
Implementing Routing Policy

A routing policy instructs the router to inspect routes, filter them, and potentially modify their attributes as
they are accepted from a peer, advertised to a peer, or redistributed from one routing protocol to another.

This module describes how routing protocols make decisions to advertise, aggregate, discard, distribute,
export, hold, import, redistribute and modify the routes based on configured routing policy.

The routing policy language (RPL) provides a single, straightforward language in which all routing policy
needs can be expressed. RPL was designed to support large-scale routing configurations. It greatly reduces
the redundancy inherent in previous routing policy configurationmethods. RPL streamlines the routing policy
configuration, reduces system resources required to store and process these configurations, and simplifies
troubleshooting.

• Restrictions for Implementing Routing Policy, on page 1
• Define Route Policy, on page 2
• Attach Routing Policy to BGP Neighbor, on page 3
• Modify Routing Policy Using Text Editor, on page 5
• References for Routing Policy, on page 8

Restrictions for Implementing Routing Policy
These restrictions apply when working with Routing Policy Language implementation:

• Border Gateway Protocol (BGP), integrated Intermediate System-to-Intermediate System (IS-IS), or
Open Shortest Path First (OSPF) must be configured in your network.

• An individual policy definition of up to 1000 statements are supported. The total number of statements
within a policy can be extended to 4000 statements using hierarchical policy constructs. However, this
limit is restricted with the use of apply statements.

• When a policy that is attached directly or indirectly to an attach point needs to be modified, a single
commit operation cannot be performed when:

• Removing a set or policy referred by another policy that is attached to any attach point directly or
indirectly.

• Modifying the policy to remove the reference to the same set or policy that is getting removed.

The commit must be performed in two steps:

Implementing Routing Policy
1

1. Modify the policy to remove the reference to the policy or set and then commit.

2. Remove the policy or set and commit.

• Per-vrf label mode is not supported for Carrier Supporting Carrier (CSC) network with internal and
external BGP multipath setup.

• You cannot change the next hop address to an IPv6 address through RPL policy for a route that starts
from an IPv4 peer.

Define Route Policy
This task explains how to define a route policy.

• If you want to modify an existing routing policy using the command-line interface (CLI), you must
redefine the policy by completing this task.

• Modifying the RPL scale configuration may take a long time.

• BGPmay crash either due to large scale RPL configuration changes, or during consecutive RPL changes.
To avoid BGP crash, wait until there are no messages in the BGP In/Out queue before committing further
changes.

Note

You can programmatically configure the route policy using openconfig-routing-policy.yang OpenConfig
data model. To get started with using data models, see the Programmability Configuration Guide for Cisco
NCS 540 Series Routers.

Tip

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 route-policy name [parameter1 , parameter2 , . . . , parameterN]

Example:

RP/0/RP0/CPU0:router(config)# route-policy sample1

Enters route-policy configuration mode.

• After the route-policy has been entered, a group of commands can be entered to define the route-policy.

Implementing Routing Policy
2

Implementing Routing Policy
Define Route Policy

Step 3 end-policy

Example:

RP/0/RP0/CPU0:router(config-rpl)# end-policy

Ends the definition of a route policy and exits route-policy configuration mode.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Routing Policy Definition: Example

In the following example, a BGP route policy named sample1 is defined using the route-policy name
command. The policy compares the network layer reachability information (NLRI) to the elements
in the prefix set test. If it evaluates to true, the policy performs the operations in the then clause. If
it evaluates to false, the policy performs the operations in the else clause, that is, sets the MED value
to 200 and adds the community 2:100 to the route. The final steps of the example commit the
configuration to the router, exit configuration mode, and display the contents of route policy sample1.

configure
route-policy sample1
if destination in test then
drop
else
set med 200
set community (2:100) additive
endif
end-policy
end
show config running route-policy sample1
Building configuration...
route-policy sample1
if destination in test then
drop
else
set med 200
set community (2:100) additive
endif
end-policy

Attach Routing Policy to BGP Neighbor
This task explains how to attach a routing policy to a BGP neighbor.

Implementing Routing Policy
3

Implementing Routing Policy
Attach Routing Policy to BGP Neighbor

Before you begin

A routing policy must be preconfigured and well defined prior to it being applied at an attach point. If a policy
is not predefined, an error message is generated stating that the policy is not defined.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 125

Configures a BGP routing process and enters router configuration mode.

• The as-number argument identifies the autonomous system in which the router resides. Valid values are
from 0 to 65535. Private autonomous system numbers that can be used in internal networks range from
64512 to 65535.

Step 3 neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.20

Specifies a neighbor IP address.

Step 4 address-family { ipv4 unicast | | ipv6 unicast | } address-family { ipv4 | ipv6 } unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

Specifies the address family.

Step 5 route-policy policy-name { in | out }

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy example1 in

Attaches the route-policy, which must be well formed and predefined.

Step 6 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

Implementing Routing Policy
4

Implementing Routing Policy
Attach Routing Policy to BGP Neighbor

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Modify Routing Policy Using Text Editor
This task explains how to modify an existing routing policy using a text editor.

Procedure

Step 1 edit { route-policy | prefix-set | as-path-set | community-set | extcommunity-set { rt | soo } |
policy-global | rd-set } name [nano | emacs | vim | inline { add | prepend | remove } set-element
]

Example:

RP/0/RP0/CPU0:router# edit route-policy sample1

Identifies the route policy, prefix set, AS path set, community set, or extended community set name to be
modified.

• A copy of the route policy, prefix set, AS path set, community set, or extended community set is copied
to a temporary file and the editor is launched.

• After editing with Nano, save the editor buffer and exit the editor by using the Ctrl-X keystroke.

• After editing with Emacs, save the editor buffer by using the Ctrl-X and Ctrl-S keystrokes. To save and
exit the editor, use the Ctrl-X and Ctrl-C keystrokes.

• After editing with Vim, to write to a current file and exit, use the :wq or :x or ZZ keystrokes. To quit and
confirm, use the :q keystrokes. To quit and discard changes, use the :q! keystrokes.

Step 2 show rpl route-policy [name [detail] | states | brief]

Example:

RP/0/RP0/CPU0:router# show rpl route-policy sample2

(Optional) Displays the configuration of a specific named route policy.

• Use the detail keyword to display all policies and sets that a policy uses.

• Use the states keyword to display all unused, inactive, and active states.

• Use the brief keyword to list the names of all extended community sets without their configurations.

Step 3 show rpl prefix-set [name | states | brief]

Example:

RP/0/RP0/CPU0:router# show rpl prefix-set prefixset1

Implementing Routing Policy
5

Implementing Routing Policy
Modify Routing Policy Using Text Editor

(Optional) Displays the contents of a named prefix set.

• To display the contents of a named AS path set, community set, or extended community set, replace the
prefix-set keyword with as-path-set , community-set , or extcommunity-set , respectively.

Simple Inbound Policy: Example

The following policy discards any route whose network layer reachability information (NLRI)
specifies a prefix longer than /24, and any route whose NLRI specifies a destination in the address
space reserved by RFC 1918. For all remaining routes, it sets the MED and local preference, and
adds a community to the list in the route.

For routes whose community lists include any values in the range from 101:202 to 106:202 that have
a 16-bit tag portion containing the value 202, the policy prepends autonomous system number 2
twice, and adds the community 2:666 to the list in the route. Of these routes, if the MED is either
666 or 225, then the policy sets the origin of the route to incomplete, and otherwise sets the origin
to IGP.

For routes whose community lists do not include any of the values in the range from 101:202 to
106:202, the policy adds the community 2:999 to the list in the route.

prefix-set too-specific
0.0.0.0/0 ge 25 le 32
end-set

prefix-set rfc1918
10.0.0.0/8 le 32,
172.16.0.0/12 le 32,
192.168.0.0/16 le 32
end-set

route-policy inbound-tx
if destination in too-specific or destination in rfc1918 then
drop
endif
set med 1000
set local-preference 90
set community (2:1001) additive
if community matches-any ([101..106]:202) then
prepend as-path 2.30 2
set community (2:666) additive
if med is 666 or med is 225 then
set origin incomplete
else
set origin igp
endif
else
set community (2:999) additive
endif
end-policy

router bgp 2
neighbor 10.0.1.2 address-family ipv4 unicast route-policy inbound-tx in

The following policy example shows how to build two inbound policies, in-100 and in-101, for two
different peers. In building the specific policies for those peers, the policy reuses some common

Implementing Routing Policy
6

Implementing Routing Policy
Modify Routing Policy Using Text Editor

blocks of policy that may be common to multiple peers. It builds a few basic building blocks, the
policies common-inbound, filter-bogons, and set-lpref-prepend.

The filter-bogons building block is a simple policy that filters all undesirable routes, such as those
from the RFC 1918 address space. The policy set-lpref-prepend is a utility policy that can set the
local preference and prepend the AS path according to parameterized values that are passed in. The
common-inbound policy uses these filter-bogons building blocks to build a common block of inbound
policy. The common-inbound policy is used as a building block in the construction of in-100 and
in-101 along with the set-lpref-prepend building block.

prefix-set bogon
10.0.0.0/8 ge 8 le 32,
0.0.0.0,
0.0.0.0/0 ge 27 le 32,
192.168.0.0/16 ge 16 le 32

end-set
!
route-policy in-100
apply common-inbound
if community matches-any ([100..120]:135) then
apply set-lpref-prepend (100,100,2)
set community (2:1234) additive

else
set local-preference 110

endif
if community matches-any ([100..666]:[100..999]) then
set med 444
set local-preference 200
set community (no-export) additive

endif
end-policy
!
route-policy in-101
apply common-inbound
if community matches-any ([101..200]:201) then
apply set-lpref-prepend(100,101,2)
set community (2:1234) additive

else
set local-preference 125

endif
end-policy
!
route-policy filter-bogons
if destination in bogon then

drop
else
pass
endif

end-policy
!
route-policy common-inbound
apply filter-bogons
set origin igp
set community (2:333)

end-policy
!
route-policy set-lpref-prepend($lpref,$as,$prependcnt)
set local-preference $lpref
prepend as-path $as $prependcnt

end-policy

Implementing Routing Policy
7

Implementing Routing Policy
Modify Routing Policy Using Text Editor

References for Routing Policy
To implement RPL, you need to understand the following concepts:

Routing Policy Language
This section contains the following information:

Routing Policy Language Overview
RPL was developed to support large-scale routing configurations. RPL has several fundamental capabilities
that differ from those present in configurations oriented to traditional route maps, access lists, and prefix lists.
The first of these capabilities is the ability to build policies in a modular form. Common blocks of policy can
be defined and maintained independently. These common blocks of policy can then be applied from other
blocks of policy to build complete policies. This capability reduces the amount of configuration information
that needs to be maintained. In addition, these common blocks of policy can be parameterized. This
parameterization allows for policies that share the same structure but differ in the specific values that are set
or matched against to be maintained as independent blocks of policy. For example, three policies that are
identical in every way except for the local preference value they set can be represented as one common
parameterized policy that takes the varying local preference value as a parameter to the policy.

The policy language introduces the notion of sets. Sets are containers of similar data that can be used in route
attribute matching and setting operations. Four set types exist: prefix-sets, community-sets, as-path-sets, and
extcommunity-sets. These sets hold groupings of IPv4 or IPv6 prefixes, community values, AS path regular
expressions, and extended community values, respectively. Sets are simply containers of data. Most sets also
have an inline variant. An inline set allows for small enumerations of values to be used directly in a policy
rather than having to refer to a named set. Prefix lists, community lists, and AS path lists must be maintained
even when only one or two items are in the list. An inline set in RPL allows the user to place small sets of
values directly in the policy body without having to refer to a named set.

Decision making, such as accept and deny, is explicitly controlled by the policy definitions themselves. RPL
combines matching operators, which may use set data, with the traditional Boolean logic operators AND, OR,
and NOT into complex conditional expressions. All matching operations return a true or false result. The
execution of these conditional expressions and their associated actions can then be controlled by using simple
if then, elseif, and else structures, which allow the evaluation paths through the policy to be fully specified
by the user.

Routing Policy Language Structure
This section describes the basic structure of RPL.

