
Implementing Access Lists and Prefix Lists

• Understanding Access Lists , on page 1
• Configuring IPv4 ACLs, on page 5
• Modifying ACLs, on page 8
• Configuring ACL-based Forwarding, on page 8
• ACLs on Bridge Virtual Interfaces, on page 11
• Configuring ACLs with Fragment Control, on page 14
• Configuring ACL Filtering by IP Packet Length, on page 17
• Understanding Object-Group ACLs, on page 21
• Configuring Extended Access Lists, on page 26
• Understanding IP Access List Logging Messages, on page 27
• Understanding Prefix Lists, on page 28
• Configuring Prefix Lists, on page 29
• Sequencing Prefix List Entries and Revising the Prefix List, on page 29

Understanding Access Lists
Access lists perform packet filtering to control which packets move through the network and where. Such
controls help to limit network traffic and restrict the access of users and devices to the network. Access lists
have many uses, and therefore many commands accept a reference to an access list in their command syntax.
Access lists can be used to do the following:

An access control list (ACL) consists of one or more access control entries (ACE) that collectively define the
network traffic profile. This profile can then be referenced by Cisco IOS XR software features such as traffic
filtering, route filtering, QoS classification, and access control.

Traditional ACLs do not support commpression. Object-group ACLs use compression to accommodate the
large number of ACEs.

Purpose of IP Access Lists

• Filter incoming or outgoing packets on an interface.

• Filter packets for mirroring.

• Redirect traffic as required.

• Restrict the contents of routing updates.

Implementing Access Lists and Prefix Lists
1



• Limit debug output based on an address or protocol.

• Control vty access.

• Identify or classify traffic for advanced features, such as congestion avoidance, congestion management,
and priority and custom queueing.

How an IP Access List Works

An access list is a sequential list consisting of permit and deny statements that apply to IP addresses and
possibly upper-layer IP protocols. The access list has a name by which it is referenced. Many software
commands accept an access list as part of their syntax.

An access list can be configured and named, but it is not in effect until the access list is referenced by a
command that accepts an access list. Multiple commands can reference the same access list. An access list
can control traffic arriving at the router or leaving the router, but not traffic originating at the router.

Source address and destination addresses are two of the most typical fields in an IP packet on which to base
an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify
destination addresses to control packets being sent to certain networking devices or hosts.

You can also filter packets on the basis of transport layer information, such as whether the packet is a TCP,
UDP, ICMP, or IGMP packet.

ACL Workflow

The following image illustrates the workflow of an ACL.

Implementing Access Lists and Prefix Lists
2

Implementing Access Lists and Prefix Lists
Understanding Access Lists



IP Access List Process and Rules

Use the following process and rules when configuring an IP access list:

• The software tests the source or destination address or the protocol of each packet being filtered against
the conditions in the access list, one condition (permit or deny statement) at a time.

• If a packet does not match an access list statement, the packet is then tested against the next statement
in the list.

• If a packet and an access list statement match, the remaining statements in the list are skipped and the
packet is permitted or denied as specified in the matched statement. The first entry that the packet matches
determines whether the software permits or denies the packet. That is, after the first match, no subsequent
entries are considered.

• If the access list denies the address or protocol, the software discards the packet and returns an Internet
ControlMessage Protocol (ICMP) Host Unreachable message. ICMP is configurable in the Cisco IOSXR
software.

• If no conditions match, the software drops the packet because each access list ends with an unwritten or
implicit deny statement. That is, if the packet has not been permitted or denied by the time it was tested
against each statement, it is denied.

• The access list should contain at least one permit statement or else all packets are denied.

Implementing Access Lists and Prefix Lists
3

Implementing Access Lists and Prefix Lists
Understanding Access Lists



• Because the software stops testing conditions after the first match, the order of the conditions is critical.
The same permit or deny statements specified in a different order could result in a packet being passed
under one circumstance and denied in another circumstance.

• Only one access list per interface, per protocol, per direction is allowed.

• Inbound access lists process packets arriving at the router. Incoming packets are processed before being
routed to an outbound interface. An inbound access list is efficient because it saves the overhead of
routing lookups if the packet is to be discarded because it is denied by the filtering tests. If the packet is
permitted by the tests, it is then processed for routing. For inbound lists, permit means continue to process
the packet after receiving it on an inbound interface; deny means discard the packet.

• Outbound access lists process packets before they leave the router. Incoming packets are routed to the
outbound interface and then processed through the outbound access list. For outbound lists, permit means
send it to the output buffer; deny means discard the packet.

• An access list can not be removed if that access list is being applied by an access group in use. To remove
an access list, remove the access group that is referencing the access list and then remove the access list.

• Before removing an interface, which is configured with an ACL that denies certain traffic, you must
remove the ACL and commit your configuration. If this is not done, then some packets are leaked through
the interface as soon as the no interface <interface-name> command is configured and committed.

• An access list must exist before you can use the ipv4 access group command.

• ACL-based Forwarding (ABF) is not supported in common ACLs.

• Filtering of MPLS packets with the explicit-null or de-aggregation label is supported on the ingress
direction.

ACL Filtering by Wildcard Mask and Implicit Wildcard Mask

Address filtering uses wildcard masking to indicate whether the software checks or ignores corresponding IP
address bits when comparing the address bits in an access-list entry to a packet being submitted to the access
list. By carefully setting wildcard masks, an administrator can select a single or several IP addresses for permit
or deny tests.

Wildcard masking for IP address bits uses the number 1 and the number 0 to specify how the software treats
the corresponding IP address bits. A wildcard mask is sometimes referred to as an inverted mask, because a
1 and 0 mean the opposite of what they mean in a subnet (network) mask.

• A wildcard mask bit 0 means check the corresponding bit value.

• A wildcard mask bit 1 means ignore that corresponding bit value.

You do not have to supply a wildcard mask with a source or destination address in an access list statement.
If you use the host keyword, the software assumes a wildcard mask of 0.0.0.0.

Unlike subnet masks, which require contiguous bits indicating network and subnet to be ones, wildcard masks
allow noncontiguous bits in the mask.

You can also use CIDR format (/x) in place of wildcard bits. For example, the IPv4 address 1.2.3.4
0.255.255.255 corresponds to 1.2.3.4/8 and for IPv6 address 2001:db8:abcd:0012:0000:0000:0000:0000
corresponds to 2001:db8:abcd:0012::0/64.

Implementing Access Lists and Prefix Lists
4

Implementing Access Lists and Prefix Lists
Understanding Access Lists



Including Comments in Access Lists

You can include comments (remarks) about entries in any named IP access list using the remark access list
configuration command. The remarks make the access list easier for the network administrator to understand
and scan. Each remark line is limited to 255 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put
the remark so it is clear which remark describes which permit or deny statement. For example, it would be
confusing to have some remarks before the associated permit or deny statements and some remarks after the
associated statements. Remarks can be sequenced.

Remember to apply the access list to an interface or terminal line after the access list is created.

Configuring IPv4 ACLs
This section describes the basic configuration of IPv4 ingress and egress ACLs.

Notes and Restrictions for Configuring IPv4 Ingress ACLs

IPv4 ingress ACLs are characterized by the following behavior.

• Ingress IPv4 ACLs are supported on all interfaces except management interfaces.

• ACL-based Forwarding (ABF) is supported only in the ingress direction.

• The total number of ACLs allowed by default per NPU is 32.

• The number of attached ACEs allowed per line card is 4000.

• ACL logging with input interface (using the log-input keyword) is not supported.

Notes and Restrictions for Configuring IPv4 Egress ACLs

IPv4 egress ACLs are characterized by the following behavior.

• Egress IPv4 ACLs are supported on main physical interfaces and bundle interfaces.

Egress ACLs are not directly supported on sub-interfaces. However, If you
configure an egress ACL on a main interface that has sub-interfaces, the ACL
action is also applied to the sub-interface traffic. This egress ACL behavior holds
true even if the sub-interfaces are configured after the ACL is applied to the main
interface.

Note

• ACL is not supported on Management interface on egress direction.

• The number of attached ACEs allowed per line card is 4000.

