
Programmability Configuration Guide for Cisco NCS 5500 Series Routers,
IOS XR Release 6.3.x
First Published: 2017-09-01

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2017 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products
and software. BST provides you with detailed defect information about your products and software.

© 2017 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

C O N T E N T S

New and Changed Feature Information 1C H A P T E R 1

New and Changed Programmability Features 1

Programmatic Configuration Using Data Models 3C H A P T E R 2

Data Models—Scope, Need, and Benefits 3

Process for using Data Models 4

Using Data Models 7C H A P T E R 3

Obtain Data Models 7

Enable Protocol 8

Enable NETCONF over SSH Protocol 9

Enable gRPC over HTTP/2 Protocol 11

Manage Configurations using Data Model 12

Commit Configuration 14

Components to Use Data Models 17C H A P T E R 4

YANG Module 17

Components of a YANG Module 18

Structure of YANG Models 20

Usability Enhancements for ACL YANG Models 21

Communication Protocols 22

NETCONF Protocol 23

NETCONF Operations 24

gRPC Protocol 27

gRPC Operations 30

gRPC Network Management Interface 31

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
v

YANG Actions 32

Use Cases with Data Models 37C H A P T E R 5

Request for AAA Access Details 37

Using NETCONF with Flexible CLI Configuration Groups 38

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
vi

Contents

C H A P T E R 1
New and Changed Feature Information

This section lists all the new and changed features for the Programmability Configuration Guide.

• New and Changed Programmability Features, on page 1

New and Changed Programmability Features
Where DocumentedChanged in ReleaseDescriptionFeature

Components to Use Data
Models chapter

YANG Module, on page
17

Release 6.3.2These Cisco-supported
Open Configmodels have
YANG models defined
for configuration data and
operational data

Support for Open Config
models -
OC-Network-instance,
OC-Lldp, OC-ISIS, and
OC-NI ISIS Extension

Components to Use Data
Models chapter

YANG Actions, on page
32

Release 6.3.1YANG data models are
supported for IOS XR
admin plane. All the IOS
XR actions are supported
in System Admin plane

YANG model support for
IOS XR admin plane

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
1

Where DocumentedChanged in ReleaseDescriptionFeature

Components to Use Data
Models chapter

YANG Actions, on page
32

Release 6.3.1All the IOS XR actions
are supported in System
Admin plane.The actions
introduced in this release
are:

• System Process
Mgmt : process
(restart)

• System Process
Mgmt : Reload
(System Admin
virtual machine
(VM) reload, line
card (LC) reload)

• System Process
Mgmt : Reload (IOS
XR VM node reload
fromSystemAdmin)

Support for System
Admin NETCONF
actions

Using Data Models
chapter

Commit Configuration, on
page 14

Release 6.3.1This feature helps in
verifying that the change
in the configurationworks
correctly and does not
cause fluctuation in the
management connectivity.

gRPC support for
confirmed commit

Components to Use Data
Models chapter

gRPC Protocol, on page
27

Release 6.3.1gRPC supports the IOS
XR and System Admin
actions related to YANG
data models.

grpc support for XR
actions

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
2

New and Changed Feature Information
New and Changed Programmability Features

C H A P T E R 2
Programmatic Configuration Using Data Models

Data models are a programmatic way of configuring and collecting operational data of a network device. They
replace the process of manual configuration, which is proprietary, and highly text-based.

• Data Models—Scope, Need, and Benefits, on page 3
• Process for using Data Models, on page 4

Data Models—Scope, Need, and Benefits
Scope

Data models can be used to automate configuration tasks across heterogeneous devices in a network.

Data models handle the following types of requirements on routers (RFC 6244):

• Configuration data: A set of writable data that is required to transform a system from an initial default
state into its current state. For example, configuring entries of the IP routing tables, configuring the
interface MTU to use a specific value, configuring an ethernet interface to run at a given speed, and so
on.

• Operational state data:A set of data that is obtained by the system at runtime and influences the behavior
of the system in a manner similar to configuration data. However, in contrast to configuration data,
operational state data is transient. The data is modified by interactions with internal components or other
systems using specialized protocols. For example, entries obtained from routing protocols such as OSPF,
attributes of the network interfaces, and so on.

• Actions:A set of NETCONF actions that support robust network-wide configuration transactions.When
a change is attempted that affects multiple devices, the NETCONF actions simplify the management of
failure scenarios, resulting in the ability to have transactions that will dependably succeed or fail atomically.

Data models provide a well-defined hierarchy of the configurational and operational data of a router, and
NETCONF actions. The data models are programmed to provide a common framework of configurations to
be deployed across networks. This common framework helps to program and manage a network with ease.

For more information about Data Models, see RFC 6244.

Need

Typically, a network operation center is a heterogeneous mix of various devices at multiple layers of the
network. Such network centers require bulk automated configurations to be accomplished seamlessly.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
3

CLIs are widely used for configuring and extracting the operational details of a router. But the general
mechanism of CLI scraping is not flexible and optimal. Small changes in the configuration require rewriting
scripts multiple times. Bulk configuration changes through CLIs are cumbersome and error-prone. These
limitations restrict automation and scale.

To overcome these limitations, Cisco IOS XR supports a programmatic way of writing configurations to any
network device using data models.

Data models help to manipulate configuration data, retrieve operational data, and perform actions. The data
models replace the process of manual configuration and are written in an industry-defined language. Although
configurations using CLIs are easier and human-readable, automating the configuration using data models
results in scalability. To get these data models, see Obtain Data Models, on page 7

The data models provides access to the capabilities of the devices in a network using Network Configuration
Protocol (NETCONF) or gRPC (google-defined Remote Procedure Calls) protocols. The operations on the
router are carried out by the protocols using YANG models to automate and programme operations in a
network. To enable the protocol, see Enable Protocol, on page 8

The process of automating configurations in a network is accomplished using the core components - router,
client application, YANG model and communication protocols. For more information about the core
components, see Components to Use Data Models, on page 17.

