Need for Trustworthy Systems

In Cisco I0S XR Release 7.0.1, this section is applicable only to the following Cisco NCS 540 variants:
* N540-28Z4C-SYS-A/D
* N540X-16Z4G8Q2C-A/D
* N540-12Z220G-SYS-A/D
* N540X-12Z16G-SYS-A/D

Starting Cisco IOS XR Release 7.3.1, this section is also applicable to the following Cisco NCS 540 variants:
* N540X-6Z18G-SYS-A/D
* N540X-8Z16G-SYS-A/D
* N540-FH-CSR-SYS
Global service providers, enterprises, and government networks rely on the unimpeded operation of complex
computing and communications networks. The integrity of the data and IT infrastructure is foundational to
maintaining the security of these networks and user trust. With the evolution to anywhere, anytime access to
personal data, users expect the same level of access and security on every network. The threat landscape is

also changing, with adversaries becoming more aggressive. Protecting networks from attacks by malevolent
actors and from counterfeit and tampered products becomes even more crucial.

Routers are the critical components of the network infrastructure and must be able to protect the network and
report on system integrity. A “trustworthy solution” is one that does what it is expected to do in a verifiable
way. Building trustworthy solutions requires that security is a primary design consideration. Routers that
constitute trustworthy systems are a function of security, and trust is about preventing as well as knowing
whether systems have been tampered with.

In trustworthy systems, trust starts at the lowest levels of hardware and is carried through the boot process,
into the operating system (OS) kernel, and finally into runtime in the OS.

The main components of implementing a trustworthy system are:

* Enabling trust in hardware with Hardware root-of-trust and secure JTag
* Enabling trust in software with secure boot and secure iPXE

* Enabling and maintaining trust at steady state with SELinux, Secure install, and SSD Encryption

Need for Trustworthy Systems .

Need for Trustworthy Systems |
. Enable Trust in Hardware

Figure 1: Ecosystem of Trustworthy Systems

% L,LFJ-[n I‘.il:?-'.-f-;l"{/

of trust

Secure JTag

- Secure boot

Secure iPXE

&

@
bre trust in Sowa

369831

Trustworthy systems must have methods to securely measure hardware, firmware, and software components
and to securely attest to these secure measurements.

For information on key concepts used in this chapter, see the Understanding Key Concepts in Security.

* Enable Trust in Hardware, on page 2

* Enable Trust in Software, on page 5

* Establish and Maintain Trust at Steady State, on page 7
* How Trustworthiness is Implemented, on page 23

* Understanding Key Concepts in Security, on page 24

Enable Trust in Hardware

Because software alone can’t prove a system's integrity, truly establishing trust must also be done in the
hardware using a hardware-anchored root of trust. Without a hardware root of trust, no amount of software
signatures or secure software development can protect the underlying system from becoming compromised.
To be effective, this root of trust must be based on an immutable hardware component that establishes a chain
of trust at boot-time. Each piece of code in the boot process measures and checks the signature of the next
stage of the boot process before the software boots.

A hardware-anchored root of trust is achieved through:

* Anti-counterfeit chip: All modules that include a CPU, as well as the chassis, are fitted with an
anti-counterfeit chip, which supports co-signed secure boot, secure storage, and boot-integrity-visibility.
The chip ensures that the device's software and hardware are authentic and haven’t been tampered with
or modified in any way. It also helps to prevent unauthorized access to the device's sensitive data by
enforcing strong authentication and access control policies.

* Secure Unique Device Identifier (SUDI): The X.509 SUDI certificate installed at manufacturing provides
a unique device identifier. SUDI helps to enable anti-counterfeit checks along with authentication and
remote provisioning. The SUDI is generated using a combination of the device's unique hardware identifier
(such as its serial number or MAC address) and a private key that is securely stored within the device.
This ensures that each SUDI is unique and cannot be easily duplicated or forged. When a device attempts
to connect to a network, the network uses the SUDI to authenticate the device, and ensure that it’s
authorized to connect. This helps to prevent unauthorized access to the network and ensures that only
trusted devices are allowed to connect.

. Need for Trustworthy Systems

| Need for Trustworthy Systems

Secure Hardware for Strong Cryptography .

* Secure JTag: The secure JTAG interface is used for debugging and downloading firmware. This interface
with asymmetric-key based authentication and verification protocols prevents attackers from modifying
firmware or stealing confidential information. Secure JTAG typically involves a combination of hardware
and software-based security measures. For example, it may include the use of encryption and authentication
protocols to secure communications between the JTAG interface and the debugging tool. It may also
involve the use of access control policies and permissions to restrict access to the JTAG interface to
authorized users only.

\)

Note Hardware-anchored root of trust is enabled by default on Cisco NCS 540 Series routers.

Secure Hardware for Strong Cryptography

Chip Guard

All Cisco I0S XR7 supported-platforms ships with a non-tamperable Trust Anchor module (TAm) in the
hardware.

TAm houses known-good-values (KGVs) of the hardware components along with keys and certificates rooted
to Cisco, which are used to verify components of the hardware during the BIOS boot.

Chip Guard and Attestation are security features implemented in TAm.

* Chip Guard detects tampering attempts and responds by initiating actions such as disabling access to the
device, erasing sensitive information stored in the device, or triggering a security alarm.

» Attestation provides a mechanism for verifying the integrity and authenticity of the software and hardware
components of a device.
A Cisco router with SUDI is authenticated and verified remotely for uniquely identifying that it’s an authentic

Cisco device.

Where Cisco NCS 540 Series Routers have the older generation of chips with lesser capabilities compared to
the latest TAm chips present on the newer generation of hardware.

Table 1: Feature History Table

Feature Name Release Information Feature Description

Chip Guard Support Release 7.4.1 Support for the Chip Guard
functionality is now extended to the
following Cisco NCS 540 router
varaint:

* N540X-6Z18G-SYS-A/D
* N540X-8Z216G-SYS - A/D
* N540X-4Z214G2Q-SYS-A/D

Attacks can come from various sources — starting from the CPUs or ASICs containing Trojan or malware.
Sometimes, the chips may have a Trojan in form of an added die in the package assembly.

Need for Trustworthy Systems .

