Brownfield Deployments

* Brownfield Enhacements to Support Openstack and ESC data reconciliation, on page 1

Brownfield Enhacements to Support Openstack and ESC data
reconciliation

Brownfield Deployment:

Brownfield deployments are ESC VNF deployments that allow the target ESC VM to manage a live VNF on
the VIM.

Brownfield Deployments help to migrate the live VNF management from a sourceESC VM to a targetESC
VM without any disruption to the actual live VNF. The brownfield deployment process uses new and existing
ESC APIs to create deployment data within the ESC datastores on the target ESC VM without actually creating
resources on the VIM - simply validating existing VIM resources if and when required.

Quick starting Brownfield Deployment:

If the brownfield XML files that are my-brownfield-import.xml and my-brownfield-deployment.xml exist,
then create a deployment in the target ESC VM using the brownfield APIs as shown:

Create a Brownfield Data:
Create the data and fix the errors if any returned
Example Payload

admin@esc_vm]$ esc_nc_cli import-deployment-data CREATE my-tenant my-deployment
/tmp/my-brownfield-import.xml
Import Deployment Data
/opt/cisco/esc/confd/bin/netconf-console --port=830 --host=127.0.0.1 --user=esc-nc-admin
--privKeyFile=/home/admin/.ssh/confd id rsa --privKeyType=rsa
--rpc=/tmp/tmp esc _nc_cli.jtQHTuOubE
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<imported data xmlns="http://www.cisco.com/esc/esc">
<import>
<deployment name>dep-complete</deployment name>
<project name>dave-2000</project name>
<vms>
<vm_details>

<generated name>my-deployment vm-gro 0 a4e82d3e-a3a5-403e-b321-cc0d7bla77%e</generated name>
"<!-- Output removed for brevity --> "

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

</vm_details>
</vms>
</import>
</imported data>
</rpc-reply>

Deploy VNF

After deploying the VNF, wait for SERVICE ALIVE notification. If there is an error, undeploy the VNF, fix
the errors and re deploy the VNF.

Example payload:

[admin@esc vm]$ esc nc cli edit-config /tmp/my-brownfield-deployment.xml

Configure

/opt/cisco/esc/confd/bin/netconf-console --port=830 --host=127.0.0.1 --user=esc-nc-admin

--privKeyFile=/home/admin/.ssh/confd id rsa --privKeyType=rsa

--edit-config=/tmp/tmp esc nc cli.53L6syLBhl

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<ok/>

</rpc-reply>

Finalize the deployment:
In this state, the ESC VM manages the VNF
Example payload:

[admin@esc_vm]$ esc nc cli import-deployment-data FINALIZE my-tenant my-deployment
Import Deployment Data
/opt/cisco/esc/confd/bin/netconf-console --port=830 --host=127.0.0.1 --user=esc-nc-admin
--privKeyFile=/home/admin/.ssh/confd id rsa --privKeyType=rsa
--rpc=/tmp/tmp esc nc_cli.LY8AiOlyuz
<?xml version="1.0" encoding="UTF-8"7?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<imported data xmlns="http://www.cisco.com/esc/esc">
<import>
<deployment name>dep-complete</deployment name>
<project name>dave-2000</project name>
<vms>
<vm_details>

<generated name>my-deployment vm-gro 0 a4e82d3e-a3a5-403e-b321-cc0d7bla779%e</generated name>
"<!-- Output removed for brevity --> "
</vm_details>
</vms>
</import>
</imported data>
</rpc-reply>

Deletetheimport data:

\}

Note The following step is optional

[admin@esc_vm]$ esc_nc_cli import-deployment-data DELETE my-tenant my-deployment

Import Deployment Data

/opt/cisco/esc/confd/bin/netconf-console —--port=830 --host=127.0.0.1 --user=esc-nc-admin
--privKeyFile=/home/admin/.ssh/confd id rsa --privKeyType=rsa
--rpc=/tmp/tmp esc nc_cli.LY8AiOlyuz

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

. Brownfield Deployments

| Brownfield Deployments
Brownfield Enhacements to Support Openstack and ESC data reconciliation .