• ACL logging (using the log command) and ACL logging with input interface (using the log-input
command) is not supported.

• Filtering for egress IPv4 multicast traffic is not supported if H-QoS is configured on the router.

Implementing Access Lists and Prefix Lists
5

Implementing Access Lists and Prefix Lists
Configuring IPv4 ACLs



Configuring an Ingress IPv4 ACL on a Gigabit Ethernet Interface

Use the following configuration to configure an ingress IPv4 ACL on a GigE interface.
/* Configure a GigE interface with an IPv4 address */
Router(config)# interface gigabitEthernet 0/0/0/0
Router(config-if)# ipv4 address 10.1.1.1 255.255.255.0
Router(config-if)# no shut
Router(config-if)# commit
Thu Jan 25 10:07:54.700 IST
Router(config-if)# exit

/* Verify if the interface is up */
Router(config)# do show ipv4 interface brief
Thu Jan 25 10:08:49.087 IST

Interface IP-Address Status Protocol Vrf-Name
GigabitEthernet0/0/0/0 10.1.1.1 Up Up default

/* Configure an IPv4 ingress ACL */
Router(config)# ipv4 access-list V4-ACL-INGRESS
Router(config-ipv4-acl)# 10 permit tcp 10.2.1.1 0.0.0.255 any
Router(config-ipv4-acl)# 20 deny udp any any
Router(config-ipv4-acl)# 30 permit ipv4 10.2.0.0 0.255.255.255 any
Router(config-ipv4-acl)# commit
Thu Jan 25 10:16:11.473 IST

/* Verify the ingress ACL creation */
Router(config)# do show access-lists ipv4
Thu Jan 25 10:25:19.896 IST
...
ipv4 access-list V4-ACL-INGRESS
10 permit tcp 10.2.1.0 0.0.0.255 any
20 deny udp any any
30 permit ipv4 10.0.0.0 0.255.255.255 any

/* Apply the ingress ACL to the GigE interface */
Router(config)# interface GigabitEthernet0/0/0/0
Router(config-if)# ipv4 access-group V4-ACL-INGRESS ingress
Router(config-if)# commit
Thu Jan 25 10:28:19.671 IST
Router(config-if)# exit

/* Verify if the ingress ACL has been successfully applied to the interface */
Router(config)# do show ipv4 interface
Thu Jan 25 10:29:44.944 IST
GigabitEthernet0/0/0/0 is Up, ipv4 protocol is Up
Vrf is default (vrfid 0x60000000)
Internet address is 10.1.1.1/24
MTU is 1514 (1500 is available to IP)
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound common access list is not set, access list is V4-ACL-INGRESS
Proxy ARP is disabled
ICMP redirects are never sent
ICMP unreachables are always sent
ICMP mask replies are never sent
Table Id is 0xe0000000

You have successfully configured an IPv4 ingress ACL on a Gigabit Ethernet interface.

Implementing Access Lists and Prefix Lists
6

Implementing Access Lists and Prefix Lists
Configuring IPv4 ACLs



Configuring an Egress IPv4 ACL on a Gigabit Ethernet Interface

Use the following configuration to configure an egress IPv4 ACL on a GigE interface.
/* Configure a GigE interface with an IPv4 address */
Router(config)# interface gigabitEthernet 0/0/0/0
Router(config-if)# ipv4 address 20.1.1.1 255.255.255.0
Router(config-if)# no shut
Router(config-if)# commit
Thu Jan 25 10:08:38.767 IST
Router(config-if)# exit

/* Verify if the interface is up */
Router(config)# do show ipv4 interface brief
Thu Jan 25 10:08:49.087 IST

Interface IP-Address Status Protocol Vrf-Name
GigabitEthernet0/0/0/0 10.1.1.1 Up Up default
GigabitEthernet0/0/0/0 20.1.1.1 Up Up default

/* Configure an IPv4 egress ACL */
Router(config)# ipv4 access-list V4-ACL-EGRESS
Router(config-ipv4-acl)# 10 permit ipv4 10.2.0.0 0.255.255.255 20.2.0.0 0.255.255.255
Router(config-ipv4-acl)# 20 deny ipv4 any any
Router(config-ipv4-acl)# commit
Thu Jan 25 10:25:04.655 IST

/* Verify the egress ACL creation */
Router(config)# do show access-lists ipv4
Thu Jan 25 10:25:19.896 IST
ipv4 access-list V4-ACL-EGRESS
10 permit ipv4 10.0.0.0 0.255.255.255 20.0.0.0 0.255.255.255
20 deny ipv4 any any
...

/* Apply the egress ACL to the GigE interface */
Router(config)# interface gigabitEthernet 0/0/0/1
Router(config-if)# ipv4 access-group V4-ACL-EGRESS egress
Router(config-if)# commit
Thu Jan 25 10:28:45.937 IST
Router(config-if)# exit

/* Verify if the egress ACL has been successfully applied to the interface */
Router(config)# do show ipv4 interface
Thu Jan 25 10:29:44.944 IST
GigabitEthernet 0/0/0/1 is Up, ipv4 protocol is Up
Vrf is default (vrfid 0x60000000)
Internet address is 20.1.1.1/24
MTU is 1514 (1500 is available to IP)
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is V4-ACL-EGRESS
Inbound common access list is not set, access list is not set
Proxy ARP is disabled
ICMP redirects are never sent
ICMP unreachables are always sent
ICMP mask replies are never sent
Table Id is 0xe0000000

...

You have successfully configured an IPv4 egress ACL on a Gigabit Ethernet interface.

Implementing Access Lists and Prefix Lists
7

Implementing Access Lists and Prefix Lists
Configuring IPv4 ACLs



Modifying ACLs
This section describes a sample configuration for modification of ACLs.
*/ Create an Access List*/
Router(config)#ipv4 access-list acl_1

*/Add entries (ACEs) to the ACL*/
Router(config-ipv4-acl)#10 permit ip host 10.3.3.3 host 172.16.5.34
Router(config-ipv4-acl)#20 permit icmp any any
Router(config-ipv4-acl)#30 permit tcp any host 10.3.3.3
Router(config-ipv4-acl)#end

*/Verify the entries of the ACL*/:
Router#show access-lists ipv4 acl_1
ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3

*/Add new entries, one with a sequence number "15" and another without a sequence number
to the ACL. Delete an entry with the sequence number "30":*/
Router(config)#ipv4 access-list acl_1
Router(config-ipv4-acl)# 15 permit 10.5.5.5 0.0.0.255
Router(config-ipv4-acl)# no 30
Router(config-ipv4-acl)# permit 10.4.4.4 0.0.0.255
Router(config-ipv4-acl)# commit

*/When an entry is added without a sequence number, it is automatically given a sequence
number
that puts it at the end of the access list. Because the default increment is 10, the entry
will have a sequence
number 10 higher than the last entry in the existing access list*/

*/Verify the entries of the ACL:*/
Router(config)#show access-lists ipv4 acl_1
ipv4 access-list acl_1
10 permit ipv4 host 10.3.3.3 host 172.16.5.34

15 permit 10.5.5.5 0.0.0.255---*/newly added ACE (with the sequence number)*/
20 permit icmp any any
30 permit ipv4 10.4.4.0 0.0.0.255 any ---*/newly added ACE (without the sequence number)*/

*/The entry with the sequence number 30, that is, "30 permit tcp any host 10.3.3.3" is
deleted from the ACL*/

You have successfully modified ACLs in operation.

Configuring ACL-based Forwarding
Converged networks carry voice, video and data. Users may need to route certain traffic through specific
paths instead of using the paths computed by routing protocols. This is achieved by specifying the next-hop
address in ACL configurations, so that the configured next-hop address from ACL is used for fowarding
packet towards its destination instead of routing packet-based destination address lookup. This feature of
using next-hop in ACL configurations for forwarding is called ACL Based Forwarding (ABF).

Implementing Access Lists and Prefix Lists
8

Implementing Access Lists and Prefix Lists
Modifying ACLs



ACL-based forwarding enables you to choose service from multiple providers for broadcast TV over IP, IP
telephony, data, and so on, which provides a cafeteria-like access to the Internet. Service providers can divert
user traffic to various content providers.