Names

The policy language provides two kinds of persistent, namable objects: sets and policies. Definition of these
objects is bracketed by beginning and ending command lines. For example, to define a policy named test, the
configuration syntax would look similar to the following:

route-policy test
[. . . policy statements . . .]
end-policy

Implementing Routing Policy
8

Implementing Routing Policy
References for Routing Policy

Legal names for policy objects can be any sequence of the upper- and lowercase alphabetic characters; the
numerals 0 to 9; and the punctuation characters period, hyphen, and underscore. A name must begin with a
letter or numeral.

Sets

In this context, the term set is used in its mathematical sense to mean an unordered collection of unique
elements. The policy language provides sets as a container for groups of values for matching purposes. Sets
are used in conditional expressions. The elements of the set are separated by commas. Null (empty) sets are
allowed.

In the following example:

prefix-set backup-routes
currently no backup routes are defined

end-set

a condition such as:

if destination in backup-routes then

evaluates as FALSE for every route, because there is no match-condition in the prefix set that it satisfies.

You may want to perform comparisons against a small number of elements, such as two or three community
values, for example. To allow for these comparisons, the user can enumerate these values directly. These
enumerations are referred to as inline sets. Functionally, inline sets are equivalent to named sets, but allow
for simple tests to be inline. Thus, comparisons do not require that a separate named set be maintained when
only one or two elements are being compared. See the set types described in the following sections for the
syntax. In general, the syntax for an inline set is a comma-separated list surrounded by parentheses, where
element-entry is an entry of an item appropriate to the type of usage such as a prefix or a community value.

The following is an example using an inline community set:

route-policy sample-inline
if community matches-any ([10..15]:100) then
set local-preference 100
endif
end-policy

The following is an equivalent example using the named set test-communities:

community-set test-communities
10:100,
11:100,
12:100,
13:100,
14:100,
15:100
end-set

route-policy sample

Implementing Routing Policy
9

Implementing Routing Policy
Sets

if community matches-any test-communities then
set local-preference 100
endif
end-policy

Both of these policies are functionally equivalent, but the inline form does not require the configuration of
the community set just to store the six values. You can choose the form appropriate to the configuration
context. In the following sections, examples of both the named set version and the inline form are provided
where appropriate.

as-path-set

An AS path set comprises operations for matching an AS path attribute. The only matching operation is a
regular expression match.

Named Set Form

The named set form uses the ios-regex keyword to indicate the type of regular expression and requires single
quotation marks around the regular expression.

The following is a sample definition of a named AS path set:

as-path-set aset1
ios-regex ’_42$’,
ios-regex ’_127$’
end-set

This AS path set comprises two elements. When used in a matching operation, this AS path set matches any
route whose AS path ends with either the autonomous system (AS) number 42 or 127.

To remove the named AS path set, use the no as-path-set aset1 command-line interface (CLI) command.

Regular expression matching is CPU intensive. The policy performance can be substantially improved by
either collapsing the regular expression patterns together to reduce the total number of regular expression
invocations or by using equivalent native as-path match operations such as ‘as-path neighbor-is’, ‘as-path
originates-from’ or ‘as-path passes-through’.

Note

Inline Set Form

The inline set form is a parenthesized list of comma-separated expressions, as follows:

(ios-regex '_42$', ios-regex '_127$')

This set matches the same AS paths as the previously named set, but does not require the extra effort of
creating a named set separate from the policy that uses it.

Implementing Routing Policy
10

Implementing Routing Policy
as-path-set

community-set

A community-set holds community values for matching against the BGP community attribute. A community
is a 32-bit quantity. Integer community values must be split in half and expressed as two unsigned decimal
integers in the range from 0 to 65535, separated by a colon. Single 32-bit community values are not allowed.
The following is the named set form:

Named Set Form

community-set cset1
12:34,
12:56,
12:78,
internet
end-set

Inline Set Form

(12:34, 12:56, 12:78)
($as:34, $as:$tag1, 12:78, internet)

The inline form of a community-set also supports parameterization. Each 16-bit portion of the community
may be parameterized.

RPL provides symbolic names for the standard well-known community values: internet is 0:0, no-export is
65535:65281, no-advertise is 65535:65282, and local-as is 65535:65283.

RPL also provides a facility for using wildcards in community specifications. A wildcard is specified by
inserting an asterisk (*) in place of one of the 16-bit portions of the community specification; the wildcard
indicates that any value for that portion of the community matches. Thus, the following policy matches all
communities in which the autonomous system part of the community is 123:

community-set cset3
123:*

end-set

Every community set must contain at least one community value. Empty community sets are invalid and are
rejected.

extcommunity-set

An extended community-set is analogous to a community-set except that it contains extended community
values instead of regular community values. It also supports named forms and inline forms. There are three
types of extended community sets: cost, soo, and rt.

As with community sets, the inline form supports parameterization within parameterized policies. Either
portion of the extended community value can be parameterized.

Wildcards (*) and regular expressions are allowed for extended community set elements.

Every extended community-set must contain at least one extended community value. Empty extended
community-sets are invalid and rejected.

Implementing Routing Policy
11

Implementing Routing Policy
community-set

The following are syntactic examples:

Named Form for Extcommunity-set RT

An rt set is an extcommunity set used to store BGPRoute Target (RT) extended community type communities:

extcommunity-set rt a_rt_set
1.2.3.4:666
1234:666,
1.2.3.4:777,
4567:777

end-set

Inline Set Form for Extcommunity-set RT

(1.2.3.4:666, 1234:666, 1.2.3.4:777, 4567:777)
($ipadrr:666, 1234:$tag, 1.2.3.4:777, $tag2:777)

These options are supported under extended community set RT:

RP/0/RP0/CPU0:router(config)#extcommunity-set rt rt_set
RP/0/RP0/CPU0:router(config-ext)#?
#-remark Remark beginning with '#'
* Wildcard (any community or part thereof)
<1-4294967295> 32-bit decimal number
<1-65535> 16-bit decimal number
A.B.C.D/M:N Extended community - IPv4 prefix format
A.B.C.D:N Extended community - IPv4 format
ASN:N Extended community - ASPLAIN format
X.Y:N Extended community - ASDOT format
abort Discard RPL definition and return to top level config
dfa-regex DFA style regular expression
end-set End of set definition
exit Exit from this submode
ios-regex Traditional IOS style regular expression
show Show partial RPL configuration

DescriptionOption

Remark beginning with '#'#-remark

Wildcard (any community or part thereof)*

32-bit decimal number<1-4294967295>

16-bit decimal number<1-65535>

Extended community - IPv4 prefix formatA.B.C.D/M:N

Extended community - IPv4 formatA.B.C.D:N

Extended community - ASPLAIN formatASN:N

Extended community - ASDOT formatX.Y:N

Discard RPL definition and return to top level configabort

DFA style regular expressiondfa-regex

End of set definitionend-set

Implementing Routing Policy
12

Implementing Routing Policy
extcommunity-set

DescriptionOption

Exit from this submodeexit

Traditional IOS style regular expressionios-regex

Show partial RPL configurationshow

Named Form for Extcommunity-set Soo

A soo set is an extcommunity set used to store BGP Site-of-Origin (SoO) extended community type
communities:

extcommunity-set soo a_soo_set
1.1.1:100,

100:200
end-set

These options are supported under extended community set Soo:

RP/0/RP0/CPU0:router(config)#extcommunity-set soo soo_set
RP/0/RP0/CPU0:router(config-ext)#?
#-remark Remark beginning with '#'
* Wildcard (any community or part thereof)
<1-4294967295> 32-bit decimal number
<1-65535> 16-bit decimal number
A.B.C.D/M:N Extended community - IPv4 prefix format
A.B.C.D:N Extended community - IPv4 format
ASN:N Extended community - ASPLAIN format
X.Y:N Extended community - ASDOT format
abort Discard RPL definition and return to top level config
dfa-regex DFA style regular expression
end-set End of set definition
exit Exit from this submode
ios-regex Traditional IOS style regular expression
show Show partial RPL configuration

DescriptionOption

Remark beginning with '#'#-remark

Wildcard (any community or part thereof)*

32-bit decimal number<1-4294967295>

16-bit decimal number<1-65535>

Extended community - IPv4 prefix formatA.B.C.D/M:N

Extended community - IPv4 formatA.B.C.D:N

Extended community - ASPLAIN formatASN:N

Extended community - ASDOT formatX.Y:N

Discard RPL definition and return to top level configabort

DFA style regular expressiondfa-regex

End of set definitionend-set

Implementing Routing Policy
13

Implementing Routing Policy
extcommunity-set

DescriptionOption

Exit from this submodeexit

Traditional IOS style regular expressionios-regex

Show partial RPL configurationshow

prefix-set

A prefix-set holds IPv4 or IPv6 prefix match specifications, each of which has four parts: an address, a mask
length, a minimum matching length, and a maximum matching length. The address is required, but the other
three parts are optional. The address is a standard dotted-decimal IPv4 or colon-separated hexadecimal IPv6
address. The mask length, if present, is a nonnegative decimal integer in the range from 0 to 32 (0 to 128 for
IPv6) following the address and separated from it by a slash. The optional minimum matching length follows
the address and optional mask length and is expressed as the keyword ge (mnemonic for greater than or equal
to), followed by a nonnegative decimal integer in the range from 0 to 32 (0 to 128 for IPv6). The optional
maximum matching length follows the rest and is expressed by the keyword le (mnemonic for less than or
equal to), followed by yet another nonnegative decimal integer in the range from 0 to 32 (0 to 128 for IPv6).
A syntactic shortcut for specifying an exact length for prefixes to match is the eq keyword (mnemonic for
equal to).

If a prefix match specification has no mask length, then the default mask length is 32 for IPv4 and 128 for
IPv6. The default minimum matching length is the mask length. If a minimum matching length is specified,
then the default maximum matching length is 32 for IPv4 and 128 for IPv6. Otherwise, if neither minimum
nor maximum is specified, the default maximum is the mask length.

The prefix-set itself is a comma-separated list of prefix match specifications. The following are examples:

prefix-set legal-ipv4-prefix-examples
10.0.1.1,
10.0.2.0/24,
10.0.3.0/24 ge 28,
10.0.4.0/24 le 28,
10.0.5.0/24 ge 26 le 30,
10.0.6.0/24 eq 28,
10.0.7.2/32 ge 16 le 24,
10.0.8.0/26 ge 8 le 16

end-set

prefix-set legal-ipv6-prefix-examples
2001:0:0:1::/64,
2001:0:0:2::/64 ge 96,
2001:0:0:2::/64 ge 96 le 100,
2001:0:0:2::/64 eq 100

end-set

The first element of the prefix-set matches only one possible value, 10.0.1.1/32 or the host address 10.0.1.1.
The second element matches only one possible value, 10.0.2.0/24. The third element matches a range of prefix
values, from 10.0.3.0/28 to 10.0.3.255/32. The fourth element matches a range of values, from 10.0.4.0/24 to
10.0.4.240/28. The fifth element matches prefixes in the range from 10.0.5.0/26 to 10.0.5.252/30. The sixth
element matches any prefix of length 28 in the range from 10.0.6.0/28 through 10.0.6.240/28. The seventh
element matches any prefix of length 32 in the range 10.0.[0..255].2/32 (from 10.0.0.2/32 to 10.0.255.2). The
eighth element matches any prefix of length 26 in the range 10.[0..255].8.0/26 (from 10.0.8.0/26 to
10.255.8.0/26).

Implementing Routing Policy
14

Implementing Routing Policy
prefix-set

The following prefix-set consists entirely of invalid prefix match specifications:

prefix-set ILLEGAL-PREFIX-EXAMPLES
10.1.1.1 ge 16,
10.1.2.1 le 16,
10.1.3.0/24 le 23,
10.1.4.0/24 ge 33,
10.1.5.0/25 ge 29 le 28

end-set

Neither the minimum length nor maximum length is valid without a mask length. For IPv4, the minimum
length must be less than 32, the maximum length of an IPv4 prefix. For IPv6, the minimum length must be
less than 128, the maximum length of an IPv6 prefix. The maximum length must be equal to or greater than
the minimum length.

ACL Support in RPL Prefix Sets

Access Control List (ACL) type prefix set entries holds IPv4 or IPv6 prefix match specifications, each of
which has an address and a wildcard mask. The address and wildcard mask is a standard dotted-decimal IPv4
or colon-separated hexadecimal IPv6 address. The set of bits to be matched are provided in the form of wildcard
also called as inverted mask in which a binary 0 means a mandatory match and binary 1 means a do not match
condition. The prefix set allows to specify contiguous and non-contiguous set of bits that should be matched
in any route.

rd-set

An rd-set is used to create a set with route distinguisher (RD) elements. An RD set is a 64-bit value prepended
to an IPv4 address to create a globally unique Border Gateway Protocol (BGP) VPN IPv4 address.

