
Create an AMI

This module provides instructions to create an Amazon Machine Image (AMI).

• Create an AMI, on page 1

Create an AMI
The EC2 hosts on which the XRd runs must be configured to meet XRd's requirements.

To ensure high XRd Router performance and maintain consistency across the cluster, you must generate an
Amazon Machine Image (AMI) that meets all XRd's requirements. This AMI can then be employed as a
template for launching all worker nodes within the cluster.

An AMI can be shared among all the worker nodes in a single region, so you can save time by following these
instructions only once. You can then copy the AMIs to different regions.

Find the Base AMI

The base AMI that is used to create an AMI for XRd worker nodes must be Amazon EKS optimized Amazon
Linux (based on Amazon Linux 2). Amazon provides separate images for every supported version of
Kubernetes.

You can find the latest AMI for each Kubernetes version in each region by running the following command.
aws ssm get-parameter \
--name /aws/service/eks/optimized-ami/<k8s-version>/amazon-linux-2/recommended/image_id \
--region <region> --query "Parameter.Value" --output text

The Kubernetes version specified here must be the same as the version that was used to create the cluster.Note

Make a note of the AMI ID, <al2-ami-id>.

For XRd Control Plane, you can use the base AMI with sysctl settings applied to the user data file when
creating the worker node. For details, see the Create a Worker Node section.

Create an EC2 Instance

This EC2 instance must have access to the internet for installing packages and pulling in resources. If not,
you must provide all these resources locally. Run the following command to create an EC2 instance.

Create an AMI
1

b-xrd-deploy-aws_chapter7.pdf#nameddest=unique_26

aws ec2 run-instances --image-id <al2-ami-id> --count 1 \
--instance-type m5.24xlarge \
--key-name <key-pair-name> \
--security-group-ids <security-group-ids> \
--subnet-id <subnet-id>

You must specify the security group and subnet IDs so that the EC2 node has access to the internet. These
are not necessarily the security group and subnet IDs created earlier. <key-pair-name> is the name of the
key-pair which you must have created earlier.

Make a note of the instance ID returned from the command, <ami-instance-id>.

When the EC2 instance is created, connect to the EC2 instance over SSH using the specified SSH key and
the username, ec2-user.

Copy XRd Resources

A set of resources on the XRd is available on the EKS public GitHub at xrd-packer.

HashiCorp Packer is a tool used for building virtual machine images, and the xrd-packer GitHub repository
provides resources and Packer templates to create an AMI suitable for XRd vRouter. The manual steps
described in this document use the resources from the repository as the source for some of the host OS settings,
but the Packer tool is not used. The README file in the xrd-packerGitHub repository provides a description
on how to build an AMI using Packer and the provided templates, as an alternative to the manual steps provided
in this document.

Note

Copy all of the resources under the files folder to the EC2 instance, mirroring the structure in the repository.
For example,

• Copy files/etc/modprobe.d/igb_uio.conf to /etc/modprobe.d/igb_uio.conf on the EC2 instance

• Copy files/etc/tuned/xrd-eks-node-variables.conf to /etc/tuned/xrd-eks-node-variables.conf
on the EC2 instance

If you have access to the internet, you can accomplish this task by running the following commands:
sudo yum install -y git
git clone https://github.com/ios-xr/xrd-packer
sudo cp -r xrd-packer/files/* /

Clean up the unnecessary data by running the following commands:
sudo yum remove -y git
rm -rf xrd-packer

Tuning
TuneD is a daemon for monitoring and tuning of system devices. The files copied in the previous step, contain
a TuneD profile tailored for XRd hosts. This profile sets up some kernel parameters and tuning options to
help XRd achieve high performance.

Create an AMI
2

Create an AMI
Tuning

https://github.com/ios-xr/xrd-packer

Previously, TuneD was installed from the Amazon Linux 2 repositories. However, the version provided in
these repositories is now outdated, as it has reached end-of-life status. Hence, it is necessary to install TuneD
from the source.

Note

Perform the following steps to install TuneD from the source.

Install the prerequisite packages using the following commands:
sudo yum install -y \

dbus \
dbus-python \
ethtool \
gawk \
polkit \
python-configobj \
python-decorator \
python-gobject \
python-linux-procfs \
python-perf \
python-pyudev \
python-schedutils \
tuna \
util-linux \
virt-what

Download the TuneD v2.20.0 source tarball using the following commands:
mkdir tuned
curl -L https://github.com/redhat-performance/tuned/archive/refs/tags/v2.20.0.tar.gz | tar
-xz -C tuned --strip-components 1

Install TuneD using the following command:
sudo make -C tuned PYTHON=/usr/bin/python2 install

Take note that TuneD attempts to install a desktop file; skipping this causes the above make command to fail
with the following output:
desktop file
install -dD /usr/share/applications
desktop-file-install --dir=/usr/share/applications tuned-gui.desktop
make: desktop-file-install: Command not found
make: *** [install] Error 127

This is expected and can be ignored.

