
Getting Started with Application Hosting

This section introduces application hosting and the Linux environment used for hosting applications on the
Cisco IOS XR Operating System.

Cisco NCS 540 routers supports docker-based application hosting only.

• Need for Application Hosting, on page 1
• Deep Dive Into Application Hosting, on page 2
• Application Hosting on the Cisco IOS XR Linux Shell, on page 3
• Getting Started with Using Vagrant for Application Hosting, on page 13

Need for Application Hosting
Over the last decade, there has been a need for a network operating system that supports operational agility
and efficiency through seamless integration with existing tool chains. Service providers have been looking
for shorter product cycles, agile workflows, and modular software delivery; all of these can be automated
efficiently. The 64-bit Cisco IOS XR that replaces the older 32-bit QNX version meets these requirements.
It does that by providing an environment that simplifies the integration of applications, configuration
management tools, and industry-standard zero touch provisioning mechanisms. The 64-bit IOS XR matches
the DevOps style workflows for service providers, and it has an open internal data storage system that can be
used to automate the configuration and operation of the device hosting an application.

While we are rapidly moving to virtual environments, there is an increasing need to build applications that
are reusable, portable, and scalable. Application hosting gives administrators a platform for leveraging their
own tools and utilities. Cisco NCS 540 routers support third-party off-the-shelf applications An application
hosted on a network device can serve a variety of purposes. This ranges from automation, configuration
management monitoring, and integration with existing tool chains.

Before an application can be hosted on a device, the following requirements must be met:

• Suitable build environment to build your application

• A mechanism to interact with the device and the network outside the device

When network devices are managed by configuration management applications, such as Chef and Puppet,
network administrators are freed of the task of focusing only on the CLI. Because of the abstraction provided
by the application, while the application does its job, administrators can now focus on the design, and other
higher level tasks.

Getting Started with Application Hosting
1

Deep Dive Into Application Hosting
This section describes the architecture of the 64-bit IOS XR and the architecture used for application hosting.

64-bit IOS XR Architecture

IOS XR provides Linux containers for application hosting through a hypervisor. Each container provides a
unique functionality. The 64-bit host Linux (hypervisor) works well with embedded systems. The various
containers that are offered on the host Linux, are explained in this section.

The following figure illustrates the 64-bit IOS XR architecture.

Figure 1: 64-bit IOS XR Architecture

• Admin Plane: The admin plane is the first Linux container to be launched on booting IOS XR. The
admin plane is responsible for managing the life cycle of the IOS XR control plane container.

• XR Control Plane: Applications are hosted natively in the 64-bit IOS XR control plane. You can access
the IOS XR Linux bash shell through the control plane.

• Data Plane: The data plane substitutes and provides all the features of a line card in a modular router
chassis.

• Third-Party Container: You can create your own Linux container (LXC) for hosting third-party
applications and use the LC interfaces that are provided.

Apart from the Linux containers, several interfaces are offered on the host Linux.

Application Hosting Architecture

The 64-bit IOS XR introduces the concept of using containers on the 64-bit host Linux (hypervisor) for hosting
applications in the XR control plane LXC (native) and in the third-party LXC. The host Linux is based on the
Windriver Linux 7 distribution.

The application hosting architecture is designed to offer the following containers for both native and third-party
applications:

• XR Control Plane LXC (native applications reside here): The XR control plane LXC contains the
global-vrf network namespace and the XR control plane. The LXC provides the XR Linux shell to
access global-vrf and the XR router console (CLI) to access the XR control plane. The LXC is also
based on the WRL7 distribution. For more information on the XR control plane LXC.

Getting Started with Application Hosting
2

Getting Started with Application Hosting
Deep Dive Into Application Hosting

• Third-Party Container (third-party applications reside here): The 64-bit IOS XR provides you an
option to create and launch your own Linux container, known as the third-party container. You can install
applications within the container that shares the network namespace with XR. You can access the
namespace through the XR Linux shell.

The network namespace on XR is shared across all applications and is known as global-vrf.

The Third-Party Application (TPA) IP is configured so that applications can communicate outside XR through
the fwdintf interface, which is bound to the Loopback0 interface of XR. All applications communicate with
XR through the fwd_ew interface, which is bound to the Loopback1 interface of XR.

Figure 2: Application Hosting Architecture

The fwdintf and fwd_ew interfaces is not support from IOS XR software release 7.9.1.Note

Application Hosting on the Cisco IOS XR Linux Shell
Linux supports an entire ecosystem of applications and tools that have been created, tested, and deployed by
system administrators, developers, and network engineers over the last few decades. Linux is well suited for
hosting servers with or without applications, because of its stability, security, scalability, reduced cost for
licensing, and the flexibility it offers to customize applications for specific infrastructure needs.

