
Managing APIC Using the REST API

• Adding Management Access, on page 1
• Managing Configuration Files, on page 11
• Snapshots and Rollbacks, on page 17
• Using Configuration Zones, on page 19

Adding Management Access

In-Band and Out-of-Band Management Access
The mgmt tenant provides a convenient means to configure access to fabric management functions. While
fabric management functions are accessible through the APIC, they can also be accessed directly through
in-band and out-of-band network policies.

Static and Dynamic Management Access

APIC supports both static and dynamic management access. For simple deployments where users manage
the IP addresses of a few leaf and spine switches, configuring static in-band and out-of-band management
connectivity is simpler. For more complex deployments, where you might have a large number of leaf and
spine switches that require managing many IP addresses, static management access is not recommended. For
detailed information about static management access, see Cisco APIC and Static Management Access.

About Static Management Access
Configuring static in-band and out-of-band management connectivity is simpler than configuring dynamic
in-band and out-of-band management connectivity. When configuring in-band static management, you must
specify the IP address for each node and make sure to assign unique IP addresses. For simple deployments
where users manage the IP addresses of a few leaf and spine switches, it is easy to configure a static management
access. For more complex deployments, where you might have a large number of leaf and spine switches that
require managing many IP addresses, static management access is not recommended. We recommend that
you configure a dynamicmanagement access that automatically avoids the possible duplication of IP addresses.

Managing APIC Using the REST API
1

Configuring In-Band Management Access Using the REST API
IPv4 and IPv6 addresses are supported for in-band management access. IPv6 configurations are supported
using static configurations (for both in-band and out-of-band). IPv4 and IPv6 dual in-band and out-of-band
configurations are supported only through static configuration. For more information, see the KB
article,Configuring Static Management Access in Cisco APIC.

SUMMARY STEPS

1. Create a VLAN namespace.
2. Create a physical domain.
3. Create selectors for the in-band management.
4. Configure an in-band bridge domain and endpoint group (EPG).
5. Create an address pool.
6. Create management groups.

DETAILED STEPS

Step 1 Create a VLAN namespace.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<infraInfra>
<!-- Static VLAN range -->
<fvnsVlanInstP name="inband" allocMode="static">
<fvnsEncapBlk name="encap" from="vlan-10" to="vlan-11"/>

</fvnsVlanInstP>
</infraInfra>

</polUni>

Step 2 Create a physical domain.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<physDomP name="inband">
<infraRsVlanNs tDn="uni/infra/vlanns-inband-static"/>

</physDomP>
</polUni>

Step 3 Create selectors for the in-band management.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>

Managing APIC Using the REST API
2

Managing APIC Using the REST API
Configuring In-Band Management Access Using the REST API

<!-- api/policymgr/mo/.xml -->
<polUni>
<infraInfra>
<infraNodeP name="vmmNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="101"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-vmmPorts"/>

</infraNodeP>

<!-- Assumption is that VMM host is reachable via eth1/40. -->
<infraAccPortP name="vmmPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="40" toPort="40"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraNodeP name="apicConnectedNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="102"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-apicConnectedPorts"/>

</infraNodeP>

<!-- Assumption is that APIC is connected to eth1/1. -->
<infraAccPortP name="apicConnectedPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="1" toPort="3"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="inband">
<infraRsAttEntP tDn="uni/infra/attentp-inband"/>

</infraAccPortGrp>
</infraFuncP>

<infraAttEntityP name="inband">
<infraRsDomP tDn="uni/phys-inband"/>

</infraAttEntityP>
</infraInfra>

</polUni>

Step 4 Configure an in-band bridge domain and endpoint group (EPG).

Example:
POST https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="mgmt">
<!-- Configure the in-band management gateway address on the

in-band BD. -->
<fvBD name="inb">
<fvSubnet ip="10.13.1.254/24"/>

</fvBD>

Managing APIC Using the REST API
3

Managing APIC Using the REST API
Configuring In-Band Management Access Using the REST API

<mgmtMgmtP name="default">
<!-- Configure the encap on which APICs will communicate on the

in-band network. -->
<mgmtInB name="default" encap="vlan-10">
<fvRsProv tnVzBrCPName="default"/>

</mgmtInB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Step 5 Create an address pool.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="mgmt">
<!-- Adresses for APIC in-band management network -->
<fvnsAddrInst name="apicInb" addr="10.13.1.254/24">
<fvnsUcastAddrBlk from="10.13.1.1" to="10.13.1.10"/>

</fvnsAddrInst>

<!-- Adresses for switch in-band management network -->
<fvnsAddrInst name="switchInb" addr="10.13.1.254/24">
<fvnsUcastAddrBlk from="10.13.1.101" to="10.13.1.120"/>

