
Scaling Virtual Network Functions

• Scaling Virtual Network Functions Using ETSI API, on page 1

Scaling Virtual Network Functions Using ETSI API
One of the main benefits of ESC is its capability to elastically scale a service. This allows a VNFC that
performs a particular role or aspect within the VNF to be able to service requests and scale out to meet high
demand or scale in when being under utilized. This aspect may span across multiple VNFCs.

The scaling requests may be manual or automatic. The different approaches to accomplishing scaling are
detailed below.

For more details on these concepts and specification, please see Annex B of ETSI GS NFV-SOL 003.

For information on Scaling VNFs using REST andNETCONFAPIs, see theCisco Elastic Services Controller
User Guide.

Scale

The Scale VNF request uses the scaleStatus, an attribute found as part of the instantiatedVnfInfo when querying
a VnfInstance resource. This attribute describes the current scale level of each aspect in the VNF, for example:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"

},
{
"aspectId": "processing", "scaleLevel": "2"

}
]

This forms the starting point for a Scale VNF request, which allows a single aspect to be scaled horizontally
(i.e. adding or removing VNFCs) relative to the current scaleLevel for that dimension of the VNF. Any scaling
operation on an aspect will be applied to each VNFC that supports that aspect.

The current specification does not support vertical scaling (adding/removing resources to/from existing VNFC
instances) at this time.

Note

Request Payload (ETSI data structure: ScaleVNFRequest)

Scaling Virtual Network Functions
1

{
"type": "SCALE_OUT",
"aspectId": "processing",
"numberOfSteps": 1,
"additionalParams": {}

}

The above payload results in the scaleStatus example above being updated to and the addition of the number
of VNFCs for this step required to scale out to scaleLevel 3:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"

},
{
"aspectId": "processing", "scaleLevel": "3"

}
]

To understand the scaling steps and other related policies configured to support scaling, see the VNFD Policies
for Scaling.

Scale To Level

The Scale VNF To Level request, rather than the relative scaling that Scale VNF offers, specifies the absolute
scale result desired and so some aspects may be scaled out and others scaled in. This option uses one of the
two approaches to define the scaling required:

• instantiation level

• scale level

These are mutually exclusive and allow for more than one aspect to be scaled in a single request.

Instantiation Level

An Instantiation level is a predefined size for each aspect, where each level has a scale level associated with
each aspect. There is no further granularity offered and so the entire VNF (that is, all aspects) is scaled
according to the instantiation level requested.

Example:

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{
"instantiationLevelId": "premium"

}

See the VNFD Policies for the definition of instantiation levels.

Scale Level

The Scale Level is also a pre-defined size for each aspect where each aspect has target VNFCs, defined
step_deltas (since each scaling step may not be uniform) and a maximum scale level. The policies that define
this option allow the different targets to have different scaling outcomes.

Scaling Virtual Network Functions
2

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

The scale level does not represent the number of VMs; for example scaleLevel=0 means the initial number
of instances (initial delta) for that aspect on the target VNFC and scaleLevel=1 is the initial delta plus the first
scaling step defined for that aspect and VNFC tuple.

Note

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{
"scaleInfo": [
{

"aspectId": "processing",
"scaleLevel": "2"

},
{

"aspectId": "webserver",
"scaleLevel": "3"

}
]

}

For information on definition of scale levels, See the VNFD Policies for Scaling.

VNFD Policies for Scaling
There are a number of policies that make up the overall scaling behavior of a VNF. These policies will support
the various scaling approaches described above. The first policy defines the aspects that may be scaled (or
not):

policies:
- scaling_aspects:

type: tosca.policies.nfv.ScalingAspects
properties:
aspects:
webserver:
name: 'webserver'
description: 'The webserver cluster.'
max_scale_level: 5
step_deltas:
- delta_1

processing:
name: 'processing'
description: 'An example processing function'
max_scale_level: 3
step_deltas:
- delta_1
- delta_2
- delta_1

database:
name: 'database'
description: 'A test database'
max_scale_level: 0

You can see in this example that the database aspect has a max_scale_level of 0, which denotes that it cannot
be scaled out - this does not mean 0 instances of that aspect - see the algorithm below to see why. The webserver
aspect only has a single step_delta, meaning that all scaling steps are uniform whereas the processing aspect
has different step_deltas specified for each scaling step. This is called non-uniform scaling. This is only the

Scaling Virtual Network Functions
3

Scaling Virtual Network Functions
VNFD Policies for Scaling

declaration of the aspects of this VNF, and this is one of the policies used to perform the validation when a
scaling request is received.