. Attestation

Attestation

Need for Trustworthy Systems |

Cisco’s Chip Guard feature mitigates this threat with the use of unique identifiers buried inside the Trusted
Anchor module (TAm) devices as a way to identify and track components throughout the lifecycle of products.

During the manufacturing phase, hashes of known good values (KGV) of the components are burnt into the
TAm. At every boot of the system, the components are validated by matching their observed values with the
KGYV of that component present on the TAm.

If the values do not match, the system fails to boot up. In which case, the operator must perform a remote
attestation to query the TAm and identify the cause of bootup failure.

Table 2: Feature History Table

Feature Name Release Information Feature Description

Support for Attestation Release 7.4.1 Attestation is a mechanism used
by a trusted entity to validate the
software integrity of a platform.

Support for attestation is now
extended to the following Cisco
NCS 540 router variant:

* N540-24Q8L2DD-SYS

Proof of hardware integrity is recorded in the TAm as part of Chip Guard. This proof is made available through
the following commands:

\}

Note The same data is also available through NETCONF for a remote attestation server:
Cisco-I0S-XR-remote-attestation-act.yang.

RP/0/RP0O/CPUO:ios# show platform security ?

attest Attest the information

health Match and report any inconsistencies in secure variables across nodes
integrity System Integrity

tam Tam Device Details

variable Show secure variables from secure certificate storage

RP/0/RP0O/CPUO:ios# show platform security integrity ?
dossier Ask me anything dossier

hardware Fetch System Hardware integrity

log Integrity Logs

RP/0/RPO/CPUO:ios# show platform security attest ?
PCR PCR quotes and value
certificate Fetch System Certificates

RP/0/RPO/CPUO:ios# show platform security attest PCR ?
WORD PCR register number. Specify multiple PCRs seperated by ','

RP/0/RP0O/CPUO:ios# show platform security attest PCR 0 ?
location Certificates from which location

trustpoint CiscoSUDI/CiscoAIK to be used for PCR quote

| Output Modifiers

. Need for Trustworthy Systems

| Need for Trustworthy Systems
Enable Trust in Software .

RP/0/RPO/CPUO:ios# show platform security attest PCR 0 location ?
0/RPO/CPUO Fully qualified location specification

WORD Fully qualified location specification

all all locations

RP/0/RPO/CPUO:ios# show platform security attest PCR 0 location 0/RP0O/CPUO trustpoint locaion
0/RP0O/CPUO tr

CiscoAIK Cisco AIK Certificate

CiscoSUDI Cisco SUDI Certificate

RP/0/RPO/CPUO:ios# show platform security attest certificate ?

CiscoAIK Cisco AIK Certificate
CiscoSUDI Cisco SUDI Certificate

Enable Trust in Software

In Cisco I0S XR7, trust in the software is enabled through:

Secure Boot

Table 3: Feature History Table

Feature Name Release Information Feature Description

Support for Secure Boot Release 7.4.1 Support for Secure Boot is now extended
to the following Cisco NCS 540 router
variant:

* N540-24Q8L2DD-SYS

Cisco Secure Boot helps to ensure that the code that executes as part of the software image boot up on Cisco
routers is authentic and unmodified. Cisco IOS XR7 platforms support the hardware-anchored secure boot
which is based on the standard Unified Extensible Firmware Interface (UEFI). This UEFI-based secure boot
protects the microloader (the first piece of code that boots) in tamper-resistant hardware, establishing a root
of trust that helps prevent Cisco network devices from executing tainted network software.

Need for Trustworthy Systems .

Need for Trustworthy Systems |

. Secure Boot

Figure 2: Secure Boot

Step 1 Step 2 Step 3 Step 4

Hardware

Anchor

Microloader Bootloader OS Launched
checks checks OS

Bootloader

369830

) integrity Checks Y, Image Signing

The intent of Secure Boot is to have a trust anchor module (TAm) in hardware that verifies the bootloader
code. A fundamental feature of secure boot is the barrier it provides that makes it that it is extremely difficult
or nearly impossible to bypass these hardware protections.

Secure boot ensures that the bootloader code is a genuine, unmodified Cisco piece of code and that code is
capable of verifying the next piece of code that is loaded onto the system. It is enabled by default.

When secure boot authenticates the software as genuine Cisco in a Cisco device with the TAm, the operating
system then queries the TAm to verify whether the hardware is authentic. It verifies by cryptographically
checking the TAm for a secure unique device identifier (SUDI) that comes only from Cisco.

The SUDI is permanently programmed into the TAm and logged by Cisco during Cisco’s closed, secured,
and audited manufacturing processes.

Booting the System with Trusted Software

In Cisco IOS XR?7, the router supports the UEFI-based secure boot with Cisco-signed boot artifact verification.
The following takes place:

Step 1: At bootup, the system verifies every artifact using the keys in the TAm.
Step 2: The following packages are verified and executed:

* Bootloader (Grand Unified Bootloader (GRUB), GRUB configuration, Preboot eXecution Environment
(PXE), netboot)

* Initial RAM disk (Initrd)

» Kernel (operating system)

Step 3: Kernel is launched.
Step 4: Init process is launched.
Step 5: All Cisco IOS XR RPMs are installed with signature verification.

Step 6: All required services are launched.

. Need for Trustworthy Systems

| Need for Trustworthy Systems

Secure iPXE — Secure Boot Over the Network .

Secure iPXE — Secure Boot Over the Network

The iPXE server is an HTTP server discovered using DHCP that acts as an image repository server. Before
downloading the image from the server, the Cisco router must authenticate the iPXE server.

\}

Note A secure iPXE server must support HTTPS with self-signed certificates.

The Cisco router uses certificate-based authentication to authenticate the iPXE server. The router:
* Downloads the iPXE self-signed certificates
* Uses the Simple Certificate Enrollment Protocol (SCEP)

* Acquires the root certificate chain and checks if it’s self-signed

The root certificate chain is used to authenticate the iPXE server. After successful authentication, a secure
HTTPS channel is established between the Cisco router and the iPXE server. Bootstrapper protocol (Bootp),
ISO, binaries, and scripts can now be downloaded on this secure channel.

Establish and Maintain Trust at Steady State

SELinux

Attackers are seeking long-term compromise of systems and using effective techniques to compromise and
persist within critical infrastructure devices. Hence, it is critical to establish and maintain trust within the
network infrastructure devices at all points during the system runtime.

