
Hosting Applications on IOS XR

This section explains the different kinds of application hosting, and demonstrates how a simple application
can be hosted natively or in a third-party container on IOS XR.

• Application Hosting Using Docker Containers, on page 1
• Docker-Based Container Application Hosting, on page 1

Application Hosting Using Docker Containers
Application hosting on IOS XR supports docker containers. You can create your own container on IOS XR
using docker, and host applications within the container. The applications can be developed using any Linux
distribution. This is well suited for applications that use system libraries that are different from that provided
by the IOS XR root file system. Cisco NCS 540 supports only docker-based application hosting.

Docker-Based Container Application Hosting
This section introduces the concept of container application hosting and describes its workflow.

Container application hosting makes it possible for applications to be hosted in their own environment and
process space (namespace) within a Linux container on Cisco IOSXR. The application developer has complete
control over the application development environment, and can use a Linux distribution of choice. The
applications are isolated from the IOS XR control plane processes; yet, they can connect to networks outside
XR through the XR GigE interfaces. The applications can also easily access local file systems on IOS XR.

Using Docker for Hosting Applications on Cisco IOS XR
Docker is a container used for hosting applications on Cisco IOSXR. Docker provides isolation for application
processes from the underlying host processes on XR by using Linux network namespaces.

Need for Docker on Cisco IOS XR

Docker is becoming the industry-preferred packagingmodel for applications in the virtualization space. Docker
provides the foundation for automating application life cycle management.

Docker follows a layered approach that consists of a base image at the bottom that supports layers of applications
on top. The base images are available publicly in a repository, depending on the type of application you want
to install on top. You can manipulate docker images by using the docker index and registry.

Hosting Applications on IOS XR
1

Docker provides a git-like workflow for developing container applications and supports the "thin update"
mechanism, where only the difference in source code is updated, leading to faster upgrades. Docker also
provides the "thin download" mechanism, where newer applications are downloaded faster because of the
sharing of common base docker layers between multiple docker containers. The sharing of docker layers
between multiple docker containers leads to lower footprint for docker containers on XR.

Docker Architecture on Cisco IOS XR

The following figure illustrates the docker architecture on IOS XR.

Figure 1: Docker Workflow for Updating Applications

The application binaries for the applications to be hosted are installed inside the docker container.

Hosting Applications in Docker Containers

The following figure illustrates the workflow for hosting applications in Docker containers on IOS XR.

Figure 2: Docker Workflow for Application Hosting

1. The docker file in the source repository is used to build the application binary file on your (docker engine
build) host machine.

Hosting Applications on IOS XR
2

Hosting Applications on IOS XR
Using Docker for Hosting Applications on Cisco IOS XR

2. The application binary file is pushed into the docker image registry.

3. The application binary file is pulled from the docker image registry and copied to the docker container
on XR (docker engine target host).

4. The application is built and hosted in the docker container on XR.

Updating Applications in Docker Containers

The following figure illustrates the workflow for updating applications hosted in docker containers.

Figure 3: Docker Workflow for Updating Applications

1. The application update is generated as a base libs update file (delta update file) and pushed to the docker
image registry.

2. The delta update file (containing only the difference in application code) is pulled from the docker image
registry and copied to the docker containers on XR (docker engine target host).

3. The docker containers are restarted with the delta update file.

Hosting of TPA Using Application Manager
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

From this release onwards, the
Docker daemon service starts on a
router only if you configure a
third-party hosting application
using the appmgr command. Such
an on-demand service optimizes
operating system resources such as
CPU, memory, and power.

In earlier releases, the Docker
daemon service automatically
started during the router boot up.

Release 7.5.1On-Demand Docker Daemon
Service

In previous releases, the applications were hosted and controlled by the Docker commands. These Docker
commands were executed in the bash shell of the Kernel that also hosted the Cisco IOS XR software. With
the introduction of Application Manager, it is now possible to manage third-party application hosting and
their functioning through Cisco IOS XR CLIs. With this feature, all the activated third party applications can

Hosting Applications on IOS XR
3

Hosting Applications on IOS XR
Hosting of TPA Using Application Manager

restart automatically after a router reload or an RP switchover. This automatic restart of the applications ensure
seamless functioning of the hosted applications.

Supported Commands on Application Manager

For every application manager command or configuration executed, the Application Manager performs the
requested action by interfacing with the Docker daemon through the Docker socket.

The following table lists the Docker container functionalities, the generic Docker commands that were used
in the previous releases, and its equivalent application manager commands that can now be used:

Application Manager CommandsGeneric Docker CommandsFunctionality

Router#appmgr package install
rpm
image_name-0.1.0-XR_7.3.1.x86_64.rpm

NAInstall the
application
RPM

Router#config

Router(config)#appmgr

Router(config-appmgr)#application
app_name

Router(config-application)#activate
type docker source image_name
docker-run-opts "--net=host"
docker-run-cmd "iperf3 -s -d"

Router(config-application)#commit

• Load image -
[xr-vm_node0_RP0_CPU0:~]$docker
load -i /tmp/image_name.tar

• Verify the image on the router -
xr-vm_node0_RP0_CPU0:~]$docker
images ls

• Create container over the image -
[xr-vm_node0_RP0_CPU0:~]$docker
create image_name

