
Cisco APIC REST API Configuration Guide, Release 4.1(x)
First Published: 2019-03-18

Last Modified: 2024-01-19

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

© 2019–2024 Cisco Systems, Inc. All rights reserved.

www.cisco.com/go/trademarks
www.cisco.com/go/trademarks

C O N T E N T S

Preface xxiii

Audience xxiii

Document Conventions xxiii

Related Documentation xxiv

Documentation Feedback xxv

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

Part 1: Cisco APIC REST API Usage Guidelines 3P A R T I

Using the REST API 5C H A P T E R 2

About the REST API 5

Management Information Model 6

Object Naming 7

Guidelines and Limitations for Using the REST API 8

Composing REST API Requests 8

Read and Write Operations and Filters 8

Using Classes in REST API Commands 11

Using Managed Objects in REST API Commands 11

Creating the API Command 12

Composing the API Command Body 14

Composing the API Command Body to Call a Method 15

Composing the API Command Body for an API Operation on an MO 16

Using Tags and Alias 16

Composing REST API Queries 18

Cisco APIC REST API Configuration Guide, Release 4.1(x)
iii

Composing Query Filter Expressions 18

Applying Query Scoping Filters 20

Filtering API Query Results 23

Filter Conditional Operators 23

Sorting and Paginating Query Results 24

Subscribing to Query Results 25

REST API Examples 27

Information About the API Examples 27

Example: Using the JSON API to Add a Leaf Port Selector Profile 27

Example: Using the JSON API to Get Information About a Node 30

Example: Using the JSON API to Get Running Firmware 31

Example: Using the JSON API to Get Top Level System Elements 32

Example: Using the XML API and OwnerTag to Add Audit Log Information to Actions 33

Example: XML Get Endpoints (Devices) with IP and MAC Addresses 34

Example: Monitoring Using the REST API 34

Accessing the REST API 35

Accessing the REST API 35

Invoking the API 35

Configuring the HTTP Request Method and Content Type 35

Configuring HTTP and HTTPS Using the GUI 36

Configuring HTTP and HTTPS Throttling Using the CLI 36

Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI 37

Authenticating and Maintaining an API Session 39

Requiring a Challenge Token for an API Session 41

Logging In 42

Changing Your Own User Credentials 42

REST API Tools 45

Management Information Model Reference 45

Viewing an API Interchange in the GUI 47

Testing the API Using Browser Add-Ons 48

Testing the API with cURL 49

Cisco APIC Python SDK 49

Using the Managed Object Browser (Visore) 50

Visore Browser Page 50

Cisco APIC REST API Configuration Guide, Release 4.1(x)
iv

Contents

Accessing Visore 51

Running a Query in Visore 52

Part 2: Common APIC Tasks Using the REST API 53P A R T I I

Managing APIC Using the REST API 55C H A P T E R 3

Adding Management Access 55

In-Band and Out-of-Band Management Access 55

About Static Management Access 55

Configuring In-Band Management Access Using the REST API 56

Configuring Static In-Band Management Access Using the REST API 59

Configuring Out-of-Band Management Access Using the REST API 61

Configuring Static Out-of-Band Management Access Using the REST API 63

Managing Configuration Files 65

Overview 65

Backing Up, Restoring, and Rolling Back Configuration Files Workflow 65

About Configuration Export to Controllers 66

About Configuration Import to Controller 67

Configuration File Encryption 68

About the fileRemotePath Object 69

Configuring a Remote Location Using the REST API 69

Configuring Configuration File Export to Controller Using the REST API 70

Configuring a Configuration File Import Policy Using the REST API 70

Encrypting Configuration Files Using the REST API 71

Snapshots and Rollbacks 71

Snapshots 71

About Rollbacks 71

Uploading and Downloading Snapshots Using the REST API 72

Configuring and Executing a Configuration Rollback Using the REST API 73

Using Configuration Zones 73

Configuration Zones 73

Configuration Zone Supported Policies 74

Creating Configuration Zones Using the REST API 77

Cisco APIC REST API Configuration Guide, Release 4.1(x)
v

Contents

Managing Roles, Users, and Signature-Based Transactions 79C H A P T E R 4

Managing APIC Roles and Users 79

User Access, Authorization, and Accounting 79

Accounting 79

Multiple Tenant Support 80

User Access: Roles, Privileges, and Security Domains 80

Configuring a Custom Role Using the REST API 82

Configuring a Local User 82

Configuring a Local User Using the REST API 82

Configuring a Remote User 83

Configuring a Remote User Using the REST API 83

APIC Signature-Based Transactions 84

About Signature-Based Transactions 84

Using a Private Key to Calculate a Signature 84

Guidelines and Limitations 86

Creating a Local User and Adding a User Certificate Using the REST API 87

Common Tenant Tasks 91C H A P T E R 5

Common Tenant Tasks 91

Tenants Overview 91

Tenant Creation 91

Adding a Tenant 91

Example: Using the JSON API to Add a Tenant 92

Example: Using the XML API to Add a Tenant 93

Managing Layer 2 Networking 95C H A P T E R 6

Tenant External Bridged Networks 95

Bridged Interface to an External Router 95

VRF and Bridge Domains 96

Creating a Tenant, VRF, and Bridge Domain Using the REST API 96

Ports 97

Statically Deploying an EPG on a Specific Port 97

Deploying an EPG on a Specific Port with APIC Using the REST API 97

Cisco APIC REST API Configuration Guide, Release 4.1(x)
vi

Contents

Creating Domains, Attach Entity Profiles, and VLANs to Deploy an EPG on a Specific Port 98

Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API 98

Creating a Port Channel Policy Using the REST API 100

Managing Layer 3 Networking 101C H A P T E R 7

Configuring External Connectivity Using a Layer 3 Out 101

Configuring a Tenant Layer 3 Outside Network Connection Overview 101

Configuring Layer 3 Outside for Tenant Networks Using the REST API 102

Configuring BGP Max Path 105

Configuring BGP Max Path Using the REST API 105

Configuring AS Path Prepend 105

Configuring AS Path Prepend Using the REST API 106

Configuring BFD 106

Configuring BFD Globally Using the REST API 106

Configuring BFD Interface Override Using the REST API 107

Configuring BFD Consumer Protocols Using the REST API 107

Monitoring Using the REST API 111C H A P T E R 8

About Monitoring Using the REST API 111

Monitoring APIC Using the REST API 111

APIC 111

Monitoring APIC CPU and Memory Usage Using the REST API 111

Monitoring APIC Disk Utilization Using the REST API 112

Monitoring Physical Interface Statistics and Link State Using the REST API 112

Fabric 113

Monitoring LLDP and CDP Neighbor Status Using the REST API 113

Monitoring Physical and Bond Interfaces Using the REST API 113

Monitoring EPG-Level Statistics Using the REST API 113

Switches 114

Monitoring Switch CPU Utilization Using the REST API 114

Monitoring Switch Fan Status Using the REST API 115

Monitoring Switch Memory Utilization Using the REST API 115

Monitoring Switch Module Status Using the REST API 116

Monitoring Switch Power Supply Status Using the REST API 116

Cisco APIC REST API Configuration Guide, Release 4.1(x)
vii

Contents

Monitoring Switch Inventory Using the REST API 116

External Monitoring 117

Smart Callhome 117

About Smart Callhome 117

Creating a Smart Callhome Destination Group Using the REST API 117

TACACS External Logging 118

About TACACS External Logging 118

Creating a TACACS External Logging Destination Group Using the REST API 119

Creating a TACACS External Logging Source Using the REST API 119

Troubleshooting Using the REST API 121C H A P T E R 9

Collecting and Exporting Technical Support Information 121

About Exporting Files 121

Sending an On-Demand Tech Support File Using the REST API 121

Troubleshooting Using Atomic Counters 122

Atomic Counters 122

Enabling Atomic Counters 123

About Fabric Latency 124

About PTP 126

Troubleshooting Using Atomic Counters with the REST API 128

Configuring Latency and PTP Using the REST API 128

Troubleshooting Using Faults 129

Understanding APIC Faults 129

Troubleshooting Using Faults with the REST API 130

Statistics 131

Configuring a Stats Monitoring Policy Using the REST API 131

Recovering a Disconnected Leaf 132

Recovering a Disconnected Leaf 132

Recovering a Disconnected Leaf Using the REST API 132

Troubleshooting Contracts and Taboo Contracts with Permit and Deny Logging 133

Verifying Contracts, Taboo Contracts, and Filters Using the REST API 133

Viewing ACL Permit and Deny Logs Using the REST API 133

Troubleshooting Using Digital Optical Monitoring Statistics 135

Troubleshooting Using Digital Optical Monitoring With the REST API 135

Cisco APIC REST API Configuration Guide, Release 4.1(x)
viii

Contents

Troubleshooting Using Port Tracking 135

Port Tracking Policy for Fabric Port Failure Detection 135

Port Tracking Using the REST API 136

Removing Unwanted _ui_ Objects 137

Removing Unwanted _ui_ Objects Using the REST API 137

Troubleshooting Using Contract Permit and Deny Logs 137

About ACL Contract Permit and Deny Logs 137

Enabling ACL Contract Permit Logging Using the REST API 138

Enabling Taboo Contract Deny Logging Using the REST API 139

Viewing ACL Permit and Deny Logs Using the REST API 139

Part 3: Setting Up APIC and the Fabric Using the REST API 141P A R T I I I

Managing APIC Clusters 143C H A P T E R 1 0

Cluster Management Guidelines 143

Cluster Management Guidelines 143

Expanding and Contracting Clusters 144

Expanding the APIC Cluster Size 144

Expanding the Cisco APIC Cluster 145

Expanding the APIC Cluster Using the REST API 145

Contracting the Cisco APIC Cluster 145

Contracting the APIC Cluster Using the REST API 146

Managing Cluster High Availability 146

About Cold Standby for a Cisco APIC Cluster 146

Switching Over Active APIC with Standby APIC Using REST API 147

Managing Fabrics 149C H A P T E R 1 1

Maintenance Mode 149

Removing a Switch to Maintenance Mode Using the REST API 151

Inserting a Switch to Operation Mode Using the CLI 151

Configuring Tenant Policies 153C H A P T E R 1 2

Basic Tenant Configuration 153

Creating a Tenant, VRF, and Bridge Domain Using the REST API 153

Cisco APIC REST API Configuration Guide, Release 4.1(x)
ix

Contents

Tenants in Multiple Private Networks 154

About Multiple Private Networks with Inter-Tenant Communication 154

Configuring Multiple Private Networks with Inter-Tenant Communication Using the REST API 155

About Multiple Private Networks with Intra-Tenant Communication 156

Configuring Multiple Tenants with Intra-Tenant Communication Using the REST API 157

Tenant Policy Example 158

Tenant Policy Example Overview 158

Tenant Policy Example XML Code 159

Tenant Policy Example Explanation 160

Policy Universe 161

Tenant Policy Example 161

Filters 161

Contracts 162

Subjects 163

Labels 163

VRF 164

Bridge Domains 164

Application Profiles 165

Endpoints and Endpoint Groups (EPGs) 165

Closing 167

What the Example Tenant Policy Does 167

EPGs 168

Deploying an Application EPG through an AEP or Interface Policy Group to Multiple Ports 168

Deploying an EPG on a Specific Port with APIC Using the REST API 169

Deploying an EPG through an AEP to Multiple Interfaces Using the REST API 169

Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API 170

Intra-EPG Isolation 171

Intra-EPG Isolation for Bare Metal Servers 171

Configuring Intra-EPG Isolation for Bare Metal Servers Using the REST API 172

Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch 173

Configuring Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch using the
REST API 175

Intra-EPG Isolation Enforcement for Cisco AVS 176

Configuring Intra-EPG Isolation for Cisco AVS Using the REST API 176

Cisco APIC REST API Configuration Guide, Release 4.1(x)
x

Contents

Microsegmentation 177

Using Microsegmentation with Network-based Attributes on Bare Metal 177

Configuring an IP-based Microsegmented EPG as a Shared Resource Using the REST API 177

Configuring a Network-Based Microsegmented EPG in a Bare-Metal Environment Using the REST
API 178

Configuring Microsegmentation on Virtual Switches 179

Configuring Microsegmentation with Cisco ACI Using the REST API 179

Application Profiles 180

Three-Tier Application Deployment 180

Parameters to Create a Filter for http 181

Parameters to Create Filters for rmi and sql 182

Deploying an Application Profile Using the REST API 182

Contracts, Taboo Contracts, and Preferred Groups 184

Security Policy Enforcement 184

Contracts and Taboo Contracts 185

Contracts Contain Security Policy Specifications 185

Contracts 187

Configuring a Contract Using the REST API 189

Configuring a Taboo Contract Using the REST API 189

Contract and Subject Exceptions 190

Configuring Contract or Subject Exceptions for Contracts 190

Configure a Contract or Subject Exception Using the REST API 191

Configuring EPG Contract Inheritance Using the REST API 191

About Contract Inheritance 191

Configuring Application EPG Contract Inheritance Using the REST API 193

Configuring uSeg EPG Contract Inheritance Using the REST API 193

Configuring L2Out EPG Contract Inheritance Using the REST API 194

Configuring L3Out EPG Contract Inheritance Using the REST API 195

Contract Preferred Groups 196

About Contract Preferred Groups 196

Configuring Contract Preferred Groups Using the REST API 198

Configuring an Enforced Bridge Domain 199

Configuring an Enforced Bridge Domain Using the REST API 200

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xi

Contents

Provisioning Core Services 201C H A P T E R 1 3

DHCP 201

Configuring a DHCP Relay Policy 201

Configuring a DHCP Server Policy for the APIC Infrastructure Using the REST API 201

Layer 2 and Layer 3 DHCP Relay Sample Policies 203

DNS 205

DNS 205

Configuring a DNS Service Policy to Connect with DNS Providers Using the REST API 205

DNS Policy Example 206

NTP 207

Time Synchronization and NTP 207

Configuring NTP Using the REST API 207

Tetration 208

Overview 208

Configuring Cisco Tetration Analytics Using the REST API 208

NetFlow 209

About NetFlow 209

NetFlow on EX Platform Switches 209

Configuring a NetFlow Exporter Policy for VM Networking Using the REST API 210

Configuring NetFlow Infra Selectors Using REST API 210

Configuring NetFlow Tenant Hierarchy Using REST API 211

Consuming a NetFlow Exporter Policy Under a VMM Domain Using the REST API for VMware
VDS 213

Configuring NetFlow or Tetration Analytics Priority Using REST API 213

DOM Statistics 214

About Digital Optical Monitoring 214

Enabling Digital Optical Monitoring Using the REST API 214

Syslog 215

About Syslog 215

Configuring a Syslog Group and Destination Using the REST API 216

Creating a Syslog Source Using the REST API 216

Enabling Syslog to Display in NX-OS CLI Format, Using the REST API 217

Data Plane Policing 218

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xii

Contents

Overview of Data Plane Policing 218

Configuring Data Plane Policing Using the REST API 219

Traffic Storm Control 220

About Traffic Storm Control 220

Configuring a Traffic Storm Control Policy Using the REST API 221

Rogue Endpoint Control 222

About the Rogue Endpoint Control Policy 222

Configure the Rogue Endpoint Control Policy Using the REST API 222

Provisioning Layer 2 Networks 225C H A P T E R 1 4

Networking Domains, VLANs, and AEPs 225

Networking Domains 225

Configuring a Physical Domain Using the REST API 226

Creating VLAN Pools 226

Creating a VLAN Pool Using the REST API 227

Configuring Q-in-Q Encapsulation Mapping for EPGs 227

Q-in-Q Encapsulation Mapping for EPGs 227

Mapping EPGs to Q-in-Q Encapsulation Enabled Interfaces Using the REST API 228

Attachable Entity Profile 229

Creating an Attachable Access Entity Profile Using the REST API 230

Interfaces 231

Ports, PCs, and VPCs 231

Configuring a Single Port Channel Applied to Multiple Switches 231

Configuring a Single Virtual Port Channel Across Two Switches Using the REST API 232

Configuring Two Port Channels Applied to Multiple Switches Using the REST API 233

Configuring a Virtual Port Channel on Selected Port Blocks of Two Switches Using the REST
API 234

Configuring a Virtual Port Channel and Applying it to a Static Port Using the REST API 235

Reflective Relay (802.1Qbg) 237

Enabling Reflective Relay Using the REST API 237

Interface Speed 238

Interface Configuration Guidelines 238

Changing Interface Speed 239

FEXs 240

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xiii

Contents

ACI FEX Guidelines 240

Configuring an FEX VPC Policy Using the REST API 240

FCoE 243

Supporting Fibre Channel over Ethernet Traffic on the ACI Fabric 243

Configuring FCoE Connectivity Using the REST API 245

Configuring FCoE Over FEX Using REST API 248

Undeploying FCoE Connectivity through the REST API or SDK 252

Fibre Channel NPV 257

Fibre Channel Connectivity Overview 257

Fibre Channel N-Port Virtualization Guidelines and Limitations 259

Configuring FC Connectivity Using the REST API 260

802.1Q Tunnels 264

About ACI 802.1Q Tunnels 264

Configuring 802.1Q Tunnels With Ports Using the REST API 266

Configuring 802.1Q Tunnels With PCs Using the REST API 267

Configuring 802.1 Q Tunnels With vPCs Using the REST API 269

Breakout Ports 271

Configuration of Dynamic Breakout Ports 271

Configuring Dynamic Breakout Ports Using the REST API 273

Port Profiles to Change Uplinks to Downlinks and Downlinks to Uplinks 276

Configuring Port Profiles 276

Port Profile Configuration Summary 279

Configuring a Port Profile Using the REST API 280

IGMP Snooping 281

About Cisco APIC and IGMP Snooping 281

How IGMP Snooping is Implemented in the ACI Fabric 282

Virtualization Support 283

Configuring and Assigning an IGMP Snooping Policy to a Bridge Domain using the REST API 283

Enabling Group Access to IGMP Snooping and Multicast using the REST API 284

Enabling IGMP Snooping and Multicast on Static Ports Using the REST API 285

Proxy ARP 285

About Proxy ARP 285

Guidelines and Limitations 291

Configuring Proxy ARP Using the REST API 291

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xiv

Contents

Flood on Encapsulation 292

Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across Encapsulations 292

Configuring Flood on Encapsulation Using the REST API 297

MACsec 297

About MACsec 297

Guidelines and Limitations for MACsec 298

Configuring MACsec Using the REST API 301

Provisioning Layer 3 Outside Connections 305C H A P T E R 1 5

Layer 3 Outside Connections 305

Configuring a Tenant Layer 3 Outside Network Connection Overview 305

Configuring Layer 3 Outside for Tenant Networks Using the REST API 306

Configuring Layer 3 Outside for Tenant Networks Using the REST API 309

REST API Example: L3Out Prerequisites 311

REST API Example: L3Out 312

REST API Example: Tenant External Network Policy 313

Layer 3 Routed and Sub-Interface Port Channels 315

About Layer 3 Port Channels 315

Configuring Port Channels Using the REST API 316

Configuring a Layer 3 Routed Port Channel Using the REST API 317

Configuring a Layer 3 Sub-Interface Port Channel Using the REST API 318

Cisco ACI GOLF 320

Cisco ACI GOLF 320

Configuring GOLF Using the REST API 321

Distributing BGP EVPN Type-2 Host Routes to a DCIG 327

Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API 328

Multipod 328

Multipod 328

Setting Up Multi-Pod Fabric Using the REST API 330

Anycast Services 333

About Anycast Services 333

Configuring Anycast Services Using the REST API 333

Remote Leaf Switches 335

About Remote Leaf Switches in the ACI Fabric 335

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xv

Contents

Remote Leaf Switch Hardware Requirements 339

Remote Leaf Switch Restrictions and Limitations 340

WAN Router and Remote Leaf Switch Configuration Guidelines 342

Configure Remote Leaf Switches Using the REST API 343

Prerequisites Required Prior to Downgrading Remote Leaf Switches 346

HSRP 347

About HSRP 347

Guidelines and Limitations 348

Configuring HSRP in APIC Using REST API 349

IP Multicast 351

Tenant Routed Multicast 351

Guidelines and Restrictions for Configuring Layer 3 Multicast 352

Configuring Layer 3 Multicast Using REST API 354

Pervasive Gateway 357

Common Pervasive Gateway 357

Configuring Common Pervasive Gateway Using the REST API 358

Explicit Prefix Lists 358

About Explicit Prefix List Support for Route Maps/Profile 358

Guidelines and Limitations 360

About Route Map/Profile 361

Aggregation Support for Explicit Prefix List 362

Configuring Route Map/Profile with Explicit Prefix List Using REST API 365

IP Address Aging Tracking 366

Overview 366

Configuring IP Aging Using the REST API 367

Route Summarization 367

Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API 367

Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API 369

Route Controls 371

About Configuring a Routing Control Protocol Using Import and Export Controls 371

Configuring a Route Control Protocol to Use Import and Export Controls, With the REST API 371

Layer 3 to Layer 3 Out Inter-VRF Leaking 372

Layer 3 Out to Layer 3 Out Inter-VRF Leaking 372

Configuring Two Shared Layer 3 Outs in Two VRFs Using REST API 373

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xvi

Contents

Overview Interleak Redistribution for MP-BGP 374

Configuring Interleak of External Routes Using the REST API 374

SVI External Encapsulation Scope 375

About SVI External Encapsulation Scope 375

Encapsulation Scope Syntax 377

Configuring SVI Interface Encapsulation Scope Using the REST API 377

SVI Auto State 378

About SVI Auto State 378

Guidelines and Limitations for SVI Auto State Behavior 379

Configuring SVI Auto State Using the REST API 379

Routing Protocols 380

BGP and BFD 380

Guidelines for Configuring a BGP Layer 3 Outside Network Connection 380

BGP Connection Types and Loopback Guidelines 381

Per VRF Per Node BGP Timer Values 381

Configuring an MP-BGP Route Reflector Using the REST API 382

Configuring BGP External Routed Network Using the REST API 383

Configuring BFD Consumer Protocols Using the REST API 384

Configuring BFD Globally Using the REST API 387

Configuring BFD Interface Override Using the REST API 387

Configuring a Per VRF Per Node BGP Timer Using the REST API 388

Deleting a Per VRF Per Node BGP Timer Using the REST API 388

Configuring BGP Max Path 389

Configuring AS Path Prepend 389

About BGP Autonomous System Override 390

Configuring BGP External Routed Network with Autonomous System Override Enabled Using
the REST API 391

OSPF 394

OSPF Layer 3 Outside Connections 394

Creating OSPF External Routed Network for Management Tenant Using REST API 395

EIGRP 396

Overview 396

Configuring EIGRP Using the REST API 396

Neighbor Discovery 398

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xvii

Contents

Neighbor Discovery 398

Creating the Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery on the Bridge Domain
Using the REST API 400

Guidelines and Limitations 400

Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer 3 Interface Using the
REST API 400

Microsoft NLB 402

Configuring Microsoft NLB in Unicast Mode Using the REST API 402

Configuring Microsoft NLB in Multicast Mode Using the REST API 402

Configuring Microsoft NLB in IGMP Mode Using the REST API 403

MLD Snooping 403

Configuring and Assigning an MLD Snooping Policy to a Bridge Domain using the REST API 403

Configuring QoS 405C H A P T E R 1 6

QoS for L3Outs 405

L3Outs QoS 405

Configuring QoS Directly on L3Out Using REST API 405

Configuring QoS Contract for L3Out Using REST API 406

CoS Preservation 407

Class of Service (CoS) Preservation for Ingress and Egress Traffic 407

Enable Class Of Service (CoS) Preservation Using REST API 408

Multipod QoS 408

Multipod QoS and DSCP Translation Policy 408

Creating DSCP Translation Policy Using REST API 409

Translating QoS Ingress Markings to Egress Markings 410

Translating Ingress to Egress QoS Markings 410

Creating Custom QoS Policy Using REST API 410

Troubleshooting Cisco APIC QoS Policies 411

Managing Layer 4 to Layer 7 Services 413C H A P T E R 1 7

About Layer 4 to Layer 7 Services 413

About Application-Centric Infrastructure Layer 4 to Layer 7 Services 413

Access for Managing Layer 4 to Layer 7 Services 414

Configure In-Band Connectivity to Devices Using Tenant's VRF Using the REST API 414

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xviii

Contents

Configuring In-Band Connectivity to Devices Using Management Tenant VRF Using the REST
API 415

Device Packages 417

About the Device Package 417

Notes for Installing a Device Package with the REST APIs 417

Uploading a Device Package File Using the API 418

Installing a Device Package Using the REST API 418

Using an Imported Device with the REST APIs 418

Trunking 419

About Trunking 419

Enabling Trunking on a Layer 4 to Layer 7 Virtual ASA device Using the REST APIs 419

Device Selection Policies 420

About Device Selection Policies 420

Creating a Device Selection Policy Using the REST API 420

Adding a Logical Interface in a Device Using the REST APIs 420

Policy Based Redirect and Service Nodes Tracking 421

Policy-Based Redirect and Tracking Service Nodes 421

Policy-Based Redirect and Threshold Settings for Tracking Service Nodes 421

Guidelines and Limitations for Policy-Based Redirect With Tracking Service Nodes 422

Configuring PBR to Support Tracking Service Nodes Using the REST API 423

About Location-Aware Policy Based Redirect 423

Guidelines for Location-Aware PBR 424

Configuring Location-Aware PBR Using the REST API 425

About Layer 1/Layer 2 Policy-Based Redirect 425

Guidelines and Limitations for Layer 1/Layer 2 Policy-Based Redirect 426

Configuring Layer 1/ Layer 2 PBR Using the REST API 426

Service Graph Templates 427

About Service Graph Templates 427

Configuring a Service Graph Template Using the REST APIs 428

Creating a Security Policy Using the REST APIs 429

Layer 4 to Layer 7 Parameters 429

About Modifying the Configuration Parameters of a Deployed Service Graph 429

Example XML POST for an Application EPG With Configuration Parameters 429

Example XML of Configuration Parameters Inside the Device Package 431

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xix

Contents

Example XML POST for an Abstract Function Node With Configuration Parameters 431

Example XML POST for an Abstract Function Profile With Configuration Parameters 432

Copy Services 433

About Copy Services 433

Configuring Copy Services Using the REST API 433

Developing Automation 435

About the REST APIs 435

Examples of Automating Using the REST APIs 435

Example: Configuring Layer 4 to Layer 7 Services (Firewall) 443

Example: Configuring Layer 4 to Layer 7 Services Using the REST API 443

Example: Configuring Layer 4 to Layer 7 Route Peering 452

Configuring Layer 4 to Layer 7 Route Peering With the REST API 452

Specifying an l3extOut Policy for Layer 4 to L7 Route Peering 454

Configuring Security 457C H A P T E R 1 8

Enabling TACACS+, RADIUS, and LDAP 457

Overview 457

Configuring APIC for TACACS+ Using the REST API 457

Configuring APIC for RADIUS Using the REST API 458

Configuring APIC for LDAP Using the REST API 459

Configuring FIPS 460

About Federal Information Processing Standards (FIPS) 460

Guidelines and Limitations for FIPS 460

Configuring FIPS for Cisco APIC Using REST API 461

Configuring Fabric Secure Mode 461

Fabric Secure Mode 461

Configuring Fabric Secure Mode Using the REST API 462

Enabling RBAC 462

Access Rights Workflow Dependencies 462

AAA RBAC Roles and Privileges 463

Custom Roles 472

Sample RBAC Rules 473

Enabling Port Security 476

About Port Security and ACI 476

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xx

Contents

Port Security Guidelines and Restrictions 476

Port Security and Learning Behavior 476

Port Security at Port Level 477

Protect Mode 477

Configuring Port Security Using REST API 477

Enabling COOP Authentication 478

Overview 478

Using COOP with Cisco APIC 479

Guidelines and Limitations 479

Configuring COOP Authentication Using the REST API 479

Enabling Control Plane Policing 479

About Control Plane Policing 479

Guidelines and Limitations for CoPP 482

Configuring CoPP Using the REST API 483

Configuring CoPP Per Interface Per Protocol Using REST API 483

Configuring First Hop Security 484

About First Hop Security 484

ACI FHS Deployment 485

Guidelines and Limitations 485

Configuring FHS in APIC Using REST API 486

Configuring 802.1x 487

802.1X Overview 487

Host Support 487

Authentication Modes 487

Guidelines and Limitations 488

Configuration Overview 489

Configuring 802.1X Node Authentication Using the REST API 489

Configuring 802.1X Port Authentication Using the REST API 490

Creating Quota Management 491C H A P T E R 1 9

About APIC Quota Management Configuration 491

Creating a Quota Management Configuration Using the REST API 491

Configuring a Forwarding Scale Profile Policy 493C H A P T E R 2 0

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xxi

Contents

Forwarding Scale Profile Policy Overview 493

Supported Platforms 495

Guidelines and Limitations 496

Configuring the Forwarding Scale Profile Policy Using the REST API 497

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xxii

Contents

Preface

This preface includes the following sections:

Audience
This guide is intended primarily for data center administrators with responsibilities and expertise in one or
more of the following:

• Virtual machine installation and administration

• Server administration

• Switch and network administration

• Cloud administration

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which the user supplies the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments separated by a vertical
bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments separated by a vertical bar
indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string will include the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information you must enter is in boldface screen font.boldface screen font

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xxiii

DescriptionConvention

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

This document uses the following conventions:

Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.Note

Means reader be careful. In this situation, you might do something that could result in equipment damage or
loss of data.

Caution

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work
on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard
practices for preventing accidents. Use the statement number provided at the end of each warning to locate
its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

Warning

Related Documentation
Cisco Application Centric Infrastructure (ACI) Documentation

The ACI documentation is available at the following URL: http://www.cisco.com/c/en/us/support/
cloud-systems-management/application-policy-infrastructure-controller-apic/
tsd-products-support-series-home.html.

Cisco Application Centric Infrastructure (ACI) Simulator Documentation

The Cisco ACI Simulator documentation is available at http://www.cisco.com/c/en/us/support/
cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html.

Cisco Nexus 9000 Series Switches Documentation

The Cisco Nexus 9000 Series Switches documentation is available at http://www.cisco.com/c/en/us/support/
switches/nexus-9000-series-switches/tsd-products-support-series-home.html.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xxiv

Preface
Related Documentation

http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-series-home.html

Cisco Application Virtual Switch Documentation

The Cisco Application Virtual Switch (AVS) documentation is available at http://www.cisco.com/c/en/us/
support/switches/application-virtual-switch/tsd-products-support-series-home.html.

Cisco Application Centric Infrastructure (ACI) Integration with OpenStack Documentation

Cisco ACI integration with OpenStack documentation is available at http://www.cisco.com/c/en/us/support/
cloud-systems-management/application-policy-infrastructure-controller-apic/
tsd-products-support-series-home.html.

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to apic-docfeedback@cisco.com. We appreciate your feedback.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xxv

Preface
Documentation Feedback

http://www.cisco.com/c/en/us/support/switches/application-virtual-switch/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/application-virtual-switch/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html
mailto:apic-docfeedback@cisco.com

Cisco APIC REST API Configuration Guide, Release 4.1(x)
xxvi

Preface
Documentation Feedback

C H A P T E R 1
New and Changed Information

• New and Changed Information, on page 1

New and Changed Information
The following tables provide an overview of the significant changes to this guide up to this current release.
The table does not provide an exhaustive list of all changes made to the guide or of the new features up to
this release.

Table 1: New and Changed Behavior in Cisco ACI, Release 4.1(1)

Where DocumentedDescriptionFeature

Managing Layer 4 to Layer 7
Services, on page 413

PBR support with Layer 1 or Layer
2 service device

L1/L2 PBR

Managing Layer 3 Networking, on
page 101

Support for Multicast Listener
Discovery (MLD) snooping

MLD snooping

Managing Layer 3 Networking, on
page 101

Support for Microsoft Network
Load Balancing (NLB)

Microsoft NLB

Cisco APIC REST API Configuration Guide, Release 4.1(x)
1

Cisco APIC REST API Configuration Guide, Release 4.1(x)
2

New and Changed Information
New and Changed Information

P A R T I
Part 1: Cisco APIC REST API Usage Guidelines

• Using the REST API, on page 5

C H A P T E R 2
Using the REST API

• About the REST API, on page 5
• Composing REST API Requests, on page 8
• Composing REST API Queries, on page 18
• REST API Examples, on page 27
• Accessing the REST API, on page 35
• REST API Tools, on page 45

About the REST API
The Application Policy Infrastructure Controller (APIC) REST API is a programmatic interface that uses
REST architecture. The API accepts and returns HTTP (not enabled by default) or HTTPS messages that
contain JavaScript Object Notation (JSON) or Extensible Markup Language (XML) documents. You can use
any programming language to generate the messages and the JSON or XML documents that contain the API
methods or Managed Object (MO) descriptions.

The REST API is the interface into the management information tree (MIT) and allows manipulation of the
object model state. The same REST interface is used by the APIC CLI, GUI, and SDK, so that whenever
information is displayed, it is read through the REST API, and when configuration changes are made, they
are written through the RESTAPI. The RESTAPI also provides an interface through which other information
can be retrieved, including statistics, faults, and audit events. It even provides a means of subscribing to
push-based event notification, so that when a change occurs in the MIT, an event can be sent through a web
socket.

Standard REST methods are supported on the API, which includes POST, GET, and DELETE operations
through HTTP. The POST and DELETE methods are idempotent, meaning that there is no additional effect
if they are called more than once with the same input parameters. The GET method is nullipotent, meaning
that it can be called zero or more times without making any changes (or that it is a read-only operation).

Payloads to and from the REST interface can be encapsulated through either XML or JSON encoding. In the
case of XML, the encoding operation is simple: the element tag is the name of the package and class, and any
properties of that object are specified as attributes of that element. Containment is defined by creating child
elements.

For JSON, encoding requires definition of certain entities to reflect the tree-based hierarchy; however, the
definition is repeated at all levels of the tree, so it is fairly simple to implement after it is initially understood.

• All objects are described as JSON dictionaries, in which the key is the name of the package and class.
The value is another nested dictionary with two keys: attribute and children.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
5

• The attribute key contains a further nested dictionary describing key-value pairs that define attributes on
the object.