With a growing focus on DevOps style workflows that focus on automation and ease of integration, network
devices need to evolve and support standard tools and applications that make the automation process easier.
A standardized and shared tool chain can boost speed, efficiency, and collaboration. IOS XR is developed
from a Yocto-based Wind River Linux 7 distribution. The OS is RPM based and well suited for embedded
systems.

IOS XR enables hosting of 64-bit Linux applications on the box, and has the following advantages:

• Seamless integration with configuration management applications

• Easy access to file systems

• Ease of operation

To host a Linux application on IOS XR, you must be familiar with the Linux shell on XR.

Getting Started with Application Hosting
3

Getting Started with Application Hosting
Application Hosting on the Cisco IOS XR Linux Shell

A typical Linux OS provides a single set of network interfaces and routing table entries that are shared across
the OS.With the introduction of network namespaces, Linux provides multiple instances of network interfaces
and routing tables that operate independently.

Support for network namespaces varies across different distributions of the Linux OS. Ensure that the
distribution you are planning to use for application hosting supports network namespaces.

Note

Network Namespaces on IOS XR

There are two ways of accessing the IOS XR Linux shell, depending on the version of Cisco IOS XR that you
are using in your network.

• If you are using Cisco IOS XR Version 6.0.0, then you must use the procedure in Accessing the
Third-Party Network Namespace on Cisco IOS XR Linux Shell, on page 4. Accessing the XR Linux
shell takes you to the default network namespace, XRNNS. You must navigate from this namespace to
access the third-party network namespace (TPNNS), where all the third-party application interfaces
reside. There is a difference between what you can access and view at the XR router prompt, and what
you can access and view at the XR Linux Shell.

• If you are using Cisco IOS XR Version 6.0.2 and higher, then you must use the procedure in Accessing
Global VRF on the Cisco IOS XR Linux Shell, on page 10. Accessing the XR Linux shell takes you
directly to the third-party network namespace, renamed as global VRF. You can run bash commands at
the XR router prompt itself to view the interfaces and IP addresses stored in global VRF. Navigation is
faster and more intuitive in this version of IOS XR.

Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell
The Cisco IOSXRLinux shell provides a Third-Party Network Namespace (TPNNS) that provides the required
isolation between third-party applications and internal XR processes, while providing the necessary access
to XR interfaces for the applications. You can use the steps mentioned in this section to access the IOS XR
Linux shell and navigate through the XRNNS (default XR Network Namespace) and the TPNNS.

This procedure is applicable only on Cisco IOS XR Versions 5.3.2 and 6.0.0. For accessing this namespace
on other versions of Cisco IOS XR, see Accessing Global VRF on the Cisco IOS XR Linux Shell, on page
10.

Note

Use these steps to navigate through the XR Linux shell.

1. From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have reached the IOS XR router prompt.

2. View the ethernet interfaces on IOS XR.
RP/0/0/CPU0:ios# show ipv4 interface brief
...

Getting Started with Application Hosting
4

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

Interface IP-Address Status Protocol
Loopback0 1.1.1.1/32 Up Up
GigabitEthernet0/0/0/0 10.1.1.1/24 Up Up
...

RP/0/RP0/CPU0:ios# show interfaces gigabitEthernet 0/0/0/0
...

GigabitEthernet0/0/0/0 is up, line protocol is up
Interface state transitions: 4
Hardware is GigabitEthernet, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

The output displays the IP and MAC addresses of the GigabitEthernet0/0/0/0 interface.

3. Enter the run command to launch the IOS XR Linux bash shell.

You can also check the version of IOS XR when you are at the bash prompt.
RP/0/RP0/CPU0:ios# run
Wed Oct 28 18:45:56.168 IST

[xr-vm_node0_RP0_CPU0:~]$ uname -a
Linux xr-vm_node0_RP0_CPU0 3.10.19-WR7.0.0.2_standard #1 SMP Mon Jul 6
13:38:23 PDT 2015 x86_64 GNU/Linux
[xr-vm_node0_RP0_CPU0:~]$

To exit the Linux bash shell and launch the IOS XR console, enter the exit command:
[xr-vm_node0_RP0_CPU0:~]$ exit
exit
RP/0/RP0/CPU0:ios#

Note

4. Locate the network interfaces by running the ifconfig command.
[xr-vm_node0_RP0_CPU0:~]$ ifconfig
eth0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41

inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:280 errors:0 dropped:0 overruns:0 frame:0
TX packets:160 errors:0 dropped:0 overruns:0 carrier:0

