
Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only
TCP protocol.

Note

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:
syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

Use gRPC Protocol to Define Network Operations with Data Models
1

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;
string yangpathjson = 2;

}

message ConfigGetReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message GetOperArgs {
int64 ReqId = 1;
string yangpathjson = 2;

}

message GetOperReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

}

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

}

message CliConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

}

message CommitReplaceReply {
int64 ResReqId = 1;
string errors = 2;

}

Example for gRPCExec configuration:

Use gRPC Protocol to Define Network Operations with Data Models
2

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec {
rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

}

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

}

message ShowCmdTextReply {
int64 ResReqId =1;
string output = 2;
string errors = 3;

}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {

rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};

}

message GetModelsInput {
uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;
enum MODLE_REQUEST_TYPE {

SUMMARY = 0;
DETAIL = 1;

}
MODLE_REQUEST_TYPE requestType = 5;

}

message GetModelsOutput {
uint64 requestId = 1;
message ModelInfo {

string name = 1;
string namespace = 2;
string version = 3;
GET_MODEL_TYPE modelType = 4;
string modelData = 5;

}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE_TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

• gRPC Operations, on page 4
• gRPC over UNIX Domain Sockets, on page 7
• gRPC Network Management Interface, on page 9
• gRPC Network Operations Interface , on page 9
• Configure Interfaces Using Data Models in a gRPC Session, on page 14

Use gRPC Protocol to Define Network Operations with Data Models
3

Use gRPC Protocol to Define Network Operations with Data Models

gRPC Operations
The following are the defined manageability service gRPC operations for Cisco IOS XR:

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Use gRPC Protocol to Define Network Operations with Data Models
4

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Operations

gRPC Response (Router to Client)gRPC Request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC Authentication Modes
gRPC supports the following authentication modes to secure communication between clients and servers.
These authenticationmodes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Table 1: gRPC Authentication Modes and Configuration Requirements

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username, password,
and CA

grpcusernameusername, passwordMetadata with TLS

username, passwordgrpc no-tlsusernameusername, passwordMetadata without
TLS

username, password,
client certificate,
client key, and CA

grpc tls-mutualusernameusername, passwordMetadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
common name field

client certificate's
common name field

Certificate based
Authentication

Use gRPC Protocol to Define Network Operations with Data Models
5

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Authentication Modes

Certificate based Authentication

In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:
/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/Note

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the customCA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Authenticate gRPC Services

Typically, gRPC clients include the username and password in the gRPC metadata fields.Note

Use any one of the following configuration type to authenticate any gRPC service.

• Metadata with TLS

Router#config
Router(config)#grpc
Router(config-grpc)#commit

• Metadata without TLS

Router#config
Router(config)#grpc

Use gRPC Protocol to Define Network Operations with Data Models
6

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate gRPC Services

Router(config-grpc)#no-tls
Router(config-grpc)#commit

• Metadata with Mutual TLS

Router#config
Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#commit

• Certificate based Authentication

Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

gRPC over UNIX Domain Sockets
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

This feature allows local containers and scripts
on the router to establish gRPC connections
over UNIX domain sockets. These sockets
provide better inter-process communication
eliminating the need to manage passwords for
local communications. Configuring
communication over UNIX domain sockets
also gives you better control of permissions
and security because UNIX file permissions
come into force.

This feature introduces the grpc
local-connection command.

Release 7.5.1gRPC Connections over UNIX
domain sockets for Enhanced
Security and Control

You can use local containers to establish gRPC connections via a TCP protocol where authentication using
username and password is mandatory. This functionality is extended to establish gRPC connections over
UNIX domain sockets, eliminating the need to manage password rotations for local communications.

When gRPC is configured on the router, the gRPC server starts and then registers services such as gRPC
Network Management Interface and gRPC Network Operations Interface . After all the gRPC server
registrations are complete, the listening socket is opened to listen to incoming gRPC connection requests.
Currently, a TCP listen socket is created with the IP address, VRF, or gRPC listening port. With this feature,
the gRPC server listens over UNIX domain sockets that must be accessible from within the container via a
local connection by default. With the UNIX socket enabled, the server listens on both TCP and UNIX sockets.
However, if disable the UNIX socket, the server listens only on the TCP socket. The socket file is located at
/var/lib/docker/ems/grpc.sock directory.

The following process shows the configuration changes required to enable or disable gRPC over UNIX domain
sockets.

