
Sample Metro Deployment

This chapter covers the key components and sample end-to-end configuration involved in theseMetro solution
use cases:

• Metro CX Edge Fabric Manager installation

• Metro CX Edge Fabric software life cycle management (FSLM)

• Metro CX Edge Fabric configuration template management

• Edge Protect DDoS deployment

• Cisco Routed PON deployment

• Metro CX Edge Fabirc Manager installation, on page 1
• Metro CX Edge Fabric software life cycle management , on page 19
• Metro CX Edge Fabric configuration template compliance, on page 24
• Edge Protect DDoS deployment, on page 25
• Cisco Routed PON deployment, on page 29

Metro CX Edge Fabirc Manager installation

Sample Metro Edge Fabric deployment network
This is a sample topology diagram of Metro Edge Fabric deployment network.

Sample Metro Deployment
1

Figure 1: Sample Metro Edge Fabric deployment network topology

The topology consists of two aggregation routers and two leaf nodes of different role types.

The aggregation routers in the fabric act as inline route reflectors. However, the route reflectors could be
located elsewhere.

Control plane configuration

The table lists the protocols and parameters for control plane configuration.

Sample Metro Deployment
2

Sample Metro Deployment
Sample Metro Edge Fabric deployment network

ParametersProtocol

ASN 100

IPv4 using separate loopback or route reflector (RR)

IPv6 using separate loopback or RR

Aggregation routers act as inline RR

Aggregation routers have L3VPN and L2VPN address
families enabled

BGP

Level 2 only

SR-MPLS enabled

SRv6 enabled

TI-LFA enabled

IS-IS

Flex-Algo 0

Flex-Algo 128 (low latency)

Segment Routing

10.0.0.0/24 Flex-Algo 0 loopbacks

10.0.128.0/24 Flex-Algo 128 loopbacks

IPv4 IP Address Allocations

16000-32000 SRGB

16000-16999 Algo 0

17000-17999 Algo 128

SR-MPLS SRGB Allocations

2001:DC::/24 Base SRv6 global block

2001:DC00::/32 Flex-Algo 0

2001:DC80::/32 Flex-Algo 128

SRv6 IP Address Allocations

Additional configuration

The table lists the configuration required for additional elements.

ParameterElement

10.0.0.100

10.0.0.101

Route Reflectors

10.0.0.200

10.0.0.201

SR-PCE

10.0.0.250SNMP Trap Server

Address resource allocation

The table lists the address resource allocation for each node.

Sample Metro Deployment
3

Sample Metro Deployment
Sample Metro Edge Fabric deployment network

IPv6 loopbackSRv6 locatorSR-MPLS SIDsIPv4 loopbackNode

2001:DC00:0001::1/1282001:DC00:0001::/48 algo
0

2001:DC80:0001::/48 algo
128

16001 algo 0

17001 algo 128

10.0.0.1/32 algo 0

10.0.1.1/32 algo 128

fab1-agg-1

2001:DC00:0002::1/1282001:DC00:0002::/48 algo
0

2001:DC80:0002::/48 algo
128

16002 algo 0

17002 algo 128

10.0.0.2/32 algo 0

10.0.1.2/32 algo 128

fab1-agg-2

2001:DC00:0003::1/1282001:DC00:0003::/48 algo
0

2001:DC80:0003::/48 algo
128

16003 algo 0

17003 algo 128

10.0.0.3/32 algo 0

10.0.1.3/32 algo 128

fab1-l2vpn-1

2001:DC00:0004::1/1282001:DC00:0004::/48 algo
0

2001:DC80:0004::/48 algo
128

16004 algo 0

17004 algo 128

105.0.0.4/32 algo 0

105.0.1.4/32 algo 128

10.0.0.4/32 algo 0

10.0.1.4/32 algo 128

fab1-l3vpn-1

CX Fabric Manager NSO solution components
This table lists the various NSO packages and its purpose.

PurposeVersionNSO package

Define IP address pools for
allocation through ZTP

4.2.3resource-manager

CX ZTP package used for
onboarding

3.7ztp

CX OS upgrade package used for
software life-cycle management

1.2os-upgrade

Main Edge Fabric Management
application used for fabric or role
definition, config template
application, and compliance actions

4.3edge-fabric-manager

NSO CLI NED7.52.2cisco-iosxr-cli-7.52

Install CX Fabric Manager package
Follow these steps to install CX Fabric Manager package.

Sample Metro Deployment
4

Sample Metro Deployment
CX Fabric Manager NSO solution components

Procedure

Step 1 Download standard resource-manager package from CCO.
Step 2 Download CX Fabric Manager, CX ZTP, and CX OS upgrade packages
Step 3 Copy all packages to the packages directory relevant to your specific system or local installation of NSO. Example:

/var/opt/nso/packages/
Step 4 Expand the CX NSO packages within the package directory so that the FM package can access the template directory.
Step 5 Verify packages.

Example:

Router# show packages package oper-stat

PACKAGE
NAME VERSION UP

cisco-iosxr-cli-7.52 7.52.2 X
cisco-iosxr-nc-7.11 7.11 X
edge-fabric-manager 4.3 X
os-upgrade 1.2 X
resource-manager 4.2.3 X
ztp 3.7 X

Manage CX Fabric Manager template
Templates are defined as NSO XML config files and are located in the templates directory for the expanded
package post installation.

Fabric, role, and interface templates used by the Fabric Manager are standard NSO configuration templates
stored with the FM Package.

Role templates are referenced in the role definition as the filename without the .xml file extension.