Getting Started with Application Hosting
5

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

collisions:0 txqueuelen:1000
RX bytes:31235 (30.5 KiB) TX bytes:20005 (19.5 KiB)

eth-vf0 Link encap:Ethernet HWaddr 52:54:00:34:29:44
inet addr:10.11.12.14 Bcast:10.11.12.255 Mask:255.255.255.0
inet6 addr: fe80::5054:ff:fe34:2944/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:19 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1566 (1.5 KiB) TX bytes:1086 (1.0 KiB)

eth-vf1 Link encap:Ethernet HWaddr 52:54:00:ee:f7:68
inet6 addr: fe80::5054:ff:feee:f768/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:326483 errors:0 dropped:3 overruns:0 frame:0
TX packets:290174 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:24155455 (23.0 MiB) TX bytes:215862857 (205.8 MiB)

eth-vf1.1794 Link encap:Ethernet HWaddr 52:54:01:5c:55:8e
inet6 addr: fe80::5054:1ff:fe5c:558e/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:10 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:728 (728.0 B) TX bytes:1234 (1.2 KiB)

eth-vf1.3073 Link encap:Ethernet HWaddr e2:3a:dd:0a:8c:06
inet addr:192.0.0.4 Bcast:192.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::e03a:ddff:fe0a:8c06/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:317735 errors:0 dropped:3560 overruns:0 frame:0
TX packets:257881 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:18856325 (17.9 MiB) TX bytes:204552163 (195.0 MiB)

eth-vf1.3074 Link encap:Ethernet HWaddr 4e:41:50:00:10:01
inet addr:172.0.16.1 Bcast:172.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::4c41:50ff:fe00:1001/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:8996 Metric:1
RX packets:8712 errors:0 dropped:0 overruns:0 frame:0
TX packets:32267 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:723388 (706.4 KiB) TX bytes:11308374 (10.7 MiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:1635360 errors:0 dropped:0 overruns:0 frame:0
TX packets:1635360 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:182532711 (174.0 MiB) TX bytes:182532711 (174.0 MiB)

tap123 Link encap:Ethernet HWaddr c6:13:74:4b:dc:e3
inet6 addr: fe80::c413:74ff:fe4b:dce3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:998 (998.0 B)

Getting Started with Application Hosting
6

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

The output displays the internal interfaces (eth0 through eth-vf1.3074) used by IOSXR. These interfaces
exist in XRNetwork Namespace (XRNNS) and do not interact with the network outside IOSXR. Interfaces
that interact with the network outside IOSXR are found in the Third Party Network Namespace (TPNNS).

5. Enter the TPNNS on the IOS XR bash shell.
[XR-vm_node0_RP0_CPU0:~]$ ip netns exec tpnns bash

6. View the TPNNS interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The interfaces displayed in the output are replicas of the IOS XR interfaces in the Linux environment.
(They have the same MAC and IP addresses.)

• Gi0_0_0_0 is the IOS XR GigabitEthernet 0/0/0/0 interface.

• Mg0_RP0_CPU0_0 is the IOS XR management interface, used for administrative operations on XR.

Getting Started with Application Hosting
7

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

• fwd_ew is the interface used for communication (east to west) between third-party applications and
IOS XR.

• fwdintf is the interface used for communication between third-party applications and the network
outside IOS XR.

• lo:0 is the IOS XR loopback0 interface used for communication between third-party applications
and the outside network through the fwdintf interface. The loopback0 interface must be configured
for applications to communicate outside XR. Alternatively, applications can also configure a GigE
interface for external communication, as explained in the Communication Outside Cisco IOS XR
section.

All interfaces that are enabled (with the no shut command) are added to TPNNS on IOS XR.

7. (Optional) View the IP routes used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

The fwdintf and fwd_ew interfaces is not support from IOS XR software release 7.9.1.Note

Alternative Method of Entering the Third Party Network Namespace on IOS XR

To directly enter the TPNNS on logging to IOS XR, without entering the ip netns exec tpnns bash command,
you can use the sshd_tpnns service, as explained in the steps that follow. The procedure involves the creation
of a non-root user in order to access the service. (Root users cannot access this service.)

On IOS XR, prior to starting a service that binds to an interface, ensure that the interface is configured, up,
and operational.

To ensure that a service starts only after an interface is configured, include the following function in the service
script:
. /etc/init.d/tpnns-functions
tpnns_wait_until_ready

The addition of the tpnns_wait_until_ready function ensures that the service script waits for one or more
interfaces to be configured before starting the service.