You can define RD values with the following commands:

• a.b.c.d:m:*—BGPVPNRD in IPv4 format with awildcard character. For example, 10.0.0.2:255.255.0.0:*.

• a.b.c.d/m:n—BGP VPN RD in IPv4 format with a mask. For example, 10.0.0.2:255.255.0.0:666.

• a.b.c.d:**—BGPVPNRD in IPv4 format with a wildcard character. For example, 10.0.0.2:255.255.0.0.

• a.b.c.d:n—BGP VPN RD in IPv4 format. For example, 10.0.0.2:666.

• asn:*— BGP VPN RD in ASN format with a wildcard character. For example, 10002:255.255.0.0.

• asn:n—BGP VPN RD in ASN format. For example, 10002:666.

The following is an example of an rd-set:

rd-set rdset1
10.0.0.0/8:*,
10.0.0.0/8:777,
10.0.0.0:*,
10.0.0.0:777,
65000:*,
65000:777

end-set

Implementing Routing Policy
15

Implementing Routing Policy
ACL Support in RPL Prefix Sets

Routing Policy Language Components
Four main components in the routing policy language are involved in defining, modifying, and using policies:
the configuration front end, policy repository, execution engine, and policy clients themselves.

The configuration front end (CLI) is the mechanism to define and modify policies. This configuration is then
stored on the router using the normal storage means and can be displayed using the normal configuration
show commands.

The second component of the policy infrastructure, the policy repository, has several responsibilities. First,
it compiles the user-entered configuration into a form that the execution engine can understand. Second, it
performs much of the verification of policies; and it ensures that defined policies can actually be executed
properly. Third, it tracks which attach points are using which policies so that when policies are modified the
appropriate clients are properly updated with the new policies relevant to them.

The third component is the execution engine. This component is the piece that actually runs policies as the
clients request. The process can be thought of as receiving a route from one of the policy clients and then
executing the actual policy against the specific route data.

The fourth component is the policy clients (the routing protocols). This component calls the execution engine
at the appropriate times to have a given policy be applied to a given route, and then perform some number of
actions. These actions may include deleting the route if policy indicated that it should be dropped, passing
along the route to the protocol decision tree as a candidate for the best route, or advertising a policy modified
route to a neighbor or peer as appropriate.

Routing Policy Language Usage
This section provides basic routing policy language usage examples.

Pass PolicyPass Policy

The following example shows how the policy accepts all presented routes without modifying the routes.

route-policy quickstart-pass
pass
end-policy

Drop Everything Policy

The following example shows how the policy explicitly rejects all routes presented to it. This type of policy
is used to ignore everything coming from a specific peer.

route-policy quickstart-drop
drop
end-policy

Ignore Routes with Specific AS Numbers in the Path

The following example shows the policy definition in three parts. First, the as-path-set command defines
three regular expressions to match against an AS path. Second, the route-policy command applies the AS
path set to a route. If the AS path attribute of the route matches the regular expression defined with the
as-path-set command, the protocol refuses the route. Third, the route policy is attached to BGP neighbor
10.0.1.2. BGP consults the policy named ignore_path_as on routes received (imported) from neighbor 10.0.1.2.

Implementing Routing Policy
16

Implementing Routing Policy
Routing Policy Language Components

as-path-set ignore_path
ios-regex '_11_',
ios-regex '_22_',
ios-regex '_33_'
end-set

route-policy ignore_path_as
if as-path in ignore_path then
drop
else
pass
endif
end-policy

router bgp 2
neighbor 10.0.1.2 address-family ipv4 unicast policy ignore_path_as in

Set Community Based on MED

The following example shows how the policy tests the MED of a route and modifies the community attribute
of the route based on the value of the MED. If the MED value is 127, the policy adds the community 123:456
to the route. If the MED value is 63, the policy adds the value 123:789 to the community attribute of the route.
Otherwise, the policy removes the community 123:123 from the route. In any case, the policy instructs the
protocol to accept the route.

route-policy quickstart-med
if med eq 127 then
set community (123:456) additive
elseif med eq 63 then
set community (123:789) additive
else
delete community in (123:123)
endif
pass
end-policy

Set Local Preference Based on Community

The following example shows how the community-set named quickstart-communities defines community
values. The route policy named quickstart-localpref tests a route for the presence of the communities specified
in the quickstart-communities community set. If any of the community values are present in the route, the
route policy sets the local preference attribute of the route to 31. In any case, the policy instructs the protocol
to accept the route.

community-set quickstart-communities
987:654,
987:543,
987:321,
987:210
end-set

route-policy quickstart-localpref
if community matches-any quickstart-communities then
set local-preference 31
endif
pass

Implementing Routing Policy
17

Implementing Routing Policy
Routing Policy Language Usage

end-policy

Persistent Remarks

The following example shows how comments are placed in the policy to clarify the meaning of the entries in
the set and the statements in the policy. The remarks are persistent, meaning they remain attached to the policy.
For example, remarks are displayed in the output of the show running-config command. Adding remarks to
the policy makes the policy easier to understand, modify at a later date, and troubleshoot if an unexpected
behavior occurs.

prefix-set rfc1918
These are the networks defined as private in RFC1918 (including
all subnets thereof)
10.0.0.0/8 ge 8,
172.16.0.0/12 ge 12,
192.168.0.0/16 ge 16
end-set

route-policy quickstart-remarks
Handle routes to RFC1918 networks
if destination in rfc1918 then
Set the community such that we do not export the route
set community (no-export) additive

endif
end-policy

Policy Definitions
Policy definitions create named sequences of policy statements. A policy definition consists of the CLI
route-policy keyword followed by a name, a sequence of policy statements, and the end-policy keyword.
For example, the following policy drops any route it encounters:

route-policy drop-everything
drop
end-policy

The name serves as a handle for binding the policy to protocols. To remove a policy definition, issue the no
route-policy name command.

Policies may also refer to other policies such that common blocks of policy can be reused. This reference to
other policies is accomplished by using the apply statement, as shown in the following example:

route-policy check-as-1234
if as-path passes-through ‘1234.5’ then
apply drop-everything
else
pass
endif
end-policy

Implementing Routing Policy
18

Implementing Routing Policy
Policy Definitions

The apply statement indicates that the policy drop-everything should be executed if the route under
consideration passed through autonomous system 1234.5 before it is received. If a route that has autonomous
system 1234.5 in its AS path is received, the route is dropped; otherwise, the route is accepted without
modification. This policy is an example of a hierarchical policy. Thus, the semantics of the apply statement
are just as if the applied policy were cut and pasted into the applying policy:

route-policy check-as-1234-prime
if as-path passes-through '1234.5' then

drop
else

pass
endif
end-policy

You may have as many levels of hierarchy as desired. However, many levels may be difficult to maintain and
understand.

Parameterization
In addition to supporting reuse of policies using the apply statement, policies can be defined that allow for
parameterization of some of the attributes. The following example shows how to define a parameterized policy
named param-example. In this case, the policy takes one parameter, $mytag. Parameters always begin with
a dollar sign and consist otherwise of any alphanumeric characters. Parameters can be substituted into any
attribute that takes a parameter.

In the following example, a 16-bit community tag is used as a parameter:

route-policy param-example ($mytag)
set community (1234:$mytag) additive
end-policy

This parameterized policy can then be reused with different parameterization, as shown in the following
example. In this manner, policies that share a common structure but use different values in some of their
individual statements can be modularized. For details on which attributes can be parameterized, see the
individual attribute sections.

route-policy origin-10
if as-path originates-from ‘10.5’ then
apply param-example(10.5)
else
pass
endif
end-policy

route-policy origin-20
if as-path originates-from ‘20.5’ then
apply param-example(20.5)
else
pass
endif
end-policy

Implementing Routing Policy
19

Implementing Routing Policy
Parameterization

The parameterized policy param-example provides a policy definition that is expanded with the values provided
as the parameters in the apply statement. Note that the policy hierarchy is always maintained, Thus, if the
definition of param-example changes, then the behavior of origin_10 and origin_20 changes to match.

The effect of the origin-10 policy is that it adds the community 1234:10 to all routes that pass through this
policy and have an AS path indicating the route originated from autonomous system 10. The origin-20 policy
is similar except that it adds to community 1234:20 for routes originating from autonomous system 20.

Parameterization at Attach Points
In addition to supporting parameterization using the apply statement, policies can also be defined that allow
for parameterization the attributes at attach points. Parameterization is supported at all attach points.

In the following example, we define a parameterized policy "param-example". In this example, the policy
takes two parameters "$mymed" and “$prefixset”. Parameters always begin with a dollar sign, and consist
otherwise of any alphanumeric characters. Parameters can be substituted into any attribute that takes a parameter.
In this example we are passing a MED value and prefix set name as parameters.

route-policy param-example ($mymed, $prefixset)
if destination in $prefixset then
set med $mymed
endif

end-policy

This parameterized policy can then be reused with different parameterizations as shown in the example below.
In this manner, policies that share a common structure but use different values in some of their individual
statements can be modularized. For details on which attributes can be parameterized, see the individual
attributes for each protocol.

router bgp 2
neighbor 10.1.1.1
remote-as 3
address-family ipv4 unicast
route-policy param-example(10, prefix_set1)
route-policy param-example(20, prefix_set2)

The parameterized policy param-example provides a policy definition that is expanded with the values provided
as the parameters in the neighbor route-policy in and out statement.

Global Parameterization
RPL supports the definition of systemwide global parameters that can be used inside policy definition. Global
parameters can be configured as follows:

Policy-global
glbpathtype ‘ebgp’
glbtag ‘100’

end-global

Implementing Routing Policy
20

Implementing Routing Policy
Parameterization at Attach Points

The global parameter values can be used directly inside a policy definition similar to the local parameters of
parameterized policy. In the following example, the globalparam argument, which makes use of the global
parameters gbpathtype and glbtag, is defined for a nonparameterized policy.

route-policy globalparam
if path-type is $glbpathtype then
set tag $glbtag

endif
end-policy

When a parameterized policy has a parameter name “collision” with a global parameter name, parameters
local to policy definition take precedence, effectively masking off global parameters. In addition, a validation
mechanism is in place to prevent the deletion of a particular global parameter if it is referred by any policy.

Semantics of Policy Application
This section discusses how routing policies are evaluated and applied. The following concepts are discussed:

Boolean Operator Precedence
Boolean expressions are evaluated in order of operator precedence, from left to right. The highest precedence
operator is NOT, followed by AND, and then OR. The following expression:

med eq 10 and not destination in (10.1.3.0/24) or community matches-any ([10..25]:35)

if fully parenthesized to display the order of evaluation, would look like this:

(med eq 10 and (not destination in (10.1.3.0/24))) or community matches-any ([10..25]:35)

The inner NOT applies only to the destination test; the AND combines the result of the NOT expression with
the Multi Exit Discriminator (MED) test; and the OR combines that result with the community test. If the
order of operations are rearranged:

not med eq 10 and destination in (10.1.3.0/24) or community matches-any ([10..25]:35)

then the expression, fully parenthesized, would look like the following:
((not med eq 10) and destination in (10.1.3.0/24)) or community matches-any ([10..25]:35)

Multiple Modifications of Same Attribute
When a policy replaces the value of an attribute multiple times, the last assignment wins because all actions
are executed. Because the MED attribute in BGP is one unique value, the last value to which it gets set to
wins. Therefore, the following policy results in a route with a MED value of 12:

set med 9
set med 10

Implementing Routing Policy
21

Implementing Routing Policy
Semantics of Policy Application

set med 11
set med 12

This example is trivial, but the feature is not. It is possible to write a policy that effectively changes the value
for an attribute. For example:

set med 8
if community matches-any cs1 then
set local-preference 122
if community matches-any cs2 then
set med 12
endif
endif

The result is a route with a MED of 8, unless the community list of the route matches both cs1 and cs2, in
which case the result is a route with a MED of 12.