Feature Highlights

• ABF is only supported on ingress ACL.

• ABF supports nexthop modifications. You can modify a nexthop, remove a nexthop, or make changes
between existing nexthops.

• VRF-aware ABF is supported for IPv4 and IPv6 with up to three next hops.

• IPv4 ABF nexthops routed over GRE interfaces are supported.

• As ABF is ACL-based, packets that do not match an existing rule (ACE) in the ACL are subject to the
default ACL rule (drop all). If the ACL is being used for ABF-redirect only (not for security), then include
an explicit ACE rule at the end of the ACL (lowest user priority) to match and "permit" all traffic. This
ensures that all traffic that does not match an ABF rule is permitted and forwarded as normal.

• ABF is supported on permit rules only.

• VRF-select (where only the VRF is configured for the nexthop) is not supported.

• ABF with object-tracking is not supported.

• ABF default route is not supported.

• Packets punted in the ingress direction from the NPU to the linecard CPU are not subjected to ABF
treatment due to lack of ABF support in the slow path. These packets will be forwarded normally based
on destination-address lookup by the software dataplane. Some examples of these types of packets are
(but are not limited to) packets with IPv4 options, IPv6 extension headers, and packets destined for glean
(unresolved/incomplete) adjacencies.

• Packets destined to the local IP interface ("for-us" packets) are subjected to redirect if they match the
rule containing the ABF action. This can be avoided by either designing the rule to be specific enough
to avoid matching the “for-us” packets or placing an explicit permit ACE rule (with higher priority) into
the ACL before the matching ABF rule.

Configuration Example

To configure ACL-based forwarding, use the following configuration example:
/* Enter IPv4 access list configuration mode and configure an ACL: */
Router# configure
Router(config)# ipv4 access-list abf-acl

/* Set the conditions for the ACL and configure ABF: */
/* The next hop for this entry is specified. */
Router(config-ipv4-acl)# 10 permit ipv4 192.168.18.0 0.255.255.255 any nexthop1 ipv4
192.168.20.2
Router(config-ipv4-acl)# 15 permit ipv4 192.168.21.0 0.0.0.255 any
Router(config-ipv4-acl)# 20 permit ipv4 192.168.22.0 0.0.255.255 any nexthop1 ipv4
192.168.23.2
/* More than two nexthops */
Router(config-ipv4-acl)# 25 permit tcp any range 2000 3000 any range 4000 5000 nexthop1
ipv4 192.168.23.1 nexthop2 ipv4 192.168.24.1 nexthop3 ipv4 192.168.25.1

/* VRF support on ABF */

Implementing Access Lists and Prefix Lists
9

Implementing Access Lists and Prefix Lists
Configuring ACL-based Forwarding



Router(config-ipv4-acl)# 30 permit tcp any eq www host 192.168.12.2 precedence immediate
nexthop1 vrf vrf1_ipv4 ipv4 192.168.13.2 nexthop2 vrf vrf1_ipv4 ipv4 192.168.14.2

Router(config-ipv4-acl)# 35 permit ipv4 any any

Router(config-ipv4-acl)# commit

/* (Optional) Display ACL information: */
Router# show access-lists ipv4 abf-acl

Running Configuration

ipv4 access-list abf-acl
10 permit ipv4 192.168.18.0 0.255.255.255 any nexthop1 192.168.20.2
15 permit ipv4 192.168.21.0 0.0.0.255 any
20 permit ipv4 192.168.22.0 0.0.255.255 any nexthop1 192.168.23.2
25 permit tcp any range 2000 3000 any range 4000 5000 nexthop1 ipv4 192.168.23.1 nexthop2
ipv4 192.168.24.1 nexthop3 ipv4 192.168.25.1
30 permit tcp any eq www host 192.168.12.2 precedence immediate nexthop1 vrf vrf1_ipv4 ipv4
192.168.13.2 nexthop2 vrf vrf1_ipv4 ipv4 192.168.14.2
35 permit ipv4 any any
commit
!

ipv4 access-list TEST
10 permit ipv4 60.1.1.5 0.0.0.255 any nexthop1 vrf VRF1 nexthop2 vrf VRF2 nexthop3 vrf
VRF3
!

Verification

Use the following command to verify the IP nexthop state in ABF to ensure that the expected nexthop is up:

router# show access-lists ipv4 abf nexthops client pfilter_ea location 0/3/CPU0
Tue May 17 22:25:05.940 UTC

ACL name : abf-acl
ACE seq. NH-1 NH-2 NH-3
--------- --------------------- --------------------- ---------------------

20 Global 192.168.23.2 Not present Not present
status UP Not present Not present
exist No Not present Not present
pd ctx Present Not present Not present

Track not present Track not present --
25 Global 192.168.23.1 Global 192.168.24.1 Global 192.168.25.1

status UP UP UP
exist Yes Yes Yes
pd ctx Present Present Present

Track not present Track not present Track not present

Use the following command to verify if ABF is currently attached to any interfaces at any linecard:
show access-lists usage pfilter location all

Implementing Access Lists and Prefix Lists
10

Implementing Access Lists and Prefix Lists
Configuring ACL-based Forwarding



ACLs on Bridge Virtual Interfaces
Bridge Virtual Interfaces (BVIs) provide a bridge between the routing and bridging domains on a router. A
BVI is configured with an IP address and operates as a regular routed interface. You can configure an ACL
on a BVI to filter the traffic for the network that uses the interface.

Do not delete an ACL attached to a BVI interface when the BVI interface is not part of a bridge domain. Later,
if you add the BVI interface to the bridge domain then the traffic is dropped.

Note

Increased TCAM Consumption with Configuring ACLs on BVIs

The consumption of TCAM resources is impacted in the following manner when ACLs are configured on
BVIs.

• When an ACL is attached to a BVI interface, TCAM entries are programmed on all line cards regardless
of physical interface membership. This leads to greater consumption of TCAM resources even on line
cards that do not have BVI member interfaces.

• When an ACL is attached to a BVI interface, TCAM entries are programmed on all NPUs in a line card,
regardless of physical interfacemembership. This leads to greater consumption of TCAM resources even
on NPUs that do not have BVI member interfaces.

• For ingress ACLs, the TCAM entries for the same ACL are shared across interfaces on the same NPU.

• For egress ACLs, the TCAM entries for the same ACL are unique for all interfaces. This leads to greater
consumption of TCAM resources.

Restrictions for Configuring ACLs on BVIs

You must be aware of the following restrictions before proceeding to configure ACLs on BVIs.

• When an egress ACL is enabled on a BVI through the hw-module command, no other interface types
are supported for the ACL (non-BVI interfaces are not supported for the ACL in this mode).

Prerequisites for Configuring Egress ACLs on BVIs

By default, an egress ACL on a BVI is disabled, and ACL filtering does not take place even when the ACL
is attached to the BVI. Hence, we use the hw-module command, which enables the ACL when the line cards
are reloaded.

IPv4 and IPv6 ingress ACLs do not require this configuration.Note

Use the following configuration to enable an IPv4 egress ACL on a BVI on the hardware and reload the line
cards.
/* Enable an IPv4 egress ACL on BVI */
Router(config)# hw-module profile acl egress layer3 interface-based
/* Enable permit statistics for the egress ACL (by default, only deny statistics are shown)*/
Router(config)# hw-module profile stats acl-permit

Implementing Access Lists and Prefix Lists
11

Implementing Access Lists and Prefix Lists
ACLs on Bridge Virtual Interfaces



Router(config)# commit
Router(config)# end
Router# reload location all
Wed Apr 5 23:05:46.193 UTC
Proceed with reload? [confirm]

Configuration

The following section describes the procedure for configuring IPv4 ingress and egress ACLs on BVIs.

To configure IPv4 ingress and egress ACLs on a BVI, use the following procedure with sample configuration.