Benefits

Configuring routers using data models overcomes drawbacks posed by traditional router management because
the data models:

• Provide a common model for configuration and operational state data, and perform NETCONF actions.

• Use protocols to communicate with the routers to get, manipulate and delete configurations in a network.

• Automate configuration and operation of multiple routers across the network.

Process for using Data Models
The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using communication protocols such as NETCONF
or gRPC.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide for Cisco NCS 5500 Series Routers.

Note

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
4

Programmatic Configuration Using Data Models
Process for using Data Models

Figure 1 shows the tasks involved in using data models.

Figure 1: Process for Using Data Models

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
5

Programmatic Configuration Using Data Models
Process for using Data Models

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
6

Programmatic Configuration Using Data Models
Process for using Data Models

C H A P T E R 3
Using Data Models

Using data models involves three tasks:

• Obtain Data Models, on page 7
• Enable Protocol, on page 8
• Manage Configurations using Data Model, on page 12
• Commit Configuration, on page 14

Obtain Data Models
The data models are available in the mgbl pie software package. Installing a package on the router installs
specific features that are part of that package. Cisco IOSXR software is divided into various software packages
to select the features to run on the router. Each package contains components that perform a specific set of
router functions, such as routing, security, and so on.

Pre-requisites:

Ensure that the mgbl pie software image is loaded in the router.

For installation instructions, see Perform System Upgrade and Install Feature Packages chapter in the System
Setup and Software Installation Guide for Cisco NCS 5500 Series Routers.

1. Verify that the data models are available using netconf-monitoring request.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>

</filter>
</get>
</rpc>

All IOS XR and System Admin YANG models are displayed.

TheYANGmodels can be retrieved from the router without logging into the router using get-schema command:

Get Schema List (data will be used in step 2).
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
7

http://www.cisco.com/c/en/us/support/ios-nx-os-software/ios-xr-software/products-installation-and-configuration-guides-list.html
http://www.cisco.com/c/en/us/support/ios-nx-os-software/ios-xr-software/products-installation-and-configuration-guides-list.html

<schemas/>
</netconf-state>
</filter>
</get>
</rpc>

All the models on the router are displayed.
TRACE: 2016/06/13 11:11:42 transport.go:104: Reading from connection
TRACE: 2016/06/13 11:11:42 gnc_main.go:587: Session established (Id: 1009461378)
TRACE: 2016/06/13 11:11:42 session.go:93: Request:
<rpc message-id="16a79f87-1d47-4f7a-a16a-9405e6d865b9"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><get><filter type="subtree"><netconf-state

xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring"><schemas/></netconf-state></filter></get></rpc>
TRACE: 2016/06/13 11:11:42 transport.go:104: Reading from connection
TRACE: 2016/06/13 11:11:42 session.go:117:
Response:
#143589
<rpc-reply message-id="16a79f87-1d47-4f7a-a16a-9405e6d865b9"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas>
<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper</identifier>
<version>2015-01-07</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>
</schema>
<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper-sub1</identifier>
<version>2015-01-07</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>
</schema>
<schema>
<identifier>Cisco-IOS-XR-snmp-agent-oper</identifier>
<version>2015-10-08</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-snmp-agent-oper</namespace>
<location>NETCONF</location>
</schema>
------------<truncated>--------------

For more information about structure of data models, see YANG Module, on page 17.

What To Do Next:

Enable the protocol to establish connection between the router and the client application.

Enable Protocol
The router communicates with the client application using protocols. On the router and client application,
enable a communication protocol based on the requirement:

• NETCONF

• gRPC

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
8

Using Data Models
Enable Protocol

Only the first root-lr user created on XR is synchronized as the first root-system user on System Admin, while
the consecutive users are not synchronized. The consecutive users created on XR do not exist in the System
Admin. Hence any operations through NETCONF or gRPC that requires sysadmin access performed by the
consecutive users fails. To overcome this limitation, create the user with the same name in System Admin
and grant permission by assigning them to the appropriate group.

Note

For more information about protocols, see Communication Protocols, on page 22.

Enable NETCONF over SSH Protocol
NETCONF is an XML-based protocol used over Secure Shell (SSH) transport to configure a network. The
client applications use this protocol to request information from the router, and make configuration changes
to the router.

For more information about NETCONF, see NETCONF Protocol, on page 23.

Pre-requisites:

• Software package k9sec pie is installed on the router.

• Software package mgbl pie is installed on the router.

• Crypto keys are generated.

To enable the NETCONF protocol, complete these steps:

1. Enable NETCONF protocol over an SSH connection.

ssh server v2
ssh server netconf
netconf agent tty
netconf-yang agent ssh

The default port number of 830 is used. A different port within the range of 1 to 65535 can be specified
if required.

2. Set the session parameters.
router (config)# netconf-yang agent session { limit value | absolute-timeout value |
idle-timeout value }

where:

• limit value: sets the maximum count for concurrent netconf-yang sessions. The range is from 1 to
1024.

• absolute-timeout value: sets the absolute session lifetime, in minutes. The range is from 1 to 1440.

• idle-timeout value: sets the idle session lifetime, in minutes. The range is from 1 to 1440.

3. Verify configuration settings for statistics and clients.
router (config)# do show netconf-yang statistics

router (config)# do show netconf-yang clients

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
9

Using Data Models
Enable NETCONF over SSH Protocol

Example: Enable NETCONF

config
netconf-yang agent ssh
ssh server netconf port 830

!