<imported data xmlns="http://www.cisco.com/esc/esc">
<import>
<deployment name>dep-complete</deployment name>
<project name>dave-2000</project name>
<vms>
<vm_details>

<generated name>my-deployment vm-gro 0 a4e82d3e-a3a5-403e-b321-cc0d7bla77%e</generated name>
"<!-- Output removed for brevity --> "
</vm_details>
</vms>
</import>
</imported data>
</rpc-reply>

Required files:

A Brownfield deployment requires at least two files to specify the VNF which is a deployment XML and an
import XML. If the VNF uses VPC life cycle management (LCM) scripts that are GEN_VPC_CHASSIS ID
and GEN_VPC SSH KEYS during the original deployment, then further files specify the generated values.
The same is discussed in the section "chassisID and user_key".

* Deployment XML:

Deployment XML details the XML data used during the original deployment. Ideally, XML is identical to
the original dep.xml that is with the tenant’s vim_mapping attribute set to true, but the ConfD API can be used
to accurately generate the deployment XML on the source ESC VM if required.

* Import XML:

Import XML details the XML data that describes the VNF VMs and their ephemeral resources, sometimes
known as in-band resources. The resource data exists on OpenStack, and ESC selects for the resource data
during Brownfield deployment. All the in-band resources are supported including volumes, networks, subnets,
and ports.

N

Note Both the import XML and the deployment XML specify all in-band and VIM resources required for the target
deployment and therefore it is very important that both the XML are in sync with each other.

chassisID and user_key:

During a Brownfield deployment, if the original VNF deployment specifies LCM actions of type
GEN_VPC CHASSIS ID, GEN VPC SSH KEYS, or both, then the values that the LCM action executions
created need to be specified in files and referenced appropriately.

Before the Brownfield deployment, the GEN_VPC CHASSIS ID LCM action generates a single string called
a chassisID, and the generated value is saved to a local file on the target ESC VM.

The GEN_VPC SSH KEYS action generates two sets of SSH-related data that are SSH public and private
key pairs called the user_key, and the generated values are saved to a local file on the target ESC VM.

Supported APIs:

Brownfield deployment requires two main APIs, they are, ConfD APl and ConfD or ESCM anager REST
APIs.

* The ConfD API uses CREATE and FINALIZE keywords, and the most common access to the ConfD
API is the esc_nc_cli script

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

* The ConfD or ESCManager REST API is to process a deployment XML.

ConfD: Brownfield CREATE:

The ConfD Brownfield CREATE API is used to load the import XML data that is the VNF resource data for
VMs and their ephemeral data into ESC to be referenced during a VNF deployment.

The ConfD Brownfield CREATE API requires three mandatory arguments namely the tenant name, the
deployment name, and a file specifying the import XML.

Example usage:

esc_nc_cli import-deployment-data CREATE my-tenant my-deployment /tmp/my-brownfield-import.xml

Upon invocation, the import XML contents are validated for structure and XML syntax and are stored in the
ESC database. The actual data within the import XML is not validated for correctness as this can only be done
at the deployment as shown in the following

Validation:

Upon invocation, perform the following validation steps and if there is an error, then fix and re-submit the
data.

* XML is validated for syntax and to ensure mandatory values are present
 Import XML validates both the tenant and deployment names to ensure the values match

* I[f an index is specified, it must start at 0 for the VM group.

ConfD or ESCManager REST API: DEPLOY

Once import XML data loads and validates, the ConfD or ESCManager REST APIs are used to deploy the
deployment XML data, in the same manner, that non- Brownfield deployment data is specified.

Example usage:
esc_nc_cli edit-config /tmp/my-brownfield-deployment.xml
Validation:

Upon invocation, ESC checks if the Brownfield CREATE operation previously exists for the same tenant and
deployment, that is created during the ConfD Brownfield CREATE and if the deployment exists then ESC
first validates all resource data to ensure the following:

* [f the previously loaded import XML contains all the ephemeral resources specified in the deployment
XML,

« If all resources exist on the VIM.

If either of the following fails, then the deployment itself will fail using familiar messaging.

Once the early validation passes, the deployment goes through the identical notification cycle as a
non-Brownfield deployment, eventually generating a SERVICE ALIVE notification or error notifications at
the appropriate points in the workflow.

