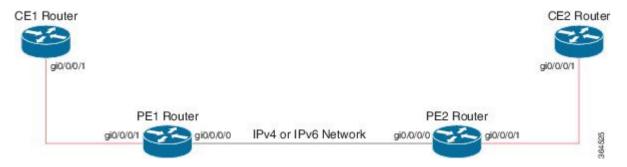


Configuring IP-in-IP Tunnels

This chapter provides conceptual and configuration information for IP-in-IP tunnels.

IP-in-IP Tunnels

Table 1: Feature History Table


Feature Name	Release Information	Feature Description
Descapsulating IPv4 packets with IPv6 Outer Header	Release 7.5.4	With this release, decapsulation of IPv4 and IPv6 packets with IPv6 outer headers are supported. This decapsulation is supported only with tunnel source direct option and not with tunnel source with IPv6 address. This feature helps the administrators to take advantage of the benefits of IPv6, such as improved routing and security, without having to upgrade their entire network to IPv6.

Tunneling provides a mechanism to transport packets of one protocol within another protocol. IP-in-IP tunneling refers to the encapsulation and decapsulation of an IP packet as a payload in another IP packet. Cisco NCS 5500 Routers support IP-in-IP decapsulation with all possible combinations of IPv4 and IPv6; that is, IPv4 over IPv4, IPv6 over IPv4, IPv4 over IPv6, and IPv6 over IPv6. For example, an IPv4 over IPv6 refers to an IPv4 packet as a payload encapsulated within an IPv6 packet and routed across an IPv6 network to reach the destination IPv4 network, where it is decapsulated.

IP-in-IP tunneling can be used to connect remote networks securely or provide virtual private network (VPN) services.

The following example provides configurations for an IPv4 or IPv6 tunnel, with the transport VRF as the default VRF for the following simplified network topology.

Figure 1: IP-in-IP Tunnel Network Topology

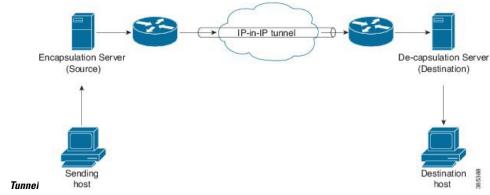
Configuration Example for IPv4 Tunnel

PE1 Router Configuration	PE2 Router Configuration	
<pre>interface GigabitEthernet0/0/0/0 !! Link between PE1-PE2 ipv4 address 100.1.1.1/64 ! interface GigabitEthernet0/0/0/1 !! Link between CE1-PE1 ipv4 address 20.1.1.1/24 ipv6 address 20::1/64 !</pre>	<pre>interface GigabitEthernet0/0/0/0 !! Link between PE1-PE2 ipv4 address 100.1.1.2/64 ! interface GigabitEthernet0/0/0/1 !! Link between PE2-CE2 ipv4 address 30.1.1.1/24 ipv6 address 30::1/64 !</pre>	
<pre>interface tunnel-ip 1 ipv4 address 10.1.1.1/24 ipv6 address 10::1/64 tunnel mode ipv4 tunnel source GigabitEthernet0/0/0/0 tunnel destination 100.1.1.2 !</pre>	<pre>interface tunnel-ip 1 ipv4 address 10.1.1.2/24 ipv6 address 10::2/64 tunnel mode ipv4 tunnel source GigabitEthernet0/0/0/0 tunnel destination 100.1.1.1 !</pre>	
router static address-family ipv4 unicast 30.1.1.0/24 tunnel-ip1 address-family ipv6 unicast 30::0/64 tunnel-ip1 ! !	router static address-family ipv4 unicast 20.1.1.0/24 tunnel-ip1 address-family ipv6 unicast 20::0/64 tunnel-ip1 ! !	
CE1 Router Configuration	CE2 Router Configuration	
<pre>interface GigabitEthernet0/0/0/1 !! Link between CE1-PE1 ipv4 address 20.1.1.2 255.255.255.0 ipv6 address 20::2/64 ! router static address-family ipv4 unicast 30.1.1.0/24 20.1.1.1 address-family ipv6 unicast 30::0/64 20::1 ! !</pre>	<pre>interface GigabitEthernet0/0/0/1 !! Link between CE2-PE2 ipv4 address 30.1.1.2 255.255.255.0 ipv6 address 30::2/64 ! router static address-family ipv4 unicast 20.1.1.0/24 30.1.1.1 address-family ipv6 unicast 20::0/64 30::1 !</pre>	

