
Services and Networking

This chapter contains the following topics:

• Load Balancing Kubernetes Services using NGINX, on page 1
• L7 Ingress, on page 1
• L4 Ingress, on page 3
• Ingress CA, on page 4
• Network Policies, on page 9
• Load Balancer Services, on page 9

Load Balancing Kubernetes Services using NGINX
Cisco Container Platform uses NGINX to offer advanced layer 7 load balancing solutions. NGINX can handle
a large number of requests and at the same time, it can be run on Kubernetes containers.

The NGINX load balancer is automatically provisioned as part of Kubernetes cluster creation. Each Kubernetes
cluster is provisioned with a single L7 NGINX load balancer. You can access the load balancer using its
virtual IP address, which can be found by running the command kubectl get svc -n ccp.

To use the NGINX load balancer, you must create an Ingress resource. Ingress is a Kubernetes object that
allows you to define HTTP load balancing rules to allow inbound connections to reach the cluster services.
You can configure Ingress to create external URLs for services, load balance traffic, terminate SSL, offer
name-based virtual hosting, and so on.

L7 Ingress
Cisco Container Platform supports the following types of L7 Ingresses:

• Simple fanout

It enables you to access the website using http.

Example

cafe.test.com -> 10.1.1.1 -> /tea tea-svc:80
/coffee coffee-svc:80

For this type of Ingress, you need to create a yaml file that defines the Ingress rules.

Sample yaml file

Services and Networking
1

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: cafe-ingress
spec:
rules:
-host: cafe.test.com
http:

paths:
-path:/
backend:
serviceName: tea-svc
servicePort: 80
-path:/
backend:
serviceName: tea-svc
servicePort: 80

• Simple fanout with SSL termination

It enables you to access the website using https.

Example

https://cafe.test.com -> 10.1.1.1 -> /tea tea-svc:80
/coffee coffee-svc:80

For this type of Ingress, you need to create the following yaml files:

• A yaml file that defines the Secret

Sample yaml file

apiVersion: v1
kind: Secret
metadata:
name: cafe-secret

type: Opaque
data:
tls.crt: base64 encoded cert
tls.key: base64 encoded key

• A yaml file that defines the Ingress rules

Sample yaml file

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: cafe-ingress

spec:
tls:
-hosts:
-cafe.test.com
secretName: cafe-secret
rules:
-host: cafe.example.com
http:
paths:
-path:/
backend:
serviceName: tea-svc
sevicePort: 80

-path:/
backend:

Services and Networking
2

Services and Networking
L7 Ingress

serviceName: coffee-svc
servicePort: 80

• Name based virtual hosting

It enables you to access the website using multiple host names.

Example

tea.test.com --| |-> tea.test.com s1:80
|10.1.1.1 |

coffee.test.com --| |-> coffee.test.com s2:80

For this type of Ingress, you need to create a yaml file that defines the Ingress rules.

Sample yaml file

apiVersion: extensions/v1beta1
kind: Ingress
metadata
name: cafe-ingress
spec:
rules:
-host: tea.test.com
http:

paths:
-path:/
backend:
serviceName: tea-svc
servicePort: 80

-host: coffee.test.com
http:
paths:
-path:/
backend:
serviceName: coffee-svc
servicePort: 80

You can download the yaml files that are shown in this topic from the following link:

https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/complete-example

Note

For more information on a sample scenario of implementing Ingress, see Deploying Cafe Application with
Ingress.

L4 Ingress
NGINX supports L4 TCP and UDP Ingress load balancing. It uses the NGINX helm chart that contains the
TCP or UDP service mappings, instead of the Ingress resources as in the case of L7 support.

Services and Networking
3

Services and Networking
L4 Ingress

https://github.com/nginxinc/kubernetes-ingress/tree/master/examples/complete-example
ccp-user-guide-10-0-0_chapter13.pdf#nameddest=unique_132
ccp-user-guide-10-0-0_chapter13.pdf#nameddest=unique_132

Configuring L4 Load Balancing

NGINX supports either TCP or UDP L4 load balancing, but not both simultaneously.Note

Step 1 Access the Kubernetes cluster master node using ssh.
ssh -l <username> <IP address of master node>

Once you create a Kubernetes cluster, it may take a few minutes for the necessary services to start. If ssh to a
cluster fails, we recommend that you try again after a few minutes.