. Brownfield Deployments

| Brownfield Deployments

Brownfield Enhacements to Support Openstack and ESC data reconciliation .

\)

Note

fixes, a re-deployment is attempted. This cycle of:

deploy --> ERROR --> undeploy --> fix issue --> deploy can be executed indefinitely until an error-free

SERVICE ALIVE notification is received.

If there are any errors during deployment, for example, missing resources or VIM connectivity problems then
the Brownfield deployment undeploys using the standard ESC undeployment APIs, once the underlying issue

ConfD: Brownfield FINALIZE

The ConfD Brownfield FINALIZE API is used to signal the target ESC VM which is ready to manage the
VNF on the VIM as per any non-Brownfield VNF.

It requires two mandatory arguments that are the tenant name and the deployment name.

During the period where the Brownfield CREATE and DEPLOY APIs are used, but prior to this FINALIZE
API called, the target ESC VM monitors the VNF, but recovery scenarios are not triggered if monitoring fails.

For example, if the VNF suddenly becomes un-pingable, then the target ESC VM does not invoke recovery
policy nor it does not generate any notifications, therefore it is important that this final step occurs when the
VNF on the VIM is active.

Furthermore, the target ESC VM does not implement VNF actions such as START, STOP, RECOVER,
REBOOT, ENABLE/DISABLE MONITOR. If the actions are attempted, an error returns.

Validation

Brownfield deployments that have a SERVICE ALIVE status is "finalized".

Example usage:

esc_nc_cli import-deployment-data FINALIZE my-tenant my-deployment

ConfD: Brownfield DELETE import data

The ConfD Brownfield DELETE API is used to remove all Brownfield data from the import tables.
It requires two mandatory arguments that are the tenant name and the deployment name.
Example usage

esc nc cli import-deployment-data DELETE my-tenant my-deployment

Validation

Only Brownfield deployments that are "finalized" can have their data deleted.

Example of import XML:

The following are some of the example import XML files or data snippets.

Basic VM plusan ephemeral volume and ports:

The following shows VNF with a single VM, one ephemeral volume, and two ephemeral ports. One port is
specified using a single stack syntax, and the other port is specified using a dual-stack syntax.

BasicVM

<?xml version="1.0"?2>

<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

<vm_details>
<name>my-vm</name>
<uuid>f4cad63c-alcl-48ef-a3cd-8dd20abd2118</uuid>
<vm_group>my-vm-group</vm_group>
<attached volume>
<volume id>df49ad4a5-7def-450c-9881-b886blabbe7f</volume id>
<volume name>my-inband-volume</volume name>
</attached volume>

<generated name>my-deployment vm-gro 0 2b92d247-7c08-48bl-a9f4-ff0849a82153</generated name>

<port>
<port id>4c2aa65d-e3fa-4529-a3f5-099031ffe6c3</port id>
<nicid>0</nicid>
</port>
<port>
<port 1d>2c627b23-ce8d-482a-9ea2-21d77df611b9</port id>
<fixed ips>
<address id>0</address id>
<ip address>192.26.13.442</ip address>
</fixed ips>
<nicid>1</nicid>
</port>
</vm_details>
</vms>
</import>

The associated deployment XML excluding the non-relevant constructs is shown as follows:

Original deployment XML

<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>
<tenant>
<name>my-tenant</name>
<vim mapping>false</vim mapping> <!-- NOTE: Must always be "false" so that ESC does
not try to create a new tenant -->
<deployments>
<deployment>
<name>my-deployment</name>
<vm_group>
<name>my-vm-group</name>

<flavor>Automation-Cirros-Flavor</flavor>
<vim_vm_ name>my-vm</vim_ vm name>
<bootup time>180</bootup time>
<recovery wait time>180</recovery wait time>
<volumes>
<volume>
<name>my-inband-volume</name>
<volid>1</volid>
<bus>virtio</bus>
<size>2</size>
<sizeunit>GiB</sizeunit>
<type>LVM</type>
</volume>
<volume> <!-- NOTE: out of band resources do not need to be detailed in the
import XML -->
<name>my-out-of-band-volume</name>
<volid>0</volid>
<bus>virtio</bus>
<type>LVM</type>
</volume>
</volumes>

. Brownfield Deployments

| Brownfield Deployments

Brownfield Enhacements to Support Openstack and ESC data reconciliation .