</fvnsAddrInst>
</fvTenant>

</polUni>

Dynamic address pools for IPv6 is not supported.Note

Step 6 Create management groups.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<infraInfra>
<!-- Management node group for APICs -->
<mgmtNodeGrp name="apic">
<infraNodeBlk name="all" from_="1" to_="3"/>
<mgmtRsGrp tDn="uni/infra/funcprof/grp-apic"/>

</mgmtNodeGrp>

<!-- Management node group for switches-->
<mgmtNodeGrp name="switch">
<infraNodeBlk name="all" from_="101" to_="104"/>
<mgmtRsGrp tDn="uni/infra/funcprof/grp-switch"/>

</mgmtNodeGrp>

<!-- Functional profile -->
<infraFuncP>
<!-- Management group for APICs -->
<mgmtGrp name="apic">
<!-- In-band management zone -->
<mgmtInBZone name="default">

Managing APIC Using the REST API
4

Managing APIC Using the REST API
Configuring In-Band Management Access Using the REST API

<mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
<mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-apicInb"/>

</mgmtInBZone>
</mgmtGrp>

<!-- Management group for switches -->
<mgmtGrp name="switch">
<!-- In-band management zone -->
<mgmtInBZone name="default">
<mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
<mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-switchInb"/>

</mgmtInBZone>
</mgmtGrp>

</infraFuncP>
</infraInfra>

</polUni>

Dynamic address pools for IPv6 is not supported.Note

Configuring Static In-Band Management Access Using the REST API

Step 1 Create a VLAN namespace.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<infraInfra>
<!-- Static VLAN range -->
<fvnsVlanInstP name="inband" allocMode="static">
<fvnsEncapBlk name="encap" from="vlan-10" to="vlan-11"/>

</fvnsVlanInstP>
</infraInfra>

</polUni>

Step 2 Create a physical domain.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<physDomP name="inband">
<infraRsVlanNs tDn="uni/infra/vlanns-inband-static"/>

</physDomP>
</polUni>

Step 3 Create selectors for the in-band management.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<infraInfra>
<infraNodeP name="vmmNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="101"/>

Managing APIC Using the REST API
5

Managing APIC Using the REST API
Configuring Static In-Band Management Access Using the REST API

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-vmmPorts"/>

</infraNodeP>

<!-- Assumption is that VMM host is reachable via eth1/40. -->
<infraAccPortP name="vmmPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="40" toPort="40"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraNodeP name="apicConnectedNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="102"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-apicConnectedPorts"/>

</infraNodeP>

<!-- Assumption is that APIC is connected to eth1/1. -->
<infraAccPortP name="apicConnectedPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="1" toPort="3"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="inband">
<infraRsAttEntP tDn="uni/infra/attentp-inband"/>

</infraAccPortGrp>
</infraFuncP>

<infraAttEntityP name="inband">
<infraRsDomP tDn="uni/phys-inband"/>

</infraAttEntityP>
</infraInfra>

</polUni>

Step 4 Configure an in-band bridge domain and endpoint group (EPG).

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="mgmt">
<!-- Configure the in-band management gateway address on the

in-band BD. -->
<fvBD name="inb">
<fvSubnet ip="<subnet_ip_address>"/>

</fvBD>

<mgmtMgmtP name="default">
<!-- Configure the encap on which APICs will communicate on the

in-band network. -->
<mgmtInB name="default" encap="vlan-10">
<fvRsProv tnVzBrCPName="default"/>

</mgmtInB>
</mgmtMgmtP>

Managing APIC Using the REST API
6

Managing APIC Using the REST API
Configuring Static In-Band Management Access Using the REST API

</fvTenant>
</polUni>

Step 5 Create static in-band management IP addresses and assign them to node IDs.

Example:
<polUni>
<fvTenant name="mgmt">
<mgmtMgmtP name="default">
<mgmtInB name="default">
<mgmtRsInBStNode tDn="topology/pod-1/node-101"

addr="<ip_address_1>"
gw="<gw_address>”

v6Addr = “<ip6_address_1>”
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-102"
addr="<ip_address_2>"
gw="<gw_address>”

v6Addr = “<ip6_address_2>"
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-103"
addr="<ip_address_3>"
gw="<gw_address>”

v6Addr = “<ip6_address_3>"
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-104"
addr="<ip_address_4>"
gw="<gw_address>”

v6Addr = “<ip6_address_4>"
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-105"
addr="<ip_address_5>"
gw="<gw_address>”

v6Addr = “<ip6_address_5>"
v6Gw = “<ip6_gw_address>"/>

</mgmtInB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Configuring Out-of-Band Management Access Using the REST API
IPv4 and IPv6 addresses are supported for out-of-band management access.

Before you begin

The APIC out-of-band management connection link must be 1 Gbps.

SUMMARY STEPS

1. Create an out-of-band contract.
2. Associate the out-of-band contract with an out-of-band EPG.
3. Associate the out-of-band contract with an external management EPG.
4. Create a management address pool.