Adding or removing templates from the templates directory requires a package reload.Note

View available templates

Use the ll command to display the available templates in the templates directory.

root@nso-edge-fabric-test-1:/var/opt/ncs/packages/edge-fabric-manager/templates# ll
total 36
drwxrwxr-x 2 cisco cisco 4096 Jun 12 10:12 ./
drwxrwxr-x 6 cisco cisco 4096 Jun 21 13:56 ../
-rw-rw-r-- 1 cisco cisco 2289 May 7 14:24 day1-leaf-l2vpn-v1.xml
-rw-rw-r-- 1 cisco cisco 2113 May 7 14:24 day1-leaf-l2vpn.xml
-rw-rw-r-- 1 cisco cisco 3214 May 9 09:03 day1-leaf-l3vpn.xml

Sample Metro Deployment
5

Sample Metro Deployment
Manage CX Fabric Manager template

-rw-rw-r-- 1 cisco cisco 1585 May 7 14:24 delete-leaf-interface-connection.xml
-rw-rw-r-- 1 cisco cisco 532 May 7 14:24 fabric-generic.xml
-rw-rw-r-- 1 cisco cisco 3665 May 7 14:24 leaf-interface-connection-v1.xml
-rw-rw-r-- 1 cisco cisco 3369 May 7 14:24 leaf-interface-connection.xml

root@nso-edge-fabric-test-1:/var/opt/ncs/packages/edge-fabric-manager/templates#

Base templates
The base configuration templates apply to all routers in the fabric.

Primary loopback IP and SNMP templates

These are examples of templates defining the primary Loopback IP and SNMP.

Primary loop:

<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>{$DEVICE}</name>
<config>
<interface xmlns="http://tail-f.com/ned/cisco-ios-xr">
<Loopback>
<id>0</id>
<description>Loopback for L2VPN Leaf</description>
<ipv4>
<address>
<ip>{$LOOPBACK_IP}</ip>
<mask>255.255.255.255</mask>

</address>
</ipv4>

</Loopback>
</interface>

</config>
</device>

</devices>

SNMP:

<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>{$DEVICE}</name>
<config>
<snmp-server xmlns="http://tail-f.com/ned/cisco-ios-xr">
<ifmib>
<ifalias>
<long/>

</ifalias>
<stats>
<cache/>

</stats>
</ifmib>
<packetsize>4096</packetsize>
<ifindex>persist</ifindex>
<host>
<address>10.0.0.250</address>
<type>traps</type>
<community-string>${SNMPTRAP_COMM}</community-string>
<version>2c</version>
<udp-port>1062</udp-port>

</host>
<community>

Sample Metro Deployment
6

Sample Metro Deployment
Base templates

<name>${SNMP_RW_COMM}</name>
<RW/>

</community>
<community>
<name>${SNMP_RO_COMM}</name>
<RO/>

</community>
<location>"Fabric-A Location"</location>
<trap-source>
<MgmtEth>0/RP0/CPU0/0</MgmtEth>

</trap-source>
</snmp-server>

</config>
</device>

</devices>

PTP configuration

<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>{$DEVICE}</name>
<config>
<ptp xmlns="http://tail-f.com/ned/cisco-ios-xr">
<clock>
<domain>24</domain>
<profile>
<name>g.8275.1</name>
<clock-type>T-BC</clock-type>

</profile>
</clock>
<profile>
<name>timeTransmitter</name>
<multicast>
<target-address>
<ethernet>01-80-C2-00-00-0E</ethernet>

</target-address>
</multicast>
<transport>ethernet</transport>
<sync>
<frequency>16</frequency>

</sync>
<clock>
<operation>two-step</operation>

</clock>
<announce>
<frequency>8</frequency>

</announce>
<delay-request>
<frequency>16</frequency>

</delay-request>
</profile>

<profile>
<name>timeReceiver</name>
<multicast>
<target-address>
<ethernet>01-80-C2-00-00-0E</ethernet>

</target-address>
</multicast>
<transport>ethernet</transport>
<announce>
<timeout>5</timeout>

Sample Metro Deployment
7

Sample Metro Deployment
Base templates

<frequency>8</frequency>
</announce>
<delay-request>
<frequency>16</frequency>

</delay-request>
</profile>
<physical-layer-frequency/>
<log>
<servo>
<events/>

</servo>
<best-master-clock>
<changes/>

</best-master-clock>
</log>

</ptp>
</config>

</device>
</devices>

IS-IS configuration

<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>{$DEVICE}</name>
<config>
<router xmlns="http://tail-f.com/ned/cisco-ios-xr">
<isis>
<tag>
<name>CORE</name>

<is-type>level-2-only</is-type>
<net>
<id>{$ISIS_NET}</id>

</net>
<flex-algo>
<id>128</id>
<metric-type>
<delay/>

</metric-type>
<advertise-definition/>

</flex-algo>
<distribute>
<link-state>
<instance-id>{$BGP_LS_INSTANCE_ID}</instance-id>

</link-state>
</distribute>
<log>
<adjacency>
<changes/>

</adjacency>
<pdu>
<drops/>

</pdu>
</log>
<lsp-refresh-interval>65000</lsp-refresh-interval>

<max-lsp-lifetime>65535</max-lsp-lifetime>

<address-family>
<ipv4>
<unicast>
<metric-style>wide</metric-style>
<maximum-paths>32</maximum-paths>
<segment-routing>