<interfaces>
<interface>
<nicid>0</nicid>
<network>esc-net</network>
</interface>
<interface>
<nicid>1</nicid>
<network>esc-net</network>
<addresses>
<address>
<address_id>0</address_id>
<subnet>esc-subnet</subnet>
</address>
</addresses>
</interface>
<interface> <!-- NOTE: out of band resources do not need to be detailed in
the import XML -->
<nicid>2</nicid>
<port>my-out-of-band-port</port>
</interface>
</interfaces>
"<!-- Output removed for brevity --> "
</vm_group>
</deployment>
</deployments>
</tenant>
</tenants>
</esc_datamodel>

Basic VM plus ephemeral network:

The following shows VNF with a single VM, a single ephemeral network, and a single ephemeral port specified
using dual-stack syntax.

The difference between Basic VM plus ephemeral network and Basic VM plus and ephemeral volume is that
the ephemeral network needs to be detailed in the import XML and the deployment XML.

Basic VM

<?xml version="1.0"?>
<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>
<vm_details>
<name>my-vm</name>
<uuid>fdcad63c-alcl-48ef-a3cd-8dd20abd2118</uuid>
<vmﬁgroup>my—vm—qroup</vmﬁgroup>

<generated name>my-deployment vm-gro 0 2b92d247-7c08-48bl-a9f4-ff0849%9a82153</generated name>

<port>
<port 1d>2c627b23-ce8d-482a-9ea2-21d77df611b9</port id>
<fixed ips>
<address_id>0</address_id>
<ip address>10.120.04.198</ip address>
</fixed ips>
<nicid>0</nicid>
</port>
</vm_details>
</vms>
<network>
<network id>8abd5cb3-5107-4a63-bfd4-117a6d7e3824</network id>
<subnet>
<subnet_id>a74bc215-172e-41£8-9f83-£578b4fb88d2</subnet_id>

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

<name>my-suvnet</name>
</subnet>
<name>my-network</name>
</network>
<network>
<network id>xxxxx</network id>
</network>
</import>

The associated deployment XML excluding non-relevant constructs is shown as follows:

Original deployment XML

<?xml version="1.0" encoding="UTF-8"7?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>
<tenant>
<name>my-tenant</name>
<vim mapping>false</vim mapping> <!-- NOTE: Must always be "false" so that ESC does
not try to create a new tenant -->
<deployments>
<deployment>
<name>my-deployment</name>
<networks>
<network>
<name>my-network</name>
<shared>false</shared>
<locator>
<vim id>default openstack vim</vim id>
<vim project>davwebst</vim project>
</locator>
<subnet>
<name>my-subnet</name>
<ipversion>ipvi4</ipversion>
<dhcp>true</dhcp>
<address>192.168.1.150</address>
<netmask>255.255.255.0</netmask>
<gateway>192.168.1.1</gateway>
</subnet>
</network>
<vm_group>
<name>my-vm-group</name>

<flavor>Automation-Cirros-Flavor</flavor>
<vim_vm_ name>my-vm</vim vm name>
<bootup time>180</bootup time>
<recovery wait time>180</recovery wait time>
<interfaces>
<interface>
<nicid>0</nicid>
<network>my-network</network>
<addresses>
<address>
<address_id>0</address_id>
<subnet>my-subnet</subnet>
</address>
</addresses>
</interface>
</interfaces>
"<!-- Output removed for brevity --> "
</vm_group>
</deployment>
</deployments>
</tenant>

. Brownfield Deployments

| Brownfield Deployments
Brownfield Enhacements to Support Openstack and ESC data reconciliation .

</tenants>
</esc_datamodel>

Scaled out deployment:

The following shows VNF with a single VM and ephemeral port, one which is scaled by the other, either
through the initial deployment, or a scaling KPI trigger.

