenance operation can take a long time.

• Configuring an eBGP ASBR neighbor results in advertising an implicit null label for directly connected
routes via BGP. If a user shuts down an eBGP neighbor, the label is not reprogrammed as the system
withdraws rewrites on any neighbor state changes. Implicit null label feature support helps avoid churn
in terms of adding or removing rewrites for neighbor flaps.

Graceful Maintenance Operation
When Graceful Maintenance is activated, the affected routes are advertised again with a reduced preference.
This causes neighboring routers to choose alternative routes. You can use any of the following methods to a
signal reduced route preference:

• Add GSHUT community: Use this method to allow remote routers the freedom to set a preference.
Receiving routers must match this community in a policy and set their own preference.

Implementing BGP
153

Implementing BGP
Restrictions for BGP Graceful Maintenance

• Reduce LOCAL_PREF value: This works for internal BGP neighbors. Use this method if remote
routers do not match the GSHUT community.

• Prepend AS Path: This works for both internal and external BGP neighbors. Use this method if remote
routers do not match the GSHUT community.

When Graceful Maintenance is activated on a BGP connection, the following two operations happen:

1. All routes received from the connection are re-advertised to other neighbors with a lower preference.
Note, this happens to only those routes that have actually been advertised to other neighbors. It is possible
that a received route was not selected as the best path and therefore not advertised. In that case, it will not
be re-advertised.

2. All routes that were advertised to the connection is re-advertised with a lower preference.

In order for the first operation to happen, all routes received from the connection are tagged with an internal
attribute called graceful-shut. This attribute is stored internal to only the router; it is not advertised by BGP.
This attribute can be seen when the route is displayed with the show bgp command. It is different from the
GSHUT community. The GSHUT community is advertised by BGP and can be seen in the community list
when the route is displayed with the show bgp command.

All routes that have the graceful-shut attribute are given the lowest preference during route-selection. Any
new route updates that are sent or received on a BGP session under Graceful Maintenance are also treated as
described above.

Inter Autonomous System
Advertising a lower preference to another AS in the public Internet may cause unnecessary routing
advertisements in distant networks, whichmay not be desirable. An additional configuration under the neighbor
address family, send-community-gshut-ebgp, is necessary for the router to originate the GSHUT community
to the eBGP neighbor.

This does not affect the GSHUT community on a route that already had this community when it was received;
it only affects the GSHUT community when this router adds it.

Note

When to Shut Down After Graceful Maintenance
The router or link can be shut down after the network has converged as a result of a graceful-maintenance
activation. Convergence can take from less than a second to more than an hour. Unfortunately, a single router
cannot know when a whole network has converged. After a graceful-maintenance activation, it can take a few
seconds to start sending updates. Then, the “InQ” and “OutQ” of neighbors in the show bgp <vrf> <afi>
<safi> summary command's output indicates the level of BGP messaging. Both InQ and OutQ should be 0
after convergence. Neighbors should stop sending traffic. However, they won't stop sending traffic if they do
not have alternate paths; and in that case traffic loss cannot be prevented.

Implementing BGP
154

Implementing BGP
Inter Autonomous System

Activate Graceful Maintenance under BGP Router (All Neighbors)
Activating Graceful Maintenance under a BGP router results in activatebeing configured under
graceful-maintenance for all neighbors. With just this one configuration, you get the same result if you were
to go to every neighbor that has graceful-maintenance configured, and added activate under it. If you add
the keyword all-neighbors, thus, graceful-maintenance activate all-neighbors, then the router acts as if
you configured graceful-maintenance activate under every neighbor.

We suggest that you activate Graceful Maintenance under a BGP router instance only if it is acceptable to
send the GSHUT community for all routes on every neighbor. Re-sending all routes to every neighbor can
take significant amount of time on a large router. Sending GSHUT to a neighbor that does not have alternative
routes is pointless. If a router has many of such neighbors then a significant amount of time can be saved by
not activating Graceful Maintenance on them.

Note

The BGPGracefulMaintenance feature allows you to enable GracefulMaintenance either on a single neighbor,
on a group of neighbors across BGP sessions, or on all neighbors. Enabling Graceful Maintenance under a
neighbor sub-mode, does two things:

1. All routes that are advertised to this neighbor that has the graceful-shut attribute are advertised to that
neighbor with the GSHUT community.

2. Enters graceful-maintenance configuration mode to allow further configuration.

Using the activate keyword under graceful-maintenance, causes the following:

1. All routes that are received from this neighbor acquire the graceful-shut attribute.
2. All routes that are advertised to this neighbor are re-advertised to that neighbor with the GSHUT

community.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. graceful-maintenance activate [all-neighbors | retain-routes]
4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

Router(config)# router bgp 120

Step 2

Implementing BGP
155

Implementing BGP
Activate Graceful Maintenance under BGP Router (All Neighbors)

PurposeCommand or Action

Announces routes with the g-shut community and other
attributes as configured under the neighbors. This causes

graceful-maintenance activate [all-neighbors |
retain-routes]

Step 3

neighbors to reject routes from this router and choose
Example: alternates. This allows the router to be gracefully brought

in or out of service.
Router(config-bgp)# graceful-maintenance activate

If you use the all-neighbors keyword, Graceful
Maintenance is activated even for those neighbors that doall-neighhbors

not have it activated. Choosing retain-routes causes RIB
to retain BGP routes when the BGP process is stopped.
Use the retain-routes option when only BGP must be
brought down instead of the entire router, and when it is
known that neighboring routers are kept in operation during
the maintenance of the local BGP. If RIB has alternative
routes provided by another protocol or a default route, then
it is recommended that you do not to retain BGP routes after
the BGP process stops.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

What to do next

After activating Graceful Maintenance, you must wait for all the routes to be sent and for the neighboring
routers to redirect their traffic away from the router or link under maintenance. After the traffic is redirected,
then it is safe to take the router or link out of service. While there is no definitive way to know when all the
routes have been sent, you can use the show bgp summary command to check the OutQ of the neighbors.
When OutQ reaches a value 0, there are no more updates to be sent.

Activate Graceful Maintenance on a Single Neighbor
Use the following steps to activate Graceful Maintenance for a single neighbor:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. graceful-maintenance activate
5. Use the commit or end command.

Implementing BGP
156

Implementing BGP
Activate Graceful Maintenance on a Single Neighbor

DETAILED STEPS

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

Router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

Router(config-bgp)# neighbor 172.168.40.24

Step 3

Announces routes with Graceful Maintenance attributes.graceful-maintenance activate

Example:

Step 4

Router(config-bgp-nbr)# graceful-maintenance
activate

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Activate Graceful Maintenance on a Group of Neighbors
Use the following steps to activate Graceful Maintenance on a group of neighbors:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor-group Neighbor-group name

4. graceful-maintenance activate
5. Use the commit or end command.

Implementing BGP
157

Implementing BGP
Activate Graceful Maintenance on a Group of Neighbors

DETAILED STEPS

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

Router(config)# router bgp 120

Step 2

Places the router in neighbor group configuration mode.neighbor-group Neighbor-group name

Example:

Step 3

Router(config-bgp)# neighbor-group AS_1

Announces routes with Graceful Maintenance attributes.graceful-maintenance activate

Example:

Step 4

Router(config-bgp-nbrgrp)# graceful-maintenance
activate

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

What to do next

You must configure the send-community-gshut-ebgp command under the neighbor address family of an
eBGP neighbor for this router to add the GSHUT community.

Sending GSHUT community may not be desirable under every address family of an eBGP neighbor. To allow
you to target GSHUT community to a specific set of address families, use the send-community-gshut-ebgp
command.

Note

Implementing BGP
158

Implementing BGP
Activate Graceful Maintenance on a Group of Neighbors

Direct Router to Reduce Route Preference
The BGPGracefulMaintenance feature works only with the availability of alternate paths. Youmust advertise
routes with a lower preference to allow alternate routes to take over before taking down a link or router. Use
the following steps to modify the route preference:

Attributes for graceful maintenance are added to a route update message after an outbound policy has been
applied to it.

Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 120

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 3 neighbor ip-address

Example:

Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:

Router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Step 5 graceful-maintenance as-prepends value| local-preference value

Example:
Router(config-bgp-nbr)# graceful-maintenance
local-preference 4

Specifies the number of times the local AS number is to be to prepended to the AS path of routes and advertises the
GSHUT community with the local preference value specified for the routes.When the router adds the GSHUT community
to a route as it advertises it, it also changes the LOCAL_PREF attribute and prepends the local AS number as specified
in the commands. Sending GSHUT provides flexibility in the manner in which neighboring routers handle the lower
preference: they can match it in a route policy and do the most appropriate thing with it. On the other hand, in simple
networks, it is easier to set local-preference to 0, than to create route policies everywhere else.

Implementing BGP
159

Implementing BGP
Direct Router to Reduce Route Preference

LOCAL_PREF is not sent to real eBGP neighbors, but sent to confederation member AS eBGP neighbors.
To lower the preference to eBGP neighbors, as-prepends value is required.

Note

Example: Configure route policy matching GSHUT community to lower route preference

route-policy gshut
if community matches-any gshut then
set local-preference 0

endif
pass

end-policy

neighbor 666.0.0.3
address-family ipv4 unicast
route-policy gshut in

Routes received from a GSHUT neighbor are marked with a GSHUT attribute to distinguish them
from routes received with the GSHUT community. When a neighbor is taken out of maintenance,
the attribute on its paths is removed, but not the community. The attribute is internal and not sent in
BGP messages. It is used to reject routes during path selection.

Note

Bring Router or Link Back into Service
Before you bring the router or link back into service, you must first activate graceful maintenance and then
remove the activate configuration.

Show Command Outputs to Verify BGP Graceful Maintenance
This section lists the show commands you can use to verify that BGP Graceful Maintenance is activated and
check related attributes:

Use the show bgp <IP address> command to display graceful-shutdown community and the graceful-shut
path attribute with BGP graceful maintenance activated:
RP/0/0/CPU0:R4#show bgp 5.5.5.5
...
10.10.10.1 from 10.10.10.1 (192.168.0.5)
Received Label 24000
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best,
import-candidate
Received Path ID 0, Local Path ID 1, version 4
Community: graceful-shutdown
Originator: 192.168.0.5, Cluster list: 192.168.0.1

The following is sample output from the show bgp community graceful-shutdown command displaying
the graceful maintenance feature information:

Implementing BGP
160

Implementing BGP
Bring Router or Link Back into Service

RP/0/0/CPU0:R4#show bgp community graceful-shutdown
BGP router identifier 192.168.0.4, local AS number 4
BGP generic scan interval 60 secs
BGP table state: Active
Table ID: 0xe0000000 RD version: 18
BGP main routing table version 18
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
* 5.5.5.5/32 10.10.10.1 88 0 1 ?
Processed 1 prefixes, 1 paths

The following is the sample output from the show bgp neighbors command with the ip-address and
configuration argument and keyword to display graceful maintenance feature attributes:
RP/0/0/CPU0:R1#show bgp neighbor 12.12.12.5
...
Graceful Maintenance locally active, Local Pref=45, AS prepends=3
...
For Address Family: IPv4 Unicast
...
GSHUT Community attribute sent to this neighbor
...
**
RP/0/0/CPU0:R1#show bgp neighbor 12.12.12.5 configuration
neighbor 12.12.12.5
remote-as 1 []
graceful-maintenance 1 []
gr-maint local-preference 45 []
gr-maint as-prepends 3 []
gr-maint activate []

The following is the sample output of the show rpl community-set command with graceful maintenance
feature attributes displayed:
RP/0/0/CPU0:R5#show rpl community-set
Listing for all Community Set objects
community-set gshut
graceful-shutdown
end-set

The following is the sample of the syslog that is issued when a BGP neighbor that has graceful maintenance
activated, comes up. It is a warning text that reminds you to deactivate graceful maintenance after convergence.
RP/0/0/CPU0:Jan 28 22:01:36.356 : bgp[1056]: %ROUTING-BGP-5-ADJCHANGE : neighbor 10.10.10.4
Up (VRF: default) (AS: 4)
WARNING: Graceful Maintenance is Active

Bring Router or Link Back into Service
Before you bring the router or link back into service, you must first activate graceful maintenance and then
remove the activate configuration.

Show Command Outputs to Verify BGP Graceful Maintenance
This section lists the show commands you can use to verify that BGP Graceful Maintenance is activated and
check related attributes:

Implementing BGP
161

Implementing BGP
Bring Router or Link Back into Service

Use the show bgp <IP address> command to display graceful-shutdown community and the graceful-shut
path attribute with BGP graceful maintenance activated:
RP/0/0/CPU0:R4#show bgp 5.5.5.5
...
10.10.10.1 from 10.10.10.1 (192.168.0.5)
Received Label 24000
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best,
import-candidate
Received Path ID 0, Local Path ID 1, version 4
Community: graceful-shutdown
Originator: 192.168.0.5, Cluster list: 192.168.0.1

The following is sample output from the show bgp community graceful-shutdown command displaying
the graceful maintenance feature information:
RP/0/0/CPU0:R4#show bgp community graceful-shutdown
BGP router identifier 192.168.0.4, local AS number 4
BGP generic scan interval 60 secs
BGP table state: Active
Table ID: 0xe0000000 RD version: 18
BGP main routing table version 18
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
* 5.5.5.5/32 10.10.10.1 88 0 1 ?
Processed 1 prefixes, 1 paths

The following is the sample output from the show bgp neighbors command with the ip-address and
configuration argument and keyword to display graceful maintenance feature attributes:
RP/0/0/CPU0:R1#show bgp neighbor 12.12.12.5
...
Graceful Maintenance locally active, Local Pref=45, AS prepends=3
...
For Address Family: IPv4 Unicast
...
GSHUT Community attribute sent to this neighbor
...
**
RP/0/0/CPU0:R1#show bgp neighbor 12.12.12.5 configuration
neighbor 12.12.12.5
remote-as 1 []
graceful-maintenance 1 []
gr-maint local-preference 45 []
gr-maint as-prepends 3 []
gr-maint activate []

The following is the sample output of the show rpl community-set command with graceful maintenance
feature attributes displayed:
RP/0/0/CPU0:R5#show rpl community-set
Listing for all Community Set objects
community-set gshut
graceful-shutdown
end-set

The following is the sample of the syslog that is issued when a BGP neighbor that has graceful maintenance
activated, comes up. It is a warning text that reminds you to deactivate graceful maintenance after convergence.
RP/0/0/CPU0:Jan 28 22:01:36.356 : bgp[1056]: %ROUTING-BGP-5-ADJCHANGE : neighbor 10.10.10.4
Up (VRF: default) (AS: 4)
WARNING: Graceful Maintenance is Active

Implementing BGP
162

Implementing BGP
Show Command Outputs to Verify BGP Graceful Maintenance

Flow-tag propagation
The flow-tag propagation feature enables you to establish a co-relation between route-policies and user-policies.
Flow-tag propagation using BGP allows user-side traffic-steering based on routing attributes such as, AS
number, prefix lists, community strings and extended communities. Flow-tag is a logical numeric identifier
that is distributed through RIB as one of the routing attribute of FIB entry in the FIB lookup table. A flow-tag
is instantiated using the 'set' operation from RPL and is referenced in the C3PL PBR policy, where it is
associated with actions (policy-rules) against the flow-tag value.

You can use flow-tag propagation to:

• Classify traffic based on destination IP addresses (using the Community number) or based on prefixes
(using Community number or AS number).

• Select a TE-group that matches the cost of the path to reach a service-edge based on customer site service
level agreements (SLA).

• Apply traffic policy (TE-group selection) for specific customers based on SLA with its clients.
• Divert traffic to application or cache server.

Restrictions for Flow-Tag Propagation
Some restrictions are placed with regard to using Quality-of-service Policy Propagation Using Border Gateway
Protocol (QPPB) and flow-tag feature together. These include:

• A route-policy can have either 'set qos-group' or 'set flow-tag,' but not both for a prefix-set.
• Route policy for qos-group and route policy flow-tag cannot have overlapping routes. The QPPB and
flow tag features can coexist (on same as well as on different interfaces) as long as the route policy used
by them do not have any overlapping route.

• Mixing usage of qos-group and flow-tag in route-policy and policy-map is not recommended.

Source and destination-based flow tag
The source-based flow tag feature allows you to match packets based on the flow-tag assigned to the source
address of the incoming packets. Once matched, you can then apply any supported PBR action on this policy.

Configure Source and Destination-based Flow Tag
This task applies flow-tag to a specified interface. The packets are matched based on the flow-tag assigned
to the source address of the incoming packets.

You will not be able to enable both QPPB and flow tag feature simultaneously on an interface.Note

SUMMARY STEPS

1. configure
2. interface type interface-path-id

3. ipv4 | ipv6 bgp policy propagation input flow-tag{destination |source}

Implementing BGP
163

Implementing BGP
Flow-tag propagation

4. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 interface type interface-path-id

Example:

Router(config-if)# interface FourHundredGige 0/1/0/0

Enters interface configuration mode and associates one or more interfaces to the VRF.

Step 3 ipv4 | ipv6 bgp policy propagation input flow-tag{destination |source}

Example:

Router(config-if)# ipv4 bgp policy propagation input flow-tag source

Enables flow-tag policy propagation on source or destination IP address on an interface.

Step 4 Use the commit or end command.

commit —Saves the configuration changes, and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration mode, without committing the configuration changes.