• The children key contains a list that defines all the child objects. The children in this list are dictionaries
containing any nested objects, which are defined as described here.

Authentication

REST API username- and password-based authentication uses a special subset of request Universal Resource
Identifiers (URIs), including aaaLogin, aaaLogout, and aaaRefresh as the DN targets of a POST operation.
Their payloads contain a simple XML or JSON payload containing the MO representation of an aaaUser
object with the attribute name and pwd defining the username and password: for example, <aaaUser
name='admin' pwd='password'/>. The response to the POST operation will contain an authentication token
as both a Set-Cookie header and an attribute to the aaaLogin object in the response named token, for which
the XPath is /imdata/aaaLogin/@token if the encoding is XML. Subsequent operations on the REST API
can use this token value as a cookie named APIC-cookie to authenticate future requests.

Subscription

The REST API supports the subscription to one or more MOs during your active API session. When any MO
is created, changed, or deleted because of a user- or system-initiated action, an event is generated. If the event
changes the data on any of the active subscribed queries, the APIC will send out a notification to the API
client that created the subscription.

Management Information Model
All the physical and logical components that comprise the Application Centric Infrastructure fabric are
represented in a hierarchical management information model (MIM), also referred to as the MIT. Each node
in the tree represents an MO or group of objects that contains its administrative state and its operational state.

To view the MIM, see Cisco APIC Management Information Model Reference Guide.

The hierarchical structure starts at the top (Root) and contains parent and child nodes. Each node in this tree
is an MO and each object in the ACI fabric has a unique distinguished name (DN) that describes the object
and its place in the tree. MOs are abstractions of the fabric resources. An MO can represent a physical object,
such as a switch or adapter, or a logical object, such as a policy or fault.

Configuration policies make up the majority of the policies in the system and describe the configurations of
different ACI fabric components. Policies determine how the system behaves under specific circumstances.
Certain MOs are not created by users but are automatically created by the fabric (for example, power supply
objects and fan objects). By invoking the API, you are reading and writing objects to the MIM.

The information model is centrally stored as a logical model by the APIC, while each switch node contains
a complete copy as a concrete model. When a user creates a policy in the APIC that represents a configuration,
the APIC updates the logical model. The APIC then performs the intermediate step of creating a fully elaborated
policy from the user policy and then pushes the policy into all the switch nodes where the concrete model is
updated. The models are managed by multiple data management engine (DME) processes that run in the
fabric. When a user or process initiates an administrative change to a fabric component (for example, when
you apply a profile to a switch), the DME first applies that change to the information model and then applies
the change to the actual managed endpoint. This approach is called a model-driven framework.

The following branch diagram of a leaf switch port starts at the top Root of the ACI fabric MIT and shows a
hierarchy that comprises a chassis with two line module slots, with a line module in slot 2.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
6

Part 1: Cisco APIC REST API Usage Guidelines
Management Information Model

|——root———————————–– (root)
|——sys———————————––– (sys)

|——ch————————————————(sys/ch)
|——lcslot-1——————————(sys/ch/lcslot-1)
|——lcslot-2——————————(sys/ch/lcslot-2)

|——lc————————————————(sys/ch/lcslot-2/lc)
|——leafport-1————————(sys/ch/lcslot-2/lc/leafport-1)

Object Naming
You can identify a specific object by its distinguished name (DN) or by its relative name (RN).

You cannot rename an existing object. To simplify references to an object or group of objects, you can assign
an alias or a tag.

Note

Distinguished Name

The DN enables you to unambiguously identify a specific target object. The DN consists of a series of RNs:

dn = {rn}/{rn}/{rn}/{rn}...

In this example, the DN provides a fully qualified path for fabport-1 from the top of the object tree to the
object. The DN specifies the exact managed object on which the API call is operating.

< dn =”sys/ch/lcslot-1/lc/fabport-1” />

Relative Name

The RN identifies an object from its siblings within the context of its parent object. The DN contains a sequence
of RNs.

For example, this DN:

<dn = "sys/ch/lcslot-1/lc/fabport-1"/>

contains these RNs:

DescriptionClassRelative Name

Top level of this systemtop:Systemsys

Hardware chassis containereqpt:Chch

Line module slot 1eqpt:LCSlotlcslot-1

Line (I/O) moduleeqpt:LClc

Fabric-facing external I/O port 1eqpt:FabPfabport-1

Cisco APIC REST API Configuration Guide, Release 4.1(x)
7

Part 1: Cisco APIC REST API Usage Guidelines
Object Naming

Guidelines and Limitations for Using the REST API
The following guidelines and limitations apply when using the Cisco Application Policy Infrastructure
Controller (APIC) REST API:

• On scale setups, if you send generic class queries to the Cisco APIC that result in a large set of managed
objects, the queries intermittently fail due to a timeout with error code 503 and the following error
message:
Unable to deliver the message, destination is not available
Unable to process the query, result dataset is too big

For REST API queries on a class that has more than 100,000 objects across the fabric, the Cisco APIC
generates the indicated errors due to one of the following reasons:

• Cisco APIC does not respond with more than 100,000 objects to avoid an out-of-memory issue.
The APIC returns the "too big" error.

• Cisco APIC allows a maximum of 90 seconds to respond to any query that possibly timed out due
to having too many activities. In this case, the Cisco APIC responds with "destination not available"
because the destination could not finish the request in 90 seconds.

To mitigate this limitation:

• On a timeout response, such as "destinations not available," have the client retry from 3 to 5 times.

• If the response is the "too big" error, the client can use filtering to reduce the size of the result set.

• If the system page indicates that there are too many critical faults, we recommend that you take care
of the faults.

Composing REST API Requests

Read and Write Operations and Filters

Read Operations

After the object payloads are properly encoded as XML or JSON, they can be used in create, read, update, or
delete operations on the REST API. The following diagram shows the syntax for a read operation from the
REST API.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
8

Part 1: Cisco APIC REST API Usage Guidelines
Guidelines and Limitations for Using the REST API

Figure 1: REST syntax

Because the REST API is HTTP-based, defining the URI to access a certain resource type is important. The
first two sections of the request URI simply define the protocol and access details of the APIC. Next in the
request URI is the literal string /api, indicating that the API will be invoked. Generally, read operations are
for an object or class, as discussed earlier, so the next part of the URI specifies whether the operation will be
for an MO or class. The next component defines either the fully qualified domain name (DN) being queried
for object-based queries, or the package and class name for class-based queries. The final mandatory part of
the request URI is the encoding format: either .xml or .json. This is the only method by which the payload
format is defined. (The APIC ignores Content-Type and other headers.)

Write Operations

Both create and update operations in the REST API are implemented using the POST method, so that if an
object does not already exist, it will be created, and if it does already exist, it will be updated to reflect any
changes between its existing state and desired state.

Both create and update operations can contain complex object hierarchies, so that a complete tree can be
defined in a single command so long as all objects are within the same context root and are under the 1MB
limit for data payloads for the REST API. This limit is in place to guarantee performance and protect the
system under high loads.

The context root helps define a method by which the APIC distributes information to multiple controllers and
helps ensure consistency. For the most part, the configuration should be transparent to the user, though very
large configurations may need to be broken into smaller pieces if they result in a distributed transaction.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
9

Part 1: Cisco APIC REST API Usage Guidelines
Read and Write Operations and Filters

Figure 2: REST Payload

Create and update operations use the same syntax as read operations, except that they are always targeted at
an object level, because you cannot make changes to every object of a specific class (nor would you want to).
The create or update operation should target a specific managed object, so the literal string /mo indicates that
the DN of the managed object will be provided, followed next by the actual DN. Filter strings can be applied
to POST operations; if you want to retrieve the results of your POST operation in the response, for example,
you can pass the rsp-subtree=modified query string to indicate that you want the response to include any
objects that have been modified by your POST operation.

The payload of the POST operation will contain the XML or JSON encoded data representing the MO that
defines the Cisco API command body.

Filters

For a Cisco APICRESTAPI query of event records, the Cisco APIC system limits the response to a maximum
of 500,000 event records. If the response is more than 500,000 events, it returns an error. Use filters to refine
your queries. For more information, see Composing Query Filter Expressions in the Cisco APIC REST API
User Guide.

Note

The RESTAPI supports a wide range of flexible filters, useful for narrowing the scope of your search to allow
information to be located more quickly. The filters themselves are appended as query URI options, starting
with a question mark (?) and concatenated with an ampersand (&). Multiple conditions can be joined together
to form complex filters.

The following query filters are available:

Table 2: Query Filters

DescriptionCobra Query PropertySyntaxFilter Type

Define the scope of a
query

AbstractQuery.queryTarget{self | children | subtree}query-target

Cisco APIC REST API Configuration Guide, Release 4.1(x)
10

Part 1: Cisco APIC REST API Usage Guidelines
Read and Write Operations and Filters

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/4-x/rest-api-config/Cisco-APIC-REST-API-Configuration-Guide-42x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/4-x/rest-api-config/Cisco-APIC-REST-API-Configuration-Guide-42x.html

DescriptionCobra Query PropertySyntaxFilter Type

Respond-only elements
including the specified
class

AbstractQuery.classFilterclass nametarget-subtree-class

Respond-only elements
matching conditions

AbstractQuery.propFilterfilter expressionsquery-target-filter

Specifies child object
level included in the
response

AbstractQuery.subtree{no | children | full}rsp-subtree

Respond only specified
classes

AbstractQuery.subtreeClassFilterclass namersp-subtree-class

Respond only classes
matching conditions

AbstractQuery.subtreePropFilterfilter expressionsrsp-subtree-filter

Request additional objectsAbstractQuery.subtreeInclude{faults | health :stats :…}rsp-subtree-include

Sort the response based on
the property values

Not Implementedclassname.property | {asc
| desc}

order-by

Using Classes in REST API Commands
The Application Policy Infrastructure Controller (APIC) classes are crucial from an operational perspective
to understand how system events and faults relate to objects within the object model. Each event and/or fault
in the system is a unique object that can be accessed for configuration, health, fault, and/or statistics.

All the physical and logical components that make up the Cisco Application Centric Infrastructure (ACI)
fabric are represented in a hierarchical management information tree (MIT). Each node in the tree represents
a managed object (MO) or group of objects that contains its administrative state and its operational state.

To access the complete list of classes, point to the APIC and reference the doc/html directory at the end
of the URL:
https://apic-ip-address/doc/html/

Using Managed Objects in REST API Commands
Before performing an API operation on a managed object (MO) or its properties, you should view the object's
class definition in theCisco APIC Management Information Model Reference, which is a web-based document.
The Management Information Model (MIM) serves as a schema that defines rules such as the following:

• The classes of parent objects to which an MO can be attached

• The classes of child objects that can be attached to an MO

• The number of child objects of a class type that can be attached to an MO

• Whether a user can create, modify, or delete an MO, and the privilege level required to do so

• The properties (attributes) of an object class

Cisco APIC REST API Configuration Guide, Release 4.1(x)
11

Part 1: Cisco APIC REST API Usage Guidelines
Using Classes in REST API Commands

• The data type and range of a property

When you send an API command, the APIC checks the command for conformance with the MIM schema. If
an API command violates the MIM schema, the APIC rejects the command and returns an error message. For
example, you can create an MO only if it is allowed in the path you have specified in the command URI and
only if you have the required privilege level for that object class. You can configure an MO's properties only
with valid data, and you cannot create properties.

When composing an API command to create an MO, you need only include enough information in the
command's URI and data structure to uniquely define the newMO. If you omit the configuration of a property
when creating the MO, the property is populated with a default value if the MIM specifies one, or it is left
blank.

When modifying a property of an MO, you need only specify the property to be modified and its new value.
Other properties will be left unchanged.

Guidelines and Restrictions

• When you modify an MO that affects APIC or switch management communication policy, you might
experience a brief disruption of any operations in progress on any APIC or switch web interface in the
fabric. Configuration changes that can result in disruption include the following:

• Changing management port settings, such as port number

• Enabling or disabling HTTPS

• Changing the state of redirection to HTTPS

• Public key infrastructure (PKI) changes, such as key ring

• When you read an existing MO, any password property of the MO is read as blank for security reasons.
If you then write the MO back to APIC, the password property is written as blank.

If you need to store an MO with its password information, use a configuration
export policy. To store a specific MO, specify the MO as the target distinguished
name in the policy.

Tip

Creating the API Command
You can invoke an API command or query by sending an HTTP or HTTPS message to the APIC with a URI
of this form for an operation on a managed object (MO):

{http | https}://host[:port]/api/mo/dn. {json | xml}[?options]

Use this form for an operation on an object class:

{http | https}://host[:port]/api/class/className. {json | xml}[?options]

Cisco APIC REST API Configuration Guide, Release 4.1(x)
12

Part 1: Cisco APIC REST API Usage Guidelines
Creating the API Command

While the preceding examples use /api/mo and /api/class in the URI string, the APIC UI and Visore also
use the /api/node/mo and /api/node/class syntax in the URI string. Both formats are valid and are used
interchangeably in this document.

Note

This example shows a URI for an API operation that involves an MO of class fv:Tenant:

https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

URI Components

The components of the URI are as follows:

• http:// or https://—Specifies HTTP or HTTPS. By default, only HTTPS is enabled. HTTP or
HTTP-to-HTTPS redirection, if desired, must be explicitly enabled and configured, as described in
Configuring HTTP and HTTPS Using the GUI, on page 36. HTTP and HTTPS can coexist.

• host—Specifies the hostname or IP address of the APIC.

• :port—Specifies the port number for communicating with the APIC. If your system uses standard port
numbers for HTTP (80) or HTTPS (443), you can omit this component.

• /api/—Specifies that the message is directed to the API.

• mo | class—Specifies whether the target of the operation is an MO or an object class.

• dn—Specifies the distinguished name (DN) of the targeted MO.

• className—Specifies the name of the targeted class. This name is a concatenation of the package name
of the object queried and the name of the class queried in the context of the corresponding package.

For example, the class aaa:User results in a className of aaaUser in the URI.

• json | xml—Specifies whether the encoding format of the command or response HTML body is JSON
or XML.

• ?options—(Optional) Specifies one or more filters, selectors, or modifiers to a query. Multiple option
statements are joined by an ampersand (&).

The URI for an API Operation on an MO

In an API operation to create, read, update, or delete a specificMO, the resource path consists of /mo/ followed
by the DN of theMO as described in theCisco APIC Management Information Model Reference. For example,
the DN of a tenant object, as described in the reference definition of class fv:Tenant, is uni/tn-[name]. This
URI specifies an operation on an fv:Tenant object named ExampleCorp:

https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

Alternatively, in a POST operation, you can POST to /api/mo and provide the DN in the body of the message,
as in this example:

POST https://apic-ip-address/api/mo.xml

Cisco APIC REST API Configuration Guide, Release 4.1(x)
13

Part 1: Cisco APIC REST API Usage Guidelines
Creating the API Command

<fvTenant dn="uni/tn-ExampleCorp"/>

You can also provide only the name in the message body and POST to /api/mo and the remaining RN
components, as in this example:

POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp"/>

The URI for an API Operation on a Node MO

In an API operation to access an MO on a specific node device in the fabric, the resource path consists of
/mo/topology/pod-number/node-number/sys/ followed by the node component. For example, to access a
board sensor in chassis slot b of node-1 in pod-1, use this URI:

GET https://apic-ip-address/api/mo/topology/pod-1/node-1/sys/ch/bslot/board/sensor-3.json

The URI for an API Operation on a Class

In an API operation to get information about a class, the resource path consists of /class/ followed by the
name of the class as described in the Cisco APIC Management Information Model Reference. In the URI, the
colon in the class name is removed. For example, this URI specifies a query on the class aaa:User:

GET https://apic-ip-address/api/class/aaaUser.json

Composing the API Command Body
The HTML body of a POST operation must contain a JSON or XML data structure that provides the essential
information necessary to execute the command. No data structure is sent with a GET or DELETE operation.

Guidelines for Composing the API Command Body

• The data structure does not need to represent the entire set of attributes and elements of the target MO
or method, but it must provide at least the minimum set of properties or parameters necessary to identify
the MO and to execute the command, not including properties or parameters that are incorporated into
the URI.

• The data structure is a single tree in which all child nodes are unique with a unique DN. Duplicate nodes
are not allowed. You cannot make two changes to a node by including the same node twice. In this case,
you must merge your changes into a single node.

• In the data structure, the colon after the package name is omitted from class names and method names.
For example, in the data structure for an MO of class zzz:Object, label the class element as zzzObject.

• Although the JSON specification allows unordered elements, the APIC RESTAPI requires that the JSON
'attributes' element precede the 'children' array or other elements.

• If an XML data structure contains no children or subtrees, the object element can be self-closing.

• The API is case sensitive.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
14

Part 1: Cisco APIC REST API Usage Guidelines
Composing the API Command Body

• When sending an API command, with 'api' in the URL, the maximum size of the HTML body for the
API POST command is 1 MB.

• When uploading a device package file, with 'ppi' in the URL, the maximum size of the HTML body for
the POST command is 10 MB.

Composing the API Command Body to Call a Method
To compose a command to call a method, create a JSON or XML data structure containing the parameters of
the method using the method description in the Cisco APIC Management Information Model Reference.

The API reference for a typical method lists its input parameters, if any, and its return values, if any. The
method is called with a structure containing the essential input parameters, and a successful response returns
a complete structure containing the return values.

The description for a hypothetical method config:Method might appear in the API reference as follows:

Method config:Method(
inParameter1,
inParameter2,
inParameter3,
outParameter1,
outParameter2

)

The parameters beginning with "in" represent the input parameters. The parameters beginning with "out"
represent values returned by the method. Parameters with no "in" or "out" prefix are input parameters.

A JSON structure to call the method resembles the following structure:

{
"configMethod":
{
"attributes":
{
"inParameter1":"value1",
"inParameter2":"value2",
"inParameter3":"value3"

}
}

}

An XML structure to call the method resembles the following structure:

<configMethod
inParameter1="value1"
inParameter2="value2"
inParameter3="value3"

/>

The parameters of some methods include a substructure, such as filter settings or configuration settings for
an MO. For specific information, see the method description in the Cisco APIC Management Information
Model Reference.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
15

Part 1: Cisco APIC REST API Usage Guidelines
Composing the API Command Body to Call a Method

Composing the API Command Body for an API Operation on an MO
To compose a command to create, modify, or delete anMO, create a JSON or XML data structure that describes
the essential properties and children of the object's class by using the class description in the Cisco APIC
Management Information Model Reference. You can omit any attributes or children that are not essential to
execute the command.

A JSON structure for an MO of hypothetical class zzz:Object resembles this structure:

{
"zzzObject" : {
"attributes" : {
"property1" : "value1",
"property2" : "value2",
"property3" : "value3"

},
"children" :
[{

"zzzChild1" : {
"attributes" : {
"childProperty1" : "childValue1",
"childProperty2" : "childValue1"

},
"children" : []

}
}

]
}

}

An XML structure for an MO of hypothetical class zzz:Object resembles this structure:

<zzzObject
property1 = "value1",
property2 = "value2",
property3 = "value3">
<zzzChild1
childProperty1 = "childValue1",
childProperty2 = "childValue1">

</zzzChild1>
</zzzObject>

A successful operation returns a complete data structure for the MO.

Using Tags and Alias
To simplify API operations, you can assign tags or an alias to an object. In an API operation, you can refer
to the object or group of objects by the alias or tag name instead of by the distinguished name (DN). Tags and
aliases differ in their usage as follows:

• Tag—A tag allows you to group multiple objects by a descriptive name. You can assign the same tag
name to multiple objects and you can assign one or more tag names to an object.

• Alias—An alias can be a simpler and more descriptive name than the DN when referring to a single
object. You can assign a particular alias name to only one object. The system will prevent you from
assigning the same alias name to a second object.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
16

Part 1: Cisco APIC REST API Usage Guidelines
Composing the API Command Body for an API Operation on an MO

Not every object supports a tag. To determine whether an object is taggable, inspect the class of the object in
the Cisco APIC Management Information Model Reference. If the contained hierarchy of the object class
includes a tag instance (such as tag:AInst or a class that derives from tag:AInst), an object of that class can
be tagged.

Note

Adding Tags

You can add one or more tags by using the following syntax in the URI of an API POST operation:

/api /tag /mo/ dn . { json | xml } ? add = [, name, ...] [, name, ...]

In this syntax, name is the name of a tag and dn is the distinguished name of the object to which the tag is
assigned.

This example shows how to assign the tags tenants and orgs to the tenant named ExampleCorp:

POST https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml?add=tenants,orgs

Removing Tags

You can remove one or more tags by using the following syntax in the URI of an API POST operation:

/api /tag /mo / dn . { json | xml } ? remove = name [, name, ...]

This example shows how to remove the tag orgs from the tenant named ExampleCorp:

POST https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml?remove=orgs

You can delete all instances of a tag by using the following syntax in the URI of an API DELETE operation:

/api/ /tag / name . { json | xml }

This example shows how to remove the tag orgs from all objects:

DELETE https://apic-ip-address/api/tag/orgs.xml

Adding an Alias

You can add an alias by using the following syntax in the URI of an API POST operation:

/api /alias /mo/ dn . { json | xml } ? set = name

In this syntax, name is the name of the alias and dn is the distinguished name of the object to which the
alias is assigned.

This example shows how to assign the alias tenant8 to the tenant named ExampleCorp:

POST https://apic-ip-address/api/alias/mo/uni/tn-ExampleCorp.xml?set=tenant8

Cisco APIC REST API Configuration Guide, Release 4.1(x)
17

Part 1: Cisco APIC REST API Usage Guidelines
Using Tags and Alias

Removing an Alias

You can remove an alias by using the following syntax in the URI of an API POST operation:

/api /alias /mo / dn . { json | xml } ? clear = yes

This example shows how to remove any alias from the tenant named ExampleCorp:

POST https://apic-ip-address/api/alias/mo/uni/tn-ExampleCorp.xml?clear=yes

Additional Examples

In the examples in this section, the responses have been edited to remove attributes unrelated to tags.Note

This example shows how to find all tags assigned to the tenant named ExampleCorp:

GET https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml

RESPONSE:
<imdata>

<tagInst
dn="uni/tn-ExampleCorp/tag-tenants"
name="tenants"

/>
<tagInst

dn="uni/tn-ExampleCorp/tag-orgs"
name="orgs"

/>
</imdata>

This example shows how to find all objects with the tag 'tenants':

GET https://apic-ip-address/api/tag/tenants.xml

RESPONSE:
<imdata>

<fvTenant
dn="uni/tn-ExampleCorp"
name="ExampleCorp"

/>
</imdata>

Composing REST API Queries

Composing Query Filter Expressions
You can filter the response to an API query by applying an expression of logical operators and values.

A basic equality or inequality test is expressed as follows:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
18

Part 1: Cisco APIC REST API Usage Guidelines
Composing REST API Queries

query-target-filter=[eq|ne](attribute,value)

You can create a more complex test by combining operators and conditions using parentheses and commas:

query-target-filter=[and|or]([eq|ne](attribute,value),[eq|ne](attribute,value),...)

A scoping filter can contain a maximum of 20 '(attribute,value)' filter expressions. If the limit is exceeded,
the API returns an error.

Note

Available Logical Operators

This table lists the available logical operators for query filter expressions.

DescriptionOperator

Equal toeq

Not equal tone

Less thanlt

Greater thangt

Less than or equal tole

Greater than or equal toge

Betweenbw

Logical inversenot

Logical ANDand

Logical ORor

Logical exclusive ORxor

Boolean TRUEtrue

Boolean FALSEfalse

TRUE if at least one bit is setanybit

TRUE if all bits are setallbits

Wildcardwcard

Property holderpholder

Passive holderpassive

Cisco APIC REST API Configuration Guide, Release 4.1(x)
19

Part 1: Cisco APIC REST API Usage Guidelines
Composing Query Filter Expressions

Examples

This example returns all managed objects of class aaaUser whose last name is equal to "Washington":

GET https://apic-ip-address/api/class/aaaUser.json?
query-target-filter=eq(aaaUser.lastName,"Washington")

This example returns endpoint groups whose fabEncap property is "vxlan-12780288":

GET https://apic-ip-address/api/class/fvAEPg.xml?
query-target-filter=eq(fvAEPg.fabEncap,"vxlan-12780288")

This example shows all tenant objects with a current health score of less than 50:

GET https://apic-ip-address/api/class/fvTenant.json?
rsp-subtree-include=health,required

&
rsp-subtree-filter=lt(healthInst.cur,"50")

This example returns all endpoint groups and their faults under the tenant ExampleCorp:

GET https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml?
query-target=subtree

&
target-subtree-class=fvAEPg

&
rsp-subtree-include=faults

This example returns aaa:Domain objects whose names are not "infra" or "common":

GET https://apic-ip-address/api/class/aaaDomain.json?
query-target-filter=

and(ne(aaaDomain.name,"infra"),
ne(aaaDomain.name,"common"))

Applying Query Scoping Filters
You can limit the scope of the response to an API query by applying scoping filters. You can limit the scope
to the first level of an object or to one or more of its subtrees or children based on the class, properties,
categories, or qualification by a logical filter expression.

query-target={self | children | subtree}

This statement restricts the scope of the query. This list describes the available scopes:

• self —(Default) Considers only the MO itself, not the children or subtrees.

• children —Considers only the children of the MO, not the MO itself.

• subtree —Considers the MO itself and its subtrees.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
20

Part 1: Cisco APIC REST API Usage Guidelines
Applying Query Scoping Filters

target-subtree-class=mo-class1[,mo-class2]...

This statement specifies which object classes are to be considered when the query-target option is used
with a scope other than self . You can specify multiple desired object types as a comma-separated list with
no spaces.

To request subtree information, combine query-target=subtree with the target-subtree-class statement
to indicate the specific subtree as follows:

query-target=subtree&target-subtree-class=className

This example requests information about the running firmware. The information is contained in the
firmware:CtrlrRunning subtree (child) object of the APIC firmware status container
firmware:CtrlrFwStatusCont:
GET https://apic-ip-address/api/class/firmwareCtrlrFwStatusCont.json?

query-target=subtree&target-subtree-class=firmwareCtrlrRunning

query-target-filter=filter-expression

This statement specifies a logical filter to be applied to the response. This statement can be used by itself or
applied after the query-target statement.

rsp-subtree={no | children | full}

For objects returned, this option specifies whether child objects are included in the response. This list describes
the available choices:

• no —(Default) Response includes no children.

• children —Response includes only the children.

• full —Response includes the entire structure including the children.

rsp-subtree-class=mo-class

When child objects are to be returned, this statement specifies that only child objects of the specified object
class are included in the response.

rsp-subtree-filter=filter-expression

When child objects are to be returned, this statement specifies a logical filter to be applied to the child objects.

When an rsp-subtree-filter query statement includes a class.property operand, the specified class name
is used only to identify the property and its type. The returned results are not filtered by class, and may include
any child object that contains a property of the same name but belonging to a different class if that object's
property matches the query condition. To filter by class, you must use additional query filters.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
21

Part 1: Cisco APIC REST API Usage Guidelines
Applying Query Scoping Filters

rsp-subtree-include=category1[,category2...][option]

When child objects are to be returned, this statement specifies additional contained objects or options to be
included in the response. You can specify one or more of the following categories in a comma-separated list
with no spaces:

• audit-logs —Response includes subtrees with the history of user modifications to managed objects.

• event-logs —Response includes subtrees with event history information.

• faults —Response includes subtrees with currently active faults.

• fault-records —Response includes subtrees with fault history information.

• health —Response includes subtrees with current health information.

• health-records —Response includes subtrees with health history information.

• relations —Response includes relations-related subtree information.

• stats —Response includes statistics-related subtree information.

• tasks —Response includes task-related subtree information.

With any of the preceding categories, you can also specify one of the following options to further refine the
query results:

• count —Response includes a count of matching subtrees but not the subtrees themselves.

• no-scoped —Response includes only the requested subtree information. Other top-level information of
the target MO is not included in the response.

• required —Response includes only the managed objects that have subtrees matching the specified
category.

For example, to include fault-related subtrees, specify faults in the list. To return only fault-related subtrees
and no other top-level MO information, specify faults,no-scoped in the list as shown in this example:

query-target=subtree&rsp-subtree-include=faults,no-scoped

Some types of child objects are not created until the parent object has been pushed to a fabric node (leaf).
Until such a parent object has been pushed to a fabric node, a query on the parent object using the
rsp-subtree-include filter might return no results. For example, a class query for fvAEPg that includes the
query option rsp-subtree-include=stats will return stats only for endpoint groups that have been applied
to a tenant and pushed to a fabric node.

Note

rsp-prop-include={all | naming-only | config-only}

This statement specifies what type of properties should be included in the response when the rsp-subtree
option is used with an argument other than no .

• all —Response includes all properties of the returned managed objects.

• naming-only —Response includes only the naming properties of the returned managed objects.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
22

Part 1: Cisco APIC REST API Usage Guidelines
Applying Query Scoping Filters

• config-only —Response includes only the configurable properties of the returned managed objects.

If the managed object is not configurable or cannot be exported (backed up), the
managed object is not returned.

Note

Related Topics
Composing Query Filter Expressions, on page 18
Example: Using the JSON API to Get Running Firmware, on page 31

Filtering API Query Results
You can filter the results of an API query by appending one or more condition statements to the query URI
as a parameter in this format:

https://URI?condition[&condition[&...]]

Multiple condition statements are joined by an ampersand (&).

The condition statement must not contain spaces.Note

Options are available to filter by object attributes and object subtrees.

Filter Conditional Operators

The query filtering feature supports the following condition operators:

DescriptionOperator

Equal toeq

Not equal tone

Less thanlt

Greater thangt

Less than or equal tole

Greater than or equal toge

Betweenbw

Logical inversenot

Logical ANDand

Logical ORor

Cisco APIC REST API Configuration Guide, Release 4.1(x)
23

Part 1: Cisco APIC REST API Usage Guidelines
Filtering API Query Results

DescriptionOperator

Logical exclusive ORxor

Boolean TRUEtrue

Boolean FALSEfalse

TRUE if at least one bit is setanybit

TRUE if all bits are setallbits

Wildcardwcard

Property holderpholder

Passive holderpassive

Sorting and Paginating Query Results
When sending an API query that returns a large quantity of data, you can have the return data sorted and
paginated to make it easier to find the information you need.

Sorting the Results

By adding the order-by operator to the query URI, you can sort the query response by one or more properties
of a class, and you can specify the direction of the order using the following syntax.

order-by = classname . property [| { asc | desc }] [, classname . property [| { asc | desc }]] [,...]

Use the optional pipe delimiter ('|') to specify either ascending order (asc) or descending order (desc). If no
order is specified, the default is ascending order.

You can perform a multi-level sort by more than one property (for example, last name and first name), but
all properties must be of the same MO or they must be inherited from the same abstract class.

This example shows you how to sort users by last name, then by first name:

GET
https://apic-ip-address/api/class/aaaUser.json?order-by=aaaUser.lastName|asc,aaaUser.firstName|asc

Paginating the Results

By adding the page-size operator to the query URI, you can divide the query results into groups (pages) of
objects using the following syntax. The operand specifies the number of objects in each group.

page-size = number-of-objects-per-page

By adding the page operator in the query URI, you can specify a single group to be returned using the following
syntax. The pages start from number 0.

page = page-number

Cisco APIC REST API Configuration Guide, Release 4.1(x)
24

Part 1: Cisco APIC REST API Usage Guidelines
Sorting and Paginating Query Results

This example shows you how to specify 15 fault instances per page in descending order, returning only the
first page:

GET
https://apic-ip-address/api/class/faultInfo.json?order-by=faultInst.severity|desc&page=0&page-size=15

Every query, whether paged or not, generates a new set of results. When you perform a query that returns
only a single page, the query response includes a count of the total results, but the unsent pages are not stored
and cannot be retrieved by a subsequent query. A subsequent query generates a new set of results and returns
the page requested in that query.

Note

Subscribing to Query Results
When you perform an API query, you have the option to create a subscription to any future changes in the
results of that query that occur during your active API session. When any MO is created, changed, or deleted
because of a user- or system-initiated action, an event is generated. If that event changes the results of an
active subscribed query, the APIC generates a push notification to the API client that created the subscription.

Opening a WebSocket

The API subscription feature uses the WebSocket protocol (RFC 6455) to implement a two-way connection
with the API client through which the API can send unsolicited notification messages to the client. To establish
this notification channel, you must first open aWebSocket connection with the API. Only a singleWebSocket
connection is needed to support multiple query subscriptions with multiple APIC instances. The WebSocket
connection is dependent on your API session connection, and closes when your API session ends.

When MO events go through the event manager (eventmgr), clients receive notification of WebSocket
subscription for any MO. Although most of the APIC MOs do go through eventmgr, stats objects do not go
through it, because updates are very frequent and not scalable. Therefore, if you subscribe to stats objects,
you will receive no notification. Instead you can periodically query or export stats MOs.

Note

The WebSocket connection is typically opened by a JavaScript method in an HTML5-compliant browser, as
in the following example:

var Socket = new WebSocket(https://apic-ip-address/socket%TOKEN%);

In the URI, the %TOKEN% is the current API session token (cookie). This example shows the URI with
a token:

https://apic-ip-address/socketGkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6X
l83lyoR4bLBzqbSSU1R2NIgUotCGWjZt5JX6CJF0=

After the WebSocket connection is established, it is not necessary to resend the API session token when the
API session is refreshed.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
25

Part 1: Cisco APIC REST API Usage Guidelines
Subscribing to Query Results

Creating a Subscription

To create a subscription to a query, perform the query with the option ?subscription=yes. This example
creates a subscription to a query of the fv:Tenant class in the JSON format:

GET https://apic-ip-address/api/class/fvTenant.json?subscription=yes

To specify a refresh-timeout in seconds, perform the query with the option
?&subscription=yes&refresh-timeout=timeout-time , where timeout-time is the refresh-timeout in seconds.
This example creates a subscription to a query of the fv:Tenant class in the JSON format, with a refresh-timeout
of 140 seconds:

GET https://apic-ip-address/api/class/fvTenant.json?&subscription=yes&refresh-timeout=140

The query response contains a subscription identifier, subscriptionId , that you can use to refresh the
subscription and to identify future notifications from this subscription.