Use gRPC Protocol to Define Network Operations with Data Models
7

Use gRPC Protocol to Define Network Operations with Data Models
gRPC over UNIX Domain Sockets

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp7259355000
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp7259355000

Step 1 Configure the gRPC server.

Example:
Router(config)#grpc
Router(config-grpc)#local-connection
Router(config-grpc)#commit

To disable the UNIX socket use the following command.
Router(config-grpc)#no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256, if you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
is rejected.

Step 2 Verify that the local-connection is successfully enabled.

Example:
Router#show grpc status
Thu Nov 25 16:51:30.382 UTC
*************************show gRPC status**********************

transport : grpc
access-family : tcp4
TLS : enabled
trustpoint :
listening-port : 57400
local-connection : enabled
max-request-per-user : 10
max-request-total : 128
max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

The following is an example of a Go client connecting to UNIX socket:
const sockAddr =
"/var/lib/docker/ems/grpc.sock"
...
func UnixConnect(addr string, t time.Duration) (net.Conn, error) {

unix_addr, err := net.ResolveUnixAddr("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_addr)
return conn, err

}

func main() {
...

opts = append(opts, grpc.WithTimeout(time.Second*time.Duration(*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(math.MaxInt32)))
...
opts = append(opts, grpc.WithDialer(UnixConnect))
conn, err := grpc.Dial(sockAddr, opts...)

Use gRPC Protocol to Define Network Operations with Data Models
8

Use gRPC Protocol to Define Network Operations with Data Models
gRPC over UNIX Domain Sockets

...
}

gRPC Network Management Interface
gRPCNetworkManagement Interface (gNMI) is a gRPC-based networkmanagement protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gRPC Network Operations Interface
gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

gNOI RPCs
To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 3: Feature History Table

DescriptionRelease InformationFeature Name

You can now avail the services of CancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

Release 7.8.1gNOI System Proto

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The system.proto file is available in the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
9

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Management Interface

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi/blob/main/system/system.proto

DescriptionRPC

Reboots the target. The router supports the following reboot
options:

• COLD = 1; Shutdown and restart OS and all hardware

• POWERDOWN = 2; Halt and power down

• HALT = 3; Halt

• POWERUP = 7; Apply power

Reboot

Returns the status of the target reboot.RebootStatus

Places a software package including bootable images on the
target device.

SetPackage

Pings the target device and streams the results of the ping
operation.

Ping

Runs the traceroute command on the target device and streams
the result. The default hop count is 30.

Traceroute

Returns the current time on the target device.Time

Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

SwitchControlProcessor

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

DescriptionRPC

Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Get

Removes the specified file from the target device. The RPC
returns an error if the file does not exist or permission is denied
to remove the file.

Remove

Returns metadata about a file on the target device.Stat

Streams data into a file on the target device.Put

Transfers the contents of a file from the target device to a
specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

TransferToRemote

Use gRPC Protocol to Define Network Operations with Data Models
10

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/file/file.proto

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available
in the Github repository.

DescriptionRPC

Replaces an existing certificate on the target device by creating
a new CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Rotate

Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

Install

Gets the certificates on the target.GetCertificates

Revokes specific certificates.RevokeCertificates

Asks a target if the certificate can be generated.CanGenerateCSR

Interface RPCs

The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

DescriptionRPC

Sets the loopback mode on an interface.SetLoopbackMode

Gets the loopback mode on an interface.GetLoopbackMode

Resets the counters for the specified interface.ClearInterfaceCounters

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer2.proto file is available in the Github repository.

DescriptionFeature Name

Clears all the LLDP adjacencies on the specified interface.ClearLLDPInterface

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

DescriptionFeature Name

Clears a BGP session.ClearBGPNeighbor

Use gRPC Protocol to Define Network Operations with Data Models
11

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto
https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

DescriptionFeature Name

Starts BERT on a pair of connected ports between devices in
the network.

StartBERT

Stops an already in-progress BERT on a set of ports.StopBERT

Gets the BERT results during the BERT or after the operation
is complete.

GetBERTResult

gNOI RPCs

The following examples show the representation of few gNOI RPCs:

Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638
---------------------File Get Request---------------------
RPC start time: 20:58:27.513668
remote_file: "harddisk:/giso_image_repo/test.log"

---------------------File Get Response---------------------
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {
method: MD5
hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Remove the specified file from the target.

RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554
---------------------File Remove Request---------------------
remote_file: "harddisk:/sample.txt"

---------------------File Remove Response---------------------
RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

Use gRPC Protocol to Define Network Operations with Data Models
12

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/diag/diag.proto

---------------------Reboot Request---------------------
RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}
---------------------Reboot Request---------------------
RPC end time: 21:12:50.023604

Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Set Package Request---------------------
RPC start time: 15:33:34.378745
Sending SetPackage RPC
package {
filename: "harddisk:/giso_image_repo/<platform-version>-giso.iso"
activate: true
}
method: MD5
hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473
---------------------Reboot Status Request---------------------
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {

Use gRPC Protocol to Define Network Operations with Data Models
13

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

name: "state"
}
elem
name: "location"
}
}

RPC end time: 22:27:34.319618

---------------------Reboot Status Response---------------------
Active : False
Wait : 0
When : 0
Reason : Test Reboot
Count : 0

Configure Interfaces Using Data Models in a gRPC Session
Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using gRPC communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Use gRPC Protocol to Define Network Operations with Data Models
14

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Figure 1: Network Topology for gRPC session

You use Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang to programmatically configure router
LER1.

Before you begin

• Retrieve the list of YANGmodules on the router using NETCONFmonitoring RPC. For more information

• Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure
internal network.

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LER1, the server.

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.Note

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router(config)#grpc
Router(config-grpc)#port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

b) Set the session parameters.

Use gRPC Protocol to Define Network Operations with Data Models
15

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Example:
Router(config)#grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |
max-streams-per-user | no-tls | tlsv1-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}

where:

• address-family: set the address family identifier type.

• certificate-authentication: enables certificate based authentication

• dscp: set QoS marking DSCP on transmitted gRPC.

• max-request-per-user: set the maximum concurrent requests per user.

• max-request-total: set the maximum concurrent requests in total.

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

• no-tls: disable transport layer security (TLS). The TLS is enabled by default

• tlsv1-disable: disable TLS version 1.0

• service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

• tls-cipher: enable the gRPC TLS cipher suites.

• tls-mutual: set the mutual authentication.

• tls-trustpoint: configure trustpoint.

• server-vrf: enable server vrf.

After gRPC is enabled, use the YANG data models to manage network configurations.

Step 2 Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPCOperations, on page 4. In this example, youmerge configurations with merge-configRPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of
the data model using YANG validator tools such as pyang.

LER1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not
configure a sub interface with tag 0.

Note

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

Use gRPC Protocol to Define Network Operations with Data Models
16

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://github.com/mbj4668/pyang

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-IOS-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| ...
+--rw mtus
| ...
+--rw encapsulation
| ...
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
| ...
+--rw ipv4-io-cfg:ipv4-network-forwarding ...

b) Configure a loopback0 interface on LER1.

Example:
controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "Loopback0",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
],
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {

"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

}
}
}
}
]

}
}

c) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

Use gRPC Protocol to Define Network Operations with Data Models
17

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-gi0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {

"addresses": {
"primary": {

"address": "172.16.1.0",
"netmask": "255.255.255.254"

}
}
}
}
]
}
}

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LER1 to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server_addr 198.18.1.11:57400 -yang_path "$(< xr-interfaces-gi0-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null

]
}
]
}
}
emsDeleteConfig: Received ReqId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper

Use gRPC Protocol to Define Network Operations with Data Models
18

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

-server_addr 198.18.1.11:57400 -oper_yang_path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]

}
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": {
"interface-brief": [
{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "Loopback0",
"interface": "Loopback0",
"type": "IFT_LOOPBACK",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

},
{

"interface-name": "MgmtEth0/RP0/CPU0/0",
"interface": "MgmtEth0/RP0/CPU0/0",
"type": "IFT_ETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",

Use gRPC Protocol to Define Network Operations with Data Models
19

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

},
{

"interface-name": "Null0",
"interface": "Null0",
"type": "IFT_NULL",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

}
]
}
}
}
emsGetOper: ReqId 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Use gRPC Protocol to Define Network Operations with Data Models
20

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Authentication Modes
	Authenticate gRPC Services

	gRPC over UNIX Domain Sockets
	gRPC Network Management Interface
	gRPC Network Operations Interface
	gNOI RPCs

	Configure Interfaces Using Data Models in a gRPC Session