In Cisco IOS XR7, trust is established and maintained in a steady state through:

Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides a mechanism for supporting
access control security policies, including mandatory access controls (MAC).

A kernel integrating SELinux enforces MAC policies that confine user programs and system servers to the
minimum amount of privileges they require to do their jobs. This reduces or eliminates the ability of these
programs and daemons to cause harm when compromised (for example, through buffer overflows or
misconfigurations). This confinement mechanism operates independently of the traditional Linux access
control mechanisms. SELinux has no concept of a "root" super-user and does not share the well-known
shortcomings of the traditional Linux security mechanisms (such as a dependence on setuid/setgid binaries).

On Cisco IOS XR7 software, only Targeted SELinux policies are used, so that only third-party applications
are affected by the policies; all Cisco IOS XR programs can run with full root permission.

With Targeted SELinux, using targeted policies, processes that are targeted run in a confined domain. For
example, the httpd process runs in the httpd_t domain. If a confined process is compromised by an attacker,
depending on the SELinux policy configuration, the attacker's access to resources and the possible damage
that can result is limited.

)

Note Processes running in unconfined domains fall back to using discretionary access control (DAC) rules.

Need for Trustworthy Systems .

Need for Trustworthy Systems |

. Confined and Unconfined Users

DAC is a type of access control defined as a means of restricting access to objects based on the identity of
the subjects or the groups (or both) to which they belong.

Confined and Unconfined Users

SELinux Mode

Each Linux user is mapped to an SELinux user through an SELinux policy. This allows Linux users to inherit
the restrictions placed on SELinux users.

If an unconfined Linux user executes an application, which an SELinux policy defines as an application that
can transition from the unconfined t domain to its own confined domain, the unconfined Linux user is subject
to the restrictions of that confined domain. The security benefit is that, even though a Linux user is running
in unconfined mode, the application remains confined. Therefore, the exploitation of a flaw in the application
is limited by the policy.

A confined Linux user is restricted by a confined user domain against the unconfined t domain. The SELinux
policy can also define a transition from a confined user domain to its own target confined domain. In such a
case, confined Linux users are subject to the restrictions of that target confined domain.

There are three SELinux modes:

* Enforcing: When SELinux is running in enforcing mode, it enforces the SELinux policy and denies
access based on SELinux policy rules.

SELinux security policy is configured as enforcing by default.

* Permissive: In permissive mode, the SELinux does not enforce policy, but logs any denials. Permissive
mode is used for debugging and policy development.

* Disabled: In disabled mode, no SELinux policy is loaded. The mode may be changed in the boot loader,
SELinux config, or at runtime with setenforce.

To view security policy mode:

[node0_RPO_CPUO:~]Sgetenforce
Enforcing

Role of the SELinux Policy in Boot Process

SELinux plays an important role during system startup. Because all processes must be labeled with their
proper domain, the init process performs essential actions early in the boot process that synchronize labeling
and policy enforcement.

After the kernel is loaded during boot, the initial process is assigned the predefined initial SID kernel t. Initial
SIDs are used for bootstrapping before the policy is loaded. The init process scans the /etc/selinux/config
directory for the active policies, such as the targeted policy, and loads the associated file.

After the policy is loaded, the initial SIDs are mapped to security contexts in the policy. In the case of the
targeted policy, the new domain is "user_u:system_r:unconfined t". The kernel begins to get security contexts
dynamically from the in-kernel security server.

The init process then re-executes itself so that it can transition to a different domain, if the policy defines it.
For the targeted policy, there is no transition defined and the init process remains in the unconfined t domain.
At this point, the init process continues with its normal boot process.

. Need for Trustworthy Systems

| Need for Trustworthy Systems
Secure Install .

Secure Install

The Cisco IOS XR software is shipped as RPMs. Each RPM consists of one or more processes, libraries, and
other files. An RPM represents a collection of software that performs a similar functionality; for example,
packages of BGP, OSPF, as well as the Cisco IOS XR Infra libraries and processes.

RPMs can also be installed into the base Linux system outside the Cisco IOS XR domain; however, those
RPMs must also be appropriately signed.

All RPMs shipped from Cisco are secured using digitally signed Cisco private keys.
There are three types of packages that can be installed:

* Packages shipped by Cisco (open source or proprietary)

* Customer packages that replace Cisco provided packages

* Customer packages that do not replace Cisco provided packages

RPM Signing and Validation

Table 4: Feature History Table

Feature Name Release Information Feature Description
Support for RPM Signing and Release 7.4.1 Support for RPM Signing and
Validation Validation is now extended to the
following Cisco NCS 540 router
varaint:
* N540-24Q8L2DD-SYS

RPMs are signed during the build process, when the different RPMs are "constructed" using the packaging
instructions of the build process. Any package - process, library, or file - can exist in only one RPM. For
example, if BGP is packaged as a separate RPM, then any artifacts related to BGP are present only in the BGP
RPM and not, for example, in the Routing RPM.

The install component of the Cisco IOS XR performs various actions on the RPMs, such as verification,
activation, deactivation, and removal. Many of these actions invoke the underlying DNF installer. During
each of these actions, the DNF verifies the signature of the RPM to ensure that it operates on a legitimate
package.

X.509 Certificates for RPM Signing

* X.509 certificates provide a single way to manage the system's certificates for verification, delegation,
rollover, revocation, policy control, and so on.

* X.509 offer higher flexibility than other certificate formats.

)

Note The X.509 certificate used to sign the RPM must be pulled in from the TAm into the kernel key ring, along
with the rest of the keys.

Need for Trustworthy Systems .

[l hird-Party RPMs

M odifying the RPM Header

Need for Trustworthy Systems |

The RPM certificate keys are taken out during the boot process and added into the kernel keyring by kernel

patches from the UEFI. During the run time of Cisco IOS XR7 software, these keys are always present in the
kernel keyring. The RPM metadata signature header can be modified to specify that the key type is a kernel

keyring-based key. When the RPM needs to be validated, RPM executable picks the key from the kernel

keyring to validate it.

N

Note The signature type in the RPM and during the build continue to be GPG based.

Third-Party RPMs

The XR Install enforces signature validation using the ‘gpgcheck’ option of DNF. Thus, any Third-Party RPM
packages installation fails if done through the XR Install (which uses the DNF). However, Third-Party RPMs
can still be installed using the rpm command.