Managing APIC Using the REST API
7

Managing APIC Using the REST API
Configuring Out-of-Band Management Access Using the REST API

5. Create node management groups.

DETAILED STEPS

Step 1 Create an out-of-band contract.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<fvTenant name="mgmt">

<!-- Contract -->
<vzOOBBrCP name="oob-default">

<vzSubj name="oob-default">
<vzRsSubjFiltAtt tnVzFilterName="default" />

</vzSubj>
</vzOOBBrCP>

</fvTenant>
</polUni>

Step 2 Associate the out-of-band contract with an out-of-band EPG.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<fvTenant name="mgmt">

<mgmtMgmtP name="default">
<mgmtOoB name="default">

<mgmtRsOoBProv tnVzOOBBrCPName="oob-default" />
</mgmtOoB>

</mgmtMgmtP>
</fvTenant>

</polUni>

Step 3 Associate the out-of-band contract with an external management EPG.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<fvTenant name="mgmt">

<mgmtExtMgmtEntity name="default">
<mgmtInstP name="oob-mgmt-ext">

<mgmtRsOoBCons tnVzOOBBrCPName="oob-default" />
<!-- SUBNET from where switches are managed -->
<mgmtSubnet ip="10.0.0.0/8" />

</mgmtInstP>
</mgmtExtMgmtEntity>

</fvTenant>
</polUni>

Step 4 Create a management address pool.

Example:
POST https://apic-ip-address/api/mo/uni.xml

Managing APIC Using the REST API
8

Managing APIC Using the REST API
Configuring Out-of-Band Management Access Using the REST API

<polUni>
<fvTenant name="mgmt">

<fvnsAddrInst name="switchOoboobaddr" addr="172.23.48.1/21">
<fvnsUcastAddrBlk from="172.23.49.240" to="172.23.49.244"/>

</fvnsAddrInst>
</fvTenant>

</polUni>

Step 5 Create node management groups.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>

<infraFuncP>
<mgmtGrp name="switchOob">

<mgmtOoBZone name="default">
<mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-switchOoboobaddr" />
<mgmtRsOobEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default" />

</mgmtOoBZone>
</mgmtGrp>

</infraFuncP>
<mgmtNodeGrp name="switchOob">

<mgmtRsGrp tDn="uni/infra/funcprof/grp-switchOob" />
<infraNodeBlk name="default" from_="101" to_="103" />

</mgmtNodeGrp>
</infraInfra>

</polUni>

You can configure the APIC server to use out-of-band management connectivity as the default connectivity
mode.
POST https://apic-ip-address/api/node/mo/.xml
<polUni>
<fabricInst>

<mgmtConnectivityPrefs interfacePref=“ooband"/>
</fabricInst>
</polUni>

Note

Configuring Static Out-of-Band Management Access Using the REST API

Before you begin

The APIC out-of-band management connection link must be 1 Gbps.

Step 1 Create an out-of-band contract.

Example:
<polUni>

<fvTenant name="mgmt">
<!-- Contract -->
<vzOOBBrCP name="oob-default">

<vzSubj name="oob-default">

Managing APIC Using the REST API
9

Managing APIC Using the REST API
Configuring Static Out-of-Band Management Access Using the REST API

<vzRsSubjFiltAtt tnVzFilterName="default" />
</vzSubj>

</vzOOBBrCP>
</fvTenant>

</polUni>

Step 2 Associate the out-of-band contract with an out-of-band EPG.

Example:
<polUni>

<fvTenant name="mgmt">
<mgmtMgmtP name="default">

<mgmtOoB name="default">
<mgmtRsOoBProv tnVzOOBBrCPName="oob-default" />

</mgmtOoB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Step 3 Associate the out-of-band contract with an external management EPG.

Example:
<polUni>

<fvTenant name="mgmt">
<mgmtExtMgmtEntity name="default">

<mgmtInstP name="oob-mgmt-ext">
<mgmtRsOoBCons tnVzOOBBrCPName="oob-default" />
<!-- SUBNET from where switches are managed -->
<mgmtSubnet ip="<mgmt_subnet_ip_address>" />

</mgmtInstP>
</mgmtExtMgmtEntity>

</fvTenant>
</polUni>

Step 4 Create static out-of-band management IP addresses and assign them to node IDs.