Example

The following show commands display outputs with PBR policy applied on the router:
show running-config interface gigabitEthernet 0/0/0/12
Thu Feb 12 01:51:37.820 UTC
interface GigabitEthernet0/0/0/12
service-policy type pbr input flowMatchPolicy
ipv4 bgp policy propagation input flow-tag source
ipv4 address 192.5.1.2 255.255.255.0
!

Router#show running-config policy-map type pbr flowMatchPolicy
Thu Feb 12 01:51:45.776 UTC
policy-map type pbr flowMatchPolicy
class type traffic flowMatch36

Implementing BGP
164

Implementing BGP
Configure Source and Destination-based Flow Tag

transmit
!
class type traffic flowMatch38
transmit
!
class type traffic class-default
!
end-policy-map
!

Router#show running-config class-map type traffic flowMatch36
Thu Feb 12 01:52:04.838 UTC
class-map type traffic match-any flowMatch36
match flow-tag 36
end-class-map
!

Configure Keychains for BGP
Keychains provide secure authentication by supporting different MAC authentication algorithms and provide
graceful key rollover. Perform this task to configure keychains for BGP. This task is optional.

If a keychain is configured for a neighbor group or a session group, a neighbor using the group inherits the
keychain. Values of commands configured specifically for a neighbor override inherited values.

Note

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:
Router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns a remote autonomous system number to it.

Implementing BGP
165

Implementing BGP
Configure Keychains for BGP

Step 5 keychain name

Example:
Router(config-bgp-nbr)# keychain kych_a

Configures keychain-based authentication.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring an MDT Address Family Session in BGP
Perform this task to configure an IPv4 multicast distribution tree (MDT) subaddress family identifier (SAFI)
session in BGP, which can also be used for MVPNv6 network distribution.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. exit
5. address-family { vpnv4 | vpnv6 } unicast
6. exit
7. address-family ipv4 mdt
8. exit
9. neighbor ip-address

10. remote-as as-number

11. update-source interface-type interface-id

12. address-family { ipv4 | ipv6 } unicast
13. exit
14. address-family {vpnv4 | vpnv6} unicast
15. exit
16. address-family ipv4 mdt
17. exit
18. vrf vrf-name

19. rd { as-number:nn | ip-address:nn | auto }
20. address-family { ipv4 | ipv6 } unicast
21. Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]

Implementing BGP
166

Implementing BGP
Configuring an MDT Address Family Session in BGP

• redistribute eigrp process-id [match { external | internal }] [metric metric-value] [
route-policy route-policy-name]

• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]}] [metric metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 |
2]}] [metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

22. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

Router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).Router(config-vrf)# address-family ipv4 unicast

Exits the current configuration mode.exit

Example:

Step 4

Router(config-bgp-af)# exit

Specifies the address family and enters the address family
configuration submode.

address-family { vpnv4 | vpnv6 } unicast

Example:

Step 5

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).

Router(config-bgp)# address-family vpnv4 unicast

Required if you are configuring multicast
MVPN. If configuring MVPNv6, use the
vpnv6 keyword

Note

Exits the current configuration mode.exit

Example:

Step 6

Router(config-bgp-af)# exit

Implementing BGP
167

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

Specifies the multicast distribution tree (MDT) address
family.

address-family ipv4 mdt

Example:

Step 7

Router(config-bgp)# address-family ipv4 mdt

Exits the current configuration mode.exit

Example:

Step 8

Router(config-bgp-af)# exit

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Step 9

Creates a neighbor and assigns a remote autonomous
system number to it.

remote-as as-number

Example:

Step 10

Router(config-bgp-nbr)# remote-as 2002

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source interface-type interface-id

Example:
Router(config-bgp-nbr)# update-source loopback 0

Step 11

The interface-type interface-id arguments specify the
type and ID number of the interface, such as ATM, POS,
Loopback. Use the CLI help (?) to see a list of all the
possible interface types and their ID numbers.

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 12

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).

Router(config-vrf)# address-family ipv4 unicast

(Optional) Exits the current configuration mode.exit

Example:

Step 13

Router(config-bgp-nbr-af)# exit

(Optional) Enters address family configuration submode
for the specified address family.

address-family {vpnv4 | vpnv6} unicast

Example:

Step 14

Required if you are configuring multicast
MVPN. If configuring MVPNv6, use the
vpnv6 keyword.

NoteRouter(config-bgp-nbr)# address-family vpnv4
unicast

Exits the current configuration mode.exit

Example:

Step 15

Router(config-bgp-nbr-af)# exit

Specifies the multicast distribution tree (MDT) address
family.

address-family ipv4 mdt

Example:

Step 16

Implementing BGP
168

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action
Router(config-bgp)# address-family ipv4 mdt

Exits the current configuration mode.exit

Example:

Step 17

Router(config-bgp-af)# exit

(Optional) Enables BGP routing for a particular VRF on
the PE router.

vrf vrf-name

Example:

Step 18

Required if you are configuring multicast
MVPN.

NoteRouter(config-bgp)# vrf vpn1

(Optional) Configures the route distinguisher.rd { as-number:nn | ip-address:nn | auto }Step 19

Example: • Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.Router(config-bgp-vrf)# rd 1:1

• Automatic assignment of RDs is possible only if a
router ID is configured using the bgp router-id
command in router configuration mode. This allows
you to configure a globally unique router ID that can
be used for automatic RD generation.

The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would
be incorrect for automatic RD generation. Having a
single router ID also helps in checkpointing RD
information for BGP graceful restart, because it is
expected to be stable across reboots.

Required if you are configuring multicast
MVPN.

Note

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 20

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).

Router(config-vrf)# address-family ipv4 unicast

(Optional) Configures redistribution of a protocol into the
VRF address family context.

Do one of the following:Step 21

• redistribute connected [metric metric-value] [
route-policy route-policy-name] Required if you are configuring multicast

MVPN.
Note

• redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name]

• redistribute isis process-id [level { 1 |
1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

• redistribute ospf process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [

Implementing BGP
169

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

metric metric-value] [route-policy
route-policy-name]

• redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute rip [metric metric-value] [
route-policy route-policy-name]

• redistribute static [metric metric-value] [
route-policy route-policy-name]

Example:
Router(config-bgp-vrf-af)# redistribute eigrp 23

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 22

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Disable BGP Neighbor
Perform this task to administratively shut down a neighbor session without removing the configuration.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. shutdown
5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Implementing BGP
170

Implementing BGP
Disable BGP Neighbor

Step 2 router bgp as-number

Example:
Router(config)# router bgp 127

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 shutdown

Example:

Router(config-bgp-nbr)# shutdown

Disables all active sessions for the specified neighbor.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Neighbor Capability Suppression
ABGP speaker can learn about BGP extensions that are supported by a peer by using the capabilities negotiation
feature. Capabilities negotiation allows BGP to use only the set of features supported by both BGP peers on
a link. The neighbor capability suppression feature will turn off neighbor capabilities negotiation during Open
message exchange. This is required for interoperability with very old customer premises equipment devices
that do not understand Capabilities option.

Configuration
Command introduced in neighbor, session-group and neighbor-group modes.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

Implementing BGP
171

Implementing BGP
Neighbor Capability Suppression

4. capability suppress all
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters mode.configure

Example:

Step 1

RP/0/# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

Router(config)# router bgp 4

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

Router(config-bgp)# neighbor 172.168.40.24

Step 3

Turn off neighbor capabilities.capability suppress all

Example:

Step 4

Router(config-bgp-nbr)# capability suppress all

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

BGP Dynamic Neighbors
Earlier IOS-XR supported explicitly configured or static neighbor configuration. BGP dynamic neighbor
support allows BGP peering to a group of remote neighbors that are defined by a range of IP addresses. Each
range can be configured as a subnet IP address.

In larger BGP networks, implementing BGP dynamic neighbors can reduce the amount and complexity of
CLI configuration and save CPU and memory usage. Both IPv4 and IPv6 peering are supported. Both IPv4
and IPv6 peering are supported.

Implementing BGP
172

Implementing BGP
BGP Dynamic Neighbors

Configuring BGP Dynamic Neighbors using Address Range
The existing neighbor command is extended to accept a prefix instead of an address.

In the following task, Router B is configured as a remote BGP peer. After a subnet range is configured, a TCP
session is initiated by Router B which has an IP address in the subnet range and a new BGP neighbor is
dynamically established.

After the initial configuration of subnet ranges and activation of the peer neighbor, dynamic BGP neighbor
creation does not require any further CLI configuration on the Router A.

Step 1 configure

Example:
Router# configure

Enters the global configuration mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor address prefix

Example:

Router(config-bgp)# neighbor 10.0.0.0/16

Places the router in neighbor configuration mode for BGP routing and configures the BGP dynamic neighbor within the
subnet range.

All commands currently supported under a static neighbor, including address-family and inheritance using
neighbor-group, session-group and af-group, will be supported for dynamic neighbor ranges with the exception
of the following commands:

• session-open-mode

• local address

Note

Step 4 remote-as as-number

Example:

Router(config-bgp-nbr)# remote-as 1

Creates a neighbor and assigns a remote autonomous system (AS) number to it.

Implementing BGP
173

Implementing BGP
Configuring BGP Dynamic Neighbors using Address Range

Step 5 update-source type interface-id

Example:

Router(config-bgp-nbr)# update-source FourHundredGige 0/0/0/0

Allows sessions to use the primary IP address from a specific interface as the local address when forming a session with
a neighbor.

The type and interface-id arguments specify the type and ID number of the interface. Use the CLI help (?) to see a list of
all the possible interface types and their ID numbers.

Step 6 address-family ipv4 unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies the IPv4 unicast address family unicast and enters address family configuration mode.

Step 7 Use the commit or end command.

commit - Saves the configuration changes and remains within the configuration session.

end - Prompts user to take one of these actions:

• Yes - Saves configuration changes and exits the configuration session.

• No - Exits the configuration session without committing the configuration changes.

• Cancel - Remains in the configuration mode, without committing the configuration changes.

Remote AS List
In the following task, Router B and Router C are configured as a remote BGP peers. Both Router B and Router
C are in different autonomous systems.

A list is created with the autonomous system of the remote routers and the list is then configured under neighbor
mode using remote-as-list command.

Configuration

Implementing BGP
174

Implementing BGP
Remote AS List

Router# configure
Router(config)# router bgp as-number
Router(config-bgp)# as-list name
Router(config-bgp)# neighbor address prefix
Router(config-bgp-nbr)# remote-as-list name
Router(config-bgp-nbr)# address-family ipv4 unicast
Router# commit

Maximum-peers and Idle-watch timeout
In the below task, maximum-peers and idle-watch timeout commands are configured for a remote BGP peer.

Step 1 configure

Example:
Router# configure

Enters the global configuration mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 10

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor address prefix

Example:
Router(config-bgp)# neighbor 10.0.0.0/16

Places the router in neighbor configuration mode for BGP routing and configures the BGP dynamic neighbor within the
subnet range.

Step 4 maximum-peers number

Example:
Router(config-bgp-nbr)# maximum-peers 16

This is used to configure an upper limit on the number of dynamic neighbor instances allowed under a range.

Step 5 idle-watch-time number

Example:
Router(config-bgp)# idle-watch-time 120

Configures the time to wait before deleting an idle TCP instance.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

Implementing BGP
175

Implementing BGP
Maximum-peers and Idle-watch timeout

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Resetting Neighbors Using BGP Inbound Soft Reset
Perform this task to trigger an inbound soft reset of the specified address families for the specified group or
neighbors. The group is specified by the * , ip-address , as-number , or external keywords and arguments.

Resetting neighbors is useful if you change the inbound policy for the neighbors or any other configuration
that affects the sending or receiving of routing updates. If an inbound soft reset is triggered, BGP sends a
REFRESH request to the neighbor if the neighbor has advertised the ROUTE_REFRESH capability. To
determinewhether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp neighbors
command.

Step 1 show bgp neighbors

Example:
Router# show bgp neighbors

Verifies that received route refresh capability from the neighbor is enabled.

Step 2 soft [in [prefix-filter] | out]

Example:

Router# clear bgp ipv4 unicast 10.0.0.1 soft in

Soft resets a BGP neighbor.

• The * keyword resets all BGP neighbors.

• The ip-address argument specifies the address of the neighbor to be reset.

• The as-number argument specifies that all neighbors that match the autonomous system number be reset.

• The external keyword specifies that all external neighbors are reset.

Resetting Neighbors Using BGP Outbound Soft Reset
Perform this task to trigger an outbound soft reset of the specified address families for the specified group or
neighbors. The group is specified by the * , ip-address , as-number , or external keywords and arguments.

Resetting neighbors is useful if you change the outbound policy for the neighbors or any other configuration
that affects the sending or receiving of routing updates.

If an outbound soft reset is triggered, BGP resends all routes for the address family to the given neighbors.

Implementing BGP
176

Implementing BGP
Resetting Neighbors Using BGP Inbound Soft Reset

To determine whether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp
neighbors command.

Step 1 show bgp neighbors

Example:

Router# show bgp neighbors

Verifies that received route refresh capability from the neighbor is enabled.

Step 2 clear bgp ipv4 unicast ip-addresssoft out

Example:

Router# clear bgp ipv4 unicast 10.0.0.2 soft out

Soft resets a BGP neighbor.

• The * keyword resets all BGP neighbors.

• The ip-address argument specifies the address of the neighbor to be reset.

• The as-number argument specifies that all neighbors that match the autonomous system number be reset.

• The external keyword specifies that all external neighbors are reset.

Reset Neighbors Using BGP Hard Reset
Perform this task to reset neighbors using a hard reset. A hard reset removes the TCP connection to the
neighbor, removes all routes received from the neighbor from the BGP table, and then re-establishes the
session with the neighbor. If the graceful keyword is specified, the routes from the neighbor are not removed
from the BGP table immediately, but are marked as stale. After the session is re-established, any stale route
that has not been received again from the neighbor is removed.

clear bgp { ipv4 { unicast | labeled-unicast | all | tunnel tunnel | mdt } | ipv6 unicast | all | labeled-unicast
} | all { unicast | multicast | all | labeled-unicast | mdt | tunnel } | vpnv4 unicast | vrf { vrf-name | all } {
ipv4 unicast | labeled-unicast } | ipv6 unicast } | vpnv6 unicast } { * | ip-address | as as-number | external
} [graceful] soft [in [prefix-filter] | out] clear bgp { ipv4 | ipv6} { unicast | labeled-unicast }

Example:

Router# clear bgp ipv4 unicast 10.0.0.3 graceful soft out

Clears a BGP neighbor.

• The * keyword resets all BGP neighbors.

• The ip-address argument specifies the address of the neighbor to be reset.

• The as-number argument specifies that all neighbors that match the autonomous system number be reset.

Implementing BGP
177

Implementing BGP
Reset Neighbors Using BGP Hard Reset

• The external keyword specifies that all external neighbors are reset.

The graceful keyword specifies a graceful restart.

Clearing Caches, Tables, and Databases
Perform this task to remove all contents of a particular cache, table, or database. The clear bgp command
resets the sessions of the specified group of neighbors (hard reset); it removes the TCP connection to the
neighbor, removes all routes received from the neighbor from the BGP table, and then re-establishes the
session with the neighbor. Clearing a cache, table, or database can become necessary when the contents of
the particular structure have become, or are suspected to be, invalid.

Step 1 clear bgp ipv4 ip-address

Example:

Router# clear bgp ipv4 172.20.1.1

Clears a specified neighbor.

Step 2 clear bgp external

Example:

Router# clear bgp external

Clears all external peers.

Step 3 clear bgp *

Example:

Router# clear bgp *

Clears all BGP neighbors.

Display System and Network Statistics
Perform this task to display specific statistics, such as the contents of BGP routing tables, caches, and databases.
Information provided can be used to determine resource usage and solve network problems. You can also
display information about node reachability and discover the routing path that the packets of your device are
taking through the network.

SUMMARY STEPS

1. show bgp cidr-only
2. show bgp community community-list [exact-match]

Implementing BGP
178

Implementing BGP
Clearing Caches, Tables, and Databases

3. show bgp regexp regular-expression

4. show bgp
5. show bgp neighbors ip-address [advertised-routes | dampened-routes | flap-statistics |

performance-statistics | received prefix-filter | routes]
6. show bgp paths
7. show bgp neighbor-group group-name configuration
8. show bgp summary

DETAILED STEPS

Step 1 show bgp cidr-only

Example:

Router# show bgp cidr-only

Displays routes with nonnatural network masks (classless interdomain routing [CIDR]) routes.

Step 2 show bgp community community-list [exact-match]

Example:

Router# show bgp community 1081:5 exact-match

Displays routes that match the specified BGP community.

Step 3 show bgp regexp regular-expression

Example:

Router# show bgp regexp "^3 "

Displays routes that match the specified autonomous system path regular expression.

Step 4 show bgp

Example:

Router# show bgp

Displays entries in the BGP routing table.

Step 5 show bgp neighbors ip-address [advertised-routes | dampened-routes | flap-statistics | performance-statistics
| received prefix-filter | routes]

Example:
Router# show bgp neighbors 10.0.101.1

Displays information about the BGP connection to the specified neighbor.

• The advertised-routes keyword displays all routes the router advertised to the neighbor.

• The dampened-routes keyword displays the dampened routes that are learned from the neighbor.

• The flap-statistics keyword displays flap statistics of the routes learned from the neighbor.

Implementing BGP
179

Implementing BGP
Display System and Network Statistics

• The performance-statistics keyword displays performance statistics relating to work done by the BGP process
for this neighbor.

• The received prefix-filter keyword and argument display the received prefix list filter.