Example: Verify Configuration Using Statistics

After the NETCONF request is sent, use do show netconf-yang statistics command to verify the
configuration.

show netconf-yang statistics
Summary statistics requests| total time| min time per request| max
time per request| avg time per request|
other 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
close-session 4| 0h 0m 0s 3ms| 0h 0m 0s 0ms|
0h 0m 0s 1ms| 0h 0m 0s 0ms|
kill-session 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
get-schema 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
get 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s
get-config 1| 0h 0m 0s 1ms| 0h 0m 0s 1ms|
0h 0m 0s 1ms| 0h 0m 0s 1ms|
edit-config 3| 0h 0m 0s 2ms| 0h 0m 0s 0ms|
0h 0m 0s 1ms| 0h 0m 0s 0ms|
commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
cancel-commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
lock 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
unlock 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
discard-changes 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|
validate 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

Example: Verify Configuration Using Clients

show netconf-yang clients
client session ID| NC version| client connect time| last OP time| last
OP type| <lock>|
22969| 1.1| 0d 0h 0m 2s| 11:11:24|
close-session| No|
15389|

What To Do Next:

After NETCONF is enabled, use the YANG data models to manage the relevant configurations.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
10

Using Data Models
Enable NETCONF over SSH Protocol

Enable gRPC over HTTP/2 Protocol
Google-defined remote procedure call (gRPC) is an open-source RPC framework. gRPC supports IPv4 and
v6 address families.

For more information about gRPC, see gRPC Protocol, on page 27.

Pre-requisite:

• Configure TLS.

It is recommended to configure TLS. Enabling gRPC protocol uses the default
HTTP/2 transport with no TLS enabled on TCP. gRPC mandates AAA
authentication and authorization for all gRPC requests. If TLS is not configured,
the authentication credentials are transferred over the network unencrypted.
Enabling TLS ensures that the credentials are secure and encrypted. Non-TLS
mode can only be used in secure internal network.

Note

• Software package mgbl pie is installed on the router.

To enable the gRPC protocol, complete these steps:

1. Enable gRPC over an HTTP/2 connection.

Router# configure
Router (config)# grpc

2. Enable access to a specified port number.
Router (config-grpc)# port <port-number>

The <port-number> range is from 57344 to 57999. If a port number is unavailable, an error is displayed.

3. In the configuration mode, set the session parameters.
Router (config)# grpc{ address-family | dscp | max-request-per-user | max-request-total
| max-streams | max-streams-per-user | no-tls | service-layer | tls-cipher | tls-mutual
| tls-trustpoint | vrf }

where:

• address-family: set the address family identifier type

• dscp: set QoS marking DSCP on transmitted gRPC

• max-request-per-user: set the maximum concurrent requests per user

• max-request-total: set the maximum concurrent requests in total

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription
limit is 128 requests. The default is 32 requests

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum
subscription limit is 128 requests. The default is 32 requests

• no-tls: disable transport layer security (TLS). The TLS is enabled by default.

• service-layer: enable the grpc service layer configuration

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
11

Using Data Models
Enable gRPC over HTTP/2 Protocol

• tls-cipher: enable the gRPC TLS cipher suites

• tls-mutual: set the mutual authentication

• tls-trustpoint: configure trustpoint

• server-vrf: enable server vrf

What To Do Next:

After gRPC is enabled, use the YANG data models to manage the relevant configurations.

Manage Configurations using Data Model
From the client application, use data models to manage the configurations of the router.

Prerequisites

• Software packages k9sec pie and mgbl are installed on the router.

• NETCONF or gRPC protocols are enabled on the client and the router.

To manage configurations using data models, complete these steps:

1. Use a YANG tool to import the data model on the client application.

2. Configure the router by modifying the values of the data model using the YANG tool.

For more information on the values of the data models that can be configured, see Structure of YANGModels,
on page 20.

The OC interface maps all IP configurations for parent interface under a VLAN with index 0. This restricts
configuring a sub interface with tag 0.

Note

Example: Configure CDP

In this example, you use the data model for CDP and configure CDP with the values as shown in the
table:

Desired value for parameterDescriptionCDP parameter

v1Specifies the version used to
communicate with the neighboring
devices

CDP Version

200 msSpecifies the duration for which the
receiving device to hold the CDP
packet

Hold time

80 msSpecifies how often the software
sends CDP updates

Timer

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
12

Using Data Models
Manage Configurations using Data Model

Desired value for parameterDescriptionCDP parameter

enableLogs changes in the adjacency
table. When CDP adjacency table
logging is enabled, a syslog is
generated each time a CDP
neighbor is added or removed

Log Adjacency Table

1. Download the configuration YANG data model for CDP Cisco-IOS-XR-cdp-cfg.yang from the
router. To download the data model, see Obtain Data Models, on page 7.

2. Import the data model to the client application using any YANG tool.

3. Modify the leaf nodes of the data model:

• enable (to enable cdp)

• holdtime

• timer

• advertise v1 only

• log adjacency

Configure CDP Using NETCONF

In this example, you use the data model for CDP and configure CDP using NETCONF RPC request:

<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:n:netconf:base:1.0">
<cdp xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg">
<timer>80</timer>
<enable>true</enable>
<log-adjacency></log-adjacency>
<hold-time>200</holdtime>
<advertise-v1-only></advertise-v1-only>
</cdp>
</config>
</edit-config>

CDP can also be configured under the interface configuration by augmenting the interface manager.
Use the Cisco-IOS-XR-ifmgr-cfgYANGmodel to configure CDP under the interface configuration.

Note

Configure CDP Using gRPC

In this example, you use the data model for CDP and configure CDP using gRPCMergeConfig RPC
request:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
13

Using Data Models
Manage Configurations using Data Model

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

CDP can also be configured under the interface configuration by augmenting the interface manager.
Use the Cisco-IOS-XR-ifmgr-cfgYANGmodel to configure CDP under the interface configuration.

Note

Commit Configuration
Commit the configuration to set the new values in the current running configuration.