Next, they must be applied to VNFCs to control their behavior:
- db_initial_delta:

type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu1]

- ws_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu2, vdu4]

- pc_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu3]

- ws_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: webserver
deltas:
delta_1:
number_of_instances: 1

targets: [vdu2, vdu4]

- pc_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: processing
deltas:
delta_1:
number_of_instances: 1

delta_2:
number_of_instances: 2

targets: [vdu2, vdu4]

In the examples above, the VNFCs are identified as targets; the aspects could have different behaviours on
different VNFCS, but this is not shown here. The definition of the step_deltas are also shown here which are
used in the validation and generation of scaling requests (these steps are inferred by the scale level requested).
The minimum number of instances of a VNFC is always assumed to be 0 and the maximum number is
calculated by the following algorithm:

initial_delta plus the number of instances for each step up to the max_scale_level.

These policies are considered for the scale-level based scaling. There are similar constructs used for
instantiation-level based scaling.
- instantiation_levels:

type: tosca.policies.nfv.InstantiationLevels
properties:
levels:
default:
description: 'Default instantiation level'
scale_info:

Scaling Virtual Network Functions
4

Scaling Virtual Network Functions
VNFD Policies for Scaling

database:
scale_level: 0

webserver:
scale_level: 0

processing:
scale_level: 0

premium:
description: 'Premium instantiation level'
scale_info:
database:
scale_level: 0

webserver:
scale_level: 2

processing:
scale_level: 3

default_level: default

Similar to the scaling aspects, the first part of the definition of instantiation levels is just their declaration.
Here each aspect must already be declared and then each aspect's scale_level is declared for the instantiation
level; a default instantiation level is also stipulated in the event that no other is specified.What each scale_level
means for each VNFC is further elaborated upon in the VduInstantiationLevels policies, for example:
- ws_instantiation_levels:

type: tosca.policies.nfv.VduInstantiationLevels
properties:
levels:
default:
number_of_instances: 1

targets: [vdu2, vdu4]

So these policies together state that the default instantiation level is 'default' which will result in the webserver
aspect being instantiated at scale_level 0 which is 1 VNFC instance.

Dependencies on Multiple IP Addresses
Static IP Addresses

If the VNFC has connection points configured with a static IP address, the VNFC cannot scale as there are
no further IP addresses to assign to the connection points on the newly spun up VNFC instances. Instead, you
can specify a pool of static IP addresses in the instantiate request or Grant response (in the extVirtualLinks
element) as a list:

• in fixedAddresses in a single cpProtocolData

• of individual fixedAddresses in multiple cpProtocolData

A list of ipAddresses in a single cpProtocolData assigns all the IP addresses to a single port on a single VNFC
instance.

Note

Alternatively, a contiguous range can also be supplied in an ipAddresses entry, as an addressRange. If the
specific IP addresses need not be stipulated, then a subnetId can be used, as per the example in Instantiating
Virtual Network Functions.

The following example explains how to create a static IP pool with four IP addresses by specifying them as
a list in fixedAddresses in a single cpProtocolData:

Scaling Virtual Network Functions
5

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-5_chapter5.pdf#nameddest=unique_27
Cisco-Elastic-Services-Controller-ETSI-User-Guide-5-5_chapter5.pdf#nameddest=unique_27

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": [
{
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10",
"172.16.0.11",
"172.16.0.12",
"172.16.0.13"

]
}

]
}

}
]

}
]

}
]

}
]
…

}

The same pool of IP addresses can also be created by specifying them as individual fixedAddresses in multiple
cpProtocolData:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": [
{
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10"

]
}

Scaling Virtual Network Functions
6

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.11"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.12"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.13"

]
}

]
}

}
]

}
]

}
]

}
]
…

}

The same pool of IP addresses created using an addressRange:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": [

Scaling Virtual Network Functions
7

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

{
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"addressRange": {
"minAddress": "172.16.0.10",
"maxAddress": "172.16.0.13"

}
}

]
}

}
]

}
]

}
]

}
]
…

}

The implementation of these IP address pools conforms to theETSI NFV MANO SOL003 specification, chapter
4.4.1.10.