SSD Encryption

Table 5: Feature History Table

Feature Name

Release Information

Feature Description

SSD Encryption

Release 7.5.1

This feature enables trust and
security in the system’s steady state
by encrypting data at the disk level.
The encrypted data can be accessed
only with a specific key stored in
the TAm.

In this release, this feature is
supported on:

* N540-ACC-SYS
* N540X-ACC-SYS
* N540-24728Q2C-SYS

. Need for Trustworthy Systems

| Need for Trustworthy Systems

DM-Crypt

DM-Crypt .

Feature Name Release Information Feature Description

SSD Encryption Release 7.3.1 This feature enables trust and
security in the system’s steady state
by encrypting data at the disk level.
The encrypted data can be accessed
only with a specific key stored in
the TAm.

In this release, the feature is
supported on:

* N540-28Z4C-SYS-A/D

* N540X-16Z24G8Q2C-A/D
* N540-12Z220G-SYS-A/D

* N540X-12Z16G-SYS-A/D
* N540X-6Z18G-SYS-A/D

Customers are concerned about the security of sensitive data present on persistent storage media. User passwords
are limited in their capability to protect data against attackers who can bypass the software systems and directly
access the storage media.

In this case, only encryption can guarantee data confidentiality.

Cisco I0S XR Software introduces SSD encryption that allows encrypting data at the disk level. SSD encryption
also ensures that the encrypted data is specific to a system and is accessible only with a specific key to decrypt
them.

Data that can be encrypted is sensitive information such as, topology data, configuration data, and so on.
Encryption can be achieved through the following:

* DM-Crypt

» CPU with AES-NI support

* CryptSetup

DM-Crypt is a Linux kernel module that provides disk encryption. The module takes advantage of the Linux
kernel’s device-mapper (DM) infrastructure. The DM provides a way to create virtual layers of block devices.

DM-crypt is a device-mapper target and provides transparent encryption of block devices using the kernel
crypto API. Data written to the block device is encrypted; whereas, data to be read is decrypted. See the
following figure.

Need for Trustworthy Systems .

Need for Trustworthy Systems |
[AEs-Nisupport

Figure 3: DM-Crypt Encryption

Application layer

Mountpoint:

/[tmp
o Filesystem layer Ext 2
& decrypted T Logical block device:
E v /dev/mapper/tmp
)
= Encryption layer DM-Crypt

encrypted T Physical block device:
J' /dev/hda2

Hardware layer

&

Hard disk

521449

AES-NI Support

Intel's Advanced Encryption Standard New Instructions (AES-NI) is a hardware-assisted engine that enables
high-speed hardware encryption and decryption. This process leaves the CPU free to do other tasks.

When the input-output operations are started, the read-write requests that are directed at the encrypted block
device are passed to the DM-Crypt. DM-Crypt then sends multiple cryptographic requests to the Cryptographic
Framework. The crypto framework is designed to take advantage of off-chip hardware accelerators and
provides software implementations when accelerators are not available. See the following image.

. Need for Trustworthy Systems

| Need for Trustworthy Systems

CryptSetup .

Figure 4: AES-NI Support

CryptSetup

DM-Crypt relies on user space tools, such as cryptsetup to set up cryptographic volumes. Cryptsetup is a
command-line-interface (CLI) tool that interacts with DM-Crypt for creating, accessing, and managing
encrypted devices.

Encrypted Logical Volume

An encrypted logical volume (LV) can be created during software installation on the following Cisco NCS
540 router variants:

* N540-28Z4C-SYS-A/D

* N540X-16Z24G8Q2C-A/D
* N540-12Z220G-SYS-A/D

* N540X-12Z16G-SYS-A/D
* N540X-6Z18G-SYS-A/D

In Cisco IOS XR Release 7.5.1, the encrypted logical volume (LV) can also be created during software
installation on the following Cisco NCS 540 router variants:

* N540-ACC-SYS
* N540X-ACC-SYS

Need for Trustworthy Systems .

Need for Trustworthy Systems |
[l ssoBinding

* N540-2478Q2C-SYS

You can activate or deactivate the encrypted disk partition on demand. In addition to being activated, all
sensitive files are also migrated from the unencrypted disk partition to the encrypted disk partition. The
encrypted files can be migrated back during deactivation.

You can activate the data encryption by using the disk encryption activate location command.

The encrypted logical volume capacity is 150MB of disk space and is available as /var/xr/enc for applications
to access.

\)

Note Although applications can choose to use this space for storage, that data is not be part of the data migration
if the software image is downgraded to a version that does not support encryption.

SSD Binding

When encryption is activated on a system, each card generates a random encryption key and stores it in its
own secure storage—the Trust Anchor module (TAm). During successive reboots, the encryption key is read
from the TAm and applied to unlock the encrypted device. Since each card stores its encryption key locally
on the TAm, an SSD that is removed from one card and inserted into another cannot be unlocked by the key
stored on that card, thereby making the SSD unusable.

If encryption is activated, the encrypted LV can only be unlocked by using the key stored in the TAm. So, if
an encrypted SSD is removed and moved to another line card, the SSD cannot be unlocked. In other words,
when you activate encryption, the SSD is bound to the card it is inserted in.

Data Zeroization

Zeroization refers to the process of deleting sensitive data from a cryptographic module.

)

Note In case of a Return Material Authorization (RMA), you must factory reset the data.

You can perform zeroization by using the factory reset Ilocationcommand from the XR prompt.

A

Caution Running this command while encryption is activated, deletes the master encryption key from the TAm and
renders the motherboard unusable after the subsequent reload.

. Need for Trustworthy Systems

| Need for Trustworthy Systems
Boot Integrity and Trust Visibility .

Boot Integrity and Trust Visibility

Table 6: Feature History Table

Feature Name Release Information Feature Description
Support for Boot Integrity and Release 7.4.1 Support for the BIV functionality
Trust Visibility (BIV) is now extended to the following

Cisco NCS 540 router varaint:
* N540X-6Z18G-SYS-A/D

* N540X-8Z16G-SYS - A/D
* N540X-4Z14G2Q-SYS-A/D

The secure boot first stage is rooted in the chip and all subsequent boot stages are anchored to the first successful
boot. The system is, therefore, capable of measuring the integrity of the boot chain. The hash of each software
boot image is recorded before it is launched. These integrity records are protected by the TAm. The boot chain
integrity measurements are logged and these measurements are extended into the TAm.