Note

1. (Optional) If you want the TPNNS service to start automatically on reload, add the sshd_tpnns service
and verify its presence.
bash-4.3# chkconfig --add sshd_tpnns
bash-4.3# chkconfig --list sshd_tpnns
sshd_tpnns 0:off 1:off 2:off 3:on 4:on 5:on 6:off
bash-4.3#

2. Start the sshd_tpnns service.
bash-4.3# service sshd_tpnns start
Generating SSH1 RSA host key: [OK]
Generating SSH2 RSA host key: [OK]

Getting Started with Application Hosting
8

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

b-application-hosting-configuration-guide-ncs5500_chapter3.pdf#nameddest=unique_6

Generating SSH2 DSA host key: [OK]
generating ssh ECDSA key...

Starting sshd: [OK]

bash-4.3# service sshd_tpnns status
sshd (pid 6224) is running...

3. Log into the sshd_tpnns session as the non-root user created in Step 1.
host@fe-ucs36:~$ ssh devops@192.168.122.222 -p 57722
devops@192.168.122.222's password:
Last login: Tue Sep 8 20:14:11 2015 from 192.168.122.1
XR-vm_node0_RP0_CPU0:~$

4. Verify whether you are in TPNNS by viewing the interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

Getting Started with Application Hosting
9

Getting Started with Application Hosting
Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell

You are ready to use the IOS XR Linux shell for hosting applications.

Accessing Global VRF on the Cisco IOS XR Linux Shell
The Third-Party Network Namespace (TPNNS) is renamed as Global VRF (global-vrf) in Cisco IOS XR
Version 6.0.2 and higher. When you access the Cisco IOS XR Linux shell, you directly enter global VRF.
This is described in the following procedure.

1. From your Linux box, access the IOS XR console through SSH, and log in.
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
RP/0/RP0/CPU0:ios#

You have reached the IOS XR router prompt.

2. View the ethernet interfaces on IOS XR.
RP/0/0/CPU0:ios# show ipv4 interface brief
...

Interface IP-Address Status Protocol
Loopback0 1.1.1.1/32 Up Up
GigabitEthernet0/0/0/0 10.1.1.1/24 Up Up
...

RP/0/RP0/CPU0:ios# show interfaces gigabitEthernet 0/0/0/0
...

GigabitEthernet0/0/0/0 is up, line protocol is up
Interface state transitions: 4
Hardware is GigabitEthernet, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

The output displays the IP and MAC addresses of the GigabitEthernet0/0/0/0 interface.

3. Verify whether the bash command runs in global VRF by running the bash -c ifconfig command to view
the network interfaces.
RP/0/RP0/CPU0:ios# bash -c ifconfig
...

Getting Started with Application Hosting
10

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell

Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c
inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The presence of the following two interfaces confirms that you are in Global VRF:

fwd_ew is the interface used for communication (east to west) between third-party applications and IOS
XR.

fwdintf is the interface used for communication between third-party applications and the network outside
IOS XR.

4. Access the Linux shell by running the bash command.
RP/0/RP0/CPU0:ios# bash
Tue Aug 02 13:44:07.627 UTC
[xr-vm_node0_RP0_CPU0:~]$

5. (Optional) View the IP routes used by the fwd_ew and fwdintf interfaces.

Getting Started with Application Hosting
11

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell

[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

Alternative Method of Entering Global VRF on IOS XR

To directly enter global VRF on logging to IOS XR, without entering the bash command, you can use the
sshd_operns service, as explained in the steps that follow. The procedure involves the creation of a non-root
user in order to access the service. (Root users cannot access this service.)

On IOS XR, prior to starting a service that binds to an interface, ensure that the interface is configured, up,
and operational.

To ensure that a service starts only after an interface is configured, include the following function in the service
script:
. /etc/init.d/operns-functions
operns_wait_until_ready

The addition of the operns_wait_until_ready function ensures that the service script waits for one or more
interfaces to be configured before starting the service.

Note

1. (Optional) If you want the operns service to start automatically on reload, add the sshd_operns service
and verify its presence.
bash-4.3# chkconfig --add sshd_operns
bash-4.3# chkconfig --list sshd_operns
sshd_operns 0:off 1:off 2:off 3:on 4:on 5:on 6:off
bash-4.3#

2. Start the sshd_operns service.
bash-4.3# service sshd_operns start
Generating SSH1 RSA host key: [OK]
Generating SSH2 RSA host key: [OK]
Generating SSH2 DSA host key: [OK]
generating ssh ECDSA key...

Starting sshd: [OK]

bash-4.3# service sshd_operns status
sshd (pid 6224) is running...