{
"subscriptionId" : "72057611234574337",
"imdata" : [{

"fvTenant" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "",
"dn" : "uni/tn-common",
"lcOwn" : "local",
"monPolDn" : "",
"name" : "common",
"replTs" : "never",
"status" : ""

}
}

}
]

}

Receiving Notifications

An event notification from the subscription delivers a data structure that contains the subscription ID and the
MO description. In this JSON example, a new user has been created with the name "sysadmin5":

{
"subscriptionId" : ["72057598349672454", "72057598349672456"],
"imdata" : [{

"aaaUser" : {
"attributes" : {
"accountStatus" : "active",
"childAction" : "",
"clearPwdHistory" : "no",
"descr" : "",
"dn" : "uni/userext/user-sysadmin5",
"email" : "",
"encPwd" : "TUxISkhH$VHyidGgBX0r7N/srt/YcMYTEn5248ommFhNFzZghvAU=",
"expiration" : "never",
"expires" : "no",
"firstName" : "",
"intId" : "none",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
26

Part 1: Cisco APIC REST API Usage Guidelines
Subscribing to Query Results

"lastName" : "",
"lcOwn" : "local",
"name" : "sysadmin5",
"phone" : "",
"pwd" : "",
"pwdLifeTime" : "no-password-expire",
"pwdSet" : "yes",
"replTs" : "2013-05-30T11:28:33.835",
"rn" : "",
"status" : "created"

}
}

}
]

}

Because multiple active subscriptions can exist for a query, a notification can contain multiple subscription
IDs as in the example shown.

Notifications are supported in either JSON or XML format.Note

Refreshing the Subscription

To continue to receive event notifications, you must periodically refresh each subscription during your API
session. To refresh a subscription, send an HTTP GET message to the API method subscriptionRefresh
with the parameter id equal to the subscriptionId as in this example:

GET https://apic-ip-address/api/subscriptionRefresh.json?id=72057611234574337

The API returns an empty response to the refresh message unless the subscription has expired.

The timeout period for a subscription is one minute. To prevent lost notifications, you must send a subscription
refresh message at least once every 60 seconds.

Note

REST API Examples

Information About the API Examples
In the examples, the JSON and XML structures have been expanded with line feeds, spaces, and indentations
for readability.

Example: Using the JSON API to Add a Leaf Port Selector Profile
This example shows how to add a leaf port selector profile.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
27

Part 1: Cisco APIC REST API Usage Guidelines
REST API Examples

As shown in the Cisco APIC Management Information Model Reference, this hierarchy of classes forms a
leaf port selector profile:

• fabric:LePortP — A leaf port profile is represented by a managed object (MO) of this class, which has
a distinguished name (DN) format of uni/fabric/leportp-[name], in which leportp-[name] is the
relative name (RN). The leaf port profile object is a template that can contain a leaf port selector as a
child object.

• fabric:LFPortS—A leaf port selector is represented by an MO of this class, which has a RN format
of lefabports-[name]-typ-[type]. The leaf port selector object can contain one or more ports or
ranges of ports as child objects.

• fabric:PortBlk — A leaf port or a range of leaf ports is represented by an MO of this class,
which has a RN format of portblk-[name].

The API command that creates the new leaf port selector profile MO can also create and configure the child
MOs.

This example creates a leaf port selector profile with the name "MyLPSelectorProf." The example profile
contains a selector named "MySelectorName" that selects leaf port 1 on leaf switch 1 and leaf ports 3 through
5 on leaf switch 1. To create and configure the new profile, send this HTTP POST message:

POST http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

{
"fabricLePortP" : {
"attributes" : {
"descr" : "Selects leaf ports 1/1 and 1/3-5"

},
"children" : [{

"fabricLFPortS" : {
"attributes" : {
"name" : "MySelectorName",
"type" : "range"

},
"children" : [{

"fabricPortBlk" : {
"attributes" : {
"fromCard" : "1",
"toCard" : "1",
"fromPort" : "1",
"toPort" : "1",
"name" : "block2"

}
}

}, {
"fabricPortBlk" : {
"attributes" : {
"fromCard" : "1",
"toCard" : "1",
"fromPort" : "3",
"toPort" : "5",
"name" : "block3"

}
}

}
]

}
}

]

Cisco APIC REST API Configuration Guide, Release 4.1(x)
28

Part 1: Cisco APIC REST API Usage Guidelines
Example: Using the JSON API to Add a Leaf Port Selector Profile

}
}

A successful operation returns this response body:

{
"imdata" : [{

"fabricLePortP" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"descr" : "Select leaf ports 1/1 and 1/3-5",
"dn" : "uni/fabric/leportp-MyLPSelectorProf",
"lcOwn" : "local",
"name" : "MyLPSelectorProf",
"replTs" : "never",
"rn" : "",
"status" : "created"

},
"children" : [{

"fabricLFPortS" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "",
"lcOwn" : "local",
"name" : "MySelectorName",
"replTs" : "never",
"rn" : "lefabports-MySelectorName-typ-range",
"status" : "created",
"type" : "range"

},
"children" : [{

"fabricPortBlk" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "",
"fromCard" : "1",
"fromPort" : "3",
"lcOwn" : "local",
"name" : "block3",
"replTs" : "never",
"rn" : "portblk-block3",
"status" : "created",
"toCard" : "1",
"toPort" : "5"

}
}

}, {
"fabricPortBlk" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "",
"fromCard" : "1",
"fromPort" : "1",
"lcOwn" : "local",
"name" : "block2",
"replTs" : "never",
"rn" : "portblk-block2",
"status" : "created",
"toCard" : "1",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
29

Part 1: Cisco APIC REST API Usage Guidelines
Example: Using the JSON API to Add a Leaf Port Selector Profile

"toPort" : "1"
}

}
}

]
}

}
]

}
}

]
}

To delete the new profile, send anHTTP POSTmessagewith a fabricLePortP attribute of "status":"deleted",
as in this example:

POST http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

{
"fabricLePortP" : {
"attributes" : {
"status" : "deleted"

}
}

}

Alternatively, you can send this HTTP DELETE message:

DELETE http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

Example: Using the JSON API to Get Information About a Node
This example shows how to query the APIC to access a node in the system.

To direct an API operation to a specific node device in the fabric, the resource path consists of
/mo/topology/pod-number/node-number/sys/ followed by the node component. For example, this URI
accesses board sensor 3 in chassis slot B of node 1:

GET http://apic-ip-address/api/mo/topology/pod-1/node-1/sys/ch/bslot/board/sensor-3.json

A successful operation returns a response body similar to this example:

{
"imdata" :
[{

"eqptSensor" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "",
"dn" : "topology/pod-1/node-1/sys/ch/bslot/board/sensor-3",
"id" : "3",
"majorThresh" : "0",
"mfgTm" : "not-applicable",
"minorThresh" : "0",
"model" : "",
"monPolDn" : "",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
30

Part 1: Cisco APIC REST API Usage Guidelines
Example: Using the JSON API to Get Information About a Node

"rev" : "0",
"ser" : "",
"status" : "",
"type" : "dimm",
"vendor" : "Cisco Systems, Inc."

}
}

}
]

}

Example: Using the JSON API to Get Running Firmware
This example shows how to query the APIC to determine which firmware images are running.

The detailed information on running firmware is contained in an object of class firmware:CtrlrRunning, which
is a child class (subtree) of the APIC firmware status container class firmware:CtrlrFwStatusCont. Because
there can be multiple running firmware instances (one per APIC instance), you can query the container class
and filter the response for the subtree of running firmware objects.

This example shows the API query message:

GET http://apic-ip-address/api/class/firmware:CtrlrFwStatusCont.json?
query-target=subtree
&
target-subtree-class=firmwareCtrlrRunning

A successful operation returns a response body similar to this example:

{
"imdata" : [{

"firmwareCtrlrRunning" : {
"attributes" : {
"instanceId" : "0:0",
"applId" : "3",
"childAction" : "",
"dn" : "Ctrlrfwstatuscont/ctrlrrunning-3",
"lcOwn" : "local",
"replTs" : "never",
"rn" : "",
"status" : "",
"ts" : "2012-12-31T16:00:00.000",
"type" : "ifc",
"version" : "1.1"

}
}

}, {
"firmwareCtrlrRunning" : {
"attributes" : {
"instanceId" : "0:0",
"applId" : "1",
"childAction" : "",
"dn" : "ctrlrfwstatuscont/ctrlrrunning-1",
"lcOwn" : "local",
"replTs" : "never",
"rn" : "",
"status" : "",
"ts" : "2012-12-31T16:00:00.000",
"type" : "ifc",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
31

Part 1: Cisco APIC REST API Usage Guidelines
Example: Using the JSON API to Get Running Firmware

"version" : "1.1"
}

}
}, {
"firmwareCtrlrRunning" : {
"attributes" : {
"instanceId" : "0:0",
"applId" : "2",
"childAction" : "",
"dn" : "ctrlrfwstatuscont/ctrlrrunning-2",
"lcOwn" : "local",
"replTs" : "never",
"rn" : "",
"status" : "",
"ts" : "2012-12-31T16:00:00.000",
"type" : "ifc",
"version" : "1.1"

}
}

}
]

}

This response describes three running instances of APIC firmware version 1.1.

Example: Using the JSON API to Get Top Level System Elements
This example shows how to query the APIC to determine what system devices are present.

General information about the system elements (APICs, spines, and leafs) is contained in an object of class
top:System.

This example shows the API query message:

GET http://apic-ip-address/api/class/topSystem.json

A successful operation returns a response body similar to this example:

{
"imdata" :
[{

"topSystem" : {
"attributes" : {
"instanceId" : "0:0",
"address" : "10.0.0.32",
"childAction" : "",
"currentTime" : "2013-06-14T04:13:05.584",
"currentTimeZone" : "",
"dn" : "topology/pod-1/node-17/sys",
"fabricId" : "0",
"id" : "17",
"inbMgmtAddr" : "0.0.0.0",
"lcOwn" : "local",
"mode" : "unspecified",
"name" : "leaf0",
"nodeId" : "0",
"oobMgmtAddr" : "0.0.0.0",
"podId" : "1",
"replTs" : "never",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
32

Part 1: Cisco APIC REST API Usage Guidelines
Example: Using the JSON API to Get Top Level System Elements

"role" : "leaf",
"serial" : "FOX-270308",
"status" : "",
"systemUpTime" : "00:00:02:03"

}
}

}, {
"topSystem" : {
"attributes" : {
"instanceId" : "0:0",
"address" : "10.0.0.1",
"childAction" : "",
"currentTime" : "2013-06-14T04:13:29.301",
"currentTimeZone" : "PDT",
"dn" : "topology/pod-1/node-1/sys",
"fabricId" : "0",
"id" : "1",
"inbMgmtAddr" : "0.0.0.0",
"lcOwn" : "local",
"mode" : "unspecified",
"name" : "apic0",
"nodeId" : "0",
"oobMgmtAddr" : "0.0.0.0",
"podId" : "0",
"replTs" : "never",
"role" : "apic",
"serial" : "",
"status" : "",
"systemUpTime" : "00:00:02:26"

}
}

}
]

}

This response indicates that the system consists of one APIC (node-1) and one leaf (node-17).

Example: Using the XML API and OwnerTag to Add Audit Log Information to
Actions

This example shows how to use the ownerTag or ownerKey property to add custom audit log information
when an object is created or modified.

All configurable objects contain the properties ownerTag and ownerKey , which are user-configurable
string properties. When any configurable object is created or modified by a user action, an audit log record
object (aaa:ModLR) is automatically created to contain information about the change to be reported in the
audit log. The audit log record object includes a list (the changeSet property) of the configured object's
properties that were changed by the action. In the command to create or modify the configurable object, you
can add your own specific tracking information, such as a job ticket number or the name of the person making
the change, to the ownerTag or ownerKey property of the configurable object. This tracking information
will then be included in the audit log record along with the details of the change.

The ownerTag information will appear in the log only when the ownerTag contents have been changed.
To include the same information in a subsequent configuration change, you can clear the ownerTag contents
before making the next configuration change. This condition applies also to the ownerKey property.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
33

Part 1: Cisco APIC REST API Usage Guidelines
Example: Using the XML API and OwnerTag to Add Audit Log Information to Actions

In the following example, a domain reference is added to a tenant configuration. As part of the command, the
operator's name is entered as the ownerKey and a job number is entered as the ownerTag .

POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name=“ExampleCorp" ownerKey=“georgewa" ownerTag=“chg:00033">
<aaaDomainRef name=“ExampleDomain" ownerKey=“georgewa" ownerTag="chg:00033"/>

</fvTenant>

In this case, two aaa:ModLR records are generated — one for the fv:Tenant object and one for the
aaa:DomainRef object. Unless the ownerKey or ownerTag properties are unchanged from a previous
configuration, their new values will appear in the changeSet list of the aaa:ModLR records, and this
information will appear in the audit log record that reports this configuration change.

Example: XML Get Endpoints (Devices) with IP and MAC Addresses
The fvCEp class can be used to derive a list of endpoints (devices) attached to the fabric and the associated
IP and MAC address and the encapsulation for each object.

Use an XML query, such as the following example, to get a list of endpoints with the IP and MAC address for each one:

Example:
GET https://apic-ip-address/api/node/class/fvCEp.xml

Example: Monitoring Using the REST API
In the examples in this topic, the JSON and XML structures have been expanded with line feeds, spaces, and
indentations for readability.

XML Example: Get the Current List of Faults in the Fabric

You can use the faultInst class to derive all faults associated with the fabric, tenant, or individual managed
objects within the APIC. Send a query with XML such as this example:
GET https://apic-ip-address/api/node/class/faultInst.xml?
query-target-filter=and(eq(faultInst.cause,"config-failure"))

XML Example: Get the Current List of Faults in the Fabric That Were Caused by a Failed Configuration

You can also use the fault Inst class with filters to limit the response to faults that were caused by a failed
configuration, with XML such as this example:
GET https://apic-ip-address/api/node/class/faultInst.xml?
query-target-filter=and(e(stultification,"config-failure"))

XML Example: Get the Properties for a Specific Managed Object, DN

You can use aMO query to obtain the properties of the tenant name, with XML such as the following example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
34

Part 1: Cisco APIC REST API Usage Guidelines
Example: XML Get Endpoints (Devices) with IP and MAC Addresses

GET https://apic-ip-address/api/node/mo/uni/tn-common.xml?query-target=self

Accessing the REST API

Accessing the REST API

By using a script or a browser-based REST client, you can send an API POST or GET message of the form: https://
apic-ip-address /api/ api-message-url

Use the out-of-band management IP address that you configured during the initial setup.

• Only https is enabled by default. By default, http and http-to-https redirection are disabled.

• You must send an authentication message to initiate an API session. Use the administrator login name and
password that you configured during the initial setup.

Note

Invoking the API
You can invoke an API function by sending an HTTP/1.1 or HTTPS POST, GET, or DELETE message to
the Application Policy Infrastructure Controller (APIC). The HTML body of the POST message contains a
Javascript Object Notation (JSON) or XML data structure that describes anMO or an API method. The HTML
body of the response message contains a JSON or XML structure that contains requested data, confirmation
of a requested action, or error information.

The root element of the response structure is imdata. This element is merely a container for the response; it
is not a class in the management information model (MIM).

Note

Configuring the HTTP Request Method and Content Type
API commands and queries must use the supported HTTP or HTTPS request methods and header fields, as
described in the following sections.

For security, only HTTPS is enabled as the default mode for API communications. HTTP and
HTTP-to-HTTPS redirection can be enabled if desired, but are less secure. For simplicity, this document refers
to HTTP in descriptions of protocol components and interactions.

Note

Request Methods

The API supports HTTP POST, GET, and DELETE request methods as follows:

• An API command to create or update anMO, or to execute a method, is sent as an HTTP POSTmessage.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
35

Part 1: Cisco APIC REST API Usage Guidelines
Accessing the REST API

• An API query to read the properties and status of an MO, or to discover objects, is sent as an HTTP GET
message.

• An API command to delete an MO is sent as either an HTTP POST or DELETE message. In most cases,
you can delete an MO by setting its status to deleted in a POST operation.

Other HTTP methods, such as PUT, are not supported.

Although the DELETE method is supported, the HTTP header might show only these:
Access-Control-Allow-Methods: POST, GET, OPTIONS

Note

Content Type

The API supports either JSON or XML data structures in the HTML body of an API request or response. You
must specify the content type by terminating the URI pathname with a suffix of either .json or .xml to indicate
the format to be used. The HTTP Content-Type and Accept headers are ignored by the API.

Configuring HTTP and HTTPS Using the GUI
This procedure configures the supported communication protocol for access to the GUI and the REST API.

By default, only HTTPS is enabled. HTTP or HTTP-to-HTTPS redirection, if desired, must be explicitly
enabled and configured. HTTP and HTTPS can coexist.

Step 1 On the menu bar, click Fabric > Fabric Policies.
Step 2 In the Navigation pane, expand Policies > Pod > Management Access.
Step 3 Under Management Access, click the default policy.
Step 4 In the Work pane, in the HTTP or HTTPS areas, enable or disable the protocol by selecting the desired state from the

Admin State drop-down list.
Step 5 In the HTTP area, enable or disable HTTP-to-HTTPS redirection by selecting the desired state from the Redirect

drop-down list.
Step 6 Click Submit.

Configuring HTTP and HTTPS Throttling Using the CLI
This procedure limits the rate of HTTP and HTTPS requests to the GUI and the REST API.

This procedure describes how to configure HTTP and HTTPS AAA login throttling. For information on
configuring the NGINX rate limit (global throttling), see the Cisco ACI Support for NGINX Rate Limit
document.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
36

Part 1: Cisco APIC REST API Usage Guidelines
Configuring HTTP and HTTPS Using the GUI

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/cisco-aci-support-for-nginx-rate-limit.html

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

apic1# configure terminal
apic1(config)#

Create a new communications policy or edit an existing
policy, such as the default policy.

comm-policy policy-name

Example:

Step 2

apic1(config)# comm-policy default
apic1(config-comm-policy)#

Select HTTP or HTTPS for throttling configuration.http | https

Example:

Step 3

apic1(config-comm-policy)# https
apic1(config-https)#

Enable or disable throttling on the selected protocol. The
no prefix disables throttling.

[no] enable-throttle

Example:

Step 4

apic1(config-https)# enable-throttle
apic1(config-https)#

Set the maximum rate of requests per second.throttle 1-100

Example:

Step 5

apic1(config-https)# throttle 50
apic1(config-https)#

Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI
CAUTION: PERFORM THIS TASK ONLY DURING A MAINTENANCE WINDOW AS THERE IS A
POTENTIAL FORDOWNTIME. The downtime affects access to the Cisco Application Policy Infrastructure
Controller (APIC) cluster and switches from external users or systems and not the Cisco APIC to switch
connectivity. The NGINX process on the switches will also be impacted, but that will be only for external
connectivity and not for the fabric data plane. Access to the Cisco APIC, configuration, management,
troubleshooting, and such will be impacted. The NGINX web server running on the Cisco APIC and switches
will be restarted during this operation.

Before you begin

Determine from which authority you will obtain the trusted certification so that you can create the appropriate
Certificate Authority.

Step 1 On the menu bar, choose Admin > AAA.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
37

Part 1: Cisco APIC REST API Usage Guidelines
Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI

Step 2 In the Navigation pane, choose Security.
Step 3 In the Work pane, choose Public Key Management > Certificate Authorities > Create Certificate Authority.
Step 4 In the Create Certificate Authority dialog box, in the Name field, enter a name for the certificate authority.
Step 5 In the Certificate Chain field, copy the intermediate and root certificates for the certificate authority that will sign the

Certificate Signing Request (CSR) for the Cisco APIC.

The certificate should be in Base64 encoded X.509 (CER) format. The intermediate certificate is placed before the root
CA certificate. It should look similar to the following example:
-----BEGIN CERTIFICATE-----
<Intermediate Certificate>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Root CA Certificate>
-----END CERTIFICATE-----

Step 6 Click Submit.
Step 7 In the Navigation pane, choose Public Key Management > Key Rings.
Step 8 In the Work pane, choose Actions > Create Key Ring.

The key ring enables you to manage a private key (imported from external device or internally generated on APIC), a
CSR generated by the private key, and the certificate signed via the CSR.

Step 9 In the Create Key Ring dialog box, in the Name field, enter a name.
Step 10 In the Certificate field, do not add any content if you will generate a CSR using the Cisco APIC through the key ring.

Alternately, add the signed certificate content if you already have one that was signed by the CA from the previous
steps by generating a private key and CSR outside of the Cisco APIC,

Step 11 In the Modulus field, click the radio button for the desired key strength.
Step 12 In the Certificate Authority field, from the drop-down list, choose the certificate authority that you created earlier,

then click Submit.
Step 13 In the Private Key field, do not add any content if you will generate a CSR using the Cisco APIC through the key ring.

Alternately, add the private key used to generate the CSR for the signed certificate that you entered in step 10.

Do not delete the key ring. Deleting the key ring will automatically delete the associated private key used with
CSRs.

Note

If you have not entered the signed certificate and the private key, in the Work pane, in the Key Rings area, the Admin
State for the key ring created displays Started, waiting for you to generate a CSR. Proceed to step 14.

If you entered both the signed certificate and the private key, in the Key Rings area, the Admin State for the key ring
created displays Completed. Proceed to step 23.

Step 14 In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.
Step 15 In the Work pane, choose Actions > Create Certificate Request.
Step 16 In the Subject field, enter the common name (CN) of the CSR.

You can enter the fully qualified domain name (FQDN) of the Cisco APICs using a wildcard, but in a modern certificate,
we generally recommend that you enter an identifiable name of the certificate and enter the FQDN of all Cisco APICs
in the Alternate Subject Name field (also known as the SAN – Subject Alternative Name) because many modern
browsers expect the FQDN in the SAN field.

Step 17 In the Alternate Subject Name field, enter the FQDN of all Cisco APICs, such as
"DNS:apic1.example.com,DNS:apic2.example.com,DNS:apic3.example.com" or "DNS:*example.com".

Cisco APIC REST API Configuration Guide, Release 4.1(x)
38

Part 1: Cisco APIC REST API Usage Guidelines
Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI

Alternatively, if you want SAN to match an IP address, enter the Cisco APICs' IP addresses with the following format:
IP:192.168.2.1

You can use DNS names, IPv4 addresses, or a mixture of both in this field. IPv6 addresses are not supported.

Step 18 Fill in the remaining fields as appropriate.

Check the online help information available in the Create Certificate Request dialog box for a description of
the available parameters.

Note

Step 19 Click Submit.

Inside the same key ring, the Associated Certificate Request area is now displayed with the Subject, Alternate
Subject Name and other fields you entered in the previous steps along with the new field Request, which contains the
content of the CSR that is tied to this key ring. Copy the content from the Request field to submit the content to the
same certificate authority that is tied to this key ring for signing.

Step 20 In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.
Step 21 In the Work pane, in the Certificate field, paste the signed certificate that you received from the certificate authority.
Step 22 Click Submit.

If the CSRwas not signed by the Certificate Authority indicated in the key ring, or if the certificate hasMS-DOS
line endings, an error message is displayed and the certificate is not accepted. Remove theMS-DOS line endings.

Note

The key is verified, and in the Work pane, the Admin State changes to Completed and is now ready for use in the
HTTP policy.

Step 23 On the menu bar, choose Fabric > Fabric Policies.
Step 24 In the Navigation pane, choose Pod Policies > Policies > Management Access > default.
Step 25 In the Work pane, in the Admin Key Ring drop-down list, choose the desired key ring.
Step 26 (Optional) For Certificate based authentication, in the Client Certificate TP drop-down list, choose the previously

created Local User policy and click Enabled for Client Certificate Authentication state.
Step 27 Click Submit.

All web servers restart. The certificate is activated, and the non-default key ring is associated with HTTPS access.

What to do next

You must remain aware of the expiration date of the certificate and take action before it expires. To preserve
the same key pair for the renewed certificate, you must preserve the CSR as it contains the public key that
pairs with the private key in the key ring. Before the certificate expires, the same CSR must be resubmitted.
Do not delete or create a new key ring as deleting the key ring will delete the private key stored internally on
the Cisco APIC.

Authenticating and Maintaining an API Session
Before you can access the API, you must first log in with the name and password of a configured user.

When a login message is accepted, the API returns a data structure that includes a session timeout period in
seconds and a token that represents the session. The token is also returned as a cookie in the HTTP response
header. To maintain your session, you must send an aaaRefresh message as a POST or GET to the API, as

Cisco APIC REST API Configuration Guide, Release 4.1(x)
39

Part 1: Cisco APIC REST API Usage Guidelines
Authenticating and Maintaining an API Session

described below, where the message is sent within the session timeout period. The token changes each time
that the session is refreshed.

The default session timeout period is 300 seconds or 5 minutes.Note

These API methods enable you to manage session authentication:

• aaaLogin —Sent as a POST message, this method logs in a user and opens a session. The message body
contains an aaa:User object with the name and password attributes, and the response contains a session
token and cookie. If multiple AAA login domains are configured, you must prepend the user's name with
apic: domain \\ .

• aaaRefresh —Sent as a GET message with no message body or as a POST message with the aaaLogin
message body, this method resets the session timer. The response contains a new session token and
cookie.

• aaaLogout—Sent as a POSTmessage, this method logs out the user and closes the session. Themessage
body contains an aaa:User object with the name attribute. The response contains an empty data structure.

• aaaListDomains —Sent as a GET message, this method returns a list of valid AAA login domains. You
can send this message without logging in.

You can call the authentication methods using this syntax, specifying either JSON or XML data structures:

{ http | https } :// host [:port] /api/ methodName . { json | xml }

This example shows a user login message that uses a JSON data structure:

POST https://apic-ip-address/api/aaaLogin.json

{
"aaaUser" : {
"attributes" : {
"name" : "georgewa",
"pwd" : "paSSword1"

}
}

}

This example shows part of the response upon a successful login, including the token and the refresh timeout
period:

RESPONSE:
{
"imdata" : [{

"aaaLogin" : {
"attributes" : {
"token" :

"GkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3
bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6Xl83lyoR4bLBzqbSSU1R2N
IgUotCGWjZt5JX6CJF0=",

"refreshTimeoutSeconds" : "300",
"lastName" : "Washington",
"firstName" : "George"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
40

Part 1: Cisco APIC REST API Usage Guidelines
Authenticating and Maintaining an API Session

},
"children" : [{

...
[TRUNCATED]

...
}

In the preceding example, the refreshTimeoutSeconds attribute indicates that the session timeout period is
300 seconds.

This example shows how to request a list of valid login domains:

GET https://apic-ip-address/api/aaaListDomains.json

RESPONSE:
{
"imdata": [{
"name": "ExampleRadius"

},
{
"name": "local",
"guiBanner": "San Jose Fabric"

}]
}

In the preceding example, the response data shows two possible login domains, 'ExampleRadius' and 'local.'
The following example shows a user login message for the ExampleRadius login domain:

POST https://apic-ip-address/api/aaaLogin.json

{
"aaaUser" : {
"attributes" : {
"name" : "apic:ExampleRadius\\georgewa",
"pwd" : "paSSword1"

}
}

}

Requiring a Challenge Token for an API Session
For stronger API session security, you can require your session to use a challenge token. When you request
this feature during login, the API returns a token string that you must include in every subsequent message
to the API. Unlike the normal session token, the challenge token is not stored as a cookie to be automatically
provided by your browser. Your API commands and queries must provide the challenge token using one of
the following methods:

• The challenge token is sent as a 'challenge' parameter in the URI of your API message.

• The challenge token is part of the HTTP or HTTPS header using 'APIC-challenge'.

To initiate a session that requires a challenge token, include the URI parameter statement
?gui-token-request=yes in your login message, as shown in this example:

POST https://192.0.20.123/api/aaaLogin.json?gui-token-request=yes

Cisco APIC REST API Configuration Guide, Release 4.1(x)
41

Part 1: Cisco APIC REST API Usage Guidelines
Requiring a Challenge Token for an API Session

The response message body contains an attribute of the form "urlToken":"token", where token is a long
string of characters representing the challenge token. All subsequent messages to the API during this session
must include the challenge token, as shown in this example where it is sent as a 'challenge' URI parameter:

GET https://192.0.20.123/api/class/aaaUser.json?challenge=fa47e44df54562c24fef6601dc...

This example shows how the challenge token is sent as an 'APIC-challenge' field in the HTTP header:

GET //api/class/aaaUser.json
HTTP/1.1
Host: 192.0.20.123
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml,application/json
APIC-challenge: fa47e44df54562c24fef6601dcff72259299a077336aecfc5b012b036797ab0f
.
.
.

Logging In
You can log in to the APIC REST API by sending a valid username and password in a data structure to the
aaaLogin APImethod, as described in Authenticating andMaintaining an API Session, on page 39. Following
a successful login, you must periodically refresh the session.

The following examples show how to log in as an administrator, refresh the session during configuration, and
log out using XML and JSON.

At this time, the aaaLogout method returns a response but does not end a session. Your session ends after
a refresh timeout when you stop sending aaaRefresh messages.

Note

Changing Your Own User Credentials
When logged in to APIC, you can change your own user credentials, including your password, SSH key, and
X.509 certificate. The following API methods are provided for changing the user credentials of the logged-in
user:

• changeSelfPassword

• changeSelfSshKey

• changeSelfX509Cert

Using these methods, you can change the credentials only for the account under which you are logged in.Note

The message body of each method contains the properties of the object to be modified. The properties are
shown in the Cisco APIC Management Information Model Reference.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
42

Part 1: Cisco APIC REST API Usage Guidelines
Logging In

Changing Your Password

To change your password, send the changeSelfPassword API method, which modifies the
aaa:changePassword object. The following object properties are required in the message body:

• userName—Your login ID.

• oldPassword—Your current password.

• newPassword—Your new password.

This example, when sent by User1, changes the password for User1.

POST http://192.0.20.123/api/changeSelfPassword.json

{
"aaaChangePassword" : {
"attributes" : {
"userName" : "User1",
"oldPassword" : "p@$sw0rd",
"newPassword" : "dr0ws$@p"

}
}

}

A successful operation returns an empty imdata element, as in this example:

{
"totalCount" : "0",
"imdata" : []

}

Changing Your SSH Key

To change your SSH key, send thechangeSelfSshKeyAPImethod, whichmodifies the aaa:changeSshKey
object. The following object properties are required in the message body:

• userName—Your login ID.

• name— The symbolic name of the key. APIC supports up to 32 SSH keys for a single user.

• data—Your new SSH key.

This example, when sent by User1, changes the SSH key for User1.

POST http://192.0.20.123/api/changeSelfSshKey.json

{
"aaaChangeSshKey" : {
"attributes" : {
"userName" : "User1",
"name" : "A",
"data" : "ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAuKxY5E4we6uCR2z== key@example.com"

}
}

}

Cisco APIC REST API Configuration Guide, Release 4.1(x)
43

Part 1: Cisco APIC REST API Usage Guidelines
Changing Your Own User Credentials

A successful operation returns an empty imdata element.

Changing Your X.509 Certificate

To change your X.509 certificate, send the changeSelfX509Cert API method, which modifies the
aaa:changeX509Cert object. The following object properties are required in the message body:

• userName—Your login ID.

• name— The symbolic name of the certificate. APIC supports up to 32 X.509 certificates for a single
user.

• data— The entire data body of your new X.509 certificate.

This example, when sent by User1, changes the X.509 certificate for User1.

POST http://192.0.20.123/api/changeSelfX509Cert.json

{
"aaaChangeX509Cert" : {
"attributes" : {
"userName" : "User1",
"name" : "A",
"data" : "-----BEGIN CERTIFICATE-----\nMIIE2TCCA8GgAwIBAgIKamlnsw

[EXAMPLE TRUNCATED]

1BCIolblPFft6QKoSJFjB6thJksaE5/k3Npf\n-----END CERTIFICATE-----"
}

}
}

A successful operation returns an empty imdata element.

Deleting an SSH Key or X.509 Certificate

To delete a key or certificate, send the key or certificate change method with the name of the key or certificate
to be deleted and with the data attribute blank.

This example, when sent by User1, deletes the SSH key for User1.

POST http://192.0.20.123/api/changeSelfSshKey.json

{
"aaaChangeSshKey" : {
"attributes" : {
"userName" : "User1",
"name" : "A",
"data" : ""

}
}

}

A successful operation returns an empty imdata element.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
44

Part 1: Cisco APIC REST API Usage Guidelines
Changing Your Own User Credentials

REST API Tools

Management Information Model Reference
The Management Information Model (MIM) contains all of the managed objects in the system and their
properties. For details, see the Cisco APIC Management Information Model Reference Guide.

See the following figure for an example of how an administrator can use the MIM to research an object in the
MIT.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
45

Part 1: Cisco APIC REST API Usage Guidelines
REST API Tools

Figure 3: MIM Reference

Cisco APIC REST API Configuration Guide, Release 4.1(x)
46

Part 1: Cisco APIC REST API Usage Guidelines
Management Information Model Reference

Viewing an API Interchange in the GUI
When you perform a task in the APIC graphical user interface (GUI), the GUI creates and sends internal API
messages to the operating system to execute the task. By using the API Inspector, which is a built-in tool of
the APIC, you can view and copy these API messages. A network administrator can replicate these messages
in order to automate key operations, or you can use the messages as examples to develop external applications
that will use the API. .

Step 1 Log in to the APIC GUI.
Step 2 In the upper right corner of the APIC window, click the "welcome, <name>" message to view the drop-down list.
Step 3 In the drop-down list, choose the Show API Inspector.

The API Inspector opens in a new browser window.

Step 4 In the Filters toolbar of the API Inspector window, choose the types of API log messages to display.

The displayed messages are color-coded according to the selected message types. This table shows the available message
types:

DescriptionName

Displays trace messages.trace

Displays debug messages. This type includes most API commands and responses.debug

Displays informational messages.info

Displays warning messages.warn

Displays error messages.error

Displays fatal messages.fatal

Checking this checkbox causes all other checkboxes to become checked. Unchecking any other
checkbox causes this checkbox to be unchecked.

all

Step 5 In the Search toolbar, you can search the displayed messages for an exact string or by a regular expression.