Use the show platform boot-integrity [sign [nonce <nonce>] [trustpoint <AIK trustpoint name>]]
command to view the boot integrity and boot-chain measurements.

You can also use Cisco-IOS-XR-remote-attestation-act.yang to fetch the boot integrity over the NETCONF
protocol.

The command displays both, the integrity log values and the assurance that these values have not been tampered.
These measurements include the following parameters:

* Micro loader hash
* Boot loader hash
* Image signing and management key hashes

* Operating system image hash

platform-pid string Platform ID

Event log [key: event number]: Ordered list of TCG described event log
that extended the PCRs in the order they
were logged

+-- event number uint32 Unique event number of this even

+-- event type uint32 log event type

+-- PCR_index uintl6 PCR index that this event extended

+-- digest hex-string The hash of the event data

+-- event size uint32 Size of the event data

+-- event data uint8[] event data, size determined by event size
PCR [index] - List of relevant PCR contents

+-- index uintl6 PCR register number

+-- value uint8[] 32 bytes - PCR register content
PCR Quote binary TPM 2.0 PCR Quote
PCR Quote Signature binary Signature of the PCR quote using TAM-held ECC or RSA restricted
key with the optional nonce if supplied

Need for Trustworthy Systems .

Need for Trustworthy Systems |
. Boot Integrity and Trust Visibility

\)

Note * PCR 0-9 are used for secure boot.
* Signature version designates the format of the signed data.
* The signature digest is SHA256.

* The signing key is in a TCG compliant format.

RP/0/RPO/CPUO:ios# show platform security attest PCR 15 trustpoint CiscoAIK nonce 4567
location 0/RPO/CPUO

Sun Jun 21 03:07:18.394 UTC
Nonce: 4567

Uptime: 495270
pcr-quote:

/IRRAAYAC B/ Al A TR U 1S3 CO0eA 0y YR RN B UIWRRES// / / /PRGN ARRARON P AR g JBOTYEOG SR O e BV Boos W ConB o=
pcr-quote-signature:

HRTINZDR

pcr-index pcr-value
15 oYk8yqrzudIpGB4H++SavVOwMveougDSUIuUfeSgbJdvbY=

RP/0/RP0O/CPUO:ios# show platform security integrity hardware digest-algorithm SHAl trustpoint
CiscoAIK nonce 4567 location 0/RP0O/CPUO

Sun Jun 21 03:09:14.594 UTC
Nonce: 4567

TPM Name: nodeO RPO_CPUO_aikido
Uptime: 495385
Known-good-digests:
Index value

0 3TDUS91UDCFX3VkICcOnySOQTPA=
observed-digests:
Index value

0 3TDUS91UDCFX3VkICcOnySOQTPA=
PCRs:
Index value

15 1Y3uKgNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0O/CPUO:ios# show platform security integrity hardware digest-algorithm SHA256
trustpoint CiscoAIK nonce 4567 location 0/RP0/CPUO

Sun Jun 21 03:09:31.110 UTC
Nonce: 4567

TPM Name: nodeO RPO_CPUO_aikido
Uptime: 495401
Known-good-digests:
Index value
0 3TDUS91UDCFX3VkICcOnySOQTPA=

. Need for Trustworthy Systems

| Need for Trustworthy Systems
Boot Integrity and Trust Visibility .

observed-digests:
Index value

0 3TDUS91UDCFX3VkICcOnySOQTPA=
PCRs:
Index value

15 1Y3uKgNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0O/CPUO:ios# show platform security integrity hardware digest-algorithm SHA256
trustpoint CiscoAIK nonce 4567 location 0/RP0O/CPUO

Sun Jun 21 03:09:43.782 UTC
Nonce: 4567

TPM Name: nodeO RPO_CPUO_aikido
Uptime: 495414
Known-good-digests:
Index value
0 y3n/SsvyNb8g307FFRGCZwfbs8EGxvMZg/PeNONAT71k=
observed-digests:
Index value

0 y3n/SsvyNb8g307FFRGCZwfbs8EGxvMZg/PeNONAT71k=
PCRs:
Index value

15 oYk8yqgrzudIpGB4H++SavVOwMveugDSUIuUfeSgbJvbY=

Cisco AIK Certificate used for signing PCR

pcr-quote:

/IRRAAYAC B/ Al R A TR U 7300y e YR RN By RS/ / / / /ARG ARAARON Pin AR e JBOTYE G SR O e BV Boos W COonB o=
pcr-quote-signature:
aft
RP/0/RP0/CPUO:ios#show platform security integrity hardware digest-algorith$
Sun Jun 21 03:09:56.794 UTC

Nonce: 4567

TPM Name: nodeO _RPO_CPUO_aikido
Uptime: 495427
Known-good-digests:
Index value

0 3TDUS91UDCFX3VkICcOnySOQTPA=
observed-digests:
Index value

0 3TDUS91UDCFX3VkICcOnySOQTPA=
PCRs:
Index value

15 1Y3uKgNv1UJQUNZQxmZkiuG4blk=

RP/0/RPO/CPUO:ios#

\)

Note Use the show platform security tam command to view the TAm device details.

Boot integrity verification consists of the following steps:

1. Report Boot 0 version and look up the expected integrity value for this platform and version.

2. Report bootloader version and look up the expected integrity value for this platform and version.

Need for Trustworthy Systems .

Need for Trustworthy Systems |
. Secure gRPC

Report OS version and look up the expected integrity value for this platform and version.
Using the integrity values obtained from steps 1-3, compute the expected PCR 0 and PCR 8 values
Compare the expected PCR values against the actual PCR values.

Verify the nonced signature to ensure the liveliness of the response data.

N o g &~ »

(Optional) Verify the software image (IOS XR) version is with what is expected to be installed on this
platform.

A failure of any of the above steps indicates either a compromised system or an incomplete integrity value
database.

Secure gRPC

gRPC (gRPC Remote Procedure Calls) is an open source remote procedure call (RPC) system that provides
features such as, authentication, bidirectional streaming and flow control, blocking or nonblocking bindings,
and cancellation and timeouts. For more information, see https://opensource.google.com/projects/grpc.