The configuration can also be committed through a confimed-commit operation. NETCONF and gRPC
supports confirmed-commit RPC. This RPC requires an explicit confirmation from the user before the
configuration takes effect on the router. This feature helps in verifying that the change in the configuration
works correctly and does not cause fluctuation in the management connectivity. If the configuration change
causes loss of management connectivity, the configuration is automatically rolled back to the previous
committed configuration after the default confirm-timeout period of 600 seconds.

To commit a configuration, use </commit> RPC:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>

</rpc>

To confirm-commit a configuration:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>

<confirmed/>
</commit>

</rpc>

The confirmed-commit capability supports the <cancel-commit> operation and the <confirmed>,
<confirm-timeout>, <persist>, and <persist-id> parameters for the <commit> operation.

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<commit>
<confirmed/>
<persist>IQ,d4668</persist>
<confirm-timeout>120</confirm-timeout>

</commit>
</rpc>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
14

Using Data Models
Commit Configuration

A confirmed-commit request will fail with Datastore Locked error if:

• another operation is performed between a confirmed-commit and a confirming-commit operation

• another session has an active confirmed-commit request and a persist ID was not provided

• a persist ID was provided but did not match the persist ID of the active confirmed-commit session

gRPC Confirmed-Commit for Merging Configuration

gRPC confirmed-commit request can be issued for exisiting merge-config and cli-config operations.
In this example, the request is made for merge-cli operation.

manageability/ems/client/client -oper merge-config -server_addr="<address>" -json_in_file
<directory-path>/<file>.json
-confirmed=yes -confirm_timeout=400
enter PID:14917:main.main
emsMergeConfig: Received ReqId 14917, Response '
----------------- gRPC Summary ----------------------
Operation: merge-config
Number of iterations: 1
Total bytes transferred: 126
Number of bytes per second: 374
Round trip throughputs Mbps: 0.002999
Ave elapsed time in seconds: 0.336079
Min elapsed time in seconds: 0.336079
Max elapsed time in seconds: 0.336079
--------------- End gRPC Summary ---------------------
The confirmed commit request should be followed by a confirming commit to make the
configuration permanent:
manageability/ems/client/client -oper commit -server_addr="<address>"
enter PID:14917:main.main
emsCommitConfig: Received ReqId 14917, Response '
----------------- gRPC Summary ----------------------
Operation: commit
Number of iterations: 1
Total bytes transferred: 126
Number of bytes per second: 374
Round trip throughputs Mbps: 0.002999
Ave elapsed time in seconds: 0.336079
Min elapsed time in seconds: 0.336079
Max elapsed time in seconds: 0.336079
--------------- End gRPC Summary ---------------------

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
15

Using Data Models
Commit Configuration

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
16

Using Data Models
Commit Configuration

C H A P T E R 4
Components to Use Data Models

The process of automating configurations in a network involves the use of these core components:

• Client application: manages and monitors the configuration of the devices in the network.

• Router: acts as a server, responds to requests from the client application and configures the devices in
the network.

• YANG module: describes configuration and operational data of the router, and perform actions.

• Communication protocol: provides mechanisms to install, manipulate, and delete the configuration of
network devices.

Figure 2 shows the interplay of the core components.

Figure 2: Components in Using Data Models

This chapter describes these two components:

• YANG Module, on page 17
• Communication Protocols, on page 22
• YANG Actions, on page 32

YANG Module
A YANG module defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANGmodels describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network
devices.

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled
applications.

YANG models can be:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
17

• Cisco-specific models: For a list of supported models and their representation, see Github.

• Common models: These models are industry-wide standard YANG models from standard bodies, such
as IETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

For a list of supported OC models and their representation, see Github.

For more details about YANG, refer RFC 6020 and 6087.

Components of a YANG Module
A YANG module defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

• import imports external modules

• include includes one or more sub-modules

• augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

• when defines conditions under which new nodes are valid

• prefix references definitions in an imported module

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.

The gRPC YANG path or JSON data is based on YANG module name and not YANG namespace.Note

Example: Configuration YANG Model for AAA

The YANG models used to configure a feature is denoted by -cfg.
(snippet)
module Cisco-IOS-XR-aaa-locald-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-cfg";

prefix "aaa-locald-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

import Cisco-IOS-XR-aaa-lib-cfg { prefix "a1"; }

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
.........................
......................... (truncated)

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
18

Components to Use Data Models
Components of a YANG Module

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/
https://github.com/openconfig/public/tree/master/release/models

Example: Operational YANG Model for AAA

The YANG models used to retrieve operational data is denoted by -oper.
(snippet)
module Cisco-IOS-XR-aaa-locald-oper {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-oper";

prefix "aaa-locald-oper";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

include Cisco-IOS-XR-aaa-locald-oper-sub1 {
revision-date 2015-01-07;

}

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
........................
........................ (truncated)

A module can include any number of sub-modules; each sub-module belongs to only one module.
The names of all standard modules and sub-modules must be unique.

Note

Example: NETCONF Action for OSPFv3

The YANG models used to perform actions is denoted by -act.
(snippet)
clear ospfv3 1 vrf vrf1 statistics neighbor 2.2.2.2
RPC message based on the new ospfv3 yang model-
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<act-ospfv3-instance-vrf xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv6-ospfv3-act">

<instance>
<instance-identifier>1</instance-identifier>
<vrf>
<vrf-name>vrf1</vrf-name>
<stats>
<neighbor>
<neighbor-id>2.2.2.2</neighbor-id>
</neighbor>
</stats>
</vrf>

</instance>
</act-ospfv3-instance-vrf>

</rpc>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
19

Components to Use Data Models
Components of a YANG Module

Structure of YANG Models
YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

• Top level nodes and their subtrees

• Subtrees that augment nodes in other YANG models

• Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:

