
Stream TCP Inspector

• Stream TCP Inspector Overview, on page 1
• Best Practices for Configuring the Stream TCP Inspector, on page 2
• Best Practices for TCP Stream Reassembly, on page 2
• Stream TCP Inspector Parameters, on page 3
• Stream TCP Inspector Rules, on page 8
• Stream TCP Inspector Intrusion Rule Options, on page 9

Stream TCP Inspector Overview
Inspector (stream)Type

InspectUsage

MultitonInstance type

NoneOther Inspectors Required

trueEnabled

Transmission Control Protocol (TCP) is a connection-oriented, stateful transport layer protocol. TCP can
reliably transmit an ordered stream of bytes between a client and a server over an IP network. TCP permits
only one connection with the same connection parameter values to exist at a time. A host operating system
manages the states of a TCP connection.

The stream_tcp inspector provides TCP flow tracking, stream normalization, and stream reassembly. Each
stream TCP inspector can handle the TCP traffic for one or more hosts in your network. In addition, if you
have enough information about the hosts that are sending the TCP traffic to your network, you can configure
a stream_tcp inspector for those hosts.

In a network analysis policy (NAP), Snort applies each configured stream_tcp inspector to the TCP services
defined in the binder inspector configuration.

You can configure multiple stream TCP inspectors to handle various operating systems and TCP traffic.

The stream_tcp inspector configuration includes:

• Operating system on the TCP host

• Operating system options: how overlaps are handled during reassembly

Stream TCP Inspector
1

• Traffic handling options: the maximum number of bytes or segments in a session or direction

• TCP stream reassembly options: the maximum reassembled PDU size

In inline IPS mode, the stream_tcp inspector normalizes the payload stream so that overlaps always resolve
to the first copy seen. Each stream TCP inspector handles repeated SYNs, RST validation, and timestamp
checks.

Note

Best Practices for Configuring the Stream TCP Inspector
Consider the following best practices when configuring a stream_tcp inspector:

• Do not deploy the sensing interfaces on a device so that Snort can only inspect one side of a flow. You
can enable the reassemble_async parameter in the stream_tcp inspector to process asymmetric traffic.
However, the streamTCP inspector cannot process asymmetric traffic in all cases. For example, a response
to an HTTP HEAD request can cause the HTTP inspector to get out of sync. In IDS mode, the lack of
TCP acknowledgements makes evasions much easier.

For IPS mode, we recommend that you deploy a device only if Snort can inspect both sides of a flow.

• Create a stream_tcp inspector for each TCP host operating system that you expect to send or receive
TCP traffic. You can have multiple versions of the stream_tcp inspector in the same network analysis
policy. The TCP policies defined in each stream_tcp inspector are applied to the TCP hosts specified
in the binder inspector.

• To enable IPS mode, set the normalizer.tcp.ips parameter in the normalizer inspector to true.

• In the advanced settings in your network analysis policy (NAP), confirm that the networks which you
want to identify in a custom, target-based stream_tcp inspector match or are a subset of the networks,
zones, and VLANs handled by its parent NAP.

• The system builds a separate network map for each leaf domain. In a multidomain deployment, using
literal IP addresses to constrain this configuration can have unexpected results. Using override-enabled
objects allows descendant domain administrators to tailor Global configurations to their local environments.

• To generate events and, in an inline deployment, drop offending packets, enable the stream_tcp inspector
rules (GID 129).

Best Practices for TCP Stream Reassembly
The stream_tcp inspector collects and reassembles all packets that are part of a TCP session’s server-to-client
communication stream, client-to-server communication stream, or both. TCP stream reassembly allows Snort
to inspect the stream as a single, reassembled entity, a protocol data unit (PDU), rather than inspecting only
the individual packets that are part of a given stream. If the PDU is large, the rules engine splits it into several
parts.

Stream reassembly allows Snort to identify stream-based attacks, which it may not detect when inspecting
individual packets. You can specify which communication streams to reassemble based on your network

Stream TCP Inspector
2

Stream TCP Inspector
Best Practices for Configuring the Stream TCP Inspector

needs. For example, when monitoring traffic on your web servers, you may only want to inspect client traffic
because you are less likely to receive malicious traffic from your own web server.