CHECK IP Addresses

Example:
<polUni>
<fvTenant name="mgmt">
<mgmtMgmtP name="default">
<mgmtOoB name="default">
<mgmtRsOoBStNode tDn="topology/pod-1/node-101"

addr="<ip_address_1>"
gw="<gw_address>"/>

<mgmtRsOoBStNode tDn="topology/pod-1/node-102"
addr="<ip_address_2>"
gw="<gw_address>"/>

<mgmtRsOoBStNode tDn="topology/pod-1/node-103"
addr="<ip_address_3>"
gw="<gw_address>"/>

</mgmtOoB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Managing APIC Using the REST API
10

Managing APIC Using the REST API
Configuring Static Out-of-Band Management Access Using the REST API

Managing Configuration Files

Overview
This topic provides information on:

• How to use configuration Import and Export to recover configuration states to the last known good state
using the Cisco APIC

• How to encrypt secure properties of Cisco APIC configuration files

You can do both scheduled and on-demand backups of user configuration. Recovering configuration states
(also known as "roll-back") allows you to go back to a known state that was good before. The option for that
is called an Atomic Replace. The configuration import policy (configImportP) supports atomic + replace
(importMode=atomic, importType=replace). When set to these values, the imported configuration overwrites
the existing configuration, and any existing configuration that is not present in the imported file is deleted.
As long as you do periodic configuration backups and exports, or explicitly trigger export with a known good
configuration, then you can later restore back to this configuration using the following procedures for the CLI,
REST API, and GUI.

For more detailed conceptual information about recovering configuration states using the Cisco APIC, please
refer to the Cisco Application Centric Infrastructure Fundamentals Guide.

The following section provides conceptual information about encrypting secure properties of configuration
files:

Backing Up, Restoring, and Rolling Back Configuration Files Workflow
This section describes the workflow of the features for backing up, restoring, and rolling back configuration
files. All of the features described in this document follow the same workflow pattern. Once the corresponding
policy is configured, admintSt must be set to triggered in order to trigger the job.

Once triggered, an object of type configJob (representing that run) is created under a container object of type
configJobCont. (The naming property value is set to the policy DN.) The container's lastJobName field can
be used to determine the last job that was triggered for that policy.

Up to five configJob objects are kept under a single job container at a time, with each new job triggered. The
oldest job is removed to ensure this.

Note

The configJob object contains the following information:

• Execution time

• Name of the file being processed/generated

• Status, as follows:

• Pending

• Running

Managing APIC Using the REST API
11

Managing APIC Using the REST API
Managing Configuration Files

• Failed

• Fail-no-data

• Success

• Success-with-warnings

• Details string (failure messages and warnings)

• Progress percentage = 100 * lastStepIndex/totalStepCount

• Field lastStepDescr indicating what was being done last

About Configuration Export to Controllers
Configuration export extracts user-configurable managed object (MO) trees from all 32 shards in the cluster,
writes them into separate files, then compresses them into a tar gzip file. The configuration export then uploads
the tar gzip file to a preconfigured remote location (configured through configRsRemotePath pointing to a
fileRemotePath object) or stores it as a snapshot on the controller(s).

See the Snapshots section for more details.Note

The configExportP policy is configured as follows:

• name—Policy name.

• format—Format in which the data is stored inside the exported archive (xml or json).

• targetDn—The domain name (DN) of the specific object you want to export. (Emptymeans everything.)

• snapshot—When true, the file is stored on the controller; no remote location configuration is needed.

• includeSecureFields—Set to true by default, this indicates whether the encrypted fields (passwords,
etc.) should be included in the export archive.

The configSnapshot object is created holding the information about this snapshot. (See the Snapshots section.)Note

Scheduling Exports

An export policy can be linked with a scheduler, which triggers the export automatically based on a
preconfigured schedule. This is done through the configRsExportScheduler relation from the policy to a
trigSchedP object. (See the Sample Configuration section.)

A scheduler is optional. A policy can be triggered at any time by setting the adminSt to triggered.Note

Managing APIC Using the REST API
12

Managing APIC Using the REST API
About Configuration Export to Controllers

About Configuration Import to Controller
Configuration import downloads, extracts, parses, analyzes, and applies the specified, previously exported
archive one shard at a time in the following order: infra, fabric, tn-common, then everything else. The
fileRemotePath configuration is performed the same way as for export (through configRsRemotePath).
Importing snapshots is also supported.

The configImportP policy is configured as follows:

• name—Policy name

• fileName—Name of the archive file (not the path file) to be imported

• importMode

• Best-effort mode: Each MO is applied individually, and errors only cause the invalid MOs to be
skipped.

If the object is not present on the controller, none of the children of the object
get configured. Best-effort mode attempts to configure the children of the object.

Note

• Atomic mode: configuration is applied by whole shards. A single error causes the whole shard to
be rolled back to its original state.

• importType

• Replace—Current system configuration is replaced with the contents or the archive being imported.
(Only atomic mode is supported.)

• Merge—Nothing is deleted, and archive content is applied on top the existing system configuration.

• snapshot—When true, the file is taken from the controller and no remote location configuration is needed.

• failOnDecryptErrors—(true by default) The file fails to import if the archive was encrypted with a
different key than the one that is currently set up in the system.

