
Configuring IP-in-IP Tunnels

This chapter provides conceptual and configuration information for IP-in-IP tunnels.

IP-in-IP Tunnels

Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

With this release, decapsulation of IPv4
and IPv6 packets with IPv6 outer headers
are supported. This decapsulation is
supported only with tunnel source direct
option and not with tunnel source with
IPv6 address.

This feature helps the administrators to
take advantage of the benefits of IPv6,
such as improved routing and security,
without having to upgrade their entire
network to IPv6.

Release 7.5.4Descapsulating IPv4 packets
with IPv6 Outer Header

Tunneling provides a mechanism to transport packets of one protocol within another protocol. IP-in-IP
tunneling refers to the encapsulation and decapsulation of an IP packet as a payload in another IP packet.
Cisco NCS 5500 Routers support IP-in-IP decapsulation with all possible combinations of IPv4 and IPv6;
that is, IPv4 over IPv4, IPv6 over IPv4, IPv4 over IPv6, and IPv6 over IPv6. For example, an IPv4 over IPv6
refers to an IPv4 packet as a payload encapsulated within an IPv6 packet and routed across an IPv6 network
to reach the destination IPv4 network, where it is decapsulated.

IP-in-IP tunneling can be used to connect remote networks securely or provide virtual private network (VPN)
services.

The following example provides configurations for an IPv4 or IPv6 tunnel, with the transport VRF as the
default VRF for the following simplified network topology.

Configuring IP-in-IP Tunnels
1



Figure 1: IP-in-IP Tunnel Network Topology

Configuration Example for IPv4 Tunnel

PE2 Router ConfigurationPE1 Router Configuration

interface GigabitEthernet0/0/0/0
!! Link between PE1-PE2
ipv4 address 100.1.1.2/64
!
interface GigabitEthernet0/0/0/1
!! Link between PE2-CE2
ipv4 address 30.1.1.1/24
ipv6 address 30::1/64
!
interface tunnel-ip 1
ipv4 address 10.1.1.2/24
ipv6 address 10::2/64
tunnel mode ipv4
tunnel source GigabitEthernet0/0/0/0
tunnel destination 100.1.1.1
!

router static
address-family ipv4 unicast

20.1.1.0/24 tunnel-ip1
address-family ipv6 unicast
20::0/64 tunnel-ip1
!
!
!

interface GigabitEthernet0/0/0/0
!! Link between PE1-PE2
ipv4 address 100.1.1.1/64
!
interface GigabitEthernet0/0/0/1
!! Link between CE1-PE1
ipv4 address 20.1.1.1/24
ipv6 address 20::1/64
!
interface tunnel-ip 1
ipv4 address 10.1.1.1/24
ipv6 address 10::1/64
tunnel mode ipv4
tunnel source GigabitEthernet0/0/0/0
tunnel destination 100.1.1.2
!

router static
address-family ipv4 unicast

30.1.1.0/24 tunnel-ip1
address-family ipv6 unicast
30::0/64 tunnel-ip1
!
!
!

CE2 Router ConfigurationCE1 Router Configuration

interface GigabitEthernet0/0/0/1
!! Link between CE2-PE2
ipv4 address 30.1.1.2 255.255.255.0
ipv6 address 30::2/64
!
router static
address-family ipv4 unicast
20.1.1.0/24 30.1.1.1

address-family ipv6 unicast
20::0/64 30::1
!
!

interface GigabitEthernet0/0/0/1
!! Link between CE1-PE1
ipv4 address 20.1.1.2 255.255.255.0
ipv6 address 20::2/64
!
router static
address-family ipv4 unicast
30.1.1.0/24 20.1.1.1
address-family ipv6 unicast
30::0/64 20::1
!
!

Configuring IP-in-IP Tunnels
2

Configuring IP-in-IP Tunnels



Configuration Example for IPv6 Tunnel

PE2 Router ConfigurationPE1 Router Configuration

interface GigabitEthernet0/0/0/0
!! Link between PE1-PE2
ipv6 address 100::2/64
!
interface GigabitEthernet0/0/0/1
!! Link between PE2-CE2
vrf RED
ipv4 address 30.1.1.1/24
ipv6 address 30::1/64
!
interface tunnel-ip 1
vrf RED
ipv4 address 10.1.1.2/24
ipv6 address 10::2/64
tunnel mode ipv6
tunnel source GigabitEthernet0/0/0/0
tunnel destination 100::1
!
vrf RED
address-family ipv6 unicast
import route-target
2:1
!
export route-target
2:1
!
address-family ipv4 unicast
import route-target
2:1
!
export route-target
2:1
!

router static
vrf RED
address-family ipv4 unicast
20.1.1.0/24 tunnel-ip1
address-family ipv6 unicast
20::0/64 tunnel-ip1
!
!
!