This table shows the search controls:

DescriptionName

In this text box, enter a string for a direct search or enter a regular expression for a regex search.
As you type, the first matched field in the log list is highlighted.

Search

Click this button to clear the contents of the Search text box.Reset

Check this checkbox to use the contents of the Search text box as a regular expression for a search.Regex

Check this checkbox to make the search case sensitive.Match case

Check this checkbox to disable the search and clear the highlighting of search matches in the log
list.

Disable

Click this button to cause the log list to scroll to the next matched entry. This button appears only
when a search is active.

Next

Cisco APIC REST API Configuration Guide, Release 4.1(x)
47

Part 1: Cisco APIC REST API Usage Guidelines
Viewing an API Interchange in the GUI

DescriptionName

Click this button to cause the log list to scroll to the previous matched entry. This button appears
only when a search is active.

Previous

Check this checkbox to hide nonmatched lines. This checkbox appears only when a search is active.Filter

Check this checkbox to highlight all matched fields. This checkbox appears only when a search is
active.

Highlight all

Step 6 In the Options toolbar, you can arrange the displayed messages.

This table shows the available options:

DescriptionName

Check this checkbox to enable logging.Log

Check this checkbox to enable wrapping of lines to avoid horizontal scrolling of the log listWrap

Check this checkbox to display log entries in reverse chronological order.Newest at the top

Check this checkbox to scroll immediately to the latest log entry.Scroll to latest

Click this button to clear the log list.Clear

Click this button to close the API Inspector.Close

Example

This example shows two debug messages in the API Inspector window:

13:13:36 DEBUG - method: GET url: http://192.0.20.123/api/class/infraInfra.json
response: {"imdata":[{"infraInfra":{"attributes":{"instanceId":"0:0","childAction":"",
"dn":"uni/infra","lcOwn":"local","name":"","replTs":"never","status":""}}}]}

13:13:40 DEBUG - method: GET url: http://192.0.20.123/api/class/l3extDomP.json?
query-target=subtree&subscription=yes
response: {"subscriptionId":"72057598349672459","imdata":[]}

Testing the API Using Browser Add-Ons

Using a Browser

To test an API request, you can assemble an HTTP message, send it, and inspect the response using a browser
add-on utility. RESTful API clients, which are available as add-ons for most popular browsers, provide a
user-friendly interface for interacting with the API. Clients include the following:

• For Firefox/Mozilla—Poster, RESTClient

• For Chrome—Advanced REST client, Postman

Cisco APIC REST API Configuration Guide, Release 4.1(x)
48

Part 1: Cisco APIC REST API Usage Guidelines
Testing the API Using Browser Add-Ons

Browser add-ons pass the session token as a cookie so that there is no need to include the token in the payload
data structure.

Testing the API with cURL
You can send API messages from a console or a command-line script using cURL, which is a tool for
transferring files using URL syntax.

To send a POST message, create a file that contains the JSON or XML command body, and then enter the
cURL command in this format:

curl -X POST --data "@<filename>" <URI>

You must specify the name of your descriptor file and the URI of the API operation.

Make sure to include the "@" symbol before the descriptor filename.Note

This example creates a new tenant named ExampleCorp using the JSON data structure in the file
"newtenant.json":

curl -X POST --data "@newtenant.json" https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

To send a GET message, enter the cURL command in this format:

curl -X GET <URI>

This example reads information about a tenant in JSON format:

curl -X GET https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

When testing with cURL, you must log in to the API, store the authentication token, and include the token in
subsequent API operations.

Note

Related Topics
Example: Using the JSON API to Add a User with cURL

Cisco APIC Python SDK
The Python API provides a Python programming interface to the underlying REST API, allowing you to
develop your own applications to control the APIC and the network fabric, enabling greater flexibility in
infrastructure automation, management, monitoring and programmability.

The Python API supports Python version 2.7.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
49

Part 1: Cisco APIC REST API Usage Guidelines
Testing the API with cURL

For more information, see Cisco APIC Python SDK Documentation, Installing the Cisco APIC Python SDK
and http://www.python-requests.org.

Using the Managed Object Browser (Visore)
The Managed Object Browser, or Visore, is a utility built into the APIC that provides a graphical view of the
managed objects (MOs) using a browser. The Visore utility uses the APIC RESTAPI query methods to browse
MOs active in the Application Centric Infrastructure fabric, allowing you to see the query that was used to
obtain the information. The Visore utility cannot be used to perform configuration operations.

Only the Firefox, Chrome, and Safari browsers are supported for Visore access.Note

Visore Browser Page

Filter Area

The filter form is case sensitive. This area supports all simple APIC REST API query operations.

DescriptionName

Object class name or fully distinguished name of a managed object.Class or DN field

The property of the managed object on which you want to filter the
results. If you leave the Property field empty, the search returns all
instances of the specific class.

Property field

Operator for the values of the property on which you want to filter the
results. The following are valid operators:

• == (equal to)

• != (not equal to)

• < (less than)

• > (greater than)

• ≤ (less than or equal to)

• ≥ (greater than or equal to)

• between

• wildcard

• anybit

• allbits

Op drop-down list

The first value for the property on which you want to filter.Val1 field

The second value on which you want to filter.Val2 field

Cisco APIC REST API Configuration Guide, Release 4.1(x)
50

Part 1: Cisco APIC REST API Usage Guidelines
Using the Managed Object Browser (Visore)

http://www.python-requests.org

Display XML of Last Query Link

The Display XML of last query link displays the full APIC REST API translation of the most recent query
run in Visore.

Results Area

You can bookmark any query results page in your browser to view the results again because the query is
encoded in the URL.

Many of the managed objects are only used internally and are not generally applicable to APIC REST API
program development.

Note

DescriptionName

Separates individual managed object instances and displays the class
name of the object below it.

Pink background

Indicates the property names of the managed object.Blue or green background

Indicates the value of a property name.Yellow or beige background

Absolute address of each managed object in the object model.dn property

When clicked, displays all managed objects with that dn.dn link

When clicked, displays all managed objects of that class.Class name link

When clicked, takes you to the parent object of the managed object.Left arrow

When clicked, takes you to the child objects of the managed object.Right arrow

Links you to the XML API documentation for the managed object.Question mark

Accessing Visore

Step 1 Open a supported browser and enter the URL of the APIC followed by /visore.html.

Example:

https://apic-ip-address/visore.html

Step 2 When prompted, log in using the same credentials you would use to log in to the APIC CLI or GUI user interfaces.

You can use a read-only account.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
51

Part 1: Cisco APIC REST API Usage Guidelines
Accessing Visore

Running a Query in Visore

Step 1 Enter a class or DN name of the MO in the Class or DN text box.
Step 2 (Optional) You can filter the query by entering a property of the MO in the Property text box, an operator in the Op text

box, and one or two values in the Val1 and Val2 text boxes.
Step 3 Click Run Query.

Visore sends a query to the APIC and the requested MO is displayed in a tabular format.

Step 4 (Optional) Click the Display URI of last query link to display the API call that executed the query.
Step 5 (Optional) Click the Display last response link to display the API response data structure from the query.
Step 6 (Optional) In the dn field of the MO description table, click the < and > icons to retrieve the parent and child classes of

the displayed MO.

Clicking > sends a query to the APIC for the children of the MO. Clicking < sends a query for the parent of the MO.

Step 7 (Optional) In the dn field of the MO description table, click the additional icons to display statistics, faults, or health
information for the MO.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
52

Part 1: Cisco APIC REST API Usage Guidelines
Running a Query in Visore

P A R T II
Part 2: Common APIC Tasks Using the REST API

• Managing APIC Using the REST API, on page 55
• Managing Roles, Users, and Signature-Based Transactions, on page 79
• Common Tenant Tasks, on page 91
• Managing Layer 2 Networking, on page 95
• Managing Layer 3 Networking, on page 101
• Monitoring Using the REST API, on page 111
• Troubleshooting Using the REST API, on page 121

C H A P T E R 3
Managing APIC Using the REST API

• Adding Management Access, on page 55
• Managing Configuration Files, on page 65
• Snapshots and Rollbacks, on page 71
• Using Configuration Zones, on page 73

Adding Management Access

In-Band and Out-of-Band Management Access
The mgmt tenant provides a convenient means to configure access to fabric management functions. While
fabric management functions are accessible through the APIC, they can also be accessed directly through
in-band and out-of-band network policies.

Static and Dynamic Management Access

APIC supports both static and dynamic management access. For simple deployments where users manage
the IP addresses of a few leaf and spine switches, configuring static in-band and out-of-band management
connectivity is simpler. For more complex deployments, where you might have a large number of leaf and
spine switches that require managing many IP addresses, static management access is not recommended. For
detailed information about static management access, see Cisco APIC and Static Management Access.

About Static Management Access
Configuring static in-band and out-of-band management connectivity is simpler than configuring dynamic
in-band and out-of-band management connectivity. When configuring in-band static management, you must
specify the IP address for each node and make sure to assign unique IP addresses. For simple deployments
where users manage the IP addresses of a few leaf and spine switches, it is easy to configure a static management
access. For more complex deployments, where you might have a large number of leaf and spine switches that
require managing many IP addresses, static management access is not recommended. We recommend that
you configure a dynamicmanagement access that automatically avoids the possible duplication of IP addresses.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
55

Configuring In-Band Management Access Using the REST API
IPv4 and IPv6 addresses are supported for in-band management access. IPv6 configurations are supported
using static configurations (for both in-band and out-of-band). IPv4 and IPv6 dual in-band and out-of-band
configurations are supported only through static configuration. For more information, see the KB
article,Configuring Static Management Access in Cisco APIC.

SUMMARY STEPS

1. Create a VLAN namespace.
2. Create a physical domain.
3. Create selectors for the in-band management.
4. Configure an in-band bridge domain and endpoint group (EPG).
5. Create an address pool.
6. Create management groups.

DETAILED STEPS

Step 1 Create a VLAN namespace.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<infraInfra>
<!-- Static VLAN range -->
<fvnsVlanInstP name="inband" allocMode="static">
<fvnsEncapBlk name="encap" from="vlan-10" to="vlan-11"/>

</fvnsVlanInstP>
</infraInfra>

</polUni>

Step 2 Create a physical domain.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<physDomP name="inband">
<infraRsVlanNs tDn="uni/infra/vlanns-inband-static"/>

</physDomP>
</polUni>

Step 3 Create selectors for the in-band management.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
56

Part 2: Common APIC Tasks Using the REST API
Configuring In-Band Management Access Using the REST API

<!-- api/policymgr/mo/.xml -->
<polUni>
<infraInfra>
<infraNodeP name="vmmNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="101"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-vmmPorts"/>

</infraNodeP>

<!-- Assumption is that VMM host is reachable via eth1/40. -->
<infraAccPortP name="vmmPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="40" toPort="40"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraNodeP name="apicConnectedNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="102"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-apicConnectedPorts"/>

</infraNodeP>

<!-- Assumption is that APIC is connected to eth1/1. -->
<infraAccPortP name="apicConnectedPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="1" toPort="3"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="inband">
<infraRsAttEntP tDn="uni/infra/attentp-inband"/>

</infraAccPortGrp>
</infraFuncP>

<infraAttEntityP name="inband">
<infraRsDomP tDn="uni/phys-inband"/>

</infraAttEntityP>
</infraInfra>

</polUni>

Step 4 Configure an in-band bridge domain and endpoint group (EPG).

Example:
POST https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="mgmt">
<!-- Configure the in-band management gateway address on the

in-band BD. -->
<fvBD name="inb">
<fvSubnet ip="10.13.1.254/24"/>

</fvBD>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
57

Part 2: Common APIC Tasks Using the REST API
Configuring In-Band Management Access Using the REST API

<mgmtMgmtP name="default">
<!-- Configure the encap on which APICs will communicate on the

in-band network. -->
<mgmtInB name="default" encap="vlan-10">
<fvRsProv tnVzBrCPName="default"/>

</mgmtInB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Step 5 Create an address pool.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="mgmt">
<!-- Adresses for APIC in-band management network -->
<fvnsAddrInst name="apicInb" addr="10.13.1.254/24">
<fvnsUcastAddrBlk from="10.13.1.1" to="10.13.1.10"/>

</fvnsAddrInst>

<!-- Adresses for switch in-band management network -->
<fvnsAddrInst name="switchInb" addr="10.13.1.254/24">
<fvnsUcastAddrBlk from="10.13.1.101" to="10.13.1.120"/>

</fvnsAddrInst>
</fvTenant>

</polUni>

Dynamic address pools for IPv6 is not supported.Note

Step 6 Create management groups.

Example:
POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<infraInfra>
<!-- Management node group for APICs -->
<mgmtNodeGrp name="apic">
<infraNodeBlk name="all" from_="1" to_="3"/>
<mgmtRsGrp tDn="uni/infra/funcprof/grp-apic"/>

</mgmtNodeGrp>

<!-- Management node group for switches-->
<mgmtNodeGrp name="switch">
<infraNodeBlk name="all" from_="101" to_="104"/>
<mgmtRsGrp tDn="uni/infra/funcprof/grp-switch"/>

</mgmtNodeGrp>

<!-- Functional profile -->
<infraFuncP>
<!-- Management group for APICs -->
<mgmtGrp name="apic">
<!-- In-band management zone -->
<mgmtInBZone name="default">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
58

Part 2: Common APIC Tasks Using the REST API
Configuring In-Band Management Access Using the REST API

<mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
<mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-apicInb"/>

</mgmtInBZone>
</mgmtGrp>

<!-- Management group for switches -->
<mgmtGrp name="switch">
<!-- In-band management zone -->
<mgmtInBZone name="default">
<mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
<mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-switchInb"/>

</mgmtInBZone>
</mgmtGrp>

</infraFuncP>
</infraInfra>

</polUni>

Dynamic address pools for IPv6 is not supported.Note

Configuring Static In-Band Management Access Using the REST API

Step 1 Create a VLAN namespace.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<infraInfra>
<!-- Static VLAN range -->
<fvnsVlanInstP name="inband" allocMode="static">
<fvnsEncapBlk name="encap" from="vlan-10" to="vlan-11"/>

</fvnsVlanInstP>
</infraInfra>

</polUni>

Step 2 Create a physical domain.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
<physDomP name="inband">
<infraRsVlanNs tDn="uni/infra/vlanns-inband-static"/>

</physDomP>
</polUni>

Step 3 Create selectors for the in-band management.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<infraInfra>
<infraNodeP name="vmmNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="101"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
59

Part 2: Common APIC Tasks Using the REST API
Configuring Static In-Band Management Access Using the REST API

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-vmmPorts"/>

</infraNodeP>

<!-- Assumption is that VMM host is reachable via eth1/40. -->
<infraAccPortP name="vmmPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="40" toPort="40"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraNodeP name="apicConnectedNodes">
<infraLeafS name="leafS" type="range">
<infraNodeBlk name="single0" from_="101" to_="102"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-apicConnectedPorts"/>

</infraNodeP>

<!-- Assumption is that APIC is connected to eth1/1. -->
<infraAccPortP name="apicConnectedPorts">
<infraHPortS name="portS" type="range">
<infraPortBlk name="block1"

fromCard="1" toCard="1"
fromPort="1" toPort="3"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
</infraHPortS>

</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="inband">
<infraRsAttEntP tDn="uni/infra/attentp-inband"/>

</infraAccPortGrp>
</infraFuncP>

<infraAttEntityP name="inband">
<infraRsDomP tDn="uni/phys-inband"/>

</infraAttEntityP>
</infraInfra>

</polUni>

Step 4 Configure an in-band bridge domain and endpoint group (EPG).

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="mgmt">
<!-- Configure the in-band management gateway address on the

in-band BD. -->
<fvBD name="inb">
<fvSubnet ip="<subnet_ip_address>"/>

</fvBD>

<mgmtMgmtP name="default">
<!-- Configure the encap on which APICs will communicate on the

in-band network. -->
<mgmtInB name="default" encap="vlan-10">
<fvRsProv tnVzBrCPName="default"/>

</mgmtInB>
</mgmtMgmtP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
60

Part 2: Common APIC Tasks Using the REST API
Configuring Static In-Band Management Access Using the REST API

</fvTenant>
</polUni>

Step 5 Create static in-band management IP addresses and assign them to node IDs.

Example:
<polUni>
<fvTenant name="mgmt">
<mgmtMgmtP name="default">
<mgmtInB name="default">
<mgmtRsInBStNode tDn="topology/pod-1/node-101"

addr="<ip_address_1>"
gw="<gw_address>”

v6Addr = “<ip6_address_1>”
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-102"
addr="<ip_address_2>"
gw="<gw_address>”

v6Addr = “<ip6_address_2>"
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-103"
addr="<ip_address_3>"
gw="<gw_address>”

v6Addr = “<ip6_address_3>"
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-104"
addr="<ip_address_4>"
gw="<gw_address>”

v6Addr = “<ip6_address_4>"
v6Gw = “<ip6_gw_address>"/>

<mgmtRsInBStNode tDn="topology/pod-1/node-105"
addr="<ip_address_5>"
gw="<gw_address>”

v6Addr = “<ip6_address_5>"
v6Gw = “<ip6_gw_address>"/>

</mgmtInB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Configuring Out-of-Band Management Access Using the REST API
IPv4 and IPv6 addresses are supported for out-of-band management access.

Before you begin

The APIC out-of-band management connection link must be 1 Gbps.

SUMMARY STEPS

1. Create an out-of-band contract.
2. Associate the out-of-band contract with an out-of-band EPG.
3. Associate the out-of-band contract with an external management EPG.
4. Create a management address pool.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
61

Part 2: Common APIC Tasks Using the REST API
Configuring Out-of-Band Management Access Using the REST API

5. Create node management groups.

DETAILED STEPS

Step 1 Create an out-of-band contract.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<fvTenant name="mgmt">

<!-- Contract -->
<vzOOBBrCP name="oob-default">

<vzSubj name="oob-default">
<vzRsSubjFiltAtt tnVzFilterName="default" />

</vzSubj>
</vzOOBBrCP>

</fvTenant>
</polUni>

Step 2 Associate the out-of-band contract with an out-of-band EPG.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<fvTenant name="mgmt">

<mgmtMgmtP name="default">
<mgmtOoB name="default">

<mgmtRsOoBProv tnVzOOBBrCPName="oob-default" />
</mgmtOoB>

</mgmtMgmtP>
</fvTenant>

</polUni>

Step 3 Associate the out-of-band contract with an external management EPG.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<fvTenant name="mgmt">

<mgmtExtMgmtEntity name="default">
<mgmtInstP name="oob-mgmt-ext">

<mgmtRsOoBCons tnVzOOBBrCPName="oob-default" />
<!-- SUBNET from where switches are managed -->
<mgmtSubnet ip="10.0.0.0/8" />

</mgmtInstP>
</mgmtExtMgmtEntity>

</fvTenant>
</polUni>

Step 4 Create a management address pool.

Example:
POST https://apic-ip-address/api/mo/uni.xml

Cisco APIC REST API Configuration Guide, Release 4.1(x)
62

Part 2: Common APIC Tasks Using the REST API
Configuring Out-of-Band Management Access Using the REST API

<polUni>
<fvTenant name="mgmt">

<fvnsAddrInst name="switchOoboobaddr" addr="172.23.48.1/21">
<fvnsUcastAddrBlk from="172.23.49.240" to="172.23.49.244"/>

</fvnsAddrInst>
</fvTenant>

</polUni>

Step 5 Create node management groups.

Example:
POST https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>

<infraFuncP>
<mgmtGrp name="switchOob">

<mgmtOoBZone name="default">
<mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-switchOoboobaddr" />
<mgmtRsOobEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default" />

</mgmtOoBZone>
</mgmtGrp>

</infraFuncP>
<mgmtNodeGrp name="switchOob">

<mgmtRsGrp tDn="uni/infra/funcprof/grp-switchOob" />
<infraNodeBlk name="default" from_="101" to_="103" />

</mgmtNodeGrp>
</infraInfra>

</polUni>

You can configure the APIC server to use out-of-band management connectivity as the default connectivity mode.
POST https://apic-ip-address/api/node/mo/.xml
<polUni>
<fabricInst>

<mgmtConnectivityPrefs interfacePref=“ooband"/>
</fabricInst>
</polUni>

Note

Configuring Static Out-of-Band Management Access Using the REST API

Before you begin

The APIC out-of-band management connection link must be 1 Gbps.

Step 1 Create an out-of-band contract.

Example:
<polUni>

<fvTenant name="mgmt">
<!-- Contract -->
<vzOOBBrCP name="oob-default">

<vzSubj name="oob-default">
<vzRsSubjFiltAtt tnVzFilterName="default" />

</vzSubj>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
63

Part 2: Common APIC Tasks Using the REST API
Configuring Static Out-of-Band Management Access Using the REST API

</vzOOBBrCP>
</fvTenant>

</polUni>

Step 2 Associate the out-of-band contract with an out-of-band EPG.

Example:
<polUni>

<fvTenant name="mgmt">
<mgmtMgmtP name="default">

<mgmtOoB name="default">
<mgmtRsOoBProv tnVzOOBBrCPName="oob-default" />

</mgmtOoB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Step 3 Associate the out-of-band contract with an external management EPG.

Example:
<polUni>

<fvTenant name="mgmt">
<mgmtExtMgmtEntity name="default">

<mgmtInstP name="oob-mgmt-ext">
<mgmtRsOoBCons tnVzOOBBrCPName="oob-default" />
<!-- SUBNET from where switches are managed -->
<mgmtSubnet ip="<mgmt_subnet_ip_address>" />

</mgmtInstP>
</mgmtExtMgmtEntity>

</fvTenant>
</polUni>

Step 4 Create static out-of-band management IP addresses and assign them to node IDs.

CHECK IP Addresses

Example:
<polUni>
<fvTenant name="mgmt">
<mgmtMgmtP name="default">
<mgmtOoB name="default">
<mgmtRsOoBStNode tDn="topology/pod-1/node-101"

addr="<ip_address_1>"
gw="<gw_address>"/>

<mgmtRsOoBStNode tDn="topology/pod-1/node-102"
addr="<ip_address_2>"
gw="<gw_address>"/>

<mgmtRsOoBStNode tDn="topology/pod-1/node-103"
addr="<ip_address_3>"
gw="<gw_address>"/>

</mgmtOoB>
</mgmtMgmtP>

</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
64

Part 2: Common APIC Tasks Using the REST API
Configuring Static Out-of-Band Management Access Using the REST API

Managing Configuration Files

Overview
This topic provides information on:

• How to use configuration Import and Export to recover configuration states to the last known good state
using the Cisco APIC

• How to encrypt secure properties of Cisco APIC configuration files

You can do both scheduled and on-demand backups of user configuration. Recovering configuration states
(also known as "roll-back") allows you to go back to a known state that was good before. The option for that
is called an Atomic Replace. The configuration import policy (configImportP) supports atomic + replace
(importMode=atomic, importType=replace). When set to these values, the imported configuration overwrites
the existing configuration, and any existing configuration that is not present in the imported file is deleted.
As long as you do periodic configuration backups and exports, or explicitly trigger export with a known good
configuration, then you can later restore back to this configuration using the following procedures for the CLI,
REST API, and GUI.

For more detailed conceptual information about recovering configuration states using the Cisco APIC, please
refer to the Cisco Application Centric Infrastructure Fundamentals Guide.

The following section provides conceptual information about encrypting secure properties of configuration
files:

Backing Up, Restoring, and Rolling Back Configuration Files Workflow
This section describes the workflow of the features for backing up, restoring, and rolling back configuration
files. All of the features described in this document follow the same workflow pattern. Once the corresponding
policy is configured, admintSt must be set to triggered in order to trigger the job.

Once triggered, an object of type configJob (representing that run) is created under a container object of type
configJobCont. (The naming property value is set to the policy DN.) The container's lastJobName field can
be used to determine the last job that was triggered for that policy.

Up to five configJob objects are kept under a single job container at a time, with each new job triggered. The
oldest job is removed to ensure this.

Note

The configJob object contains the following information:

• Execution time

• Name of the file being processed/generated

• Status, as follows:

• Pending

• Running

Cisco APIC REST API Configuration Guide, Release 4.1(x)
65

Part 2: Common APIC Tasks Using the REST API
Managing Configuration Files

• Failed

• Fail-no-data

• Success

• Success-with-warnings

• Details string (failure messages and warnings)

• Progress percentage = 100 * lastStepIndex/totalStepCount

• Field lastStepDescr indicating what was being done last

About Configuration Export to Controllers
Configuration export extracts user-configurable managed object (MO) trees from all 32 shards in the cluster,
writes them into separate files, then compresses them into a tar gzip file. The configuration export then uploads
the tar gzip file to a preconfigured remote location (configured through configRsRemotePath pointing to a
fileRemotePath object) or stores it as a snapshot on the controller(s).

See the Snapshots section for more details.Note

The configExportP policy is configured as follows:

• name—Policy name.

• format—Format in which the data is stored inside the exported archive (xml or json).

• targetDn—The domain name (DN) of the specific object you want to export. (Emptymeans everything.)

• snapshot—When true, the file is stored on the controller; no remote location configuration is needed.

• includeSecureFields—Set to true by default, this indicates whether the encrypted fields (passwords,
etc.) should be included in the export archive.

The configSnapshot object is created holding the information about this snapshot. (See the Snapshots section.)Note

Scheduling Exports

An export policy can be linked with a scheduler, which triggers the export automatically based on a
preconfigured schedule. This is done through the configRsExportScheduler relation from the policy to a
trigSchedP object. (See the Sample Configuration section.)

A scheduler is optional. A policy can be triggered at any time by setting the adminSt to triggered.Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
66

Part 2: Common APIC Tasks Using the REST API
About Configuration Export to Controllers

About Configuration Import to Controller
Configuration import downloads, extracts, parses, analyzes, and applies the specified, previously exported
archive one shard at a time in the following order: infra, fabric, tn-common, then everything else. The
fileRemotePath configuration is performed the same way as for export (through configRsRemotePath).
Importing snapshots is also supported.

The configImportP policy is configured as follows:

• name—Policy name

• fileName—Name of the archive file (not the path file) to be imported

• importMode

• Best-effort mode: Each MO is applied individually, and errors only cause the invalid MOs to be
skipped.

If the object is not present on the controller, none of the children of the object
get configured. Best-effort mode attempts to configure the children of the object.

Note

• Atomic mode: configuration is applied by whole shards. A single error causes the whole shard to
be rolled back to its original state.

• importType

• Replace—Current system configuration is replaced with the contents or the archive being imported.
(Only atomic mode is supported.)

• Merge—Nothing is deleted, and archive content is applied on top the existing system configuration.

• snapshot—When true, the file is taken from the controller and no remote location configuration is needed.

• failOnDecryptErrors—(true by default) The file fails to import if the archive was encrypted with a
different key than the one that is currently set up in the system.

Troubleshooting

The following scenarios may need troubleshooting:

• If the generated archive could not be downloaded from the remote location, refer to the Connectivity
Issues section.

• If the import succeeded with warnings, check the details.

• If a file could not be parsed, refer to the following scenarios:

• If the file is not a valid XML or JSON file, check whether the files from the exported archive were
manually modified.

• If an object property has an unknown property or property value, it may be because:

• The property was removed or an unknown property value was manually entered.

• The model type range was modified (non-backward compatible model change).

Cisco APIC REST API Configuration Guide, Release 4.1(x)
67

Part 2: Common APIC Tasks Using the REST API
About Configuration Import to Controller

• The naming property list was modified.

• If an MO could not be configured, note the following:

• Best-effort mode logs the error and skips the MO.

• Atomic mode logs the error and skips the shard.

Configuration File Encryption
As of release 1.1(2), the secure properties of APIC configuration files can be encrypted by enabling AES-256
encryption. AES encryption is a global configuration option; all secure properties conform to the AES
configuration setting. It is not possible to export a subset of the ACI fabric configuration such as a tenant
configuration with AES encryption while not encrypting the remainder of the fabric configuration. See the
Cisco Application Centric Infrastructure Fundamentals, "Secure Properties" chapter for the list of secure
properties.

The APIC uses a 16 to 32 character passphrase to generate the AES-256 keys. The APIC GUI displays a hash
of the AES passphrase. This hash can be used to see if the same passphrases was used on two ACI fabrics.
This hash can be copied to a client computer where it can be compared to the passphrase hash of another ACI
fabric to see if they were generated with the same passphrase. The hash cannot be used to reconstruct the
original passphrase or the AES-256 keys.

Observe the following guidelines when working with encrypted configuration files:

• Backward compatibility is supported for importing old ACI configurations into ACI fabrics that use the
AES encryption configuration option.

Reverse compatibility is not supported; configurations exported fromACI fabrics
that have enabled AES encryption cannot be imported into older versions of the
APIC software.

Note

• Always enable AES encryption when performing fabric backup configuration exports. Doing so will
assure that all the secure properties of the configuration will be successfully imported when restoring
the fabric.

If a fabric backup configuration is exported without AES encryption enabled,
none of the secure properties will be included in the export. Since such an
unencrypted backup would not include any of the secure properties, it is possible
that importing such a file to restore a system could result in the administrator
along with all users of the fabric being locked out of the system.

Note

• The AES passphrase that generates the encryption keys cannot be recovered or read by an ACI
administrator or any other user. The AES passphrase is not stored. The APIC uses the AES passphrase
to generate the AES keys, then discards the passphrase. The AES keys are not exported. The AES keys
cannot be recovered since they are not exported and cannot be retrieved via the REST API.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
68

Part 2: Common APIC Tasks Using the REST API
Configuration File Encryption

• The same AES-256 passphrase always generates the same AES-256 keys. Configuration export files can
be imported into other ACI fabrics that use the same AES passphrase.

• For troubleshooting purposes, export a configuration file that does not contain the encrypted data of the
secure properties. Temporarily turning off encryption before performing the configuration export removes
the values of all secure properties from the exported configuration. To import such a configuration file
that has all secure properties removed, use the import merge mode; do not use the import replace mode.
Using the import merge mode will preserve the existing secure properties in the ACI fabric.

• By default, the APIC rejects configuration imports of files that contain fields that cannot be decrypted.
Use caution when turning off this setting. Performing a configuration import inappropriately when this
default setting is turned off could result in all the passwords of the ACI fabric to be removed upon the
import of a configuration file that does not match the AES encryption settings of the fabric.

Failure to observe this guideline could result in all users, including fabric
administrations, being locked out of the system.

Note

About the fileRemotePath Object
The fileRemotePath object holds the following remote location-path parameters:

• Hostname or IP

• Port

• Protocol: FTP, SCP, and others

• Remote directory (not file path)

• Username

• Password

The password must be resubmitted every time changes are made.Note

Sample Configuration

The following is a sample configuration:

Under fabricInst (uni/fabric), enter:

<fileRemotePath name="path-name" host="host name or ip" protocol="scp"
remotePath="path/to/some/folder" userName="user-name" userpasswd="password" />

Configuring a Remote Location Using the REST API
This procedure explains how to create a remote location using the REST API.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
69

Part 2: Common APIC Tasks Using the REST API
About the fileRemotePath Object

<fileRemotePath name="local" host=“host or ip" protocol=“ftp|scp|sftp" remotePath=“path to
folder" userName=“uname" userPasswd=“pwd" />

Configuring Configuration File Export to Controller Using the REST API

Before you begin

Create a remote path and scheduling policy.

When providing a remote location, if you set the snapshot to True, the backup ignores the remote path and
stores the file on the controller.

Note

SUMMARY STEPS

1. Create a configuration export policy by sending a POST request with XML such as the following example.

DETAILED STEPS

Create a configuration export policy by sending a POST request with XML such as the following example.

Example:
<configExportP name="policy-name" format="xml" targetDn="/some/dn or empty which means everything"
snapshot="false" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
<configRsExportScheduler tnTrigSchedPName="some scheduler name" />
</configExportP>

Configuring a Configuration File Import Policy Using the REST API

SUMMARY STEPS

1. Configure a configuration file import policy, send a post with XML such as the following example:

DETAILED STEPS

Configure a configuration file import policy, send a post with XML such as the following example:

Example:
<configImportP name="policy-name" fileName="someexportfile.tgz" importMode="atomic"

importType="replace" snapshot="false" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
</configImportP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
70

Part 2: Common APIC Tasks Using the REST API
Configuring Configuration File Export to Controller Using the REST API

Encrypting Configuration Files Using the REST API

SUMMARY STEPS

1. To encrypt a configuration file using the RESTAPI, send a post with XML such as the following example:

DETAILED STEPS

To encrypt a configuration file using the REST API, send a post with XML such as the following example:

Example:
https://apic-ip-address/api/mo/uni/fabric.xml
<pkiExportEncryptionKey passphrase="abcdefghijklmnopqrstuvwxyz" strongEncryptionEnabled="true"/>

Snapshots and Rollbacks

Snapshots
Snapshots are configuration backup archives, stored (and replicated) in a controller managed folder. To create
one, an export can be performed with the snapshot property set to true. In this case, no remote path
configuration is needed. An object of configSnapshot type is created to expose the snapshot to the user.

You can create recurring snapshots, which are saved to Admin > Import/Export > Export Policies >
Configuration > defaultAuto.

configSnapshot objects provide the following:

• file name

• file size

• creation date

• root DN indicating what the snapshot is of (fabric, infra, specific tenant, and so on)

• ability to remove a snapshot (by setting the retire field to true)

To import a snapshot, first create an import policy. Navigate to Admin > Import/Export and click Import
Policies. Right click and choose Create Configuration Import Policy to set the import policy attributes.

About Rollbacks
The configRollbackP policy is used to undo the changes made between two snapshots. Managed Objects
(MOs) are processed as follows:

• Deleted MOs are recreated.

• Created MOs are deleted.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
71

Part 2: Common APIC Tasks Using the REST API
Encrypting Configuration Files Using the REST API

• Modified MOs are reverted.

The rollback feature operates only on snapshots. Remote archives are not supported. If you want to use the
data in a remote archive, use the snapshot manager to create a snapshot from from the data for the rollback.
The policy does not require a remote path configuration.