Note

Step 2 Get the current helm configuration values.
helm get values --all nginx-ingress > l4.yaml

Step 3 Edit the l4.yaml file.
You can search for tcp or udp in the l4.yaml file, and then add your L4 services.
The following example shows adding the tcp-test-svc TCP service that uses port 3333.
tcp:

"9000": default/tcp-test-svc:3333

The following example shows adding the udp-test-svc UDP service that uses port 5005.
udp:

"9001": default/udp-test-svc:5005

Step 4 Update the NGINX helm chart with the L4 service mappings.
helm upgrade --install nginx-ingress /opt/ccp/charts/nginx-ingress.tgz -f l4.yaml

You need to restart the NGINX Ingress controller pods for the new configuration to take effect.Note

Step 5 Verify that ingress has successfully mapped the port.
kubectl get services -o wide -w nginx-ingress-controller

Ingress CA
Cisco Container Platform by default creates an L7 Ingress service in order to support Monitoring Health of
Cluster Deployments, Monitoring Logs from Cluster Deployments, and Setting up Kubernetes Dashboard.
All of these services are exposed with TLS enabled, and the certificate authority (CA) that is used to sign the
Ingress controller server certificate is self-signed and per cluster based.

In order to reach the services without triggering SSL warning, you can either add the CA as part of your
application that needs to interact with services behind Cisco Container Platform ingress (preferred), or add
the CA to your system trusted CA list.

Services and Networking
4

Services and Networking
Configuring L4 Load Balancing

ccp-user-guide-10-0-0_chapter9.pdf#nameddest=unique_12
ccp-user-guide-10-0-0_chapter9.pdf#nameddest=unique_12
ccp-user-guide-10-0-0_chapter9.pdf#nameddest=unique_13
ccp-user-guide-10-0-0_chapter9.pdf#nameddest=unique_116

Obtaining CA Certificate for Nginx Ingress Controller
To obtain a CA certificate.

Step 1 Log in to the Kubernetes dashboard from browser as described in Setting up Kubernetes Dashboard section, download
the kubeconfig file, and then use it to login to the Kubernetes dashboard.

Step 2 From the right pane, click the dropdown box under Namespace, click the ccp namespace.

Figure 1: Kubernetes Dashboard

Step 3 Click the Secrets tab.
The Secrets pane appears.

Services and Networking
5

Services and Networking
Obtaining CA Certificate for Nginx Ingress Controller

ccp-user-guide-10-0-0_chapter9.pdf#nameddest=unique_116

Figure 2: Secrets Pane

Step 4 Open the ccp-ingress-tls-ca secret and find the data for tls.crt.
Step 5 Click the Eye icon to view the details of a tls.crt.

Figure 3: Secrets Pane Showing Details of tls.crt

You can save the CA data into a file, and use it when a client is trying to connect to the Ingress service.

The following example uses curl to get to the dashboard using the saved CA certificate.

Services and Networking
6

Services and Networking
Obtaining CA Certificate for Nginx Ingress Controller

curl --cacert ./ca.crt -I https://10.10.99.185/dashboard
HTTP/1.1 200 OK
Server: nginx/1.13.12
Date: Mon, 30 Jul 2018 19:08:11 GMT
Content-Type: text/html; charset=utf-8
Connection: keep-alive
Vary: Accept-Encoding
Accept-Ranges: bytes
Cache-Control: no-store
Strict-Transport-Security: max-age=15724800; includeSubDomains

Updating CA Certificates for Nginx Ingress Controller
To update certificates configured for the Nginx Ingress controller with custom certificates that are not
provisioned using Cisco Container Platform:

Step 1 On the control plane node of your Cisco Container Platform instance, backup the existing daemonset
ingress-nginx-controller resources.

kubectl get daemonset ingress-nginx-controller -o yaml > ds_ingress_nginx_controller_ccp.yaml

Step 2 Create or copy the TLS key file and TLS crt file of the new certificate to a known location on the control plane node.
Step 3 Create a new TLS secret in the default namespace configured for the new custom certificates.

kubectl create secret tls custom-certificate-secret --key=/path/to/tls.key --cert=/path/to/tls.crt

Step 4 Update the existing daemonset to use the new certificates.
kubectl patch daemonset ingress-nginx-controller --type='json'

-p='[{"op":"replace","path":"/spec/template/spec/containers/0/args/6","value":"--default-ssl-certificate=default/custom-certificate-secret"}]'

Step 5 Check the status of the daemonset.
ccpuser@ccp800-master80bcc3ccdc:~$ kubectl get ds ingress-nginx-controller

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE

ingress-nginx-controller 3 3 3 3 3 <none>
73d

Ensure that the UP-TO-DATE count and READY count are equal.Note

Step 6 Verify the certificates used by the Cisco Container Platform dashboard in one of the following ways:

• Using the browser.

This depends on the type of browser you are using. Check the browser settings and instructions.

• Using the CLI.

Run the following curl commands to verify if the new custom certificates have been installed for your Cisco Container
Platform instance.

$ curl --insecure -vvI https://<master_vip_address>
* Rebuilt URL to: https://10.10.96.6/
...