1. Enter the Global Configuration mode, and configure an IPv4 ingress ACL.
Router(config)# ipv4 access-list v4-acl-ingress
Router(config-ipv4-acl)# 10 permit tcp any 10.1.1.0/24 dscp cs6
Router(config-ipv4-acl)# 20 deny udp any any eq ssh
Router(config-ipv4-acl)# 30 permit ipv4 any any
Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# exit

2. Configure an IPv4 egress ACL.
Router(config)# ipv4 access-list v4-acl-egress
Router(config-ipv4-acl)# 10 deny ipv4 any any fragments log
Router(config-ipv4-acl)# 20 deny tcp any any ack
Router(config-ipv4-acl)# 30 permit ipv4 any any
Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# exit

3. Configure the Gigabit Ethernet interface that must be mapped to the BVI, and enable it for Layer 2
transport.
Router(config)# interface GigabitEthernet 0/0/0/0
Router(config-if)# l2transport
Router(config-if-l2)# commit

4. Attach the ingress and egress ACLs to the BVI.
Router(config)# interface BVI1
Router(config-if)# ipv4 access-group v4-acl-ingress ingress
Router(config-if)# ipv4 access-group v4-acl-egress egress
Router(config-if)# commit
Router(config-if)# exit

5. Configure the bridge domain with the Gigabit Ethernet interface and BVI.
Router(config)# l2vpn
Router(config-l2vpn)# bridge group BG1
Router(config-l2vpn-bg)# bridge-domain B1
Router(config-l2vpn-bg-bd)# interface GigabitEthernet 0/0/0/0
Router(config-l2vpn-bg-bd-ac)# routed interface BVI1
Router(config-l2vpn-bg-bd)# commit
Router(config-l2vpn-bg-bd)# exit
Router(config-l2vpn-bg)# exit
Router(config-l2vpn)# exit

6. Confirm that your configuration has been successfully committed.

Implementing Access Lists and Prefix Lists
12

Implementing Access Lists and Prefix Lists
ACLs on Bridge Virtual Interfaces



Router(config)# show run
...
!
ipv4 access-list v4-acl-egress
10 deny ipv4 any any fragments log
20 deny tcp any any ack
30 permit ipv4 any any
!
ipv4 access-list v4-acl-ingress
10 permit tcp any 10.1.1.0/24 dscp cs6
20 deny udp any any eq ssh
30 permit ipv4 any any
!
interface GigabitEthernet0/0/0/0
l2transport
!
!
interface BVI1
ipv4 address 209.165.200.224/27
ipv4 access-group v4-acl-ingress ingress
ipv4 access-group v4-acl-egress egress

!
l2vpn
bridge group BG1
bridge-domain B1
interface GigabitEthernet0/0/0/0
!
routed interface BVI1
!
!
!
end

7. Exit to the Executive Privileged mode and confirm that the ACLs are in operation.
Router# show access-lists interface bvi1
Tue May 9 10:01:25.732 EDT
Input ACL (common): GigabitEthernet 0/0/0/0 (interface): v4-acl-ingress
Output ACL: v4-acl-egress

Router# show access-lists summary
Tue May 9 10:02:01.167 EDT
ACL Summary:
Total ACLs configured: 2
Total ACEs configured: 6

Router# show access-lists ipv4 v4-acl-egress hardware egress location 0/0/CPU0
ipv4 access-list v4-acl-egress
10 deny ipv4 any any fragments log (15214 matches)
20 deny tcp any any ack (15214 matches)
30 permit ipv4 any any (15214 matches)

The output clearly shows the configured ACLs, the total number of ACEs (three per ACL), and also the
ACE matches in hardware.

You have successfully configured and enabled IPv4 ingress and egress ACL on a BVI.

Implementing Access Lists and Prefix Lists
13

Implementing Access Lists and Prefix Lists
ACLs on Bridge Virtual Interfaces



Configuring ACLs with Fragment Control
The non-fragmented packets and the initial fragments of a packet were processed by IP extended access lists
(if you apply this access list), but non-initial fragments were permitted, by default. However, now, the IP
Extended Access Lists with Fragment Control feature allows more granularity of control over non-initial
fragments of a packet. Using this feature, you can specify whether the system examines non-initial IP fragments
of packets when applying an IP extended access list.

As non-initial fragments contain only Layer 3 information, these access-list entries containing only Layer 3
information, can now be applied to non-initial fragments also. The fragment has all the information the system
requires to filter, so the access-list entry is applied to the fragments of a packet.

This feature adds the optional fragments keyword for IPv4 ACLs to the following IP access list commands:
deny and permit . By specifying the fragments keyword in an access-list entry, that particular access-list
entry applies only to non-initial fragments of packets; the fragment is either permitted or denied accordingly.

The behavior of access-list entries regarding the presence or absence of the fragments keyword can be
summarized as follows:

Then...If the Access-List Entry has...

For an access-list entry containing only Layer 3 information:

• The entry is applied to non-fragmented packets, initial fragments, and
non-initial fragments.

For an access-list entry containing Layer 3 and Layer 4 information:

• The entry is applied to non-fragmented packets and initial fragments.

• If the entry matches and is a permit statement, the packet or
fragment is permitted.

• If the entry matches and is a deny statement, the packet or fragment
is denied.

• The entry is also applied to non-initial fragments in the following
manner. Because non-initial fragments contain only Layer 3 information,
only the Layer 3 portion of an access-list entry can be applied. If the
Layer 3 portion of the access-list entry matches, and

• If the entry is a permit statement, the non-initial fragment is
permitted.

• If the entry is a deny statement, the next access-list entry is
processed.

The deny statements are handled differently for non-initial
fragments versus non-fragmented or initial fragments.

Note

...no fragments keyword and
all of the access-list entry
information matches

The access-list entry is applied only to non-initial fragments.

The fragments keyword cannot be configured for an access-list
entry that contains any Layer 4 information.

Note

...the fragments keyword
and all of the access-list entry
information matches

Implementing Access Lists and Prefix Lists
14

Implementing Access Lists and Prefix Lists
Configuring ACLs with Fragment Control



You should not add the fragments keyword to every access-list entry, because the first fragment of the IP
packet is considered a non-fragment and is treated independently of the subsequent fragments. Because an
initial fragment will not match an access list permit or deny entry that contains the fragments keyword, the
packet is compared to the next access list entry until it is either permitted or denied by an access list entry that
does not contain the fragments keyword. Therefore, you may need two access list entries for every deny
entry. The first deny entry of the pair will not include the fragments keyword, and applies to the initial
fragment. The second deny entry of the pair will include the fragments keyword and applies to the subsequent
fragments. In the cases where there are multiple deny access list entries for the same host but with different
Layer 4 ports, a single deny access-list entry with the fragments keyword for that host is all that has to be
added. Thus all the fragments of a packet are handled in the same manner by the access list.

Packet fragments of IP datagrams are considered individual packets and each fragment counts individually
as a packet in access-list accounting and access-list violation counts.

The fragments keyword cannot solve all cases involving access lists and IP fragments.Note

Within the scope of ACL processing, Layer 3 information refers to fields located within the IPv4 header; for
example, source, destination, protocol. Layer 4 information refers to other data contained beyond the IPv4
header; for example, source and destination ports for TCP or UDP, flags for TCP, type and code for ICMP.

Note

Configuration

You can use the following configuration to configure the fragments keyword for an IPv4 access list:
/* Configure an Access List */
Router# configure
Router(config)# ipv4 access-list IPv4_Fragments

/* Configure the fragments keyword for the IPv4 access list */
Router(config-ipv4-acl)# 10 permit ipv4 any any fragments
Router(config-ipv4-acl)# commit

Associated Commands

• deny (IPv4)

• deny (IPv6)

• permit (IPv4)

• permit (IPv6)

Associated Topics

• Configuring an IPv4 ACL to Match on Fragment Type

• Matching by Fragment Offset in ACLs

Implementing Access Lists and Prefix Lists
15

Implementing Access Lists and Prefix Lists
Configuring ACLs with Fragment Control

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_7C68561395FF4CE1902EF920B47FA254
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_DEE250595C324263B3BFDC8B33F64A3F
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_5E93A92A66464980A8003E01604A943B
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_6F765344E3334EDBAB44DA39B395898E
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/72x/b-ip-addresses-cg-ncs5500-72x/m-implementing-access-lists-prefix-lists-ncs5500.html#id_60775
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/72x/b-ip-addresses-cg-ncs5500-72x/m-implementing-access-lists-prefix-lists-ncs5500.html#concept_B3187EF9E9AB4A47B26FAAF69CCC2832


Matching by Fragment Offset in ACLs
You can configure an access control list (ACL) rule to filter packets by the fragment-offset value. Depending
on whether a packet matches the criteria in a permit or deny statement, the packet is either processed or dropped
respectively at the interface. Fragment-offset filtering is supported only on ingress direction with compression
mode of an ACL.