In the case in which the attribute being modified can contain only one value, it is easy to think of this case as
the last statement wins. However, a few attributes can contain multiple values and the result of multiple actions
on the attribute is cumulative rather than as a replacement. The first of these cases is the use of the additive
keyword on community and extended community evaluation. Consider a policy of the form:

route-policy community-add
set community (10:23)
set community (10:24) additive
set community (10:25) additive
end-policy

This policy sets the community string on the route to contain all three community values: 10:23, 10:24, and
10:25.

The second of these cases is AS path prepending. Consider a policy of the form:

route-policy prepend-example
prepend as-path 2.5 3
prepend as-path 666.5 2
end-policy

This policy prepends 666.5 666.5 2.5 2.5 2.5 to the AS path. This prepending is a result of all actions being
taken and to the AS path being an attribute that contains an array of values rather than a simple scalar value.

When Attributes Are Modified
A policy does not modify route attribute values until all tests have been completed. In other words, comparison
operators always run on the initial data in the route. Intermediate modifications of the route attributes do not
have a cascading effect on the evaluation of the policy. Take the following example:

ifmed eq 12 then
set med 42
if med eq 42 then
drop

Implementing Routing Policy
22

Implementing Routing Policy
When Attributes Are Modified

endif
endif

This policy never executes the drop statement because the second test (med eq 42) sees the original, unmodified
value of the MED in the route. Because the MED has to be 12 to get to the second test, the second test always
returns false.

Default Drop Disposition
All route policies have a default action to drop the route under evaluation unless the route has been modified
by a policy action or explicitly passed. Applied (nested) policies implement this disposition as though the
applied policy were pasted into the point where it is applied.

Consider a policy to allow all routes in the 10 network and set their local preference to 200 while dropping
all other routes. You might write the policy as follows:

route-policy two
if destination in (10.0.0.0/8 ge 8 le 32) then
set local-preference 200
endif
end-policy

route-policy one
apply two
end-policy

It may appear that policy one drops all routes because it neither contains an explicit pass statement nor modifies
a route attribute. However, the applied policy does set an attribute for some routes and this disposition is
passed along to policy one. The result is that policy one passes routes with destinations in network 10, and
drops all others.

Control Flow
Policy statements are processed sequentially in the order in which they appear in the configuration. Policies
that hierarchically reference other policy blocks are processed as if the referenced policy blocks had been
directly substituted inline. For example, if the following policies are defined:

route-policy one
set weight 100
end-policy

route-policy two
set med 200
end-policy

route-policy three
apply two
set community (2:666) additive
end-policy

route-policy four
apply one
apply three
pass
end-policy

Implementing Routing Policy
23

Implementing Routing Policy
Default Drop Disposition

Policy four could be rewritten in an equivalent way as follows:

route-policy four-equivalent
set weight 100
set med 200
set community (2:666) additive
pass
end-policy

The pass statement is not required and can be removed to represent the equivalent policy in another way.Note

Policy Verification
Several different types of verification occur when policies are being defined and used.

Range Checking

As policies are being defined, some simple verifications, such as range checking of values, is done. For
example, the MED that is being set is checked to verify that it is in a proper range for the MED attribute.
However, this range checking cannot cover parameter specifications because they may not have defined values
yet. These parameter specifications are verified when a policy is attached to an attach point. The policy
repository also verifies that there are no recursive definitions of policy, and that parameter numbers are correct.
At attach time, all policies must be well formed. All sets and policies that they reference must be defined and
have valid values. Likewise, any parameter values must also be in the proper ranges.

Incomplete Policy and Set References

As long as a given policy is not attached at an attach point, the policy is allowed to refer to nonexistent sets
and policies, which allows for freedom of workflow. You can build configurations that reference sets or policy
blocks that are not yet defined, and then can later fill in those undefined policies and sets, thereby achieving
much greater flexibility in policy definition. Every piece of policy you want to reference while defining a
policy need not exist in the configuration. Thus, a user can define a policy sample that references the policy
bar using an apply statement even if the policy bar does not exist. Similarly, a user can enter a policy statement
that refers to a nonexistent set.

However, the existence of all referenced policies and sets is enforced when a policy is attached. If you attempt
to attach the policy sample with the reference to an undefined policy bar at an inbound BGP policy using the
neighbor 1.2.3.4 address-family ipv4 unicast policy sample in command, the configuration attempt is
rejected because the policy bar does not exist.

Likewise, you cannot remove a route policy or set that is currently in use at an attach point because this
removal would result in an undefined reference. An attempt to remove a route policy or set that is currently
in use results in an error message to the user.

A condition exists that is referred to as a null policy in which the policy bar exists but has no statements,
actions, or dispositions in it. In other words, the policy bar does exist as follows:

route-policy bar
end-policy

Implementing Routing Policy
24

Implementing Routing Policy
Policy Verification

This is a valid policy block. It effectively forces all routes to be dropped because it is a policy block that never
modifies a route, nor does it include the pass statement. Thus, the default action of drop for the policy block
is followed.

Aggregation

The aggregation attach point generates an aggregate route to be advertised based on the conditional presence
of subcomponents of that aggregate. Policies attached at this attach point are also able to set any of the valid
BGP attributes on the aggregated routes. For example, the policy could set a community value or a MED on
the aggregate that is generated. The specified aggregate is generated if any routes evaluated by the named
policy pass the policy. More specifics of the aggregate are filtered using the suppress-route keyword. Any
actions taken to set attributes in the route affect attributes on the aggregate.

In the policy language, the configuration is controlled by which routes pass the policy. The suppress map was
used to selectively filter or suppress specific components of the aggregate when the summary-only flag is not
set. In other words, when the aggregate and more specific components are being sent, some of the more
specific components can be filtered using a suppress map. In the policy language, this is controlled by selecting
the route and setting the suppress flag. The attribute-map allowed the user to set specific attributes on the
aggregated route. In the policy language, setting attributes on the aggregated route is controlled by normal
action operations.

In the following example, the aggregate address 10.0.0.0/8 is generated if there are any component routes in
the range 10.0.0.0/8 ge 8 le 25 except for 10.2.0.0/24. Because summary-only is not set, all components of
the aggregate are advertised. However, the specific component 10.1.0.0 are suppressed.

route-policy sample
if destination in (10.0.0.0/8 ge 8 le 25) then
set community (10:33)

endif
if destination in (10.2.0.0/24) then
drop

endif
if destination in (10.1.0.0/24) then
suppress-route

endif
end-policy

router bgp 2
address-family ipv4
aggregate-address 10.0.0.0/8 route-policy sample
.
.
.

The effect of aggregation policy on the attributes of the aggregate is cumulative. Every time an aggregation
policymatches a more specific route, the set operations in the policymaymodify the aggregate. The aggregate
in the following example has a MED value that varies according to the number of more specific routes that
comprise the aggregate.

route-policy bumping-aggregation
set med +5

end-policy

Implementing Routing Policy
25

Implementing Routing Policy
Aggregation

If there are three matching more specific routes, the MED of the aggregate is the default plus 15; if there are
seventeen more specific routes, the MED of the aggregate is the default plus 85.

The order that the aggregation policy is applied to prefix paths is deterministic but unspecified. That is, a
given set of routes always appears in the same order, but there is no way to predict the order.

A drop in aggregation policy does not prevent generation of an aggregate, but it does prevent the current more
specific route from contributing to the aggregate. If another more specific route gives the route a pass, the
aggregate is generated. Only one more specific pass is required to generate an aggregate.

Policy Statements
Four types of policy statements exist: remark, disposition (drop and pass), action (set), and if (comparator).

Remark
A remark is text attached to policy configuration but otherwise ignored by the policy language parser. Remarks
are useful for documenting parts of a policy. The syntax for a remark is text that has each line prepended with
a pound sign (#):

This is a simple one-line remark.

This
is a remark
comprising multiple
lines.

In general, remarks are used between complete statements or elements of a set. Remarks are not supported in
the middle of statements or within an inline set definition.

Unlike traditional !-comments in the CLI, RPL remarks persist through reboots and when configurations are
saved to disk or a TFTP server and then loaded back onto the router.

Disposition
If a policy modifies a route, by default the policy accepts the route. RPL provides a statement to force the
opposite—the drop statement. If a policy matches a route and executes a drop, the policy does not accept the
route. If a policy does not modify the route, by default the route is dropped. To prevent the route from being
dropped, the pass statement is used.

The drop statement indicates that the action to take is to discard the route. When a route is dropped, no further
execution of policy occurs. For example, if after executing the first two statements of a policy the drop
statement is encountered, the policy stops and the route is discarded.

All policies have a default drop action at the end of execution.Note

The pass statement allows a policy to continue executing even though the route has not been modified. When
a policy has finished executing, any route that has been modified in the policy or any route that has received
a pass disposition in the policy, successfully passes the policy and completes the execution. If route policy
B_rp is applied within route policy A_rp, execution continues from policy A_rp to policy B_rp and back to
policy A_rp provided prefix is not dropped by policy B_rp.

Implementing Routing Policy
26

Implementing Routing Policy
Policy Statements

route-policy A_rp
set community (10:10)
apply B_rp

end-policy
!

route-policy B_rp
if destination in (121.23.0.0/16 le 32, 155.12.0.0/16 le 32) then
set community (121:155) additive
endif

end-policy
!

By default, a route is dropped at the end of policy processing unless either the policymodifies a route attribute
or it passes the route by means of an explicit pass statement. For example, if route-policy B is applied within
route-policy A, then execution continues from policy A to policy B and back to policy A, provided the prefix
is not dropped by policy B.

route-policy A
if as-path neighbor-is '123' then
apply B
policy statement N

end-policy

Whereas the following policies pass all routes that they evaluate.

route-policy PASS-ALL
pass
end-policy

route-policy SET-LPREF
set local-preference 200
end-policy

In addition to being implicitly dropped, a route may be dropped by an explicit drop statement.Drop statements
cause a route to be dropped immediately so that no further policy processing is done. Note also that a drop
statement overrides any previously processed pass statements or attribute modifications. For example, the
following policy drops all routes. The first pass statement is executed, but is then immediately overridden by
the drop statement. The second pass statement never gets executed.

route-policy DROP-EXAMPLE
pass
drop
pass
end-policy

When one policy applies another, it is as if the applied policy were copied into the right place in the applying
policy, and then the same drop-and-pass semantics are put into effect. For example, policies ONE and TWO
are equivalent to policy ONE-PRIME:

route-policy ONE

Implementing Routing Policy
27

Implementing Routing Policy
Disposition

apply two
if as-path neighbor-is '123' then
pass
endif
end-policy

route-policy TWO
if destination in (10.0.0.0/16 le 32) then
drop
endif
end-policy

route-policy ONE-PRIME
if destination in (10.0.0.0/16 le 32) then
drop
endif
if as-path neighbor-is '123' then
pass
endif
end-policy

Because the effect of an explicit drop statement is immediate, routes in 10.0.0.0/16 le 32 are dropped without
any further policy processing. Other routes are then considered to see if they were advertised by autonomous
system 123. If they were advertised, they are passed; otherwise, they are implicitly dropped at the end of all
policy processing.

The done statement indicates that the action to take is to stop executing the policy and accept the route. When
encountering a done statement, the route is passed and no further policy statements are executed. All
modifications made to the route prior to the done statement are still valid.

Action
An action is a sequence of primitive operations that modify a route. Most actions, but not all, are distinguished
by the set keyword. In a route policy, actions can be grouped together. For example, the following is a route
policy comprising three actions:

route-policy actions
set med 217
set community (12:34) additive
delete community in (12:56)
end-policy

If
In its simplest form, an if statement uses a conditional expression to decide which actions or dispositions
should be taken for the given route. For example:

if as-path in as-path-set-1 then
drop
endif

The example indicates that any routes whose AS path is in the set as-path-set-1 are dropped. The contents of
the then clause may be an arbitrary sequence of policy statements.

The following example contains two action statements:

Implementing Routing Policy
28

Implementing Routing Policy
Action

if origin is igp then
set med 42
prepend as-path 73.5 5
endif

The CLI provides support for the exit command as an alternative to the endif command.

The if statement also permits an else clause, which is executed if the if condition is false:

if med eq 8 then
set community (12:34) additive
else
set community (12:56) additive
endif

The policy language also provides syntax, using the elseif keyword, to string together a sequence of tests:

if med eq 150 then
set local-preference 10
elseif med eq 200 then
set local-preference 60
elseif med eq 250 then
set local-preference 110
else
set local-preference 0
endif

The statements within an if statement may themselves be if statements, as shown in the following example:

if community matches-any (12:34,56:78) then
if med eq 150 then
drop
endif
set local-preference 100
endif

This policy example sets the value of the local preference attribute to 100 on any route that has a community
value of 12:34 or 56:78 associated with it. However, if any of these routes has a MED value of 150, then these
routes with either the community value of 12:34 or 56:78 and a MED of 150 are dropped.