• leaf node - contains a single value of a specific type

• leaf-list node - contains a sequence of leaf nodes

• list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more
key leaves

• container node - contains a grouping of related nodes that have only child nodes, which can be any of
the four node types

Example: Structure of CDP Data Model

Cisco Discovery Protocol (CDP) configuration has an inherent augmented model
(interface-configuration). The augmentation indicates that CDP can be configured at both the global
configuration level and the interface configuration level. The data model for CDP interface manager
in tree structure is:
module: Cisco-IOS-XR-cdp-cfg

+--rw cdp
+--rw timer? uint32
+--rw advertise-v1-only? empty
+--rw enable? boolean
+--rw hold-time? uint32
+--rw log-adjacency? empty

augment /a1:interface-configurations/a1:interface-configuration:
+--rw cdp

+--rw enable? empty

In the CDP YANG model, the augmentation is expressed as:
augment "/a1:interface-configurations/a1:interface-configuration" {

container cdp {
description "Interface specific CDP configuration";
leaf enable {
type empty;
description "Enable or disable CDP on an interface";

}
}
description
"This augment extends the configuration data of
'Cisco-IOS-XR-ifmgr-cfg'";

}

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
20

Components to Use Data Models
Structure of YANG Models

CDP Operational YANG:

module: Cisco-IOS-XR-cdp-oper
+--ro cdp

+--ro nodes
+--ro node* [node-name]

+--ro neighbors
| +--ro details
| | +--ro detail*
| | +--ro interface-name? xr:Interface-name
| | +--ro device-id? string
| | +--ro cdp-neighbor*
| | +--ro detail
| | | +--ro network-addresses
| | | | +--ro cdp-addr-entry*
| | | | +--ro address
| | | | +--ro address-type? Cdp-l3-addr-protocol
| | | | +--ro ipv4-address? inet:ipv4-address
| | | | +--ro ipv6-address? In6-addr
| | | +--ro protocol-hello-list
| | | | +--ro cdp-prot-hello-entry*
| | | | +--ro hello-message? yang:hex-string
| | | +--ro version? string
| | | +--ro vtp-domain? string
| | | +--ro native-vlan? uint32
| | | +--ro duplex? Cdp-duplex
| | | +--ro system-name? string
| | +--ro receiving-interface-name? xr:Interface-name
| | +--ro device-id? string
| | +--ro port-id? string
| | +--ro header-version? uint8
| | +--ro hold-time? uint16
| | +--ro capabilities? string
| | +--ro platform? string

... (truncated)

Usability Enhancements for ACL YANG Models
This feature addresses some of the issues identified with native ACL YANG models that affect usability of
the YANGmodel. It improves user-friendliness and standards compliance in the following native ACLYANG
models:

• Cisco-IOS-XR-es-acl-cfg

• Cisco-IOS-XR-ipv4-acl-cfg

• Cisco-IOS-XR-ipv6-acl-cfg

The following issues are addressed as part of this enhancement:

• Lack of revision dates and descriptions

Problem:When the revision changed on an ACL-model YANG file, the changes associated with the new
revision were not accurately described.

Solution: Includes description for the changes made in each subsequent version without removing the
information for the previous versions.

Example from Cisco-IOS-XR-ipv4-acl-cfg.yang :

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
21

Components to Use Data Models
Usability Enhancements for ACL YANG Models

revision "2018-04-03" {
description
"6.5.1 revision. Correct enum value for Next-hop-type.";

}

revision "2018-03-23" {
description
"6.5.1 revision. Removing none-next-type.";

}

• Unconstrained use of strings

Problem: ACL native models use leaves defined as string type; however, the string length is undefined
or incorrect.

Solution: Pattern and length checking is added to leaves using string types. This allows NETCONF to
control these checks, rather than relying on ACL verifier at commit time.

In the following example, the length of the string is limited to 255 characters and only alphanumeric
characters are allowed.
typedef my-base-str-type { type string {
length "1..255";
pattern "[0-9a-fA-F]*";
} }

• Lack of good description statements

Problem:Most leaves in the native ACLmodels had description fields that did not have good description,
which impacts the ease of use and understanding of the YANG model.

Solution: Leaf description fields are updated to provide useful information.

• Lack of verification and inconsistent behavior across ACL-range leaves

Problem: YANGmodel supports different combinations of leaves for containers with upper value, lower
value and operator leaves. As a result, some of the configurations can be invalid from the CLI perspective.

Solution: The native ACL models are improved to include various combinations of leaves that are
supported by the YANG model. Also, the parsing behavior across all ACL-range leaves are aligned to
remain consistent.

• Inconsistency between protocol-operator input and output

Problem: NETCONF output should be consistent with user input.

Solution: The protocol-operator leaf is made as non-mandatory, and need not be set to equal.

Communication Protocols
Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

YANG uses one of these protocols :

• Network Configuration Protocol (NETCONF)

• gRPC (google-defined Remote Procedure Calls)

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
22

Components to Use Data Models
Communication Protocols

The transport and encoding mechanisms for these two protocols are shown in the table:

Encoding/ DecodingTransportProtocol

xmlsshNETCONF

jsonhttp/2gRPC

NETCONF Protocol
NETCONF provides mechanisms to install, manipulate, or delete the configuration of network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. Use ssh server capability netconf-xml command to enable NETCONF to reach XML
subsystem via port 22. NETCONF uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router.

NETCONF Session

A NETCONF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a "hello" message, where features and capabilities are announced. Sessions are
terminated using close or kill messages.