Sample Metro Deployment
8

Sample Metro Deployment
Base templates

<mpls/>
</segment-routing>

</unicast>
</ipv4>
<ipv6>
<unicast>
<metric-style>wide</metric-style>
<maximum-paths>32</maximum-paths>

</unicast>
</ipv6>

</address-family>
<interface>
<name>Loopback0</name>
<interface-type>passive</interface-type>
<address-family>
<ipv4>
<unicast>
<prefix-sid>
<index>{$SR_SID_INDEX_ALGO_0}</index>

</prefix-sid>
<prefix-sid-algorithm>
<prefix-sid>
<algorithm>
<id>128</id>
<absolute>{$SR_SID_ABS_ALGO_128}</absolute>

</algorithm>
</prefix-sid>
</prefix-sid-algorithm>

</unicast>
</ipv4>
<ipv6>
<unicast/>

</ipv6>
</address-family>

</interface>
</tag>
</isis>
</router>

</config>
</device>

</devices>

Leaf templates

L2VPN leaf template: BGP

<devices xmlns="http://tail-f.com/ns/ncs">
<name>{$DEVICE}</name>
<config>
<router xmlns="http://tail-f.com/ned/cisco-ios-xr">
<bgp>
<bgp-no-instance>
<id>{$BGP_ASN}</id>
<nsr/>
<bgp>
<router-id>{$BGP_ROUTER_ID}</router-id>
<graceful-restart/>

</bgp>
<ibgp>
<policy>
<out>
<enforce-modifications/>

Sample Metro Deployment
9

Sample Metro Deployment
Leaf templates

</out>
</policy>

</ibgp>

<address-family>
<l2vpn>
<evpn/>

</l2vpn>
</address-family>
<neighbor-group>
<name>SvRR-EVPN</name>
<remote-as>{$BGP_ASN}</remote-as>
<update-source>
<Loopback>0</Loopback>

</update-source>
<address-family>
<l2vpn>
<evpn/>

</l2vpn>
</address-family>

</neighbor-group>
<neighbor>
<id>10.0.0.100</id>
<use>
<neighbor-group>SvRR-EVPN</neighbor-group>

</use>
</neighbor>
<neighbor>
<id>10.0.0.101</id>
<use>
<neighbor-group>SvRR-EVPN</neighbor-group>

</use>
</neighbor>

</bgp-no-instance>
</bgp>

</router>
</config>

</device>
</devices>

L3VPN leaf template: BGP

<devices xmlns="http://tail-f.com/ns/ncs">
<name>{$DEVICE}</name>
<config>
<router xmlns="http://tail-f.com/ned/cisco-ios-xr">
<bgp>
<bgp-no-instance>
<id>{$BGP_ASN}</id>
<nsr/>
<bgp>
<router-id>{$BGP_ROUTER_ID}</router-id>
<graceful-restart/>

</bgp>
<ibgp>
<policy>
<out>
<enforce-modifications/>

</out>
</policy>

</ibgp>

<address-family>

Sample Metro Deployment
10

Sample Metro Deployment
Leaf templates

<vpnv4>
<unicast/>

</vpnv4>
<vpnv6>
<unicast/>

</vpnv6>
</address-family>
<neighbor-group>

<name>SvRR-L3VPN</name>
<remote-as>{$BGP_ASN}</remote-as>
<update-source>
<Loopback>0</Loopback>

</update-source>
<address-family>
<vpnv4>
<unicast/>

</vpnv4>
</address-family>

</neighbor-group>
<neighbor>
<id>10.0.0.102</id>
<use>
<neighbor-group>SvRR-L3VPN</neighbor-group>

</use>
</neighbor>
<neighbor>
<id>10.0.0.103</id>
<use>
<neighbor-group>SvRR-L3VPN</neighbor-group>

</use>
</neighbor>

</bgp-no-instance>
</bgp>

</router>
</config>

</device>
</devices>

View loaded templates

Use the show packages package edge-fabric-manager templates command on the router CLI to view the
loaded templates.

Router-cisco@ncs#show packages package edge-fabric-manager templates
templates [day1-leaf-l2vpn day1-leaf-l2vpn-v1 day1-leaf-l3vpn
delete-leaf-interface-connection fabric-base-isis fabric-base-loopback fabric-base-ptp
fabric-base-snmp fabric-generic leaf-interface-connection leaf-interface-connection-v1
spine-interface-connection]

Example of Fabric and role definition
This example defines a fabric with the ID, fab1, with a base template, fab1-base-template, already defined.

The xr-leaf-l2vpn role and its properties are shown. Multiple templates and their associated variables are
defined as part of the role definition. The role also defines an interface-template with its own variables which
can be used to perform operations such as adding the interface to a specific ISIS instance or assigning a PTP
profile.

fabrics fabric-id fab1
fabric-description "Example Fabric"
fabric-tags "test;cisco"

Sample Metro Deployment
11

Sample Metro Deployment
Example of Fabric and role definition

fabric-template-id fab1-base-template
device-role device-role-name xr-leaf-l2vpn device-model N540-24Z8Q2C-M
topology-role leaf
role-templates role-template-id leaf-l2vpn-bgp-1
role-template-variables name BGP_ASN
!
role-template-variables name BGP_ROUTER_ID
!
!
role-templates role-template-id leaf-l2vpn-isis-v1
role-template-variables name BGP_LS_INSTANCE_ID
!
role-template-variables name ISIS_NET
!
role-template-variables name SR_SID_INDEX_ALGO_0
!
role-template-variables name SR_SID_ABS_ALGO_128
!
!
interface-template interface-template-id fab1-interface-template
interface-template interface-template-variables name MTU
!
interface-template interface-template-variables name PTP_PROFILE
target-os-version 7.11.2
!
!