TLS (Transport Layer Security) is a cryptographic protocol that provides end-to-end communications security
over networks. It prevents eavesdropping, tampering, and message forgery.

In Cisco IOS XR7, by default, TLS is enabled in gRPC to provide a secure connection between the client and
server.

Integrity Measurement Architecture (IMA)

The goals of the Linux kernel integrity subsystem are to:
» detect whether files are accidentally or maliciously altered, both remotely and locally
+ measure the file by calculating the hash of the file content
* appraise a file's measurement against a known good value stored as an extended attribute

» enforce local file integrity

)

Note These goals are complementary to the Mandatory Access Control (MAC) protections provided by SElinux.

IMA maintains a runtime measurement list and—because it is also anchored in the hardware Trusted Anchor
module (TAm)—an aggregate integrity value over this list. The benefit of anchoring the aggregate integrity
value in the TAm is that the measurement list cannot be compromised by any software attack without being
detectable. As a result, on a trusted boot system, IMA-measurement can be used to attest to the system's
runtime integrity.

For more information about IMA, download the IMA whitepaper, An Overview of The Linux Integrity
Subsystem.

. Need for Trustworthy Systems

https://opensource.google.com/projects/grpc
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf

| Need for Trustworthy Systems

IMA Enforcement .

IMA Enforcement

Table 7: Feature History Table

Feature Name Release Description

IMA Enforcement Release 7.4.1 IMA maintains an integrity
measurement list for remote
attestation. The IMA-appraisal
extension adds local integrity
validation and enforcement of the
measurement against a 'good' value.
In this release, IMA policy enforces
an appraisal instead of simply
logging an integrity violation by
blocking any operation (open or
run) for a compromised executable.
This enforced mode of appraisal
ensures a higher level of trust and
security at runtime.

IMA appraisal provides an added runtime security level that can detect if a file has been modified — either
accidentally or maliciously and either remotely or locally.

It achieves this by validating the hash measurement of the file against a known good value (KGV). The
encrypted KGV in the form of a signature is stored in the file’s extended attribute and enforces local file
integrity. The enfor ced mode strictly enforces the file integrity check whenever a file is opened for either
reading or executing.

Figure 5: IMA Appraisal

Verification by Verification by
hash digital signature

file data IMA-Apprisal file data

compute COMpUte
hashed value hashed value

file xatir file xattr

allow file load

not same

deny file load deny file load

22027

There are three categories of system files that require protection — Linux, XR, and third-party applications.

1. Linux System Files: System files are comprised of Executable and Linkable Format (ELF) binary
executables, shared libraries, scripts (such as, Bash, Python, PERL, and Tcl), configuration files, and
password files that are part of the Linux distribution packages. Integrity protection of the said files ensures
that remote or local modification of the data does not remain undetected and access to such tampered data
is either forbidden or logged or both. To guarantee the integrity of these files, they must have a valid IMA
signature for the lifetime of the files. Executables and scripts must be appraised and measured. All other

Need for Trustworthy Systems .

Need for Trustworthy Systems |
Bl ™A Audit Log

immutable files must be measured. Files that don’t require appraisal and measurement are runtime files,
logs, memory-mapped files like devices, and shared memory objects.

2. XR System Files: XR system files are comprised of XR applications, shared libraries, kernel modules,
scripts, data files, configuration files and secret files like keys and user credentials. Integrity of these files
must be maintained in order for XR to operate properly. To keep the integrity of these files protected all
system files must have a valid IMA signature for the lifetime of the files. Executables and scripts must
be appraised and measured. All other immutable files must be measured. Files that don’t require appraisal
and measurement are runtime files, logs, memory-mapped files like devices, and shared memory objects.

3. Third-party Applications (TPAs): All TPAs are not appraised. There are two types of TPAs:

* native running applications: For native running applications the system files are installed on the disk
from an rpm package or directly copied to the disk. All immutable files are only measured. Executables
and scripts must be appraised and measured. All other immutable files must be measured. Files that
don’t require appraisal and measurement are runtime files, logs, and memory mapped-files like shared
memory objects.

« containerized applications: For containerized applications the system files are packaged in the
container image such as docker as part of the filesystem layers. When the container is launched, the
system files are only accessible from within the container unless it is bind mounted on the host. In
this case, only container image files are measured.

There are other frequently updated files that are created by the IOS XR (Linux, XR) at runtime, such as runtime
files, logs, memory mapped files like devices and shared memory objects. These files contain runtime data
and logs that are constantly updated by the applications. They do not require an IMA signature and are excluded
from appraisal to avoid possible access failure.

\}

Note In Cisco IOS XR Release 7.4.1, enforced appraisal is enabled only on the XR system files.

In this release, the following files are not signed with an IMA key, so they do not have an IMA signature.
However, the system still allows their execution:

» ZTP bash scripts with execute permission

* ZTP bash scripts without execute permission

* Third-party bash scripts without execute permission

* Bash scripts downloaded through file transfer operation like scp or sftp

* OPS 1.0 scripts, whether downloaded or created on the router

IMA Audit Log

IMA generates an event log every time it finds a file opened for reading or executing that has a mismatch
between the measured file hash and the one stored in the extended attribute.

This data integrity verification event is recorded in the audit log.

There are three reasons an integrity log is recorded in the audit log — invalid signature, invalid hash and missing
hash. The audit log has the following key information:

* type - INTEGRITY DATA - Triggered to record a data integrity verification event run by the kernel.

. Need for Trustworthy Systems

| Need for Trustworthy Systems

IMA Measurement Log

IMA Measurement Log .

* pid - Process ID of the calling process that opened the file with integrity verification failure.

« subject - SELinux file context label. SELinux runs in Permissive mode. Any access control violation is
only logged in the audit log and the application is still allowed to run.

* op - Operation (appraise_data).
* cause - Reason for integrity verification failure (invalid-signature, invalid-hash, missing-hash).

» comm - Calling process.

» name — Name of the file with full path that was appraised.

The following figure showcases an instance where the IMA appraisal causes the execution of a tampered
binary executable to fail. The figure also displays that the integrity violation is logged in the audit log.