For each stream_tcp inspector, you can specify a list of TCP ports in the binder configuration. The TCP
stream inspector automatically and transparently includes the configured ports to identify and reassemble
traffic. If adaptive profiles updates are enabled, you can list services that identify traffic to reassemble, either
as an alternative to ports or in combination with ports.

Specify TCP ports in the binder configuration for the following Snort inspectors:

• dnp3

• ftp_server

• gtp_inspect (ports provided by default)

• http_inspect

• imap

• iec104 (ports provided by default)

• mms (ports provided by default)

• modbus (ports provided by default)

• pop

• sip

• smtp

• ssh

• ssl

• telnet

When you reassemble multiple traffic types (client, server, both), Snort resource demands may increase.Note

Stream TCP Inspector Parameters
Stream TCP reassembly configuration

The binder inspector defines the TCP stream reassembly configuration for the network analysis policy (NAP).
You specify the host IP addresses to which you want to apply the TCP stream reassembly policy. The stream
TCP inspector is automatically associated with the ports configured in the binder for the NAP. For more
information, see the Binder Inspector Overview.

Stream TCP Inspector
3

Stream TCP Inspector
Stream TCP Inspector Parameters

snort-3-inspector-reference_chapter3.pdf#nameddest=unique_4

The system builds a separate network map for each leaf domain. In a multidomain deployment, using literal
IP addresses to constrain this configuration can have unexpected results. Using override-enabled objects
allows descendant domain administrators to tailor Global configurations to their local environments.

Note

The default setting in the default policy specifies all IP addresses on your monitored network segment that
are not covered by another target-based policy. Therefore, you cannot and do not need to specify an IP address
or CIDR block/prefix length for the default policy, and you cannot leave this setting blank in another policy
or use address notation to represent any (for example, 0.0.0.0/0 or ::/0).

policy

Specifies the operating system of the target host or hosts. The operating system determines the appropriate
TCP reassembly policy and operating system characteristics. You can define only one policy parameter for
each stream TCP inspector.

If you set the policy parameter to first, Snort may provide some protection, but miss attacks. You should
edit the policy parameter of the TCP stream inspector to specify the appropriate operating system.

Note

Type: enum

Valid values: Set a type of operating system for the policy parameter.

Table 1: TCP Operating System Policies

Operating SystemsPolicy

unknown OSfirst

Cisco IOSlast

AIX

FreeBSD

OpenBSD

bsd

HP-UX 10.2 and earlierhpux_10

HP-UX 11.0 and laterhpux_11

SGI Irixirix

Linux 2.4 kernel

Linux 2.6 kernel

linux

Mac OS 10 (Mac OS X)macos

Linux 2.2 and earlier kernelold_linux

Stream TCP Inspector
4

Stream TCP Inspector
Stream TCP Inspector Parameters

Operating SystemsPolicy

Solaris OS

SunOS

solaris

Windows Vistavista

Windows 98

Windows NT

Windows 2000

Windows XP

windows

Windows 2003win_2003

Default value: bsd

max_window

Specifies the maximum TCP window size permitted by a receiving host. You can specify an integer less than
65535, or specify 0 to disable inspection of the TCP window size.

The upper limit of max_window is the maximum window size permitted by RFC 1323. You can set the upper
limit to prevent an attacker from evading detection, however, a significantly large maximum TCP window
size may create a self-imposed denial of service.

Caution

Type: integer

Valid range: 0 to 1,073,725,440

Default value: 0

overlap_limit

Specifies the maximum number of overlapping segments allowed in each TCP session. Specify 0 to permit
an unlimited number of overlapping segments. If you set a number between 0 and 255, segment reassembly
stops for the session.

Enable rule 129:7 to generate events and, in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

max_pdu

Specifies the maximum reassembled protocol data unit (PDU) size.