For more information about this feature, see the Implementing Access Lists and Prefix Lists chapter in the IP
Addresses and Services Configuration Guide for Cisco NCS 5500 Series Routers.For complete command
reference, see the Access List Commands chapter in IP Addresses and Services Command Reference for Cisco
NCS 5500 Series and NCS 540 and NCS 560 Series Routers

Associated Commands

• fragment-offset

Configuring ACL Matching by Fragment Offset
To configure fragment-offset match in ACL, use the fragment-offset option in permit or deny command in
IPv4 or IPv6 access-list configuration mode.

For fragment-offset filtering, you must attach the particular ACL to an interface with compression level 3.
Else, the configuration is rejected.

Note

Configuration

This example shows how to specify an ACL rule based on the fragment-offset per IPv4 header. Here, the
packet is permitted only if the fragment-offset in the IPv4 header of the packet is within the range of 300-400.
The value 300-400 is based on the 8-byte unit, which is same as fragment-offset of 2400-3200 bytes.

/* Configure ACL */
Router# configure
Router(config)# ipv4 access-list fragment-offset-acl
Router(config-ipv4-acl)# 10 permit ipv4 any any fragment-offset range 300 400
Router# commit

/* Attach the ACL to the interface */
Router# configure
Router(config)# interface Bundle-Ether70
Router(config-if)# ipv4 access-group fragment-offset-acl ingress compress level 3
Router# commit

Running Configuration

ipv4 access-list fragment-offset-acl
10 permit ipv4 any any fragment-offset range 300 400
!

interface Bundle-Ether70
ipv4 address 192.0.2.1 255.255.255.0
ipv6 address 2001:DB8::1:1::1/48

Implementing Access Lists and Prefix Lists
16

Implementing Access Lists and Prefix Lists
Matching by Fragment Offset in ACLs

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_8CABF3C8DAE74839A4C914AE4AC41FBA


ipv4 access-group fragment-offset-acl ingress compress level 3
!

Verify Fragment-offset Match in ACL

Router# show access-lists ipv4 fragment-offset-acl usage pfilter loc 0/4/CPU0

Wed Apr 12 19:49:54.457 UTC
Interface : Bundle-Ether70

Input ACL : Common-ACL : N/A ACL : fragment-offset-acl (comp-lvl 3)
Output ACL : N/A

Router# show access-lists ipv4 fragment-offset-acl hardware ing int Bundle-Ether70 loc
0/4/CPU0

Wed Apr 12 19:51:07.837 UTC
ipv4 access-list fragment-offset-acl
10 permit ipv4 any any fragment-offset range 300 400

Associated Commands

• ipv4 access-list

• ipv6 access-list

• deny (IPv4)

• deny (IPv6)

• fragment-offset

• permit (IPv4)

• permit (IPv6)

Configuring ACL Filtering by IP Packet Length
You can configure an access control list to filter packets by the packet length at an ingress interface. Depending
on whether a packet matches the packet-length condition in a permit or deny statement, the packet is either
processed or dropped respectively at the interface.

To configure packet length filtering in ACL, use the packet-length option in permit or deny command in
IPv4 or IPv6 access-list configuration mode.

Restrictions

Packet length filtering feature in ACL is subjected to these restrictions:

• Packet length filtering is supported only on ingress direction, for both traditional (non-compression) and
hybrid (compression) ACLs.

Implementing Access Lists and Prefix Lists
17

Implementing Access Lists and Prefix Lists
Configuring ACL Filtering by IP Packet Length



• IPv6 packet length filtering is supported only for hybrid ACLs; not for traditional ACLs.

• Only quantized (value divisible by 16) packet length filtering is supported for traditional ACLs on IPv4.

• Packet length filtering is not supported in the default TCAM key, but instead requires a User-Defined
TCAM Key (UDK) that can be specified using the hw-module profile tcam format command as
described in the configuration section.

Associated Commands

• deny (IPv4)

• deny (IPv6)

• packet-length

• permit (IPv4)

• permit (IPv6)

Configuring Simple IPv4 ACLs to Filter by Packet Length
To configure a simple ACL to filter by packet length in IPv4 networks, use the following steps.

1. Enable packet length filtering in the global configuration mode by using the hw-module command.

Router# config
Router(/config)# hw-module profile tcam format access-list ipv4 dst-addr dst-port proto
packet-length frag-bit port-range

2. Enter the global configuration mode and configure a simple IPv4 access list to filter packets by the packet
length value.

In this particular example, we configure a set of statements to process only those packets that match the
specified packet length condition. All other packets are dropped when this ACL is applied to an ingress
interface.

Router# config
Router(config)# ipv4 access-list pktlen-v4
Router(config-ipv4-acl)# 10 permit tcp any any packet-length eq 1664
Router(config-ipv4-acl)# 20 permit udp any any packet-length range 1600 2000
Router(config-ipv4-acl)# 30 deny ipv4 any any

3. Commit the ACL and exit the IPv4 ACL configuration mode.

Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# end

4. Apply the ACL to the required Gigabit Ethernet interface.

Router(config)# interface TenGigE0/5/0/3
Router(config-if)# ipv4 access-group pktlen-v4 ingress

5. Commit the configuration and exit the interface configuration mode.

Implementing Access Lists and Prefix Lists
18

Implementing Access Lists and Prefix Lists
Configuring Simple IPv4 ACLs to Filter by Packet Length

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_7C68561395FF4CE1902EF920B47FA254
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_DEE250595C324263B3BFDC8B33F64A3F
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#id_46177
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_5E93A92A66464980A8003E01604A943B
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ip-addresses-cr-ncs5500/access-list-commands.html#reference_6F765344E3334EDBAB44DA39B395898E


Router(config-if)# commit
Router(config-if)# end

6. Verify your configuration.
Router# show access-lists pktlen-v4

ipv4 access-list pktlen-v4
10 permit tcp any any packet-length eq 1664
20 permit udp any any packet-length range 1600 2000
30 deny ipv4 any any

7. Verify the ACL matches in hardware.
Router# show access-lists pktlen-v4 hardware ingress location 0/5/CPU0
ipv4 access-list pktlen-v4
10 permit tcp any any packet-length eq 1664
20 permit udp any any packet-length range 1600 2000 (1286 hw matches)
30 deny ipv4 any any

You have successfully configured a simple IPv4 ACL to filter by packet length.

Configuring Scaled IPv4 ACLs to Filter by Packet Length
To configure a scaled ACL to filter by packet length in IPv4 networks, use the following steps.

1. Enable packet length filtering in the global configuration mode by using the hw-module command.

Router# config
Router(/config)# hw-module profile tcam format access-list ipv4 dst-addr dst-port proto
packet-length frag-bit port-range

2. Enter the global configuration mode and create an object group for configuring a scaled ACL.

Router(config)# object-group network ipv4 netobject1
Router(config-object-group-ipv4)# 50.0.0.0/24
Router(config-object-group-ipv4)# commit

3. From the global configuration mode, configure an IPv4 access list to filter packets by the packet length
value.

In this particular example, we configure a statement to process only those packets that match the specified
packet length condition. All other packets are dropped when this ACL is applied to an ingress interface.