[node0_RPO_CPUO:/ima-appraisal]$echo x >> /usr/bin/zip

[node0_RPO_CPUO:/ima-appraisal]$ L X . o
[node0_RP0_CPU0:/ima-appraisal]$zip --version | head -2 Integrity violation logged: invalid signature
sh: /usr/bin/zip: Permission denied
[node0_RPO_CPUO:/ima-appraisal]$
[node0 RP0_CPU0:/ima-appraisal]$cat /var/log/audit/audit.log | grep -i integ | fold -w 100
type=INTEGRITY DATA msg=audit(1588452746.842:273): pid=29579 uid=0 auid=4294967295 ses=4294967295 su
bj=unconfined u:unconfined r:unconfined t:s0 op="appraise data" cause="invalid-signature" comm="sh"
name="/usr/bin/zip" dev="dm-11" ino=3155844 res=0

[node0_RP0O_CPU0:/ima-appraisal]$
[node0 RP0_CPUO:/ima-appraisal]s]]

Integrity violation log type

Appraised file Reason Caller

The following figure shows an instance when an audit log was recorded because the file was missing an IMA
signature and was opened for either reading or execution. This resulted in a “missing-hash” event log.

inodeo:RPO:CPUO:/ima-ai)braisalngetfattr -dm- --absolute-names -e hex /usr/bin/zip | fold -w 100
$¢ file: /usr/bin/zip

security.selinux=0x756e636f6e66696e65645f753a6f626a6563745£723a62696e5£743a733000

[node0_RPO_CPUO:/ima-appraisal]$
[node0 RP0_CPUO:/ima-appraisal]$zip --version | head -2 Integrity violation logged: missing hash
sh: /usr/bin/zip: Permission denied
[node0_RP0_CPUOQ:/ima-appraisal]$
[node0 RPO_CPUO:/ima-appraisal]$cat /var/log/audit/audit.log | grep -i integ | fold -w 100
type=INTEGRITY DATA msg=audit(1588452812.348:274): pid=29801 uid=0 auid=4294967295 ses=4294967295 su
bj=unconfined u:unconfined r:unconfined t:s0 op="appraise data" cause="missing-hash" comm="sh" name=
"/usr/bin/zip" dev="dm-11" ino=3155844 res=0

[node0_RP0_CPU0:/ima-appraisal]$
[node0 RP0_CPUO:/ima-appraisal]$f]

Integrity violation log type

Appraised file Reason Caller

When a file covered by an IMA measurement policy is opened for reading or execution IMA must measure
the file by calculating its sha256 hash and record it in the IMA measurement log. To read the integrity log as
registered by the IMA subsystem, review the /sys/kernel/security/ima/ascii_runtime measurements file. The
columns (from left to right) are:

* PCR (Platform Configuration Register) in which the values are registered. This is applicable only if
a TPM chip is in use.

» Extended hash that is stored in the PCR.
» Template that registered the integrity value (ima-sig).

* SHA256 hash of the file.

Need for Trustworthy Systems .

522028

522029

Need for Trustworthy Systems |
B marolicy

* Filename that has the fully-qualified file path.

[node® RPO CPUO:/]S$cat /eys/kernel/security/ima/ascii runtime measurements | grep "/usr/bin/zip" |
fold -w 100 | more

10 baaB5aaf01d7966b54d206faelf0f628b5cTebel ima-sig sha256:b6b25aSfce5f139aldaalad02£71092££810a7d2b
13d71£61£3175d£31e51e02 fusr/bin/zip 0302046ebaedB301005d434285£32f4c65840568e8£a0Bb7b4£06789cTL1c98
c63d9cbaBed£41235d20591285874682b040£ad2419590£f1a7574a60efabaciblfea3fii36ed5ed2770404d8346£766b4%eal
ae3475eadf67abfbechbflcecc045fa0BaBd0Thdl4fas29%caees5c2Tblef4dfB694cBdE241bTc6i0cB4adfe3ldc345532321b33
d415758031ecd411216bblale352dc093T7cc23ff9f6165c91cdBeed73e21lbfb7776%ac496ab50echb3207498c274aaedBe5cde
44ce54Baf2764d0598e74dceT0c918756cTbefdelcdd55ecabB06b55381608920£228%e%c4338dd3dbecdabf)97cThT6de692
4b252dca325d9cleBdBebaBlldl2a89fcdcdaTd99f96becd 94e7£885bb613de5b278

[PCR] [SHA1] ima-sig [SHAZ56] [flenamea]
A A

Fully-gualified file path

SHAZ256 hash of file

522030

Extended Hash

IMA Policy

For IMA there exists a policy rule set that defines exactly which files on the file system should be measured
or appraised.

Each policy rule must start with one of the following directives:

» measure: Perform IMA measurement
* dont_measure: Exclude from IMA measurement
* appraise: Perform IMA appraisal

* dont_appraise: Exclude from IMA appraisal

\)

Note IMA policy is protected at runtime — it cannot be read or modified.

Verifying the IMA Appraisal “enforce” Mode

To display the content of the IMA appraisal mode, query the kernel command line and look for
“ima_appraise=enforce”.

$ cat /proc/cmdline

To query the content of the IMA measurement logs:

$ cat /sys/kernel/security/ima/ascii runtime measurements

To display the total number of files measured:

$ cat /sys/kernel/security/ima/runtime measurements count

To display the total number of integrity violations:

$ cat /sys/kernel/security/ima/violations

To access other user space interfaces in sysfs that are specific to the cisco_ima measurement:

$ 1ls /sys/kernel/security/cisco_ ima

. Need for Trustworthy Systems

| Need for Trustworthy Systems

IMA Signatures

IMA Signatures .

The IMA appraisal provides local integrity, validation, and enforcement of the measurement against a known
good value stored as an extended attribute—security.ima. The method for validating file data integrity is based
on a digital signature, which in addition to providing file data integrity also provides authenticity. Each file
(RPM) shipped in the image is signed by Cisco during the build and packaging process and validated at runtime
using the IMA public certificate stored in the TAm.

All RPMs contain Cisco IMA signatures of the files packaged in the RPM, which are embedded in the RPM
header. The IMA signature of the individual file is stored in its extended attribute during RPM installation.
This protects against modification of the Cisco RPMs.

The IMA signature format used for IMA can have multiple lines and every line has comma-separated fields.
Each line entry will have the filename, hash, and signature as illustrated below.