Boolean Conditions
In the previous section describing the if statement, all of the examples use simple Boolean conditions that
evaluate to either true or false. RPL also provides a way to build compound conditions from simple conditions
by means of Boolean operators.

Three Boolean operators exist: negation (not), conjunction (and), and disjunction (or). In the policy language,
negation has the highest precedence, followed by conjunction, and then by disjunction. Parentheses may be
used to group compound conditions to override precedence or to improve readability.

The following simple condition:

Implementing Routing Policy
29

Implementing Routing Policy
Boolean Conditions

med eq 42

is true only if the value of the MED in the route is 42, otherwise it is false.

A simple condition may also be negated using the not operator:

not next-hop in (10.0.2.2)

Any Boolean condition enclosed in parentheses is itself a Boolean condition:

(destination in prefix-list-1)

A compound condition takes either of two forms. It can be a simple expression followed by the and operator,
itself followed by a simple condition:

med eq 42 and next-hop in (10.0.2.2)

A compound condition may also be a simpler expression followed by the or operator and then another simple
condition:

origin is igp or origin is incomplete

An entire compound condition may be enclosed in parentheses:

(med eq 42 and next-hop in (10.0.2.2))

The parentheses may serve to make the grouping of subconditions more readable, or they may force the
evaluation of a subcondition as a unit.

In the following example, the highest-precedence not operator applies only to the destination test, the and
operator combines the result of the not expression with the community test, and the or operator combines
that result with the MED test.

med eq 10 or not destination in (10.1.3.0/24) and community matches-any ([12..34]:[56..78])

With a set of parentheses to express the precedence, the result is the following:

med eq 10 or ((not destination in (10.1.3.0/24)) and community matches-any
([12..34]:[56..78])

The following is another example of a complex expression:

Implementing Routing Policy
30

Implementing Routing Policy
Boolean Conditions

(origin is igp or origin is incomplete or not med eq 42) and next-hop in (10.0.2.2)

The left conjunction is a compound condition enclosed in parentheses. The first simple condition of the inner
compound condition tests the value of the origin attribute; if it is Interior Gateway Protocol (IGP), then the
inner compound condition is true. Otherwise, the evaluation moves on to test the value of the origin attribute
again, and if it is incomplete, then the inner compound condition is true. Otherwise, the evaluation moves to
check the next component condition, which is a negation of a simple condition.

apply
As discussed in the sections on policy definitions and parameterization of policies, the apply command
executes another policy (either parameterized or unparameterized) from within another policy, which allows
for the reuse of common blocks of policy. When combined with the ability to parameterize common blocks
of policy, the apply command becomes a powerful tool for reducing repetitive configuration.

Attach Points
Policies do not become useful until they are applied to routes, and for policies to be applied to routes they
need to be made known to routing protocols. In BGP, for example, there are several situations where policies
can be used, the most common of these is defining import and export policy. The policy attach point is the
point in which an association is formed between a specific protocol entity, in this case a BGP neighbor, and
a specific named policy. It is important to note that a verification step happens at this point. Each time a policy
is attached, the given policy and any policies it may apply are checked to ensure that the policy can be validly
used at that attach point. For example, if a user defines a policy that sets the IS-IS level attribute and then
attempts to attach this policy as an inbound BGP policy, the attempt would be rejected because BGP routes
do not carry IS-IS attributes. Likewise, when policies are modified that are in use, the attempt to modify the
policy is verified against all current uses of the policy to ensure that the modification is compatible with the
current uses.

Each protocol has a distinct definition of the set of attributes (commands) that compose a route. For example,
BGP routes may have a community attribute, which is undefined in OSPF. Routes in IS-IS have a level
attribute, which is unknown to BGP. Routes carried internally in the RIB may have a tag attribute.

When a policy is attached to a protocol, the protocol checks the policy to ensure the policy operates using
route attributes known to the protocol. If the protocol uses unknown attributes, then the protocol rejects the
attachment. For example, OSPF rejects attachment of a policy that tests the values of BGP communities.

The situation is made more complex by the fact that each protocol has access to at least two distinct route
types. In addition to native protocol routes, for example BGP or IS-IS, some protocol policy attach points
operate on RIB routes, which is the common central representation. Using BGP as an example, the protocol
provides an attach point to apply policy to routes redistributed from the RIB to BGP. An attach point dealing
with two different kinds of routes permits a mix of operations: RIB attribute operations for matching and BGP
attribute operations for setting.

The protocol configuration rejects attempts to attach policies that perform unsupported operations.Note

The following sections describe the protocol attach points, including information on the attributes (commands)
and operations that are valid for each attach point.

Implementing Routing Policy
31

Implementing Routing Policy
apply

BGP Policy Attach Points
This section describes each of the BGP policy attach points and provides a summary of the BGP attributes
and operators.

Additional-Path

The additional-path attach point provides increased control based on various attribute match operations. This
attach point is used to decide whether a route-policy should be used to select additional-paths for a BGP
speaker to be able to send multiple paths for the prefix.

The add path enables BGP prefix independent convergence (PIC) at the edge routers.

This example shows how to set a route-policy "add-path-policy" to be used for enabling selection of additional
paths:
router bgp 100
address-family ipv4 unicast
additional-paths selection route-policy add-path-policy

Dampening

The dampening attach point controls the default route-dampening behavior within BGP. Unless overridden
by a more specific policy on the associate peer, all routes in BGP apply the associated policy to set their
dampening attributes.

The following policy sets dampening values for BGP IPv4 unicast routes. Those routes that are more specific
than a /25 take longer to recover after they are dampened than the routes that are less specific than /25.

When the dampening policy runs for a route, then the last "set dampening" statement that is encountered,
takes effect.

• If a "drop" statement is encountered, then the route is not dampened; even if the "set dampening" statement
is encountered.

• If a "pass" or "done" statement is encountered but not the "set dampening" statement, then the route is
dampened using the default dampening parameters.

For example:

• When policy1 applies another policy that is called policy2 and if a "pass" statement is encountered in
policy2, then policy2 exits and continues to execute policy1.

• If a "done" statement is encountered in policy2, then both policy1 and policy2 exits immediately.

Note

route-policy sample_damp
if destination in (0.0.0.0/0 ge 25) then
set dampening halflife 30 others default

else
set dampening halflife 20 others default

endif
end-policy

router bgp 2
address-family ipv4 unicast

Implementing Routing Policy
32

Implementing Routing Policy
BGP Policy Attach Points

bgp dampening route-policy sample_damp
.
.
.

Default Originate

The default originate attach point allows the default route (0.0.0.0/0) to be conditionally generated and
advertised to a peer, based on the presence of other routes. It accomplishes this configuration by evaluating
the associated policy against routes in the Routing Information Base (RIB). If any routes pass the policy, the
default route is generated and sent to the relevant peer.

The following policy generates and sends a default-route to the BGP neighbor 10.0.0.1 if any routes that match
10.0.0.0/8 ge 8 le 32 are present in the RIB.

route-policy sample-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 32) then

pass
endif

end-policy

router bgp 2
neighbor 10.0.0.1
remote-as 3
address-family ipv4 unicast
default-originate policy sample-originate
.
.
.

Neighbor Export

The neighbor export attach point selects the BGP routes to send to a given peer or group of peers. The routes
are selected by running the set of possible BGP routes through the associated policy. Any routes that pass the
policy are then sent as updates to the peer or group of peers. The routes that are sent may have had their BGP
attributes altered by the policy that has been applied.

The following policy sends all BGP routes to neighbor 10.0.0.5. Routes that are tagged with any community
in the range 2:100 to 2:200 are sent with a MED of 100 and a community of 2:666. The rest of the routes are
sent with a MED of 200 and a community of 2:200.

route-policy sample-export
if community matches-any (2:[100-200]) then
set med 100
set community (2:666)

else
set med 200
set community (2:200)

endif
end-policy

router bgp 2
neighbor 10.0.0.5
remote-as 3

address-family ipv4 unicast
route-policy sample-export out
.
.

Implementing Routing Policy
33

Implementing Routing Policy
Default Originate

.

Neighbor Import

The neighbor import attach point controls the reception of routes from a specific peer. All routes that are
received by a peer are run through the attached policy. Any routes that pass the attached policy are passed to
the BGP Routing Information Base (BRIB) as possible candidates for selection as best path routes.

When a BGP import policy is modified, it is necessary to rerun all the routes that have been received from
that peer against the new policy. The modified policy may now discard routes that were previously allowed
through, allow through previously discarded routes, or change the way the routes are modified. A new
configuration option in BGP (bgp auto-policy-soft-reset) that allows this modification to happen automatically
in cases for which either soft reconfiguration is configured or the BGP route-refresh capability has been
negotiated.

The following example shows how to receive routes from neighbor 10.0.0.1. Any routes received with the
community 3:100 have their local preference set to 100 and their community tag set to 2:666. All other routes
received from this peer have their local preference set to 200 and their community tag set to 2:200.

route-policy sample_import
if community matches-any (3:100) then
set local-preference 100
set community (2:666)

else
set local-preference 200
set community (2:200)

endif
end-policy

router bgp 2
neighbor 10.0.0.1
remote-as 3
address-family ipv4 unicast
route-policy sample_import in
.
.
.

Network

The network attach point controls the injection of routes from the RIB into BGP. A route policy attached at
this point is able to set any of the valid BGP attributes on the routes that are being injected.

The following example shows a route policy attached at the network attach point that sets the well-known
community no-export for any routes more specific than /24:

route-policy NetworkControl
if destination in (0.0.0.0/0 ge 25) then
set community (no-export) additive

endif
end-policy

router bgp 2
address-family ipv4 unicast
network 172.16.0.5/27 route-policy NetworkControl

Implementing Routing Policy
34

Implementing Routing Policy
Neighbor Import

Redistribute

The redistribute attach point allows routes from other sources to be advertised by BGP. The policy attached
at this point is able to set any of the valid BGP attributes on the routes that are being redistributed. Likewise,
selection operators allow a user to control what route sources are being redistributed and which routes from
those sources.

The following example shows how to redistribute all routes from OSPF instance 12 into BGP. If OSPF were
carrying a default route, it is dropped. Routes carrying a tag of 10 have their local preference set to 300 and
the community value of 2:666 and no-advertise attached. All other routes have their local preference set to
200 and a community value of 2:100 set.

route-policy sample_redistribute
if destination in (0.0.0.0/0) then
drop

endif
if tag eq 10 then

set local-preference 300
set community (2:666, no-advertise)

else
set local-preference 200
set community (2:100)

endif
end-policy

router bgp 2
address-family ipv4 unicast
redistribute ospf 12 route-policy sample_redistribute
.
.

Show BGP

The show bgp attach point allows the user to display selected BGP routes that pass the given policy. Any
routes that are not dropped by the attached policy are displayed in a manner similar to the output of the show
bgp command.

In the following example, the show bgp route-policy command is used to display any BGP routes carrying
a MED of 5:

route-policy sample-display
if med eq 5 then
pass

endif
end-policy
!
show bgp route-policy sample-display

A show bgp policy route-policy command also exists, which runs all routes in the RIB past the named policy
as if the RIB were an outbound BGP policy. This command then displays what each route looked like before
it was modified and after it was modified, as shown in the following example:

show rpl route-policy test2

route-policy test2
if (destination in (10.0.0.0/8 ge 8 le 32)) then

Implementing Routing Policy
35

Implementing Routing Policy
Redistribute

set med 333
endif

end-policy
!

show bgp

BGP router identifier 10.0.0.1, local AS number 2
BGP main routing table version 11
BGP scan interval 60 secs
Status codes:s suppressed, d damped, h history, * valid, > best

i - internal, S stale
Origin codes:i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0 10.0.1.2 10 0 3 ?
*> 10.0.0.0/9 10.0.1.2 10 0 3 ?
*> 10.0.0.0/10 10.0.1.2 10 0 3 ?
*> 10.0.0.0/11 10.0.1.2 10 0 3 ?
*> 10.1.0.0/16 10.0.1.2 10 0 3 ?
*> 10.3.30.0/24 10.0.1.2 10 0 3 ?
*> 10.3.30.128/25 10.0.1.2 10 0 3 ?
*> 10.128.0.0/9 10.0.1.2 10 0 3 ?
*> 10.255.0.0/24 10.0.101.2 1000 555 0 100 e
*> 10.255.64.0/24 10.0.101.2 1000 555 0 100 e
....

show bgp policy route-policy test2

10.0.0.0/8 is advertised to 10.0.101.2

Path info:
neighbor:10.0.1.2 neighbor router id:10.0.1.2
valid external best

Attributes after inbound policy was applied:
next hop:10.0.1.2
MET ORG AS
origin:incomplete neighbor as:3 metric:10
aspath:3

Attributes after outbound policy was applied:
next hop:10.0.1.2
MET ORG AS
origin:incomplete neighbor as:3 metric:333
aspath:2 3

...