Onboard Fabric
In this deployment we onboard the spine devices manually and onboard the leaf devices using ZTP. The leaf
devices are automatically onboarded into the fabric with a specific role during the ZTP process.

Follow these steps to onboard Fabric.

Procedure

Step 1 Define spine fabric role.

Example:

fabrics fabric-id fab1
device-role device-role-name xr-fabric-spine device-model NCS-5501-SE
topology-role spine
role-templates role-template-id fabric-base-isis
role-template-variables name BGP_LS_INSTANCE_ID
!
role-template-variables name ISIS_NET
!
role-template-variables name SR_SID_ABS_ALGO_128
!
role-template-variables name SR_SID_INDEX_ALGO_0
!
!
role-templates role-template-id fabric-base-loopback
role-template-variables name LOOPBACK_IP
!
!
role-templates role-template-id fabric-base-ptp
!

Sample Metro Deployment
12

Sample Metro Deployment
Onboard Fabric

role-templates role-template-id fabric-base-snmp
!
interface-template interface-template-id spine-interface-connection
target-os-version 7.11.2

Step 2 Define DHCP device for the spine device.

Example:

devices dhcp-devices FOC2120R22S
device-host-name fab1-spine-2
fabric-id fab1
geo-location west
nso-authgroup fabric
nso-device-group ALL-ACCESS
device-role-name xr-fabric-spine
mgmt-ip 192.168.1.192
subnet-mask 24
resource-pool-name fabric-lab
device-model NCS-5501-SE
template-variable-values template-type role
variables name BGP_LS_INSTANCE_ID
value 100
!
variables name ISIS_NET
value 49.0001.0105.0000.0002.00
!
variables name LOOPBACK_IP
value 10.0.0.2
!
variables name SR_SID_INDEX_ALGO_0
value 2
!
variables name SR_SID_ABS_ALGO_128
value 17002

!
!

These are some of the attributes in this example:

• Device type: NCS-5501-SE

• Device serial number: FOC2120R22S

• DCHP device: added with the key being the device serial number

• Four base templates applied to the spine device: PTP, IS-IS, SNMP, and the loopback interface.

IS-IS and the loopback have device-specific variables defined. PTP and SNMP use hard-coded values in the template
itself.

Step 3 Onboard the spine device.
a) Onboard the device into NSO.

Example:

devices device fab1-spine-2
address 192.168.1.192
authgroup fabric

Sample Metro Deployment
13

Sample Metro Deployment
Onboard Fabric

device-type cli ned-id cisco-iosxr-cli-7.52
state admin-state unlocked

b) Onboard the device into spine role.

Example:

Router:cisco@ncs# edge-fabric-actions onboard-device-into-fabric-apply-day1 devices { device-name
fab1-spine-2 device-model NCS-5501-SE fabric-id fab1 device-role-name xr-fabric-spine serial-number
FOC2120R22S geo-location west }
devices {

device-name fab1-spine-2
fabric-id fab1
status Completed
response

Dry-run location is:
/home/nso/temp/dry-run-output/fabric-device-onboard-fab1_fab1-spine-2_2024-09-15T18:47:36.189545.txt
}

c) Verify spine device onboarding.

Example:

Interface loopback:

Router:fab1-spine-2#show run int lo0
Sun Sep 15 17:21:56.428 UTC
interface Loopback0
description Loopback interface
ipv4 address 105.0.0.2 10.0.0.2 255.255.255.255
!

SNMP:

Router:fab1-spine-2#show run snmp
Sun Sep 15 17:26:20.468 UTC
snmp-server host 105.0.0.250 traps version 2c public udp-port 1062
snmp-server community cisco RW
snmp-server community public RO
snmp-server community private RW
snmp-server location "Fabric-A Location"
snmp-server packetsize 4096
snmp-server trap-source MgmtEth0/RP0/CPU0/0
snmp-server ifmib ifalias long
snmp-server ifindex persist
snmp-server ifmib stats cache

IS-IS:

Router:fab1-spine-2#show run router isis
Sun Sep 15 17:25:57.621 UTC
router isis CORE
is-type level-2-only
net 49.0001.0105.0000.0002.00
distribute link-state instance-id 100
log adjacency changes
log pdu drops
lsp-refresh-interval 65000
max-lsp-lifetime 65535
address-family ipv4 unicast
metric-style wide
maximum-paths 32

Sample Metro Deployment
14

Sample Metro Deployment
Onboard Fabric

segment-routing mpls
!
address-family ipv6 unicast
metric-style wide
maximum-paths 32
!
flex-algo 128
metric-type delay
advertise-definition
!
interface Loopback0
passive
address-family ipv4 unicast
prefix-sid index 2
prefix-sid algorithm 128 absolute 17002

PTP:

Router:fab1-spine-2#show run ptp
Sun Sep 15 17:25:20.506 UTC
ptp
clock
domain 24
profile g.8275.1 clock-type T-BC
!
profile timeReceiver
multicast target-address ethernet 01-80-C2-00-00-0E
transport ethernet
announce timeout 5
announce frequency 8
delay-request frequency 16
!
profile timeTransmitter
multicast target-address ethernet 01-80-C2-00-00-0E
transport ethernet
sync frequency 16
clock operation two-step
announce frequency 8
delay-request frequency 16
!
physical-layer-frequency
log
servo events
best-master-clock changes

Step 4 Define L2VPN leaf fabric role.