Router# configure
Router(config)# ipv4 access-list scaled_acl1
Router(config-ipv4-acl)# 10 permit ipv4 net-group netobject1 any packet-length eq 1000

4. Commit the ACL and exit the IPv4 ACL configuration mode.
Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# end

5. Apply the ACL to the required Gigabit Ethernet interface.

Implementing Access Lists and Prefix Lists
19

Implementing Access Lists and Prefix Lists
Configuring Scaled IPv4 ACLs to Filter by Packet Length



Router(config)# interface TenGigE0/5/0/3
Router(config-if)#ipv4 access-group scaled_acl1 ingress compress level 3

6. Commit the configuration and exit the interface configuration mode.
Router(config-if)# commit
Router(config-if)# end

7. Verify your configuration.

Router# show access-lists scaled_acl1
ipv4 access-list scaled_acl1
10 permit ipv4 net-group netobject1 any packet-length eq 1000

8. Verify the ACL matches in hardware.
Router# show access-lists scaled_acl1 hardware ingress location 0/5/CPU0
ipv4 access-list scaled_acl1
10 permit ipv4 net-group netobject1 any packet-length eq 1000 (1500 hw matches)

You have successfully configured a scaled IPv4 ACL to filter by packet length.

Configuring Scaled IPv6 ACLs to Filter by Packet Length
To configure a scaled ACL to filter by packet length in IPv6 networks, use the following steps.

1. Enable packet length filtering in the global configuration mode by using the hw-module command.

Router# config
Router(/config)# hw-module profile tcam format access-list ipv4 dst-addr dst-port proto
packet-length frag-bit port-range

2. Enter the global configuration mode and create an object group for configuring a scaled ACL.

Router(config)# object-group network ipv6 netobject2
Router(config-object-group-ipv6)# 2001::0/128
Router(config-object-group-ipv6)# commit

3. From the global configuration mode, configure a scaled IPv6 access list to filter packets by the packet
length value.

In this particular example, we configure a statement to process only those packets that match the specified
packet length condition. All other packets are dropped when this ACL is applied to an ingress interface.

Router(config)# ipv6 access-list scaled_acl2
Router(config-ipv6-acl)# 10 permit ipv6 net-group netobject2 any packet-length eq 1000
Router(config-ipv6-acl)# commit

4. Commit the ACL and exit the IPv6 ACL configuration mode.
Router(config-ipv6-acl)# commit
Router(config-ipv6-acl)# end

5. Apply the ACL to the required Gigabit Ethernet interface.
Router# config
Router(config)# interface TenGigE0/5/0/3
Router(config-if)# ipv6 access-group scaled_acl2 ingress compress level 3

Implementing Access Lists and Prefix Lists
20

Implementing Access Lists and Prefix Lists
Configuring Scaled IPv6 ACLs to Filter by Packet Length



6. Commit the configuration and exit the interface configuration mode.
Router(config-if)# commit
Router(config-if)# end

7. Verify your configuration.
Router# show access-lists ipv6 scaled_acl2
ipv6 access-list scaled_acl2
10 permit ipv6 net-group netobject2 any packet-length eq 1000

8. Verify the ACL matches in hardware.
Router# show access-lists ipv6 scaled_acl2 hardware ingress location 0/5/CPU0
ipv6 access-list scaled_acl2
10 permit ipv6 net-group netobject2 any packet-length eq 1000 (2000 hw matches)

You have successfully configured a scaled IPv6 ACL to filter by packet length.

Understanding Object-Group ACLs
You can use object-groupACLs to classify users, devices, or protocols into groups so you can have a group-level
access control policy. Instead of specifying individual IP addresses, protocols, and port numbers in multiple
ACEs, you can specify just the object group in a single ACL.

This feature is very beneficial in large scale networks which currently contain hundreds of ACLs. By using
the object-group ACL feature, the number of ACEs per ACL are significantly reduced. Object-group ACLs
are also more readable, and easier to manage than conventional ACLs. Using object-group ACLs instead of
conventional ACLs optimizes the storage needed in TCAM.

Types of Object-Group ACLs

You can create two types of object-group ACLs on Cisco IOS XR:

• Network object-group ACLs: Consist of groups of host IP Addresses and network IP addresses.

• Port object-group ACLs: Consist of groups of ports and supporting Layer 3/Layer 4 protocols.

Compressing ACLs

Object-group ACLs use compression to accommodate the large number of ACEs. Compression is achieved
by compressing the following three fields of an ACE:

• Source IP prefix

• Destination IP prefix

• Source port number

There are only two compression levels in the access-group configuration for an ACL on an ingress interface:

• Compress level 0: No compression is done on the ACE fields.

In this mode, the object-group ACL behaves like a traditional ACL. Internal TCAM resources are utilized
and there will be a huge impact on system resources and time taken for processing the ACL.

• Compress level 3: All three fields (source IP, destination IP, and source port) in an ACE are compressed.

Implementing Access Lists and Prefix Lists
21

Implementing Access Lists and Prefix Lists
Understanding Object-Group ACLs



In this mode, external TCAM is used for prefix lookup, and internal TCAM is used for ACE lookup.
This mode supports 16-bit based packet length filtering and fragment offset filtering.

Configuring an Object-Group ACL

Before You Begin

You must be aware of the following information that apply to object-group ACLs:

• You can configure ACLs that contain both conventional and object-group ACEs.

• You can modify the objects in an object group dynamically without redefining the object group or the
ACE that references the object group.

• You can configure an object-group ACL multiple times with a source group, or a destination group, or
both source and destination groups.

Restrictions

Configuring object-group ACLs involves the following restrictions:

• Object-group ACLs can only be configured to an interface. They cannot be used or referenced by
applications like SSH, SNMP, NTP.

• To delete an object-group, you must first delete it from all ACLs.

• You cannot configure object-group ACLs along with QoS policies.

• Object-group ACLs are not supported in any policy based configuration.

• Object-group is not supported in common ACLs.

• Nested object-groups are not supported from Release 6.2.1.

• Any inline ACE update to an object group ACL clears complete stats of the ACL.

Configuring a Network Object-Group ACL
A network object group can contain a single or multiple network objects.

Configuration

Use the following set of configuration statements to configure a network object-group ACL for an IPv4
address.

/* From the global configuration mode, create a network object group. */
Router(config)# object-group network ipv4 netobj1
Router(config-object-group-ipv4)# description my-network-object
Router(config-object-group-ipv4)# host 10.1.1.1
Router(config-object-group-ipv4)# 10.2.1.0 255.255.255.0
Router(config-object-group-ipv4)# range 10.3.1.10 10.3.1.50

/* Create an access list referencing the object group. */
Router(config)# ipv4 access-list network-object-acl permit ipv4 net-group netobj1 any

Implementing Access Lists and Prefix Lists
22

Implementing Access Lists and Prefix Lists
Configuring an Object-Group ACL



/* Apply the access list containing the object group to the desired interface and commit
your configuration. */
Router(config)# interface TenGigE0/0/0/10/3
Router(config-if)# ipv4 address 1.1.1.1/24
Router(config-if)# no shut
Router(config-if)# ipv4 access-group network-object-acl ingress compress level 3
Router(config-if)# commit
Tue Mar 28 10:23:34.106 IST

RP/0/RP0/CPU0:Mar 28 10:37:48.570 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : interface
TenGigE0/0/0/10/3, changed state to Down
RP/0/RP0/CPU0:Mar 28 10:37:48.608 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : interface
TenGigE0/0/0/10/3, changed state to Up

Router(config-if)# exit

Use the following set of configuration statements to configure a network object-group ACL for an IPv6
address.

/* From the global configuration mode, create a network object group. */
Router(config)# object-group network ipv6 netobj1
Router(config-object-group-ipv6)# description my-network-object
Router(config-object-group-ipv6)# host 2001:DB8:1::1
Router(config-object-group-ipv6)# 2001:DB8::1 2001:DB8:0:ABCD::1
Router(config-object-group-ipv6)# range 2001:DB8::2 2001:DB8::5

/* Create an access list referencing the object group. */
Router(config)# ipv6 access-list network-object-acl permit ipv6 net-group netobj1 any

/* Apply the access list containing the object group to the desired interface and commit
your configuration. */
Router(config)# interface TenGigE0/0/0/10/3
Router(config-if)# ipv6 address 2001:DB8::1/32
Router(config-if)# no shut
Router(config-if)# ipv6 access-group network-object-acl ingress compress level 3
Router(config-if)# commit
Tue Mar 28 10:23:34.106 IST

RP/0/RP0/CPU0:Mar 28 10:37:48.570 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : interface
TenGigE0/0/0/10/3, changed state to Down
RP/0/RP0/CPU0:Mar 28 10:37:48.608 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : interface
TenGigE0/0/0/10/3, changed state to Up

Router(config-if)# exit

Running Configuration

Confirm your configuration.
Router(config)# show run
Tue Mar 28 10:37:55.737 IST

Building configuration...
!! IOS XR Configuration 0.0.0
...