Type: integer

Valid range: 1460 to 32768

Stream TCP Inspector
5

Stream TCP Inspector
Stream TCP Inspector Parameters

Default value: 16384

reassemble_async

Ensures that data is queued for reassembly before traffic is seen in both directions. When the monitored
network is an asynchronous network, you must enable the reassemble_async parameter. An asynchronous
network only permits traffic in a single direction and one flow at a time. If the reassemble_async parameter
is enabled, Snort does not reassemble TCP streams to increase performance.

The stream TCP inspector cannot correctly process asymmetric traffic in all cases. For example, a response
to an HTTP HEAD request can cause the HTTP inspector to get out of sync. In IDS mode, the lack of TCP
acknowledgements makes evasions much easier. For IPS mode, we recommend that you deploy a device only
if the rules engine can inspect both sides of a flow.

Note

The reassemble_async parameter is ignored for the Secure Firewall Threat Defense routed and transparent
interfaces.

Type: boolean

Valid values: true, false

Default value: true

require_3whs

Specifies the number of seconds from start up after which the stream TCP inspector stops tracking midstream
sessions. Specify -1 to track all midstream TCP sessions, no matter when they occur.

Snort does not synchronize most protocol streams. Snort always picks up on SYN if it needs any of the
handshake options (timestamps, window scale, or MSS). Typically, IPS efficacy is not improved by allowing
midstream pickups.

Type: integer

Valid range: -1 to 2,147,483,647 (max31)

Default value: -1

queue_limit.max_bytes

Specifies the maximum number of bytes to queue for a session on one side of a TCP connection. Specify 0

to allow an unlimited number of bytes.

We recommend that you contact Cisco TAC before changing the default setting of the queue_limit.max_bytes
parameter.

Caution

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 4,194,304

Stream TCP Inspector
6

Stream TCP Inspector
Stream TCP Inspector Parameters

queue_limit.max_segments

Specifies the maximum number of data segments to queue for a session on one side of a TCP connection.
Specify 0 to allow an unlimited number of data segments.

We recommend that you contact Cisco TAC before changing the default setting of the
queue_limit.max_segments parameter.

Caution

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 3072

small_segments.count

Specifies a number that is above the expected amount of consecutive small TCP segments. Specify 0 to ignore
the count of consecutive small TCP segments.

You must set the small_segments.count and small_segments.maximum_size parameters with the same type
of value. Specify 0 for both parameters or set each parameter to a non-zero value.

Snort considers 2000 consecutive segments, even if each segment is 1 byte in length, above the normal amount
of consecutive TCP segments.

Note

Snort ignores the small_segments.count parameter for threat defense routed and transparent interfaces.

You can enable rule 129:12 to generate events and, in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 2048

Default value: 0

small_segments.maximum_size

Specifies the number of bytes which identify a TCP segment as larger than a small TCP segment. A small
TCP segment size is in the range of 1 to 2048 bytes. Specify 0 to ignore the maximum size of a small segment.

Snort ignores the small_segments.maximum_size parameter for threat defense routed and transparent interfaces.

You must set the small_segments.maximum_size and small_segments.count parameters with the same type
of value. Specify 0 for both parameters or set each parameter to a non-zero value.

A 2048 byte TCP segment is larger than a normal 1500 byte Ethernet frame.Note

You can enable rule 129:12 to generate events and, in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 2048

Stream TCP Inspector
7

Stream TCP Inspector
Stream TCP Inspector Parameters

Default value: 0

session_timeout

Specifies the number of seconds that Snort keeps an inactive TCP stream in its state table. If the stream is not
reassembled in the specified time, Snort deletes it from the state table. If the session is still alive and more
packets appear, Snort handles the stream as a midstream flow.

We recommend that you set the session_timeout parameter to greater than or equal to the host TCP session
timeout.