3. Log into the sshd_operns session as the non-root user created in Step 1.
host@fe-ucs36:~$ ssh devops@192.168.122.222 -p 57722
devops@192.168.122.222's password:
Last login: Tue Sep 8 20:14:11 2015 from 192.168.122.1
XR-vm_node0_RP0_CPU0:~$

4. Verify whether you are in global VRF by viewing the network interfaces.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

Getting Started with Application Hosting
12

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell

RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You are ready to use the IOS XR Linux shell for hosting applications.

Getting Started with Using Vagrant for Application Hosting
You can use vagrant as a tool for design, development, and testing of applications that can be hosted on Cisco
IOS XR. You can use vagrant on a host device of your choice, for completing the steps described in the
following sections.

Pre-requisites for Using Vagrant

Before you can start using vagrant, ensure that you have fulfilled the following requirements on your host
device.

• Latest version of Vagrant for your operating system. We recommend Version 1.8.6.

• Latest version of a virtual box for your operating system. We recommend Version 5.1+.

• Minimum of 5 GB of RAM with two cores.

Getting Started with Application Hosting
13

Getting Started with Application Hosting
Getting Started with Using Vagrant for Application Hosting

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

• (Optional) If you are using the Windows Operating System, we recommend that you download the Git
bash utility for running the commands.

Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box
The Third-Party Network Namespace (TPNNS) is renamed as Global VRF (global-vrf) in Cisco IOS XR
Version 6.0.2 and higher. From Cisco IOS XR Version 6.1.1 and higher, you can use a Linux-based vagrant
box to directly access the Global VRF on IOS XR, as described in the following procedure.

Procedure

To access Global VRF by using a vagrant box, use the following steps.

1. Generate an API key and a CCO ID by using the steps described in https://xrdocs.github.io/getting-started/
steps-download-iosxr-vagrant.

2. Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Launch the vagrant instance on your device.
ANNSEQUE-WS02 MINGW64:iosxrv annseque$
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'IOS-XRv'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM: annseque_default_1472028191221_94197
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 57722 (guest) => 2222 (host) (adapter 1)
default: 22 (guest) => 2223 (host) (adapter 1)

==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...

Getting Started with Application Hosting
14

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

https://git-scm.com/download/win
https://git-scm.com/download/win
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

==> default: Waiting for machine to boot. This may take a few minutes...
default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
...
default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...
default: Key inserted! Disconnecting and reconnecting using new SSH key...

==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...

default: No guest additions were detected on the base box for this VM! Guest
default: additions are required for forwarded ports, shared folders, host only
default: networking, and more. If SSH fails on this machine, please install
default: the guest additions and repackage the box to continue.
default:
default: This is not an error message; everything may continue to work properly,
default: in which case you may ignore this message.

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Machine 'default' has a post `vagrant up` message. This is a message
==> default: from the creator of the Vagrantfile, and not from Vagrant itself:
==> default:
==> default:
==> default: Welcome to the IOS XRv (64-bit) Virtualbox.
==> default: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> default: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> default: to determine the port that maps to guestport 22,
==> default: then: 'ssh vagrant@localhost -p <forwarded port>'
==> default:
==> default: IMPORTANT: READ CAREFULLY
==> default: The Software is subject to and governed by the terms and conditions
==> default: of the End User License Agreement and the Supplemental End User
==> default: License Agreement accompanying the product, made available at the
==> default: time of your order, or posted on the Cisco website at
==> default: www.cisco.com/go/terms (collectively, the 'Agreement').
==> default: As set forth more fully in the Agreement, use of the Software is
==> default: strictly limited to internal use in a non-production environment
==> default: solely for demonstration and evaluation purposes. Downloading,
==> default: installing, or using the Software constitutes acceptance of the
==> default: Agreement, and you are binding yourself and the business entity
==> default: that you represent to the Agreement. If you do not agree to all
==> default: of the terms of the Agreement, then Cisco is unwilling to license
==> default: the Software to you and (a) you may not download, install or use the
==> default: Software, and (b) you may return the Software as more fully set forth
==> default: in the Agreement.

7. Access the XR Linux shell by using SSH on vagrant.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant ssh
xr-vm_node0_RP0_CPU0:~$

You have successfully accessed the IOS XR Linux shell.

8. (Optional) You can check the version of Linux.

Getting Started with Application Hosting
15

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

xr-vm_node0_RP0_CPU0:~$ uname -a
Linux xr-vm_node0_RP0_CPU0 3.14.23-WR7.0.0.2_standard
#1 SMP Tue May 24 22:48:36 PDT 2016 x86_64 x86_64 x86_64 GNU/Linux

9. (Optional) You can view the list of available namespaces.
[xr-vm_node0_RP0_CPU0:~]$ ip netns list
tpnns
xrnns
global-vrf

10. View the network interfaces in the global VRF namespace.
[XR-vm_node0_RP0_CPU0:~]$ ifconfig
Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c

inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

The interfaces displayed in the output are replicas of the IOS XR interfaces in the Linux environment.
(They have the same MAC and IP addresses.)