• The routes keyword displays routes learned from the neighbor.

Step 6 show bgp paths

Example:
Router# show bgp paths

Displays all BGP paths in the database.

Step 7 show bgp neighbor-group group-name configuration

Example:
Router# show bgp neighbor-group group_1 configuration

Displays the effective configuration for a specified neighbor group, including any configuration inherited by this neighbor
group.

Step 8 show bgp summary

Example:
Router# show bgp summary

Displays the status of all BGP connections.

Display BGP Process Information
Perform this task to display specific BGP process information.

Step 1 show bgp process

Example:

Router# show bgp process

Displays status and summary information for the BGP process. The output shows various global and address family-specific
BGP configurations. A summary of the number of neighbors, update messages, and notification messages sent and
received by the process is also displayed.

Step 2 show bgp ipv4 unicast summary

Example:

Router# show bgp ipv4 unicast summary

Displays a summary of the neighbors for the IPv4 unicast address family.

Step 3 show bgp vpnv4 unicast summary

Implementing BGP
180

Implementing BGP
Display BGP Process Information

Example:

Router# show bgp vpnv4 unicast summary

Displays a summary of the neighbors for the VPNv4 unicast address family.

Step 4 show bgp vrf (vrf-name | all }

Example:
Router# show bgp vrf vrf_A

Displays BGP VPN virtual routing and forwarding (VRF) information.

Step 5 show bgp process detail

Example:
Router# show bgp processes detail

Displays detailed process information including the memory used by each of various internal structure types.

Step 6 show bgp summary

Example:
Router# show bgp summary

Displays the status of all BGP connections.

Step 7 show placement program bgp

Example:
Router# show placement program bgp

Displays BGP program information.

• If a program is shown as having ‘rejected locations’ (for example, locations where program cannot be placed), the
locations in question can be viewed using the show placement program bgp command.

• If a program has been placed but not started, the amount of elapsed time since the program was placed is displayed
in the Waiting to start column.

Step 8 show placement program brib

Example:
Router# show placement program brib

Displays bRIB program information.

• If a program is shown as having ‘rejected locations’ (for example, locations where program cannot be placed), the
locations in question can be viewed using the show placement program bgp command.

• If a program has been placed but not started, the amount of elapsed time since the program was placed is displayed
in the Waiting to start column.

Implementing BGP
181

Implementing BGP
Display BGP Process Information

Configure iBGP Multipath Load Sharing
Perform this task to configure the iBGP Multipath Load Sharing:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family {ipv4|ipv6} {unicast|multicast}
4. maximum-paths ibgp number

5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family {ipv4|ipv6} {unicast|multicast}

Example:
Router(config-bgp)# address-family ipv4 multicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 4 maximum-paths ibgp number

Example:
Router(config-bgp-af)# maximum-paths ibgp 30

Configures the maximum number of iBGP paths for load sharing.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

Implementing BGP
182

Implementing BGP
Configure iBGP Multipath Load Sharing

• Cancel —Remains in the configuration session, without committing the configuration changes.

iBGP Multipath Loadsharing Configuration: Example

The following is a sample configuration where 30 paths are used for loadsharing:

router bgp 100
address-family ipv4 multicast
maximum-paths ibgp 30
!
!
end

Originate Prefixes with AiGP
Perform this task to configure origination of routes with the AiGP metric:

Before you begin

Origination of routes with the accumulated interior gateway protocol (AiGP) metric is controlled by
configuration. AiGP attributes are attached to redistributed routes that satisfy following conditions:

• The protocol redistributing the route is enabled for AiGP.

• The route is an interior gateway protocol (iGP) route redistributed into border gateway protocol (BGP).
The value assigned to the AiGP attribute is the value of iGP next hop to the route or as set by a
route-policy.

• The route is a static route redistributed into BGP. The value assigned is the value of next hop to the route
or as set by a route-policy.

• The route is imported into BGP through network statement. The value assigned is the value of next hop
to the route or as set by a route-policy.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 route-policy aigp_policy

Example:
Router(config)# route-policy aip_policy

Enters route-policy configuration mode and sets the route-policy

Implementing BGP
183

Implementing BGP
Originate Prefixes with AiGP

Step 3 set aigp-metricigp-cost

Example:
Router(config-rpl)# set aigp-metric igp-cost

Sets the internal routing protocol cost as the aigp metric.

Step 4 exit

Example:
Router(config-rpl)# exit

Exits route-policy configuration mode.

Step 5 router bgp as-number

Example:
Router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 6 address-family {ipv4 | ipv6} unicast

Example:
Router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

Step 7 redistribute ospf osp route-policy plcy_namemetric value

Example:
Router(config-bgp-af)#redistribute ospf osp route-policy aigp_policy metric 1

Allows the redistribution of AiBGP metric into OSPF.

Step 8 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Originating Prefixes With AiGP: Example

The following is a sample configuration for originating prefixes with the AiGP metric attribute:

route-policy aigp-policy
set aigp-metric 4
set aigp-metric igp-cost

end-policy
!

Implementing BGP
184

Implementing BGP
Originate Prefixes with AiGP

router bgp 100
address-family ipv4 unicast
network 10.2.3.4/24 route-policy aigp-policy
redistribute ospf osp1 metric 4 route-policy aigp-policy
!
!
end

Configure BGP Accept Own
Perform this task to configure BGP Accept Own:

Step 1 configure

Step 2 router bgp as-number

Example:
Router(config)#router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)#neighbor 10.1.2.3

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:
Router(config-bgp-nbr)#remote-as 100

Assigns a remote autonomous system number to the neighbor.

Step 5 update-source type interface-path-id

Example:
Router(config-bgp-nbr)#update-source Loopback0

Allows sessions to use the primary IP address from a specific interface as the local address when forming a session with
a neighbor.

Step 6 address-family {vpnv4 unicast | vpnv6 unicast}

Example:
Router(config-bgp-nbr)#address-family vpnv6 unicast

Specifies the address family as VPNv4 or VPNv6 and enters neighbor address family configuration mode.

Step 7 accept-own [inheritance-disable]

Example:
Router(config-bgp-nbr-af)#accept-own

Enables handling of self-originated VPN routes containing Accept_Own community.

Implementing BGP
185

Implementing BGP
Configure BGP Accept Own

Use the inheritance-disable keyword to disable the "accept own" configuration and to prevent inheritance of "acceptown"
from a parent configuration.

BGP Accept Own Configuration: Example

In this configuration example:

• PE11 is configured with Customer VRF and Service VRF.

• OSPF is used as the IGP.

• VPNv4 unicast and VPNv6 unicast address families are enabled between the PE and RR
neighbors and IPv4 and IPv6 are enabled between PE and CE neighbors.

The Accept Own configuration works as follows:

1. CE1 originates prefix X.

2. Prefix X is installed in customer VRF as (RD1:X).

3. Prefix X is advertised to IntraAS-RR11 as (RD1:X, RT1).

4. IntraAS-RR11 advertises X to InterAS-RR1 as (RD1:X, RT1).

5. InterAS-RR1 attaches RT2 to prefix X on the inbound and ACCEPT_OWN community on the
outbound and advertises prefix X to IntraAS-RR31.

6. IntraAS-RR31 advertises X to PE11.

7. PE11 installs X in Service VRF as (RD2:X,RT1, RT2, ACCEPT_OWN).

This example shows how to configure BGP Accept Own on a PE router.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast

Implementing BGP
186

Implementing BGP
Configure BGP Accept Own

route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
address-family vpnv6 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
!

This example shows an InterAS-RR configuration for BGP Accept Own.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
address-family vpnv6 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
!
extcommunity-set rt cs_100:1
100:1

end-set
!
extcommunity-set rt cs_1001:1
1001:1

end-set
!
route-policy rt_stitch1
if extcommunity rt matches-any cs_100:1 then
set extcommunity rt cs_1000:1 additive

endif
end-policy
!
route-policy add_bgp_ao
set community (accept-own) additive

end-policy
!

Configuring BGP Link-state
To exchange BGP link-state (LS) information with a BGP neighbor, perform these steps:

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Implementing BGP
187

Implementing BGP
Configuring BGP Link-state

Step 2 router bgp as-number

Example:

Router(config)# router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 3 neighbor ip-address

Example:

Router(config-bgp)# neighbor 10.0.0.2

Configures a CE neighbor. The ip-address argument must be a private address.

Step 4 remote-as as-number

Example:

Router(config-bgp-nbr)# remote-as 1

Configures the remote AS for the CE neighbor.

Step 5 address-family link-state link-state

Example:

Router(config-bgp-nbr)# address-family link-state link-state

Distributes BGP link-state information to the specified neighbor.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring BGP Permanent Network
Perform this task to configure BGP permanent network. You must configure at least one route-policy to
identify the set of prefixes (networks) for which the permanent network (path) is to be configured.

Implementing BGP
188

Implementing BGP
Configuring BGP Permanent Network

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 prefix-set prefix-set-name

Example:

Router(config)# prefix-set PERMANENT-NETWORK-IPv4
Router(config-pfx)# 1.1.1.1/32,
Router(config-pfx)# 2.2.2.2/32,
Router(config-pfx)# 3.3.3.3/32
Router(config-pfx)# end-set

Enters prefix set configuration mode and defines a prefix set for contiguous and non-contiguous set of bits.

Step 3 exit

Example:

Router(config-pfx)# exit

Exits prefix set configuration mode and enters global configuration mode.

Step 4 route-policy route-policy-name

Example:

Router(config)# route-policy POLICY-PERMANENT-NETWORK-IPv4
Router(config-rpl)# if destination in PERMANENT-NETWORK-IPv4 then
Router(config-rpl)# pass
Router(config-rpl)# endif

Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 5 end-policy

Example:

Router(config-rpl)# end-policy

Ends the definition of a route policy and exits route policy configuration mode.

Step 6 router bgp as-number

Example:

Router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode.

Step 7 address-family { ipv4 | ipv6 } unicast

Implementing BGP
189

Implementing BGP
Configuring BGP Permanent Network

Example:

Router(config-bgp)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 8 permanent-network route-policy route-policy-name

Example:

Router(config-bgp-af)# permanent-network route-policy POLICY-PERMANENT-NETWORK-IPv4

Configures the permanent network (path) for the set of prefixes as defined in the route-policy.

Step 9 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 10 show bgp {ipv4 | ipv6} unicast prefix-set

Example:

show bgp ipv4 unicast

(Optional) Displays whether the prefix-set is a permanent network in BGP.

How to Advertise Permanent Network
Perform this task to identify the peers to whom the permanent paths must be advertised.

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 100

Implementing BGP
190

Implementing BGP
How to Advertise Permanent Network

Specifies the autonomous system number and enters the BGP configuration mode.

Step 3 neighbor ip-address

Example:

Router(config-bgp)# neighbor 10.255.255.254

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 4 remote-as as-number

Example:

Router(config-bgp-nbr)# remote-as 4713

Assigns the neighbor a remote autonomous system number.

Step 5 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 6 advertise permanent-network

Example:

Router(config-bgp-nbr-af)# advertise permanent-network

Specifies the peers to whom the permanent network (path) is advertised.

Step 7 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 8 show bgp {ipv4 | ipv6} unicast neighbor ip-address

Example:

Routershow bgp ipv4 unicast neighbor 10.255.255.254

(Optional) Displays whether the neighbor is capable of receiving BGP permanent networks.

Implementing BGP
191

Implementing BGP
How to Advertise Permanent Network

Enable BGP Unequal Cost Recursive Load Balancing
Procedure

PurposeCommand or Action

configureStep 1

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

Router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).Router(config-bgp)# address-family ipv4 unicast

Configures the maximum number of parallel routes that
BGP installs in the routing table.

maximum-paths { ebgp | ibgp | eibgp } maximum [
unequal-cost]

Step 4

Example: • ebgp maximum : Consider only eBGP paths for
multipath.

Router(config-bgp-af)# maximum-paths ebgp 3
• ibgp maximum [unequal-cost]: Consider load
balancing between iBGP learned paths.

• eibgp maximum : Consider both eBGP and iBGP
learned paths for load balancing. eiBGP load balancing
always does unequal-cost load balancing.

When eiBGP is applied, eBGP or iBGP load balancing
cannot be configured; however, eBGP and iBGP load
balancing can coexist.

Exits the current configuration mode.exit

Example:

Step 5

Router(config-bgp-af)# exit

Configures a CE neighbor. The ip-address argument must
be a private address.

neighbor ip-address

Example:

Step 6

Router(config-bgp)# neighbor 10.0.0.0

Originates a demilitarized-zone (DMZ) link-bandwidth
extended community for the link to an eBGP/iBGP
neighbor.

dmz-link-bandwidth

Example:

Router(config-bgp-nbr)# dmz-link-bandwidth

Step 7

Implementing BGP
192

Implementing BGP
Enable BGP Unequal Cost Recursive Load Balancing

PurposeCommand or Action

commitStep 8

BGP Unequal Cost Recursive Load Balancing: Example

This is a sample configuration for unequal cost recursive load balancing:

interface Loopback0
ipv4 address 20.20.20.20 255.255.255.255
!
interface MgmtEth0/RSP0/CPU0/0
ipv4 address 8.43.0.10 255.255.255.0
!
interface TenGigE0/3/0/0
bandwidth 8000000
ipv4 address 11.11.11.11 255.255.255.0
ipv6 address 11:11:0:1::11/64
!
interface TenGigE0/3/0/1
bandwidth 7000000
ipv4 address 11.11.12.11 255.255.255.0
ipv6 address 11:11:0:2::11/64
!
interface TenGigE0/3/0/2
bandwidth 6000000
ipv4 address 11.11.13.11 255.255.255.0
ipv6 address 11:11:0:3::11/64
!
interface TenGigE0/3/0/3
bandwidth 5000000
ipv4 address 11.11.14.11 255.255.255.0
ipv6 address 11:11:0:4::11/64
!
interface TenGigE0/3/0/4
bandwidth 4000000
ipv4 address 11.11.15.11 255.255.255.0
ipv6 address 11:11:0:5::11/64
!
interface TenGigE0/3/0/5
bandwidth 3000000
ipv4 address 11.11.16.11 255.255.255.0
ipv6 address 11:11:0:6::11/64
!
interface TenGigE0/3/0/6
bandwidth 2000000
ipv4 address 11.11.17.11 255.255.255.0
ipv6 address 11:11:0:7::11/64
!
interface TenGigE0/3/0/7
bandwidth 1000000
ipv4 address 11.11.18.11 255.255.255.0
ipv6 address 11:11:0:8::11/64
!
interface TenGigE0/4/0/0
description CONNECTED TO IXIA 1/3
transceiver permit pid all
!
interface TenGigE0/4/0/2
ipv4 address 9.9.9.9 255.255.0.0

Implementing BGP
193

Implementing BGP
Enable BGP Unequal Cost Recursive Load Balancing

ipv6 address 9:9::9/64
ipv6 enable
!
route-policy pass-all
pass

end-policy
!
router static
address-family ipv4 unicast
202.153.144.0/24 8.43.0.1
!
!
router bgp 100
bgp router-id 20.20.20.20
address-family ipv4 unicast
maximum-paths eibgp 8
redistribute connected
!
neighbor 11.11.11.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.12.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.13.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.14.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.15.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.16.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Implementing BGP
194

Implementing BGP
Enable BGP Unequal Cost Recursive Load Balancing

!
!
neighbor 11.11.17.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.18.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
!
end

Configuring BGP Large Communities
BGP communities provide a way to group destinations and apply routing decisions such as acceptance,
rejection, preference, or redistribution on a group of destinations using community attributes. BGP community
attributes are variable length attributes consisting of a set of one or more 4-byte values which are split into
two parts of 16 bits. The higher-order 16 bits represents the AS number and the lower order bits represents a
locally defined value assigned by the operator of the AS.

Since the adoption of 4-byte ASNs (RFC6793), the BGP communities attribute can no longer accommodate
the 4 byte ASNs as you need more than 4 bytes to encode the 4-byte ASN and an AS specific value that you
want to tag with the route. Although BGP extended community permits a 4-byte AS to be encoded as the
global administrator field, the local administrator field has only 2-byte of available space. So, 6-byte extended
community attribute is also unsuitable. To overcome this limitation, you can configure a 12-byte BGP large
community which is an optional attribute that provides the most significant 4-byte value to encode autonomous
system number as the global administrator and the remaining two 4-byte assigned numbers to encode the local
values.

Similar to BGP communities, routers can apply BGP large communities to BGP routes by using route policy
languages (RPL) and other routers can then perform actions based on the community that is attached to the
route. The policy language provides sets as a container for groups of values for matching purposes.

When large communities are specified in other commands, they are specified as three non negative decimal
integers separated by colons. For example, 1:2:3. Each integer is stored in 32 bits. The possible range for each
integer is 0 to 4294967295.

In route-policy statements, each integer in the BGP large community can be replaced by any of the following
expressions :

• [x..y] — This expression specifies a range between x and y, inclusive.

• * —This expression stands for any number.

• peeras — This expression is replaced by the AS number of the neigbhor from which the community is
received or to which the community is sent, as appropriate.

• not-peeras —This expression matches any number other than the peeras.

Implementing BGP
195

Implementing BGP
Configuring BGP Large Communities

• private-as — This expression specifies any number in the private ASN range: [64512..65534] and
[4200000000..4294967294].

These expressions can be also used in policy-match statements.

IOS regular expression (ios-regex) and DFA style regular expression (dfa-regex) can be used in any of the
large-community policy match and delete statements. For example, the IOS regular expression ios-regex
'^5:.*:7$' is equivalent to the expression 5:*:7.