You can safely remove the TuneD sources afterward using the following command:
rm -r tuned

After installing TuneD, specific files copied from the XRd resources necessitate adjustments for individual
deployments. Update the file: /etc/tuned/xrd-eks-node-variables.conf with the appropriate isolated cores and
required number of hugepages.

This documentation assumes deployment on an m5.24xlarge or m5n.24xlarge instance, and in this scenario,
the file should appear as follows:
isolated_cores=16-23
hugepages_gb=12

Create an AMI
3

Create an AMI
Tuning

When running on an m5.24xlarge instance, the number of hugepages is doubled from the Cisco IOS XRd
requirement. This is because the configured hugepages are distributed across all non-uniform memory access
(NUMA) nodes in the system, whereas Cisco IOS XRd necessitates all its hugepages to be on the single
NUMA node it operates on.

Note

Lastly, initiate the TuneD service, and select the Cisco IOS XRd profile by executing the following command:
sudo systemctl start tuned
sleep 10
sudo tuned-adm profile xrd-eks-node

Running the profile command immediately after starting the service will prevent it from taking effect. Allow
for a reasonable delay before running the profile command.

Note

Kernel Parameters

Setting kernel parameters (sysctl settings) on the host is either required or recommended when running Cisco
IOS XRd containers. These parameters address the needs of both the XRd Control Plane and XRd vRouter
platforms.

Set the kernel parameters by running the following commands:
sudo -i
echo "fs.inotify.max_user_instances=64000" >> /etc/sysctl.conf
echo "fs.inotify.max_user_watches=64000" >> /etc/sysctl.conf
echo "kernel.randomize_va_space=2" >> /etc/sysctl.conf
echo "net.core.rmem_max=67108864" >> /etc/sysctl.conf
echo "net.core.wmem_max=67108864" >> /etc/sysctl.conf
echo "net.core.rmem_default=67108864" >> /etc/sysctl.conf
echo "net.core.wmem_default=67108864" >> /etc/sysctl.conf
echo "net.core.netdev_max_backlog=300000" >> /etc/sysctl.conf
echo "net.core.optmem_max=67108864" >> /etc/sysctl.conf
echo "net.ipv4.udp_mem=1124736 10000000 67108864" >> /etc/sysctl.conf
sysctl -p --system
exit

fs.inotify.max_user_watches=64000 - Indicates the maximum number of files you are allowed to watch
for changes. You will get notified when there is a file change.

Note

Configuring Core Dumping

Core files must be collected for detailed debugging. To prevent the node's disk from being exhausted, you
must configure the system carefully. The recommended solution is to use the systemd-coredump tool.

Configure the kernel to use the systemd-coredump tool when a process crashes.
sudo -i
echo "kernel.core_pattern=|/lib/systemd/systemd-coredump %P %u %g %s %t 9223372036854775808
%h" >> /etc/sysctl.conf
sysctl -p --system
exit

Create an AMI
4

Create an AMI
Tuning

Copy the following contents to /etc/systemd/coredump.conf.
[Coredump]
Storage=external # (this is the default)
Compress=yes # (this is the default)
MaxUse=32G # (twice the sum of RAM given to XRd)
KeepFree=16G # (the sum of RAM given to XRd)
ProcessSizeMax=32G # (required if < v251 of systemd)
ExternalSizeMax=32G # (required if < v251 of systemd)

These values are applicable for a single XRd vRouter installation, described in Install XRd vRouter.

For the XRd Control Plane installation, described in Install XRd Control Plane, the copied values must be
MaxUse=12G and KeepFree=6G.

In this configuration, systemd-coredump is configured to write the core files to /var/lib/systemd/coredump
on the host.

Building and Installing the Interface Driver
Youmust not use the interface driver bundled with Amazon Linux 2, as it does not support an ENAv2 interface
feature.

Perform the following steps to build and install the interface driver that has Write Combining support.