NETCONF Layers

NETCONF can be partitioned into four layers:

Figure 3: NETCONF Layers

• Content layer: includes configuration and notification data

• Operations layer: defines a set of base protocol operations invoked as RPCmethods with XML-encoded
parameters

• Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

• Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
23

Components to Use Data Models
NETCONF Protocol

NETCONF Operations
NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:

| +--Get-config
| +--Edit-Config
| +--Merge
| +--Replace
| +--Create
| +--Delete
| +--Remove
| +--Default-Operations
| +--Merge
| +--Replace
| +--None
| +--Get
| +--Lock
| +--UnLock
| +--Close-Session
| +--Kill-Session

ExampleDescriptionNETCONF
Operation

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter>
<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg"\>
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name>
</interface-configuration>
</interface-configurations>
</filter>
</get-config>
</rpc>

Retrieves all or part of a specified
configuration from a named data
store

<get-config>

Retrieve all acl configuration and device state
information.

Request:
<get>
<filter>
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-oper"/>
</filter>
</get>

Retrieves running configuration
and device state information

<get>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
24

Components to Use Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Configure ACL configs using Merge operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target><candidate/></target>
<config
xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-cfg"
xc:operation=”merge”>

<accesses>
<access>
<access-list-name>aclv4-1</access-list-name>
<access-list-entries>
<access-list-entry>
<sequence-number>10</sequence-number>
<remark>GUEST</remark>
</access-list-entry>
<access-list-entry>
<sequence-number>20</sequence-number>
<grant>permit</grant>
<source-network>
<source-address>172.0.0.0</source-address>
<source-wild-card-bits>0.0.255.255</source-wild-card-bits>
</source-network>
</access-list-entry>
</access-list-entries>
</access>
</accesses>
</ipv4-acl-and-prefix-list>
</config>
</edit-config>
</rpc>

Commit:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Loads all or part of a specified
configuration to the specified
target configuration

<edit-config>

Lock the running configuration.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>

Response :
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Allows the client to lock the
entire configuration datastore
system of a device

<lock>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
25

Components to Use Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Lock and unlock the running configuration from the same
session.
Request:
rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Response -
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

• The specified lock is not
currently active.

• The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

<Unlock>

Close a NETCONF session.
Request :
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

<close-session>

Terminate a session if the ID is other session ID.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<kill-session>
<session-id>4</session-id>
</kill-session>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Terminates operations currently
in process, releases locks and
resources associated with the
session, and close any associated
connections.

<kill-session>

Example: NETCONF Operation to Get Configuration

This example shows how a NETCONF <get-config> request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
26

Components to Use Data Models
NETCONF Operations

Netconf Response (Router to Client)Netconf Request (Client to Router)

<?xml version="1.0"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<cdp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg">

<timer>10</timer>
<enable>true</enable>
<log-adjacency></log-adjacency>
<hold-time>200</hold-time>
<advertise-v1-only></advertise-v1-only>
</cdp>

#22
</data>
</rpc-reply>

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get-config>
<source><running/></source>
<filter>
<cdp
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg"/>
</filter>
</get-config>
</rpc>

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender
must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

gRPC Protocol
gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. The user needs to define the structure by defining protocol
buffer message types in .proto files. Each protocol buffer message is a small logical record of information,
containing a series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

It is recommended to configure TLS before enabling gRPC. Enabling gRPC protocol uses the default HTTP/2
transport with no TLS enabled on TCP. gRPC mandates AAA authentication and authorization for all gRPC
requests. If TLS is not configured, the authentication credentials are transferred over the network unencrypted.
Non-TLS mode can only be used in secure internal network.

Note

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
27

Components to Use Data Models
gRPC Protocol

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;
string yangpathjson = 2;

}

message ConfigGetReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message GetOperArgs {
int64 ReqId = 1;
string yangpathjson = 2;

}

message GetOperReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

}

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

}

message CliConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CommitReplaceArgs {

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
28

Components to Use Data Models
gRPC Protocol

int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

}

message CommitReplaceReply {
int64 ResReqId = 1;
string errors = 2;

}

Example for gRPCExec configuration:

service gRPCExec {
rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};
rpc ActionJSON(ActionJSONArgs) returns(stream ActionJSONReply) {};

}

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

}

message ShowCmdTextReply {
int64 ResReqId =1;
string output = 2;
string errors = 3;

}

message ActionJSONArgs {
int64 ReqId = 1;
string yangpathjson = 2;
}

message ActionJSONReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;
}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {

rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};

}

message GetModelsInput {
uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;
enum MODLE_REQUEST_TYPE {

SUMMARY = 0;
DETAIL = 1;

}
MODLE_REQUEST_TYPE requestType = 5;

}

message GetModelsOutput {
uint64 requestId = 1;
message ModelInfo {

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
29

Components to Use Data Models
gRPC Protocol

string name = 1;
string namespace = 2;
string version = 3;
GET_MODEL_TYPE modelType = 4;
string modelData = 5;

}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE_TYPE responseCode = 3;
string msg = 4;

}

gRPC Operations
The gRPC operations include:

DescriptiongRPC Operation

Retrieves a configurationGetConfig

Gets the supported Yang models on the routerGetModels

Appends to an existing configurationMergeConfig

Deletes a configurationDeleteConfig

Modifies a part of an existing configurationReplaceConfig

Replaces existing configuration with the new
configuration file provided

CommitReplace

Gets operational data using JSONGetOper

Invokes the CLI configurationCliConfig

Displays the output of show commandShowCmdTextOutput

Displays the JSON output of show commandShowCmdJSONOutput

Displays the gRPC JSON actionActionJSON

Example: Get Configuration for a Specific Interface

This example shows getting configuration for a specific interface using gRPC GetConfig operation.

{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {

"interface-configuration": [
{

"active": "act",
"interface-name": "HundredGigE0/3/0/0"

}
]

}
}

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
30

Components to Use Data Models
gRPC Operations

Example: Delete Configuration for CDP Container

This example shows how a gRPC DeleteConfig operation deletes a CDP container and a leaf within
the container. The DeleteConfig argument identifies the resource using the YANG node. The value
of the YANG node is ignored and set to null.