The send-community-ebgp command is extended to include BGP large communities. This command is
required for the BGP speaker to send large communities to ebgp neighbors.

Restrictions and Guidelines

The following restrictions and guidelines apply for BGP large communities:

• All functionalities of the BGP community attribute is available for the BGP large-community attribute.

• The send-community-ebgp command is required for the BGP speaker to send large communities to
ebgp neighbors.

• There are no well-known large-communities.

• The peeras expression cannot be used in a large-community-set.

• The peeras expression can only be used in large-community match or delete statements that appear in
route policies that are applied at the neighbor-in or neighbor-out attach points.

• The not-peeras expression cannot be used in a large-community-set or in policy set statements.

Configuration Example: Large Community Set

A large-community set defines a set of large communities. Named large-community sets are used in route-policy
match and set statements.

This example shows how to create a named large-community set.
RP/0/RP0/CPU0:router(config)# large-community-set catbert
RP/0/RP0/CPU0:router(config-largecomm)# 1: 2: 3,
RP/0/RP0/CPU0:router(config-largecomm)# peeras:2:3
RP/0/RP0/CPU0:router(config-largecomm)# end-set

Configuration Example: Set Large Community

The following example shows how to set the BGP large community attribute in a route, using the set
large-community {large-community-set-name | inline-large-community-set | parameter } [additive]
command. You can specify a named large-community-set or an inline set. The additive keyword retains the
large communities already present in the route and adds the new set of large communities. However the
additive keyword does not result in duplicate entries.

If a particular large community is attached to a route and you specify the same large community again with
the additive keyword in the set statement, then the specified large community is not added again. The merging
operation removes duplicate entries. This also applies to the peeras keyword.

The peeras expression in the example is replaced by the AS number of the neighbor from which the BGP
large community is received or to which the community is sent, as appropriate.
RP/0/RP0/CPU0:router(config)# route-policy mordac
RP/0/RP0/CPU0:router(config-rpl)# set large-community (1:2:3, peeras:2:3)

Implementing BGP
196

Implementing BGP
Configuring BGP Large Communities

RP/0/RP0/CPU0:router(config-rpl)# end-set
RP/0/RP0/CPU0:router(config)# large-community-set catbert
RP/0/RP0/CPU0:router(config-largecomm)# 1: 2: 3,
RP/0/RP0/CPU0:router(config-largecomm)# peeras:2:3
RP/0/RP0/CPU0:router(config-largecomm)# end-set
RP/0/RP0/CPU0:router(config)# route-policy wally
RP/0/RP0/CPU0:router(config-rpl)# set large-community catbert additive
RP/0/RP0/CPU0:router(config-rpl)# end-set

In this example, if the route-policy mordac is applied to a neighbor, the ASN of which is 1, then the large
community (1:2:3) is set only once.

You should configure the send-community-ebgp command to send large communities to ebgp neighbors.Note

Configuration Example: Large Community Matches-any

The following example shows how to configure a route policy to match any element of a large -community
set. This is a boolean condition and returns true if any of the large communities in the route match any of the
large communities in the match condition.
RP/0/RP0/CPU0:router(config)# route-policy elbonia
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-any (1:2:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

Configuration Example: Large Community Matches-every

The following example shows how to configure a route policy where every match specification in the statement
must be matched by at least one large community in the route.
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-every (*:*:3, 4:5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

In this example, routes with these sets of large communities return TRUE:

• (1:1:3, 4:5:10)

• (4:5:3) —This single large community matches both specifications.

• (1:1:3, 4:5:10, 7:6:5)

Routes with the following set of large communities return FALSE:

(1:1:3, 5:5:10)—The specification (4:5:*) is not matched.

Configuration Example: Large Community Matches-within

The following example shows how to configure a route policy to match within a large community set. This
is similar to the large-community matches-any command but every large community in the route must match
at least one match specification. Note that if the route has no large communities, then it matches.
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if large-community matches-within (*:*:3, 4:5:*) then

Implementing BGP
197

Implementing BGP
Configuring BGP Large Communities

RP/0/RP0/CPU0:router(config-rpl)# set local-preference 103
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

For example, routes with these sets of large communities return TRUE:

• (1:1:3, 4:5:10)

• (4:5:3)

• (1:2:3, 6:6:3, 9:4:3)

Routes with this set of large communities return FALSE:

(1:1:3, 4:5:10, 7:6:5) —The large community (7:6:5) does not match

Configuration Example: Community Matches-within

The following example shows how to configure a route policy to match within the elements of a community
set. This command is similar to the community matches-any command, but every community in the route
must match at least one match specification. If the route has no communities, then it matches.
RP/0/RP0/CPU0:router(config)# route-policy bob
RP/0/RP0/CPU0:router(config-rpl)# if community matches-within (*:3, 5:*) then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 94
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

For example, routes with these sets of communities return TRUE:

• (1:3, 5:10)

• (5:3)

• (2:3, 6:3, 4:3)

Routes with this set of communities return FALSE:

(1:3, 5:10, 6:5) —The community (6:5) does not match.

Configuration Example: Large Community Is-empty

The following example shows using the large-community is-empty clause to filter routes that do not have
the large-community attribute set.
RP/0/RP0/CPU0:router(config)# route-policy lrg_comm_rp4
RP/0/RP0/CPU0:router(config-rpl)# if large-community is-empty then
RP/0/RP0/CPU0:router(config-rpl)# set local-preference 104
RP/0/RP0/CPU0:router(config-rpl)# endif
RP/0/RP0/CPU0:router(config-rpl)# end-policy

Configuration Example: Attribute Filter Group

The following example shows how to configure and apply the attribute-filter group with large-community
attributes for a BGP neighbor. The filter specifies the BGP path attributes and an action to take when BGP
update message is received. If an update message is received from the BGP neighbor that contains any of the
specified attributes, then the specified action is taken. In this example, the attribute filter named dogbert is
created and applied to the BGP neighbor 10.0.1.101. It specifies the large community attribute and the action

Implementing BGP
198

Implementing BGP
Configuring BGP Large Communities

of discard. That means, if the large community BGP path attribute is received in a BGP UPDATE message
from the neighbor 10.0.1.101 then the attribute will be discarded before further processing of the message.

RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# attribute-filter group dogbert
RP/0/RP0/CPU0:router(config-bgp-attrfg)# attribute LARGE-COMMUNITY discard
RP/0/RP0/CPU0:router(config-bgp-attrfg)# neighbor 10.0.1.101
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 6461
RP/0/RP0/CPU0:router(config-bgp-nbr)# update in filtering
RP/0/RP0/CPU0:router(config-nbr-upd-filter)# attribute-filter group dogbert

Configuration Example: Deleting Large Community

The following example shows how to delete specified BGP large-communities from a route policy using the
delete large-community command.

RP/0/RP0/CPU0:router(config)# route-policy lrg_comm_rp2
RP/0/RP0/CPU0:router(config-rpl)# delete large-community in (ios-regex '^100000:’)
RP/0/RP0/CPU0:router(config-rpl)# delete large-community all
RP/0/RP0/CPU0:router(config-rpl)# delete large-community not in (peeras:*:*, 41289:*:*)

Verification

This example displays the routes with large-communities given in the show bgp large-community
list-of-large-communities [exact-match] command. If the optional keyword exact-match is used, then the
listed routes will contain only the specified large communities. Otherwise, the displayed routes may contain
additional large communities.

RP/0/0/CPU0:R1# show bgp large-community 1:2:3 5:6:7
Thu Mar 23 14:40:33.597 PDT
BGP router identifier 4.4.4.4, local AS number 3
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 66
BGP main routing table version 66
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 66/0
BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

* 10.0.0.3/32 10.10.10.3 0 94 0 ?
* 10.0.0.5/32 10.11.11.5 0 0 5 ?

This example displays the large community attached to a network using the show bgp ip-address/ prefix-length
command.

RP/0/0/CPU0:R4# show bgp 10.3.3.3/32
Thu Mar 23 14:36:15.301 PDT
BGP routing table entry for 10.3.3.3/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 42 42

Last Modified: Mar 22 20:04:46.000 for 18:31:30
Paths: (1 available, best #1)
Advertised to peers (in unique update groups):

Implementing BGP
199

Implementing BGP
Configuring BGP Large Communities

10.11.11.5
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
10.11.11.5

Local
10.10.10.3 from 10.10.10.3 (10.3.3.3)
Origin incomplete, metric 0, localpref 94, valid, internal, best, group-best
Received Path ID 0, Local Path ID 0, version 42
Community: 258:259 260:261 262:263 264:265
Large Community: 1:2:3 5:6:7 4123456789:4123456780:4123456788

Enabling BGP: Example
The following shows how to enable BGP.

prefix-set static
2020::/64,
2012::/64,
10.10.0.0/16,
10.2.0.0/24

end-set

route-policy pass-all
pass

end-policy
route-policy set_next_hop_agg_v4
set next-hop 10.0.0.1

end-policy

route-policy set_next_hop_static_v4
if (destination in static) then
set next-hop 10.1.0.1

else
drop

endif
end-policy

route-policy set_next_hop_agg_v6
set next-hop 2003::121

end-policy

route-policy set_next_hop_static_v6
if (destination in static) then

set next-hop 2011::121
else

drop
endif

end-policy

router bgp 65000
bgp fast-external-fallover disable
bgp confederation peers
65001
65002

bgp confederation identifier 1
bgp router-id 1.1.1.1
address-family ipv4 unicast
aggregate-address 10.2.0.0/24 route-policy set_next_hop_agg_v4
aggregate-address 10.3.0.0/24
redistribute static route-policy set_next_hop_static_v4

Implementing BGP
200

Implementing BGP
Enabling BGP: Example

address-family ipv6 unicast
aggregate-address 2012::/64 route-policy set_next_hop_agg_v6
aggregate-address 2013::/64
redistribute static route-policy set_next_hop_static_v6

neighbor 10.0.101.60
remote-as 65000
address-family ipv4 unicast

neighbor 10.0.101.61
remote-as 65000
address-family ipv4 unicast

neighbor 10.0.101.62
remote-as 3
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

neighbor 10.0.101.64
remote-as 5
update-source Loopback0
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Displaying BGP Update Groups: Example
The following is sample output from the show bgp update-group:

show bgp update-group

Update group for IPv4 Unicast, index 0.1:
Attributes:
Outbound Route map:rm
Minimum advertisement interval:30

Messages formatted:2, replicated:2
Neighbors in this update group:
10.0.101.92

Update group for IPv4 Unicast, index 0.2:
Attributes:
Minimum advertisement interval:30

Messages formatted:2, replicated:2
Neighbors in this update group:
10.0.101.91

BGP Neighbor Configuration: Example
The following example shows how BGP neighbors on an autonomous system are configured to share
information. In the example, a BGP router is assigned to autonomous system 109, and two networks are listed
as originating in the autonomous system. Then the addresses of three remote routers (and their autonomous
systems) are listed. The router being configured shares information about networks 172 .16 .0.0 and 192.168

Implementing BGP
201

Implementing BGP
Displaying BGP Update Groups: Example

.7.0 with the neighbor routers. The first router listed is in a different autonomous system; the second neighbor
and remote-as commands specify an internal neighbor (with the same autonomous system number) at address
172 .26 .234.2; and the third neighbor and remote-as commands specify a neighbor on a different autonomous
system.

route-policy pass-all
pass
end-policy
router bgp 109
address-family ipv4 unicast
network 172.16.0.0 255.255.0.0
network 192.168.7.0 255.255.0.0
neighbor 172.16.200.1
remote-as 167
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-out out
neighbor 172.26.234.2
remote-as 109
exit

address-family ipv4 unicast
neighbor 172.26.64.19
remote-as 99
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

BGP Confederation: Example
The following is a sample configuration that shows several peers in a confederation. The confederation consists
of three internal autonomous systems with autonomous system numbers 6001, 6002, and 6003. To the BGP
speakers outside the confederation, the confederation looks like a normal autonomous systemwith autonomous
system number 666 (specified using the bgp confederation identifier command).

In a BGP speaker in autonomous system 6001, the bgp confederation peers command marks the peers from
autonomous systems 6002 and 6003 as special eBGP peers. Hence, peers 171.16 .232.55 and 171.16 .232.56
get the local preference, next hop, andMED unmodified in the updates. The router at 171 .19 .69.1 is a normal
eBGP speaker, and the updates received by it from this peer are just like a normal eBGP update from a peer
in autonomous system 666.

router bgp 6001
bgp confederation identifier 666
bgp confederation peers
6002
6003
exit

address-family ipv4 unicast
neighbor 171.16.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.16.232.56
remote-as 6003
exit

address-family ipv4 unicast

Implementing BGP
202

Implementing BGP
BGP Confederation: Example

neighbor 171.19.69.1
remote-as 777

In a BGP speaker in autonomous system 6002, the peers from autonomous systems 6001 and 6003 are
configured as special eBGP peers. Peer 171 .17 .70.1 is a normal iBGP peer, and peer 199.99.99.2 is a normal
eBGP peer from autonomous system 700.

router bgp 6002
bgp confederation identifier 666
bgp confederation peers
6001
6003
exit

address-family ipv4 unicast
neighbor 171.17.70.1
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.19.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.19.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 171.19.99.2
remote-as 700
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

In a BGP speaker in autonomous system 6003, the peers from autonomous systems 6001 and 6002 are
configured as special eBGP peers. Peer 192 .168 .200.200 is a normal eBGP peer from autonomous system
701.

router bgp 6003
bgp confederation identifier 666
bgp confederation peers
6001
6002
exit

address-family ipv4 unicast
neighbor 171.19.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.19.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 192.168.200.200
remote-as 701
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

Implementing BGP
203

Implementing BGP
BGP Confederation: Example

The following is a part of the configuration from the BGP speaker 192 .168 .200.205 from autonomous system
701 in the same example. Neighbor 171.16 .232.56 is configured as a normal eBGP speaker from autonomous
system 666. The internal division of the autonomous system into multiple autonomous systems is not known
to the peers external to the confederation.

router bgp 701
address-family ipv4 unicast
neighbor 172.16.232.56
remote-as 666
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
exit

address-family ipv4 unicast
neighbor 192.168.200.205
remote-as 701

BGP Route Reflector: Example
The following example shows how to use an address family to configure internal BGP peer 10.1.1.1 as a route
reflector client:

router bgp 140
address-family ipv4 unicast
neighbor 10.1.1.1
remote-as 140
address-family ipv4 unicast
route-reflector-client
exit

BGP Route Reflector: Example
The following example shows how to use an address family to configure internal BGP peer 10.1.1.1 as a route
reflector client:

router bgp 140
address-family ipv4 unicast
neighbor 10.1.1.1
remote-as 140
address-family ipv4 unicast
route-reflector-client
exit

Implementing BGP
204

Implementing BGP
BGP Route Reflector: Example

BGP MDT Address Family Configuration: Example
The following example shows how to configure an MDT address family in BGP:
router bgp 10

bgp router-id 10.0.0.2
address-family ipv4 unicast
address-family vpnv4 unicast
address-family ipv4 mdt

!
neighbor 1.1.1.1

remote-as 11
update-source Loopback0
address-family ipv4 unicast
address-family vpnv4 unicast
address-family ipv4 md

!

BGP Nonstop Routing Configuration: Example
The following example shows how to enable BGP NSR:

configure
router bgp 120
nsr
end

The following example shows how to disable BGP NSR:

configure
router bgp 120
no nsr
end

Best-External Path Advertisement Configuration: Example
The following example shows how to configure Best–External Path Advertisement:

router bgp 100
address-family l2vpn vpls-vpws
advertise best-external

end

Implementing BGP
205

Implementing BGP
BGP MDT Address Family Configuration: Example

Primary Backup Path Installation: Example
The following example shows how to enable installation of primary backup path:

router bgp 100
address-family l2vpn vpls-vpws
additional-paths install backup

end

iBGP Multipath Loadsharing Configuration: Example
The following is a sample configuration where 30 paths are used for loadsharing:

router bgp 100
address-family ipv4 multicast
maximum-paths ibgp 30
!
!
end

Discard Extra Paths Configuration: Example
The following example shows how to configure discard extra paths feature for the IPv4 address family:

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# router bgp 10
RP/0/RSP0/CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0/RSP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# commit

Verify Per Neighbor TCP MSS: Examples
The following example shows how to verify the per neighbor TCP MSS feature on a router:

The show bgp neighbor output shows the cumulative number for the Prefix advertised count if the same
prefixes are withdrawn and re-advertised.