Services and Networking
7

Services and Networking
Updating CA Certificates for Nginx Ingress Controller

https://www.https.in/blog/check-ssl-certificate-information/

* Server certificate:
* subject: CN=ingress.ccp800; OU=server
* start date: Jan 15 20:27:17 2021 GMT
* expire date: Jan 15 20:27:17 2023 GMT
* issuer: CN=ingress.ccp800; OU=CA
* SSL certificate verify result: unable to get local issuer certificate (20), continuing

anyway.
* Using HTTP2, server supports multi-use
* Connection state changed (HTTP/2 confirmed)
* Copying HTTP/2 data in stream buffer to connection buffer after upgrade: len=0
...
* Connection #0 to host 10.10.96.6 left intact

Reverting CA Certificates for Nginx Ingress Controller
To revert to the original certificate settings that you configured when you installed Cisco Container Platform:

Step 1 When Cisco Container Platform is installed, it configures an ingress-nginx-controller with self-signed certificates that is
stored in the default/ccp-ingress-tls Kubernetes secret. Ensure that this secret exists on the control plane.

kubectl get secret ccp-ingress-tls

Step 2 Update the daemonset ingress-nginx-controller with this secret.
kubectl patch daemonset ingress-nginx-controller --type='json'

-p='[{"op":"replace","path":"/spec/template/spec/containers/0/args/6","value":"--default-ssl-certificate=default/ccp-ingress-tls"}]'

Step 3 Wait for the daemonset to be ready.
ccpuser@ccp800-master80bcc3ccdc:~$ kubectl get ds ingress-nginx-controller

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE

ingress-nginx-controller 3 3 3 3 3 <none>
73d

Ensure that the UP-TO-DATE count and READY count are equal.Note

The certificate configuration will now be restored to the original certificate settings that you configured when you installed
Cisco Container Platform.

Step 4 Verify the certificates used by the Cisco Container Platform dashboard in one of the following ways:

• Using the browser.

This depends on the type of browser you are using. Check the browser settings and instructions

• Using the CLI.

Run the following curl commands to verify if the new custom certificates have been installed for your Cisco Container
Platform instance.

$ curl --insecure -vvI https://<master_vip_address>
* Rebuilt URL to: https://10.10.96.6/
...
* Server certificate:
* subject: CN=ingress.ccp800; OU=server

Services and Networking
8

Services and Networking
Reverting CA Certificates for Nginx Ingress Controller

https://www.https.in/blog/check-ssl-certificate-information/

* start date: Jan 15 20:27:17 2021 GMT
* expire date: Jan 15 20:27:17 2023 GMT
* issuer: CN=ingress.ccp800; OU=CA
* SSL certificate verify result: unable to get local issuer certificate (20), continuing

anyway.
* Using HTTP2, server supports multi-use
* Connection state changed (HTTP/2 confirmed)
* Copying HTTP/2 data in stream buffer to connection buffer after upgrade: len=0
...
* Connection #0 to host 10.10.96.6 left intact

Network Policies
Cisco Container Platform supports Kubernetes NetworkPolicies. The NetworkPolicies are independent of the
underlying container network plugin.

Load Balancer Services
Cisco Container Platform supports load balancer services on tenant clusters.

While creating a tenant cluster, you need to choose the number of load balancer IP addresses that you want
to allocate for a tenant cluster from a VIP pool that you want to use.

The cluster creation operation fails if the number of requested load balancer IP addresses is more than the
available IP addresses in the pool.

Note

For more information, see Creating Clusters on vSphere.

Once load balancer IP addresses are allocated for a tenant cluster, externally reachable load balancer IP
addresses are automatically provisioned for the load balancer services.

The following code provides an example of creating a service of type LoadBalancer.
apiVersion: v1
kind: Service
metadata:

name: frontend
labels:

app: guestbook
tier: frontend

type: LoadBalancer

You can update the number of available load balancer IP addresses from the Edit Cluster screen. You need
to be aware of the number of used addresses in order to update the number of allocated load balancer IP
addresses.

For example:

Suppose the current tenant is allocated with five load balancer IP addresses. If there are three load balanced
services running, you cannot reduce the number of load balancer IP addresses to three or less as there are
services using those IP addresses already.

Services and Networking
9

Services and Networking
Network Policies

https://kubernetes.io/docs/concepts/services-networking/network-policies/
ccp-user-guide-10-0-0_chapter4.pdf#nameddest=unique_7

When you delete a tenant cluster, the allocated load balancer IP addresses are recycled to the VIP pool.Note

Services and Networking
10

Services and Networking
Load Balancer Services

	Services and Networking
	Load Balancing Kubernetes Services using NGINX
	L7 Ingress
	L4 Ingress
	Configuring L4 Load Balancing

	Ingress CA
	Obtaining CA Certificate for Nginx Ingress Controller
	Updating CA Certificates for Nginx Ingress Controller
	Reverting CA Certificates for Nginx Ingress Controller

	Network Policies
	Load Balancer Services