Troubleshooting

The following scenarios may need troubleshooting:

• If the generated archive could not be downloaded from the remote location, refer to the Connectivity
Issues section.

• If the import succeeded with warnings, check the details.

• If a file could not be parsed, refer to the following scenarios:

• If the file is not a valid XML or JSON file, check whether the files from the exported archive were
manually modified.

• If an object property has an unknown property or property value, it may be because:

• The property was removed or an unknown property value was manually entered.

• The model type range was modified (non-backward compatible model change).

Managing APIC Using the REST API
13

Managing APIC Using the REST API
About Configuration Import to Controller

• The naming property list was modified.

• If an MO could not be configured, note the following:

• Best-effort mode logs the error and skips the MO.

• Atomic mode logs the error and skips the shard.

Configuration File Encryption
As of release 1.1(2), the secure properties of APIC configuration files can be encrypted by enabling AES-256
encryption. AES encryption is a global configuration option; all secure properties conform to the AES
configuration setting. It is not possible to export a subset of the ACI fabric configuration such as a tenant
configuration with AES encryption while not encrypting the remainder of the fabric configuration. See the
Cisco Application Centric Infrastructure Fundamentals, "Secure Properties" chapter for the list of secure
properties.

The APIC uses a 16 to 32 character passphrase to generate the AES-256 keys. The APIC GUI displays a hash
of the AES passphrase. This hash can be used to see if the same passphrases was used on two ACI fabrics.
This hash can be copied to a client computer where it can be compared to the passphrase hash of another ACI
fabric to see if they were generated with the same passphrase. The hash cannot be used to reconstruct the
original passphrase or the AES-256 keys.

Observe the following guidelines when working with encrypted configuration files:

• Backward compatibility is supported for importing old ACI configurations into ACI fabrics that use the
AES encryption configuration option.

Reverse compatibility is not supported; configurations exported fromACI fabrics
that have enabled AES encryption cannot be imported into older versions of the
APIC software.

Note

• Always enable AES encryption when performing fabric backup configuration exports. Doing so will
assure that all the secure properties of the configuration will be successfully imported when restoring
the fabric.

If a fabric backup configuration is exported without AES encryption enabled,
none of the secure properties will be included in the export. Since such an
unencrypted backup would not include any of the secure properties, it is possible
that importing such a file to restore a system could result in the administrator
along with all users of the fabric being locked out of the system.

Note

• The AES passphrase that generates the encryption keys cannot be recovered or read by an ACI
administrator or any other user. The AES passphrase is not stored. The APIC uses the AES passphrase
to generate the AES keys, then discards the passphrase. The AES keys are not exported. The AES keys
cannot be recovered since they are not exported and cannot be retrieved via the REST API.

Managing APIC Using the REST API
14

Managing APIC Using the REST API
Configuration File Encryption

• The same AES-256 passphrase always generates the same AES-256 keys. Configuration export files can
be imported into other ACI fabrics that use the same AES passphrase.

• For troubleshooting purposes, export a configuration file that does not contain the encrypted data of the
secure properties. Temporarily turning off encryption before performing the configuration export removes
the values of all secure properties from the exported configuration. To import such a configuration file
that has all secure properties removed, use the import merge mode; do not use the import replace mode.
Using the import merge mode will preserve the existing secure properties in the ACI fabric.

• By default, the APIC rejects configuration imports of files that contain fields that cannot be decrypted.
Use caution when turning off this setting. Performing a configuration import inappropriately when this
default setting is turned off could result in all the passwords of the ACI fabric to be removed upon the
import of a configuration file that does not match the AES encryption settings of the fabric.

Failure to observe this guideline could result in all users, including fabric
administrations, being locked out of the system.

Note

About the fileRemotePath Object
The fileRemotePath object holds the following remote location-path parameters:

• Hostname or IP

• Port

• Protocol: FTP, SCP, and others

• Remote directory (not file path)

• Username

• Password

The password must be resubmitted every time changes are made.Note

Sample Configuration

The following is a sample configuration:

Under fabricInst (uni/fabric), enter:

<fileRemotePath name="path-name" host="host name or ip" protocol="scp"
remotePath="path/to/some/folder" userName="user-name" userpasswd="password" />

Configuring a Remote Location Using the REST API
This procedure explains how to create a remote location using the REST API.

Managing APIC Using the REST API
15

Managing APIC Using the REST API
About the fileRemotePath Object

<fileRemotePath name="local" host=“host or ip" protocol=“ftp|scp|sftp" remotePath=“path to
folder" userName=“uname" userPasswd=“pwd" />

Configuring Configuration File Export to Controller Using the REST API

Before you begin

Create a remote path and scheduling policy.

When providing a remote location, if you set the snapshot to True, the backup ignores the remote path and
stores the file on the controller.