Router#show bgp neighbor 10.0.0.2

BGP neighbor is 10.0.0.2
Remote AS 1, local AS 1, internal link
Remote router ID 10.0.0.2
BGP state = Established, up for 00:09:17
Last read 00:00:16, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:16, attempted 19, written 19

Implementing BGP
206

Implementing BGP
Primary Backup Path Installation: Example

Second last write 00:01:16, attempted 19, written 19
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd Dec 7 11:58:42.411 last full not set pulse count 23
Last write pulse rcvd before reset 00:00:00
Socket not armed for io, armed for read, armed for write
Last write thread event before reset 00:00:00, second last 00:00:00
Last KA expiry before reset 00:00:00, second last 00:00:00
Last KA error before reset 00:00:00, KA not sent 00:00:00
Last KA start before reset 00:00:00, second last 00:00:00
Precedence: internet
Multi-protocol capability received
Neighbor capabilities:
Route refresh: advertised (old + new) and received (old + new)
Graceful Restart (GR Awareness): advertised and received
4-byte AS: advertised and received
Address family IPv4 Unicast: advertised and received
Received 12 messages, 0 notifications, 0 in queue
Sent 12 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 0 secs
TCP Maximum Segment Size 500

For Address Family: IPv4 Unicast
BGP neighbor version 4
Update group: 0.2 Filter-group: 0.1 No Refresh request being processed
Route refresh request: received 0, sent 0
0 accepted prefixes, 0 are bestpaths
Cumulative no. of prefixes denied: 0.
Prefix advertised 0, suppressed 0, withdrawn 0
Maximum prefixes allowed 1048576
Threshold for warning message 75%, restart interval 0 min
AIGP is enabled
An EoR was received during read-only mode
Last ack version 4, Last synced ack version 0
Outstanding version objects: current 0, max 0
Additional-paths operation: None
Send Multicast Attributes

The following example shows how to verify the TCP MSS configuration:

RP/0/0/CPU0:ios#show bgp neighbor 10.0.0.2 configuration

neighbor 10.0.0.2
remote-as 1 []
tcp-mss 400 [n:n1]
address-family IPv4 Unicast []

The following example shows how to display TCP connection endpoints information:

RP/0/0/CPU0:ios#show tcp brief

PCB VRF-ID Recv-Q Send-Q Local Address Foreign Address State
0x08789b28 0x60000000 0 0 :::179 :::0 LISTEN
0x08786160 0x00000000 0 0 :::179 :::0 LISTEN
0xecb0c9f8 0x60000000 0 0 10.0.0.1:12404 10.0.0.2:179 ESTAB
0x0878b168 0x60000000 0 0 11.0.0.1:179 11.0.0.2:61177 ESTAB
0xecb0c6b8 0x60000000 0 0 0.0.0.0:179 0.0.0.0:0 LISTEN
0x08781590 0x00000000 0 0 0.0.0.0:179 0.0.0.0:0 LISTEN

The following example shows how to display TCP connection information for a specific PCB value:

Implementing BGP
207

Implementing BGP
Verify Per Neighbor TCP MSS: Examples

RP/0/0/CPU0:ios#show tcp pcb 0xecb0c9f8

Connection state is ESTAB, I/O status: 0, socket status: 0
Established at Sun Dec 7 11:49:39 2014

PCB 0xecb0c9f8, SO 0xecb01b68, TCPCB 0xecb01d78, vrfid 0x60000000,
Pak Prio: Medium, TOS: 192, TTL: 255, Hash index: 1322
Local host: 10.0.0.1, Local port: 12404 (Local App PID: 19840)
Foreign host: 10.0.0.2, Foreign port: 179

Current send queue size in bytes: 0 (max 24576)
Current receive queue size in bytes: 0 (max 32768) mis-ordered: 0 bytes
Current receive queue size in packets: 0 (max 0)

Timer Starts Wakeups Next(msec)
Retrans 17 2 0
SendWnd 0 0 0
TimeWait 0 0 0
AckHold 13 5 0
KeepAlive 1 0 0
PmtuAger 0 0 0
GiveUp 0 0 0
Throttle 0 0 0

iss: 1728179225 snduna: 1728179536 sndnxt: 1728179536
sndmax: 1728179536 sndwnd: 32517 sndcwnd: 1000
irs: 2055835995 rcvnxt: 2055836306 rcvwnd: 32536 rcvadv: 2055868842

SRTT: 206 ms, RTTO: 300 ms, RTV: 59 ms, KRTT: 0 ms
minRTT: 10 ms, maxRTT: 230 ms

ACK hold time: 200 ms, Keepalive time: 0 sec, SYN waittime: 30 sec
Giveup time: 0 ms, Retransmission retries: 0, Retransmit forever: FALSE
Connect retries remaining: 30, connect retry interval: 30 secs

State flags: none
Feature flags: Win Scale, Nagle
Request flags: Win Scale

Datagrams (in bytes): MSS 500, peer MSS 1460, min MSS 500, max MSS 1460

Window scales: rcv 0, snd 0, request rcv 0, request snd 0
Timestamp option: recent 0, recent age 0, last ACK sent 0
Sack blocks {start, end}: none
Sack holes {start, end, dups, rxmit}: none

Socket options: SO_REUSEADDR, SO_REUSEPORT, SO_NBIO
Socket states: SS_ISCONNECTED, SS_PRIV
Socket receive buffer states: SB_DEL_WAKEUP
Socket send buffer states: SB_DEL_WAKEUP
Socket receive buffer: Low/High watermark 1/32768
Socket send buffer : Low/High watermark 2048/24576, Notify threshold 0

PDU information:
#PDU's in buffer: 0
FIB Lookup Cache: IFH: 0x200 PD ctx: size: 0 data:
Num Labels: 0 Label Stack:

Implementing BGP
208

Implementing BGP
Verify Per Neighbor TCP MSS: Examples

Originating Prefixes With AiGP: Example
The following is a sample configuration for originating prefixes with the AiGP metric attribute:

route-policy aigp-policy
set aigp-metric 4
set aigp-metric igp-cost

end-policy
!
router bgp 100
address-family ipv4 unicast
network 10.2.3.4/24 route-policy aigp-policy
redistribute ospf osp1 metric 4 route-policy aigp-policy
!
!
end

BGP Accept Own Configuration: Example
This example shows how to configure BGP Accept Own on a PE router.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
address-family vpnv6 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
!

This example shows an InterAS-RR configuration for BGP Accept Own.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
address-family vpnv6 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
!
extcommunity-set rt cs_100:1
100:1

end-set
!

Implementing BGP
209

Implementing BGP
Originating Prefixes With AiGP: Example

extcommunity-set rt cs_1001:1
1001:1

end-set
!
route-policy rt_stitch1
if extcommunity rt matches-any cs_100:1 then
set extcommunity rt cs_1000:1 additive

endif
end-policy
!
route-policy add_bgp_ao
set community (accept-own) additive

end-policy
!

BGP Unequal Cost Recursive Load Balancing: Example
This is a sample configuration for unequal cost recursive load balancing:

interface Loopback0
ipv4 address 20.20.20.20 255.255.255.255
!
!
interface FourHundredGige0/1/0/0
bandwidth 8000000
ipv4 address 11.11.11.11 255.255.255.0
ipv6 address 11:11:0:1::11/64
!
interface FourHundredGige0/0/0/0
bandwidth 7000000
ipv4 address 11.11.12.11 255.255.255.0
ipv6 address 11:11:0:2::11/64
!
interface FourHundredGige0/3/0/0
bandwidth 6000000
ipv4 address 11.11.13.11 255.255.255.0
ipv6 address 11:11:0:3::11/64
!
interface FourHundredGige0/4/0/0
bandwidth 5000000
ipv4 address 11.11.14.11 255.255.255.0
ipv6 address 11:11:0:4::11/64
!
interface FourHundredGige0/0/0/0
bandwidth 4000000
ipv4 address 11.11.15.11 255.255.255.0
ipv6 address 11:11:0:5::11/64
!
interface FourHundredGige0/2/0/0
bandwidth 3000000
ipv4 address 11.11.16.11 255.255.255.0
ipv6 address 11:11:0:6::11/64
!
interface FourHundredGige0/3/0/0
bandwidth 2000000
ipv4 address 11.11.17.11 255.255.255.0
ipv6 address 11:11:0:7::11/64
!
interface FourHundredGige0/3/0/0
bandwidth 1000000

Implementing BGP
210

Implementing BGP
BGP Unequal Cost Recursive Load Balancing: Example

ipv4 address 11.11.18.11 255.255.255.0
ipv6 address 11:11:0:8::11/64
!
interface FourHundredGige0/4/0/0
description CONNECTED TO IXIA 1/3
transceiver permit pid all
!
interface FourHundredGige0/4/0/0
ipv4 address 9.9.9.9 255.255.0.0
ipv6 address 9:9::9/64
ipv6 enable
!
route-policy pass-all
pass

end-policy
!
router static
address-family ipv4 unicast
202.153.144.0/24 8.43.0.1
!
!
router bgp 100
bgp router-id 10.20.20.20
address-family ipv4 unicast
maximum-paths eibgp 8
redistribute connected
!
neighbor 11.11.11.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.12.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 10.11.13.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.14.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.15.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in

Implementing BGP
211

Implementing BGP
BGP Unequal Cost Recursive Load Balancing: Example

route-policy pass-all out
!
!
neighbor 11.11.16.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.17.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.18.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
!
end

Flow-tag propagation
The flow-tag propagation feature enables you to establish a co-relation between route-policies and user-policies.
Flow-tag propagation using BGP allows user-side traffic-steering based on routing attributes such as, AS
number, prefix lists, community strings and extended communities. Flow-tag is a logical numeric identifier
that is distributed through RIB as one of the routing attribute of FIB entry in the FIB lookup table. A flow-tag
is instantiated using the 'set' operation from RPL and is referenced in the C3PL PBR policy, where it is
associated with actions (policy-rules) against the flow-tag value.

You can use flow-tag propagation to:

• Classify traffic based on destination IP addresses (using the Community number) or based on prefixes
(using Community number or AS number).

• Select a TE-group that matches the cost of the path to reach a service-edge based on customer site service
level agreements (SLA).

• Apply traffic policy (TE-group selection) for specific customers based on SLA with its clients.

• Divert traffic to application or cache server.

Restrictions for Flow-Tag Propagation
Some restrictions are placed with regard to using Quality-of-service Policy Propagation Using Border Gateway
Protocol (QPPB) and flow-tag feature together. These include:

Implementing BGP
212

Implementing BGP
Flow-tag propagation

• A route-policy can have either 'set qos-group' or 'set flow-tag,' but not both for a prefix-set.
• Route policy for qos-group and route policy flow-tag cannot have overlapping routes. The QPPB and
flow tag features can coexist (on same as well as on different interfaces) as long as the route policy used
by them do not have any overlapping route.

• Mixing usage of qos-group and flow-tag in route-policy and policy-map is not recommended.

Configuring Destination-Based Flow-Tag Propagation
The destination-based flow tag feature allows you to match packets based on the flow-tag assigned to the
destination address of the incoming packets. Once matched, you can then apply any supported PBR action
on this policy.

You will not be able to enable both QPPB and flow tag features simultaneously on an interface.Note

Configuration

Use the following sample configuration to configure destination-based flow-tag propagation.

/* Configure a route policy for flow-tag propagation */
Router(config)# prefix-set FLOWTAG36
Router(config-pfx)# 10.1.30.0/24
Router(config-pfx)# end-set
Router(config)# prefix-set FLOWTAG38
Router(config-pfx)# 10.1.40.0/24
Router(config-pfx)# end-set

Router(config)# route-policy SETFLOWTAG
Router(config-rpl)# if destination in FLOWTAG36 then set flow-tag 36 endif
Router(config-rpl)# if destination in FLOWTAG38 then set flow-tag 38 endif
Router(config-rpl)# end-policy
Router(config)# commit
Tue Apr 3 15:10:07.223 IST

/* Configure the class map and policy map for flow-tag propagation */
Router(config)# class-map type traffic match-any FLOWMATCH36
Router(config-cmap)# match flow-tag 36
Router(config-cmap)# end-class-map

Router(config)# class-map type traffic match-any FLOWMATCH38
Router(config-cmap)# match flow-tag 38
Router(config-cmap)# end-class-map

Router(config)# policy-map type pbr FLOWMATCH
Router(config-pmap)# class type traffic FLOWMATCH36
Router(config-pmap-c)# redirect ipv4 nexthop 20.20.20.1
Router(config-pmap-c)# exit
Router(config-pmap)# class type traffic FLOWMATCH38
Router(config-pmap-c)# drop
Router(config-pmap-c)# exit
Router(config-pmap)# class type traffic DEFAULT
Router(config-pmap-c)# exit
Router(config-pmap)# end-policy-map

/* Configure BGP with flow-tag propagation */

Implementing BGP
213

Implementing BGP
Configuring Destination-Based Flow-Tag Propagation

Router(config)# router bgp 10
Router(config-bgp)# bgp router-id 1.1.1.1
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# table-policy SETFLOWTAG
Router(config-bgp-af)# redistribute static
Router(config-bgp-af)# bgp attribute-download
Router(config-bgp-af)# redistribute connected
Router(config-bgp-af)# exit

Router(config-bgp)# neighbor 20.20.20.1/24
Router(config-bgp-nbr)# remote-as 20
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# route-policy BGPIN in
Router(config-bgp-nbr-af)# route-policy BGPOUT out
Router(config-bgp-nbr-af)# exit
Router(config-bgp-nbr)# exit
Router(config-bgp)# exit

Router(config)# route-policy BGPIN
Router(config-rpl)# pass
Router(config-rpl)# end-policy
Router(config)# route-policy BGPOUT
Router(config-rpl)# pass
Router(config-rpl)# end-policy

/* Enter the interface configuration mode and enable flow tag on an interface. */
Router(config)# interface FourHundredGige 0/0/0/0
Router(config-if)# ipv4 address 10.10.10.1 255.255.255.0
Router(config-if)# service-policy type pbr input FLOWMATCH
Router(config-if)# no shut

/* Commit the configuration */
Router(config-if)# commit
Mon Mar 19 07:59:01.081 IST
RP/0/0/CPU0:Mar 19 07:59:01.537 : ifmgr[403]: %PKT_INFRA-LINK-3-UPDOWN : Interface
FourHundredGige0/1/0/0, changed state to Down
RP/0/0/CPU0:Mar 19 07:59:01.619 : ifmgr[403]: %PKT_INFRA-LINK-3-UPDOWN : Interface
FourHundredGige0/2/0/0, changed state to Up

/* Validate the configuraton */
Router(config)# do show run
Mon Mar 19 08:03:31.106 IST
Building configuration...
!! IOS XR Configuration 0.0.0
!! Last configuration change at Mon Mar 19 08:02:55 2018 by UNKNOWN
…
class-map type traffic match-any FLOWMATCH36
match flow-tag 36
end-class-map
!
!
class-map type traffic match-any FLOWMATCH40
match flow-tag 40
end-class-map
!
policy-map type pbr FLOWMATCH
class type traffic FLOWMATCH36
transmit
!
class type traffic FLOWMATCH40
transmit
!
class type traffic class-default

Implementing BGP
214

Implementing BGP
Configuring Destination-Based Flow-Tag Propagation

!
end-policy-map
!
interface FourHundredGige0/1/0/0
ipv4 forwarding-enable
ipv6 address 2000::2/64
!
interface FourHundredGige0/2/0/0
service-policy type pbr input FLOWMATCH
ipv4 address 10.10.10.1 255.255.255.0
!
interface FourHundredGige0/3/0/0
ipv4 forwarding-enable
ipv6 address 3000::2/64
!
…
!
prefix-set FLOWTAG36
10.1.30.0/24

end-set
!
prefix-set FLOWTAG40
10.1.40.0/24

end-set
!
route-policy SETFLOWTAG
if destination in FLOWTAG36 then
set flow-tag 36

endif
if destination in FLOWTAG40 then
set flow-tag 40

endif
end-policy
!
!
router bgp 10
bgp router-id 1.1.1.1
address-family ipv4 unicast
table-policy SETFLOWTAG
redistribute static
bgp attribute-download
redistribute connected
!
neighbor 20.20.20.1/24
remote-as 20
address-family ipv4 unicast
route-policy BGPIN in
route-policy BGPOUT out
!
route-policy BGPIN
pass
end-policy
route-policy BGPOUT
pass
end-policy
!

You have successfully configured destination-based flow-tag propagation.

Implementing BGP
215

Implementing BGP
Configuring Destination-Based Flow-Tag Propagation

Configure Software to Store Updates from Neighbor
Perform this task to configure the software to store updates received from a neighbor.

The soft-reconfiguration inbound command causes a route refresh request to be sent to the neighbor if the
neighbor is route refresh capable. If the neighbor is not route refresh capable, the neighbor must be reset to
relearn received routes using the clear bgp soft command.

Storing updates from a neighbor works only if either the neighbor is route refresh capable or the
soft-reconfiguration inbound command is configured. Even if the neighbor is route refresh capable and the
soft-reconfiguration inbound command is configured, the original routes are not stored unless the always
option is used with the command. The original routes can be easily retrieved with a route refresh request.
Route refresh sends a request to the peer to resend its routing information. The soft-reconfiguration inbound
command stores all paths received from the peer in an unmodified form and refers to these stored paths during
the clear. Soft reconfiguration is memory intensive.

Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. address-family { ipv4 | ipv6 } unicast
5. soft-reconfiguration inbound [always]
6. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 neighbor ip-address

Example:
Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Implementing BGP
216

Implementing BGP
Configure Software to Store Updates from Neighbor

Step 4 address-family { ipv4 | ipv6 } unicast

Example:
Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 5 soft-reconfiguration inbound [always]

Example:
Router(config-bgp-nbr-af)# soft-reconfiguration inbound always

Configures the software to store updates received from a specified neighbor. Soft reconfiguration inbound causes the
software to store the original unmodified route in addition to a route that is modified or filtered. This allows a “soft clear”
to be performed after the inbound policy is changed.

Soft reconfiguration enables the software to store the incoming updates before apply policy if route refresh is not supported
by the peer (otherwise a copy of the update is not stored). The always keyword forces the software to store a copy even
when route refresh is supported by the peer.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Configuring BGP Route Dampening
Perform this task to configure and monitor BGP route dampening.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. bgp dampening [half-life [reuse suppress max-suppress-time] | route-policy route-policy-name]
5. Use the commit or end command.