Note

Rollback Workflow

The policy snapshotOneDN and snapshotTwoDn fields must be set and the first snapshot (S1) must precede
snapshot two (S2). Once triggered, snapshots are extracted and analyzed, and the difference between them is
calculated and applied.

MOs are located that are:

• Present in S1 but not present in S2—These MOs are deleted and rollback re-creates them.

• Not present in S1 but not present in S2—These MOs are created after S1 and rollback deletes them if:

• These MOs are not modified after S2 is taken.

• None of the MO descendants are created or modified after S2 is taken.

• Present in both S1 and S2, but with different property values—These MO properties are reverted to S1,
unless the property was modified to a different value after S2 is taken. In this case, it is left as is.

The rollback feature also generates a diff file that contains the configuration generated as a result of these
calculations. Applying this configuration is the last step of the rollback process. The content of this file
can be retrieved through a special REST API called readiff:
apichost/mqapi2/snapshots.readiff.xml?jobdn=SNAPSHOT_JOB_DN.

Rollback (which is difficult to predict) also has a preview mode (set preview to true), which prevents
rollback frommaking any actual changes. It calculates and generates the diff file, allowing you to preview
what exactly is going to happen once the rollback is actually performed.

Diff Tool

Another special REST API is available, which provides diff functionality between two snapshots:
apichost/mqapi2/snapshots.diff.xml?s1dn=SNAPSHOT_ONE_DN&s2dn=SNAPSHOT_TWO_DN.

Uploading and Downloading Snapshots Using the REST API
The configSnapshotManagerP policy allows you to create snapshots from remotely stored export archives.
You can attach a remote path to the policy, provide the file name (same as with configImportP), set the mode
to download, and trigger. The manager downloads the file, analyzes it to make sure that the archive is valid,
stores it on the controller, and creates the corresponding configSnapshot object. The snapshot manager also
allow you to upload a snapshot archive to a remote location. In this case, the mode must be set to upload.

Before you begin

Set up remotely stored archives.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
72

Part 2: Common APIC Tasks Using the REST API
Uploading and Downloading Snapshots Using the REST API

SUMMARY STEPS

1. To download or upload a snapshot policy, send a POST request with XML such as the following:

DETAILED STEPS

To download or upload a snapshot policy, send a POST request with XML such as the following:

Example:
<configSnapshotManagerP name="policy-name" fileName="someexportfile.tgz"

mode="upload|download" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
</configSnapshotManagerP>

Configuring and Executing a Configuration Rollback Using the REST API

Before you begin

Create a rollback policy and a snapshot.

SUMMARY STEPS

1. To configure and execute a rollback, send a POST request with XML such as the following:

DETAILED STEPS

To configure and execute a rollback, send a POST request with XML such as the following:

Example:
<configRollbackP name="policy-name" snapshotOneDn="dn/of/snapshot/one"
snapshotOneDn="dn/of/snapshot/two" preview="false" adminSt="triggered" />

Using Configuration Zones

Configuration Zones
Configuration zones divide the ACI fabric into different zones that can be updated with configuration changes
at different times. This limits the risk of deploying a faulty fabric-wide configuration that might disrupt traffic
or even bring the fabric down. An administrator can deploy a configuration to a non-critical zone, and then
deploy it to critical zones when satisfied that it is suitable.

The following policies specify configuration zone actions:

• infrazone:ZoneP is automatically created upon system upgrade. It cannot be deleted or modified.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
73

Part 2: Common APIC Tasks Using the REST API
Configuring and Executing a Configuration Rollback Using the REST API

• infrazone:Zone contains one or more pod groups (PodGrp) or one or more node groups (NodeGrp).

You can only choose PodGrp or NodeGrp; both cannot be chosen.Note

Anode can be part of only one zone (infrazone:Zone). NodeGrp has two properties: name, and deployment
mode. The deployment mode property can be:

• enabled - Pending updates are sent immediately.

• disabled - New updates are postponed.

• Do not upgrade, downgrade, commission, or decommission nodes in a
disabled configuration zone.

• Do not do a clean reload or an uplink/downlink port conversion reload of
nodes in a disabled configuration zone.

Note

• triggered - pending updates are sent immediately, and the deployment mode is automatically reset
to the value it had before the change to triggered.

When a policy on a given set of nodes is created, modified, or deleted, updates are sent to each node where
the policy is deployed. Based on policy class and infrazone configuration the following happens:.

• For policies that do not follow infrazone configuration, the APIC sends updates immediately to all the
fabric nodes.

• For policies that follow infrazone configuration, the update proceeds according to the infrazone
configuration:

• If a node is part of an infrazone:Zone, the update is sent immediately if the deployment mode of
the zone is set to enabled; otherwise the update is postponed.

• If a node is not part of aninfrazone:Zone, the update is done immediately, which is the ACI fabric
default behavior.

Configuration Zone Supported Policies
The following policies are supported for configuration zones:
analytics:CfgSrv
bgp:InstPol
callhome:Group
callhome:InvP
callhome:QueryGroup
cdp:IfPol
cdp:InstPol
comm:Pol
comp:DomP
coop:Pol
datetime:Pol
dbgexp:CoreP
dbgexp:TechSupP

Cisco APIC REST API Configuration Guide, Release 4.1(x)
74

Part 2: Common APIC Tasks Using the REST API
Configuration Zone Supported Policies

dhcp:NodeGrp
dhcp:PodGrp
edr:ErrDisRecoverPol
ep:ControlP
ep:LoopProtectP
eqptdiagp:TsOdFabP
eqptdiagp:TsOdLeafP
fabric:AutoGEp
fabric:ExplicitGEp
fabric:FuncP
fabric:HIfPol
fabric:L1IfPol
fabric:L2IfPol
fabric:L2InstPol
fabric:L2PortSecurityPol
fabric:LeCardP
fabric:LeCardPGrp
fabric:LeCardS
fabric:LeNodePGrp
fabric:LePortP
fabric:LePortPGrp
fabric:LFPortS
fabric:NodeControl
fabric:OLeafS
fabric:OSpineS
fabric:PodPGrp
fabric:PortBlk
fabric:ProtGEp
fabric:ProtPol
fabric:SFPortS
fabric:SpCardP
fabric:SpCardPGrp
fabric:SpCardS
fabric:SpNodePGrp
fabric:SpPortP
fabric:SpPortPGrp
fc:DomP
fc:FabricPol
fc:IfPol
fc:InstPol
file:RemotePath
fvns:McastAddrInstP
fvns:VlanInstP
fvns:VsanInstP
fvns:VxlanInstP
infra:AccBaseGrp
infra:AccBndlGrp
infra:AccBndlPolGrp
infra:AccBndlSubgrp
infra:AccCardP
infra:AccCardPGrp
infra:AccNodePGrp
infra:AccPortGrp
infra:AccPortP
infra:AttEntityP
infra:CardS
infra:ConnFexBlk
infra:ConnFexS
infra:ConnNodeS
infra:DomP
infra:FexBlk
infra:FexBndlGrp
infra:FexGrp
infra:FexP

Cisco APIC REST API Configuration Guide, Release 4.1(x)
75

Part 2: Common APIC Tasks Using the REST API
Configuration Zone Supported Policies

infra:FuncP
infra:HConnPortS
infra:HPathS
infra:HPortS
infra:LeafS
infra:NodeBlk
infra:NodeGrp
infra:NodeP
infra:OLeafS
infra:OSpineS
infra:PodBlk
infra:PodGrp
infra:PodP
infra:PodS
infra:PolGrp
infra:PortBlk
infra:PortP
infra:PortS
infra:PortTrackPol
infra:Profile
infra:SHPathS
infra:SHPortS
infra:SpAccGrp
infra:SpAccPortGrp
infra:SpAccPortP
infra:SpineP
infra:SpineS
isis:DomPol
l2ext:DomP
l2:IfPol
l2:InstPol
l2:PortSecurityPol
l3ext:DomP
lacp:IfPol
lacp:LagPol
lldp:IfPol
lldp:InstPol
mcp:IfPol
mcp:InstPol
mgmt:NodeGrp
mgmt:PodGrp
mon:FabricPol
mon:InfraPol
phys:DomP
psu:InstPol
qos:DppPol
snmp:Pol
span:Dest
span:DestGrp
span:SpanProv
span:SrcGrp
span:SrcTargetShadow
span:SrcTargetShadowBD
span:SrcTargetShadowCtx
span:TaskParam
span:VDest
span:VDestGrp
span:VSpanProv
span:VSrcGrp
stormctrl:IfPol
stp:IfPol
stp:InstPol
stp:MstDomPol
stp:MstRegionPol

Cisco APIC REST API Configuration Guide, Release 4.1(x)
76

Part 2: Common APIC Tasks Using the REST API
Configuration Zone Supported Policies

trig:SchedP
vmm:DomP
vpc:InstPol
vpc:KAPol

Creating Configuration Zones Using the REST API

Before you begin

This procedure explains how to create a configuration zone using the REST API.

Create a configuration zone using the REST API leaf switch or pod examples below.

Example:

Creating a Config Zone with Leaf Switches

<infraInfra>
<infrazoneZoneP name="default">
<infrazoneZone name="Group1" deplMode="disabled">
<infrazoneNodeGrp name="nodeGroup">
<infraNodeBlk name="nodeblk1" from_=101 to_=101/>
<infraNodeBlk name="nodeblk2" from_=103 to_=103/>
</infrazoneNodeGrp>
</infrazoneZone>
<infrazoneZone name="Group2" deplMode="enabled">
<infrazoneNodeGrp name="nodeGroup2">
<infraNodeBlk name="nodeblk" from_=102 to_=102/>
</infrazoneNodeGrp>
</infrazoneZone>
</infrazoneZoneP>
</infraInfra>

Example:

Creating a Config Zone with Pods

<infraInfra>
<infrazoneZoneP name="default">

<infrazoneZone name="testZone" descr="testZone-Description" deplMode="enabled">
<infrazonePodGrp name="podGroup1">

<infraPodBlk name="group1" from_=101 to_=101/>
<infraPodBlk name="group2" from_=103 to_=103/>

</infrazonePodGrp>
<infrazonePodGrp name="podGroup2">

<infraPodBlk name="group" from_=102 to_=102/>
</infrazonePodGrp>

</infrazoneZone>
</infrazoneZoneP>

</infraInfra>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
77

Part 2: Common APIC Tasks Using the REST API
Creating Configuration Zones Using the REST API

Cisco APIC REST API Configuration Guide, Release 4.1(x)
78

Part 2: Common APIC Tasks Using the REST API
Creating Configuration Zones Using the REST API

C H A P T E R 4
Managing Roles, Users, and Signature-Based
Transactions

• Managing APIC Roles and Users, on page 79
• APIC Signature-Based Transactions, on page 84

Managing APIC Roles and Users

User Access, Authorization, and Accounting
Application Policy Infrastructure Controller (APIC) policies manage the authentication, authorization, and
accounting (AAA) functions of the Cisco Application Centric Infrastructure (ACI) fabric. The combination
of user privileges, roles, and domains with access rights inheritance enables administrators to configure AAA
functions at the managed object level in a granular fashion. These configurations can be implemented using
the REST API, the CLI, or the GUI.

There is a known limitation where you cannot have more than 32 characters for the login domain name. In
addition, the combined number of characters for the login domain name and the user name cannot exceed 64
characters.

Note

Accounting
ACI fabric accounting is handled by these twomanaged objects (MO) that are processed by the samemechanism
as faults and events:

• The aaaSessionLRMO tracks user account login and logout sessions on the APIC and switches, and
token refresh. The ACI fabric session alert feature stores information such as the following:

• Username

• IP address initiating the session

• Type (telnet, https, REST etc.)

• Session time and length

Cisco APIC REST API Configuration Guide, Release 4.1(x)
79

• Token refresh – a user account login event generates a valid active token which is required in order
for the user account to exercise its rights in the ACI fabric.

Token expiration is independent of login; a user could log out but the token
expires according to the duration of the timer value it contains.

Note

• The aaaModLRMO tracks the changes users make to objects and when the changes occurred.

• If the AAA server is not pingable, it is marked unavailable and a fault is seen.

Both the aaaSessionLR and aaaModLR event logs are stored in APIC shards. Once the data exceeds the pre-set
storage allocation size, it overwrites records on a first-in first-out basis.

In the event of a destructive event such as a disk crash or a fire that destroys an APIC cluster node, the event
logs are lost; event logs are not replicated across the cluster.

Note

The aaaModLR and aaaSessionLRMOs can be queried by class or by distinguished name (DN). A class query
provides all the log records for the whole fabric. All aaaModLR records for the whole fabric are available from
the GUI at the Fabric > Inventory > POD > History > Audit Log section, The APIC GUI History > Audit
Log options enable viewing event logs for a specific object identified in the GUI.

The standard syslog, callhome, REST query, and CLI export mechanisms are fully supported for aaaModLR
and aaaSessionLRMO query data. There is no default policy to export this data.

There are no pre-configured queries in the APIC that report on aggregations of data across a set of objects or
for the entire system. A fabric administrator can configure export policies that periodically export aaaModLR
and aaaSessionLR query data to a syslog server. Exported data can be archived periodically and used to
generate custom reports from portions of the system or across the entire set of system logs.

Multiple Tenant Support
A core Application Policy Infrastructure Controller (APIC) internal data access control system provides
multitenant isolation and prevents information privacy from being compromised across tenants. Read/write
restrictions prevent any tenant from seeing any other tenant's configuration, statistics, faults, or event data.
Unless the administrator assigns permissions to do so, tenants are restricted from reading fabric configuration,
policies, statistics, faults, or events.

User Access: Roles, Privileges, and Security Domains
The APIC provides access according to a user’s role through role-based access control (RBAC). An Cisco
Application Centric Infrastructure (ACI) fabric user is associated with the following:

• A set of roles

• For each role, a privilege type: no access, read-only, or read-write

• One or more security domain tags that identify the portions of the management information tree (MIT)
that a user can access

Cisco APIC REST API Configuration Guide, Release 4.1(x)
80

Part 2: Common APIC Tasks Using the REST API
Multiple Tenant Support

The ACI fabric manages access privileges at the managed object (MO) level. A privilege is anMO that enables
or restricts access to a particular function within the system. For example, fabric-equipment is a privilege bit.
This bit is set by the Application Policy Infrastructure Controller (APIC) on all objects that correspond to
equipment in the physical fabric.

A role is a collection of privilege bits. For example, because an “admin” role is configured with privilege bits
for “fabric-equipment” and “tenant-security,” the “admin” role has access to all objects that correspond to
equipment of the fabric and tenant security.

A security domain is a tag associated with a certain subtree in the ACI MIT object hierarchy. For example,
the default tenant “common” has a domain tag common. Similarly, the special domain tag all includes the
entire MIT object tree. An administrator can assign custom domain tags to the MIT object hierarchy. For
example, an administrator could assign the “solar” domain tag to the tenant named solar. Within the MIT,
only certain objects can be tagged as security domains. For example, a tenant can be tagged as a security
domain but objects within a tenant cannot.

Security Domain password strength parameters can be configured by creating Custom Conditions or by
selecting Any Three Conditions that are provided.

Note

Creating a user and assigning a role to that user does not enable access rights. It is necessary to also assign
the user to one or more security domains. By default, the ACI fabric includes two special pre-created domains:

• All—allows access to the entire MIT

• Infra— allows access to fabric infrastructure objects/subtrees, such as fabric access policies

For read operations to the managed objects that a user's credentials do not allow, a "DN/Class Not Found"
error is returned, not "DN/Class Unauthorized to read." For write operations to a managed object that a user's
credentials do not allow, an HTTP 401 Unauthorized error is returned. In the GUI, actions that a user's
credentials do not allow, either they are not presented, or they are grayed out.

Note

A set of predefined managed object classes can be associated with domains. These classes should not have
overlapping containment. Examples of classes that support domain association are as follows:

• Layer 2 and Layer 3 network managed objects

• Network profiles (such as physical, Layer 2, Layer 3, management)

• QoS policies

When an object that can be associated with a domain is created, the user must assign domain(s) to the object
within the limits of the user's access rights. Domain assignment can be modified at any time.

If a virtual machine management (VMM) domain is tagged as a security domain, the users contained in the
security domain can access the correspondingly tagged VMM domain. For example, if a tenant named solar
is tagged with the security domain called sun and a VMM domain is also tagged with the security domain
called sun, then users in the solar tenant can access the VMM domain according to their access rights.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
81

Part 2: Common APIC Tasks Using the REST API
User Access: Roles, Privileges, and Security Domains

Configuring a Custom Role Using the REST API

SUMMARY STEPS

1. To configure a custom role, send a POST request with XML as in the following example:

DETAILED STEPS

To configure a custom role, send a POST request with XML as in the following example:

Example:
<aaaRoleresetToFactory="no"

priv="aaa,access-connectivity-l1,access-connectivity-l2,access-connectivity-l3,access-connectivity-mgmt,

access-connectivity-util,access-equipment,access-protocol-l1,access-protocol-l2,access-protocol-l3,access-protocol-mgmt,

access-protocol-ops,access-protocol-util,access-qos,fabric-connectivity-l1,fabric-connectivity-l2,

fabric-connectivity-l3,fabric-connectivity-mgmt,fabric-connectivity-util,fabric-equipment,
fabric-protocol-l1,fabric-protocol-l2,fabric-protocol-l3,fabric-protocol-mgmt,fabric-protocol-ops,

fabric-protocol-util,nw-svc-device,nw-svc-devshare,nw-svc-policy,ops,tenant-connectivity-l1,
tenant-connectivity-l2,tenant-connectivity-l3,tenant-connectivity-mgmt,tenant-connectivity-util,

tenant-epg,tenant-ext-connectivity-l1,tenant-ext-connectivity-l2,tenant-ext-connectivity-l3,

tenant-ext-connectivity-mgmt,tenant-ext-connectivity-util,tenant-ext-protocol-l1,tenant-ext-protocol-l2,

tenant-ext-protocol-l3,tenant-ext-protocol-mgmt,tenant-ext-protocol-util,tenant-network-profile,

tenant-protocol-l1,tenant-protocol-l2,tenant-protocol-l3,tenant-protocol-mgmt,tenant-protocol-ops,

tenant-protocol-util,tenant-qos,tenant-security,vmm-connectivity,vmm-ep,vmm-policy,vmm-protocol-ops,

vmm-security" ownerTag="" ownerKey="" name="tenant-admin" dn="uni/userext/role-tenant-admin"
descr=""/>

Configuring a Local User
In the initial configuration script, the admin account is configured and the admin is the only user when the
system starts. The APIC supports a granular, role-based access control system where user accounts can be
created with various roles including non-admin users with fewer privileges.

Configuring a Local User Using the REST API

SUMMARY STEPS

1. Create a local user.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
82

Part 2: Common APIC Tasks Using the REST API
Configuring a Custom Role Using the REST API

DETAILED STEPS

Create a local user.

Example:
URL: https://apic-ip-address/api/node/mo/uni/userext.xml
POST CONTENT:

<aaaUser name="operations" phone="" pwd="<strong_password>" >
<aaaUserDomain childAction="" descr="" name="all" rn="userdomain-all" status="">
<aaaUserRole childAction="" descr="" name="Ops" privType="writePriv"/>
</aaaUserDomain>

</aaaUser>

Configuring a Remote User
Instead of configuring local users, you can point the APIC at the centralized enterprise credential datacenter.
TheAPIC supports Lightweight DirectoryAccess Protocol (LDAP), active directory, RADIUS, and TACACS+.

When an APIC is in minority (disconnected from the cluster), remote logins can fail because the ACI is a
distributed system and the user information is distributed across APICS. Local logins, however, continue to
work because they are local to the APIC.

Note

Starting with the 3.1(1) release, Server Monitoring can be configured through RADIUS, TACACS+, LDAP,
and RSA to determine whether the respective AAA servers are alive or not. Server monitoring feature uses
the respective protocol login to check for server aliveness. For example, a LDAP server will use ldap login
and a Radius server will use radius login with server monitoring to determine server aliveness.

To configure a remote user authenticated through an external authentication provider, you must meet the
following prerequisites:

• The DNS configuration should have already been resolved with the hostname of the RADIUS server.

• You must configure the management subnet.

Configuring a Remote User Using the REST API

SUMMARY STEPS

1. Create a RADIUS provider.
2. Create a login domain.

DETAILED STEPS

Step 1 Create a RADIUS provider.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
83

Part 2: Common APIC Tasks Using the REST API
Configuring a Remote User

URL: https://apic-ip-address/api/policymgr/mo/uni/userext/radiusext.xml
POST Content:
<aaaRadiusProvider name="radius-auth-server.org.com" key="test123" />

Step 2 Create a login domain.

Example:
URL: https://apic-ip-address/api/policymgr/mo/uni/userext.xml
POST Content:
<aaaLoginDomain name="rad"> <aaaDomainAuth realm="radius"/> </aaaLoginDomain>

APIC Signature-Based Transactions

About Signature-Based Transactions
The APIC controllers in a Cisco ACI fabric offer different methods to authenticate users.

The primary authentication method uses a username and password and the APIC REST API returns an
authentication token that can be used for future access to the APIC. This may be considered insecure in a
situation where HTTPS is not available or enabled.

Another form of authentication that is offered utilizes a signature that is calculated for every transaction. The
calculation of that signature uses a private key that must be kept secret in a secure location. When the APIC
receives a request with a signature rather than a token, the APIC utilizes an X.509 certificate to verify the
signature. In signature-based authentication, every transaction to the APIC must have a newly calculated
signature. This is not a task that a user should do manually for each transaction. Ideally this function should
be utilized by a script or an application that communicates with the APIC. This method is the most secure as
it requires an attacker to crack the RSA/DSA key to forge or impersonate the user credentials.

Additionally, you must use HTTPS to prevent replay attacks.Note

Before you can use X.509 certificate-based signatures for authentication, verify that the following pre-requisite
tasks are completed:

1. Create an X.509 certificate and private key using OpenSSL or a similar tool.

2. Create a local user on the APIC. (If a local user is already available, this task is optional).

3. Add the X.509 certificate to the local user on the APIC.

Using a Private Key to Calculate a Signature

Before you begin

You must have the following information available:

• HTTP method - GET, POST, DELETE

Cisco APIC REST API Configuration Guide, Release 4.1(x)
84

Part 2: Common APIC Tasks Using the REST API
APIC Signature-Based Transactions

• REST API URI being requested, including any query options

• For POST requests, the actual payload being sent to the APIC

• The private key used to generate the X.509 certificate for the user

• The distinguished name for the user X.509 certificate on the APIC

Step 1 Concatenate the HTTP method, REST API URI, and payload together in this order and save them to a file.

This concatenated data must be saved to a file for OpenSSL to calculate the signature. In this example, we use a filename
of payload.txt. Remember that the private key is in a file called userabc.key.

Example:

GET example:
GET http://10.10.10.1/api/class/fvTenant.json?rsp-subtree=children

POST example:
POST http://10.10.10.1/api/mo/tn-test.json{"fvTenant": {"attributes": {"status": "deleted", "name":
"test"}}}

Step 2 Verify that the payload.txt file contains the correct information.

For example, using the GET example shown in the previous step:
GET http://10.10.10.1/api/class/fvTenant.json?rsp-subtree=children

Your payload.txt file should contain only the following information:
GET/api/class/fvTenant.json?rsp-subtree=children

Step 3 Verify that you didn't inadvertently create a new line when you created the payload file.

Example:
cat –e payload.txt

Determine if there is a $ symbol at the end of the output, similar to the following:
GET/api/class/fvTenant.json?rsp=subtree=children$

If so, then that means that a new line was created when you created the payload file. To prevent creating a new line when
generating the payload file, use a command similar to the following:
echo -n "GET/api/class/fvTenant.json?rsp-subtree=children" >payload.txt

Step 4 Calculate a signature using the private key and the payload file using OpenSSL.

Example:
openssl dgst -sha256 -sign userabc.key payload.txt > payload_sig.bin

The resulting file has the signature printed on multiple lines.
Step 5 Convert the signature to base64 format:

Example:
openssl base64 -A -in payload_sig.bin -out payload_sig.base64

Step 6 Strip the signature of the new lines using Bash.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
85

Part 2: Common APIC Tasks Using the REST API
Using a Private Key to Calculate a Signature

$ tr -d '\n' < payload_sig.base64
P+OTqK0CeAZjl7+Gute2R1Ww8OGgtzE0wsLlx8fIXXl4V79Zl7
Ou8IdJH9CB4W6CEvdICXqkv3KaQszCIC0+Bn07o3qF//BsIplZmYChD6gCX3f7q
IcjGX+R6HAqGeK7k97cNhXlWEoobFPe/oajtPjOu3tdOjhf/9ujG6Jv6Ro=

This is the signature that will be sent to the APIC for this specific request. Other requests will require to have
their own signatures calculated.

Note

Step 7 Place the signature inside a string to enable the APIC to verify the signature against the payload.

This complete signature is sent to the APIC as a cookie in the header of the request.

Example:
APIC-Request-Signature=P+OTqK0CeAZjl7+Gute2R1Ww8OGgtzE0wsLlx8f
IXXl4V79Zl7Ou8IdJH9CB4W6CEvdICXqkv3KaQszCIC0+Bn07o3qF//BsIplZmYChD6gCX3f
7qIcjGX+R6HAqGeK7k97cNhXlWEoobFPe/oajtPjOu3tdOjhf/9ujG6Jv6Ro=;
APIC-Certificate-Algorithm=v1.0; APIC-Certificate-Fingerprint=fingerprint;
APIC-Certificate-DN=uni/userext/user-userabc/usercert-userabc.crt

The DN used here must match the DN of the user certified object containing the x509 certificate in the next step.Note

Step 8 Use the CertSession class in the Python SDK to communicate with an APIC using signatures.

The following script is an example of how to use the CertSession class in the ACI Python SDK to make requests to an
APIC using signatures.

Example:

#!/usr/bin/env python
It is assumed the user has the X.509 certificate already added to
their local user configuration on the APIC
from cobra.mit.session import CertSession
from cobra.mit.access import MoDirectory

def readFile(fileName=None, mode="r"):
if fileName is None:

return ""
fileData = ""
with open(fileName, mode) as aFile:

fileData = aFile.read()
return fileData

pkey = readFile("/tmp/userabc.key")
csession = CertSession("https://ApicIPOrHostname/",

"uni/userext/user-userabc/usercert-userabc", pkey)

modir = MoDirectory(csession)
resp = modir.lookupByDn('uni/fabric')
pring resp.dn
End of script

The DN used in the earlier step must match the DN of the user certified object containing the x509 certificate in
this step.

Note

Guidelines and Limitations
Follow these guidelines and limitations:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
86

Part 2: Common APIC Tasks Using the REST API
Guidelines and Limitations

• Local users are supported. Remote AAA users are not supported.

• The APIC GUI does not support the certificate authentication method.

• WebSockets and eventchannels do not work for X.509 requests.

• Certificates signed by a third party are not supported. Use a self-signed certificate.

Creating a Local User and Adding a User Certificate Using the REST API

Create a local user and add a user certificate.

Example:
method: POST

url: http://apic/api/node/mo/uni/userext/user-userabc.json
payload:
{

"aaaUser": {
"attributes": {

"name": "userabc",
"firstName": "Adam",
"lastName": "BC",
"phone": "408-525-4766",
"email": "userabc@cisco.com",

},
"children": [{

"aaaUserCert": {
"attributes": {

"name": "userabc.crt",
"data": "-----BEGIN CERTIFICATE-----\nMIICjjCCAfegAwIBAgIJAMQnbE <snipped

content> ==\n-----END CERTIFICATE-----",
},
"children": []

},
"aaaUserDomain": {

"attributes": {
"name": "all",

},
"children": [{

"aaaUserRole": {
"attributes": {

"name": "aaa",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "access-admin",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "admin",
"privType": "writePriv",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
87

Part 2: Common APIC Tasks Using the REST API
Creating a Local User and Adding a User Certificate Using the REST API

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "fabric-admin",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "nw-svc-admin",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "ops",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "read-all",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "tenant-admin",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "tenant-ext-admin",
"privType": "writePriv",

},
"children": []

}
}, {

"aaaUserRole": {
"attributes": {

"name": "vmm-admin",
"privType": "writePriv",

},
"children": []

}
}]

}
}]

}

Cisco APIC REST API Configuration Guide, Release 4.1(x)
88

Part 2: Common APIC Tasks Using the REST API
Creating a Local User and Adding a User Certificate Using the REST API

}

Cisco APIC REST API Configuration Guide, Release 4.1(x)
89

Part 2: Common APIC Tasks Using the REST API
Creating a Local User and Adding a User Certificate Using the REST API

Cisco APIC REST API Configuration Guide, Release 4.1(x)
90

Part 2: Common APIC Tasks Using the REST API
Creating a Local User and Adding a User Certificate Using the REST API

C H A P T E R 5
Common Tenant Tasks

• Common Tenant Tasks, on page 91

Common Tenant Tasks

Tenants Overview
• A tenant contains policies that enable qualified users domain-based access control. Qualified users can
access privileges such as tenant administration and networking administration.

• A user requires read/write privileges for accessing and configuring policies in a domain. A tenant user
can have specific privileges into one or more domains.

• In a multitenancy environment, a tenant provides group user access privileges so that resources are
isolated from one another (such as for endpoint groups and networking). These privileges also enable
different users to manage different tenants.

Tenant Creation
A tenant contains primary elements such as filters, contracts, bridge domains, and application profiles that
you can create after you first create a tenant.

Adding a Tenant
A tenant is a policy owner in the virtual fabric. A tenant can be either a private or a shared entity. For example,
you can create a securely partitioned private tenant or a tenant with contexts and bridge domains shared by
other tenants. A shared type of tenant is typically named common, default, or infra.

In the management information model, a tenant is represented by a managed object (MO) of class fv:Tenant.
According to the Cisco APIC Management Information Model Reference, an object of the fv:Tenant class is
a child of the policy resolution universe (uni) class and has a distinguished name (DN) format of uni/tn-[name].

You can only add one tenant at a time.Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
91

The following examples show how to add a new tenant named ExampleCorp using XML and JSON.

Example: Using the JSON API to Add a Tenant
To create a new tenant, you must specify the class and sufficient naming information, either in the message
body or in the URI.

To create a new tenant using the JSON API, send this HTTP POST message:

POST https://apic-ip-address/api/mo/uni.json

{
"fvTenant" : {
"attributes" : {
"name" : "ExampleCorp"

}
}

}

Alternatively, you can name the tenant in the URI, as in this example:

POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

{
"fvTenant" : {
"attributes" : {
}

}
}

If a response is requested (by appending ?rsp-subtree=modified to the POST URI), a successful operation
returns the following response body:

{
"imdata" :
[{

"fvTenant" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "uni/tn-ExampleCorp",
"lcOwn" : "local",
"name" : "ExampleCorp",
"replTs" : "never",
"rn" : "",
"status" : "created"

}
}

}
]

}

To delete the tenant, send this HTTP DELETE message:

DELETE https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

Cisco APIC REST API Configuration Guide, Release 4.1(x)
92

Part 2: Common APIC Tasks Using the REST API
Example: Using the JSON API to Add a Tenant

Alternatively, you can send an HTTP POST message with sufficient naming information and with "status"

: "deleted" in the fv:Tenant attributes, as in this example:

POST https://apic-ip-address/api/mo/uni.json

{
"fvTenant" : {
"attributes" : {
"name" : "ExampleCorp",
"status" : "deleted"

}
}

}

Example: Using the XML API to Add a Tenant
To create a new tenant, you must specify the class and sufficient naming information, either in the message
body or in the URI.

To create a new tenant named ExampleCorp using the XML API, send this HTTP POST message:

POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp"/>

Alternatively, you can name the tenant in the URI, as in this example:

POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant />

If a response is requested (by appending ?rsp-subtree=modified to the POST URI), a successful operation
returns the following response body:

<imdata>
<fvTenant

instanceId="0:0"
childAction="deleteNonPresent"
dn="uni/tn-ExampleCorp"
lcOwn="local"
name="ExampleCorp"
replTs="never"
rn=""
status="created"

/>
</imdata>

To delete the tenant, send this HTTP DELETE message:

DELETE https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

Alternatively, you can send an HTTP POST message with sufficient naming information and with
status="deleted" in the fv:Tenant attributes, as in this example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
93

Part 2: Common APIC Tasks Using the REST API
Example: Using the XML API to Add a Tenant

POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp" status="deleted"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
94

Part 2: Common APIC Tasks Using the REST API
Example: Using the XML API to Add a Tenant

C H A P T E R 6
Managing Layer 2 Networking

• Tenant External Bridged Networks, on page 95
• Ports, on page 97
• Creating a Port Channel Policy Using the REST API, on page 100

Tenant External Bridged Networks

Bridged Interface to an External Router
As shown in the figure below, when the leaf switch interface is configured as a bridged interface, the default
gateway for the tenant VNID is the external router.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
95

Figure 4: Bridged External Router

The ACI fabric is unaware of the presence of the external router and the APIC statically assigns the leaf switch
interface to its EPG.

VRF and Bridge Domains
You can create and specify a VRF and a bridge domain for the tenant. The defined bridge domain element
subnets reference a corresponding Layer 3 context.

For details about enabling IPv6 Neighbor Discovery seeIPv6 and Neighbor Discovery in Cisco APIC Layer
3 Networking Guide.

Creating a Tenant, VRF, and Bridge Domain Using the REST API

SUMMARY STEPS

1. Create a tenant.
2. Create a VRF and bridge domain.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
96

Part 2: Common APIC Tasks Using the REST API
VRF and Bridge Domains

DETAILED STEPS

Step 1 Create a tenant.

Example:
POST https://apic-ip-address/api/mo/uni.xml
<fvTenant name="ExampleCorp"/>

When the POST succeeds, you see the object that you created in the output.
Step 2 Create a VRF and bridge domain.

The Gateway Address can be an IPv4 or an IPv6 address. For more about details IPv6 gateway address, see the
related KB article, KB: Creating a Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery .

Note

Example:
URL for POST: https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name="ExampleCorp">
<fvCtx name="pvn1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="pvn1"/>
<fvSubnet ip="10.10.100.1/24"/>

</fvBD>
</fvTenant>

If you have a public subnet when you configure the routed outside, you must associate the bridge domain with
the outside configuration.

Note

Ports

Statically Deploying an EPG on a Specific Port
This topic provides a typical example of how to statically deploy an EPG on a specific port when using Cisco
APIC.

Deploying an EPG on a Specific Port with APIC Using the REST API

Before you begin

The tenant where you deploy the EPG is created.

Deploy an EPG on a specific port.

Example:
<fvTenant name="<tenant_name>" dn="uni/tn-test1" >

<fvCtx name="<network_name>" pcEnfPref="enforced" knwMcastAct="permit"/>
<fvBD name="<bridge_domain_name>" unkMcastAct="flood" >

<fvRsCtx tnFvCtxName="<network_name>"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
97

Part 2: Common APIC Tasks Using the REST API
Ports

</fvBD>
<fvAp name="<application_profile>" >

<fvAEPg name="<epg_name>" >
<fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/13]" mode="regular"

instrImedcy="immediate" encap="vlan-20"/>
</fvAEPg>

</fvAp>
</fvTenant>

Creating Domains, Attach Entity Profiles, and VLANs to Deploy an EPG on a
Specific Port

This topic provides a typical example of how to create physical domains, Attach Entity Profiles (AEP), and
VLANs that are mandatory to deploy an EPG on a specific port.

All endpoint groups (EPGs) require a domain. Interface policy groups must also be associated with Attach
Entity Profile (AEP), and the AEP must be associated with a domain, if the AEP and EPG have to be in same
domain. Based on the association of EPGs to domains and of interface policy groups to domains, the ports
and VLANs that the EPG uses are validated. The following domain types associate with EPGs:

• Application EPGs

• Layer 3 external outside network instance EPGs

• Layer 2 external outside network instance EPGs

• Management EPGs for out-of-band and in-band access

The APIC checks if an EPG is associated with one or more of these types of domains. If the EPG is not
associated, the system accepts the configuration but raises a fault. The deployed configurationmay not function
properly if the domain association is not valid. For example, if the VLAN encapsulation is not valid for use
with the EPG, the deployed configuration may not function properly.

EPG association with the AEP without static binding does not work in a scenario when you configure the
EPG as Trunk under the AEP with one end point under the same EPG supporting Tagging and the other end
point in the same EPG does not support VLAN tagging. While associating AEP under the EPG, you can
configure it as Trunk, Access (Tagged) or Access (Untagged).

Note

Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using
the REST API

Before you begin

• The tenant where you deploy the EPG is already created.

• An EPG is statically deployed on a specific port.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
98

Part 2: Common APIC Tasks Using the REST API
Creating Domains, Attach Entity Profiles, and VLANs to Deploy an EPG on a Specific Port

Step 1 Create the interface profile, switch profile and the Attach Entity Profile (AEP).

Example:
<infraInfra>

<infraNodeP name="<switch_profile_name>" dn="uni/infra/nprof-<switch_profile_name>" >
<infraLeafS name="SwitchSeletor" descr="" type="range">

<infraNodeBlk name="nodeBlk1" descr="" to_="1019" from_="1019"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-<interface_profile_name>"/>

</infraNodeP>

<infraAccPortP name="<interface_profile_name>" dn="uni/infra/accportprof-<interface_profile_name>"
>

<infraHPortS name="portSelector" type="range">
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-<port_group_name>" fexId="101"/>

<infraPortBlk name="block2" toPort="13" toCard="1" fromPort="11" fromCard="1"/>
</infraHPortS>

</infraAccPortP>

<infraAccPortGrp name="<port_group_name>" dn="uni/infra/funcprof/accportgrp-<port_group_name>"
>

<infraRsAttEntP tDn="uni/infra/attentp-<attach_entity_profile_name>"/>
<infraRsHIfPol tnFabricHIfPolName="1GHifPol"/>

</infraAccPortGrp>

<infraAttEntityP name="<attach_entity_profile_name>"
dn="uni/infra/attentp-<attach_entity_profile_name>" >

<infraRsDomP tDn="uni/phys-<physical_domain_name>"/>
</infraAttEntityP>

<infraInfra>

Step 2 Create a domain.

Example:
<physDomP name="<physical_domain_name>" dn="uni/phys-<physical_domain_name>">

<infraRsVlanNs tDn="uni/infra/vlanns-[<vlan_pool_name>]-static"/>
</physDomP>

Step 3 Create a VLAN range.

Example:
<fvnsVlanInstP name="<vlan_pool_name>" dn="uni/infra/vlanns-[<vlan_pool_name>]-static"
allocMode="static">

<fvnsEncapBlk name="" descr="" to="vlan-25" from="vlan-10"/>
</fvnsVlanInstP>

Step 4 Associate the EPG with the domain.

Example:
<fvTenant name="<tenant_name>" dn="uni/tn-" >

<fvAEPg prio="unspecified" name="<epg_name>" matchT="AtleastOne"
dn="uni/tn-test1/ap-AP1/epg-<epg_name>" descr="">

<fvRsDomAtt tDn="uni/phys-<physical_domain_name>" instrImedcy="immediate"
resImedcy="immediate"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
99

Part 2: Common APIC Tasks Using the REST API
Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API

</fvAEPg>
</fvTenant>

Creating a Port Channel Policy Using the REST API
The following example REST request creates a Port Channel policy:
<lacpLagPol childAction="" ctrl="fast-sel-hot-stdby,graceful-conv,susp-individual"
descr="" dn="uni/infra/lacplagp-LACP-Active" lcOwn="local" maxLinks="16" minLinks="1"
modTs="2015-02-24T11:58:36.547-08:00" mode="active" name="LACP-Active" ownerKey=""
ownerTag="" status="" uid="8131">
<lacpRtLacpPol childAction="" lcOwn="local" modTs="2015-02-24T14:59:11.154-08:00"
rn="rtinfraLacpPol-[uni/infra/funcprof/accbundle-ACI-VPC-IPG]" status=""
tCl="infraAccBndlGrp" tDn="uni/infra/funcprof/accbundle-ACI-VPC-IPG"/>

</lacpLagPol>

• To enable symmetric hashing, add ctrl="symmetric-hash" to the REST request.

• Symmetric hashing is not supported on the following switches:

• Cisco Nexus 93128TX

• Cisco Nexus 9372PX

• Cisco Nexus 9372PX-E

• Cisco Nexus 9372TX

• Cisco Nexus 9372TX-E

• Cisco Nexus 9396PX

• Cisco Nexus 9396TX

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
100

Part 2: Common APIC Tasks Using the REST API
Creating a Port Channel Policy Using the REST API

C H A P T E R 7
Managing Layer 3 Networking

This chapter contains the following sections:

• Configuring External Connectivity Using a Layer 3 Out, on page 101
• Configuring a Tenant Layer 3 Outside Network Connection Overview, on page 101
• Configuring Layer 3 Outside for Tenant Networks Using the REST API, on page 102
• Configuring BGP Max Path, on page 105
• Configuring AS Path Prepend, on page 105
• Configuring BFD, on page 106

Configuring External Connectivity Using a Layer 3 Out
This section provides a step-by-step configuration required for the ACI fabric to connect to an external routed
network through L3Outs and MP-BGP route reflectors.

This example uses Open Shortest Path First (OSPF) as the routing protocol in an L3Out under the 'mgmt'
tenant.

Configuring a Tenant Layer 3 Outside Network Connection
Overview

This topic provides a typical example of how to configure a Layer 3 Outside for tenant networks when using
Cisco APIC.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
101

Cisco ACI does not support IP fragmentation. Therefore, when you configure Layer 3 Outside (L3Out)
connections to external routers, or Multi-Pod connections through an Inter-Pod Network (IPN), it is
recommended that the interface MTU is set appropriately on both ends of a link. On some platforms, such as
Cisco ACI, Cisco NX-OS, and Cisco IOS, the configurableMTU value does not take into account the Ethernet
headers (matching IP MTU, and excluding the 14-18 Ethernet header size), while other platforms, such as
IOS-XR, include the Ethernet header in the configured MTU value. A configured value of 9000 results in a
max IP packet size of 9000 bytes in Cisco ACI, Cisco NX-OS, and Cisco IOS, but results in a max IP packet
size of 8986 bytes for an IOS-XR untagged interface.

For the appropriate MTU values for each platform, see the relevant configuration guides.

We highly recommend that you test the MTU using CLI-based commands. For example, on the Cisco NX-OS
CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

Note

Configuring Layer 3 Outside for Tenant Networks Using the
REST API

The external routed network that is configured in the example can also be extended to support both IPv4 and
IPv6. Both IPv4 and IPv6 routes can be advertised to and learned from the external routed network. To
configure an L3Out for a tenant network, send a post with XML such as the example.

This example is broken into steps for clarity. For a merged example, see REST API Example: L3Out, on page
312.

Before you begin

• Configure the node, port, functional profile, AEP, and Layer 3 domain.

• Create the external routed domain and associate it to the interface for the L3Out.

• Configure a BGP route reflector policy to propagate the routes within the fabric.

For an XML example of these prerequisites, see REST API Example: L3Out Prerequisites, on page 311.

Step 1 Configure the tenant, VRF, and bridge domain.

This example configures tenant t1 with VRF v1 and bridge domain bd1. The tenant, VRF, and BD are not yet deployed.

Example:
<fvTenant name="t1">

<fvCtx name="v1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="v1"/>
<fvSubnet ip="44.44.44.1/24" scope="public"/>
<fvRsBDToOut tnL3extOutName="l3out1"/>

</fvBD>/>
</fvTenant>

Step 2 Configure an application profile and application EPG.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
102

Part 2: Common APIC Tasks Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

This example configures application profile app1 (on node 101), EPG epg1, and associates the EPG with bd1 and the
contract httpCtrct, as the consumer.

Example:
<fvAp name="app1">

<fvAEPg name="epg1">
<fvRsDomAtt instrImedcy="immediate" tDn="uni/phys-dom1"/>
<fvRsBd tnFvBDName="bd1" />
<fvRsPathAtt encap="vlan-2011" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/paths-101/pathep-[eth1/3]"/>
<fvRsCons tnVzBrCPName="httpCtrct"/>

</fvAEPg>
</fvAp>

Step 3 Configure the node and interface.

This example configures VRF v1 on node 103 (the border leaf switch), with the node profile, nodep1, and router ID
11.11.11.103. It also configures interface eth1/3 as a routed interface (Layer 3 port), with IP address 12.12.12.1/24
and Layer 3 domain dom1.

Example:
<l3extOut name="l3out1">

<l3extRsEctx tnFvCtxName="v1"/>
<l3extLNodeP name="nodep1">

<l3extRsNodeL3OutAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>
<l3extLIfP name="ifp1"/>
<l3extRsPathL3OutAtt addr="12.12.12.3/24" ifInstT="l3-port"

tDn="topology/pod-1/paths-103/pathep-[eth1/3]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-dom1"/>

</l3extOut>

Step 4 Configure the routing protocol.

This example configures BGP as the primary routing protocol, with a BGP peer with the IP address, 15.15.15.2 and
ASN 100.

Example:
<l3extOut name="l3out1">

<l3extLNodeP name="nodep1">
<bgpPeerP addr="15.15.15.2">

<bgpAsP asn="100"/>
</bgpPeerP>

</l3extLNodeP>
<bgpExtP/>

</l3extOut>

Step 5 Configure the connectivity routing protocol.

This example configures OSPF as the communication protocol, with regular area ID 0.0.0.0.

Example:
<l3extOut name="l3out1">

<ospfExtP areaId="0.0.0.0" areaType="regular"/>
<l3extLNodeP name="nodep1">

<l3extLIfP name="ifp1">
<ospfIfP/>

<l3extIfP>
<l3extLNodeP>

</l3extOut>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
103

Part 2: Common APIC Tasks Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

Step 6 Configure the external EPG.

This example configures the network 20.20.20.0/24 as external network extnw1. It also associates extnw1with the route
control profile rp1 and the contract httpCtrct, as the provider.

Example:
<l3extOut name="l3out1">

<l3extInstP name="extnw1">
<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
</l3extOut>

Step 7 Optional. Configure a route map.

This example configures a route map for the BGP peer in the outbound direction. The route map is applied for routes that
match a destination of 200.3.2.0/24. Also, on a successful match (if the route matches this range) the route AS PATH
attribute is updated to 200 and 100.

Example:
<fvTenant name="t1">

<rtctrlSubjP name="match-rule1">
<rtctrlMatchRtDest ip="200.3.2.0/24"/>

</rtctrlSubjP>
<l3extOut name="l3out1">

<rtctrlProfile name="rp1">
<rtctrlCtxP name="ctxp1" action="permit" order="0">

<rtctrlScope>
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrp1"/>

</rtctrlScope>
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule1"/>

</rtctrlCtxP>
</rtctrlProfile>
<l3extInstP name="extnw1">

<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction='export' tnRtctrlProfileName="rp1"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
</l3extOut>

</fvTenant>

Step 8 This example creates filters and contracts to enable the EPGs to communicate. The external EPG and the application
EPG are already associated with the contract httpCtrct as provider and consumer respectively. The scope of the contract
(where it is applied) can be within the application profile, the tenant, the VRF, or it can be used globally (throughout the
fabric). In this example, the scope is the VRF (context).

Example:
<vzFilter name="http-filter">

<vzEntry name="http-e" etherT="ip" prot="tcp"/>
</vzFilter>
<vzBrCP name="httpCtrct" scope="context">

<vzSubj name="subj1">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>

</vzSubj>
</vzBrCP>

Step 9 Configure Advertise Host Routes.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
104

Part 2: Common APIC Tasks Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

"<fvBD dn="uni/tn-t1/BD-b100" hostBasedRouting="yes"/>”

Configuring BGP Max Path
The following feature enables you to add the maximum number of paths to the route table to enable equal
cost, multipath load balancing.

Configuring BGP Max Path Using the REST API
This following example provides information on how to configure the BGPMax Path feature using the REST
API:

<fvTenant descr="" dn="uni/tn-t1" name="t1">
<fvCtx name="v1">

<fvRsCtxToBgpCtxAfPol af="ipv4-ucast" tnBgpCtxAfPolName="bgpCtxPol1"/>
</fvCtx>
<bgpCtxAfPol name="bgpCtxPol1" maxEcmp="8" maxEcmpIbgp="4"/>

</fvTenant>

Configuring AS Path Prepend
A BGP peer can influence the best-path selection by a remote peer by increasing the length of the AS-Path
attribute. AS-Path Prepend provides a mechanism that can be used to increase the length of the AS-Path
attribute by prepending a specified number of AS numbers to it.

AS-Path prepending can only be applied in the outbound direction using route-maps. AS Path prepending
does not work in iBGP sessions.

The AS Path Prepend feature enables modification as follows:

Appends the specified AS number to the AS path of the route matched by
the route map.

Note • You can configure more than one AS number.

• 4 byte AS numbers are supported.

• You can prepend a total 32 AS numbers. You must specify the
order in which the AS Number is inserted into the AS Path
attribute.

Prepend

Prepends the last AS numbers to the AS path with a range between 1 and 10.Prepend-last-as

The following table describes the selection criteria for implementation of AS Path Prepend:

Prepend the specified AS number.1Prepend

Prepend the last AS numbers to the AS path.2Prepend-last-as

Cisco APIC REST API Configuration Guide, Release 4.1(x)
105

Part 2: Common APIC Tasks Using the REST API
Configuring BGP Max Path

Prepend the specified AS number.Prepend(1)DEFAULT

Configuring AS Path Prepend Using the REST API
This following example provides information on how to configure the AS Path Prepend feature using the
REST API:

<?xml version="1.0" encoding="UTF-8"?>
<fvTenant name="coke">

<rtctrlAttrP name="attrp1">
<rtctrlSetASPath criteria="prepend">

<rtctrlSetASPathASN asn="100" order="1"/>
<rtctrlSetASPathASN asn="200" order="10"/>
<rtctrlSetASPathASN asn="300" order="5"/>

<rtctrlSetASPath/>
<rtctrlSetASPath criteria="prepend-last-as" lastnum=”9" />

</rtctrlAttrP>

<l3extOut name="out1">
<rtctrlProfile name="rp1">

<rtctrlCtxP name="ctxp1" order="1">
<rtctrlScope>

<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrp1"/>
</rtctrlScope>

</rtctrlCtxP>
</rtctrlProfile>

</l3extOut>
</fvTenant>

Configuring BFD

Configuring BFD Globally Using the REST API

The following REST API shows the global configuration for bidirectional forwarding detection (BFD):

Example:

<polUni>
<infraInfra>

<bfdIpv4InstPol name="default" echoSrcAddr="1.2.3.4" slowIntvl="1000" minTxIntvl="150"
minRxIntvl="250" detectMult="5" echoRxIntvl="200"/>

<bfdIpv6InstPol name="default" echoSrcAddr="34::1/64" slowIntvl="1000" minTxIntvl="150"
minRxIntvl="250" detectMult="5" echoRxIntvl="200"/>
</infraInfra>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
106

Part 2: Common APIC Tasks Using the REST API
Configuring AS Path Prepend Using the REST API

Configuring BFD Interface Override Using the REST API

The following REST API shows the interface override configuration for bidirectional forwarding detection (BFD):

Example:

<fvTenant name="ExampleCorp">
<bfdIfPol name=“bfdIfPol" minTxIntvl="400" minRxIntvl="400" detectMult="5" echoRxIntvl="400"

echoAdminSt="disabled"/>
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<l3extLIfP name='portIpv4'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port'

addr="10.0.0.1/24" mtu="1500"/>
<bfdIfP type=“sha1” key=“password">

<bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
</bfdIfP>

</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>

Configuring BFD Consumer Protocols Using the REST API

Step 1 The following example shows the interface configuration for bidirectional forwarding detection (BFD):

Example:

<fvTenant name="ExampleCorp">
<bfdIfPol name=“bfdIfPol" minTxIntvl="400" minRxIntvl="400" detectMult="5" echoRxIntvl="400"

echoAdminSt="disabled"/>
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<l3extLIfP name='portIpv4'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port'

addr="10.0.0.1/24" mtu="1500"/>
<bfdIfP type=“sha1” key=“password">

<bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
</bfdIfP>

</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>

Step 2 The following example shows the interface configuration for enabling BFD on OSPF and EIGRP:

Example:

BFD on leaf switch

<fvTenant name=“ExampleCorp">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
107

Part 2: Common APIC Tasks Using the REST API
Configuring BFD Interface Override Using the REST API

<ospfIfPol name="ospf_intf_pol" cost="10" ctrl="bfd”/>
<eigrpIfPol ctrl="nh-self,split-horizon,bfd" dn="uni/tn-Coke/eigrpIfPol-eigrp_if_default"

</fvTenant>

Example:

BFD on spine switch

<l3extLNodeP name="bSpine">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-103" rtrId="192.3.1.8">
<l3extLoopBackIfP addr="10.10.3.1" />
<l3extInfraNodeP fabricExtCtrlPeering="false" />

</l3extRsNodeL3OutAtt>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-103/pathep-[eth5/10]" encap='vlan-4'

ifInstT='sub-interface' addr="20.3.10.1/24"/>
<ospfIfP>

<ospfRsIfPol tnOspfIfPolName='ospf_intf_pol'/>
</ospfIfP>
<bfdIfP name="test" type="sha1" key="hello" status="created,modified">

<bfdRsIfPol tnBfdIfPolName='default' status="created,modified"/>
</bfdIfP>

</l3extLIfP>

</l3extLNodeP>

Step 3 The following example shows the interface configuration for enabling BFD on BGP:

Example:

<fvTenant name="ExampleCorp">
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<l3extLIfP name='portIpv4'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port'

addr="10.0.0.1/24" mtu="1500">
<bgpPeerP addr="4.4.4.4/24" allowedSelfAsCnt="3" ctrl="bfd" descr="" name=""

peerCtrl="" ttl="1">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="3" descr="" name=""/>

</bgpPeerP>
</l3extRsPathL3OutAtt>

</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>

Step 4 The following example shows the interface configuration for enabling BFD on Static Routes:

Example:

BFD on leaf switch

<fvTenant name="ExampleCorp">
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2">
<ipRouteP ip=“192.168.3.4" rtCtrl="bfd">
<ipNexthopP nhAddr="192.168.62.2"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
108

Part 2: Common APIC Tasks Using the REST API
Configuring BFD Consumer Protocols Using the REST API

</ipRouteP>
</l3extRsNodeL3OutAtt>
<l3extLIfP name='portIpv4'>

<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" ifInstT='l3-port'
addr="10.10.10.2/24" mtu="1500" status="created,modified" />

</l3extLIfP>

</l3extLNodeP>

</l3extOut>
</fvTenant>

Example:

BFD on spine switch

<l3extLNodeP name="bSpine">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-103" rtrId="192.3.1.8">
<ipRouteP ip="0.0.0.0" rtCtrl="bfd">
<ipNexthopP nhAddr="192.168.62.2"/>

</ipRouteP>
</l3extRsNodeL3OutAtt>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-103/pathep-[eth5/10]" encap='vlan-4'

ifInstT='sub-interface' addr="20.3.10.1/24"/>

<bfdIfP name="test" type="sha1" key="hello" status="created,modified">
<bfdRsIfPol tnBfdIfPolName='default' status="created,modified"/>

</bfdIfP>
</l3extLIfP>

</l3extLNodeP>

Step 5 The following example shows the interface configuration for enabling BFD on IS-IS:

Example:

<fabricInst>
<l3IfPol name="testL3IfPol" bfdIsis="enabled"/>

<fabricLeafP name="LeNode" >
<fabricRsLePortP tDn="uni/fabric/leportp-leaf_profile" />
<fabricLeafS name="spsw" type="range">
<fabricNodeBlk name="node101" to_="102" from_="101" />
</fabricLeafS>

</fabricLeafP>

<fabricSpineP name="SpNode" >
<fabricRsSpPortP tDn="uni/fabric/spportp-spine_profile" />
<fabricSpineS name="spsw" type="range">

<fabricNodeBlk name="node103" to_="103" from_="103" />
</fabricSpineS>

</fabricSpineP>

<fabricLePortP name="leaf_profile">
<fabricLFPortS name="leafIf" type="range">
<fabricPortBlk name="spBlk" fromCard="1" fromPort="49" toCard="1" toPort="49" />

<fabricRsLePortPGrp tDn="uni/fabric/funcprof/leportgrp-LeTestPGrp" />
</fabricLFPortS>

</fabricLePortP>

<fabricSpPortP name="spine_profile">
<fabricSFPortS name="spineIf" type="range">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
109

Part 2: Common APIC Tasks Using the REST API
Configuring BFD Consumer Protocols Using the REST API

<fabricPortBlk name="spBlk" fromCard="5" fromPort="1" toCard="5" toPort="2" />
<fabricRsSpPortPGrp tDn="uni/fabric/funcprof/spportgrp-SpTestPGrp" />

</fabricSFPortS>
</fabricSpPortP>

<fabricFuncP>
<fabricLePortPGrp name = "LeTestPGrp">

<fabricRsL3IfPol tnL3IfPolName="testL3IfPol"/>
</fabricLePortPGrp>

<fabricSpPortPGrp name = "SpTestPGrp">
<fabricRsL3IfPol tnL3IfPolName="testL3IfPol"/>

</fabricSpPortPGrp>

</fabricFuncP>

</fabricInst>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
110

Part 2: Common APIC Tasks Using the REST API
Configuring BFD Consumer Protocols Using the REST API

C H A P T E R 8
Monitoring Using the REST API

• About Monitoring Using the REST API, on page 111
• APIC, on page 111
• Fabric, on page 113
• Switches, on page 114
• External Monitoring, on page 117

About Monitoring Using the REST API

Monitoring APIC Using the REST API
Proactive monitoring is an important piece of the network administrator's job but is often neglected because
solving urgent problems in the network usually takes priority. However, the Application Policy Infrastructure
Controller (APIC) will save network administrators time and frustration because it makes it easy to gather
statistics and perform analyses. Because statistics are gathered automatically and policies are used and can
be re-used in other places, human effort and error are minimized.

The following examples using the REST API can be used to drill into APIC fabric and switch components.

APIC

Monitoring APIC CPU and Memory Usage Using the REST API
The easiest way to quickly verify the health of the controllers is the APIC. Controllers provide information
regarding the current status of CPU and memory utilization by creating instances of the procEntity class. The
procEntity is a container of processes in the system. This object holds detailed information about various
processes running on the APIC. The procEntity objects contain the following useful properties:

• cpuPct—CPU utilization

• maxMemAlloc—The maximum memory allocated for the system

• memFree—The maximum amount of available memory for the system

Cisco APIC REST API Configuration Guide, Release 4.1(x)
111

SUMMARY STEPS

1. Retrieve information about CPU and memory usage using the following REST API call:

DETAILED STEPS

Retrieve information about CPU and memory usage using the following REST API call:

Example:
https://apic-ip-address/api/node/class/procEntity.xml?

Monitoring APIC Disk Utilization Using the REST API
There are several disks and file systems present on the APIC. The REST API provides ready access to disk
space utilization of all partitions on the system and can be used for monitoring this information.

Monitor the disk and file systems on the APIC, by sending a REST API post, such as the following:

Example:
https://apic-ip-address/api/node/class/eqptStorage.xml?

Monitoring Physical Interface Statistics and Link State Using the REST API
You can use the RESTAPI interface to poll for interface statistics. Several counters are available (for example,
RX/TX, input/output / duplex, 30 second rates, 5 minute rate, unicast packets, multicast packets). Using the
parent managed object, the children can be derived from it. To do this, you must have a good understanding
of the object model and be able to navigate through the model to obtain the information desired using the
example below.

Step 1 Use the following base API call to get physical interface statistics:

Example:
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/phys-[eth1/1].json

Step 2 To determine the total ingress bytes on Leaf 101 port Eth1/1, you can issue the following API call:

Example:
/topology/pod-1/node-101/sys/phys-[eth1/1].json

Step 3 Visore allows you to dig deeper into the hierarchical tree. From the prior command, the operator can see children of the
interface object, such as ingress and egress bytes. The child objects include the following:

Example:
/topology/pod-1/node-101/sys/phys-[eth1/1]/dbgEtherStats

Cisco APIC REST API Configuration Guide, Release 4.1(x)
112

Part 2: Common APIC Tasks Using the REST API
Monitoring APIC Disk Utilization Using the REST API

Fabric

Monitoring LLDP and CDP Neighbor Status Using the REST API
The APIC enables you to determine all LLDP or CDP neighbors in a fabric, using the REST API.

Step 1 To determine the LLDP neighbors, send a POST such as the following:

Example:
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/lldp/inst/if-[eth1/1]

Step 2 To determine the CDP neighbors, send a POST such as the following:

Example:
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/cdp/inst/if-[eth1/1]

Monitoring Physical and Bond Interfaces Using the REST API
The APIC uses a bonded interface that is typically dual-homed to two leaf switches for connectivity to the
Cisco ACI fabric. It also can use a bonded interface that can be dual-homed to the out-of-band management
network.

• Bond0 is the bond interface used to connect to the fabric itself (to connect to leaf switches that connect
into the fabric).

• Bond1 is the bond interface used to connect to the out-of-band segment (to connect to an OOB segment
that allows setup of the APIC itself).

The bond interfaces rely on underlying physical interfaces. It is important to note that the REST API provides
link information for both the physical and logical bond interfaces.

Collect information about both the bond interfaces by sending a POST request such as the following example:

Example:
https://apic-ip-address/api/node/mo/topology/pod-1/node-1/sys.json?querytarget=
subtree&target-subtree-class=l3EncRtdIf

Monitoring EPG-Level Statistics Using the REST API
Tomonitor network-related information for an application, you can investigate the aggregate amount of traffic
to a specific tier. For example, you can monitor the amount of traffic to the web tier of a given EPG application
with the REST API.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
113

Part 2: Common APIC Tasks Using the REST API
Fabric

To monitor the traffic for a new project for the epg-web-epg, send a POST request such as the following example:

Example:
https://apic-ip-address/api/node/mo/uni/tn-newproject/ap-app1/epg-web-epg.xml?querytarget=
self&rsp-subtree-include=stats

Switches

Monitoring Switch CPU Utilization Using the REST API
Spine and leaf switch CPU utilization can be monitored using the following classes, based on the desired
timescale and granularity:

• proc:SysCPU5min—A class that represents the most current statistics for system CPU in a 5-minute
sampling interval. This class updates every 10 seconds.

• proc:SysCPU15min—A class that represents the most current statistics for system CPU in a 15-minute
sampling interval. This class updates every 5 minutes.

• proc:SysCPU1h—Aclass that represents the most current statistics for systemCPU in a 1-hour sampling
interval. This class updates every 15 minutes.

• proc:SysCPU1d—Aclass that represents the most current statistics for system CPU in a 1-day sampling
interval. This class updates every hour.

• proc:SysCPU1w—Aclass that represents themost current statistics for systemCPU in a 1-week sampling
interval. This class updates every day.

• proc:SysCPU1mo—A class that represents the most current statistics for system CPU in a 1-month
sampling interval. This class updates every day.

• proc:SysCPU1qtr—A class that represents the most current statistics for system CPU in a 1-quarter
sampling interval. This class updates every day.

• proc:SysCPU1year—A class that represents the most current statistics for system CPU in a 1-year
sampling interval. This class updates every day.

The following example shows how to use these classes for monitoring:

To view the average CPU utilization of all of the fabric switches over the last day, use XML such as in the following
example:

Example:

https://apic-ip-address//api/node/class/procSysCPU1d.xml?

Cisco APIC REST API Configuration Guide, Release 4.1(x)
114

Part 2: Common APIC Tasks Using the REST API
Switches

Monitoring Switch Fan Status Using the REST API
The following REST API call(s) and their child objects can be used to monitor the state of the fans on a leaf
switch (note that there are 3 slots on this particular switch).

To retrieve the status of the fan trays on the leaf switches, use XML such as the following example:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/ftslot-1
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/ftslot-2
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/ftslot-3

Monitoring Switch Memory Utilization Using the REST API
Spine and leaf switch memory utilization can be monitored using the following classes, based on the desired
timescale and granularity:

• proc:SysMem5min—Aclass that represents the most current statistics for systemmemory in a 5-minute
sampling interval. This class updates every 10 seconds.

• proc:SysMem15min—Aclass that represents themost current statistics for systemmemory in a 15-minute
sampling interval. This class updates every 5 minutes.

• proc:SysMem1h—A class that represents the most current statistics for system memory in a 1-hour
sampling interval. This class updates every 15 minutes.

• proc:SysMem1d—A class that represents the most current statistics for system memory in a 1-day
sampling interval. This class updates every hour.

• proc:SysMem1w—A class that represents the most current statistics for system memory in a 1-week
sampling interval. This class updates every day.

• proc:SysMem1mo—A class that represents the most current statistics for system memory in a 1-month
sampling interval. This class updates every day.

• proc:SysMem1qtr—A class that represents the most current statistics for systemmemory in a 1-quarter
sampling interval. This class updates every day.

• proc:SysMem1year—A class that represents the most current statistics for system memory in a 1-year
sampling interval. This class updates every day.

The following example shows how to use one of the classes:

To monitor memory over the last day, use the following REST call:

Example:

https://apic-ip-address/api/node/class/procSysMem1d.xml?

Cisco APIC REST API Configuration Guide, Release 4.1(x)
115

Part 2: Common APIC Tasks Using the REST API
Monitoring Switch Fan Status Using the REST API

Monitoring Switch Module Status Using the REST API
Even though the leaves are considered fixed switches, they have a supervisor component that refers to the
CPU complex. From a forwarding perspective, there are two data-plane components: the NFE (Network
Forwarding Engine) ASIC, which provides the front panel ports; and the ALE or ALE2 (Application Leaf
Engine) ASIC—depending on the generation of switch hardware—which provides uplink connectivity to the
spines. The following REST API example can be used to determine the status of the modules in the switch:

To monitor the state of the supervisor and the module, use a REST API call such as the following:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/supslot-1/sup
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/lcslot-1/lc

Monitoring Switch Power Supply Status Using the REST API
You can use the REST API to retrieve the status of the power supplies on the leaf switches.

To monitor the state of the power supplies on a leaf switch, use XML such as the following example:

Example:
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/psuslot-1
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/psuslot-2

Note that there are 2 power supplies on this particular switch.

Monitoring Switch Inventory Using the REST API
You can use the REST API to retrieve switch hardware information such as the model and serial numbers.

To retrieve switch hardware information, use the REST API as shown in the following example:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1.json?query-target=children&target-subtree-class=fabricNode

Cisco APIC REST API Configuration Guide, Release 4.1(x)
116

Part 2: Common APIC Tasks Using the REST API
Monitoring Switch Module Status Using the REST API

External Monitoring

Smart Callhome

About Smart Callhome
Smart Callhome provides an email-based notification for critical system policies in a similar way as Callhome.
However, Smart Callhome collects a more specific selection of faults to deliver in email messages.

Smart Callhome only collects and delivers faults.Note

The fault triggers that are typical of the Smart Callhome feature correspond to the kind of events that threaten
to disrupt your network. Examples are:

• Temperature Faults: The temperature of a sensor exceeds a threshold.

• Fan/ Power Supply Faults: A fan or power supply unit goes offline.

• Disk Utilization Faults: The disk usage of a device exceeds a threshold.

Smart Callhome collects faults and emails them to a network support engineer, a Network Operations Center,
or to Cisco Smart Callhome services to generate a case with the Technical Assistance Center (TAC).

Creating a Smart Callhome Destination Group Using the REST API

SUMMARY STEPS

1. Create a Smart Callhome destination group.

DETAILED STEPS

Create a Smart Callhome destination group.