Configuration Example for IPv6 Tunnel

```
PE1 Router Configuration
                                             PE2 Router Configuration
interface GigabitEthernet0/0/0/0
                                             interface GigabitEthernet0/0/0/0
!! Link between PE1-PE2
                                             !! Link between PE1-PE2
                                              ipv6 address 100::2/64
ipv6 address 100::1/64
interface GigabitEthernet0/0/0/1
                                             interface GigabitEthernet0/0/0/1
!! Link between CE1-PE1
                                              !! Link between PE2-CE2
ipv4 address 20.1.1.1/24
                                              ipv4 address 30.1.1.1/24
ipv6 address 20::1/64
                                              ipv6 address 30::1/64
                                             interface tunnel-ip 1
interface tunnel-ip 1
vrf RED
                                              vrf RED
ipv4 address 10.1.1.1/24
                                              ipv4 address 10.1.1.2/24
ipv6 address 10::1/64
                                              ipv6 address 10::2/64
tunnel mode ipv6
                                              tunnel mode ipv6
tunnel source GigabitEthernet0/0/0/0
                                              tunnel source GigabitEthernet0/0/0/0
tunnel destination 100::2
                                              tunnel destination 100::1
vrf RED
                                             vrf RED
address-family ipv6 unicast
                                              address-family ipv6 unicast
 import route-target
                                               import route-target
  2:1
                                                2:1
 export route-target
                                               export route-target
  2:1
                                                2:1
address-family ipv4 unicast
                                              address-family ipv4 unicast
 import route-target
                                               import route-target
  2:1
                                                2:1
 1
 export route-target
                                               export route-target
  2:1
                                                2:1
 1
                                               1
router static
                                             router static
vrf RED
                                             vrf RED
 address-family ipv4 unicast
                                               address-family ipv4 unicast
  30.1.1.0/24 tunnel-ip1
                                                20.1.1.0/24 tunnel-ip1
 address-family ipv6 unicast
                                               address-family ipv6 unicast
  30::0/64 tunnel-ip1
                                                20::0/64 tunnel-ip1
!
                                              !
CE1 Router Configuration
                                             CE2 Router Configuration
interface GigabitEthernet0/0/0/1
                                             interface GigabitEthernet0/0/0/1
!! Link between CE1-PE1
                                             !! Link between CE2-PE2
ipv4 address 20.1.1.2 255.255.255.0
                                              ipv4 address 30.1.1.2 255.255.255.0
ipv6 address 20::2/64
                                              ipv6 address 30::2/64
router static
                                             router static
address-family ipv4 unicast
                                              address-family ipv4 unicast
 30.1.1.0/24 20.1.1.1
                                               20.1.1.0/24 30.1.1.1
address-family ipv6 unicast
                                             address-family ipv6 unicast
 30::0/64 20::1
                                               20::0/64 30::1
```

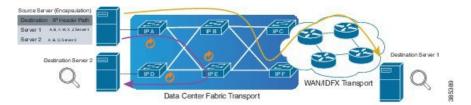
• IP-in-IP Decapsulation, on page 4


IP-in-IP Decapsulation

Encapsulation of datagrams in a network is done for multiple reasons, such as when a source server wants to influence the route that a packet takes to reach the destination host. The source server is also known as the encapsulation server.