interface GigabitEthernet0/0/0/0
!! Link between PE1-PE2
ipv6 address 100::1/64
!
interface GigabitEthernet0/0/0/1
!! Link between CE1-PE1
vrf RED
ipv4 address 20.1.1.1/24
ipv6 address 20::1/64
!
interface tunnel-ip 1
vrf RED
ipv4 address 10.1.1.1/24
ipv6 address 10::1/64
tunnel mode ipv6
tunnel source GigabitEthernet0/0/0/0
tunnel destination 100::2
!
vrf RED
address-family ipv6 unicast
import route-target
2:1
!
export route-target
2:1
!
address-family ipv4 unicast
import route-target
2:1
!
export route-target
2:1
!

router static
vrf RED
address-family ipv4 unicast
30.1.1.0/24 tunnel-ip1
address-family ipv6 unicast
30::0/64 tunnel-ip1
!
!
!

CE2 Router ConfigurationCE1 Router Configuration

interface GigabitEthernet0/0/0/1
!! Link between CE2-PE2
ipv4 address 30.1.1.2 255.255.255.0
ipv6 address 30::2/64
!
router static
address-family ipv4 unicast
20.1.1.0/24 30.1.1.1

address-family ipv6 unicast
20::0/64 30::1
!
!

interface GigabitEthernet0/0/0/1
!! Link between CE1-PE1
ipv4 address 20.1.1.2 255.255.255.0
ipv6 address 20::2/64
!
router static
address-family ipv4 unicast
30.1.1.0/24 20.1.1.1
address-family ipv6 unicast
30::0/64 20::1
!
!

• IP-in-IP Decapsulation, on page 4

Configuring IP-in-IP Tunnels
3

Configuring IP-in-IP Tunnels



IP-in-IP Decapsulation
Encapsulation of datagrams in a network is done for multiple reasons, such as when a source server wants to
influence the route that a packet takes to reach the destination host. The source server is also known as the
encapsulation server.

IP-in-IP encapsulation involves the insertion of an outer IP header over the existing IP header. The source
and destination address in the outer IP header point to the endpoints of the IP-in-IP tunnel. The stack of IP
headers is used to direct the packet over a predetermined path to the destination, provided the network
administrator knows the loopback addresses of the routers transporting the packet. This tunneling mechanism
can be used for determining availability and latency for most network architectures. It is to be noted that the
entire path from source to the destination does not have to be included in the headers, but a segment of the
network can be chosen for directing the packets.

The following illustration describes the basic IP-in-IP encapsulation and decapsulation model.

Figure 2: Basic Encapsulation and Decapsulation with an IP-in-IP

Tunnel

Use Case: Configure IP-in-IP Decapsulation

The following topology describes a use case where IP-in-IP encapsulation and decapsulation are used for
different segments of the network from source to destination. The IP-in-IP tunnel consists of multiple routers
that are used to decapsulate and direct the packet through the data center fabric network.

Figure 3: IP-in-IP Decapsulation Through a Data Center Network

The following illustration shows how the stacked IPv4 headers are de-capsulated as they traverse through the
de-capsulating routers.

Configuring IP-in-IP Tunnels
4

Configuring IP-in-IP Tunnels
IP-in-IP Decapsulation



Figure 4: IP Header Decapsulation

Stacked IP Header in an Encapsulated Packet

The encapsulated packet has an outer IPv4 header that is stacked over the original IPv4 header, as shown in
the following illustration.

Configuring IP-in-IP Tunnels
5

Configuring IP-in-IP Tunnels
IP-in-IP Decapsulation



Encapsulated Packet

Configuration

You can use the following sample configuration on the routers to decapsulate the packet as it traverses the
IP-in-IP tunnel:
RP/0/RP0/CPU0:router(config)# interface tunnel-ip 10
RP/0/RP0/CPU0:router(config-if)# tunnel mode ipv4 decap
RP/0/RP0/CPU0:router(config-if)# tunnel source loopback 0
RP/0/RP0/CPU0:router(config-if)# tunnel destination 10.10.1.2/32

• tunnel-ip: configures an IP-in-IP tunnel interface.

Configuring IP-in-IP Tunnels
6

Configuring IP-in-IP Tunnels
IP-in-IP Decapsulation



• ipv4 unnumbered loopback address: enables ipv4 packet processing without an explicit address, except
for loopback address.

• tunnel mode ipv4 decap: enables IP-in-IP decapsulation.

• tunnel source: indicates the source address for the IP-in-IP decap tunnel w.r.t the router interface.

• tunnel destination: indicates the destination address for the IP-in-IP decap tunnel w.r.t the router interface.

Running Configuration

RP/0/RP0/CPU0:router# show running-config interface tunnel-ip 10
...
interface tunnel-ip 10
tunnel mode ipv4 decap
tunnel source Loopback 0
tunnel destination 10.10.1.2/32

This completes the configuration of IP-in-IP decapsulation.

Decapsulation Using Tunnel Source Direct
Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

Tunnel source direct allows you to
decapsulate the tunnels on any L3
interface on the router.