Note

SUMMARY STEPS

1. Create a configuration export policy by sending a POST request with XML such as the following example.

DETAILED STEPS

Create a configuration export policy by sending a POST request with XML such as the following example.

Example:
<configExportP name="policy-name" format="xml" targetDn="/some/dn or empty which means everything"
snapshot="false" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
<configRsExportScheduler tnTrigSchedPName="some scheduler name" />
</configExportP>

Configuring a Configuration File Import Policy Using the REST API

SUMMARY STEPS

1. Configure a configuration file import policy, send a post with XML such as the following example:

DETAILED STEPS

Configure a configuration file import policy, send a post with XML such as the following example:

Example:
<configImportP name="policy-name" fileName="someexportfile.tgz" importMode="atomic"

importType="replace" snapshot="false" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
</configImportP>

Managing APIC Using the REST API
16

Managing APIC Using the REST API
Configuring Configuration File Export to Controller Using the REST API

Encrypting Configuration Files Using the REST API

SUMMARY STEPS

1. To encrypt a configuration file using the RESTAPI, send a post with XML such as the following example:

DETAILED STEPS

To encrypt a configuration file using the REST API, send a post with XML such as the following example:

Example:
https://apic-ip-address/api/mo/uni/fabric.xml
<pkiExportEncryptionKey passphrase="abcdefghijklmnopqrstuvwxyz" strongEncryptionEnabled="true"/>

Snapshots and Rollbacks

Snapshots
Snapshots are configuration backup archives, stored (and replicated) in a controller managed folder. To create
one, an export can be performed with the snapshot property set to true. In this case, no remote path
configuration is needed. An object of configSnapshot type is created to expose the snapshot to the user.

You can create recurring snapshots, which are saved to Admin > Import/Export > Export Policies >
Configuration > defaultAuto.

configSnapshot objects provide the following:

• file name

• file size

• creation date

• root DN indicating what the snapshot is of (fabric, infra, specific tenant, and so on)

• ability to remove a snapshot (by setting the retire field to true)

To import a snapshot, first create an import policy. Navigate to Admin > Import/Export and click Import
Policies. Right click and choose Create Configuration Import Policy to set the import policy attributes.

About Rollbacks
The configRollbackP policy is used to undo the changes made between two snapshots. Managed Objects
(MOs) are processed as follows:

• Deleted MOs are recreated.

• Created MOs are deleted.

Managing APIC Using the REST API
17

Managing APIC Using the REST API
Encrypting Configuration Files Using the REST API

• Modified MOs are reverted.

The rollback feature operates only on snapshots. Remote archives are not supported. If you want to use the
data in a remote archive, use the snapshot manager to create a snapshot from from the data for the rollback.
The policy does not require a remote path configuration.

Note

Rollback Workflow

The policy snapshotOneDN and snapshotTwoDn fields must be set and the first snapshot (S1) must precede
snapshot two (S2). Once triggered, snapshots are extracted and analyzed, and the difference between them is
calculated and applied.

MOs are located that are:

• Present in S1 but not present in S2—These MOs are deleted and rollback re-creates them.

• Not present in S1 but not present in S2—These MOs are created after S1 and rollback deletes them if:

• These MOs are not modified after S2 is taken.

• None of the MO descendants are created or modified after S2 is taken.

• Present in both S1 and S2, but with different property values—These MO properties are reverted to S1,
unless the property was modified to a different value after S2 is taken. In this case, it is left as is.

The rollback feature also generates a diff file that contains the configuration generated as a result of these
calculations. Applying this configuration is the last step of the rollback process. The content of this file
can be retrieved through a special REST API called readiff:
apichost/mqapi2/snapshots.readiff.xml?jobdn=SNAPSHOT_JOB_DN.

Rollback (which is difficult to predict) also has a preview mode (set preview to true), which prevents
rollback frommaking any actual changes. It calculates and generates the diff file, allowing you to preview
what exactly is going to happen once the rollback is actually performed.

Diff Tool

Another special REST API is available, which provides diff functionality between two snapshots:
apichost/mqapi2/snapshots.diff.xml?s1dn=SNAPSHOT_ONE_DN&s2dn=SNAPSHOT_TWO_DN.

Uploading and Downloading Snapshots Using the REST API
The configSnapshotManagerP policy allows you to create snapshots from remotely stored export archives.
You can attach a remote path to the policy, provide the file name (same as with configImportP), set the mode
to download, and trigger. The manager downloads the file, analyzes it to make sure that the archive is valid,
stores it on the controller, and creates the corresponding configSnapshot object. The snapshot manager also
allow you to upload a snapshot archive to a remote location. In this case, the mode must be set to upload.

Before you begin

Set up remotely stored archives.