• Gi0_0_0_0 is the IOS XR GigabitEthernet 0/0/0/0 interface.

Getting Started with Application Hosting
16

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

• Mg0_RP0_CPU0_0 is the IOS XR management interface, used for administrative operations on XR.

• fwd_ew is the interface used for communication (east to west) between third-party applications and
IOS XR.

• fwdintf is the interface used for communication between third-party applications and the network
outside IOS XR.

• lo:0 is the IOS XR loopback0 interface used for communication between third-party applications
and the outside network through the fwdintf interface. The loopback0 interface must be configured
for applications to communicate outside XR. Alternatively, applications can also configure a GigE
interface for external communication, as explained in the Communication Outside Cisco IOS XR
section.

The presence of fwd_ew and fwdintf interfaces confirm that you are in the global VRF namespace.
All interfaces that are enabled (with the no shut command) are added to global-vrf on IOS XR.

11. (Optional) View the IP addresses used by the fwd_ew and fwdintf interfaces.
[xr-vm_node0_RP0_CPU0:~]$ ip route
default dev fwdintf scope link src 1.1.1.1
8.8.8.8 dev fwd_ew scope link
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.213

12. To access the IOS XR router prompt, use the following steps.

a. Log out of the XR Linux shell virtual box.
xr-vm_node0_RP0_CPU0:~$ exit
logout
Connection to 127.0.0.1 closed.

b. Check the port number for accessing XR through SSH.
annseque@ANNSEQUE-WS02 MINGW64 ~
$ vagrant port
The forwarded ports for the machine are listed below. Please note that
these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

c. Use the port number, 2223, and the password, vagrant, for accessing XR through SSH .
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/lxc-app-topo-bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios#

You have successfully accessed the XR router prompt.

13. View the network interfaces by using the bash -c ifconfig command at the XR router prompt.
RP/0/RP0/CPU0:ios# bash -c ifconfig
Thu Jul 21 06:03:49.098 UTC

Gi0_0_0_0 Link encap:Ethernet HWaddr 52:46:04:87:19:3c
inet addr:192.164.168.10 Mask:255.255.255.0
inet6 addr: fe80::5046:4ff:fe87:193c/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1

Getting Started with Application Hosting
17

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

b-application-hosting-configuration-guide-ncs5500_chapter3.pdf#nameddest=unique_6

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 52:46:12:7a:88:41
inet addr:192.168.122.197 Mask:255.255.255.0
inet6 addr: fe80::5046:12ff:fe7a:8841/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1514 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b
inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1482 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo:0 Link encap:Local Loopback
inet addr:1.1.1.1 Mask:255.255.255.255
UP LOOPBACK RUNNING MTU:1500 Metric:1

You can view all the interfaces available in global VRF namespace through the XR router prompt.

14. (Optional) To navigate to the XR Linux shell, you can use the run command. To navigate back to the
router prompt, you can use the exit command.
RP/0/RP0/CPU0:ios# run
Thu Jul 21 05:57:04.232 UTC

[xr-vm_node0_RP0_CPU0:~]$

[xr-vm_node0_RP0_CPU0:~]$ exit
exit
RP/0/RP0/CPU0:ios#

You are ready to use the IOS XR Linux shell for hosting applications.

Getting Started with Application Hosting
18

Getting Started with Application Hosting
Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box

Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box
Configuration that is applied to a router or a device during boot-up is known as bootstrap configuration. By
using a vagrant box, you can create a bootstrap configuration and apply it to an instance of the Cisco IOS XR
running on a vagrant box.

Procedure

To bootstrap configuration to an instance of XR running on a vagrant box, use the following steps.

1. Generate an API key and a CCO ID by using the steps described in https://xrdocs.github.io/getting-started/
steps-download-iosxr-vagrant.