Table Policy

The table policy attach point allows the user to configure traffic-index values on routes as they are installed
into the global routing table. This attach point supports the BGP policy accounting feature. BGP policy
accounting uses the traffic indexes that are set on the BGP routes to track various counters. This way, router
operators can select different sets of BGP route attributes using the matching operations and then set different
traffic indexes for each different class of route they are interested in tracking.

The following example shows how to set the traffic index to 10 in IPv4 unicast routes that originated from
autonomous system 10.33. Likewise, any IPv4 unicast routes that originated from autonomous system 11.60
have their traffic index set to 11 when they are installed into the FIB. These traffic indexes are then used to
count traffic being forwarded on these routes inline cards by enabling the BGP policy accounting counters
on the interfaces of interest.

Implementing Routing Policy
36

Implementing Routing Policy
Table Policy

route-policy sample-table
if as-path originates-from ‘10.33’ then
set traffic-index 10

elseif as-path originates-from ‘11.60’ then
set traffic-index 11

endif
end-policy

router bgp 2
address-family ipv4 unicast
table-policy sample-table
.
.
.

Import

The import attach point provides control over the import of routes from the global VPN IPv4 table to a
particular VPN routing and forwarding (VRF) instance.

For Layer 3 VPN networks, provider edge (PE) routers learn of VPN IPv4 routes through the Multiprotocol
Internal Border Gateway Protocol (MP-iBGP) from other PE routers and automatically filters out route
announcements that do not contain route targets that match any import route targets of its VRFs.

This automatic route filtering happens without RPL configuration; however, to provide more control over the
import of routes in a VRF, you can configure a VRF import policy.

The following example shows how to perform matches based on a route target extended community and then
sets the next hop. If the route has route target value 10:91, then the next hop is set to 172.16.0.1. If the route
has route target value 11:92, then the next hop is set to 172.16.0.2. If the route has Site-of-Origin (SoO) value
10:111111 or 10:111222, then the route is dropped. All other non-matching routes are dropped.

When you configure import route policy for a particular VRF, you must define the import route-target values.
Configuring import route-policy command does not take effect until you configure the import route-target
command with the route-target value. The import route target value acts as a first-level filter. The import
policy that you configure using the import route-policy command acts as a second-level filter.

route-policy bgpvrf_import
if extcommunity rt matches-any (10:91) then
set next-hop 172.16.0.1

elseif extcommunity rt matches-every (11:92) then
set next-hop 172.16.0.2

elseif extcommunity soo matches-any (10:111111, 10:111222) then
pass

endif
end-policy

vrf vrf_import
address-family ipv4 unicast
import route-policy bgpvrf_import
.
.
.

import route-target
65001:2200

!
export route-target
65001:2201

Implementing Routing Policy
37

Implementing Routing Policy
Import

Export

The export attach point provides control over the export of routes from a particular VRF to a global VPN
IPv4 table.

For Layer 3 VPN networks, export route targets are added to the VPN IPv4 routes when VRF IPv4 routes are
converted into VPN IPv4 routes and advertised through the MP-iBGP to other PE routers (or flow from one
VRF to another within a PE router).

A set of export route targets is configured with the VRF without RPL configuration; however, to set route
targets conditionally, you can configure a VRF export policy.

The following example shows some match and set operations supported for the export route policy. If a route
matches 172.16.1.0/24 then the route target extended community is set to 10:101, and the weight is set to 211.
If the route does not match 172.16.1.0/24 but the origin of the route is egp, then the local preference is set to
212 and the route target extended community is set to 10:101. If the route does not match those specified
criteria, then the route target extended community 10:111222 is added to the route. In addition, RT 10:111222
is added to the route that matches any of the previous conditions as well.

route-policy bgpvrf_export
if destination in (172.16.1.0/24) then
set extcommunity rt (10:101)
set weight 211

elseif origin is egp then
set local-preference 212
set extcommunity rt (10:101)

endif
set extcommunity rt (10:111222) additive

end-policy

vrf vrf-export
address-family ipv4 unicast
export route-policy bgpvrf-export
.
.
.

Retain Route-Target

The retain route target attach point within BGP allows the specification of match criteria based only on route
target extended community. The attach point is useful at the route reflector (RR) or at the Autonomous System
Boundary Router (ASBR).

Typically, an RR has to retain all IPv4 VPN routes to peer with its PE routers. These PEs might require routers
tagged with different route target IPv4 VPN routes resulting in non-scalable RRs. You can achieve scalability
if you configure an RR to retain routes with a defined set of route target extended communities, and a specific
set of VPNs to service.

Another reason to use this attach point is for an ASBR. ASBRs do not require that VRFs be configured, but
need this configuration to retain the IPv4 VPN prefix information.

The following example shows how to configure the route policy retainer and apply it to the retain route target
attach point. The route is accepted if the route contains route target extended communities 10:615, 10:6150,
and 15.15.15.15.:15. All other non-matching routes are dropped.

extcommunity-set rt rtset1
0:615,
10:6150,

Implementing Routing Policy
38

Implementing Routing Policy
Export

..15.15.15.15.:15
end-set

route-policy retainer
if extcommunity rt matches-any rtset1 then
pass

endif
end-policy

router bgp 2
address-family vpnv4 unicast
retain route-target route-policy retainer
.
.
.

Allocate-Label

The allocate-label attach point provides increased control based on various attribute match operations. This
attach point is typically used in inter-AS option C to decide whether the label should be allocated or not when
sending updates to the neighbor for the IPv4 labeled unicast address family. The attribute setting actions
supported are for pass and drop.

Label-Mode

The label-mode attachpoint provides facility to choose label mode based on arbitrary match criteria such as
prefix value, community. This attach point is typically used to set the type of label mode to per-ce or per-vrf
or per-prefix based on deployment preferences. The attribute setting actions supported are for pass and drop.

Neighbor-ORF

The neighbor-orf attach point provides the filtering of incoming BGP route updates using only prefix-based
matching. In addition to using this as an inbound filter, the prefixes and disposition (drop or pass) are sent to
upstream neighbors as an Outbound Route Filter (ORF) to allow them to perform filtering.

The following example shows how to configure a route policy orf-preset and apply it to the neighbor ORF
attach point. The prefix of the route is dropped if it matches any prefix specified in orf-preset (172.16.1.0/24,
172.16.5.0/24, 172.16.11.0/24). In addition to this inbound filtering, BGP also sends these prefix entries to
the upstream neighbor with a permit or deny so that the neighbor can filter updates before sending them on
to their destination.

prefix-set orf-preset
172.16.1.0/24,
172.16.5.0/24,
172.16.11.0/24

end-set

route-policy policy-orf
if orf prefix in orf-preset then
drop

endif
if orf prefix in (172.16.3.0/24, 172.16.7.0/24, 172.16.13.0/24) then
pass

endif

router bgp 2
neighbor 1.1.1.1
remote-as 3

Implementing Routing Policy
39

Implementing Routing Policy
Allocate-Label

address-family ipv4 unicast
orf route-policy policy-orf

.

.

.

Next-hop

The next-hop attach point provides increased control based on protocol and prefix-based match operations.
The attach point is typically used to decide whether to act on a next-hop notification (up or down) event.

Support for next-hop tracking allows BGP to monitor reachability for routes in the Routing Information Base
(RIB) that can directly affect BGP prefixes. The route policy at the BGP next-hop attach point helps limit
notifications delivered to BGP for specific prefixes. The route policy is applied on RIB routes. Typically,
route policies are used in conjunction with next-hop tracking to monitor non-BGP routes.

The following example shows how to configure the BGP next-hop tracking feature using a route policy to
monitor static or connected routes with the prefix 10.0.0.0 and prefix length 8.

route-policy nxthp_policy_A
if destination in (10.0.0.0/8) and protocol in (static, connected) then
pass

endif
end-policy

router bgp 2
address-family ipv4 unicast
nexthop route-policy nxthp_policy_A
.
.
.

Clear-Policy

The clear-policy attach point provides increased control based on various AS path match operations when
using a clear bgp command. This attach point is typically used to decide whether to clear BGP flap statistics
based on AS-path-based match operations.

The following example shows how to configure a route policy where the in operator evaluates to true if one
or more of the regular expression matches in the set my-as-set successfully match the AS path associated with
the route. If it is a match, then the clear command clears the associated flap statistics.

as-path-set my-as-set
ios-regex '_12$',
ios-regex '_13$'

end-set

route-policy policy_a
if as-path in my-as-set then
pass

else
drop

endif
end-policy

clear bgp ipv4 unicast flap-statistics route-policy policy_a

Implementing Routing Policy
40

Implementing Routing Policy
Next-hop

Debug

The debug attach point provides increased control based on prefix-based match operations. This attach point
is typically used to filter debug output for various BGP commands based on the prefix of the route.

The following example shows how to configure a route policy that will only pass the prefix 20.0.0.0 with
prefix length 8; therefore, the debug output shows up only for that prefix.

route-policy policy_b
if destination in (10.0.0.0/8) then
pass

else
drop

endif
end-policy

debug bgp update route-policy policy_b

Implementing Routing Policy
41

Implementing Routing Policy
Debug

BGP Attributes and Operators

This table summarizes the BGP attributes and operators per attach points.

Table 1: BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathaggregation

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete in

delete not in

delete all

is-empty

matches-any

matches-every

community

—indestination

set

set additive

—extcommunity cost

setis, ge, le, eqlocal-preference

setset +set -is, eg, ge, lemed

setinnext-hop

setisorigin

—insource

suppress-route—suppress-route

set—weight

Implementing Routing Policy
42

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathallocate-label

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

set—label

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathclear-policy

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

Implementing Routing Policy
43

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathdampening

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

set dampening—/dampening

—indestination

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

—indestinationdebug

set

set +

set -

—meddefault
originate

—inrib-has-route

Implementing Routing Policy
44

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend

prepend most-recent

remove as-path private-as

replace

in

is-local

length

NA

neighbor-is

originates-from

passes-through

unique-length

as-pathneighbor-in

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

communitycommunitywith ‘peeras’

—indestination

set

set additive

—extcommunity cost

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

setis, ge, le, eqlocal-preference

set

set +

set -

is, eg, ge, lemed

Implementing Routing Policy
45

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

next-hop set

set peer address

in

setisorigin

NAroute-aggregatedroute-aggregated

—insource

set—weight

Implementing Routing Policy
46

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend

prepend most-recent

remove as-path private-as

replace

in

is-local

length

—

neighbor-is

originates-from

passes-through

unique-length

as-pathneighbor-out

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

communitycommunitywith ‘peeras’

—indestination

set

set additive

—extcommunity cost

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

setis, ge, le, eqlocal-preference

is, eg, ge, lemed

Implementing Routing Policy
47

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

set

set +

set -

set max-unreachable

set igp-cost

set

set self

innext-hop

setisorigin

—ispath-type

—inrd

—route-aggregatedroute-aggregated

—insource

unsuppress-route—unsuppress-route

set—vpn-distinguisher

n/ainorf-prefixneighbor-orf

Implementing Routing Policy
48

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend—as-pathnetwork

set

set additive

delete-in

delete-not-in

delete-all

—community

—indestination

set

set additive

—extcommunity cost

—route-has-labelmpls-label

set—local-preference

set

set+

set-

—med

setinnext-hop

set—origin

—isroute-type

—is, ge, le, eqtag

set—weight

—indestinationnext-hop

—is,inprotocol

—insource

Implementing Routing Policy
49

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend—as-pathredistribute

set

set additive

delete in

delete not in

delete all

—community

—indestination

setset additive—extcommunity cost

set—local-preference

set

set+

set-

—med

setinnext-hop

set—origin

—route-has-labelmpls-label

—isroute-type

—is, eq, ge, letag

set—weight

—is-empty

matches-any

matches-every

matches-within

extcommunity rtretain-rt

Implementing Routing Policy
50

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathshow

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

—is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

Some BGP route attributes are inaccessible from some BGP attach points for various reasons. For example,
the set med igp-cost only command makes sense when there is a configured igp-cost to provide a source
value.