• Start container -
[xr-vm_node0_RP0_CPU0:~]$docker
start my_container_id

Configure
and activate
the
application

Router#show appmgr
source-table

Router#show appmgr application
name app_name info summary

Router#show appmgr application
name app_name info detail

Router#show appmgr application
name app_name stats

Router#show appmgr
application-table

Router#show appmgr application
name app_name logs

• List images
-[xr-vm_node0_RP0_CPU0:~]$docker
images ls

• List containers -
[xr-vm_node0_RP0_CPU0:~]$docker
ps

• Statistics
-[xr-vm_node0_RP0_CPU0:~]$docker
stats

• Logs
-[xr-vm_node0_RP0_CPU0:~]$docker
logs

View the list,
statistics,
logs, and
details of the
application
container

Hosting Applications on IOS XR
4

Hosting Applications on IOS XR
Hosting of TPA Using Application Manager

https://docs.docker.com/engine/reference/commandline/docker/

Application Manager CommandsGeneric Docker CommandsFunctionality

Router#appmgr application exec
name app_name docker-exec-cmd

• Execute -
[xr-vm_node0_RP0_CPU0:~]$docker
exec -it my_container_id

Run a new
command
inside a
running
container

Router#appmgr application stop
name app_name

• Stop container -
[xr-vm_node0_RP0_CPU0:~]$docker
stop my_container_id

Stop the
application
container

Router#appmgr application kill
name app_name

• Kill container -
[xr-vm_node0_RP0_CPU0:~]$docker
kill my_container_id

Kill the
application
container

Router#appmgr application
start name app_name

• Start container -
[xr-vm_node0_RP0_CPU0:~]$docker
start my_container_id

Start the
application
container

Router#configure

Router(config)#no appmgr
application app_name

Router(config)#commit

• Stop container -
[xr-vm_node0_RP0_CPU0:~]$docker
stop my_container_id

• Remove container -
[xr-vm_node0_RP0_CPU0:~]$docker
rm my_container_id

• Remove image -
[xr-vm_node0_RP0_CPU0:~]$docker
rmi image_name

Deactivate
the
application

Router#appmgr package
uninstall package
image_name-0.1.0-XR_7.3.1.x86_64

• Uninstall image -
[xr-vm_node0_RP0_CPU0:~]$docker
app uninstall image_name

Uninstall the
application
image/RPM

The usage of the application manager commands are explained in the "Hosting iPerf in Docker Containers to
Monitor Network Performance using Application Manager" section.

Note

Configuring a Docker with Multiple VRFs
This section describes how you can configure a Docker with multiple VRFs on Cisco IOSXR. For information
on configuring multiple VRFs, see Configuring Multiple VRFs for Application Hosting topic.

Configuration

Use the following steps to create and deploy a multi-VRF Docker on XR.

Hosting Applications on IOS XR
5

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

https://docs.docker.com/engine/reference/commandline/docker/
https://www-author3.cisco.com/c/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_0101.html#Cisco_Concept.dita_b8c7e6ae-7c4b-440e-a111-e6eec54f2ffa
https://www-author3.cisco.com/c/en/us/td/docs/iosxr/ncs5500/app-hosting/b-application-hosting-configuration-guide-ncs5500/b-application-hosting-configuration-guide-ncs5500_chapter_0101.html#Cisco_Concept.dita_b8c7e6ae-7c4b-440e-a111-e6eec54f2ffa

1. Create a multi-VRF Docker with NET_ADMIN and SYS_ADMIN privileges.

In the following example, a Docker container containing three VRFs (yellow, blue, and green) is launched.
The example assumes that a previous “multivrfimage” docker image was installed using the appmgr
package install command.
Router# appmgr application multivrfcontainer activate type docker source multivrfimage
docker-run-opts “-td --net=host --name multivrfcontainer1
-v /var/run/netns/yellow:/var/run/netns/yellow
-v /var/run/netns/blue:/var/run/netns/blue
-v /var/run/netns/green:/var/run/netns/green
--cap-add NET_ADMIN --cap-add SYS_ADMIN”

• Mounting the entire content of /var/run/netns from host to Docker is not recommended, because it
mounts the content of netns corresponding to XR and the system admin plane into the Docker.

• You should not delete a VRF from Cisco IOS XR when it is used in a Docker. If one or more VRFs are
deleted from XR, the multi-VRF Docker cannot be launched.

Note

2. Verify if the multi-VRF Docker has been successfully loaded.
Router# show appmgr application-table
Name Type Config State Status
---- ------ ------------ --
multivrfcontainer Docker Activated Up About a minute

3. Connect to the multi-VRF Docker container by executing the following command.
Router# appmgr application exec name multivrfcontainer1 docker-exec-cmd /bin/bash/

By default, the Docker is loaded in global-vrf namespace on Cisco IOS XR.

4. Verify if the multiple VRFs are accessible from the Docker.
root@host:/# ifconfig
fwd_ew Link encap:Ethernet HWaddr 00:00:00:00:00:0b

inet6 addr: fe80::200:ff:fe00:b/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

fwdintf Link encap:Ethernet HWaddr 00:00:00:00:00:0a
inet6 addr: fe80::200:ff:fe00:a/64 Scope:Link
UP RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2 errors:0 dropped:1 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:140 (140.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Hosting Applications on IOS XR
6

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

root@host:/# ip netns list
yellow
green
blue

root@host:/# /sbin/ip netns exec green bash
root@host:/# ifconfig -a
lo Link encap:Local Loopback

LOOPBACK MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@host:/# ifconfig lo up
root@host:/# ifconfig lo 127.0.0.2/32
root@host:/# ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.2 Mask:0.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

[host:/misc/app_host]$ ip netns exec green bash
[host:/misc/app_host]$ ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.2 Mask:0.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

You have successfully launched a multi-VRF Docker on Cisco IOS XR.

Hosting Applications on IOS XR
7

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

Hosting Applications on IOS XR
8

Hosting Applications on IOS XR
Configuring a Docker with Multiple VRFs

	Hosting Applications on IOS XR
	Application Hosting Using Docker Containers
	Docker-Based Container Application Hosting
	Using Docker for Hosting Applications on Cisco IOS XR
	Hosting of TPA Using Application Manager
	Configuring a Docker with Multiple VRFs