Example:

fabrics fabric-id fab1
device-role device-role-name xr-fabric-leaf-l2vpn device-model N540-12Z20G-SYS
topology-role leaf
role-templates role-template-id fabric-base-isis
role-template-variables name BGP_LS_INSTANCE_ID
!
role-template-variables name ISIS_NET
!
role-template-variables name SR_SID_ABS_ALGO_128
!
role-template-variables name SR_SID_INDEX_ALGO_0
!
!
role-templates role-template-id fabric-base-loopback

Sample Metro Deployment
15

Sample Metro Deployment
Onboard Fabric

role-template-variables name LOOPBACK_IP
!
!
role-templates role-template-id fabric-base-ptp
!
role-templates role-template-id fabric-base-snmp
!
role-templates role-template-id fabric-leaf-l2vpn-bgp
role-template-variables name BGP_ASN
!
role-template-variables name BGP_ROUTER_ID
!
!
interface-template interface-template-id spine-interface-connection
target-os-version 7.11.2
!
!

Step 5 Define DHCP device for L2VPN leaf node.

Example:

devices dhcp-devices FOC2430PL4Z
device-host-name fab1-l2vpn-1
fabric-id fab1
geo-location west
nso-authgroup fabric
nso-device-group ALL-ACCESS
device-role-name xr-l2vpn
mgmt-ip 192.168.1.64
subnet-mask 24
resource-pool-name fabric-lab
device-model N540-12Z20G-SYS
template-variable-values template-type role
variables name BGP_ASN
value 100
!
variables name BGP_ROUTER_ID
value 10.0.0.3
!
variables name BGP_LS_INSTANCE_ID
value 100
!
variables name ISIS_NET
value 49.0001.0105.0000.0003.00
!
variables name LOOPBACK_IP
value 10.0.0.3
!
variables name SR_SID_INDEX_ALGO_0
value 3
!
variables name SR_SID_ABS_ALGO_128
value 17003

!
!

This step is same as the previous example of spine device with the addition of the BGP template.

The DCHP device is added with the key being the device serial number. The role template variables are populated with
device-specific values

Step 6 Configure DHCP day0 configuration.

Sample Metro Deployment
16

Sample Metro Deployment
Onboard Fabric

Example:

!! IOS XR
hostname ###HOST_NAME###
logging console disable
!
username lab
group root-lr
group cisco-support
secret 5 1CcGF$EzBAkyycnbZFt4QRF16I20
!
grpc
no-tls
port 57344
address-family ipv4
!
interface MgmtEth0/RP0/CPU0/0
ipv4 address ###MGMT_IP### ###MGMT_MASK###
description To MGMT network
no shutdown
!
router static
address-family ipv4 unicast
0.0.0.0/0 192.168.1.1
!
!
line console
exec-timeout 0 0
!
line default
exec-timeout 0 0
!
fpd auto-upgrade enable
netconf-yang agent
ssh
!
lldp
!
ssh client source-interface MgmtEth0/RP0/CPU0/0
ssh server logging
ssh timeout 120
ssh server rate-limit 600
ssh server session-limit 100
ssh server v2
ssh server vrf default
ssh server netconf vrf default

The DHCP day0 configuration applies baseline configuration to the device so that further configuration can take place.

This file is located on the DCHP server and referenced as part of the DHCP role settings in dhcpd.conf. The variables
are populated by the CX ZTP process.

Step 7 Initiate ZTP

Example:

Router:fab1-l2vpn-1#ztp initiate debug dhcp4 management verbose

Sample Metro Deployment
17

Sample Metro Deployment
Onboard Fabric

How zero touch provisioning works
These stages describe the zero touch provisioning (ZTP) process.

1. The system initiates DHCP request on the management interface.

2. DHCP responds with interim management IP address, location of Day 0 configuration for the device, and
the CX ZTP Python script.

3. The system applies Day 0 configuration to the device for management connectivity and user setup.

4. The user executes CX ZTP onboarding script on the router which in turn performs these operations:

a. Assigns permanent management IP from NSO resource pool

b. Onboards device into NSO with the specific hostname and allocated IP address

c. Executes automated fabric onboarding to onboard the device into the specified fabric with the
appropriate role templates applied

Verify Fabric onboarding

Procedure

Verify fabric onboarding.

Example:

Router:cisco@ncs# show fabrics devices
FABRIC GEO
OPER
ID DEVICE NAME DEVICE ROLE NAME DEVICE MODEL INTERFACE TEMPLATE ID LOCATION
STATE ROLE TEMPLATE ID
--
fab1 fab1-l2vpn-1 xr-fabric-leaf-l2vpn N540-12Z20G-SYS-A interface-template west
READY fabric-base-isis

fabric-base-loopback

fabric-base-ptp

fabric-base-snmp

fabric-leaf-l2vpn-bgp
fab1-spine-2 xr-fabric-spine NCS-5501-SE interface-template west

READY fabric-base-isis

fabric-base-loopback

fabric-base-ptp

fabric-base-snmp

Sample Metro Deployment
18

Sample Metro Deployment
How zero touch provisioning works

Create Fabric connections
Once devices are onboarded into NSO and the fabric, you can then create device connections between them.

Connections contain endpoints. A single endpoint is useful for configuring a spine device performing in-band
ZTP for downstream leaf devices.

Procedure

Step 1 Create connection between interfaces on both the routers.