2. Download the latest stable version of the IOS XR vagrant box.

$ curl <cco-id>:<API-KEY>

$ BOXURL --output ~/iosxrv-fullk9-x64.box

$ vagrant box add --name IOS-XRv ~/iosxrv-fullk9-x64.box

3. Verify if the vagrant box has been successfully installed.

annseque@ANNSEQUE-WS02 MINGW64 ~ vagrant box list
IOS-XRv (virtualbox, 0)

4. Create a working directory.

annseque@ANNSEQUE-WS02 MINGW64 ~ mkdir ~/iosxrv
annseque@ANNSEQUE-WS02 MINGW64 ~ cd ~/iosxrv

5. Initialize the vagrant file with the new vagrant box.

ANNSEQUE-WS02 MINGW64:iosxrv annseque$ vagrant init IOS-XRv
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

6. Clone the vagrant-xrdocs repository.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ git clone https://github.com/ios-xr/vagrant-xrdocs.git

7. Navigate to the vagrant-xrdocs repository and locate the vagrant file containing the configuration with
which you want to bootstrap the XR.

annseque@ANNSEQUE-WS02 MINGW64 ~
$ cd vagrant-xrdocs/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls
ansible-tutorials/ native-app-topo-bootstrap/ simple-mixed-topo/
lxc-app-topo-bootstrap/ README.md single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ ls single_node_bootstrap/

Getting Started with Application Hosting
19

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant
https://xrdocs.github.io/getting-started/steps-download-iosxr-vagrant

configs/ scripts/ Vagrantfile

8. Create the bootstrap configuration file which uses a vagrant shell provisioner.

You would need a shell provisioner section for each node in your network. A sample configuration file
is as follows:

#Source a config file and apply it to XR

config.vm.provision "file", source: "configs/rtr_config", destination:
"/home/vagrant/rtr_config"

config.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end

In the shown sample file, you are using a vagrant file provisioner (config.vm.provision "file") to
transfer a file from your host machine to the XR Linux shell. The root of the source directory is the
working directory for your vagrant instance. Hence, the rtr_config file is located in the configs
directory.

You are using a shell script (config.vm.provision "shell") to apply the bootstrap configuration to
XR. The shell script eventually runs on the XR Linux shell of the vagrant instance. This script is placed
in the scripts directory and is named as apply_config.sh. The script uses the location of the router
configuration file as the destination parameter in the vagrant file provisioner.

9. Verify the directory structure for the single node bootstrap configuration example used in this section.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs (master)
$ cd single_node_bootstrap/

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ tree ./
./
├── Vagrantfile
├── configs
│ └── rtr_config
└── scripts

└── apply_config.sh

2 directories, 3 files

10. Verify the contents of the bootstrap configuration file.

The bootstrap configuration example we are using in this section configures the gRPC server on port
57789.

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat configs/rtr_config
!! XR configuration
!
grpc
port 57789

!
end

Getting Started with Application Hosting
20

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

The bootstrap configuration is appended to the existing configuration on the instance of XR.Note

11. Verify the contents of the shell script you are using to apply the configuration to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat scripts/apply_config.sh
#!/bin/bash

Source ztp_helper.sh to get the xrapply and xrcmd functions.
source /pkg/bin/ztp_helper.sh

function configure_xr()
{

Apply a blind config
xrapply $1
if [$? -ne 0]; then

echo "xrapply failed to run"
fi
xrcmd "show config failed" > /home/vagrant/config_failed_check

}

The location of the config file is an argument to the script
config_file=$1

Call the configure_xr() function to use xrapply and xrcmd in parallel
configure_xr $config_file

Check if there was an error during config application
grep -q "ERROR" /home/vagrant/config_failed_check

Condition based on the result of grep ($?)
if [$? -ne 0]; then

echo "Configuration was successful!"
echo "Last applied configuration was:"
xrcmd "show configuration commit changes last 1"

else
echo "Configuration Failed. Check /home/vagrant/config_failed on the router for

logs"
xrcmd "show configuration failed" > /home/vagrant/config_failed
exit 1

fi

In this example, the shell script blindly applies the configuration file specified as an argument ($1) and
then checks to see if there was an error while applying the configuration.

The following new commands are introduced in the shell script:

• xrcmd: Allows you to run privileged exec commands at the XR router prompt on the XR Linux
shell.

For example, show run, show version, and so on.

• xrapply: Allows you to apply (append) a configuration file to the existing configuration.

• xrapply_string: Applies a configuration directly using a single inline string.

For example, xrapply_string "interface Gig0/0/0/0\n ip address 1.1.1.2/24 \n no shutdown

Getting Started with Application Hosting
21

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

To enable the xrapply, xrapply_string, and xrcmd commandssource /pkg/bin/ztp_helper.sh, it is
mandatory to include source /pkg/bin/ztp_helper.sh in the script.

Note

12. Verify if the shell provisioner code has been included in the vagrant file.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.