Example payload:

<?xml version="1.0"?>
<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>
<vm_details>
<index>0</index> <!-- NOTE: index must start at zero, and is mandatory if multiple
vim details against the same vm group are specified -->
<name>my-vm</name>
<vmﬁgroup>my—vm—qroup</vmﬁgroup>

<generated name>my-deployment vm-gro 0 a8738b6c-lele-47b0-a469-db7cc63e6£92</generated name>

<port>
<port id>e974e20c-2e88-4321-beb9-5dd66e103865</port id>
<nicid>0</nicid>
</port>
<uuid>c06ab441-£895-4bd9-ab5a-9£731d42a3cl</uuid>
</vm_details>
<vm_details>
<index>1</index> <!-- NOTE: index must be incremented by one if specifying vm details
for a vm in the same vm group -->
<name>my-vm_1</name>
<vmﬁgroup>my—vm—qroup</vmﬁgroup>

<generated name>deployment-brown vm-gro 1 aS5b5bb8b-e90e-47d4-95f0-e748labcel2e</generated name>

<port>
<port 1d>94290268-569d-46a2-bf73-0e81d8b18019</port id>
<nicid>0</nicid>
</port>
<uuid>317369cf-£722-4052-976b-035436fee303</uuid>
</vm_details>
</vms>
</import>

)

Note The scaled-out deployment is done by setting the scaling minimum and maximum values to "2" in the original
deployment XML as shown:

<scaling>
<min_active>2</min active>
<max_active>2</max active>
</scaling>

ChassisID and User Key specification:

During a Brownfield deployment, if the original VNF deployment specifies LCM actions of type
GEN_VPC CHASSIS ID, GEN VPC SSH KEYS, or both, then the values that the LCM action executions
created need to specify in files and referenced appropriately.

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

The values are specified using metadata configuration entries, with the following type key names supported:

¢ chassisID - the chassis id
* user_ key - the private SSH user generated key
* user kep.pub - the pubic SSH user generated key

The following shows VNF with a single VM and ephemeral port and one which used both
GEN_VPC CHASSIS ID and GEN_VPC SSH KEYS actions, therefore it requires three values that are
chassisID, user_key and user_key.pub to exist within files and referenced in the import XML.

)

Note The actual data in the files must exist and be their unencrypted values.

Example payload:

<?xml version="1.0"?2>
<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>
<vm_details>
<name>my-vm</name>
<uuid>5d892d0d-c127-40£f7-8ecd-d7660461b96b</uuid>
<vm_group>my-vm-group</vm group>

<generated name>deployment-brown vm-gro 0 c0083a56-bcd9-46c9-93£2-3c0405915963</generated name>

<metadata>
<configuration>
<entry>
<type>chassisID</type>
<file>file:///tmp/vpc data/chassisID</file>
</entry>
<entry>
<type>user key</type>
<file>file:///tmp/vpc data/user key</file>
</entry>
<entry>
<type>user key.pub</type>
<file>file:///tmp/vpc data/user key.pub</file>
</entry>
</configuration>
</metadata>
<port>
<port i1d>5c0293£f9-27cf-4054-98ad-20fd8e7ed5fd</port id>
<nicid>0</nicid>
</port>
</vm_details>
</vms>
</import>

\}

Note The file name path is the only possible manner to specify the values, and the <file> value muststart with
"file:///".

. Brownfield Deployments

| Brownfield Deployments
Brownfield Enhacements to Support Openstack and ESC data reconciliation .

\)

Note If there are multiple VMs to be specified, then the block repeats for each VM. This is the case as the script
actions are at a deployment level and are therefore executed per VM during a deployment, and needs specifying
per VM in the import XML.