In this example, a CDP container is deleted:

{
"Cisco-IOS-XR-cdp-cfg:cdp": [null]
}

In this example, a leaf value for hold-time in the CDP container is deleted:

{
"Cisco-IOS-XR-cdp-cfg:cdp":
{
"hold-time": [null]
}
}

Example: Merge Configuration for CDP Timer

This example shows merging configuration for CDP timer using gRPC MergeConfig operation.

{
"Cisco-IOS-XR-cdp-cfg:cdp": {

"timer": 50
}

}

Example: Get Operational Data for Interfaces

This example getting operational data for interfaces using gRPC GetOper operation.

{
"Cisco-IOS-XR-ifmgr-oper:interface-properties": [null]

}

gRPC Network Management Interface
gRPCNetworkManagement Interface (gNMI) is a gRPC-based networkmanagement protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

gNNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC. These gNMI
RPCs are supported:

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
31

Components to Use Data Models
gRPC Network Management Interface

DescriptiongNMI RPC RequestgNMI RPC

Initial handshake between the
network device (server) and the

Capabilities

client to exchange capability
information such as supported data
models

Modifies data associated with a
model on a network device from a
client

message SetRequest {}Set

Retrieves data from a network
device

message GetRequest {}Get

Control data subscriptions on servermessage SubscribeRequest {}Subscribe

For more information about gNMI, see Github repository.

YANG Actions
IOS XR and System Admin actions are RPC statements that trigger an operation or execute a command on
the router. Theses actions are defined as YANG models using RPC statements. An action is executed when
the router receives the corresponding NETCONF RPC or gRPC request. Once the router executes an action,
it replies with a NETCONF RPC or gRPC response.

For example, ping command is a supported action. That means, a YANG model is defined for the ping
command using RPC statements. This command can be executed on the router by initiating the corresponding
NETCONF RPC or gRPC request.

NETCONF supports XML format, and gRPC supports JSON format.Note

For the list of supported actions, see the following table:

YANG ModelsActions

Cisco-IOS-XR-syslog-actlogmsg

Cisco-IOS-XR-snmp-test-trap-actsnmp

Cisco-IOS-XR-cfgmgr-rollback-actrollback

Cisco-IOS-XR-ping-act

Cisco-IOS-XR-ipv4-ping-act

Cisco-IOS-XR-ipv6-ping-act

ping

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
32

Components to Use Data Models
YANG Actions

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

Cisco-IOS-XR-traceroute-act

Cisco-IOS-XR-ipv4-traceroute-act

Cisco-IOS-XR-ipv6-traceroute-act

traceroute

Cisco-IOS-XR-crypto-actcrypto

Cisco-IOS-XR-ipv4-ospf-act

Cisco-IOS-XR-ipv6-ospfv3-act

clear ospf

Cisco-IOS-XR-isis-actclear isis

Cisco-IOS-XR-ipv4-bgp-actclear bgp

Cisco-IOS-XR-sysmgr-act

Cisco-IOS-XR-sysadmin-pm

System Process Mgmt : process (restart)

Cisco-IOS-XR-sysadmin-smSystem Process Mgmt : Reload

(System Admin virtual machine (VM) reload, line
card (LC) reload)

Cisco-IOS-XR-sysadmin-sdr-mgrSystem Process Mgmt : Reload

(IOS XR VM node reload from System Admin)

Cisco-IOS-XR-spirit-install-actSystem Process Mgmt : Install

Cisco-IOS-XR-spirit-corehelper-cfgdumpcore

Example: PING NETCONF Action

This use case shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>
</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<ipv4>
<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0xabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
33

Components to Use Data Models
YANG Actions

<result>!</result>
<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>1</rtt-avg>
<rtt-max>1</rtt-max>
</ipv4>
</ping-response>
</rpc-reply>

Example: XR Process Restart Action

This example shows the process restart action sent to NETCONF agent.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-sysmgr-act">

<process-name>processmgr</process-name>
<location>0/RP0/CPU0</location>

</sysmgr-process-restart>
</rpc>

This example shows the action response received from the NETCONF agent.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Example: Shutdown Dumper Process

This use case shows the System Admin NETCONF action request to shut down dumper process on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<action xmlns="http://tail-f.com/ns/netconf/actions/1.0">

<data>
<processes xmlns="http://www.cisco.com/ns/yang/Cisco-IOS-XR-sysadmin-pm">
<all-locations>
<location>0/RP0</location>
<name>
<proc-name>dumper</proc-name>
<instance-id>0</instance-id>
<proc-action>
<do-what>shutdown</do-what>
<user-name>root</user-name>
<user-ip>1.2.3.4</user-ip>

</proc-action>
</name>

</all-locations>
</processes>

</data>
</action>
</rpc>

This section shows the NETCONF action response from the router.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
34

Components to Use Data Models
YANG Actions

<processes xmlns="http://www.cisco.com/ns/yang/Cisco-IOS-XR-sysadmin-pm">
<all-locations>
<location>0/RP0</location>
<name>
<proc-name>dumper</proc-name>
<instance-id>0</instance-id>
<proc-action>
<proc-action-status>User root (1.2.3.4) requested shutdown for process dumper(0) at

0/RP0
'Sending signal 15 to stop process dumper(IID 0) pid=2439'</proc-action-status>

</proc-action>
</name>
</all-locations>
</processes>
</data>
</rpc-reply>

Example: Copy Action

This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">
<sourcename>//root:<location>/100MB.txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>
<destinationlocation>0/RSP1/CPU0</destinationlocation>

</copy>
</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">Successfully
completed copy operation</response>
</rpc-reply>

8.261830565s elapsed

Example: Delete Action

This example shows the RPC request and response for delete action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">

<name>harddisk:/netconf.txt</name>
</delete>

</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">Successfully
completed delete operation</response>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
35

Components to Use Data Models
YANG Actions

</rpc-reply>

395.099948ms elapsed

Example: Install Action

This example shows the Install action request sent to NETCONF agent.