!
object-group network ipv4 netobj1
10.2.1.0/24
host 10.1.1.1

Implementing Access Lists and Prefix Lists
23

Implementing Access Lists and Prefix Lists
Configuring a Network Object-Group ACL



range 10.3.1.10 10.3.1.50
description my-network-object
!
!
ipv4 access-list network-object-acl
10 permit ipv4 net-group netobj1 any
!
interface TenGigE0/0/0/10/3
ipv4 address 1.1.1.1 255.255.255.0
ipv4 access-group network-object-acl ingress compress level 3
!

You have successfully configured a network object-group ACL.

Configuring a Port Object-Group ACL
A port object group can contain a single or multiple port objects.

Configuration

Use the following set of configuration statements to configure a port object-group ACL.

/* From the global configuration mode, create a port object group, and commit your
configuration. */
RP/0/RP0/CPU0:router(config)# object-group port portobj1
RP/0/RP0/CPU0:router(config-object-group-ipv4)# description my-port-object
RP/0/RP0/CPU0:router(config-object-group-ipv4)# eq bgp
RP/0/RP0/CPU0:router(config-object-group-ipv4)# range 100 200
RP/0/RP0/CPU0:router(config-object-group-ipv4)# commit
RP/0/RP0/CPU0:router(config-object-group-ipv4)# exit

/* Create an access list referencing the object group. */
RP/0/RP0/CPU0:router(config)# ipv4 access-list port-object-acl permit ipv4 net-group portobj1

/* Apply the access list containing the object group to the desired interface and commit
your configuration. */
RP/0/RP0/CPU0:router(config)# interface TenGigE0/0/0/10/3
RP/0/RP0/CPU0:router(config-if)# ipv4 address 2.2.2.2/24
RP/0/RP0/CPU0:router(config-if)# ipv4 access-group port-obj-acl ingress compress level 3
RP/0/RP0/CPU0:router(config-if)# no shut
RP/0/RP0/CPU0:router(config-if)# commit
Tue Mar 28 10:23:34.106 IST

RP/0/RP0/CPU0:Mar 28 10:37:48.570 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : interface
TenGigE0/0/0/10/3, changed state to Down
RP/0/RP0/CPU0:Mar 28 10:37:48.608 : ifmgr[397]: %PKT_INFRA-LINK-3-UPDOWN : interface
TenGigE0/0/0/10/3, changed state to Up

RP/0/RP0/CPU0:router(config-if)# exit

Running Configuration

Confirm your configuration.
RP/0/RP0/CPU0:router(config)# show run
Tue Mar 28 10:37:55.737 IST

Building configuration...

Implementing Access Lists and Prefix Lists
24

Implementing Access Lists and Prefix Lists
Configuring a Port Object-Group ACL



!! IOS XR Configuration 0.0.0
...
object-group port portobj1
eq bgp
range 100 200
!

ipv4 access-list port-object-acl
10 permit tcp net-group portobj1
!
interface TenGigE0/0/0/10/3
ipv4 access-group port-obj-acl ingress compress level 3
!
end
!

You have successfully configured a port object-group ACL.

Verifying Object-Group ACL Compression
You can use the commands described in this section to verify the configured object-group ACLs in operation
and the compression of the ACEs in the ACL.

The outputs provided in this section are a standalone sample and are not related to the configurations provided
in the preceding sections.

Note

Verification

Use the following set of verification commands to verify object-group ACL compression.
/* Verify the entries of the ACL in operation. */

Router# show access-lists ipv4 network-object-acl hardware ingress location 0/0/CPU0
ipv4 access-list network-object-acl
40 permit ospf net-group n_192.168.0.0_16 any (20898463272 matches)
70 permit tcp any net-group CORP_ALL_V4 established
100 permit udp net-group INTERNAL port-group KERBEROS_UDP net-group CORP_ALL_V4
130 permit udp net-group INTERNAL port-group DNS_UDP net-group CORP_ALL_V4
160 permit udp net-group INTERNAL port-group NTP net-group CORP_ALL_V4
190 permit udp net-group INTERNAL port-group LDAP_UDP net-group CORP_ALL_V4
...
1500 permit udp net-group VLAN60_SECURITY net-group h_192.168.77.242 port-group
UDP_50000-50100
1530 deny ipv4 net-group VLAN60_SECURITY any log (20891956640 matches)
...

/* Verify the ACE compression in the ACL. */
Router# show access-lists ipv4 network-object-acl hardware ingress verify location 0/0/CPU0
Verifying TCAM entries for network-object-acl
Please wait...

INTF NPU lookup ACL # intf Total compression Total result failed(Entry) TCAM
entries

type ID shared ACES prefix-type Entries ACE SEQ # verified

Implementing Access Lists and Prefix Lists
25

Implementing Access Lists and Prefix Lists
Verifying Object-Group ACL Compression



---------- --- ------- --- ------ ------ ----------- ------- ------ ------------- ------------

TenGigE0_0_0_10_3 (ifhandle: 0x1c8)

1 IPV4 2 1 247 COMPRESSED 810 passed
810

SRC IP 2746 passed
2746

DEST IP 3413 passed
3413

SRC PORT 340 passed
340

You have successfully verified the compression of ACEs within an ACL.

The command show access-lists access-list-name hardware ingress detail location location

displays compressed output for source and destination IP addresses when the detail keyword is used while
attaching ACLs to interfaces.

Note

Configuring Extended Access Lists
Configuration Example

Creates an IPv4 named access list "acl_1". This access list permits ICMP protocol packets with any source
and destination IPv4 address and denies TCP protocol packets with any source and destination IPv4 address
and port greater than 5000.
Router#configure
Router(config)#ipv4 access-list acl_1

Router(config-ipv4-acl)#20 permit icmp any any
Router(config-ipv4-acl)#30 deny tcp any any gt 5000
Router(config-ipv4-acl)#commit

Running Configuration

Router# show running-config ipv4 access-list acl_1
ipv4 access-list acl_1
20 permit icmp any any
30 deny tcp any any gt 5000
!

Verification

Verify that the permit and deny settings are according to the set configuration.
Router# show access-lists acl_1
ipv4 access-list acl_1
20 permit icmp any any
30 deny tcp any any gt 5000
Router#

Implementing Access Lists and Prefix Lists
26

Implementing Access Lists and Prefix Lists
Configuring Extended Access Lists



Associated Commands

• ipv4 access-list

• ipv6 access-list

• permit (IPv4)

• permit (IPv6)

• remark (IPv4)

• remark (IPv6)

• deny (IPv4)

• deny (IPv6)

What to Do Next

After creating an access list, you must apply it to a line or an interface. ACL commit fails while adding and
removing unique Access List Entries (ACE). This happens due to the absence of an assignedmanager process.
The user has to exit the ACL configuration mode and re-enter it before adding the first ACE.

Understanding IP Access List Logging Messages
Cisco IOS XR software can provide logging messages about packets permitted or denied by a standard IP
access list. That is, any packet that matches the access list causes an informational logging message about the
packet to be sent to the console. The level of messages logged to the console is controlled by the logging
console command in global configuration mode.

ACL logging is not supported for ingress MPLS packetsNote

The first packet that triggers the access list causes an immediate logging message, and subsequent packets
are collected over 5-minute intervals before they are displayed or logged. The logging message includes the
access list number, whether the packet was permitted or denied, the source IP address of the packet, and the
number of packets from that source permitted or denied in the prior 5-minute interval.

However, you can use the { ipv4 | ipv6 } access-list log-update threshold command to set the number of
packets that, when they match an access list (and are permitted or denied), cause the system to generate a log
message. You might do this to receive log messages more frequently than at 5-minute intervals.