* File — Filename with the full path of the file hashed and signed
» Hash — SHA256 hash of the file
* Signature — RSA2048 key-based signature

How Trustworthiness is Implemented

The following sequence of events takes place when the Cisco routers that support IOS XR7 operating system
are powered up:

1. Atpower UP, the micro-loader in the chip verifies the digital signature of BIOS using the keys stored
in the TAm. The BIOS signature verification is logged and the measurement is extended into a PCR.

2. The BIOS then verifies the signature of the boot-loader using keys stored in TAm. The boot-loader
signature verification is logged and the measurement is extended into the PCR.

3. Ifthe validation is successful, the BIOS launches the bootloader. The bootloader uses the keys loaded
by the BIOS to verify the sanctity of the kernel, initrd file system, and grub-config file. Each verification
operation is logged, and the PCR in TAm is extended.

The initrd is exploded to create the initial file system.
The kernel is launched and the kernel keyrings are populated with the appropriate keys from the TAm.

Kernel modules are verified. Module verification results are logged and TAm PCR is extended.

N oo o A

The init process is launched. Whenever an executable or a shared library is invoked, the IMA kernel
hook validates the signature using the certificates in IMA keyring, which is then used to validate the
signature attached to the file.

8. The Cisco IOS XR7 RPM is installed with the signed verification. The results of RPM verification are
logged.

9. Cisco IOS XR7 processes are launched with IMA measurement.
10. TAm services are launched.

11. Cisco IOS XR7 application runs the initial admin user configuration and stores the credentials into TAm
secure storage.

Manual provisioning of user credentials is now complete.

Need for Trustworthy Systems .

Need for Trustworthy Systems |
. Understanding Key Concepts in Security

After the sequence is successfully completed, the router is considered trustworthy.

Understanding Key Concepts in Security

Attestation

Attestation is a mechanism used to attest the software’s integrity. The verifier trusts that the attested data is
accurate because it is signed by a TPM whose key is certified by the CA.

Attestation | dentity Key
An Attestation Identity Key (AIK) is a restricted key that is used for signing attestation requests.
Bootloader

The bootloader is a piece of code that runs before any operating system begins to run. Bootloaders contain
several ways to boot the OS kernel and also contain commands for debugging and modifying the kernel
environment.

Certificatesand Keysin TAm

All database keys are signed by the KEK. Any update to the keys requires the KEK or PK to sign in, using
time-based authentic variables. Some of the keys on the database are:

* Image signing certificate: This is the X.509 certificate corresponding to the public key and is used for
validating the signature of grub, initrd, kernel, and kernel modules.

* JOS-XR Key: A public key certificate signed by the KEK. This key is common to all Cisco NCS 540
Series routers and is used to sign GRUB, initrd, kernel and kernel modules.

* RPM key: Used for signing RPMs.

* IMA public key certificate: Used for Integrity Measurement Architecture (IMA), and used to validate
the IMA signature of the files.

* BIOS or Firmware Capsule Update key: Used to sign the outer capsule for BIOS or firmware updates.
It is the same as the secure boot key.

* Platform key (PK) and Key Enrollment Key (KEK): These are public keys and certificates used to manage
other keys in the TAM.

* LDWM Key: In the Cisco IOS XR7, the LDWM key is stored in the hardware trust anchor module and
is used for validating the BIOS.
Golden 1SO (GISO)

A GISO image includes a base binary artifact (an ISO) for the Linux distribution that is used on the server
fleet, packages, and configuration files that can be used as a base across all servers.

The GISO image for Cisco IOS XR7 software contains the IOS XR RPMs and third-party RPMs.
GRand Unified Bootloader (GRUB)

GNU GRUB (or just GRUB) is a boot loader package that loads the kernel and supports multiple operating
systems on a device. It is the first software that starts at a system boot.

Hash Function

A hash function is any function that is used to map data of arbitrary size onto data of a fixed size.

. Need for Trustworthy Systems

| Need for Trustworthy Systems
Understanding Key Concepts in Security .

I nitramfs

Initramfs, a complete set of directories on a normal root filesystem, is bundled into a single cpio archive and
compressed with one of the several compression algorithms. At boot time, the boot loader loads the kernel
and the initramfs image into memory and starts the kernel.

initrd

initial RAM disk is an initial root file system that is mounted before the real root file system is made available.
The initrd is bound to the kernel and loaded as part of the kernel boot procedure.

JTAG

JTAG is a common hardware interface that provides a system with a way to communicate directly with the
chips on a board. JTAG is used for debugging, programming, and testing on embedded devices.

Nonce Value

A nonce value is an arbitrary number that can be used only once in a cryptographic communication. It is a
random or pseudo-random number that is issued in an authentication protocol to ensure that the old
communications are not reused in replay attacks.

Platform Configuration Register (PCR)

PCR is a 256-bit storage location for discrete integrity measurements. It is designed to hold an unlimited
number of measurements in the register. It does this by using a cryptographic hash and hashing all updates
to a PCR.

Trust Anchor module (TAm)

The Cisco Trust Anchor module (TAm) helps verify that Cisco hardware is authentic and provides additional
security services.

Need for Trustworthy Systems .

Need for Trustworthy Systems |
. Understanding Key Concepts in Security

. Need for Trustworthy Systems

	Need for Trustworthy Systems
	Enable Trust in Hardware
	Secure Hardware for Strong Cryptography
	Chip Guard
	Attestation

	Enable Trust in Software
	Secure Boot
	Secure iPXE – Secure Boot Over the Network

	Establish and Maintain Trust at Steady State
	SELinux
	Confined and Unconfined Users
	SELinux Mode
	Role of the SELinux Policy in Boot Process

	Secure Install
	RPM Signing and Validation
	X.509 Certificates for RPM Signing
	Third-Party RPMs

	SSD Encryption
	DM-Crypt
	AES-NI Support
	CryptSetup
	Encrypted Logical Volume
	SSD Binding
	Data Zeroization

	Boot Integrity and Trust Visibility
	Secure gRPC
	Integrity Measurement Architecture (IMA)
	IMA Enforcement
	IMA Audit Log
	IMA Measurement Log
	IMA Policy
	Verifying the IMA Appraisal “enforce” Mode

	IMA Signatures

	How Trustworthiness is Implemented
	Understanding Key Concepts in Security