DETAILED STEPS

Step 1 configure

Example:

Implementing BGP
217

Implementing BGP
Configuring BGP Route Dampening

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 bgp dampening [half-life [reuse suppress max-suppress-time] | route-policy route-policy-name]

Example:
Router(config-bgp-af)# bgp dampening 30 1500 10000 120

Configures BGP dampening for the specified address family.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Apply Policy When Updating Routing Table
The table policy feature in BGP allows you to configure traffic index values on routes as they are installed in
the global routing table. This feature is enabled using the table-policy command and supports the BGP policy
accounting feature. Table policy also provides the ability to drop routes from the RIB based on match criteria.
This feature can be useful in certain applications and should be used with caution as it can easily create a
routing ‘black hole’ where BGP advertises routes to neighbors that BGP does not install in its global routing
table and forwarding table.

Perform this task to apply a routing policy to routes being installed into the routing table.

Implementing BGP
218

Implementing BGP
Apply Policy When Updating Routing Table

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:

Router(config)# router bgp 120.6

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp)# address-family ipv4 unicast

Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 4 table-policy policy-name

Example:

Router(config-bgp-af)# table-policy tbl-plcy-A

Applies the specified policy to routes being installed into the routing table.

Step 5 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Applying routing policy: Example

In the following example, for an eBGP neighbor, if all routes should be accepted and advertised with
no modifications, a simple pass-all policy is configured:

Router(config)# route-policy pass-all
Router(config-rpl)# pass
Router(config-rpl)# end-policy

Implementing BGP
219

Implementing BGP
Apply Policy When Updating Routing Table

Router(config)# commit

Use the route-policy (BGP) command in the neighbor address-family configuration mode to apply
the pass-all policy to a neighbor. The following example shows how to allow all IPv4 unicast routes
to be received from neighbor 192.168.40.42 and advertise all IPv4 unicast routes back to it:

Router(config)# router bgp 1
Router(config-bgp)# neighbor 192.168.40.24
Router(config-bgp-nbr)# remote-as 21
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy pass-all out
Router(config-bgp-nbr-af)# commit

Use the show bgp summary command to display eBGP neighbors that do not have both an inbound
and outbound policy for every active address family. In the following example, such eBGP neighbors
are indicated in the output with an exclamation (!) mark:

Router# show bgp all all summary

Address Family: IPv4 Unicast
============================

BGP router identifier 10.0.0.1, local AS number 1
BGP generic scan interval 60 secs
BGP main routing table version 41
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Process RecvTblVer bRIB/RIB SendTblVer
Speaker 41 41 41

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
10.0.101.1 0 1 919 925 41 0 0 15:15:08 10
10.0.101.2 0 2 0 0 0 0 0 00:00:00 Idle

Configure BGP Route Filtering by Route Policy
Perform this task to configure BGP routing filtering by route policy.

Step 1 configure

Step 2 route-policy name

Example:

Router(config)# route-policy drop-as-1234
Router(config-rpl)# if as-path passes-through '1234' then
Router(config-rpl)# apply check-communities
Router(config-rpl)# else
Router(config-rpl)# pass
Router(config-rpl)# endif

Implementing BGP
220

Implementing BGP
Configure BGP Route Filtering by Route Policy

(Optional) Creates a route policy and enters route policy configuration mode, where you can define the route policy.

Step 3 end-policy

Example:

Router(config-rpl)# end-policy

(Optional) Ends the definition of a route policy and exits route policy configuration mode.

Step 4 router bgp as-number

Example:

Router(config)# router bgp 120

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 5 neighbor ip-address

Example:

Router(config-bgp)# neighbor 172.168.40.24

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.

Step 6 address-family { ipv4 | ipv6 } unicast

Example:

Router(config-bgp-nbr)# address-family ipv4 unicast

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

To see a list of all the possible keywords and arguments for this command, use the CLI help (?).

Step 7 route-policy route-policy-name { in | out }

Example:

Router(config-bgp-nbr-af)# route-policy drop-as-1234 in

Applies the specified policy to inbound routes.

Step 8 commit

Configure Destination-based RTBH Filtering
RTBH is implemented by defining a route policy (RPL) to discard undesirable traffic at next-hop using set
next-hop discard command.

RTBH filtering sets the next-hop of the victim's prefix to the null interface. The traffic destined to the victim
is dropped at the ingress.

The set next-hop discard configuration is used in the neighbor inbound policy. When this config is applied
to a path, though the primary next-hop is associated with the actual path but the RIB is updated with next-hop

Implementing BGP
221

Implementing BGP
Configure Destination-based RTBH Filtering

set to Null0. Even if the primary received next-hop is unreachable, the RTBH path is considered reachable
and will be a candidate in the bestpath selection process. The RTBH path is readvertised to other peers with
either the received next-hop or nexthop-self based on normal BGP advertisement rules.

A typical deployment scenario for RTBH filtering would require running internal Border Gateway Protocol
(iBGP) at the access and aggregation points and configuring a separate device in the network operations center
(NOC) to act as a trigger. The triggering device sends iBGP updates to the edge, that cause undesirable traffic
to be forwarded to a null0 interface and dropped.

Consider below topology, where a rogue router is sending traffic to a border router.

Figure 13: Topology to Implement RTBH Filtering

Configurations applied on the Trigger Router

Configure a static route redistribution policy that sets a community on static routes marked with a special tag,
and apply it in BGP:
route-policy RTBH-trigger
if tag is 777 then
set community (1234:4321, no-export) additive
pass

else
pass

endif
end-policy

router bgp 65001
address-family ipv4 unicast
redistribute static route-policy RTBH-trigger
!
neighbor 192.168.102.1
remote-as 65001
address-family ipv4 unicast
route-policy bgp_all in
route-policy bgp_all out

Configure a static route with the special tag for the source prefix that has to be block-holed:
router static
address-family ipv4 unicast
10.7.7.7/32 Null0 tag 777

Configurations applied on the Border Router

Configure a route policy that matches the community set on the trigger router and configure set next-hop
discard:

Implementing BGP
222

Implementing BGP
Configure Destination-based RTBH Filtering

route-policy RTBH
if community matches-any (1234:4321) then
set next-hop discard

else
pass

endif
end-policy

Apply the route policy on the iBGP peers:
router bgp 65001
address-family ipv4 unicast
!
neighbor 192.168.102.2
remote-as 65001
address-family ipv4 unicast
route-policy RTBH in
route-policy bgp_all out

Resilient Hashing and Flow Auto-Recovery
Resilient Hashing and FlowAuto-Recovery feature provides an option to selectively override the default equal
cost multipath (ECMP) behavior during a ECMP path failure. This feature enables the redirection of flows
through inactive links only and the prevention of all existing flows from being rehashed to a new link. This
feature also provides an option to recover a link or a server when it comes back so it can be reused for sessions.

ECMP Path Failure

Prior to the implementation of Resilient Hashing and FlowAuto-Recovery feature, ECMPwould load balance
the traffic over a number of available paths towards a destination.When one path fails, the traffic gets rehashed
over a new set of paths and elects a new next-hop for each path.

Figure 14: ECMP Path Failure

For example, as shown in the figure, among three links link 1, link 2, and link 3, the traffic flow that took link
1 before the failure, takes link 3 after the failure although only link 2 failed.

This traffic flow redistribution does not cause any problem in traditional core networks because the end-to-end
connectivity is preserved and the user does not encounter problems from it. However, in data center
environments, load balancing due to traffic flow redistribution can cause a problem.

In data center environments where multiple servers are connected through ECMP, the loss of traffic on active
link caused by this rehashing resets the TCP session.

Implementing BGP
223

Implementing BGP
Resilient Hashing and Flow Auto-Recovery

Figure 15: Resilient Hashing and Flow Auto-Recovery

The above figure shows how complete rehashing of paths occurs when path 1 fails. However, when Resilient
Hashing and Flow Auto-Recovery feature is configured, only the affected buckets are replaced. No rehashing
is done. Use an RPL to define prefixes that require resilient hashing and flow auto-recovery. Each prefix has
a path list, say for example a prefix ‘X’ has a path list namely, path 0, path 1, path 2. For example, when path
1 fails and when you have configured Resilient Hashing and Flow Auto-Recovery feature, the new path list
becomes (path 0, path 0, and path 2), instead of the default rehash logic, which results (path 0, path 2, and
path 0).

When path 1 becomes active, if the Resilient Hashing and Flow Auto-Recovery feature is not configured, no
rehashing is done and the path is not utilized until one of the following occurs:

• Addition of new path to ECMP

• Use of clear route command.

• Removal of table-policy, commit, addition of table-policy, and commit

• Configuration of cef consistent-hashing auto-recovery command

When path 1 becomes active, if the Resilient Hashing and Flow Auto-Recovery feature is configured, the
sessions get reshuffled automatically. This causes the sessions, which were moved from the failed path to a
new server, to be rehashed back to the original server that became active. Hence, only these sessions are
disrupted.

Persistent Loadbalancing
Traditional ECMP or equal cost multipath loadbalances traffic over a number of available paths towards a
destination. When one path fails, the traffic gets re-shuffled over the available number of paths. This flow
distribution can be a problem in data center loadbalancing.

Persistent Loadbalancing or Sticky ECMP defines a prefix in such a way that it do not rehash flows on existing
paths and only replace those bucket assignments of the failed server. The advantage is that the established
sessions to servers will not get rehashed.

The following section describes how you can configure persistent load balancing:

Implementing BGP
224

Implementing BGP
Persistent Loadbalancing

/*Configure persistent load balancing. */

Router(config)# router bgp 7500
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# table-policy sticky-ecmp
Router(config-bgp-af)# bgp attribute-download
Router(config-bgp-af)# maximum-paths ebgp 64
Router(config-bgp-af)# maximum-paths ibgp 32
Router(config-bgp-af)# exit
Router(config-bgp)# exit
Router(config)# route-policy sticky-ecmp
Router(config-rpl)# if destination in (192.1.1.1/24) then
Router(config-rpl-if)# set load-balance ecmp-consistent
Router(config-rpl-if)# else
Router(config-rpl-else)# pass
Router(config-rpl-else)# endif
RP/0/0/CPU0:ios(config-rpl)# end-policy
RP/0/0/CPU0:ios(config)#

/* Enable autocovery and hence recover the original hashing state
after failed paths become active. */
Router(config)# cef consistent-hashing auto-recovery

/* Recover to the original hashing state after failed paths come up
and avoid affecting newly formed flows after path failure. */
Router(config)# clear route 192.0.2.0/24

Running Configuration

/* Configure persistent loadbalancing. */
router bgp 7500
address-family ipv4 unicast
table-policy sticky-ecmp
bgp attribute-download
maximum-paths ebgp 64
maximum-paths ibgp 32

cef consistent-hashing auto-recovery

clear route 192.0.2.0/24

Verification

Verify that the path distribution with persistent loadbalancing is configured.

The following show output displays the status of path distribution before a link fails. In this output, three paths
are identified with three next hops (10.1/2/3.0.1) through three different GigabitEthernet interfaces.

show cef 192.0.2.0/24
LDI Update time Sep 5 11:22:38.201
via 10.1.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 0 NHID 0x0 [0x57ac4e74 0x0]
next hop 10.1.0.1/32 via 10.1.0.1/32
via 10.2.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 1 NHID 0x0 [0x57ac4a74 0x0]
next hop 10.2.0.1/32 via 10.2.0.1/32
via 10.3.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 2 NHID 0x0 [0x57ac4f74 0x0]
next hop 10.3.0.1/32 via 10.3.0.1/32

Load distribution (consistent): 0 1 2 (refcount 1)

Implementing BGP
225

Implementing BGP
Persistent Loadbalancing

Hash OK Interface Address
0 Y GigabitEthernet0/0/0/0 10.1.0.1
1 Y GigabitEthernet0/0/0/1 10.2.0.1
2 Y GigabitEthernet0/0/0/2 10.3.0.1

The following show output displays the status of the path distribution after a link fails. The replacement of
bucket 1 with GigabitEthernet 0/0/0/0 and the "*" symbol denotes that this path is a replacement for a failed
path.

show cef 192.0.2.0/24
LDI Update time Sep 5 11:23:13.434
via 10.1.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 0 NHID 0x0 [0x57ac4e74 0x0]
next hop 10.1.0.1/32 via 10.1.0.1/32
via 10.3.0.1/32, 3 dependencies, recursive, bgp-multipath [flags 0x6080]
path-idx 1 NHID 0x0 [0x57ac4f74 0x0]
next hop 10.3.0.1/32 via 10.3.0.1/32

Load distribution (consistent) : 0 1 2 (refcount 1)
Hash OK Interface Address
0 Y GigabitEthernet0/0/0/0 10.1.0.1

1* Y GigabitEthernet0/0/0/0 10.1.0.1
2 Y GigabitEthernet0/0/0/2 10.3.0.1

BGP Selective Multipath
Traditional BGP multipath feature allows a router receiving parallel paths to the same destination to install
the multiple paths in the routing table. By default, this multipath feature is applied to all configured peers.
BGP selective multipath allows application of the multipath feature only to selected peers.

The BGP router receiving multiple paths is configured with the maximum-paths ... selective option. The
iBGP/eBGP neighbors sharing multiple paths are configured with the multipath option, while being added
as neighbors on the BGP router.

Use next-hop-unchanged multipath command to avoid overwriting next-hop information before advertising
multipaths.

Note

The following behavior is to be noted while using BGP selective multipath:

• BGP selective multipath does not impact best path calculations. A best path is always included in the set
of multipaths.

• For VPN prefixes, the PE paths are always eligible to be multipaths.

Topology

A sample topology to illustrate the configuration used in this section is shown in the following figure.

Implementing BGP
226

Implementing BGP
BGP Selective Multipath

Figure 16: BGP Selective Multipath

Router R4 receives parallel paths from Routers R1, R2 and R3 to the same destination. If Routers R1 and R2
are configured as selective multipath neighbors on Router R4, only the parallel paths from these routers are
installed in the routing table of Router R4.

Configuration

Configure your network topology with iBGP/eBGP running on your routers, before configuring this feature.Note

To configure BGP selective multipath on Router R4, use the following steps.

1. Configure Router R4 to accept selective multiple paths in your topology.

/* To configure selective multipath for iBGP/eBGP
Router(config)# router bgp 1
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# maximum-paths ibgp 4 selective
Router(config-bgp-af)# maximum-paths ebgp 5 selective
Router(config-bgp-af)# commit

/* To configure selective multipath for eiBGP
Router(config)# router bgp 1
Router(config-bgp)# address-family ipv4 unicast
Router(config-bgp-af)# maximum-paths eibgp 6 selective
Router(config-bgp-af)# commit

2. Configure neighbors for Router R4.

Routers R1 (1.1.1.1) and R2 (2.2.2.2) are configured as neighbors with the multipath option.

Router R3 (3.3.3.3) is configured as a neighbor without the multipath option, and hence the routes from
this router are not eligible to be chosen as multipaths.

Router(config-bgp)# neighbor 1.1.1.1
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# multipath
Router(config-bgp-nbr-af)# commit

Router(config-bgp-nbr)# neighbor 2.2.2.2
Router(config-bgp-nbr)# address-family ipv4 unicast

Implementing BGP
227

Implementing BGP
BGP Selective Multipath

Router(config-bgp-nbr-af)# multipath
Router(config-bgp-nbr-af)# commit

Router(config-bgp-nbr)# neighbor 3.3.3.3
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# commit

You have successfully configured the BGP selective multipath feature.

Remove and Replace Private AS Numbers from AS Path in BGP
Private autonomous system numbers (ASNs) are used by Internet Service Providers (ISPs) and customer
networks to conserve globally unique AS numbers. Private AS numbers cannot be used to access the global
Internet because they are not unique. AS numbers appear in eBGP AS paths in routing updates. Removing
private ASNs from the AS path is necessary if you have been using private ASNs and you want to access the
global Internet.

Public AS numbers are assigned by InterNIC and are globally unique. They range from 1 to 64511. Private
AS numbers are used to conserve globally unique AS numbers, and they range from 64512 to 65535. Private
AS numbers cannot be leaked to a global BGP routing table because they are not unique, and BGP best path
calculations require unique AS numbers. Therefore, it might be necessary to remove private AS numbers from
an AS path before the routes are propagated to a BGP peer.

External BGP (eBGP) requires that globally unique AS numbers be used when routing to the global Internet.
Using private AS numbers (which are not unique) would prevent access to the global Internet. The remove
and replace private AS Numbers from AS Path in BGP feature allows routers that belong to a private AS to
access the global Internet. A network administrator configures the routers to remove private AS numbers from
the AS path contained in outgoing update messages and optionally, to replace those numbers with the ASN
of the local router, so that the AS Path length remains unchanged.

The ability to remove and replace private AS numbers from the AS Path is implemented in the following
ways:

• The remove-private-as command removes private AS numbers from the AS path even if the path contains
both public and private ASNs.

• The remove-private-as command removes private AS numbers even if the AS path contains only private
AS numbers. There is no likelihood of a 0-length AS path because this command can be applied to eBGP
peers only, in which case the AS number of the local router is appended to the AS path.

• The remove-private-as command removes private AS numbers even if the private ASNs appear before
the confederation segments in the AS path.

• The replace-as command replaces the private AS numbers being removed from the path with the local
AS number, thereby retaining the same AS path length.

The feature can be applied to neighbors per address family (address family configuration mode). Therefore,
you can apply the feature for a neighbor in one address family and not on another, affecting update messages
on the outbound side for only the address family for which the feature is configured.