Managing APIC Using the REST API
18

Managing APIC Using the REST API
Uploading and Downloading Snapshots Using the REST API

SUMMARY STEPS

1. To download or upload a snapshot policy, send a POST request with XML such as the following:

DETAILED STEPS

To download or upload a snapshot policy, send a POST request with XML such as the following:

Example:
<configSnapshotManagerP name="policy-name" fileName="someexportfile.tgz"

mode="upload|download" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
</configSnapshotManagerP>

Configuring and Executing a Configuration Rollback Using the REST API

Before you begin

Create a rollback policy and a snapshot.

SUMMARY STEPS

1. To configure and execute a rollback, send a POST request with XML such as the following:

DETAILED STEPS

To configure and execute a rollback, send a POST request with XML such as the following:

Example:
<configRollbackP name="policy-name" snapshotOneDn="dn/of/snapshot/one"
snapshotOneDn="dn/of/snapshot/two" preview="false" adminSt="triggered" />

Using Configuration Zones

Configuration Zones
Configuration zones divide the ACI fabric into different zones that can be updated with configuration changes
at different times. This limits the risk of deploying a faulty fabric-wide configuration that might disrupt traffic
or even bring the fabric down. An administrator can deploy a configuration to a non-critical zone, and then
deploy it to critical zones when satisfied that it is suitable.

The following policies specify configuration zone actions:

• infrazone:ZoneP is automatically created upon system upgrade. It cannot be deleted or modified.

Managing APIC Using the REST API
19

Managing APIC Using the REST API
Configuring and Executing a Configuration Rollback Using the REST API

• infrazone:Zone contains one or more pod groups (PodGrp) or one or more node groups (NodeGrp).

You can only choose PodGrp or NodeGrp; both cannot be chosen.Note

Anode can be part of only one zone (infrazone:Zone). NodeGrp has two properties: name, and deployment
mode. The deployment mode property can be:

• enabled - Pending updates are sent immediately.

• disabled - New updates are postponed.

• Do not upgrade, downgrade, commission, or decommission nodes in a
disabled configuration zone.

• Do not do a clean reload or an uplink/downlink port conversion reload of
nodes in a disabled configuration zone.

Note

• triggered - pending updates are sent immediately, and the deployment mode is automatically reset
to the value it had before the change to triggered.

When a policy on a given set of nodes is created, modified, or deleted, updates are sent to each node where
the policy is deployed. Based on policy class and infrazone configuration the following happens:.

• For policies that do not follow infrazone configuration, the APIC sends updates immediately to all the
fabric nodes.

• For policies that follow infrazone configuration, the update proceeds according to the infrazone
configuration:

• If a node is part of an infrazone:Zone, the update is sent immediately if the deployment mode of
the zone is set to enabled; otherwise the update is postponed.

• If a node is not part of aninfrazone:Zone, the update is done immediately, which is the ACI fabric
default behavior.

Configuration Zone Supported Policies
The following policies are supported for configuration zones:
analytics:CfgSrv
bgp:InstPol
callhome:Group
callhome:InvP
callhome:QueryGroup
cdp:IfPol
cdp:InstPol
comm:Pol
comp:DomP
coop:Pol
datetime:Pol
dbgexp:CoreP
dbgexp:TechSupP

Managing APIC Using the REST API
20

Managing APIC Using the REST API
Configuration Zone Supported Policies

dhcp:NodeGrp
dhcp:PodGrp
edr:ErrDisRecoverPol
ep:ControlP
ep:LoopProtectP
eqptdiagp:TsOdFabP
eqptdiagp:TsOdLeafP
fabric:AutoGEp
fabric:ExplicitGEp
fabric:FuncP
fabric:HIfPol
fabric:L1IfPol
fabric:L2IfPol
fabric:L2InstPol
fabric:L2PortSecurityPol
fabric:LeCardP
fabric:LeCardPGrp
fabric:LeCardS
fabric:LeNodePGrp
fabric:LePortP
fabric:LePortPGrp
fabric:LFPortS
fabric:NodeControl
fabric:OLeafS
fabric:OSpineS
fabric:PodPGrp
fabric:PortBlk
fabric:ProtGEp
fabric:ProtPol
fabric:SFPortS
fabric:SpCardP
fabric:SpCardPGrp
fabric:SpCardS
fabric:SpNodePGrp
fabric:SpPortP
fabric:SpPortPGrp
fc:DomP
fc:FabricPol
fc:IfPol
fc:InstPol
file:RemotePath
fvns:McastAddrInstP
fvns:VlanInstP
fvns:VsanInstP
fvns:VxlanInstP
infra:AccBaseGrp
infra:AccBndlGrp
infra:AccBndlPolGrp
infra:AccBndlSubgrp
infra:AccCardP
infra:AccCardPGrp
infra:AccNodePGrp
infra:AccPortGrp
infra:AccPortP
infra:AttEntityP
infra:CardS
infra:ConnFexBlk
infra:ConnFexS
infra:ConnNodeS
infra:DomP
infra:FexBlk
infra:FexBndlGrp
infra:FexGrp
infra:FexP

