YANG Models

A YANG model defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANG models describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network
devices.

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled
applications.

YANG models can be:

» Cisco-specific models: For a list of supported models and their representation, see https://github.com/
YangModels/yang/tree/master/vendor/cisco/svo.

« Common models: These models are industry-wide standard YANG models from standard bodies, such
as [ETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

For a list of supported OC models and their representation, see https://github.com/YangModels/yang/tree/
master/vendor/cisco/svo.

» Components of a YANG Model, on page 1
* Structure of YANG Models, on page 2
» Communication Protocols, on page 2

Components of a YANG Model

A YANG model defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

* import imports external modules
* include includes one or more sub-modules

« augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

» when defines conditions under which new nodes are valid

YANG Models .


https://github.com/YangModels/yang/tree/master/vendor/cisco/svo
https://github.com/YangModels/yang/tree/master/vendor/cisco/svo
https://github.com/YangModels/yang/tree/master/vendor/cisco/svo
https://github.com/YangModels/yang/tree/master/vendor/cisco/svo

YANG Models |
. Structure of YANG Models

* prefix references definitions in an imported module

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.

Structure of YANG Models

YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

* Top level nodes and their subtrees
* Subtrees that augment nodes in other YANG models
* Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:
* leaf node - contains a single value of a specific type

* leaf-list node - contains a sequence of leaf nodes

* list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more
key leaves

* container node - contains a grouping of related nodes that have only child nodes, which can be any of
the four node types

Communication Protocols

Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

YANG uses the Network Configuration Protocol (NETCONF) protocol.

The transport and encoding mechanisms for this protocol is shown in the table:

Protocol Transport Encoding/ Decoding

NETCONF ssh xml

NETCONF Protocol

NETCONF provides mechanisms to install, manipulate, or delete the configuration of network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. Use ssh server capability netconf-xml command to enable NETCONF to reach XML
subsystem via port 22. NETCONF uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router.

. YANG Models



| YANG Models

NETCONF Operations ]

NETCONF Session

A NETCONEF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a "hello" message, where features and capabilities are announced. Sessions are
terminated using close or kill messages.

NETCONF Layers

NETCONEF can be partitioned into four layers:
Figure 1: NETCONF Layers

Layer Example
Congenl Coadiguration Dala Mcilazalion [asa
Oparations =il -coadin=
N <=
Mieascapes aape-raphys <TAIlECAl
Secime Transpor 55H, TLS BEEFMTLS SOARMHITRILS, . | §
-

« Content layer: includes configuration and notification data

« Operationslayer: defines a set of base protocol operations invoked as RPC methods with XML-encoded
parameters

» Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

* Secure Transport layer: provides a communication path between the client and the server

NETCONF Operations

NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:

+--Get-config
+--Edit-Config

+--Merge

+--Replace

+--Create

+--Delete

+-—-Remove

+--Default-Operations

+--Merge
+--Replace
+--None
+--Get
+--Lock
+--UnLock

YANG Models .



[l NETCONF Operations

| +--Close-Session
| +--Kill-Session

YANG Models |

NETCONF
Operation

Description

Example

<get-config>

Retrieves all or part of a specified
configuration from a named data
store

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<get-config>

<source>

<running/>

</source>

<filter>

<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-1ifmgr-cfg"\
<interface-configuration>

<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name
</interface-configuration>
</interface-configurations>

</filter>

</get-config>

</rpc>

< get>

Retrieves running configuration
and device state information

Retrieve all acl configuration and device state
information.

Request:

<get>

<filter>

<ipv4-acl-and-prefix-list
xmlns="http://cisco.con/ns/yang/Cisco-I0S-XR-ipvi-acl-cper"/
</filter>

</get>

. YANG Models



| YANG Models

NETCONF Operations ]

NETCONF
Operation

Description

Example

<edit-config>

Loads all or part of a specified
configuration to the specified
target configuration

Configure ACL configs using M erge operation

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

<edit-config>

<target><candidate/></target>

<config

xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

<ipv4-acl-and-prefix-list

xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipvd-acl-cfg"|
xc:operation="merge”>

<accesses>

<access>

<access-list-name>aclv4-1</access-list-name>

<access-list-entries>

<access-list-entry>

<sequence-number>10</sequence-number>

<remark>GUEST</remark>

</access-list-entry>

<access-list-entry>

<sequence-number>20</sequence-number>

<grant>permit</grant>

<source-network>

<source-address>172.0.0.0</source-address>

<source-wild-card-bits>0.0.255.255</source-wild-card-bits:

</source-network>

</access-list-entry>

</access-list-entries>

</access>

</accesses>

</ipv4-acl-and-prefix-list>

</config>

</edit-config>

</rpc>

Commit:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<commit/>

</rpc>

<lock>

Allows the client to lock the
entire configuration datastore
system of a device

Lock the running configuration.

Request:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<lock>

<target>

<running/>

</target>

</lock>

</rpc>

Response
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">|

<ok/>
</rpc-reply>

YANG Models .



[l NETCONF Operations

YANG Models |

NETCONF
Operation

Description

Example

<Unlock>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

* The specified lock is not
currently active.

* The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

Lock and unlock the running configuration from the same
session.

Request:

rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<unlock>

<target>

<running/>

</target>

</unlock>

</rpc>

Response -

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

<close-session>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

Close a NETCONTF session.

Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<close-session/>

</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

<kill-session>

Terminates operations currently
in process, releases locks and
resources associated with the
session, and close any associated
connections.

Terminate a session if the ID is other session ID.

Request:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<kill-session>

<session-id>4</session-id>

</kill-session>

</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

. YANG Models



	YANG Models
	Components of a YANG Model
	Structure of YANG Models
	Communication Protocols
	NETCONF Protocol
	NETCONF Operations