Implementing Routing Policy
51

Implementing Routing Policy
BGP Attributes and Operators

This table summarizes which operations are valid and where they are valid.

Table 2: Restricted BGP Operations by Attach Point

redistributionaggregationexportimportCommand

n/an/aeBGP
only

eBGP
only

prepend as-pathmost-recent

n/an/aeBGP
only

eBGP
only

replace as-path

forbiddenforbiddeneBGP
only

forbiddenset med igp-cost

n/an/aforbiddenn/aset weight

forbiddenn/aforbiddenforbiddensuppress

Default-Information Originate

The default-information originate attach point allows the user to conditionally inject the default route 0.0.0.0/0
into the OSPF link-state database, which is done by evaluating the attached policy. If any routes in the local
RIB pass the policy, then the default route is inserted into the link-state database.

The following example shows how to generate a default route if any of the routes that match 10.0.0.0/8 ge 8
le 25 are present in the RIB:

route-policy ospf-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 25) then
pass

endif
end-policy

router ospf 1
default-information originate policy ospf-originate
.
.
.

OSPF Policy Attach Points
This section describes each of the OSPF policy attach points and provides a summary of the OSPF attributes
and operators.

Redistribute

The redistribute attach point within OSPF injects routes from other routing protocol sources into the OSPF
link-state database, which is done by selecting the routes it wants to import from each protocol. It then sets
the OSPF parameters of cost and metric type. The policy can control how the routes are injected into OSPF
by using the set metric-type or set ospf-metric command.

The following example shows how to redistribute routes from IS-IS instance instance_10 into OSPF instance
1 using the policy OSPF-redist. The policy sets the metric type to type-2 for all redistributed routes. IS-IS
routes with a tag of 10 have their cost set to 100, and IS-IS routes with a tag of 20 have their OSPF cost set

Implementing Routing Policy
52

Implementing Routing Policy
Default-Information Originate

to 200. Any IS-IS routes not carrying a tag of either 10 or 20 are not be redistributed into the OSPF link-state
database.

route-policy OSPF-redist
set metric-type type-2
if tag eq 10 then

..set ospf-metric 2
elseif tag eq 20 then

..set ospf-metric 3
else
drop

endif
end-policy
router ospf 1
redistribute isis instance_10 policy OSPF-redist
.
.
.

Area-in

The area-in attach point within OSPF allows you to filter inbound OSPF type-3 summary link-state
advertisements (LSAs). The attach point provides prefix-based matching and hence increased control for
filtering type-3 summary LSAs.

The following example shows how to configure the prefix for OSPF summary LSAs. If the prefix matches
any of 10 .105.3.0/24, 10 .105.7.0/24, 10 .105.13.0/24, it is accepted. If the prefix matches any of 10 .106.3.0/24,
10 .106.7.0/24, 10 .106.13.0/24, it is dropped.

route-policy OSPF-area-in
if destination in (10

.105.3.0/24, 10

.105.7.0/24, 10

.105.13.0/24) then
drop

endif
if destination in (10

.106.3.0/24, 10

.106.7.0/24, 10

.106.13.0/24) then
pass

endif
end-policy

router ospf 1
area 1
route-policy OSPF-area-in in

Area-out

The area-out attach point within OSPF allows you to filter outbound OSPF type-3 summary LSAs. The attach
point provides prefix-based matching and, hence, increased control for filtering type-3 summary LSAs.

The following example shows how to configure the prefix for OSPF summary LSAs. If the prefix matches
any of 11 .105.3.0/24, 11 .105.7.0/24, 11 .105.13.0/24, it is announced. If the prefix matches any of
10.105.3.0/24, 10 .105.7.0/24, 10 .105.13.0/24, it is dropped and not announced.

Implementing Routing Policy
53

Implementing Routing Policy
Area-in

route-policy OSPF-area-out
if destination in (10

.105.3.0/24, 10

.105.7.0/24, 10

.105.13.0/24) then
drop

endif
if destination in (11

.105.3.0/24, 11

.105.7.0/24, 11

.105.13.0/24) then
pass

endif
end-policy

router ospf 1
area 1
route-policy OSPF-area-out out

OSPF Attributes and Operators

This table summarizes the OSPF attributes and operators per attach points.

Table 3: OSPF Attributes and Operators

SetMatchAttributeAttach Point

set—ospf-metricdefault-information
originate

set—metric-type

set—tag

—inrib-has-route

—indestinationredistribute

set—metric-type

set—ospf-metric

—innext-hop

—route-has-labelmpls-label

n/ais, le, ge, eqrib-metric

—isroute-type

setis, eq, ge, letag

—indestinationarea-in

—indestinationarea-out

Implementing Routing Policy
54

Implementing Routing Policy
OSPF Attributes and Operators

SetMatchAttributeAttach Point

n/aindestinationspf-prefix-priority

setn/aspf-priority

n/ais, le, ge, eqtag

Distribute-list in

The distribute-list in attach point within OSPF allows use of route policies to filter OSPF prefixes. The
distribute-list in route-policy can be configured at OSPF instance, area, and interface levels. The route-policy
used in the distribute-list in command supports match statements, "destination" and "rib-metric". The "set"
commands are not supported in the route-policy.

These are examples of valid route-policies for "distribute-list in":

route-policy DEST
if destination in (10.10.10.10/32) then
drop

else
pass

endif
end-policy

route-policy METRIC
if rib-metric ge 10 and rib-metric le 19 then
drop

else
pass

endif
end-policy

prefix-set R-PFX
10.10.10.30

end-set

route-policy R-SET
if destination in R-PFX and rib-metric le 20 then
pass

else
drop

endif
end-policy

OSPFv3 Policy Attach Points
This section describes each of the OSPFv3 policy attach points and provides a summary of the OSPFv3
attributes and operators.

Redistribute

The redistribute attach point within OSPFv3 injects routes from other routing protocol sources into the OSPFv3
link-state database, which is done by selecting the route types it wants to import from each protocol. It then

Implementing Routing Policy
55

Implementing Routing Policy
Distribute-list in

sets the OSPFv3 parameters of cost and metric type. The policy can control how the routes are injected into
OSPFv3 by using the metric type command.

The following example shows how to redistribute routes from BGP instance 15 into OSPF instance 1 using
the policy OSPFv3-redist. The policy sets the metric type to type-2 for all redistributed routes. BGP routes
with a tag of 10 have their cost set to 100, and BGP routes with a tag of 20 have their OSPFv3 cost set to 200.
Any BGP routes not carrying a tag of either 10 or 20 are not be redistributed into the OSPFv3 link-state
database.

route-policy OSPFv3-redist
set metric-type type-2
if tag eq 10 then
set extcommunity cost 100

elseif tag eq 20 then
set extcommunity cost 200

else
drop

endif
end-policy

router ospfv3 1
redistribute bgp 15 policy OSPFv3-redist
.
.
.

OSPFv3 Attributes and Operators

This table summarizes the OSPFv3 attributes and operators per attach points.

Table 4: OSPFv3 Attributes and Operators

SetMatchAttributeAttach Point

set—ospf-metricdefault-information
originate

set—metric-type

set—tag

—inrib-has-route

—indestinationredistribute

set—ospf-metric

set—metric-type

—isroute-type

—is, eq, ge,
le

tag

Implementing Routing Policy
56

Implementing Routing Policy
OSPFv3 Attributes and Operators

IS-IS Policy Attach Points
This section describes each of the IS-IS policy attach points and provides a summary of the IS-IS attributes
and operators.

Default-Information Originate

The default-information originate attach point within IS-IS allows the default route 0.0.0.0/0 to be conditionally
injected into the IS-IS route database.

The following example shows how to generate an IPv4 unicast default route if any of the routes that match
10.0.0.0/8 ge 8 le 25 is present in the RIB. The cost of the IS-IS route is set to 100 and the level is set to
level-1-2 on the default route that is injected into the IS-IS database.

route-policy isis-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 25) then

set level level-1-2
endif

end-policy

router isis instance_10
address-family ipv4 unicast
default-information originate policy isis_originate
.

Inter-area-propagate

The inter-area-propagate attach point within IS-IS allows the prefixes to be conditionally propagated from
one level to another level within the same IS-IS instance.

The following example shows how to allow prefixes to be leaked from the level 1 LSP into the level 2 LSP
if any of the prefixes match 10.0.0.0/8 ge 8 le 25.

route-policy isis-propagate
if destination in (10.0.0.0/8 ge 8 le 25) then
pass

endif
end-policy

router isis instance_10
address-family ipv4 unicast
propagate level 1 into level 2 policy isis-propagate
.

Nondestructive Editing of Routing Policy
The Nondestructive Editing of Routing Policy changes the default exit behavior under routing policy
configuration mode to terminate the configuration.

The default exit command acts as end-policy, end-set, or end-if. If the exit command is executed under route
policy configuration mode, the changes are applied and configuration is updated. This destructs the existing
policy. The rpl set-exit-as-abort command allows to overwrite the default behavior of the exit command
under the route policy configuration mode.

Implementing Routing Policy
57

Implementing Routing Policy
IS-IS Policy Attach Points

Attached Policy Modification
Policies that are in use do, on occasion, need to be modified. In the traditional configuration model, a policy
modification would be done by completely removing the policy and reentering re-entering it. However, this
model allows for a window of time in which no policy is attached and default actions to be used, which is an
opportunity for inconsistencies to exist. To close this window of opportunity, you can modify a policy in use
at an attach point by respecifying it, which allows for policies that are in use to be changed, without having
a window of time in which no policy is applied at the given attach point.

A route policy or set that is in use at an attach point cannot be removed because this removal would result in
an undefined reference. An attempt to remove a route policy or set that is in use at an attach point results in
an error message to the user.

Note

Nonattached Policy Modification
As long as a given policy is not attached at an attach point, the policy is allowed to refer to nonexistent sets
and policies. Configurations can be built that reference sets or policy blocks that are not yet defined, and then
later those undefined policies and sets can be filled in. This method of building configurations gives much
greater flexibility in policy definition. Every piece of policy you want to reference while defining a policy
need not exist in the configuration. Thus, you can define a policy sample1 that references a policy sample2
using an apply statement even if the policy sample2 does not exist. Similarly, you can enter a policy statement
that refers to a nonexistent set.

However, the existence of all referenced policies and sets is enforced when a policy is attached. Thus, if a
user attempts to attach the policy sample1 with the reference to an undefined policy sample2 at an inbound
BGP policy using the statement neighbor 1.2.3.4 address-family ipv4 unicast policy sample1 in, the
configuration attempt is rejected because the policy sample2 does not exist.

Editing Routing Policy Configuration Elements
RPL is based on statements rather than on lines. That is, within the begin-end pair that brackets policy statements
from the CLI, a new line is merely a separator, the same as a space character.

The CLI provides the means to enter and delete route policy statements. RPL provides a means to edit the
contents of the policy between the begin-end brackets, using a text editor. The following text editors are
available on the software for editing RPL policies:

• Nano (default)

• Emacs

• Vim

Editing Routing Policy Configuration Elements Using Emacs Editor

To edit the contents of a routing policy using the Emacs editor, use the following CLI command in XR EXEC
mode:

edit

Implementing Routing Policy
58

Implementing Routing Policy
Attached Policy Modification

route-policy

name

emacs

A copy of the route policy is copied to a temporary file and the editor is launched. After editing, save the
editor buffer by using the Ctrl-X and Ctrl-S keystrokes. To save and exit the editor, use the Ctrl-X and Ctrl-C
keystrokes. When you quit the editor, the buffer is committed. If there are no parse errors, the configuration
is committed:

RP/0/RP0/CPU0:router# edit route-policy policy_A
--
== MicroEMACS 3.8b () == rpl_edit.139281 ==
if destination in (2001::/8) then
drop

endif
end-policy
!