Example:

Router-cisco@ncs#edge-fabric-actions populate-fabric-connections fabric-connection-details { fabric-id
fab1 fabric-connections { connection-id spine1_leaf1 connection-type fabric endpoints { endpoint
fab1-spine-2 interface TenGigE0/0/0/32 ip-address 10.120.1.1/24 } endpoints { endpoint fab1-l2vpn-1
interface TenGigE0/0/0/32 ip-address 10.120.1.50/24 } } } commit-type commit

In this example, we create a connection between TenGigE0/0/0/22 on both the fab1-spine-2 and fab1-l2vpn-1 routers.

The default commit-type is a dry-run to show the configuration without deploying to the device. Use the commit
commit-type to commit the configuration to NSO and deploy to the devices.

Step 2 Verify fabric connections.

Example:

Router-cisco@ncs# show fabrics fabric-connections

FABRIC CONNECTION ID TYPE ENDPOINT INTERFACE IP ADDRESS

--

fab1 spine1_leaf1 fabric fab1-l2vpn-1 TenGigE0/0/0/32 10.120.1.50/24

fab1-spine-2 TenGigE0/0/0/32 10.120.1.1/24

Metro CX Edge Fabric software life cycle management
This section highlights applying the steps required to perform a software upgrade utilizing the Crosswork
Workflow Manager workflows which determine whether the device complies with the intended target OS
version. If the device is not in compliance, we remediate the condition by upgrading the device software.

For a brief on software life cycle management, see Fabric software lifecycle management.

Perform prerequisite configurations for software upgrade
In Metro Release 1.0 software upgrades are performed using the CX OS Upgrade package. This is a
comprehensive NSO-based service used to handle device upgrades for NX OS, IOS XE, and IOS XR OS.

Sample Metro Deployment
19

Sample Metro Deployment
Create Fabric connections

cisco-metro-solution-guide_chapter4.pdf#nameddest=unique_47

Before you begin

You must define the device types and supported versions in the OS Upgrade package prior to performing
upgrades.

In this example, we are upgrading a device of type NCS540L

Procedure

Step 1 Define the supported upgrade paths between software versions.

Example:

os-upgrade-service lookup-data upgradePathLookup image-version-mapping cisco-ios-xr
entries NCS540L 7.11.1 24.4.1.37I
!
entries NCS540L 24.4.1.37I 7.11.1
!
!

os-upgrade-service lookup-data platform-lookup platform-mapping cisco-ios-xr
platform NCS540L
model-keywords NCS540L
device-model NCS540L
upgrade-reload-time 600
!
firmware-upgrade-enabled false
!
!

os-upgrade-service lookup-data os-upgrade-vars image-vars image-version cisco-ios-xr NCS540L 24.4.1.37I

vars SYSTEM_IMAGE
var-value ncs540l-x64-24.4.1.37I.iso
!
vars target-version
var-value 24.4.1.37I
!
!

os-upgrade-service lookup-data version-image-lookup image-version-mapping cisco-ios-xr
entries NCS540L 7.11.1
image-filename [ncs540l-x64-7.11.1.iso]
!
entries NCS540L 24.4.1.37I
image-filename [ncs540l-x64-24.4.1.37I.iso]
!
!

In this example, we are upgrading from 7.11.1 to 24.4.1.37I.

Step 2 Define Fabric Manager role.

Example:

fabrics fabric-id metro10-fabric1
device-role device-role-name xr-leaf device-model N540-24Q8L2DD-SYS
topology-role leaf
target-os-version 24.4.1.37I

Sample Metro Deployment
20

Sample Metro Deployment
Perform prerequisite configurations for software upgrade

!
!

The intended version of the operating system is defined in the role definition. The device-model is used as a key and as
an input to the CX OS upgrade service to determine the correct files and methodology for upgrading the device.

Crosswork Workflow Manager
Crosswork Workflow Manager is a flexible tool that is used to create customized network workflows.
Workflows can be hierarchical in nature, with parent workflows with specific inputs used to drive child
workflows to both collect data as well as execute actions against resources. In this use case, we are using
CWM to execute flows to check the current software version of the device against an intended version defined
by the fabric role.

Figure 2: Crosswork Workflow Manager

Device OS compliance workflow
We use ngmetro-os-compliance-workflow, a compound workflow for performing device OS compliance
check and remediation.

Sample Metro Deployment
21

Sample Metro Deployment
Crosswork Workflow Manager

Figure 3: Device OS compliance workflow

These stages describe the device OS compliance workflow.

1. The compound workflow, ngmetro-os-compliance-workflow, first calls the
ngmetro-os-compliance-check workflow to check for non-compliant devices.

The ngmetro-os-compliance-check workflow uses these attributes as the input:

ngmetro-os-compliance-check
input:
{
"fabricId" : "metro10-fabric1",
"nsoResource" : "METRO-NSO"
}

2. The ngmetro-os-compliance-check workflow induces the OS compliance check function that is part of
the Fabric Manager service.

3. When that task is executed, the ngmetro-os-compliance-checkworkflow returns the status of the devices
in the fabric.

In this case, the device fabric-leaf3 is found as non-compliant.

{
"eventId": "21",
"eventTime": "2024-10-22T18:39:16.152371499Z",
"eventType": "WorkflowExecutionCompleted",
"taskId": "2097494",
"workflowExecutionCompletedEventAttributes": {
"result": {
"payloads": [
{
"metadata": {
"encoding": "json/plain"

},

Sample Metro Deployment
22

Sample Metro Deployment
Device OS compliance workflow

"data": {
"Data": {
"checkComplianceResult": [
{
"device-name": "fabric-leaf3",
"os-compliant-status": false,
"response": " Device fabric-leaf3 OS version is not compliant.