You can use the tunnel source
direct configuration command to
choose the specific IP Equal-Cost
Multipath (ECMP) links for
troubleshooting, when there are
multiple IP links between two
devices.

Release 7.5.3Decapsulating Using Tunnel
Source Direct

To debug faults in various large networks, you may have to capture and analyze the network traffic at a packet
level. In datacenter networks, administrators face problems with the volume of traffic and diversity of faults.
To troubleshoot faults in a timely manner, DCN administrators must identify affected packets inside large
volumes of traffic. They must track them across multiple network components, analyze traffic traces for fault
patterns, and test or confirm potential causes.

In some networks, IP-in-IP decapsulation is currently used in networkmanagement, to verify ECMP availability
and to measure the latency of each path within a datacenter.

The Network Management System (NMS) sends IP-in-IP (IPv4 or IPv6) packets with a stack (multiple) of
predefined IPv4 or IPv6 headers (device IP addresses). The destination device at each hop removes the outside
header, performs a lookup on the next header, and forwards the packets if a route exists.

Using the tunnel source direct command, you can choose the specific IP Equal-Cost Multipath (ECMP)
links for troubleshooting, when there are multiple IP links between two devices.

Configuring IP-in-IP Tunnels
7

Configuring IP-in-IP Tunnels
Decapsulation Using Tunnel Source Direct

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/b-ncs5500-interfaces-cli-reference/b-ncs5500-interfaces-cli-reference_chapter_0110.html#wp2887642008
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/b-ncs5500-interfaces-cli-reference/b-ncs5500-interfaces-cli-reference_chapter_0110.html#wp2887642008


You can programmatically configure andmanage the Ethernet interfaces using openconfig-ethernet-if.yang
and openconfig-interfaces.yang OpenConfig data models. To get started with using data models, see the
Programmability Configuration Guide for Cisco NCS 5500 Series Routers.

Tip

Guidelines and Limitations
The following guidelines are applicable to this feature.

• The tunnel source direct command is only compatible with 'tunnel mode decap' for IP-in-IP decapsulation.

• The source-direct tunnel is always operationally up unless it is administratively shut down. The directly
connected interfaces are identified using the show ip route direct command.

• All Layer 3 interfaces that are configured on the device are supported.

• Platform can accept and program only certain number of IP addresses. The number of IP addresses
depends on the make of the platform linecard (LC). Each LC can have different number of Network
Processor (NP) slices and interfaces.

• Only one source-direct tunnel per address-family is supported for configuration.

• Regular decapsulation tunnels which have specific source address, are supported. However, the tunnel’s
specific source address must not be part of any interface.

The following functionalities are not supported for the tunnel source direct option.

• GRE tunneling mode.

• VRF (only default VRF is supported).

• ACL and QoS on the tunnels.

• Tunnel encapsulation.

• Tunnel NetIO DLL: Decapsulation is not supported if the packet is punted to slow path.

Configure Decapsulation Using Tunnel Source Direct

Configuration

The tunnel source direct configures IP-in-IP tunnel decapsulation on any directly connected IP addresses.
This option is now supported only when the IP-in-IP decapsulation is used to source route the packets through
the network.

This example shows how to configure IP-in-IP tunnel decapsulation on directly connected IP addresses:
Router# configure terminal
Router(config)#interface Tunnel4
Router(config)#tunnel mode ipv4 decap
Router(config)#tunnel source direct
Router(config)#no shutdown

This example shows how to configure IP-in-IP tunnel decapsulation on IPv6 enabled networks:
Router# configure terminal
Router(config)#interface Tunnel6

Configuring IP-in-IP Tunnels
8

Configuring IP-in-IP Tunnels
Guidelines and Limitations



Router(config)#tunnel mode ipv6 decap
Router(config)#tunnel source direct
Router(config)#no shutdown

Verifying the Configuration

The following example shows how to verify IP-in-IP tunnel decapsulation with tunnel source direct option:
Router#show running-config interface tunnel 1
interface Tunnel1
tunnel mode ipv6ipv6 decapsulate-any
tunnel source direct
no shutdown

Router#show interface tunnel 1
Tunnel1 is up Admin State: up
MTU 1460 bytes, BW 9 Kbit
Tunnel protocol/transport IPv6/DECAPANY/IPv6
Tunnel source - direct
Tx 0 packets output, 0 bytes Rx 0 packets input, 0 bytes

Configuring IP-in-IP Tunnels
9

Configuring IP-in-IP Tunnels
Configure Decapsulation Using Tunnel Source Direct



Configuring IP-in-IP Tunnels
10

Configuring IP-in-IP Tunnels
Configure Decapsulation Using Tunnel Source Direct


	Configuring IP-in-IP Tunnels
	IP-in-IP Decapsulation
	Decapsulation Using Tunnel Source Direct
	Guidelines and Limitations
	Configure Decapsulation Using Tunnel Source Direct