Use show bgp neighbors and show bgp update-group commands to verify that the that private AS numbers
were removed or replaced.

Implementing BGP
228

Implementing BGP
Remove and Replace Private AS Numbers from AS Path in BGP

BGP DMZ Link Bandwidth for Unequal Cost Recursive Load
Balancing

Border Gateway Protocol demilitarized zone (BGP DMZ) Link Bandwidth for Unequal Cost Recursive Load
Balancing provides support for unequal cost load balancing for recursive prefixes on local node using BGP
DMZ Link Bandwidth. The unequal load balance is achieved by using the dmz-link-bandwidth command
in BGP Neighbor configuration mode and the bandwidth command in Interface configuration mode.

BGP Multi-Instance and Multi-AS
Multi-AS BGP enables configuring each instance of a multi-instance BGP with a different AS number.
Multi-Instance and Multi-AS BGP provides these capabilities:

• Mechanism to consolidate the services provided bymultiple routers using a common routing infrastructure
into a single IOS-XR router.

• Mechanism to achieve AF isolation by configuring the different AFs in different BGP instances.

• Means to achieve higher session scale by distributing the overall peering sessions between multiple
instances.

• Mechanism to achieve higher prefix scale (especially on a RR) by having different instances carrying
different BGP tables.

• Improved BGP convergence under certain scenarios.

• All BGP functionalities including NSR are supported for all the instances.

• The load and commit router-level operations can be performed on previously verified or applied
configurations.

Restrictions

• The router supports maximum of 4 BGP instances.

• Each BGP instance needs a unique router-id.

• Only one Address Family can be configured under each BGP instance (VPNv4, VPNv6 and RT-Constrain
can be configured under multiple BGP instances).

• IPv4/IPv6 Unicast should be within the same BGP instance in which IPv4/IPv6 Labeled-Unicast is
configured.

• IPv4/IPv6 Multicast should be within the same BGP instance in which IPv4/IPv6 Unicast is configured.

• All configuration changes for a single BGP instance can be committed together. However, configuration
changes for multiple instances cannot be committed together.

• Cisco recommends that BGP update-source should be unique in the default VRF over all instances while
peering with the same remote router.

Implementing BGP
229

Implementing BGP
BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing

BGP Prefix Origin Validation Based on RPKI
ABGP route associates an address prefix with a set of autonomous systems (AS) that identify the interdomain
path the prefix has traversed in the form of BGP announcements. This set is represented as the AS_PATH
attribute in BGP and starts with the AS that originated the prefix.

To help reduce well-known threats against BGP including prefix mis-announcing and monkey-in-the-middle
attacks, one of the security requirements is the ability to validate the origination AS of BGP routes. The AS
number claiming to originate an address prefix (as derived from the AS_PATH attribute of the BGP route)
needs to be verified and authorized by the prefix holder. The Resource Public Key Infrastructure (RPKI) is
an approach to build a formally verifiable database of IP addresses and AS numbers as resources. The RPKI
is a globally distributed database containing, among other things, information mapping BGP (internet) prefixes
to their authorized origin-AS numbers. Routers running BGP can connect to the RPKI to validate the origin-AS
of BGP paths.

Configure RPKI Cache-server
Perform this task to configure Resource Public Key Infrastructure (RPKI) cache-server parameters.

Configure the RPKI cache-server parameters in rpki-server configurationmode. Use the rpki server command
in router BGP configuration mode to enter into the rpki-server configuration mode

Step 1 configure

Example:

RP/0/# configure

Enters mode.

Step 2 router bgp as-number

Example:
Router(config)#router bgp 100

Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing
process.

Step 3 rpki cache {host-name | ip-address}

Example:
Router(config-bgp)#rpki server 10.2.3.4

Enters rpki-server configuration mode and enables configuration of RPKI cache parameters.

Step 4 Use one of these commands:

• transport ssh port port_number
• transport tcp port port_number

Example:
Router(config-bgp-rpki-server)#transport ssh port 22

Or

Implementing BGP
230

Implementing BGP
BGP Prefix Origin Validation Based on RPKI

Router(config-bgp-rpki-server)#transport tcp port 2

Specifies a transport method for the RPKI cache.

• ssh—Select ssh to connect to the RPKI cache using SSH.

• tcp—Select tcp to connect to the RPKI cache using TCP (unencrypted).

• port port_number—Specify the port number for the RPKI cache transport over TCP and SSH protocols. The port
number ranges from 1 to 65535.

• SSH supports custom ports in addition to the default port number 22.

• You can set the transport to either TCP or SSH. Change of transport causes the cache session to flap.

Note

Step 5 (Optional) username user_name

Example:
Router(config-bgp-rpki-server)#username ssh_rpki_cache

Specifies a (SSH) username for the RPKI cache-server.

Step 6 (Optional) password

Example:
Router(config-bgp-rpki-server)#password ssh_rpki_pass

Specifies a (SSH) password for the RPKI cache-server.

The “username” and “password” configurations only apply if the SSH method of transport is active.Note

Step 7 preference preference_value

Example:
Router(config-bgp-rpki-server)#preference 1

Specifies a preference value for the RPKI cache. Range for the preference value is 1 to 10. Setting a lower preference
value is better.

Step 8 purge-time time

Example:
Router(config-bgp-rpki-server)#purge-time 30

Configures the time BGP waits to keep routes from a cache after the cache session drops. Set purge time in seconds.
Range for the purge time is 30 to 360 seconds.

Step 9 Use one of these commands.

• refresh-time time
• refresh-time off

Example:
Router(config-bgp-rpki-server)#refresh-time 20

Or
Router(config-bgp-rpki-server)#refresh-time off

Implementing BGP
231

Implementing BGP
Configure RPKI Cache-server

Configures the time BGP waits in between sending periodic serial queries to the cache. Set refresh-time in seconds.
Range for the refresh time is 15 to 3600 seconds.

Configure the off option to specify not to send serial-queries periodically.

Step 10 Use one these commands.

• response-time time
• response-time off

Example:
Router(config-bgp-rpki-server)#response-time 30

Or
Router(config-bgp-rpki-server)#response-time off

Configures the time BGP waits for a response after sending a serial or reset query. Set response-time in seconds. Range
for the response time is 15 to 3600 seconds.

Configure the off option to wait indefinitely for a response.

Step 11 shutdown

Example:
Router(config-bgp-rpki-server)#shutdown

Configures shut down of the RPKI cache.

Step 12 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

BGP Update Message Error Handling
The BGP UPDATE message error handling changes BGP behavior in handling error UPDATE messages to
avoid session reset. Based on the approach described in IETF IDR I-D:draft-ietf-idr-error-handling, the Cisco
IOS XR BGP UPDATE Message Error handling implementation classifies BGP update errors into various
categories based on factors such as, severity, likelihood of occurrence of UPDATE errors, or type of attributes.
Errors encountered in each category are handled according to the draft. Session reset will be avoided as much
as possible during the error handling process. Error handling for some of the categories are controlled by
configuration commands to enable or disable the default behavior.

According to the base BGP specification, a BGP speaker that receives an UPDATE message containing a
malformed attribute is required to reset the session over which the offending attribute was received. This
behavior is undesirable as a session reset would impact not only routes with the offending attribute, but also
other valid routes exchanged over the session.

Implementing BGP
232

Implementing BGP
BGP Update Message Error Handling

BGP Attribute Filtering
The BGP Attribute Filter feature checks integrity of BGP updates in BGP update messages and optimizes
reaction when detecting invalid attributes. BGP Update message contains a list of mandatory and optional
attributes. These attributes in the update message includeMED, LOCAL_PREF, COMMUNITY etc. In some
cases, if the attributes are malformed, there is a need to filter these attributes at the receiving end of the router.
The BGP Attribute Filter functionality filters the attributes received in the incoming update message. The
attribute filter can also be used to filter any attributes that may potentially cause undesirable behavior on the
receiving router.

Some of the BGP updates are malformed due to wrong formatting of attributes such as the network layer
reachability information (NLRI) or other fields in the update message. These malformed updates, when
received, causes undesirable behavior on the receiving routers. Such undesirable behavior may be encountered
during update message parsing or during re-advertisement of received NLRIs. In such scenarios, its better to
filter these corrupted attributes at the receiving end.

BGP Error Handling and Attribute Filtering Syslog Messages
When a router receives a malformed update packet, an ios_msg of type
ROUTING-BGP-3-MALFORM_UPDATE is printed on the console. This is rate limited to 1 message per
minute across all neighbors. For malformed packets that result in actions "Discard Attribute" (A5) or "Local
Repair" (A6), the ios_msg is printed only once per neighbor per action. This is irrespective of the number of
malformed updates received since the neighbor last reached an "Established" state.

This is a sample BGP error handling syslog message:

%ROUTING-BGP-3-MALFORM_UPDATE : Malformed UPDATE message received from neighbor 13.0.3.50
- message length 90 bytes,
error flags 0x00000840, action taken "TreatAsWithdraw".
Error details: "Error 0x00000800, Field "Attr-missing", Attribute 1 (Flags 0x00, Length 0),
Data []"

This is a sample BGP attribute filtering syslog message for the "discard attribute" action:

4843.46]RP/0/0/CPU0:Aug 21 17:06:17.919 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 173 bytes,
action taken "DiscardAttr".
Filtering details: "Attribute 16 (Flags 0xc0): Action "DiscardAttr"". NLRIs: [IPv4 Unicast]
88.2.0.0/17

This is a sample BGP attribute filtering syslog message for the "treat-as-withdraw" action:

[391.01]RP/0/0/CPU0:Aug 20 19:41:29.243 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 166 bytes,
action taken "TreatAsWdr".
Filtering details: "Attribute 4 (Flags 0xc0): Action "TreatAsWdr"". NLRIs: [IPv4 Unicast]
88.2.0.0/17

Implementing BGP
233

Implementing BGP
BGP Attribute Filtering

BGP-RIB Feedback Mechanism for Update Generation
TheBorder Gateway Protocol-Routing InformationBase (BGP-RIB) feedbackmechanism for update generation
feature avoids premature route advertisements and subsequent packet loss in a network. This mechanism
ensures that routes are installed locally, before they are advertised to a neighbor.

BGPwaits for feedback fromRIB indicating that the routes that BGP installed in RIB are installed in forwarding
information base (FIB) before BGP sends out updates to the neighbors. RIB uses the the BCDL feedback
mechanism to determine which version of the routes have been consumed by FIB, and updates the BGP with
that version. BGP will send out updates of only those routes that have versions up to the version that FIB has
installed. This selective update ensures that BGP does not send out premature updates resulting in attracting
traffic even before the data plane is programmed after router reload, LC OIR, or flap of a link where an
alternate path is made available.

To configure BGP to wait for feedback from RIB indicating that the routes that BGP installed in RIB are
installed in FIB, before BGP sends out updates to neighbors, use the update wait-install command in router
address-family IPv4 or router address-family VPNv4 configurationmode. The show bgp, show bgp neighbors,
and show bgp process performance-statistics commands display the information from update wait-install
configuration.

Configure BGP Large Communities
BGP communities provide a way to group destinations and apply routing decisions such as acceptance,
rejection, preference, or redistribution on a group of destinations using community attributes. BGP community
attributes are variable length attributes consisting of a set of one or more 4-byte values which are split into
two parts of 16 bits. The higher-order 16 bits represents the AS number and the lower order bits represents a
locally defined value assigned by the operator of the AS.

Since the adoption of 4-byte ASNs (RFC6793), the BGP communities attribute can no longer accommodate
the 4 byte ASNs as you need more than 4 bytes to encode the 4-byte ASN and an AS specific value that you
want to tag with the route. Although BGP extended community permits a 4-byte AS to be encoded as the
global administrator field, the local administrator field has only 2-byte of available space. So, 6-byte extended
community attribute is also unsuitable. To overcome this limitation, you can configure a 12-byte BGP large
community which is an optional attribute that provides the most significant 4-byte value to encode autonomous
system number as the global administrator and the remaining two 4-byte assigned numbers to encode the local
values.

Similar to BGP communities, routers can apply BGP large communities to BGP routes by using route policy
languages (RPL) and other routers can then perform actions based on the community that is attached to the
route. The policy language provides sets as a container for groups of values for matching purposes.

When large communities are specified in other commands, they are specified as three non negative decimal
integers separated by colons. For example, 1:2:3. Each integer is stored in 32 bits. The possible range for each
integer is 0 to 4294967295.

In route-policy statements, each integer in the BGP large community can be replaced by any of the following
expressions :

• [x..y] — This expression specifies a range between x and y, inclusive.

• * —This expression stands for any number.

Implementing BGP
234

Implementing BGP
BGP-RIB Feedback Mechanism for Update Generation

• peeras — This expression is replaced by the AS number of the neigbhor from which the community is
received or to which the community is sent, as appropriate.

• not-peeras —This expression matches any number other than the peeras.

• private-as — This expression specifies any number in the private ASN range: [64512..65534] and
[4200000000..4294967294].

These expressions can be also used in policy-match statements.

IOS regular expression (ios-regex) and DFA style regular expression (dfa-regex) can be used in any of the
large-community policy match and delete statements. For example, the IOS regular expression ios-regex
'^5:.*:7$' is equivalent to the expression 5:*:7.

The send-community-ebgp command is extended to include BGP large communities. This command is
required for the BGP speaker to send large communities to ebgp neighbors.

Restrictions and Guidelines

The following restrictions and guidelines apply for BGP large communities:

• All functionalities of the BGP community attribute is available for the BGP large-community attribute.

• The send-community-ebgp command is required for the BGP speaker to send large communities to
ebgp neighbors.

• There are no well-known large-communities.

• The peeras expression cannot be used in a large-community-set.

• The peeras expression can only be used in large-community match or delete statements that appear in
route policies that are applied at the neighbor-in or neighbor-out attach points.

• The not-peeras expression cannot be used in a large-community-set or in policy set statements.

Configuration Example: Large Community Set

A large-community set defines a set of large communities. Named large-community sets are used in route-policy
match and set statements.

This example shows how to create a named large-community set.
Router(config)# large-community-set catbert
Router(config-largecomm)# 1: 2: 3,
Router(config-largecomm)# peeras:2:3
Router(config-largecomm)# end-set

Configuration Example: Set Large Community

The following example shows how to set the BGP large community attribute in a route, using the set
large-community {large-community-set-name | inline-large-community-set | parameter } [additive]
command. You can specify a named large-community-set or an inline set. The additive keyword retains the
large communities already present in the route and adds the new set of large communities. However the
additive keyword does not result in duplicate entries.

If a particular large community is attached to a route and you specify the same large community again with
the additive keyword in the set statement, then the specified large community is not added again. The merging
operation removes duplicate entries. This also applies to the peeras keyword.

Implementing BGP
235

Implementing BGP
Configure BGP Large Communities

The peeras expression in the example is replaced by the AS number of the neighbor from which the BGP
large community is received or to which the community is sent, as appropriate.
Router(config)# route-policy mordac
Router(config-rpl)# set large-community (1:2:3, peeras:2:3)
Router(config-rpl)# end-set
Router(config)# large-community-set catbert
Router(config-largecomm)# 1: 2: 3,
Router(config-largecomm)# peeras:2:3
Router(config-largecomm)# end-set
Router(config)# route-policy wally
Router(config-rpl)# set large-community catbert additive
Router(config-rpl)# end-set

In this example, if the route-policy mordac is applied to a neighbor, the ASN of which is 1, then the large
community (1:2:3) is set only once.

You should configure the send-community-ebgp command to send large communities to ebgp neighbors.Note

Configuration Example: Large Community Matches-any

The following example shows how to configure a route policy to match any element of a large -community
set. This is a boolean condition and returns true if any of the large communities in the route match any of the
large communities in the match condition.
Router(config)# route-policy elbonia
Router(config-rpl)# if large-community matches-any (1:2:3, 4:5:*) then
Router(config-rpl)# set local-preference 94
Router(config-rpl)# endif
Router(config-rpl)# end-policy

Configuration Example: Large Community Matches-every

The following example shows how to configure a route policy where every match specification in the statement
must be matched by at least one large community in the route.
Router(config)# route-policy bob
Router(config-rpl)# if large-community matches-every (*:*:3, 4:5:*) then
Router(config-rpl)# set local-preference 94
Router(config-rpl)# endif
Router(config-rpl)# end-policy

In this example, routes with these sets of large communities return TRUE:

• (1:1:3, 4:5:10)

• (4:5:3) —This single large community matches both specifications.

• (1:1:3, 4:5:10, 7:6:5)

Routes with the following set of large communities return FALSE:

(1:1:3, 5:5:10)—The specification (4:5:*) is not matched.

Implementing BGP
236

Implementing BGP
Configure BGP Large Communities

Configuration Example: Large Community Matches-within

The following example shows how to configure a route policy to match within a large community set. This
is similar to the large-community matches-any command but every large community in the route must match
at least one match specification. Note that if the route has no large communities, then it matches.
Router(config)# route-policy bob
Router(config-rpl)# if large-community matches-within (*:*:3, 4:5:*) then
Router(config-rpl)# set local-preference 103
Router(config-rpl)# endif
Router(config-rpl)# end-policy

For example, routes with these sets of large communities return TRUE:

• (1:1:3, 4:5:10)

• (4:5:3)

• (1:2:3, 6:6:3, 9:4:3)

Routes with this set of large communities return FALSE:

(1:1:3, 4:5:10, 7:6:5) —The large community (7:6:5) does not match

Configuration Example: Community Matches-within

The following example shows how to configure a route policy to match within the elements of a community
set. This command is similar to the community matches-any command, but every community in the route
must match at least one match specification. If the route has no communities, then it matches.
Router(config)# route-policy bob
Router(config-rpl)# if community matches-within (*:3, 5:*) then
Router(config-rpl)# set local-preference 94
Router(config-rpl)# endif
Router(config-rpl)# end-policy

For example, routes with these sets of communities return TRUE:

• (1:3, 5:10)

• (5:3)

• (2:3, 6:3, 4:3)

Routes with this set of communities return FALSE:

(1:3, 5:10, 6:5) —The community (6:5) does not match.