IP-in-IP encapsulation involves the insertion of an outer IP header over the existing IP header. The source and destination address in the outer IP header point to the endpoints of the IP-in-IP tunnel. The stack of IP headers is used to direct the packet over a predetermined path to the destination, provided the network administrator knows the loopback addresses of the routers transporting the packet. This tunneling mechanism can be used for determining availability and latency for most network architectures. It is to be noted that the entire path from source to the destination does not have to be included in the headers, but a segment of the network can be chosen for directing the packets.

The following illustration describes the basic IP-in-IP encapsulation and decapsulation model.


Figure 2: Basic Encapsulation and Decapsulation with an IP-in-IP

Use Case: Configure IP-in-IP Decapsulation

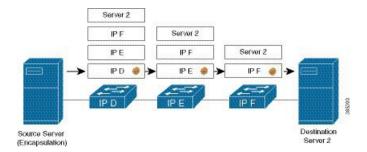
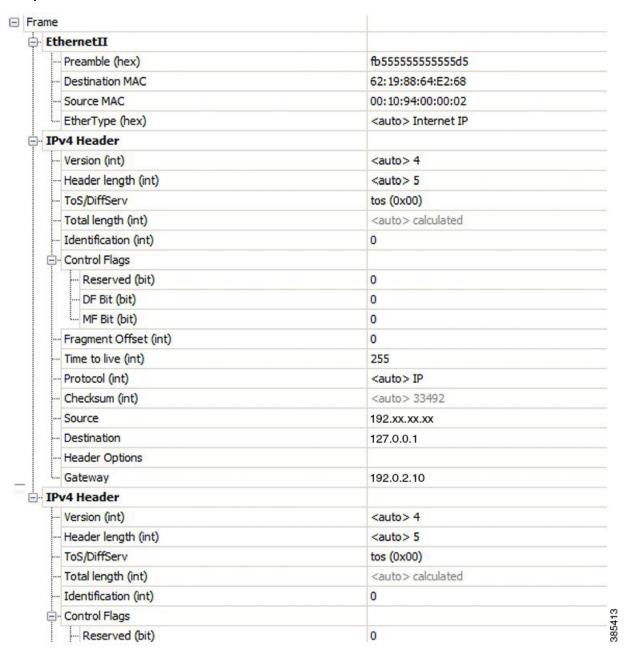

The following topology describes a use case where IP-in-IP encapsulation and decapsulation are used for different segments of the network from source to destination. The IP-in-IP tunnel consists of multiple routers that are used to decapsulate and direct the packet through the data center fabric network.

Figure 3: IP-in-IP Decapsulation Through a Data Center Network

The following illustration shows how the stacked IPv4 headers are de-capsulated as they traverse through the de-capsulating routers.


Figure 4: IP Header Decapsulation

Stacked IP Header in an Encapsulated Packet

The encapsulated packet has an outer IPv4 header that is stacked over the original IPv4 header, as shown in the following illustration.

Encapsulated Packet

Configuration

You can use the following sample configuration on the routers to decapsulate the packet as it traverses the IP-in-IP tunnel:

```
RP/0/RP0/CPU0:router(config) # interface tunnel-ip 10
RP/0/RP0/CPU0:router(config-if) # tunnel mode ipv4 decap
RP/0/RP0/CPU0:router(config-if) # tunnel source loopback 0
RP/0/RP0/CPU0:router(config-if) # tunnel destination 10.10.1.2/32
```

• tunnel-ip: configures an IP-in-IP tunnel interface.

- **ipv4 unnumbered loopback address**: enables ipv4 packet processing without an explicit address, except for loopback address.
- tunnel mode ipv4 decap: enables IP-in-IP decapsulation.
- tunnel source: indicates the source address for the IP-in-IP decap tunnel w.r.t the router interface.
- tunnel destination: indicates the destination address for the IP-in-IP decap tunnel w.r.t the router interface.

Running Configuration

```
RP/0/RP0/CPU0:router# show running-config interface tunnel-ip 10 ... interface tunnel-ip 10 tunnel mode ipv4 decap tunnel source Loopback 0 tunnel destination 10.10.1.2/32
```

This completes the configuration of IP-in-IP decapsulation.

IP-in-IP Decapsulation