Example:
POST https://192.168.1.141/api/node/mo/uni/fabric.json

{
"callhomeSmartGroup": {
"attributes": {
"name": "<destination-group-name>",
"descr": "<description>"

},
"children": [
{
"callhomeSmartDest": {
"attributes": {
"name": "<destination-name>",
"email": "<email-address>",
format="xml"

},

Cisco APIC REST API Configuration Guide, Release 4.1(x)
117

Part 2: Common APIC Tasks Using the REST API
External Monitoring

"children": []
}

},

{
"callhomeProf": {
"attributes": {
"from": "<email-address>",
"port": "<number>",
"replyTo": "<email-address>",
"email": "<customer-contact-email>",
"phone": "<contact-phone-number>",
"contact": "<name>",
"addr": "<streeet-address>",
"contract": "<id>",
"customer": "<id>",¬
"site": "<id>"

},
"children": [
{
"callhomeSmtpServer": {
"attributes": {
"host": "<hostname-or-ip-address>"

},
"children": [
{
"file RsARemoteHostToEpg": {
"attributes": {
"tDn": "uni/tn-mgmt/mgmtp-default/oob- default"

},
"children": []

}
}

]
}

}
]

}
}

]
}

}

TACACS External Logging

About TACACS External Logging
Terminal Access Controller Access Control System (TACACS) and Terminal Access Controller Access
Control System Plus (TACACS+) are simple security protocols that provide centralized validation of users
attempting to gain access to network devices. TACACS+ furthers this capability by separating the authentication,
authorization, and accounting functions in modules, and encrypting all traffic between the NAS and the
TACACS+ daemon.

TACACS external logging collects AAA data from a configured TACACS source (fabric-wide or tenant-only)
and delivers it to one or more remote destination TACACS servers, as configured in a TACACS destination
group. The collected data includes AAA session logs (SessionLR) such as log-ins, log-outs, and time ranges,
for every Cisco Application Policy Infrastructure Controller (Cisco APIC) user, as well as AAAmodifications

Cisco APIC REST API Configuration Guide, Release 4.1(x)
118

Part 2: Common APIC Tasks Using the REST API
TACACS External Logging

(ModLR) such as the addition of a new user or a password change. Additionally, all configuration changes are
logged and include the user ID and time stamp.

Creating a TACACS External Logging Destination Group Using the REST API

Create a TACACS destination group.

Example:
POST https://<apic-name>/api/node/mo/uni/fabric/tacacsgroup-<groupname>.json

{
"tacacsGroup": {
"attributes": {
"dn": "uni/fabric/tacacsgroup-<groupname>",
"name": "<groupname>",
"rn": "tacacsgroup-<groupname>",
"status": "created"

},
"children": [{
"tacacsTacacsDest": {
"attributes": {
"dn": "uni/fabric/tacacsgroup-<groupname>/tacacsdest-<dest-name>-port-<portno>",
"host": "<dest-name>",
"rn": "tacacsdest-<dest-name>-port-<portno>",
"key": "<server secret>",
"status": "created"

},
"children": [{
"fileRsARemoteHostToEpg": {
"attributes": {
"tDn": "uni/tn-mgmt/mgmtp-default/oob-default",
"status": "created"

},
"children": []

}
}]

}
}]

}
}

Creating a TACACS External Logging Source Using the REST API

Create a TACACS source.

Example:
POST https://<apic-name>/api/node/mo/uni/fabric/moncommon/tacacssrc-<src-name>.json

{
"tacacsSrc": {
"attributes": {
"dn": "uni/fabric/moncommon/tacacssrc-<src-name>",
"incl": "audits,faults",
"name": "aaa",
"rn": "tacacssrc-<src-name>",
"status": "created",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
119

Part 2: Common APIC Tasks Using the REST API
Creating a TACACS External Logging Destination Group Using the REST API

"incl":"audit,session"
},
"children": [{
"tacacsRsDestGroup": {
"attributes": {
"tDn": "uni/fabric/tacacsgroup-<groupname>",
"status": "created"

},
"children": []

}
}]

}
}

Cisco APIC REST API Configuration Guide, Release 4.1(x)
120

Part 2: Common APIC Tasks Using the REST API
Creating a TACACS External Logging Source Using the REST API

C H A P T E R 9
Troubleshooting Using the REST API

• Collecting and Exporting Technical Support Information, on page 121
• Troubleshooting Using Atomic Counters, on page 122
• Troubleshooting Using Faults, on page 129
• Statistics, on page 131
• Recovering a Disconnected Leaf, on page 132
• Troubleshooting Contracts and Taboo Contracts with Permit and Deny Logging, on page 133
• Troubleshooting Using Digital Optical Monitoring Statistics, on page 135
• Troubleshooting Using Port Tracking, on page 135
• Removing Unwanted _ui_ Objects, on page 137
• Troubleshooting Using Contract Permit and Deny Logs, on page 137

Collecting and Exporting Technical Support Information

About Exporting Files
An administrator can configure export policies in the APIC to export statistics, technical support collections,
faults and events, to process core files and debug data from the fabric (the APIC as well as the switch) to any
external host. The exports can be in a variety of formats, including XML, JSON, web sockets, secure copy
protocol (SCP), or HTTP. You can subscribe to exports in streaming, periodic, or on-demand formats.

An administrator can configure policy details such as the transfer protocol, compression algorithm, and
frequency of transfer. Policies can be configured by users who are authenticated using AAA. A security
mechanism for the actual transfer is based on a username and password. Internally, a policy element handles
the triggering of data.

Sending an On-Demand Tech Support File Using the REST API

Step 1 Set the remote destination for a technical support file using the REST API, by sending a POST with XML such as the
following example:

Example:
<fileRemotePath userName="" remotePort="22" remotePath="" protocol="sftp" name="ToSupport"
host="192.168.200.2"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
121

dn="uni/fabric/path-ToSupport" descr="">

<fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</fileRemotePath>

Step 2 Generate an on-demand technical support file using the REST API by sending a POST with XML such as the following:

Example:

<dbgexpTechSupOnD upgradeLogs="no" startTime="unspecified" name="Tech_Support_9-20-16"
exportToController="no" endTime="unspecified" dn="uni/fabric/tsod-Tech_Support_9-20-16" descr=""
compression="gzip" category="forwarding" adminSt="untriggered">
<dbgexpRsExportDest tDn="uni/fabric/path-ToSupport"/>
<dbgexpRsTsSrc tDn="topology/pod-1/node-102/sys"/>
<dbgexpRsTsSrc tDn="topology/pod-1/node-103/sys"/>
<dbgexpRsTsSrc tDn="topology/pod-1/node-101/sys"/>
<dbgexpRsData tDn="uni/fabric/tscont"/>

</dbgexpTechSupOnD>
<fabricFuncP>

<fabricCtrlrPGrp name="default">
<fabricRsApplTechSupOnDemand tnDbgexpTechSupOnDName=" Tech_Support_9-20-16"/>

</fabricCtrlrPGrp>
</fabricFuncP>

Troubleshooting Using Atomic Counters

Atomic Counters
Atomic Counters are useful for troubleshooting connectivity between endpoints, EPGs, or an application
within the fabric. A user reporting application may be experiencing slowness, or atomic counters may be
needed for monitoring any traffic loss between two endpoints. One capability provided by atomic counters is
the ability to place a trouble ticket into a proactive monitoring mode, for example when the problem is
intermittent, and not necessarily happening at the time the operator is actively working the ticket.

Atomic counters can help detect packet loss in the fabric and allow the quick isolation of the source of
connectivity issues. Atomic counters require NTP to be enabled on the fabric.

Leaf-to-leaf (TEP to TEP) atomic counters can provide the following:

• Counts of drops, admits, and excess packets
• Short-term data collection such as the last 30 seconds, and long-term data collection such as 5 minutes,
15 minutes, or more

• A breakdown of per-spine traffic (available when the number of TEPs, leaf or VPC, is less than 64)
• Ongoing monitoring

Leaf-to-leaf (TEP to TEP) atomic counters are cumulative and cannot be cleared. However, because 30 second
atomic counters reset at 30 second intervals, they can be used to isolate intermittent or recurring problems.

Tenant atomic counters can provide the following:

• Application-specific counters for traffic across the fabric, including drops, admits, and excess packets
• Modes include the following:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
122

Part 2: Common APIC Tasks Using the REST API
Troubleshooting Using Atomic Counters

• Endpoint to endpointMAC address, or endpoint to endpoint IP address. Note that a single target endpoint
could have multiple IP addresses associated with it.

• EPG to EPG with optional drill down
• EPG to endpoint
• EPG to * (any)
• Endpoint to external IP address

Atomic counters track the amount packets of between the two endpoints and use this as a measurement. They
do not take into account drops or error counters in a hardware level.

Note

Dropped packets are calculated when there are less packets received by the destination than transmitted by
the source.

Excess packets are calculated when there are more packets received by the destination than transmitted by
the source.

Enabling Atomic Counters
To enable using atomic counters to detect drops and misrouting in the fabric and enable quick debugging and
isolation of application connectivity issues, create one or more tenant atomic counter policies, which can be
one of the following types:

• EP_to_EP—Endpoint to endpoint (dbgacEpToEp)

• EP_to_EPG—Endpoint to endpoint group (dbgacEpToEpg)

• EP_to_Ext—Endpoint to external IP address (dbgacEpToExt)

• EPG_to_EP—Endpoint group to endpoint(dbgacEpgToEp)

• EPG_to_EPG—Endpoint group to endpoing group (dbgacEpgToEpg)

• EPG_to_IP—Endpoint group to IP address (dbgacEpgToIp)

• Ext_to_EP—External IP address to endpoint (dbgacExtToEp)

• IP_to_EPG—IP address to endpoint group (dbgacIpToEpg)

• Any_to_EP—Any to endpoint (dbgacAnyToEp)

• EP_to_Any—Endpoint to any (dbgacEpToAny)

Step 1 To create an EP_to_EP policy using the REST API, use XML such as the following example:

Example:
<dbgacEpToEp name="EP_to_EP_Policy" ownerTag="" ownerKey=""
dn="uni/tn-Tenant64/acEpToEp-EP_to_EP_Policy" descr="" adminSt="enabled">
<dbgacFilter name="EP_to_EP_Filter" ownerTag="" ownerKey="" descr=""
srcPort="https" prot="tcp" dstPort="https"/>
</dbgacEpToEp>

Step 2 To create an EP_to_EPG policy using the REST API, use XML such as the following example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
123

Part 2: Common APIC Tasks Using the REST API
Enabling Atomic Counters

Example:
<dbgacEpToEpg name="EP_to_EPG_Pol" ownerTag="" ownerKey=""
dn="uni/tn-Tenant64/epToEpg-EP_to_EPG_Pol" descr="" adminSt="enabled">
<dbgacFilter name="EP_to_EPG_Filter" ownerTag="" ownerKey="" descr=""
srcPort="http" prot="tcp" dstPort="http"/>
<dbgacRsToAbsEpg tDn="uni/tn-Tenant64/ap-VRF64_app_prof/epg-EPG64"/>
</dbgacEpToEpg>

About Fabric Latency
Fabric latency is a troubleshooting tool to monitor the time taken by a packet to traverse from source to
destination in the fabric. It can be used to measure latency between a combination of endpoints, endpoint
groups, external interfaces, and IP addresses. Latency is measured from the Arrival time in the ingress leaf
switch to the Departure time in the egress leaf switch. A prerequisite for fabric latency measurement is that
all the nodes shall be synchronized with uniform time. Precision Time Protocol (PTP) is used for this, due to
its' sub-microsecond accuracy, compared to NTP, which has only millisecond precisions. NTP is not sufficient
to measure packet flight times within an ACI fabric, which is in the order of microseconds. Hence, latency
feature requires all the nodes in the fabric to be synchronized using PTP.

There are two types of latency measurement:

• Ongoing TEP-to-TEP latency

• On-demand Tenant latency

Ongoing latency or Leaf-to-leaf (TEP to TEP) latency is used to measure latency across Tunnel End Points
in leaf switches. It provides the average and maximum latency, standard deviation, and packet count computed
at the destination leaf switch. The latency data collected for the last 30 seconds as well as the cumulative
latency values are provided. The TEP-to-TEP latency measurements are enabled as soon as PTP is turned on
in the fabric.

Tenant latency measurements can be configured to troubleshoot issues at the level of individual applications.
They can be enabled for the IP flows matching a specific Flow rule programmed in the Latency TCAM. The
flow rules semantics are similar to the current Atomic counter flow rules.

If latency measurement is configured for a particular IP flow, then the latency measurement simultaneously
being done for this flow’s tunnel, will not account for latency of this flow.

Note

The following flow rules are supported for latency measurement, in addition to atomic counters:

• Measure EP to EP latency

• Measure EP to EPG latency

• Measure EP to External IP latency

• Measure EPG to EP latency

• Measure EPG to EPG latency

• Measure EPG to External IP latency

Cisco APIC REST API Configuration Guide, Release 4.1(x)
124

Part 2: Common APIC Tasks Using the REST API
About Fabric Latency

• Measure External IP to EP latency

• Measure External IP to EPG latency

• Measure Any to EP latency

• Measure External IP to External IP latency

• Measure EP to Any latency

Both Atomic counters and Latency measurements can be independently enabled or disabled on the same IP
flow rules.

Note

Latency data can be measured in twomodes; average and histogram. The mode can be specified independently
for ongoing latency as well as for each flow rule in tenant latency policies.

Average Mode

Average mode enables the following measurements.

• Average latency for last 30 seconds

• Standard deviation for last 30 seconds

• Packet count for last 30 second

• Accumulated average latency

• Accumulated Maximum latency

• Accumulated Packet Count

The latency measurement in average mode may slightly differ in the low order multiples, of 0.1 microsecond,
compared to an external measurement equipment.

Note

Histogram Mode

Histogrammode enables the visualization of the distribution of packet counts across different latency intervals.
There are 16 Histogram buckets, and each bucket is configured with a measurement interval. Bucket 0's
measurement interval is 0 to 5 microseconds, and Bucket 1 between 5 to 10 microseconds ending in 80
microseconds for the last bucket. Each of these buckets include a 64 bit counter to measure packets whose
latency fell within the bucket’s configured latency interval.

The histogram charts are useful for understanding the latency trends, but may not reflect the exact packet
count. For measuring the actual number of packets, atomic counters may be used.

The maximum number of TEP-to-TEP latency entries supported is 384. In EX-based TORs, we can have at
most 256 flows in average mode and 64 flows in histogram mode. In FX-based TORS, we can have at most
640 flows in average mode and 320 flows in histogram mode.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
125

Part 2: Common APIC Tasks Using the REST API
About Fabric Latency

About PTP
Precision Time Protocol (PTP) is a time synchronization protocol defined in IEEE 1588 for nodes distributed
across a network. With PTP, it is possible to synchronize distributed clocks with an accuracy of less than 1
microsecond via Ethernet networks. PTP’s accuracy comes from the hardware support for PTP in the ACI
fabric spines and leafs. It allows the protocol to accurately compensate for message delays and variation across
the network.

PTP is a distributed protocol that specifies how real-time PTP clocks in the system synchronize with each
other. These clocks are organized into a master-slave synchronization hierarchy with the grandmaster clock,
which is the clock at the top of the hierarchy, determining the reference time for the entire system.
Synchronization is achieved by exchanging PTP timing messages, with the members using the timing
information to adjust their clocks to the time of their master in the hierarchy. PTP operates within a logical
scope called a PTP domain.

The PTP process consists of two phases: establishing the master-slave hierarchy and synchronizing the clocks.
Within a PTP domain, each port of an ordinary or boundary clock follows this process to determine its state:

• Examines the contents of all received announce messages (issued by ports in the master state).

• Compares the data sets of the foreign master (in the announce message) and the local clock for priority,
clock class, accuracy, and so on.

• Determines its own state as either master or slave.

After the master-slave hierarchy has been established, the clocks are synchronized as follows:

• The master sends a synchronization message to the slave and notes the time it was sent.

• The slave receives the synchronization message and notes the time that it was received. For every
synchronization message, there is a follow-up message. Hence, the number of sync messages should be
equal to the number of follow-up messages.

• The slave sends a delay-request message to the master and notes the time it was sent.

• The master receives the delay-request message and notes the time it was received.

• The master sends a delay-response message to the slave. The number of delay request messages should
be equal to the number of delay response messages.

• The slave uses these timestamps to adjust its clock to the time of its master.

In ACI fabric, when PTP feature is globally enabled in APIC, the software automatically enables PTP on
specific interfaces of all the supported spines and leafs. This auto-configuration ensures that PTP is optimally
enabled on all the supported nodes. In the absence of an external grandmaster clock, one of the spine switch
is chosen as the grandmaster. The master spine is given a different PTP priority as compared to the other
spines and leaf switches so that they will act as PTP slaves. This way we ensure that all the leaf switches in
the fabric synchronize to the PTP clock of the master spine.

If an external Grandmaster clock is connected to the spines, the spine syncs to the external GM and in turn
acts as a master to the leaf nodes.

PTP Default Settings

The following table lists the default settings for PTP parameters.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
126

Part 2: Common APIC Tasks Using the REST API
About PTP

DefaultParameters

Boundary clockPTP device type

Two-step clockPTP clock type

0PTP domain

255PTP priority 1 value when advertising the clock

255PTP priority 2 value when advertising the clock

1 log secondPTP announce interval

3 announce intervalsPTP announce timeout

0 log secondsPTP delay-request interval

-2 log secondsPTP sync interval

1PTP VLAN

PTP operates only in boundary clock mode. Cisco recommends deployment of a Grand Master Clock (10
MHz) upstream, with servers containing clocks requiring synchronization connected to the switch.

Note

PTP Verification

PurposeCommand

Displays the PTP status.show ptp brief

Displays the properties of the local clock, including
clock identity.

show ptp clock

Displays the state of foreign masters known to the
PTP process. For each foreign master, the output
displays the clock identity, basic clock properties, and
whether the clock is being used as a grandmaster.

show ptp clock foreign-masters record interface
ethernet slot/port

Displays the last few PTP corrections.show ptp corrections

Displays the PTP packet counters for all interfaces or
for a specified interface.

show ptp counters [all |interface Ethernet slot/port]

Displays the properties of the PTP parent.show ptp parent

Cisco APIC REST API Configuration Guide, Release 4.1(x)
127

Part 2: Common APIC Tasks Using the REST API
About PTP

Troubleshooting Using Atomic Counters with the REST API

Step 1 To get a list of the endpoint-to-endpoint atomic counters deployed within the fabric and the associated details such as
dropped packet statistics and packet counts, use the dbgEpToEpTsIt class in XML such as the following example:

Example:
https://apic-ip-address/api/node/class/dbgEpToEpRslt.xml

Step 2 To get a list of external IP-to-endpoint atomic counters and the associated details, use the dbgacExtToEp class in XML
such as the following example:

Example:
https://apic-ip-address/api/node/class/dbgExtToEpRslt.xml

Configuring Latency and PTP Using the REST API
To configure the flow policy parameters, follow the same steps for configuring atomic counters in Cisco APIC
Troubleshooting guide: https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/
troubleshooting/b_APIC_Troubleshooting/b_APIC_Troubleshooting_chapter_0110.html#id_40942.

Step 1 To enable PTP mode:

Example:
/api/node/mo/uni/fabric/ptpmode.xml
<latencyPtpMode state=”enabled”>

Step 2 Configure an EP to EP policy:

Example:
<dbgacEpToEp name="EP_to_EP_Policy" adminSt="enabled" usage=“latency-stats” latencyCollect =
“histogram”>
</dbgacEpToEp>

Step 3 To enable both atomic counter and latency (average mode), here’s the XML

Example:
<dbgacEpToEp name="EP_to_EP_Policy" adminSt="enabled" usage=“latency-stats|atomic-counter”
latencyCollect = “average”>
</dbgacEpToEp>

Step 4 To change the collection type for Ongoing-mode from average to histogram.

Example:
<latencyOngoingMode userMode=”histogram”>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
128

Part 2: Common APIC Tasks Using the REST API
Troubleshooting Using Atomic Counters with the REST API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/troubleshooting/b_APIC_Troubleshooting/b_APIC_Troubleshooting_chapter_0110.html#id_40942
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/troubleshooting/b_APIC_Troubleshooting/b_APIC_Troubleshooting_chapter_0110.html#id_40942

Troubleshooting Using Faults

Understanding APIC Faults
From a management point of view we look at the Application Policy Infrastructure Controller (APIC) from
two perspectives:

• Policy Controller - Where all fabric configuration is created, managed and applied. It maintains a
comprehensive, up-to-date run-time representation of the administrative or configured state.

• Telemetry device - All devices (Fabric Switches, Virtual Switches, integrated Layer 4 to Layer 7 devices)
in an Cisco Application Centric Infrastructure (ACI) fabric report faults, events and statistics to the APIC.

Faults, events, and statistics in the ACI fabric are represented as a collection of Managed Objects (MOs)
within the overall ACI Object Model/Management Information Tree (MIT). All objects within ACI can be
queried, including faults. In this model, a fault is represented as a mutable, stateful, and persistent MO.

Figure 5: Fault Lifecycle

Cisco APIC REST API Configuration Guide, Release 4.1(x)
129

Part 2: Common APIC Tasks Using the REST API
Troubleshooting Using Faults

When a specific condition occurs, such as a component failure or an alarm, the system creates a fault MO as
a child object to the MO that is primarily associated with the fault. For a fault object class, the fault conditions
are defined by the fault rules of the parent object class. Fault MOs appear as regular MOs in MIT; they have
a parent, a DN, RN, and so on. The Fault "code" is an alphanumerical string in the form FXXX. For more
information about fault codes, see the Cisco APIC Faults, Events, and System Messages Management Guide.

Troubleshooting Using Faults with the REST API
MOs can be queried by class and DN, with property filters, pagination, and so on.

In most cases, a fault MO is automatically created, escalated, de-escalated, and deleted by the system as
specific conditions are detected. There can be at most one fault with a given code under an MO. If the same
condition is detected multiple times while the corresponding fault MO is active, no additional instances of
the fault MO are created. For example, if the same condition is detected multiple times for the same affected
object, only one fault is raised while a counter for the recurrence of that fault will be incremented.

A fault MO remains in the system until the fault condition is cleared. For a fault to be removed, the condition
raising the fault must be cleared, whether by configuration or a change in the run time state of the fabric. An
exception to this is if the fault is in the cleared or retained state, in which case the fault can be deleted by the
user by acknowledging it.

Severity provides an indication of the estimated impact of the condition on the capability of the system or
component to provide service.

Possible values are:

• Warning (possibly no impact)

• Minor

• Major

• Critical (system or component completely unusable)

The creation of a fault MO can be triggered by internal processes such as:

• Finite state machine (FSM) transitions or detected component failures

• Conditions specified by various fault policies, some of which are user-configurable

You can set fault thresholds on statistical measurements such as health scores, data traffic, or temperatures.Note

Step 1 To retrieve the health score for a tenant named "3tierapp", send a REST query to the fabric such as the following:

Example:

https://apic-ip-address/api/node/mo/uni/tn-3tierapp.xml?query-target=self&rsp-subtreeinclude=
health

Step 2 To retrieve statistics for a tenant named "3tierapp", send a REST query to the fabric such as the following:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
130

Part 2: Common APIC Tasks Using the REST API
Troubleshooting Using Faults with the REST API

https://apic-ip-address/api/node/mo/uni/tn-3tierapp.xml?query-target=self&rsp-subtreeinclude=
stats

Step 3 To retrieve the faults for a leaf node, send a REST query to the fabric such as the following:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1/node-103.xml?query-target=self&rspsubtree-
include=faults

Statistics

Configuring a Stats Monitoring Policy Using the REST API
To use statistics for monitoring and troubleshooting the fabric, you can configure a stats collection policy and
a stats export policy to monitor many objects in the APIC.

Step 1 To create a stats collection policy using the REST API, send a POST request with XML such as the following:

Example:
<monEPGPol name="MonPol1" dn="uni/tn-tenant64/monepg-MonPol1">

<monEPGTarget name="" descr="" scope="eventSevAsnP"/>
<monEPGTarget name="" descr="" scope="faultSevAsnP"/>
<monEPGTarget name="" descr="" scope="fvBD">
<statsHierColl name="" descr="" histRet="inherited" granularity="5min" adminState="inherited"/>

</monEPGTarget>
<monEPGTarget name="" descr="" scope="syslogRsDestGroup"/>
<monEPGTarget name="" descr="" scope="syslogSrc"/>
<monEPGTarget name="" descr="" scope="fvCtx"/>
<statsHierColl name="" descr="" histRet="none" granularity="1w" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="none" granularity="1qtr" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="1w" granularity="1h" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="1d" granularity="15min" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="none" granularity="1year" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="none" granularity="1mo" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="1h" granularity="5min" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="10d" granularity="1d" adminState="enabled"/>
<syslogSrc name="VRF64_SyslogSource" descr="" minSev="warnings" incl="faults">
<syslogRsDestGroup tDn="uni/fabric/slgroup-tenant64_SyslogDest"/>
</syslogSrc>
</monEPGPol>

Step 2 To configure a stats export policy send a post with XML such as the following (you can use either JSON or XML format):

Example:
<statsExportP

name="" descr="" frequency="stream" format="xml" compression="gzip">
<statsDestP name="tenant64_statsExportDest" descr="" userName="" remotePort="0"

remotePath="192.168.100.20" protocol="sftp" host="192.168.100.1">
<fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
131

Part 2: Common APIC Tasks Using the REST API
Statistics

</statsDestP>
</statsExportP>

Recovering a Disconnected Leaf

Recovering a Disconnected Leaf
If all fabric interfaces on a leaf are disabled (interfaces connecting a leaf to the spine) due to a configuration
pushed to the leaf, connectivity to the leaf is lost forever and the leaf becomes inactive in the fabric. Trying
to push a configuration to the leaf does not work because connectivity has been lost. This chapter describes
how to recover a disconnected leaf.

Recovering a Disconnected Leaf Using the REST API
To recover a disconnected leaf switch, you must enable at least one of the fabric interfaces using this procedure.
You can enable the remaining interfaces using the GUI, REST API, or CLI.

To enable the first interface, post a policy using the REST API to delete the policy posted and bring the fabric
ports Out-of-Service. You can post a policy to the leaf switch to bring the port that is Out-of-Service to
In-Service as follows:

This procedure assumes that 1/49 is one of the leaf switch ports connecting to the spine switch.Note

Step 1 Clear the block list policy from the Cisco APIC using the REST API.

Example:
$APIC_Address/api/policymgr/mo/.xml
<polUni>

<fabricInst>
<fabricOOServicePol>

<fabricRsOosPath tDn="topology/pod-1/paths-$LEAF_Id/pathep-[eth1/49]" lc="blacklist"
status ="deleted"/>

</fabricOOServicePol>
</fabricInst>

</polUni>

Step 2 Post a local task to the node itself to bring up the interfaces you want using l1EthIfSetInServiceLTask.

Example:
$LEAF_Address/api/node/mo/topology/pod-1/node-$LEAF_Id/sys/action.xml
<actionLSubj oDn="sys/phys-[eth1/49]">

<l1EthIfSetInServiceLTask adminSt='start'/>
</actionLSubj>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
132

Part 2: Common APIC Tasks Using the REST API
Recovering a Disconnected Leaf

Troubleshooting Contracts and Taboo Contracts with Permit
and Deny Logging

Verifying Contracts, Taboo Contracts, and Filters Using the REST API
This topic provides the REST API XML to verify contracts, taboo contracts, and filters.

Step 1 Verify a contract for an EPG or an external network with XML such as the following example for a provider:

Example:
QUERY https://apic-ip-address/api/node/class/fvRsProv.xml

Step 2 Verify a contract on an EPG with XML such as the following example for a consumer:

Example:
QUERY https://apic-ip-address/api/node/class/fvRsCons.xml

Step 3 Verify exported contracts using XML such as the following example:

Example:
QUERY https://apic-ip-address/api/node/class/vzCPif.xml

Step 4 Verify contracts for a VRF with XML such as the following example:

Example:
QUERY https://apic-ip-address/api/node/class/vzBrCP.xml

Step 5 Verify taboo contracts with XML such as the following example:

Example:
QUERY https://apic-ip-address/api/node/class/vzTaboo.xml

For taboo contracts for an EPG, use the same query as for contracts for EPGs.

Step 6 Verify filters using XML such as the following example:

Example:
QUERY https://apic-ip-address/api/node/class/vzFilter.xml

Viewing ACL Permit and Deny Logs Using the REST API
The following example shows how to view Layer 2 deny log data for traffic flows, using the REST API. You
can send queries using the following MOs:

• acllogDropL2Flow

• acllogPermitL2Flow

• acllogDropL3Flow

Cisco APIC REST API Configuration Guide, Release 4.1(x)
133

Part 2: Common APIC Tasks Using the REST API
Troubleshooting Contracts and Taboo Contracts with Permit and Deny Logging

• acllogPermitL3Flow

• acllogDropL2Pkt

• acllogPermitL2Pkt

• acllogDropL3Pkt

• acllogPermitL3Pkt

Before you begin

You must enable permit or deny logging, before you can view ACL contract permit and deny log data.

To view Layer 3 drop log data, send the following query using the REST API:
GET https://apic-ip-address/api/class/acllogDropL3Flow

Example:

The following example shows sample output:
<?xml version="1.0" encoding="UTF-8"?>
<imdata totalCount="2">

<acllogPermitL3Flow childAction="" dn="topology/pod-1/node-101/ndbgs/acllog/tn-common/ctx-inb

/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0:f00:0]

-dip-[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-

[port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10"
dstMacAddr="00:00:12:00:00:25"

dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp"
srcEpgName="unknown"

srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0" srcMacAddr="00:00:15:00:00:28"
srcPcTag="333"

srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>
<acllogPermitL3Flow childAction="" dn="topology/pod-1/node-102/ndbgs/acllog/tn-common/ctx-inb

/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0:f00:0]-dip-

[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-
[port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10"

dstMacAddr="00:00:12:00:00:25"
dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp"

srcEpgName="unknown"
srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0" srcMacAddr="00:00:15:00:00:28"

srcPcTag="333"
srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>

</imdata>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
134

Part 2: Common APIC Tasks Using the REST API
Viewing ACL Permit and Deny Logs Using the REST API

Troubleshooting Using Digital Optical Monitoring Statistics

Troubleshooting Using Digital Optical Monitoring With the REST API
To view DOM statistics using an XML REST API query:

Before you begin

You must have previously enabled digital optical monitoring (DOM) on an interface, before you can view
the DOM statistics for it.

The following example shows how to view DOM statistics on a physical interface, eth1/25 on node-104, using a REST
API query:
GET https://apic-ip-address/api/node/mo/topology/pod-1/node-104/sys/phys-[eth1/25]/phys/domstats.xml?
query-target=children&target-subtree-class=ethpmDOMRxPwrStats&subscription=yes

The following response is returned:

response : {
"totalCount":"1",

"subscriptionId":"72057611234705430",
"imdata":[

{"ethpmDOMRxPwrStats":{
"attributes":{

"alert":"none",
"childAction":"",
"dn":"topology/pod-1/node-104/sys/phys[eth1/25]/phys/domstats/rxpower",
"hiAlarm":"0.158490",
"hiWarn":"0.079430",
"loAlarm":"0.001050",
"loWarn":"0.002630",
"modTs":"never",
"status":"",
"value":"0.139170"}}}]}

Troubleshooting Using Port Tracking

Port Tracking Policy for Fabric Port Failure Detection
Fabric port failure detection can be enabled in the port tracking system settings. The port tracking policy
monitors the status of fabric ports between leaf switches and spine switches, and ports between tier-1 leaf
switches and tier-2 leaf switches. When an enabled port tracking policy is triggered, the leaf switches take
down all access interfaces on the switch that have EPGs deployed on them.

If you enabled the Include APIC ports when port tracking is triggered option, port tracking disables Cisco
Application Policy Infrastructure Controller (APIC) ports when the leaf switch loses connectivity to all fabric
ports (that is, there are 0 fabric ports). Enable this feature only if the Cisco APICs are dual- or multihomed

Cisco APIC REST API Configuration Guide, Release 4.1(x)
135

Part 2: Common APIC Tasks Using the REST API
Troubleshooting Using Digital Optical Monitoring Statistics

to the fabric. Bringing down the Cisco APIC ports helps in switching over to the secondary port in the case
of a dual-homed Cisco APIC.

Port tracking is located under System > System Settings > Port Tracking.Note

The port tracking policy specifies the number of fabric port connections that trigger the policy, and a delay
timer for bringing the leaf switch access ports back up after the number of specified fabric ports is exceeded.

The following example illustrates how a port tracking policy behaves:

• The port tracking policy specifies that the threshold of active fabric port connections each leaf switch
that triggers the policy is 2.

• The port tracking policy triggers when the number of active fabric port connections from the leaf switch
to the spine switches drops to 2.

• Each leaf switch monitors its fabric port connections and triggers the port tracking policy according to
the threshold specified in the policy.

• When the fabric port connections come back up, the leaf switch waits for the delay timer to expire before
bringing its access ports back up. This gives the fabric time to reconverge before allowing traffic to
resume on leaf switch access ports. Large fabrics may need the delay timer to be set for a longer time.

Use caution when configuring this policy. If the port tracking setting for the number of active spine ports that
triggers port tracking is too high, all leaf switch access ports will be brought down.

Note

Port Tracking Using the REST API

Before you begin

This procedure explains how to use the Port Tracking feature using the REST API.