Static MAC Addresses

If the VNFC has connection points configured with a static MAC address, the VNFC cannot scale as there
are no further MAC addresses to assign to the connection points on the newly spun up VNFC instances.
Instead, a pool of further static MAC addresses can be specified in the instantiate request or grant response.

Static MAC address pools can be created in the extVirtualLinks element of the instantiate request or grant
response by specifying the macAddress in multiple cpProtocolData.

The following example shows how to create a static MAC pool with four MAC addresses by specifying them
in multiple cpProtocolData:

{
…
"extVirtualLinks": [
{
"id": "extVL-dbf477ad-199a-47ff-939a-cb0101c92585",
"resourceId": "ext-net",
"extCps": [
{
"cpdId": "ecp_1_vdu_node_1",
"cpConfig": [
{
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:10",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.10"

]

Scaling Virtual Network Functions
8

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

}
]

}
},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:11",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.11"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:12",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.12"

]
}

]
}

},
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"macAddress": "fa:16:3e:0b:10:13",
"ipAddresses": [
{
"type": "IPV4",
"fixedAddresses": [
"172.16.0.13"

]
}

]
}

}
]

}
]

}
]

}
]
…

}

Day Zero Configuration

After deploying the VNFs, day 0 variables are configured in the VNFC instance for the deployment service.
In most cases, the values for the day 0 configuration is constant. In other cases, there is a resource pool of
values supplied to the day 0 parameter to allow new values to be assigned to the new VNFC instances.

Day 0 configuration within the vendor_section of the VNFD:

Scaling Virtual Network Functions
9

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

vdu3:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: 'Processing1'
description: 'Processing VNFC'
vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 5

vendor_section:
cisco_esc:
config_data:
'/tmp/OSRESTTestETSIDay0_Inline_data.cfg':
data: |
NODE_NAME $NODE_NAME
NUM_OF_CPU $NUM_OF_CPU
MEM_SIZE $MEM_SIZE
PROXY_ADDRS $PROXY_ADDRS
SPECIAL_CHARS $SPECIAL_CHARS

variables:
NODE_NAME: vdu_node_1
NUM_OF_CPU: 1
MEM_SIZE: 1GB
PROXY_ADDRS: ["1.1.1.1", "1.1.2.1", "1.1.3.1", "1.1.4.1", "1.1.5.1",

"1.1.6.1", "1.1.7.1"]
SPECIAL_CHARS: '`~!@#$%^&*()-_=+[{]}|;:<.>/?'

In the above example the day 0 configuration is specified inline, with velocity variables defined in the target
configuration. Each of these variables are supported by a variable with one or more values. In order to support
multiple values for the $PROXY_ADDRS variable, a list of values are provided. These values are used to
populate subsequent uses of the variable on new instances of the VNFC.

For information on day 0 configuration in the deployment data model, see Day Zero Configuration in the
Cisco Elastic Services Controller User Guide.

Autoscaling of VNFs
KPIs, rules and actions defined in the VNFD determine the conditions under which scaling must be considered.
The details are provided in Monitoring Virtual Network Functions. The scaling policies are also defined in
the VNFD using several policy types that control the allowed scaling boundaries. These policy items are
described below.

After deployment, ESC configures a monitoring agent (this may be the centralised or distributed instance)
with the KPIs to monitor each VNFC. The scaling workflow begins if a KPI reaches its threshold; based on
the action defined, ESC performs scale in or scale out and generates appropriate notifications and event logs.
This is subject to some built-in functions that can be specified such as log or an onboarded script.

ESC sends appropriate notifications to the subscribed consumers. At this time, ESC interrogates the VNF
instance resource for the isAutoscaleEnabled flag (this is set initially by the value in the VNFD but can be
modified after creation). If this flag is set to true, ESC invokes the scaling workflow (instigated using a
ScaleVnfToLevelRequest to request the scaling of multiple aspects in a single request). If the isAutoscaleEnabled
is set to false, then the control is with an external system such as an NFVO or EM to trigger the desired action
using the requests described above.

While creating an auto scaling or auto healing request, any new external requests are blocked. The user is
notified of the corresponding response and problem details of the blocked request.

Note

Scaling Virtual Network Functions
10

Scaling Virtual Network Functions
Autoscaling of VNFs

	Scaling Virtual Network Functions
	Scaling Virtual Network Functions Using ETSI API
	VNFD Policies for Scaling
	Dependencies on Multiple IP Addresses
	Autoscaling of VNFs