The associated deployment XML excluding non-relevant constructs is shown as follows:

Original deployment XML

<?xml version="1.0" encoding="UTF-8"?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<tenants>
<tenant>
<name>my-tenant</name>
<vim mapping>false</vim mapping>
<deployments>
<deployment>
<name>my-deployment</name>
<policies>
<policy>
<name>instantiate</name>
<conditions>
<condition>
<name>LCS: :PRE_DEPLOY</name>
</condition>
</conditions>
<actions>
<action>
<name>GEN_VPC_CHASSIS_ID</name>
<type>SCRIPT</type>
<properties>
<property>
<name>CHASSIS KEY</name>
<value>164c03a0-eebb-44a8-87fa-20c791claa6d</value>
</property>
<property>
<name>script_ filename</name>
<value>file:///opt/cisco/esc/esc-scripts/esc_vpc chassis_id.py</value>

</property>
</properties>
</action>
</actions>
</policy>
<policy>
<name>instantiate start</name>
<conditions>
<condition>
<name>LCS: :PRE_DEPLOY</name>
</condition>
</conditions>
<actions>
<action>
<name>GEN_VPC_SSH KEYS</name>
<type>SCRIPT</type>
<properties>
<property>
<name>script_ filename</name>

<value>file:///opt/cisco/esc/esc-scripts/esc-vpc-di-internal-keys.sh</value>

</property>
</properties>

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

</action>
</actions>
</policy>
</policies>
<vm_group>
<name>my-vm-group</name>

<flavor>Automation-Cirros-Flavor</flavor>
<vim_vm name>my-vm</vim_ vm name>
<bootup time>180</bootup time>
<recovery wait time>180</recovery wait time>
<interfaces>
<interface>
<nicid>0</nicid>
<network>esc-net</network>
</interface>
</interfaces>
"<!-- Output removed for brevity --> "
</vm_group>
</deployment>
</deployments>
</tenant>
</tenants>
</esc_datamodel>

Lifecycle Management Script execution:

LCM scripts are not run during a Brownfield deployment as the executed scripts create resources or perform
other action on the VM which executes once. Running the LCM scripts twice during a Brownfield deployment
results in resource duplication errors or leaked resources.

Within the import XML, the default to not run all scripts can be toggled to ensure all LCM scripts for all
policies are run by default. The following shows the new parent policies element which is top level import
element:

<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>
"<!-- Output removed for brevity --> "
</vms>
<policies>
<execute>true</execute> <!-- run all LCM scripts for all policies -->
</policies>
</import>

Script actions are specified per vm group and or per vin group including the policy name. For example, the
following snippets show changing the default script execution policy to true for all scripts, except for those
in the my-vm-group-2 vm group for the instantiate policy and script which is a part of a terminate policy.

<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>
"<!-- Output removed for brevity --> "
</vms>
<policies>
<execute>true</execute> <!-- run all LCM scripts for all policies —-->
<policy>
<execute>false</execute>
<name>instantiate</name>
<vm_group>my-vm-group-2</vm _group> <!-- this is optional -->
</policy>
<policy>

. Brownfield Deployments

| Brownfield Deployments
Brownfield Enhacements to Support Openstack and ESC data reconciliation .

<execute>false</execute>
<name>terminate</name>
</policy>
</policies>
</import>
Limitations:
When deploying in brownfield mode, these are the following limitations to be aware of:

» ETSI deployments are currently not supported.

* Only ESC ConfD supports the CREATE and FINALIZE actions that is any Brownfield deployment uses
either the confd clioresc_nc_cli APIs if deploying locally or invoke the ConfD API directly if deploying
remotely. The ESCManager REST API does not support the CREATE nor FINALIZE actions, but can
be used to support the deployment step.

« Tenant specification has vim_mapping attribute set to false to avoid tenant creation which results in a
VIM error as the tenant already exists.

* [f a VNF contains multiple VMs, but not all the VM data is specified during the Brownfield import, then
un deploy and re deploy the VNF with the adjusted data.

* Only Brownfield deployments on an OpenStack VIM are supported, CVIM and VM Ware Brownfield
deployments fails with an appropriate error.

» The Brownfield APIs allow a single deployment to be specified in a single invocation.

Generation of Brownfield data:

Brownfield data uses both the import and the deployment XML but does not have a specific API for generation
as the APIs are created manually.

There are two main ways to generate the data from a source ESC VM, given the deployment and tenant name.
» Generate Import and deployment XML through ConfD API:
ESC VM uses the ConfD API to generate both the original deployment XML and provides the information
to manually generate the import XML.
* Deployment XML
Execute the following command to extract and save the original deployment XML for the tenant my-tenant
and deployment my-deployment:

[admin@esc_vm]$ echo "show running-config esc datamodel tenants tenant my-tenant deployments
deployment my-deployment | display xml" | sudo /opt/cisco/esc/confd/bin/confd cli -u admin
-C > /tmp/my-tenant.my-deployment.config.xml

The resultant file is the replication of the original deployment XML but set vim_mapping to false under the

tenant.