If you set the update-number argument to 1, a log message is sent right away, rather than caching it; every
packet that matches an access list causes a log message. A setting of 1 is not recommended because the volume
of log messages could overwhelm the system.

Caution

Even if you use the { ipv4 | ipv6} access-list log-update threshold command, the 5-minute timer remains
in effect, so each cache is emptied at the end of 5 minutes, regardless of the number of messages in each cache.
Regardless of when the log message is sent, the cache is flushed and the count reset to 0 for that message the
same way it is when a threshold is not specified.

Implementing Access Lists and Prefix Lists
27

Implementing Access Lists and Prefix Lists
Understanding IP Access List Logging Messages

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_BF7D948CB3BC4541961DB04483DDA64D
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_DB34202059924347A3D513685295F50A
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_5E93A92A66464980A8003E01604A943B
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_6F765344E3334EDBAB44DA39B395898E
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_C1DFEC34EC7D48F08E729AED48F36CD5
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_F29C79EB4AD0430BA0EC03CE3202372C
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_7C68561395FF4CE1902EF920B47FA254
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_01.html#reference_DEE250595C324263B3BFDC8B33F64A3F


The logging facility might drop some logging message packets if there are too many to be handled or if more
than one logging message is handled in 1 second. This behavior prevents the router from using excessive CPU
cycles because of too many logging packets. Therefore, the logging facility should not be used as a billing
tool or as an accurate source of the number of matches to an access list.

Note

Understanding Prefix Lists
Prefix lists are used in route maps and route filtering operations and can be used as an alternative to access
lists in many Border Gateway Protocol (BGP) route filtering commands. A prefix is a portion of an IP address,
starting from the far left bit of the far left octet. By specifying exactly how many bits of an address belong to
a prefix, you can then use prefixes to aggregate addresses and perform some function on them, such as
redistribution (filter routing updates).

BGP Filtering Using Prefix Lists

Prefix lists can be used as an alternative to access lists in many BGP route filtering commands. It is configured
under the Global configurations of the BGP protocol. The advantages of using prefix lists are as follows:

• Significant performance improvement in loading and route lookup of large lists.

• Incremental updates are supported.

• More user friendly CLI. The CLI for using access lists to filter BGP updates is difficult to understand
and use because it uses the packet filtering format.

• Greater flexibility.

Before using a prefix list in a command, you must set up a prefix list, and you may want to assign sequence
numbers to the entries in the prefix list.

How the System Filters Traffic by Prefix List

Filtering by prefix list involves matching the prefixes of routes with those listed in the prefix list. When there
is a match, the route is used. More specifically, whether a prefix is permitted or denied is based upon the
following rules:

• An empty prefix list permits all prefixes.

• An implicit deny is assumed if a given prefix does not match any entries of a prefix list.

• When multiple entries of a prefix list match a given prefix, the longest, most specific match is chosen.

Sequence numbers are generated automatically unless you disable this automatic generation. If you disable
the automatic generation of sequence numbers, you must specify the sequence number for each entry using
the sequence-number argument of the permit and deny commands in IPv4 prefix list configuration command.
Use the no form of the permit or deny command with the sequence-number argument to remove a prefix-list
entry.

The show commands include the sequence numbers in their output.

Implementing Access Lists and Prefix Lists
28

Implementing Access Lists and Prefix Lists
Understanding Prefix Lists



Configuring Prefix Lists
Configuration Example

Creates a prefix-list "pfx_2" with a remark "Deny all routes with a prefix of 10/8". This prefix-list denies all
prefixes matching /24 in 128.0.0.0/8.
Router#configure
Router(config)#ipv4 prefix-list pfx_2

Router(config-ipv4_pfx)#10 remark Deny all routes with a prefix of 10/8
Router(config-ipv4_pfx)#20 deny 128.0.0.0/8 eq 24
/* Repeat the above step as necessary. Use the no sequence-number command to delete an
entry. */

Router(config-ipv4_pfx)#commit

Running Configuration

Router#show running-config ipv4 prefix-list pfx_2
ipv4 prefix-list pfx_2
10 remark Deny all routes with a prefix of 10/8
20 deny 128.0.0.0/8 eq 24
!

Verification

Verify that the permit and remark settings are according to the set configuration.
Router# show prefix-list pfx_2
ipv4 prefix-list pfx_2
10 remark Deny all routes with a prefix of 10/8
20 deny 128.0.0.0/8 eq 24
RP/0/RP0/CPU0:ios#

Associated Commands

• ipv4 prefix-list

• ipv6 prefix-list

• show prefix-list ipv4

• show prefix-list ipv6

Sequencing Prefix List Entries and Revising the Prefix List
Configuration Example

Assigns sequence numbers to entries in a named prefix list and how to add or delete an entry to or from a
prefix list. It is assumed a user wants to revise a prefix list. Resequencing a prefix list is optional.

Implementing Access Lists and Prefix Lists
29

Implementing Access Lists and Prefix Lists
Configuring Prefix Lists

http://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_2116DBF545C0451C991A964E4FA0CF48
http://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_86B6333463154E5DA929CAFF62FFAB4F
http://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_263556FC57DC4F609675BF7EA5F82EFB
http://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_154E9CD634CC42A9BFAC4839888FE4B7


It is possible to resequence ACLs for prefix-list but not for security ACLs.Note

Router#config
Router(config)#ipv4 prefix-list cl_1

Router(config)#10 permit 172.16.0.0 0.0.255.255
/* Repeat the above step as necessary adding statements by sequence number where you planned;
use the no sequence-number command to delete an entry */

Router(config)#commit
end
Router#resequence prefix-list ipv4 cl_1 20 15

Running Configuration

/*Before resequencing/*
Router#show running-config ipv4 prefix-list cl_1
ipv4 prefix-list cl_1
10 permit 172.16.0.0/16
!
/* After resequencing using the resequence prefix-list ipv4 cl_1 20 15 command: */
Router#show running-config ipv4 prefix-list cl_1
ipv4 prefix-list cl_1
20 permit 172.16.0.0/16
!

Verification

Verify that the prefix list has been resequenced:
Router#show prefix-list cl_1
ipv4 prefix-list cl_1
20 permit 172.16.0.0/16

Associated Commands

• resequence prefix-list ipv4

• resequence prefix-list ipv6

• ipv4 prefix-list

• ipv6 prefix-list

• show prefix-lists ipv4

• show prefix-lists ipv6

Implementing Access Lists and Prefix Lists
30

Implementing Access Lists and Prefix Lists
Sequencing Prefix List Entries and Revising the Prefix List

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_68AFC1BBED5F4BB0970544AA7463467B
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_72574ABFE77B458B8D4555CC496158F2
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_2116DBF545C0451C991A964E4FA0CF48
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_86B6333463154E5DA929CAFF62FFAB4F
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_263556FC57DC4F609675BF7EA5F82EFB
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/b-ncs5500-ip-addresses-cli-reference/b-ncs5500-ip-addresses-cli-reference_chapter_0111.html#reference_154E9CD634CC42A9BFAC4839888FE4B7

	Implementing Access Lists and Prefix Lists
	Understanding Access Lists
	Configuring IPv4 ACLs
	Modifying ACLs
	Configuring ACL-based Forwarding
	ACLs on Bridge Virtual Interfaces
	Configuring ACLs with Fragment Control
	Matching by Fragment Offset in ACLs
	Configuring ACL Matching by Fragment Offset


	Configuring ACL Filtering by IP Packet Length
	Configuring Simple IPv4 ACLs to Filter by Packet Length
	Configuring Scaled IPv4 ACLs to Filter by Packet Length
	Configuring Scaled IPv6 ACLs to Filter by Packet Length

	Understanding Object-Group ACLs
	Configuring an Object-Group ACL
	Configuring a Network Object-Group ACL
	Configuring a Port Object-Group ACL

	Verifying Object-Group ACL Compression

	Configuring Extended Access Lists
	Understanding IP Access List Logging Messages
	Understanding Prefix Lists
	Configuring Prefix Lists
	Sequencing Prefix List Entries and Revising the Prefix List