== MicroEMACS 3.8b () == rpl_edit.139281 ==
Parsing.
83 bytes parsed in 1 sec (82)bytes/sec
Committing.
1 items committed in 1 sec (0)items/sec
Updating.
Updated Commit database in 1 sec

If there are parse errors, you are asked whether editing should continue:

RP/0/RP0/CPU0:router#edit route-policy policy_B
== MicroEMACS 3.8b () == rpl_edit.141738
route-policy policy_B
set metric-type type_1
if destination in (2001::/8) then

drop
endif

end-policy
!
== MicroEMACS 3.8b () == rpl_edit.141738 ==
Parsing.
105 bytes parsed in 1 sec (103)bytes/sec

% Syntax/Authorization errors in one or more commands.!! CONFIGURATION
FAILED DUE TO SYNTAX/AUTHORIZATION ERRORS
set metric-type type_1
if destination in (2001::/8) then

drop
endif

end-policy
!

Continue editing? [no]:

Implementing Routing Policy
59

Implementing Routing Policy
Editing Routing Policy Configuration Elements Using Emacs Editor

If you answer yes, the editor continues on the text buffer fromwhere you left off. If you answer no, the running
configuration is not changed and the editing session is ended.

Editing Routing Policy Configuration Elements Using Vim Editor

Editing elements of a routing policy with Vim (Vi IMproved) is similar to editing them with Emacs except
for some feature differences such as the keystrokes to save and quit. To write to a current file and exit, use
the :wq or :x or ZZ keystrokes. To quit and confirm, use the :q keystrokes. To quit and discard changes, use
the :q! keystrokes.

You can reference detailed online documentation for Vim at this URL: http://www.vim.org/

Editing Routing Policy Configuration Elements Using CLI

The CLI allows you to enter and delete route policy statements. You can complete a policy configuration
block by entering applicable commands such as end-policy or end-set. Alternatively, the CLI interpreter
allows you to use the exit command to complete a policy configuration block. The abort command is used
to discard the current policy configuration and return to mode.

Editing Routing Policy Configuration Elements Using Nano Editor

To edit the contents of a routing policy using the Nano editor, use the following CLI command in XR EXEC
mode:

edit route-policy

name

nano

A copy of the route policy is copied to a temporary file and the editor is launched. After editing, enter Ctrl-X
to save the file and exit the editor. The available editor commands are displayed on screen.

Detailed information on using the Nano editor is available at this URL: http://www.nano-editor.org/.

Not all Nano editor features are supported on the software.

Editing Routing Policy Language set elements Using XML

RPL supports editing set elements using XML. Entries can be appended, prepended, or deleted to an existing
set without replacing it through XML.

Hierarchical Policy Conditions
The Hierarchical Policy Conditions feature enables the ability to specify a route policy within the "if" statement
of another route policy. This ability enables route-policies to be applied for configurations that are based on
hierarchical policies.

Implementing Routing Policy
60

Implementing Routing Policy
Editing Routing Policy Configuration Elements Using Vim Editor

http://www.vim.org/
http://www.nano-editor.org/

With the Hierarchical Policy Conditions feature, the software supports Apply Condition policies that can be
used with various types of Boolean operators along with various other matching statements.

Apply Condition Policies
Apply Condition policies allow usage of a route-policy within an "if" statement of another route-policy.

Consider route-policy configurations Parent, Child A, and Child B:
route-policy ChildA
if destination in (10.10.0.0/16) then
set local-pref 111
endif
end-policy
!

route-policy ChildB
if as-path originates-from '222' then
set community (333:222) additive
endif
end-policy
!

route-policy Parent
if apply ChildA and apply ChildB then
set community (333:333) additive
else
set community (333:444) additive
endif
end-policy
!

In the above scenarios, whenever the policy Parent is executed, the decision of the "if" condition in that is
selected based on the result of policies Child A and Child B. The policy Parent is equivalent to policy merged
as given below:

route-policy merged
if destination in (10.10.0.0/16) and as-path originates-from '222' then
set local-pref 111
set community (333:222, 333:333) additive
elseif destination in (10.10.0.0/16) then /*Only Policy ChildA is pass */
set local-pref 111
set community (333:444) additive /*From else block */
elseif as-path originates-from '222' then /*Only Policy ChildB is pass */
set community (333:222, 333:444) additive /*From else block */
else
set community (333:444) additive /*From else block */
endif
end-policy

Apply Conditions can be used with parameters and are supported on all attach points and on all clients.
Hierarchical Apply Conditions can be used without any constraints on a cascaded level.

Existing route policy semantics can be expanded to include this Apply Condition:

Route-policy policy_name
If apply policyA and apply policyB then

Set med 100
Else if not apply policyD then

Set med 200
Else

Implementing Routing Policy
61

Implementing Routing Policy
Apply Condition Policies

Set med 300
Endif
End-policy

Behavior of pass/drop/done RPL Statements for Simple Hierarchical Policies

This table describes the behavior of pass/drop/done RPL statements, with a possible sequence for executing
the done statement for Simple Hierarchical Policies.

BehaviorPossible done statement execution
sequence

Route-policies with simple
hierarchical policies

Marks the prefix as "acceptable"
and continues with execution of
continue_list statements.

pass

Continue_list

pass

Rejects the route immediately on
hitting the drop statement and stops
policy execution.

Stmts_list

drop

drop

Accepts the route immediately on
hitting the done statement and stops
policy execution.

Stmts_list

done

done

Exits immediately at the done
statement with "accept route".

pass

Statement_list

done

pass followed by done

This is an invalid scenario at
execution point of time. Policy
terminates execution at the drop
statement itself, without going
through the statement list or the
done statement; the prefix will be
rejected or dropped.

drop

Statement list

done

drop followed by done

Behavior of pass/drop/done RPL Statements for Hierarchical Policy Conditions

This section describes the behavior of pass/drop/doneRPL statements, with a possible sequence for executing
the done statement for Hierarchical Policy Conditions.

Terminology for policy execution: "true-path", "false-path", and "continue-path".

Route-policy parent
If apply hierarchical_policy_condition then

TRUE-PATH : if hierarchical_policy_condition returns TRUE then this path will
be executed.
Else

FALSE-PATH : if hierarchical_policy_condition returns FALSE then this path will
be executed.
End-if
CONTINUE-PATH : Irrespective of the TRUE/FALSE this path will be executed.
End-policy

Implementing Routing Policy
62

Implementing Routing Policy
Behavior of pass/drop/done RPL Statements for Simple Hierarchical Policies

BehaviorPossible done statement execution
sequence

Hierarchical policy conditions

Marks the return value as "true" and
continues execution within the
same policy condition.

If there is no statement after "pass",
returns "true".

pass

Continue_list

pass

Marks the return value as "true" and
continues execution till the done
statement. Returns "true" to the
apply policy condition to take
"true-path".

pass or set action statement

Stmt_list

done

pass followed by done

Returns " false". Condition takes
"false-path".

Stmt_list without pass or set
operation

DONE

done

The prefix is dropped or rejected.Stmt_list

drop

Stmt_list

drop

Nested Wildcard Apply Policy
The hierarchical constructs of Routing Policy Language (RPL) allows one policy to refer to another policy.
The referred or called policy is known as a child policy. The policy from which another policy is referred is
called calling or parent policy. A calling or parent policy can nest multiple child policies for attachment to a
common set of BGP neighbors. The nested wildcard apply policy allows wildcard (*) based apply nesting.
The wildcard operation permits declaration of a generic apply statement that calls all policies that contain a
specific defined set of alphanumeric characters, defined on the router.

A wildcard is specified by placing an asterisk (*) at the end of the policy name in an apply statement. Passing
parameters to wildcard policy is not supported. The wildcard indicates that any value for that portion of the
apply policy matches.

To illustrate nested wildcard apply policy, consider this policy hierarchy:
route-policy Nested_Wilcard
apply service_policy_customer*
end-policy

route-policy service_policy_customer_a
if destination in prfx_set_customer_a then
set extcommunity rt (1:1) additive
endif
end-policy

route-policy service_policy_customer_b
if destination in prfx_set_customer_b then
set extcommunity rt (1:1) additive
endif
end-policy

Implementing Routing Policy
63

Implementing Routing Policy
Nested Wildcard Apply Policy

route-policy service_policy_customer_c
if destination in prfx_set_customer_c then
set extcommunity rt (1:1) additive
endif
end-policy

Here, a single parent apply statement (apply service_policy_customer*) calls (inherits) all child polices that
contain the identified character string "service_policy_customer". As each child policy is defined globally,
the parent dynamically nests the child policies based on the policy name. The parent is configured once and
inherits each child policy on demand. There is no direct association between the parent and the child policies
beyond the wildcard match statement.

VRF Import Policy Enhancement
The VRF RPL based import policy feature provides the ability to perform import operation based solely on
import route-policy, by matching on route-targets (RTs) and other criteria specified within the policy. No
need to explicitly configure import RTs under global VRF-address family configuration mode. If the import
RTs and import route-policy is already defined, then the routes will be imported from RTs configured under
import RT and then follows the route-policy attached at import route-policy.

Use the source rt import-policy command under VRF sub-mode of VPN address-family configuration
mode to enable this feature.

Match Aggregated Route
The Match Aggregated Route feature helps to match BGP aggregated route from the non-aggregated route.
BGP can aggregate a group of routes into a single prefix before sending updates to a neighbor. With Match
Aggregated Route feature, route policy separates this aggregated route from other routes.

Remove Private AS in Inbound Policy
BGP appends its own as-path before sending out packets to neighbors.When a packet traverses multiple iBGP
neighbors, the as-path structure will have many private autonomous systems (AS) in them. The Remove
Private AS in Inbound Policy will give the capability to delete those private autonomous systems using RPL
route-policy. The remove as-path private-as command removes autonomous systems (AS) with AS number
64512 through 65535.

Implementing Routing Policy
64

Implementing Routing Policy
VRF Import Policy Enhancement

	Implementing Routing Policy
	Restrictions for Implementing Routing Policy
	Define Route Policy
	Attach Routing Policy to BGP Neighbor
	Modify Routing Policy Using Text Editor
	References for Routing Policy
	Routing Policy Language
	Routing Policy Language Overview
	Routing Policy Language Structure
	Names
	Sets
	as-path-set
	community-set
	extcommunity-set
	prefix-set
	ACL Support in RPL Prefix Sets

	rd-set

	Routing Policy Language Components
	Routing Policy Language Usage

	Policy Definitions
	Parameterization
	Parameterization at Attach Points
	Global Parameterization

	Semantics of Policy Application
	Boolean Operator Precedence
	Multiple Modifications of Same Attribute
	When Attributes Are Modified
	Default Drop Disposition
	Control Flow
	Policy Verification
	Range Checking
	Incomplete Policy and Set References
	Aggregation

	Policy Statements
	Remark
	Disposition
	Action
	If
	Boolean Conditions
	apply

	Attach Points
	BGP Policy Attach Points
	Additional-Path
	Dampening
	Default Originate
	Neighbor Export
	Neighbor Import
	Network
	Redistribute
	Show BGP
	Table Policy
	Import
	Export
	Retain Route-Target
	Allocate-Label
	Label-Mode
	Neighbor-ORF
	Next-hop
	Clear-Policy
	Debug
	BGP Attributes and Operators
	Default-Information Originate

	OSPF Policy Attach Points
	Redistribute
	Area-in
	Area-out
	OSPF Attributes and Operators
	Distribute-list in

	OSPFv3 Policy Attach Points
	Redistribute
	OSPFv3 Attributes and Operators

	IS-IS Policy Attach Points
	Default-Information Originate
	Inter-area-propagate

	Nondestructive Editing of Routing Policy
	Attached Policy Modification
	Nonattached Policy Modification
	Editing Routing Policy Configuration Elements
	Editing Routing Policy Configuration Elements Using Emacs Editor
	Editing Routing Policy Configuration Elements Using Vim Editor
	Editing Routing Policy Configuration Elements Using CLI
	Editing Routing Policy Configuration Elements Using Nano Editor
	Editing Routing Policy Language set elements Using XML

	Hierarchical Policy Conditions
	Apply Condition Policies
	Behavior of pass/drop/done RPL Statements for Simple Hierarchical Policies
	Behavior of pass/drop/done RPL Statements for Hierarchical Policy Conditions

	Nested Wildcard Apply Policy
	VRF Import Policy Enhancement
	Match Aggregated Route
	Remove Private AS in Inbound Policy