Vagrant.configure(2) do |config|

config.vm.box = "IOS-XRv"

#Source a config file and apply it to XR

config.vm.provision "file", source: "configs/rtr_config", destination:
"/home/vagrant/rtr_config"

config.vm.provision "shell" do |s|
s.path = "scripts/apply_config.sh"
s.args = ["/home/vagrant/rtr_config"]

end
end

13. Launch the vagrant instance from the current directory.

Launching the vagrant instance should bootstrap the configuration to XR.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'IOS-XRv'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM:
single_node_bootstrap_default_1472117544017_81536
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 57722 (guest) => 2222 (host) (adapter 1)
default: 22 (guest) => 2223 (host) (adapter 1)

==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...

default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
...
default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...

Getting Started with Application Hosting
22

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

default: Key inserted! Disconnecting and reconnecting using new SSH key...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...

default: No guest additions were detected on the base box for this VM! Guest
default: additions are required for forwarded ports, shared folders, host only
default: networking, and more. If SSH fails on this machine, please install
default: the guest additions and repackage the box to continue.
default:
default: This is not an error message; everything may continue to work properly,
default: in which case you may ignore this message.

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: shell...
default: Running: inline script

==> default: Running provisioner: file...
==> default: Running provisioner: shell...

default: Running:
C:/Users/annseque/AppData/Local/Temp/vagrant-shell20160825-3292-1wncpa3.sh
==> default: Configuration was successful!
==> default: Last applied configuration was:
==> default: Building configuration...
==> default: !! IOS XR Configuration version = 6.1.1.18I
==> default: grpc
==> default: port 57789
==> default: !
==> default: end

==> default: Machine 'default' has a post `vagrant up` message. This is a message
==> default: from the creator of the Vagrantfile, and not from Vagrant itself:
==> default:
==> default:
==> default: Welcome to the IOS XRv (64-bit) Virtualbox.
==> default: To connect to the XR Linux shell, use: 'vagrant ssh'.
==> default: To ssh to the XR Console, use: 'vagrant port' (vagrant version > 1.8)
==> default: to determine the port that maps to guestport 22,
==> default: then: 'ssh vagrant@localhost -p <forwarded port>'
==> default:
==> default: IMPORTANT: READ CAREFULLY
==> default: The Software is subject to and governed by the terms and conditions
==> default: of the End User License Agreement and the Supplemental End User
==> default: License Agreement accompanying the product, made available at the
==> default: time of your order, or posted on the Cisco website at
==> default: www.cisco.com/go/terms (collectively, the 'Agreement').
==> default: As set forth more fully in the Agreement, use of the Software is
==> default: strictly limited to internal use in a non-production environment
==> default: solely for demonstration and evaluation purposes. Downloading,
==> default: installing, or using the Software constitutes acceptance of the
==> default: Agreement, and you are binding yourself and the business entity
==> default: that you represent to the Agreement. If you do not agree to all
==> default: of the terms of the Agreement, then Cisco is unwilling to license
==> default: the Software to you and (a) you may not download, install or use the
==> default: Software, and (b) you may return the Software as more fully set forth
==> default: in the Agreement.

You can see the vagrant file and shell provisioner applying the gPRC server port configuration to XR.

14. (Optional) You can verify the bootstrap configuration on the XR router console from the XR Linux
shell.
annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ vagrant port
The forwarded ports for the machine are listed below. Please note that

Getting Started with Application Hosting
23

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

these values may differ from values configured in the Vagrantfile if the
provider supports automatic port collision detection and resolution.

22 (guest) => 2223 (host)
57722 (guest) => 2222 (host)

annseque@ANNSEQUE-WS02 MINGW64 ~/vagrant-xrdocs/single_node_bootstrap (master)
$ ssh -p 2223 vagrant@localhost
vagrant@localhost's password:

RP/0/RP0/CPU0:ios# show running-config grpc
Thu Aug 25 09:42:24.010 UTC
grpc
port 57789
!

RP/0/RP0/CPU0:ios# show configuration commit changes last 1
Thu Aug 25 09:42:34.971 UTC
Building configuration...
!! IOS XR Configuration version = 6.1.1.18I
grpc
port 57789
!
end

RP/0/RP0/CPU0:ios#

You have successfully applied a bootstrap configuration to XR.

Getting Started with Application Hosting
24

Getting Started with Application Hosting
Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

	Getting Started with Application Hosting
	Need for Application Hosting
	Deep Dive Into Application Hosting
	Application Hosting on the Cisco IOS XR Linux Shell
	Accessing the Third-Party Network Namespace on Cisco IOS XR Linux Shell
	Accessing Global VRF on the Cisco IOS XR Linux Shell

	Getting Started with Using Vagrant for Application Hosting
	Accessing Global VRF on the Cisco IOS XR Linux Shell by Using a Vagrant Box
	Applying Bootstrap Configuration to Cisco IOS XR by Using a Vagrant Box