* Import XML
Execute the following to extract and save all the operational data for the tenant my-tenant and deployment
my-deployment:
[admin@esc_vm]$ echo "show esc_datamodel opdata tenants tenant my-tenant deployments
my-deployment" | sudo /opt/cisco/esc/confd/bin/confd cli -u admin -C >

/tmp/my-tenant .my-deployment.opdata.xml

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

Thiscommand produces a structured XML document outlining the operational data for the deployment, which
is used to manually create the final XML import file.

» Generateimport and deployment XML using a script:

Brownfield import uses the script /opt/cisco/esc/escscripts/export brownfield data.py to create both
the deployment XML and import XML files to be used without modification.

The script runs on the source ESC VM therefore the script needs to be copied to the source ESC VM first if
it is an older ESC which does not have this script, and extract using the ConfD API all the relevant data given
a tenant and deployment name.

Therefore, the deployment itself must exist within the ConfD data store, but it does not necessarily have to
be in a SERVICE_ALIVE state as the data is extracted irrespective of the deployment's status.

The script requires two mandatory arguments namely the tenant name and the deployment name. ConfD
access defaults to RSA key-based access, but if this is not enabled, authentication can be achieved using a
name and password.

Furthermore, additional arguments exist to adjust the output of the final import XML based on metadata which
cannot be gathered from the ConfD data alone and therefore requires operator actions.

The following shows the output from the Usage page:
export_brownfield_data.py — Usage

[admin@esc_vm] > /opt/cisco/esc/esc-scripts/export brownfield data.py.local -h

Usage: export brownfield data.py -t <tenant> -d <deployment>

[-u <confd user>] [-p <confd password>] [-1
<local data directory>]

[-e <[True|False]>]
[--policy:<name>:<[True|False]>: [<vm_group>]]...

[-c <config entry path>]

Mandatory Arguments:
-t <tenant> The deployment tenant name.

-d <deployment> The deployment name.

Optional Arguments:

-u <confd user> When connecting to the ConfD API, use <confd user>. Defaults
to 'admin'.
-p <confd password> When connecting to the ConfD API, use <confd password> for

username/password
access with the <confd user>.

NOTE: If <confd password> is **not** set, then RPC authentication is assumed to have been
enabled and is

used instead when accessing the ConfD API (and <confd user> is
ignored if set).

-1 <local data directory> The full path to a local directory that contains two ESC data
files specifying
what the files generated by the ConfD API - the ConfD API is not

used.
The two file names need to be in the format:
<tenant>.<deployment>.config.xml - configuration data from
ConfD
<tenant>.<deployment>.opdata.xml - operational data from ConfD
-e <[True|False]> Execute all scripts in every policy for every VM group. Defaults

to 'False'

. Brownfield Deployments

| Brownfield Deployments

Brownfield Enhacements to Support Openstack and ESC data reconciliation .

--policy [--policy <name>,<[True|False]>, [<vm group>]],...[--policy
<name>, <[True|False]>, [<vm_group>]]

1 or more policies to execute all scripts for. The policy name
and a boolean
indicating if scripts should be run for that policy.
If the scripts are at a VM group level, then the VM group must
be specified,
otherwise it is optional.

Incorrectly specified policies will be ignored. Examples:

--policy instantiate,False --policy
VM_PRE_DEPLOY, True, vin_group_ Xyzzy

-c <config entry path> Generates a <configuration> block under <metadata> for every VM
in the
import XML with three <entry> children for chassidID, user_ key
and user_key.pub
The path/to/target is mandatory and used as the <file> value for
each <entry>.