Existing version is: 7.11.2.17I and target version is: 24.4.1."
}

],
"fabricId": "metro10-fabric1",
"nsoResource": "METRO-NSO"

}
}

}
]

},
"workflowTaskCompletedEventId": "20"

}
}

]

4. The compound workflow runs the ngmetro-os-compliance-enforce workflow to perform the proper
upgrades based on the target software version defined in the fabric roles.

What's Next

The next step in the workflow is to remediate the device and upgrade it to the target version specified. For
conciseness we are omitting the details of that step, but it utilizes the CXOS upgrade configuration mentioned
earlier to upgrade the device matching type NCS540L with the appropriate Cisco IOS XR software version
24.4.1.

Sample Metro Deployment
23

Sample Metro Deployment
Device OS compliance workflow

Metro CX Edge Fabric configuration template compliance

Perform configuration template compliance check and remediation
Figure 4: Crosswork Workflow Manager: configuration compliance workflow

Similar to the OS compliance workflow, we use a compound workflow in CWM to perform a configuration
template compliance check and remediation:

• ngmetro-config-compliance-workflowworkflow: to check the current assigned template in the Fabric
Manager definition against what has been deployed on the node, and

• ngmetro-config-compliance-enforce-workflow: for remediation.

For a brief on configuration template management, see the Configuration compliance section.

Follow these steps to run the compoundworkflow for configuration template compliance check and remediation.

Procedure

Step 1 Run the ngmetro-config-compliance-check workflow with the appropriate fabric as input.

Example:

"data": {
"status": 200,
"data": {
"edge-fabric-manager:output": {
"fabrics": [
{

Sample Metro Deployment
24

Sample Metro Deployment
Metro CX Edge Fabric configuration template compliance

cisco-metro-solution-guide_chapter4.pdf#nameddest=unique_51

"devices": [
{
"device-name": "fabric-leaf3",
"interface-compliant-status": false,
"response": "Device fabric-leaf3 Role-template is compliant. Device

fabric-leaf3 Interface-template is not compliant. Existing Interface-template is:
leaf-interface-connection and latestInterface-template is: interconnect-template.",

"role-compliant-status": true
}

],
"fabric-id": "metro10-fabric1"

}
]

}
}

This step checks all the nodes in the Fabric against their intended templates vs. the runtime templates and returns whether
the templates defined for the device and role match the runtime templates.

In this example the role template is compliant, but the interface template has been changed from
leaf-interface-connection to interconnect-template and is no longer compliant.

Step 2 Once you find devices with non-compliant templates, run the remediation
workflow—ngmetro-config-compliance-enforce-workflow—with the appropriate fabric as input.

This step applies the proper configuration templates to devices which have been changed.

Edge Protect DDoS deployment
Once the Edge Fabric is deployed, you can deploy additional value-added services to the Fabric. Edge Protect
DDoS is an innovative solution allowing service providers to deploy DDoS protection at the very edge of the
network. This helps not only protect end services from DDoS and other security threats but also helps detect
and mitigate attacks originating from within a service provider network.

Sample Metro Deployment
25

Sample Metro Deployment
Edge Protect DDoS deployment

Figure 5: High-level view of Edge Protect DDoS deployment topology

Edge Protect components
The Edge Protect solution consists of these components:

• Edge DDoS Protection Controller: This component runs as a VM on a virtualization infrastructure. The
controller is responsible for configuring and deploying detectors, configuring protected objects, and
monitoring detected attacks and active mitigations.

• Edge DDoS Protection Detector: This component runs as a third-party application on IOS-XR routers,
providing a distributed detection and mitigation engine. There is a single detector deployed to each router.

Figure 6: Detector lists

Sample Metro Deployment
26

Sample Metro Deployment
Edge Protect components

Figure 7: Detector details

Edge Protect operation
The Edge Protect operation involves Edge Protect DDoS detection and mitigation. The detection phase uses
advanced analytics and examinations to identify specific amplification and application layer attacks. The
mitigation phase is performed by deploying either user-driven or automated ACLs to distributed nodes to
limit the attack impact.

Edge Protect DDoS detection

Detecting attacks requires having flow-level visibility of traffic traversing the router. In the Edge Protect
solution Netflow data is encoded into Google Protobuf format and then consumed by the on-board detection
engine. Deployment of the appropriate Netflow configuration is done automatically by the controller when a
router acting as a detector is onboarded. Standard or user-defined detection templates are used as a basis for
detecting DDoS traffic patterns. These are applied to protected objects, which can apply to an entire device,
or a subset of IP addresses based on configuration. Protected objects are then configured with policing and
additional mitigation actions.

Sample Metro Deployment
27

Sample Metro Deployment
Edge Protect operation

Figure 8: Edge detect projected objects

Edge Protect DDoS mitigation

Mitigation on distributed nodes is performed using standard data plane ACLs. The ACLs contain granular
information to mitigate only the attacks, and on platforms supporting User Defined Fields (UDF) can mitigate
traffic by pattern matching components in the IP header. Active mitigations are shown both on the main launch
screen for the Controller as well as under specific detectors.

Figure 9: Active mitigations

Sample Metro Deployment
28

Sample Metro Deployment
Edge Protect operation

Figure 10: Protected object mitigation details

For details on Edge DDoS Protection, see the Quick Start Guide for Edge DDoS Protection.