1. Install the required packages
sudo yum install -y kernel-devel-$(uname -r)

2. Pull the DPDK source code, extract it, and build igb_uio.
curl -O
https://git.dpdk.org/dpdk-kmods/snapshot/dpdk-kmods-e721c733cd24206399bebb8f0751b0387c4c1595.tar.gz
tar zxvf dpdk-kmods-e721c733cd24206399bebb8f0751b0387c4c1595.tar.gz
cd dpdk-kmods-e721c733cd24206399bebb8f0751b0387c4c1595
make -C linux/igb_uio

3. When the the driver is built, copy the interface driver kernel module into the appropriate location and
register it.
sudo cp linux/igb_uio/igb_uio.ko /lib/modules/"$(uname -r)"/kernel/drivers/uio
sudo depmod -a
cd ..

4. Clean up the packages.
rm -f dpdk-kmods-e721c733cd24206399bebb8f0751b0387c4c1595.tar.gz
rm -rf dpdk-kmods-e721c733cd24206399bebb8f0751b0387c4c1595
sudo yum remove -y kernel-devel-$(uname -r)
sudo yum autoremove -y

5. Load the kernel module with the following:
sudo modprobe uio
sudo modprobe igb_uio wc_activate=1

6. Set the kernel module to load on boot, which is handled by copying the files earlier.

Reboot and Check
Reboot the EC2 instance to allow all the settings to take effect.

Create an AMI
5

Create an AMI
Building and Installing the Interface Driver

b-xrd-deploy-aws_chapter7.pdf#nameddest=unique_27
b-xrd-deploy-aws_chapter7.pdf#nameddest=unique_28

When the EC2 instance is rebooted, copy the host-check script from the xrd-tools repository at xrd-tools.

The host-check tool verifies if the host environment is configured correctly for running XRd containers. For
more information on the usage of host-check tool, see the README file.

Run the host-check script.

The following is a sample output from the XRd vRouter. You can run the script similarly on the XRd Control
Plane.
[ec2-user@ip-172-31-3-90 ~]$./host-check -p xrd-vrouter
==============================
Platform checks - xrd-vrouter
==============================
PASS -- CPU architecture (x86_64)
PASS -- CPU cores (96)
PASS -- Kernel version (5.4)
PASS -- Base kernel modules

Installed module(s): dummy, nf_tables
PASS -- Cgroups (v1)
PASS -- Inotify max user instances

64000 - this is expected to be sufficient for 16 XRd instance(s).
PASS -- Inotify max user watches

64000 - this is expected to be sufficient for 16 XRd instance(s).
PASS -- Socket kernel parameters (valid settings)
PASS -- UDP kernel parameters (valid settings)
INFO -- Core pattern (core files managed by the host)
PASS -- ASLR (full randomization)
INFO -- Linux Security Modules (No LSMs are enabled)
PASS -- CPU extensions (sse4_1, sse4_2, ssse3)
PASS -- RAM

Available RAM is 365.2 GiB.
This is estimated to be sufficient for 73 XRd instance(s), although memory
usage depends on the running configuration.
Note that any swap that may be available is not included.

PASS -- Hugepages (12 x 1GiB)
PASS -- Interface kernel driver

Loaded PCI drivers: vfio-pci, igb_uio
INFO -- IOMMU

vfio-pci is set up in no-IOMMU mode, but IOMMU is recommended for security.
PASS -- Shared memory pages max size (17179869184.0 GiB)

==
Host environment set up correctly for xrd-vrouter
==

Delete the Cloud Folder
For the AMI to run the User Data passed into an EC2 instance, you must delete the /var/lib/cloud folder.
sudo rm -rf /var/lib/cloud

Take a Snapshot
Stop the EC2 instance, by running the following command:
aws ec2 stop-instances --instance-ids <ami-instance-id>

Create an AMI
6

Create an AMI
Delete the Cloud Folder

https://github.com/ios-xr/xrd-tools

This command returns immediately, but it may take a minute for the container to be fully stopped.Note

To check if the EC2 instance is fully stopped, run the following command and ensure that the instance state
is "stopped":
ec2 describe-instances --instance-ids <ami-instance-id> --query
'Reservations[0].Instances[0].State.Name

Once the EC2 instance has stopped, take a snapshot using the following command:
aws ec2 create-image --instance-id <ami-instance-id> --name xrd-vrouter-ami

Make a note of the AMI ID, <xrd-ami-id>.

Terminate the EC2 instance.
aws ec2 terminate-instances --instance-id <ami-instance-id>

Create an AMI
7

Create an AMI
Take a Snapshot

Create an AMI
8

Create an AMI
Take a Snapshot

	Create an AMI
	Create an AMI
	Tuning
	Building and Installing the Interface Driver
	Reboot and Check
	Delete the Cloud Folder
	Take a Snapshot