Specify the path using an absolute path. Example:

-c /tmp/target/data

Example usage

export_brownfield_data.py - example usage

[admin@esc-vm]$./export brownfield data.py -t my-tenant -d my-deployment

*** Parse and validate arguments ...

"—-> Tenant = my-tenant

"—-> Deployment = my-deployment

"—--> Execute all scripts for all policies for all VM groups = None

*** Python version 2 ***
*** Current working directory is /home/admin/BROWNFIELD ***
*** Writing temporary files to /var/tmp/tmp4fk4Sqg ***

*** Generate configuration and opdata tempfiles ...

"--> config data ...

‘--> Adding <vim mapping>false</vim mapping> to config data XML as <locator> tag found in
the body.

‘—--> operational data ...

*** Generate configuration data for import - i.e. dep.xml ...

--> Writing to /home/admin/BROWNFIELD/my-tenant.my-deployment.config.xml
--> Creating vm group: inband port map (if any exist) ...

--> Found 3 interfaces.

--> Found IN BAND port for vm group vm-group-complete with nicid 0

--> Found IN BAND port for vm group vm-group-complete with nicid 1

--> Creating vm group: inband volume map (if any exist) ...

--> Looking at vm_group name vm-group-complete

--> Found 2 volumes.

--> Found IN BAND volume for vm group vm-group-complete with volid 1

--> Adding ephermeral networks if they exist ...

--> In band networks found

--> Adding policies if they were specified ...

--> Skipping policies as none were specified ...

--> Writing to /home/admin/BROWNFIELD/my-tenant.my-deployment.import.xml
* k% Done * k%

Brownfield Deployments .

Brownfield Deployments |
. Brownfield Enhacements to Support Openstack and ESC data reconciliation

[admin@esc-vm]$ 1s -1 *.xml

total 2
-rw-r—--r--. 1 admin admin 4383 May 17 11:21 my-tenant.my-deployment.config.xml
-rw-r—--r--. 1 admin admin 1250 May 17 11:21 my-tenant.my-deployment.import.xml

[admin@esc-vm]$ head -20 my-tenant.my-deployment.import.xml
<?xml version="1.0"?2>
<import>
<deployment name>my-deployment</deployment name>
<project name>my-tenant</project name>
<vms>
<vm_details>
<index>0</index>
<name>my-vm</name>
<vm_group>my-vm-group</vm_group>
<attached volume>
<volume 1d>82805lba-fda8-4526-910a-caf36562cc26</volume_ id>
<volume name>my-in-band-volume</volume name>
</attached volume>

<generated name>my-deployment-vm-gro 0 a4e82d3e-a3a5-403e-b321-cc0d7bla779%e</generated name>

<port>
<port i1d>5e6b0e08-8639-4965-b82f-237ad6c9fe26</port id>
<nicid>0</nicid>

</port>

<port>
<port 1d>69a69157-f47f-4514-af0c-23395185b5e8</port id>

The two resultant files are copied directly to the target ESC VM and used as inputs to the Brownfield APIs
without modification.

Removal of management from source ESC VM

Once a VNF migrates successfully from a source ESC VM to a target ESC VM, the VNF is removed from
the source ESC VM. This is necessary because, at this point, there are two ESC VMs managing a single VNF
on OpenStack, and both ESC VMs responds if the VNF became unreachable.

Following are the four techniques which can be considered:

* Depending on the circumstances, the entire source ESC VM is shutdown if it is not managing other
VNFs.

» The ESC VM is wiped clean of data, if it is not managing other VNFs.

* [fthe ESC VM needs to stay functional, and if the VM is a standalone configuration, then the VimManager
service shuts down during a maintenance window and un deployment submits through any supported
ESC API for the tenant and deployment combination. This results in an internal ESC warning as the
VimManager is not reachable and therefore, the VIM cannot confirm the VNFs deletion. But this is only
a warning and all ESC and ConfD data is removed for the deployment.

* If stopping VimManager service is not an option in H/A or A/A environments where a maintenance
window is not acceptable for such operations, then the specific VimManager connection that the
deployment uses can be invalidated by changing the password or URL to incorrect values. Then an un
deployment submitted through any supported ESC API for the tenant and deployment combination can
be attempted. Again, this generates an internal warning but the ESC and ConfD data is removed for the
deployment.

. Brownfield Deployments

	Brownfield Deployments
	Brownfield Enhacements to Support Openstack and ESC data reconciliation