Managing APIC Using the REST API
21

Managing APIC Using the REST API
Configuration Zone Supported Policies

infra:FuncP
infra:HConnPortS
infra:HPathS
infra:HPortS
infra:LeafS
infra:NodeBlk
infra:NodeGrp
infra:NodeP
infra:OLeafS
infra:OSpineS
infra:PodBlk
infra:PodGrp
infra:PodP
infra:PodS
infra:PolGrp
infra:PortBlk
infra:PortP
infra:PortS
infra:PortTrackPol
infra:Profile
infra:SHPathS
infra:SHPortS
infra:SpAccGrp
infra:SpAccPortGrp
infra:SpAccPortP
infra:SpineP
infra:SpineS
isis:DomPol
l2ext:DomP
l2:IfPol
l2:InstPol
l2:PortSecurityPol
l3ext:DomP
lacp:IfPol
lacp:LagPol
lldp:IfPol
lldp:InstPol
mcp:IfPol
mcp:InstPol
mgmt:NodeGrp
mgmt:PodGrp
mon:FabricPol
mon:InfraPol
phys:DomP
psu:InstPol
qos:DppPol
snmp:Pol
span:Dest
span:DestGrp
span:SpanProv
span:SrcGrp
span:SrcTargetShadow
span:SrcTargetShadowBD
span:SrcTargetShadowCtx
span:TaskParam
span:VDest
span:VDestGrp
span:VSpanProv
span:VSrcGrp
stormctrl:IfPol
stp:IfPol
stp:InstPol
stp:MstDomPol
stp:MstRegionPol

Managing APIC Using the REST API
22

Managing APIC Using the REST API
Configuration Zone Supported Policies

trig:SchedP
vmm:DomP
vpc:InstPol
vpc:KAPol

Creating Configuration Zones Using the REST API

Before you begin

This procedure explains how to create a configuration zone using the REST API.

Create a configuration zone using the REST API leaf switch or pod examples below.

Example:

Creating a Config Zone with Leaf Switches

<infraInfra>
<infrazoneZoneP name="default">
<infrazoneZone name="Group1" deplMode="disabled">
<infrazoneNodeGrp name="nodeGroup">
<infraNodeBlk name="nodeblk1" from_=101 to_=101/>
<infraNodeBlk name="nodeblk2" from_=103 to_=103/>
</infrazoneNodeGrp>
</infrazoneZone>
<infrazoneZone name="Group2" deplMode="enabled">
<infrazoneNodeGrp name="nodeGroup2">
<infraNodeBlk name="nodeblk" from_=102 to_=102/>
</infrazoneNodeGrp>
</infrazoneZone>
</infrazoneZoneP>
</infraInfra>

Example:

Creating a Config Zone with Pods

<infraInfra>
<infrazoneZoneP name="default">

<infrazoneZone name="testZone" descr="testZone-Description" deplMode="enabled">
<infrazonePodGrp name="podGroup1">

<infraPodBlk name="group1" from_=101 to_=101/>
<infraPodBlk name="group2" from_=103 to_=103/>

</infrazonePodGrp>
<infrazonePodGrp name="podGroup2">

<infraPodBlk name="group" from_=102 to_=102/>
</infrazonePodGrp>

</infrazoneZone>
</infrazoneZoneP>

</infraInfra>

Managing APIC Using the REST API
23

Managing APIC Using the REST API
Creating Configuration Zones Using the REST API

Managing APIC Using the REST API
24

Managing APIC Using the REST API
Creating Configuration Zones Using the REST API

	Managing APIC Using the REST API
	Adding Management Access
	In-Band and Out-of-Band Management Access
	About Static Management Access
	Configuring In-Band Management Access Using the REST API
	Configuring Static In-Band Management Access Using the REST API
	Configuring Out-of-Band Management Access Using the REST API
	Configuring Static Out-of-Band Management Access Using the REST API

	Managing Configuration Files
	Overview
	Backing Up, Restoring, and Rolling Back Configuration Files Workflow
	About Configuration Export to Controllers
	About Configuration Import to Controller
	Configuration File Encryption
	About the fileRemotePath Object
	Configuring a Remote Location Using the REST API
	Configuring Configuration File Export to Controller Using the REST API
	Configuring a Configuration File Import Policy Using the REST API
	Encrypting Configuration Files Using the REST API

	Snapshots and Rollbacks
	Snapshots
	About Rollbacks
	Uploading and Downloading Snapshots Using the REST API
	Configuring and Executing a Configuration Rollback Using the REST API

	Using Configuration Zones
	Configuration Zones
	Configuration Zone Supported Policies

	Creating Configuration Zones Using the REST API