<install-add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-spirit-install-act">
<packagepath>/nobackup/hanaik/yang_project/img-xrv9k</packagepath>
<packagename>xrv9k-mpls-2.1.0.0-r64102I.x86_64.rpm</packagename>

</install-add>

This example shows the Install action response received from NETCONF agent.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<op-id xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-spirit-install-act">6</op-id>
</rpc-reply>

This example shows how to use install add rpc request with multiple packages enclosed within packagename
tag.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<install-add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-spirit-install-act">

<packagepath>http://10.105.227.154/install_repo/fretta/651/651_02</packagepath>
<packagename>ncs5500-k9sec-3.1.0.0-r65102I.x86_64.rpm</packagename>
<packagename>ncs5500-li-1.0.0.0-r65102I.x86_64.rpm</packagename>
<packagename>ncs5500-mcast-2.1.0.0-r65102I.x86_64.rpm</packagename>
<packagename>ncs5500-mini-x.iso-6.5.1.02I</packagename>
<packagename>ncs5500-mpls-2.1.0.0-r65102I.x86_64.rpm</packagename>

</install-add>
</rpc>

Restrictions for Install Action

• Install upgrade command is deprecated. Hence, use install update command instead of the install
upgrade command.

• Only one request can be sent at a time.

• ISSU is not supported.

• Install Yang using NETCONF action can accept a maximum of 32 input parameters. Input parameters
can be any inputs used in install action commands, such as package names to add, activate, deactivate,
or remove, and operation IDs to retrieve any particular log related to that operation.

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
36

Components to Use Data Models
YANG Actions

C H A P T E R 5
Use Cases with Data Models

In this section, certain uses cases with data models are described.

• Request for AAA Access Details, on page 37
• Using NETCONF with Flexible CLI Configuration Groups, on page 38

Request for AAA Access Details
In this use case, you use a Calvados model to view AAA access details.

If any user on XR is deleted, the local database checks whether there is a first user on Calvados VM.

• If there is a first user, no syncing occurs.

• If there is no first user, then the first user on XR (based on the order of creation) is synced to Calvados
VM.

Note

Prerequisites

• Ensure that the user is added to the Calvados environment. This is because even if the user is added to
the XR environment and has root-lr permissions, access to Calvados models is denied.

• Establish a NETCONF or gRPC connection between the router and the client application.

The gRPC YANG path or JSON data is based on YANG module name and not
YANG namespace.

Note

1. Using standard YANG tools, send a request to the router from the client using the NETCONF <get>
operation.
[Request]
<get>
<filter type="subtree">
<aaa xmlns="http://tail-f.com/ns/aaa/1.1">
<privileged-access xmlns="http://www.cisco.com/calvados/aaa_show"/>

</aaa>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
37

</filter>
</get>

2. Verify the response sent by the router to the client.
[Response]
<?xml version="1.0" encoding="UTF-8"?><data
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<aaa xmlns="http://tail-f.com/ns/aaa/1.1">
<privileged-access xmlns="http://www.cisco.com/calvados/aaa_show">
<shell-access>None</shell-access>
<first-user>root</first-user>
<first-user-change>No</first-user-change>
<current-disaster-recovery-user>root</current-disaster-recovery-user>
</privileged-access>
</aaa>
</data>

To accomplish this task using gRPC GetOper request:

{
"tailf-aaa:aaa": {

"aaa_show:privileged-access": [
null

]
}

}

gRPC GetOper response:

{
"tailf-aaa:aaa": {
"aaa_show:privileged-access": {
"shell-access": "None",
"first-user": "root",
"first-user-change": "No",
"current-disaster-recovery-user": "root"
}
}
}

Note

Using NETCONF with Flexible CLI Configuration Groups
If you want to use NETCONF protocol with flexible CLI conifguration groups, you need to use the inherited
configuration. To transition to NETCONF and YANG based configuration from a CLI configuration which
includes flexible CLI configuration groups, use the following steps. Using these steps, you can retrieve all
the configuration on the device which can be used in further NETCONF operations.

1. Send a NETCONF get-config request with source as <running-inheritance/> .

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

<source>
<running-inheritance xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-group-cfg"/>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
38

Use Cases with Data Models
Using NETCONF with Flexible CLI Configuration Groups

</source>
</get-config>

</rpc>
##

This operation returns all the configuration present on the device (inherited or expanded) in the following
format:

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
….

</data>
</rpc-reply

2. To apply the configuration to another device, send a NETCONF edit-config request in the following
format:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>

<candidate/>
</target>
<config>
</config>

</edit-config>
</rpc>

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
39

Use Cases with Data Models
Using NETCONF with Flexible CLI Configuration Groups

Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
40

Use Cases with Data Models
Using NETCONF with Flexible CLI Configuration Groups

	Programmability Configuration Guide for Cisco NCS 5500 Series Routers, IOS XR Release 6.3.x
	Contents
	New and Changed Feature Information
	New and Changed Programmability Features

	Programmatic Configuration Using Data Models
	Data Models—Scope, Need, and Benefits
	Process for using Data Models

	Using Data Models
	Obtain Data Models
	Enable Protocol
	Enable NETCONF over SSH Protocol
	Enable gRPC over HTTP/2 Protocol

	Manage Configurations using Data Model
	Commit Configuration

	Components to Use Data Models
	YANG Module
	Components of a YANG Module
	Structure of YANG Models
	Usability Enhancements for ACL YANG Models

	Communication Protocols
	NETCONF Protocol
	NETCONF Operations

	gRPC Protocol
	gRPC Operations
	gRPC Network Management Interface

	YANG Actions

	Use Cases with Data Models
	Request for AAA Access Details
	Using NETCONF with Flexible CLI Configuration Groups