Configuration Example: Large Community Is-empty

The following example shows using the large-community is-empty clause to filter routes that do not have
the large-community attribute set.
Router(config)# route-policy lrg_comm_rp4
Router(config-rpl)# if large-community is-empty then
Router(config-rpl)# set local-preference 104
Router(config-rpl)# endif
Router(config-rpl)# end-policy

Implementing BGP
237

Implementing BGP
Configure BGP Large Communities

Configuration Example: Attribute Filter Group

The following example shows how to configure and apply the attribute-filter group with large-community
attributes for a BGP neighbor. The filter specifies the BGP path attributes and an action to take when BGP
update message is received. If an update message is received from the BGP neighbor that contains any of the
specified attributes, then the specified action is taken. In this example, the attribute filter named dogbert is
created and applied to the BGP neighbor 10.0.1.101. It specifies the large community attribute and the action
of discard. That means, if the large community BGP path attribute is received in a BGP UPDATE message
from the neighbor 10.0.1.101 then the attribute will be discarded before further processing of the message.

Router(config)# router bgp 100
Router(config-bgp)# attribute-filter group dogbert
Router(config-bgp-attrfg)# attribute LARGE-COMMUNITY discard
Router(config-bgp-attrfg)# neighbor 10.0.1.101
Router(config-bgp-nbr)# remote-as 6461
Router(config-bgp-nbr)# update in filtering
Router(config-nbr-upd-filter)# attribute-filter group dogbert

Configuration Example: Deleting Large Community

The following example shows how to delete specified BGP large-communities from a route policy using the
delete large-community command.

Router(config)# route-policy lrg_comm_rp2
Router(config-rpl)# delete large-community in (ios-regex '^100000:’)
Router(config-rpl)# delete large-community all
Router(config-rpl)# delete large-community not in (peeras:*:*, 41289:*:*)

Verification

This example displays the routes with large-communities given in the show bgp large-community
list-of-large-communities [exact-match] command. If the optional keyword exact-match is used, then the
listed routes will contain only the specified large communities. Otherwise, the displayed routes may contain
additional large communities.

Router:R1# show bgp large-community 1:2:3 5:6:7
Thu Mar 23 14:40:33.597 PDT
BGP router identifier 4.4.4.4, local AS number 3
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 66
BGP main routing table version 66
BGP NSR Initial initsync version 3 (Reached)
BGP NSR/ISSU Sync-Group versions 66/0
BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

* 10.0.0.3/32 10.10.10.3 0 94 0 ?
* 10.0.0.5/32 10.11.11.5 0 0 5 ?

This example displays the large community attached to a network using the show bgp ip-address/ prefix-length
command.

Implementing BGP
238

Implementing BGP
Configure BGP Large Communities

Router:R4# show bgp 10.3.3.3/32
Thu Mar 23 14:36:15.301 PDT
BGP routing table entry for 10.3.3.3/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 42 42

Last Modified: Mar 22 20:04:46.000 for 18:31:30
Paths: (1 available, best #1)
Advertised to peers (in unique update groups):
10.11.11.5

Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
10.11.11.5

Local
10.10.10.3 from 10.10.10.3 (10.3.3.3)
Origin incomplete, metric 0, localpref 94, valid, internal, best, group-best
Received Path ID 0, Local Path ID 0, version 42
Community: 258:259 260:261 262:263 264:265
Large Community: 1:2:3 5:6:7 4123456789:4123456780:4123456788

Resetting an eBGP Session Immediately Upon Link Failure
By default, if a link goes down, all BGP sessions of any directly adjacent external peers are immediately reset.
Use the bgp fast-external-fallover disable command to disable automatic resetting. Turn the automatic reset
back on using the no bgp fast-external-fallover disable command.

eBGP sessions flap when the node reaches 3500 eBGP sessions with BGP timer values set as 10 and 30. To
support more than 3500 eBGP sessions, increase the packet rate by using the lpts pifib hardware police
location location-id command. Following is a sample configuration to increase the eBGP sessions:

Router# configure
Router(config)# lpts pifib hardware police location 0/2/CPU0
Router(config-pifib-policer-per-node)#flow bgp configured rate 4000
Router(config-pifib-policer-per-node)#flow bgp known rate 4000
Router(config-pifib-policer-per-node)#flow bgp default rate 4000
Router(config-pifib-policer-per-node)#commit

Management Information Base (MIBs) for BGP
Cisco IOS XR supports full MIBs and traps for OSPFv2/v3, as defined in RFC 4273. The RFC 4273 defines
objects of the Management Information Base (MIB) for use with the BGP Routing Protocol.

To know more about MIBS, please use the MIB Locator.

Implementing BGP
239

Implementing BGP
Resetting an eBGP Session Immediately Upon Link Failure

https://cfnng.cisco.com/mibs

Virtual Routing Forwarding Next Hop Routing Policy
Table 12: Feature History Table

DescriptionRelease NameFeature Name

You can now enable a route policy
at the BGP next-hop attach point to
limit notifications delivered to BGP
for specific prefixes, which equips
you with better control over routing
decisions, and allows for precise
traffic engineering and security
compliance for each VRF instance,
and helps establish redundant paths
specific to each VRF.

The feature introduces these
changes:

CLI:

Modified Command:

• The nexthop route-policy

command is extended to VRF
address-family configuration
mode.

YANG Data Model

• New XPaths for

Cisco-IOS-XR-ipv4-bgp-cfg.yang

• Cisco-IOS-XR-um-router-bgp-cfg

(see GitHub, YANG Data Models
Navigator)

Release 7.11.1Virtual Routing Forwarding Next
Hop Routing Policy

Configure VRF Next Hop Policy
To enable next hop route policy on a VRF table, perform the following steps:

• Configure a route policy and enter route-policy configuration mode.

• Define the route policy to help limit notifications delivered to BGP for specific prefixes.

• Drop the prefix of the routes that matches the conditions set in the route policy.

• Enable BGP routing and enter the router configuration mode.

• Configure a VRF.

Implementing BGP
240

Implementing BGP
Virtual Routing Forwarding Next Hop Routing Policy

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/routing/command/reference/b-routing-cr-asr9000/bgp-commands.html#wp4048794020
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer
https://cfnng.cisco.com/ios-xr/yang-explorer

• Configure an IPv4 or IPv6 address family.

• Configure route policy filtering using next hops.

Router(config)# route-policy nh-route-policy
Router(config-rpl)# if destination in (10.1.1.0/24) and protocol in (connected, static)
then
Router(config-rpl-if)# drop
Router(config-rpl-if)# endif
Router(config-rpl)# end-policy
Router(config-rpl)# exit
Router(config)# router bgp 500
Router(config-bgp)# vrf vrf10
Router(config-bgp-vrf)# address-family ipv4 unicast
Router(config-bgp-vrf-af)# nexthop route-policy nh-route-policy

Running Configuration

route-policy nh-route-policy
if destination in (10.1.1.0/24) and protocol in (connected, static) then
drop
endif

end-policy
!

router bgp 500
vrf vrf10
address-family ipv4 unicast
nexthop route-policy nh-route-policy

Verification

Verify that the configurred next route hop policy is enabled in a VRF table. The "BGP table nexthop route
policy" field indicates the route policy used to determine the next hop for BGP routes in the specified VRF
instance VRF1.
Router# show bgp vrf vrf1 ipv4 unicast
Fri Jul 7 15:51:16.309 +0530
BGP VRF vrf1, state: Active
BGP Route Distinguisher: 1:1
VRF ID: 0x6000000b
BGP router identifier 10.1.1.1, local AS number 65001
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe000000b RD version: 1356
BGP table nexthop route policy: nh-route-policy --> This is the same route policy that was
configured.
BGP main routing table version 1362
BGP NSR Initial initsync version 1355 (Reached)
BGP NSR/ISSU Sync-Group versions 1362/0

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 1:1 (default for vrf vrf1)
Route Distinguisher Version: 1356
*> 10.1.1.0/24 0.0.0.0 0 32768 ?

Implementing BGP
241

Implementing BGP
Configure VRF Next Hop Policy

*> 192.0.2.0/24 10.1.1.1 0 32768 ?
*> 198.50.100.0/24 10.1.1.1 0 101 i

Implementing BGP
242

Implementing BGP
Configure VRF Next Hop Policy

	Implementing BGP
	Prerequisites for Implementing BGP
	BGP Functional Overview
	BGP Router Identifier
	BGP Maximum Prefix - Discard Extra Paths
	Configure Discard Extra Paths
	Restrictions

	BGP Labeled Unicast
	Convergence for BGP Labeled Unicast PIC Edge
	Black Box Monitoring
	BGP Labeled Unicast Version 6
	BGP Default Limits
	BGP Next Hop Tracking
	Next Hop as the IPv6 Address of Peering Interface
	Scoped IPv4 Table Walk
	Reordered Address Family Processing
	New Thread for Next-Hop Processing
	show, clear, and debug Commands
	BGP Configuration
	Configuration Modes
	Router Configuration Mode
	Router Address Family Configuration Mode
	Neighbor Configuration Mode
	VRF Configuration Mode
	VRF Neighbor Configuration Mode
	VRF Neighbor Address Family Configuration Mode
	VPNv6 Address Family Configuration Mode
	L2VPN Address Family Configuration Mode

	Neighbor Submode
	Configuration Templates
	Template Inheritance Rules
	Viewing Inherited Configurations
	show bgp neighbors
	show bgp neighbors
	show bgp af-group
	show bgp session-group
	show bgp session-group
	show bgp neighbor-group

	No Default Address Family
	Neighbor Address Family Combinations
	Routing Policy Enforcement
	Table Policy
	BGP Update Group
	BGP Update Generation and Update Groups

	BGP Cost Community
	How BGP Cost Community Influences the Best Path Selection Process
	Cost Community Support for Aggregate Routes and Multipaths
	Influencing Route Preference in a Multiexit IGP Network
	Adding Routes to the Routing Information Base

	BGP DMZ Aggregate Bandwidth
	Configuring BGP DMZ Aggregate Bandwidth: Example
	Configuring Policy-based Link Bandwidth: Example

	64-ECMP Support for BGP
	BGP Best Path Algorithm
	Comparing Pairs of Paths
	Order of Comparisons
	Best Path Change Suppression

	Administrative Distance
	Route Dampening
	Minimize Flapping

	BGP Routing Domain Confederation
	BGP Optimal Route Reflector
	Use Case

	RPL - if prefix is-best-path/is-best-multipath
	Remotely Triggered Blackhole Filtering with RPL Next-hop Discard Configuration
	Configure Destination-based RTBH Filtering
	Default Address Family for show Commands
	TCP Maximum Segment Size
	Per Neighbor TCP MSS

	BGP Keychains
	BGP Nonstop Routing
	BGP Best-External Path
	BGP Prefix Independent Convergence
	Configure BGP PIC in Provider Edge Networks
	Configure BGP PIC between Autonomous Systems

	Command Line Interface (CLI) Consistency for BGP Commands
	BGP Additional Paths
	iBGP Multipath Load Sharing
	Configure iBGP Multipath Load Sharing

	Accumulated IGP Attribute for BGP
	Accumulated Interior Gateway Protocol Attribute
	BGP Accept Own
	Configuring BGP Accept Own

	BGP Link-State
	Configuring BGP Link-state
	Configuring Domain Distinguisher

	BGP Permanent Network
	Configuring BGP Permanent Network
	Advertise Permanent Network

	BGP-RIB Feedback Mechanism for Update Generation
	Default-originate Under VRF
	User-Defined Martian Address Check
	BGP Multipath Enhancements
	Overview of BGP Monitoring Protocol
	BGP—Multiple Cluster IDs
	BGP Flowspec Overview
	Flow Specifications
	Supported Matching Criteria and Actions
	Traffic Filtering Actions
	BGP Flowspec Client-Server Controller Model
	Configure BGP Flowspec

	BGP Extended Route Retention
	How a CLUSTER_LIST Attribute is Used
	Configure a Cluster ID per Neighbor
	Disable Client-to-Client Reflection for Specified Cluster IDs

	How to Implement BGP
	Information About Implementing BGP

	Adjust BGP Timers
	Enabling BGP Routing
	Configure Multiple BGP Instances for a Specific Autonomous System
	Configure Routing Domain Confederation for BGP
	Resetting an eBGP Session Immediately Upon Link Failure
	Logging Neighbor Changes
	Change BGP Default Local Preference Value
	Configure MED Metric for BGP
	Configure BGP Weights
	Tune BGP Best-Path Calculation
	Configure Aggregate Addresses
	Indicate BGP Back-door Routes
	Set BGP Administrative Distance
	Configure BGP Neighbor Group and Neighbors
	Configure Route Reflector for BGP
	Understanding BGP MD5 Authentication

	Redistributing iBGP Routes into IGP
	Set BGP Administrative Distance
	Configuring Discard Extra Paths
	Configuring Per Neighbor TCP MSS

	Disabling Per Neighbor TCP MSS
	Configuring Discard Extra Paths
	Configuring Per Neighbor TCP MSS
	Disabling Per Neighbor TCP MSS
	Configure BGP Route Filtering by Route Policy
	Configure BGP Attribute Filtering
	Configure BGP Next-Hop Trigger Delay
	Disable Next-Hop Processing on BGP Updates
	Configure BGP Community and Extended-Community Advertisements
	Configure BGP Cost Community
	Configure Software to Store Updates from Neighbor
	BGP Persistence
	BGP Persistence Configuration: Example

	BGP Graceful Maintenance
	Restrictions for BGP Graceful Maintenance
	Graceful Maintenance Operation
	Inter Autonomous System
	When to Shut Down After Graceful Maintenance
	Activate Graceful Maintenance under BGP Router (All Neighbors)
	Activate Graceful Maintenance on a Single Neighbor
	Activate Graceful Maintenance on a Group of Neighbors

	Direct Router to Reduce Route Preference

	Bring Router or Link Back into Service
	Show Command Outputs to Verify BGP Graceful Maintenance
	Bring Router or Link Back into Service
	Show Command Outputs to Verify BGP Graceful Maintenance
	Flow-tag propagation
	Restrictions for Flow-Tag Propagation
	Source and destination-based flow tag
	Configure Source and Destination-based Flow Tag
	Configure Keychains for BGP
	Configuring an MDT Address Family Session in BGP
	Disable BGP Neighbor

	Neighbor Capability Suppression
	Configuration

	BGP Dynamic Neighbors
	Configuring BGP Dynamic Neighbors using Address Range

	Remote AS List
	Maximum-peers and Idle-watch timeout
	Resetting Neighbors Using BGP Inbound Soft Reset
	Resetting Neighbors Using BGP Outbound Soft Reset
	Reset Neighbors Using BGP Hard Reset
	Clearing Caches, Tables, and Databases
	Display System and Network Statistics
	Display BGP Process Information
	Configure iBGP Multipath Load Sharing
	Originate Prefixes with AiGP
	Configure BGP Accept Own
	Configuring BGP Link-state
	Configuring BGP Permanent Network
	How to Advertise Permanent Network
	Enable BGP Unequal Cost Recursive Load Balancing
	Configuring BGP Large Communities
	Enabling BGP: Example
	Displaying BGP Update Groups: Example
	BGP Neighbor Configuration: Example
	BGP Confederation: Example
	BGP Route Reflector: Example
	BGP Route Reflector: Example
	BGP MDT Address Family Configuration: Example
	BGP Nonstop Routing Configuration: Example
	Best-External Path Advertisement Configuration: Example
	Primary Backup Path Installation: Example
	iBGP Multipath Loadsharing Configuration: Example
	Discard Extra Paths Configuration: Example
	Verify Per Neighbor TCP MSS: Examples
	Originating Prefixes With AiGP: Example
	BGP Accept Own Configuration: Example
	BGP Unequal Cost Recursive Load Balancing: Example
	Flow-tag propagation
	Restrictions for Flow-Tag Propagation
	Configuring Destination-Based Flow-Tag Propagation
	Configure Software to Store Updates from Neighbor
	Configuring BGP Route Dampening
	Apply Policy When Updating Routing Table
	Configure BGP Route Filtering by Route Policy
	Configure Destination-based RTBH Filtering
	Resilient Hashing and Flow Auto-Recovery
	Persistent Loadbalancing
	BGP Selective Multipath
	Remove and Replace Private AS Numbers from AS Path in BGP
	BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing
	BGP Multi-Instance and Multi-AS
	BGP Prefix Origin Validation Based on RPKI
	Configure RPKI Cache-server

	BGP Update Message Error Handling
	BGP Attribute Filtering
	BGP Error Handling and Attribute Filtering Syslog Messages
	BGP-RIB Feedback Mechanism for Update Generation
	Configure BGP Large Communities
	Resetting an eBGP Session Immediately Upon Link Failure
	Management Information Base (MIBs) for BGP
	Virtual Routing Forwarding Next Hop Routing Policy
	Configure VRF Next Hop Policy