Type: integer

Valid range: 0 to 2,147,483,647 (max31)

Default value: 180

Stream TCP Inspector Rules
Enable the stream_tcp inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 2: Stream TCP Inspector Rules

Rule MessageGID:SID

SYN on established session129:1

data on SYN packet129:2

data sent on stream not accepting data129:3

TCP timestamp is outside of PAWS window129:4

bad segment, adjusted size <= 0 (deprecated)129:5

window size (after scaling) larger than policy allows129:6

limit on number of overlapping TCP packets reached129:7

data sent on stream after TCP reset sent129:8

TCP client possibly hijacked, different ethernet address129:9

TCP server possibly hijacked, different ethernet address129:10

TCP data with no TCP flags set129:11

consecutive TCP small segments exceeding threshold129:12

4-way handshake detected129:13

TCP timestamp is missing129:14

reset outside window129:15

FIN number is greater than prior FIN129:16

Stream TCP Inspector
8

Stream TCP Inspector
Stream TCP Inspector Rules

Rule MessageGID:SID

ACK number is greater than prior FIN129:17

data sent on stream after TCP reset received129:18

TCP window closed before receiving data129:19

TCP session without 3-way handshake129:20

Stream TCP Inspector Intrusion Rule Options
stream_reassemble

Specify whether to enable TCP stream reassembly on matching traffic. The stream_reassemble rule option
includes four parameters: stream_reassemble.action, stream_reassemble.direction,
stream_reassemble.noalert, and stream_reassemble.fastpath.

Syntax: stream_reassemble: <enable|disable>, <server|client|both>, noalert, fastpath;

Examples: stream_reassemble: disable,client,noalert;

stream_reassemble.action

Stop or start stream reassembly.

Type: enum

Syntax: stream_reassemble: <action>;

Valid values: disable or enable

Examples: stream_reassemble: enable;

stream_reassemble.direction

Action applies to the given directions.

Type: enum

Syntax: stream_reassemble: <direction>

Valid values: client, server, both

Examples: stream_reassemble: both;

stream_reassemble.noalert

Don't alert when rule matches. The stream_reassemble.noalert parameter is optional.

Syntax: stream_reassemble: noalert;

Examples: stream_reassemble: noalert;

stream_reassemble.fastpath

Optionally trust the remainder of the session. The stream_reassemble.fastpath parameter is optional.

Stream TCP Inspector
9

Stream TCP Inspector
Stream TCP Inspector Intrusion Rule Options

Syntax: stream_reassemble: fastpath;

Examples: stream_reassemble: fastpath;

stream_size

Detection option for stream size checking. Allows a rule to match traffic according to the number of bytes
observed, as determined by the TCP sequence numbers. The stream_size rule option includes two parameters:
stream_size.direction and stream_size.range.

Syntax: stream_size: <server|client|both|either>, <operator><number>;

Examples: stream_size: client, <6;

stream_size.direction

Comparison applies to the direction of the flow.

Type: enum

Syntax: stream_size: <direction>;

Valid values:

• either

• to_server

• to_client

• both

Examples: stream_size: to_client;

stream_size.range

Check if the stream size is within the specified range. Specify a range operator and one or more positive
integers.

Type: interval

Syntax: stream_size: <range_operator><positive integer>; or stream_size: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more postive integers, and one range_operator as specified in Table 3: Range
Formats.

Examples: stream_size: >6;

Table 3: Range Formats

DescriptionOperatorRange Format

operator i

Less than<

Greater than>

Equal=

Stream TCP Inspector
10

Stream TCP Inspector
Stream TCP Inspector Intrusion Rule Options

DescriptionOperatorRange Format

Not equal≠

Less than or equal≤

Greater than or equal≥

j operator k

Greater than j and less than k<>

Greater than or equal to j and less than or equal to k<=>

Stream TCP Inspector
11

Stream TCP Inspector
Stream TCP Inspector Intrusion Rule Options

Stream TCP Inspector
12

Stream TCP Inspector
Stream TCP Inspector Intrusion Rule Options

	Stream TCP Inspector
	Stream TCP Inspector Overview
	Best Practices for Configuring the Stream TCP Inspector
	Best Practices for TCP Stream Reassembly
	Stream TCP Inspector Parameters
	Stream TCP Inspector Rules
	Stream TCP Inspector Intrusion Rule Options