Example of Edge Protect deployed ACL
This is an example of an automated ACL used to mitigate an attack. In this case, the protected objects cover
the 203.0.113.100 and 198.51.100.2 IP addresses. The ACL is as granular as possible to mitigate attacks in a
targeted manner. ACL sequence number 1 blocks DNS packets with a specific length 228 and sequence 6
blocks an application layer attack against http.

RP/0/RP0/CPU0:cst-8712-pa2#show run ipv4 access-list myACL
ipv4 access-list myACL
1 deny udp any eq 3000 host 203.0.113.100 eq domain packet-length eq 228
6 deny tcp any eq 3400 host 198.51.100.2 eq www match-all -established -fin -psh +syn -urg
packet-length eq 1178
1301 permit ipv4 any any

Cisco Routed PON deployment

Components of Cisco Routed PON
The Cisco Routed PON solution is based on Cisco uOLT PON SFP, and the Routed PON Management
applications.

These are the major elements in manageability solution:

• Cisco Routed PON Manager

• Cisco Routed PON Controller

Sample Metro Deployment
29

Sample Metro Deployment
Example of Edge Protect deployed ACL

https://www.cisco.com/c/en/us/products/collateral/security/secure-ddos-protection/edge-protection-quick-start-guide.pdf
cisco-metro-solution-guide_chapter1.pdf#nameddest=unique_15

Cisco Routed PON Manager

Cisco Routed PONManager is a single-page web application and an accompanying REST API that provides
a graphical user interface for managing the Cisco Routed PON Network.

Figure 11: Cisco Routed PON Manager

The key features of Cisco Routed PON manager include

• alarm management

• dashboard view with a summary of PON network conditions

• device monitoring and statistics

• device provisioning and management

• logging for diagnostics and troubleshooting

• PON Controller database management

• PON Manager user management

• Graphical ONU Management and Control Interface (OMCI) (and future 10G EPON OAM) service
configuration tool, and

• service configuration, including VLANs, SLAs, 802.1X authentication, and DHCP Relay.

Cisco Routed PON Controller

Cisco Routed PON Controller is a stateless software that primarily act as intelligent relay to push or pull
information from OLT micro plug or ONUs and transfer them to or from data store. The PON Controller is
hosted as a third-party application container in router where the PON SPFs are hosted. The pseudo driver
functions implemented in PON Controller encode and encapsulate requests in IEEE 1904.2 packets (L2) to

Sample Metro Deployment
30

Sample Metro Deployment
Components of Cisco Routed PON

communicate with downstream devices. The Cisco PONController runs as a third-party application the Cisco
router hosting Cisco PON pluggable OLT.

Operational data including device state, statistics, alarms, and logging, is collected and flows upstream through
the management network and presented in Cisco Routed PON Manager.

Hardware support for Cisco Routed PON in Metro solution
The table lists the supported hardware for Cisco Routed PON in Metro solution.

Table 1: Hardware support Matrix for Cisco Routed PON in Metro solution

Product IdMetro release

N540-24Z8Q2C-SYSRelease 1.0

N540-ACC-SYS

N540-24Q8L2DD-SYS

N540X-16Z4G8Q2C-D/A

N540-28Z4C-SYS-D/A

NCS-55A2-MOD-S

NCS-57C1-48Q6D

NCS-55A1-24Q6H-SS

Routed PON service assurance using Provider Connectivity Assurance
Provider Connectivity Assurance (PCA) provides assurance for Routed PON by combining data from the
PON network, network fabric, and BNG subscriber data to create the end-to-end assurance view for PON
attached endpoints.

Sample Metro Deployment
31

Sample Metro Deployment
Hardware support for Cisco Routed PON in Metro solution

Figure 12: Routed PON PCA integration

These are the PCA use cases specific to RPON service assurance:

• Integration with Cisco PON Manager to collect KPI data for the PON network

• Monitor network infrastructure data and correlate that with the PON network data. One use case is to
monitor latency between PON endpoints and cnBNG user plane endpoints, correlating specific subscribers
connected to a specific BNG user plane

• Integration with Cisco cnBNG user planes and control plane to provide additional per-subscriber assurance
for the solution by combining BNG health and subscriber monitoring into the PCA solution

The figure depicts the Routed PON assurance dashboard.

Sample Metro Deployment
32

Sample Metro Deployment
Routed PON service assurance using Provider Connectivity Assurance

Figure 13: Routed PON assurance dashboard

Sample Metro Deployment
33

Sample Metro Deployment
Routed PON service assurance using Provider Connectivity Assurance

Sample Metro Deployment
34

Sample Metro Deployment
Routed PON service assurance using Provider Connectivity Assurance

	Sample Metro Deployment
	Metro CX Edge Fabirc Manager installation
	Sample Metro Edge Fabric deployment network
	CX Fabric Manager NSO solution components
	Install CX Fabric Manager package
	Manage CX Fabric Manager template
	Base templates
	Leaf templates
	Example of Fabric and role definition

	Onboard Fabric
	How zero touch provisioning works
	Verify Fabric onboarding

	Create Fabric connections

	Metro CX Edge Fabric software life cycle management
	Perform prerequisite configurations for software upgrade
	Crosswork Workflow Manager
	Device OS compliance workflow

	Metro CX Edge Fabric configuration template compliance
	Perform configuration template compliance check and remediation

	Edge Protect DDoS deployment
	Edge Protect components
	Edge Protect operation
	Example of Edge Protect deployed ACL

	Cisco Routed PON deployment
	Components of Cisco Routed PON
	Hardware support for Cisco Routed PON in Metro solution
	Routed PON service assurance using Provider Connectivity Assurance