Step 1 Turn on the Port Tracking feature using the REST API as follows (admin state: on):
<polUni>
<infraInfra dn="uni/infra">
<infraPortTrackPol name="default" delay="5" minlinks="4" adminSt="on">

</infraPortTrackPol>
</infraInfra>
</polUni>

Step 2 Turn off the Port Tracking feature using the REST API as follows (admin state: off):
<polUni>
<infraInfra dn="uni/infra">
<infraPortTrackPol name="default" delay="5" minlinks="4" adminSt=“off">

</infraPortTrackPol>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
136

Part 2: Common APIC Tasks Using the REST API
Port Tracking Using the REST API

</infraInfra>
</polUni>

Removing Unwanted _ui_ Objects

Removing Unwanted _ui_ Objects Using the REST API
If you make changes with the Cisco NX-OS-Style CLI before using the Cisco APIC GUI, and objects appear
in the Cisco APIC GUI (with names prepended with _ui_), these objects can be removed by performing a
REST API request to the API, containing the following:

• The Class name, for example infraAccPortGrp

• The Dn attribute, for example dn="uni/infra/funcprof/accportgrp-__ui_l101_eth1--31"

• The Status attribute set to status="deleted"

Perform the POST to the API with the following steps:

Step 1 Log on to a user account with write access to the object to be removed.
Step 2 Send a POST to the API such as the following example:

POST https://192.168.20.123/api/mo/uni.xml
Payload:<infraAccPortGrp dn="uni/infra/funcprof/accportgrp-__ui_l101_eth1--31" status="deleted"/>

Troubleshooting Using Contract Permit and Deny Logs

About ACL Contract Permit and Deny Logs
To log and/or monitor the traffic flow for a contract rule, you can enable and view the logging of packets or
flows that were allowed to be sent because of contract permit rules or the logging of packets or flows that
were dropped because of:

• Taboo contract deny rules

• Deny actions in contract subjects

• Contract or subject exceptions

• ACL contract permit in the ACI fabric is only supported on Nexus 9000 Series switches with names that
end in EX or FX, and all later models. For example, N9K-C93180LC-EX or N9K-C9336C-FX.

• Deny logging in the ACI fabric is supported on all platforms.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
137

Part 2: Common APIC Tasks Using the REST API
Removing Unwanted _ui_ Objects

• Using log directive on filters in management contracts is not supported. Setting the log directive will
cause zoning-rule deployment failure.

For information on standard and taboo contracts and subjects, see Cisco Application Centric Infrastructure
Fundamentals and Cisco APIC Basic Configuration Guide.

EPG Data Included in ACL Permit and Deny Log Output

Up to Cisco APIC, Release 3.2(1), the ACL permit and deny logs did not identify the EPGs associated with
the contracts being logged. In release 3.2(1) the source EPG and destination EPG are added to the output of
ACI permit and deny logs. ACL permit and deny logs include the relevant EPGs with the following limitations:

• Depending on the position of the EPG in the network, EPG data may not be available for the logs.

• When configuration changes occur, log data may be out of date. In steady state, log data is accurate.

The most accurate EPG data in the permit and deny logs results when the logs are focussed on:

• Flows from EPG to EPG, where the ingress policy is installed at the ingress TOR and the egress policy
is installed at the egress TOR.

• Flows from EPG to L3Out, where one policy is applied on the border leaf TOR and the other policy is
applied on a non-BL TOR.

EPGs in the log output are not supported for uSeg EPGs or for EPGs used in shared services (including shared
L3Outs).

Enabling ACL Contract Permit Logging Using the REST API
The following example shows you how to enable permit and deny logging using the RESTAPI. This example
configures ACL permit and deny logging for a contract with subjects that have Permit and Deny actions
configured.

For this configuration, send a post with XML similar to the following example:

Example:
<vzBrCP dn="uni/tn-Tenant64/brc-C64" name="C64" scope="context">

<vzSubj consMatchT="AtleastOne" name="HTTPSsbj" provMatchT="AtleastOne" revFltPorts="yes"
rn="subj-HTTPSsbj">

<vzRsSubjFiltAtt action="permit" directives="log" forceResolve="yes" priorityOverride="default"

rn="rssubjFiltAtt-PerHTTPS" tDn="uni/tn-Tenant64/flt-PerHTTPS" tRn="flt-PerHTTPS"
tnVzFilterName="PerHTTPS"/>

</vzSubj>
<vzSubj consMatchT="AtleastOne" name="httpSbj" provMatchT="AtleastOne" revFltPorts="yes"

rn="subj-httpSbj">
<vzRsSubjFiltAtt action="deny" directives="log" forceResolve="yes" priorityOverride="default"

rn="rssubjFiltAtt-httpFilter" tDn="uni/tn-Tenant64/flt-httpFilter" tRn="flt-httpFilter"
tnVzFilterName="httpFilter"/>

</vzSubj>
<vzSubj consMatchT="AtleastOne" name="subj64" provMatchT="AtleastOne" revFltPorts="yes"

rn="subj-subj64">
<vzRsSubjFiltAtt action="permit" directives="log" forceResolve="yes" priorityOverride="default"

rn="rssubjFiltAtt-icmp" tDn="uni/tn-common/flt-icmp" tRn="flt-icmp" tnVzFilterName="icmp"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
138

Part 2: Common APIC Tasks Using the REST API
Enabling ACL Contract Permit Logging Using the REST API

</vzSubj>
</vzBrCP>

Enabling Taboo Contract Deny Logging Using the REST API
The following example shows you how to enable Taboo Contract deny logging using the REST API.

To configure taboo contract deny logging, send a post with XML similar to the following example.

Example:
<vzTaboo dn="uni/tn-Tenant64/taboo-TCtrctPrefix" name="TCtrctPrefix" scope="context">

<vzTSubj name="PrefSubj" rn="tsubj-PrefSubj"">
<vzRsDenyRule directives="log" forceResolve="yes" rn="rsdenyRule-default" tCl="vzFilter"

tDn="uni/tn-common/flt-default" tRn="flt-default"/>
</vzTSubj>

</vzTaboo>

Viewing ACL Permit and Deny Logs Using the REST API
The following example shows how to view Layer 2 deny log data for traffic flows, using the REST API. You
can send queries using the following MOs:

• acllogDropL2Flow

• acllogPermitL2Flow

• acllogDropL3Flow

• acllogPermitL3Flow

• acllogDropL2Pkt

• acllogPermitL2Pkt

• acllogDropL3Pkt

• acllogPermitL3Pkt

Before you begin

You must enable permit or deny logging, before you can view ACL contract permit and deny log data.

To view Layer 3 drop log data, send the following query using the REST API:
GET https://apic-ip-address/api/class/acllogDropL3Flow

Example:

The following example shows sample output:
<?xml version="1.0" encoding="UTF-8"?>
<imdata totalCount="2">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
139

Part 2: Common APIC Tasks Using the REST API
Enabling Taboo Contract Deny Logging Using the REST API

<acllogPermitL3Flow childAction="" dn="topology/pod-1/node-101/ndbgs/acllog/tn-common/ctx-inb

/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0:f00:0]

-dip-[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-

[port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10"
dstMacAddr="00:00:12:00:00:25"

dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp"
srcEpgName="unknown"

srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0" srcMacAddr="00:00:15:00:00:28"
srcPcTag="333"

srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>
<acllogPermitL3Flow childAction="" dn="topology/pod-1/node-102/ndbgs/acllog/tn-common/ctx-inb

/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0:f00:0]-dip-

[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-
[port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10"

dstMacAddr="00:00:12:00:00:25"
dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp"

srcEpgName="unknown"
srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0" srcMacAddr="00:00:15:00:00:28"

srcPcTag="333"
srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>

</imdata>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
140

Part 2: Common APIC Tasks Using the REST API
Viewing ACL Permit and Deny Logs Using the REST API

P A R T III
Part 3: Setting Up APIC and the Fabric Using the
REST API

• Managing APIC Clusters, on page 143
• Managing Fabrics, on page 149
• Configuring Tenant Policies, on page 153
• Provisioning Core Services, on page 201
• Provisioning Layer 2 Networks, on page 225
• Provisioning Layer 3 Outside Connections, on page 305
• Configuring QoS, on page 405
• Managing Layer 4 to Layer 7 Services, on page 413
• Configuring Security, on page 457
• Creating Quota Management, on page 491
• Configuring a Forwarding Scale Profile Policy, on page 493

C H A P T E R 10
Managing APIC Clusters

• Cluster Management Guidelines, on page 143
• Expanding and Contracting Clusters, on page 144
• Managing Cluster High Availability, on page 146

Cluster Management Guidelines

Cluster Management Guidelines
The Cisco Application Policy Infrastructure Controller (APIC) cluster is comprised of multiple Cisco APICs
that provide operators a unified real time monitoring, diagnostic, and configuration management capability
for the Cisco Application Centric Infrastructure (ACI) fabric. To assure optimal system performance, follow
the guidelines below for making changes to the Cisco APIC cluster.

Prior to initiating a change to the cluster, always verify its health. When performing planned changes to the
cluster, all controllers in the cluster should be healthy. If one or more of the Cisco APICs' health status in the
cluster is not "fully fit", remedy that situation before proceeding. Also, assure that cluster controllers added
to the Cisco APIC are running the same version of firmware as the other controllers in the Cisco APIC cluster.

Note

Follow these general guidelines when managing clusters:

• We recommend that you have at least 3 active Cisco APICs in a cluster, along with additional standby
Cisco APICs. Cisco APIC clusters can have from 3 to 7 active Cisco APICs. Refer to the Verified
Scalability Guide to determine how many active Cisco APICs are required for your deployment.

• Disregard cluster information from Cisco APICs that are not currently in the cluster; they do not provide
accurate cluster information.

• Cluster slots contain a Cisco APIC ChassisID. Once you configure a slot, it remains unavailable until
you decommission the Cisco APIC with the assigned ChassisID.

• If a Cisco APIC firmware upgrade is in progress, wait for it to complete and the cluster to be fully fit
before proceeding with any other changes to the cluster.

• When moving a Cisco APIC, first ensure that you have a healthy cluster. After verifying the health of
the Cisco APIC cluster, choose the Cisco APIC you intend to shut down. After the Cisco APIC has

Cisco APIC REST API Configuration Guide, Release 4.1(x)
143

https://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html#Verified_Scalability_Guides
https://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html#Verified_Scalability_Guides

shutdown, move the Cisco APIC, re-connect it, and then turn it back on. From the GUI, verify that the
all controllers in the cluster return to a fully fit state.

Only move one Cisco APIC at a time.Note

• When moving a Cisco APIC that is connected to a set of leaf switches to another set of leaf switches or
when moving a Cisco APIC to different port within the same leaf switch, first ensure that you have a
healthy cluster. After verifying the health of the Cisco APIC cluster, choose the Cisco APIC that you
intend to move and decommission it from the cluster. After the Cisco APIC is decomissioned, move the
Cisco APIC and then commission it.

• Before configuring the Cisco APIC cluster, ensure that all the Cisco APICs are running the same firmware
version. Initial clustering of Cisco APICs running differing versions is an unsupported operation and
may cause problems within the cluster.

• Unlike other objects, log record objects are stored only in one shard of a database on one of the Cisco
APICs. These objects get lost forever if you decommission or replace that Cisco APIC.

• When you decommission a Cisco APIC, the Cisco APIC loses all fault, event, and audit log history that
was stored in it. If you replace all Cisco APICs, you lose all log history. Before you migrate a Cisco
APIC, we recommend that you manually backup the log history.

Expanding and Contracting Clusters

Expanding the APIC Cluster Size
Follow these guidelines to expand the APIC cluster size:

• Schedule the cluster expansion at a time when the demands of the fabric workload will not be impacted
by the cluster expansion.

• If one or more of the APIC controllers' health status in the cluster is not "fully fit", remedy that situation
before proceeding.

• Stage the newAPIC controller(s) according to the instructions in their hardware installation guide. Verify
in-band connectivity with a PING test.

• Increase the cluster target size to be equal to the existing cluster size controller count plus the new
controller count. For example, if the existing cluster size controller count is 3 and you are adding 3
controllers, set the new cluster target size to 6. The cluster proceeds to sequentially increase its size one
controller at a time until all new the controllers are included in the cluster.

Cluster expansion stops if an existing APIC controller becomes unavailable.
Resolve this issue before attempting to proceed with the cluster expansion.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
144

Part 3: Setting Up APIC and the Fabric Using the REST API
Expanding and Contracting Clusters

• Depending on the amount of data the APIC must synchronize upon the addition of each appliance, the
time required to complete the expansion could be more than 10 minutes per appliance. Upon successful
expansion of the cluster, the APIC operational size and the target size will be equal.

Allow the APIC to complete the cluster expansion before making additional
changes to the cluster.

Note

Expanding the Cisco APIC Cluster
Expanding the Cisco APIC cluster is the operation to increase any size mismatches, from a cluster size of N
to size N+1, within legal boundaries. The operator sets the administrative cluster size and connects the APICs
with the appropriate cluster IDs, and the cluster performs the expansion.

During cluster expansion, regardless of in which order you physically connect the APIC controllers, the
discovery and expansion takes place sequentially based on the APIC ID numbers. For example, APIC2 is
discovered after APIC1, and APIC3 is discovered after APIC2 and so on until you add all the desired APICs
to the cluster. As each sequential APIC is discovered, a single data path or multiple data paths are established,
and all the switches along the path join the fabric. The expansion process continues until the operational cluster
size reaches the equivalent of the administrative cluster size.

Expanding the APIC Cluster Using the REST API
The cluster drives its actual size to the target size. If the target size is higher than the actual size, the cluster
size expands.

Step 1 Set the target cluster size to expand the APIC cluster size.

Example:
POST
https://<IP address>/api/node/mo/uni/controller.xml
<infraClusterPol name='default' size=3/>

Step 2 Physically connect the APIC controllers that you want to add to the cluster.

Contracting the Cisco APIC Cluster
Contracting the Cisco APIC cluster is the operation to decrease any size mismatches, from a cluster size of
N to size N -1, within legal boundaries. As the contraction results in increased computational and memory
load for the remaining APICs in the cluster, the decommissioned APIC cluster slot becomes unavailable by
operator input only.

During cluster contraction, you must begin decommissioning the last APIC in the cluster first and work your
way sequentially in reverse order. For example, APIC4 must be decommissioned before APIC3, and APIC3
must be decommissioned before APIC2.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
145

Part 3: Setting Up APIC and the Fabric Using the REST API
Expanding the Cisco APIC Cluster

Contracting the APIC Cluster Using the REST API
The cluster drives its actual size to the target size. If the target size is lower than the actual size, the cluster
size contracts.

Step 1 Set the target cluster size so as to contract the APIC cluster size.

Example:
POST
https://<IP address>/api/node/mo/uni/controller.xml
<infraClusterPol name='default' size=1/>

Step 2 Decommission APIC3 on APIC1 for cluster contraction.

Example:
POST
https://<IP address>/api/node/mo/topology/pod-1/node-1/av.xml
<infraWiNode id=3 adminSt='out-of-service'/>

Step 3 Decommission APIC2 on APIC1 for cluster contraction.

Example:
POST
https://<IP address>/api/node/mo/topology/pod-1/node-1/av.xml
<infraWiNode id=2 adminSt='out-of-service'/>

Managing Cluster High Availability

About Cold Standby for a Cisco APIC Cluster
The Cold Standby functionality for a Cisco Application Policy Infrastructure Controller (APIC) cluster enables
you to operate the Cisco APICs in a cluster in an Active/Standbymode. In a Cisco APIC cluster, the designated
active Cisco APICs share the load and the designated standby Cisco APICs can act as a replacement for any
of the Cisco APICs in the active cluster.

As an admin user, you can set up the Cold Standby functionality when the Cisco APIC is launched for the
first time.We recommend that you have at least three active Cisco APICs in a cluster, and one or more standby
Cisco APICs. As an admin user, you can initiate the switch over to replace an active Cisco APIC with a
standby Cisco APIC.

Important Notes

• The standby Cisco APICs are automatically updated with firmware updates to keep the backup Cisco
APIC at same firmware version as the active cluster.

• During an upgrade process, after all the active Cisco APICs are upgraded, the standby Cisco APICs are
also upgraded automatically.

• Temporary IDs are assigned to the standby Cisco APICs. After a standby Cisco APIC is switched over
to an active Cisco APIC, a new ID is assigned.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
146

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracting the APIC Cluster Using the REST API

• The admin login is not enabled on the standby Cisco APICs. To troubleshoot a Cold Standby Cisco
APIC, you must log in to the standby using SSH as rescue-user.

• During the switch over, the replaced active Cisco APIC is powered down to prevent connectivity to the
replaced Cisco APIC.

• Switch over fails under the following conditions:

• If there is no connectivity to the standby Cisco APIC.

• If the firmware version of the standby Cisco APIC is not the same as that of the active cluster.

• After switching over a standby Cisco APIC to be active, if it was the only standby, you must configure
a new standby.

• The following limitations are observed for retaining out of band address for the standby Cisco APIC
after a fail over:

• The standby (new active) Cisco APIC may not retain its out of band address if more than 1 active
Cisco APICs are down or unavailable.

• The standby (new active) Cisco APIC may not retain its out of band address if it is in a different
subnet than the active Cisco APIC. This limitation is only applicable for Cisco APIC release 2.x.

• The standby (new active) Cisco APIC may not retain its IPv6 out of band address. This limitation
is not applicable starting from Cisco APIC release 3.1x.

• The standby (new active) Cisco APIC may not retain its out of band address if you have configured
a non-static OOB management IP address policy for the replacement (old active) Cisco APIC.

• The standby (new active) Cisco APIC may not retain its out of band address if it is not in a pod that
has an active Cisco APIC.

If you want to retain the standby Cisco APIC's out of band address despite the
limitations, you must manually change the OOB policy for the replaced Cisco
APIC after the replace operation had completed successfully.

Note

• There must be three active Cisco APICs to add a standby Cisco APIC.

• The standby Cisco APIC does not participate in policy configuration or management.

• No information is replicated to the standby Cisco APICs, not even the administrator credentials.

Switching Over Active APIC with Standby APIC Using REST API
Use this procedure to switch over an active APIC with standby APIC using REST API.

Switch over active APIC with standby APIC.
URL for POST: https://ip address/api/node/mo/topology/pod-initiator_pod_id/node-initiator_id/av.xml
Body: <infraWiNode id=outgoing_apic_id targetMbSn=backup-serial-number/>
where initiator_id = id of an active APIC other than the APIC being replaced.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
147

Part 3: Setting Up APIC and the Fabric Using the REST API
Switching Over Active APIC with Standby APIC Using REST API

pod-initiator_pod_id = pod ID of the active APIC
backup-serial-number = serial number of standby APIC

Example:
https://ip address/api/node/mo/topology/pod-1/node-1/av.xml
<infraWiNode id=2 targetMbSn=FCH1750V00Q/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
148

Part 3: Setting Up APIC and the Fabric Using the REST API
Switching Over Active APIC with Standby APIC Using REST API

C H A P T E R 11
Managing Fabrics

• Maintenance Mode, on page 149
• Removing a Switch to Maintenance Mode Using the REST API, on page 151
• Inserting a Switch to Operation Mode Using the CLI, on page 151

Maintenance Mode
Following are terms that are helpful to understand when using maintenance mode:

• Maintenance mode: Used to isolate a switch from user traffic for debugging purposes. You can put a
switch in maintenance mode by enabling the Maintenance (GIR) field in the Fabric Membership
page in the APIC GUI, located at Fabric > Inventory > Fabric Membership (right-click on a switch
and choose Maintenance (GIR)).

If you put a switch in maintenance mode, that switch is not considered as a part of the operational ACI
fabric infra and it will not accept regular APIC communications.

You can use maintenance mode to gracefully remove a switch and isolate it from the network in order to
perform debugging operations. The switch is removed from the regular forwarding path with minimal traffic
disruption.

In graceful removal, all external protocols are gracefully brought down except the fabric protocol (IS-IS) and
the switch is isolated from the network. During maintenance mode, the maximummetric is advertised in IS-IS
within the Cisco Application Centric Infrastructure (Cisco ACI) fabric and therefore the leaf switch in
maintenance mode does not attract traffic from the spine switches. In addition, all front-panel interfaces on
the switch are shutdown except for the fabric interfaces. To return the switch to its fully operational (normal)
mode after the debugging operations, you must recommission the switch. This operation will trigger a stateless
reload of the switch.

In graceful insertion, the switch is automatically decommissioned, rebooted, and recommissioned. When
recommissioning is completed, all external protocols are restored and maximum metric in IS-IS is reset after
10 minutes.

The following protocols are supported:

• Border Gateway Protocol (BGP)

• Enhanced Interior Gateway Routing Protocol (EIGRP)

• Intermediate System-to-Intermediate System (IS-IS)

Cisco APIC REST API Configuration Guide, Release 4.1(x)
149

• Open Shortest Path First (OSPF)

• Link Aggregation Control Protocol (LACP)

Protocol Independent Multicast (PIM) is not supported.

Important Notes

• If a border leaf switch has a static route and is placed in maintenance mode, the route from the border
leaf switch might not be removed from the routing table of switches in the ACI fabric, which causes
routing issues.

To work around this issue, either:

• Configure the same static route with the same administrative distance on the other border leaf switch,
or

• Use IP SLA or BFD for track reachability to the next hop of the static route

• While the switch is in maintenance mode, the Ethernet port module stops propagating the interface related
notifications. As a result, if the remote switch is rebooted or the fabric link is flapped during this time,
the fabric link will not come up afterward unless the switch is manually rebooted (using the acidiag
touch clean command), decommissioned, and recommissioned.

• While the switch is in maintenance mode, CLI 'show' commands on the switch show the front panel ports
as being in the up state and the BGP protocol as up and running. The interfaces are actually shut and all
other adjacencies for BGP are brought down, but the displayed active states allow for debugging.

• For multi-pod / multi-site, IS-IS metric for redistributed routes should be set to less than 63 to minimize
the traffic disruption when bringing the node back into the fabric. To set the IS-IS metric for redistributed
routes, choose Fabric > Fabric Policies > Pod Policies > IS-IS Policy.

• Existing GIR supports all Layer 3 traffic diversion. With LACP, all the Layer 2 traffic is also diverted
to the redundant node. Once a node goes into maintenancemode, LACP running on the node immediately
informs neighbors that it can no longer be aggregated as part of port-channel. All traffic is then diverted
to the vPC peer node.

• The following operations are not allowed in maintenance mode:

• Upgrade: Upgrading the network to a newer version

• Stateful Reload: Restarting the GIR node or its connected peers

• Stateless Reload: Restarting with a clean configuration or power-cycle of the GIR node or its
connected peers

• Link Operations: Shut / no-shut or optics OIR on the GIR node or its peer node

• Configuration Change: Any configuration change (such as clean configuration, import, or snapshot
rollback)

• Hardware Change: Any hardware change (such as adding, swapping, removing FRU's or RMA)

Cisco APIC REST API Configuration Guide, Release 4.1(x)
150

Part 3: Setting Up APIC and the Fabric Using the REST API
Maintenance Mode

Removing a Switch to Maintenance Mode Using the REST API
Use this procedure to remove a switch to maintenance mode using the REST API.

Remove a switch to maintenance mode.

Example:
POST
https://<IP address>/api/node/mo/uni/fabric/outofsvc.xml

<fabricOOServicePol
descr=""
dn=""
name="default"
nameAlias=""
ownerKey=""
ownerTag="">

<fabricRsDecommissionNode
debug="yes"
dn=""
removeFromController="no"
tDn="topology/pod-1/node-102"/>

</fabricOOServicePol>

Inserting a Switch to Operation Mode Using the CLI
Use this procedure to insert a switch to operational mode using the CLI.

[no]no debug-switch node_id or node_name

Inserts the switch to operational mode.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
151

Part 3: Setting Up APIC and the Fabric Using the REST API
Removing a Switch to Maintenance Mode Using the REST API

Cisco APIC REST API Configuration Guide, Release 4.1(x)
152

Part 3: Setting Up APIC and the Fabric Using the REST API
Inserting a Switch to Operation Mode Using the CLI

C H A P T E R 12
Configuring Tenant Policies

• Basic Tenant Configuration, on page 153
• Tenants in Multiple Private Networks, on page 154
• Tenant Policy Example, on page 158
• EPGs, on page 168
• Intra-EPG Isolation, on page 171
• Microsegmentation, on page 177
• Application Profiles, on page 180
• Contracts, Taboo Contracts, and Preferred Groups, on page 184
• Configuring an Enforced Bridge Domain, on page 199

Basic Tenant Configuration

Creating a Tenant, VRF, and Bridge Domain Using the REST API

SUMMARY STEPS

1. Create a tenant.
2. Create a VRF and bridge domain.

DETAILED STEPS

Step 1 Create a tenant.

Example:
POST https://apic-ip-address/api/mo/uni.xml
<fvTenant name="ExampleCorp"/>

When the POST succeeds, you see the object that you created in the output.
Step 2 Create a VRF and bridge domain.

The Gateway Address can be an IPv4 or an IPv6 address. For more about details IPv6 gateway address, see the
related KB article, KB: Creating a Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery .

Note

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
153

URL for POST: https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name="ExampleCorp">
<fvCtx name="pvn1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="pvn1"/>
<fvSubnet ip="10.10.100.1/24"/>

</fvBD>
</fvTenant>

If you have a public subnet when you configure the routed outside, you must associate the bridge domain with
the outside configuration.

Note

Tenants in Multiple Private Networks

About Multiple Private Networks with Inter-Tenant Communication
• This use case may be typical for environments where an ACI administrator wishes to create multiple
tenants with the ability to support inter-tenant communications.

This method has the following advantages and disadvantages:

Advantages:

• Each tenant container can be managed separately
• Allows for maximum isolation between tenants

Disadvantages:

• Tenant address space must be unique

From a containment and relationship perspective, this topology looks as follows:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
154

Part 3: Setting Up APIC and the Fabric Using the REST API
Tenants in Multiple Private Networks

Figure 6: Multiple Private Networks with Inter-Tenant Communication

Configuring Multiple Private Networks with Inter-Tenant Communication
Using the REST API

Configure the Cisco-1 and Cisco-2 private networks, with communication between them, using the REST
API in the following steps:

Step 1 Configure Cisco-1 tenant using the following XML posted to the APIC REST API:

Example:

<fvTenant dn="uni/tn-Cisco1" name="Cisco1">

<vzBrCP name="ICMP" scope="global">
<vzSubj consMatchT="AtleastOne" name="icmp" provMatchT="AtleastOne"
revFltPorts="yes">
<vzRsSubjFiltAtt tnVzFilterName="icmp"/>
</vzSubj>
</vzBrCP>

<vzCPIf dn="uni/tn-Cisco1/cif-ICMP" name="ICMP">

<vzRsIf consMatchT="AtleastOne" name="icmp" provMatchT="AtleastOne"
revFltPorts="yes">
<vzRsSubjFiltAtt tDn="uni/tn-Cisco2/brc-default"/>
</vzRsIf>
</vzCPIf>
<fvCtx knwMcastAct="permit" name="CiscoCtx" pcEnfPref="enforced"/>

<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD2" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx2"/>
</fvBD>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
155

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Multiple Private Networks with Inter-Tenant Communication Using the REST API

<fvBD arpFlood="yes" name="CiscoBD" unicastRoute="yes" unkMacUcastAct="flood"
unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvAp name="CCO">
<fvAEPg matchT="AtleastOne" name="EPG1">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-202/pathep-[eth1/2]"/>
<fvSubnet ip="172.16.1.1/24" scope="private,shared"/>

<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>

<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsProv matchT="AtleastOne" tnVzBrCPName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsProv matchT="AtleastOne" tnVzBrCPName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

Step 2 Configure Cisco-2 tenanat using the following XML posted to the APIC REST API:

Example:

<fvTenant dn="uni/tn-Cisco2" name="Cisco2">
<fvCtx knwMcastAct="permit" name="CiscoCtx" pcEnfPref="enforced"/>
<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD2" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvBD arpFlood="yes" name="CiscoBD" unicastRoute="yes" unkMacUcastAct="flood"
unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvAp name="CCO">
<fvAEPg matchT="AtleastOne" name="EPG2">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-201/pathep-[eth1/2]"/>
<fvSubnet ip="172.16.1.1/24" scope="private,shared"/>

<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>

<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsConsIf matchT="AtleastOne" tnVzBrCPIfName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

About Multiple Private Networks with Intra-Tenant Communication
Another use case that may be desirable to support is the option to have a single tenant with multiple private
networks. This may be a result of needing to provide multitenancy at a network level, but not at a management

Cisco APIC REST API Configuration Guide, Release 4.1(x)
156

Part 3: Setting Up APIC and the Fabric Using the REST API
About Multiple Private Networks with Intra-Tenant Communication

level. It may also be caused by needing to support overlapping subnets within a single tenant, due to mergers
and acquisitions or other business changes.

This method has the following advantages and disadvantages:

Advantages:

• Ability to have overlapping subnets within a single tenant

Disadvantages:

• EPGs residing in overlapping subnets cannot have policy applied between one another

The object containment for this particular setup can be depicted as shown below:

Figure 7: Multiple Private Networks with Intra-Tenant Communication

Configuring Multiple Tenants with Intra-Tenant Communication Using the
REST API

SUMMARY STEPS

1. Configure the Tenant Cisco, with Cisco-1 and Cisco-2 networks, using the following XML posted to the
APIC REST API:

DETAILED STEPS

Configure the Tenant Cisco, with Cisco-1 and Cisco-2 networks, using the following XML posted to the APIC REST
API:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
157

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Multiple Tenants with Intra-Tenant Communication Using the REST API

<fvTenant dn="uni/tn-Cisco" name="Cisco">
<vzBrCP name="ICMP" scope="tenant">
<vzSubj consMatchT="AtleastOne" name="icmp" provMatchT="AtleastOne"
revFltPorts="yes">
<vzRsSubjFiltAtt tnVzFilterName="icmp"/>
</vzSubj>
</vzBrCP>
<fvCtx knwMcastAct="permit" name="CiscoCtx" pcEnfPref="enforced"/>
<fvCtx knwMcastAct="permit" name="CiscoCtx2" pcEnfPref="enforced"/>
<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD2" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx2"/>
</fvBD>
<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvAp name="CCO">
<fvAEPg matchT="AtleastOne" name="Web">
<fvRsCons tnVzBrCPName="ICMP"/>
<fvRsPathAtt encap="vlan-1201" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-201/pathep-[eth1/16]"/>
<fvSubnet ip="172.16.2.1/24" scope="private,shared"/>
<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>
<fvRsBd tnFvBDName="CiscoBD2"/>
</fvAEPg>
<fvAEPg matchT="AtleastOne" name="App">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-202/pathep-[eth1/2]"/>
<fvSubnet ip="172.16.1.1/24" scope="private,shared"/>
<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>
<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsProv matchT="AtleastOne" tnVzBrCPName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

Tenant Policy Example

Tenant Policy Example Overview
The description of the tenant policy example in this appendix uses XML terminology
(http://en.wikipedia.org/wiki/XML#Key_terminology). This example demonstrates how basic APIC policy
model constructs are rendered into the XML code. The following figure provides an overview of the tenant
policy example.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
158

Part 3: Setting Up APIC and the Fabric Using the REST API
Tenant Policy Example

Figure 8: EPGs and Contract Contained in Tenant Solar

In the figure, according to the contract called webCtrct and the EPG labels, the green-labeled EPG:web1 can
communicate with green-labeled EPG:app using both http and https, the red -abeled EPG:web2 can
communicate with the red-labeled EPG:db using only https.

Tenant Policy Example XML Code

<polUni>
<fvTenant name="solar">

<vzFilter name="Http">
<vzEntry name="e1"

etherT="ipv4"
prot="tcp"
dFromPort="80"
dToPort="80"/>

</vzFilter>

<vzFilter name="Https">
<vzEntry name="e1"

etherT="ipv4"
prot="tcp"
dFromPort="443"
dToPort="443"/>

</vzFilter>

<vzBrCP name="webCtrct">
<vzSubj name="http" revFltPorts="true" provmatchT="All">

<vzRsSubjFiltAtt tnVzFilterName="Http"/>
<vzRsSubjGraphAtt graphName="G1" termNodeName="TProv"/>
<vzProvSubjLbl name="openProv"/>
<vzConsSubjLbl name="openCons"/>

</vzSubj>
<vzSubj name="https" revFltPorts="true" provmatchT="All">

<vzProvSubjLbl name="secureProv"/>
<vzConsSubjLbl name="secureCons"/>
< vzRsSubjFiltAtt tnVzFilterName="Https"/>
<vzRsOutTermGraphAtt graphName="G2" termNodeName="TProv"/>

</vzSubj>
</vzBrCP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
159

Part 3: Setting Up APIC and the Fabric Using the REST API
Tenant Policy Example XML Code

<fvCtx name="solarctx1"/>

<fvBD name="solarBD1">
<fvRsCtx tnFvCtxName="solarctx1" />
<fvSubnet ip="11.22.22.20/24">

<fvRsBDSubnetToProfile
tnL3extOutName="rout1"
tnRtctrlProfileName="profExport"/>

</fvSubnet>
<fvSubnet ip="11.22.22.211/24">

<fvRsBDSubnetToProfile
tnL3extOutName="rout1"
tnRtctrlProfileName="profExport"/>

</fvSubnet>
</fvBD>

<fvAp name="sap">
<fvAEPg name="web1">

<fvRsBd tnFvBDName="solarBD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
<fvRsProv tnVzBrCPName="webCtrct" matchT="All">

<vzProvSubjLbl name="openProv"/>
<vzProvSubjLbl name="secureProv"/>
<vzProvLbl name="green"/>

</fvRsProv>
</fvAEPg>
<fvAEPg name="web2">

<fvRsBd tnFvBDName="solarBD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
<fvRsProv tnVzBrCPName="webCtrct" matchT="All">

<vzProvSubjLbl name="secureProv"/>
<vzProvLbl name="red"/>

</fvRsProv>
</fvAEPg>
<fvAEPg name="app">

<fvRsBd tnFvBDName="solarBD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
<fvRsCons tnVzBrCPName="webCtrct">

<vzConsSubjLbl name="openCons"/>
<vzConsSubjLbl name="secureCons"/>
<vzConsLbl name="green"/>

</fvRsCons>
</fvAEPg>
<fvAEPg name="db">

<fvRsBd tnFvBDName="solarBD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
<fvRsCons tnVzBrCPName="webCtrct">

<vzConsSubjLbl name="secureCons"/>
<vzConsLbl name="red"/>

</fvRsCons>
</fvAEPg>

</fvAp>
</fvTenant>

</polUni>

Tenant Policy Example Explanation
This section contains a detailed explanation of the tenant policy example.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
160

Part 3: Setting Up APIC and the Fabric Using the REST API
Tenant Policy Example Explanation

Policy Universe
The policy universe contains all the tenant-managed objects where the policy for each tenant is defined.

<polUni>

This starting tag, <polUni>, in the first line indicates the beginning of the policy universe element. This tag
is matched with </polUni> at the end of the policy. Everything in between is the policy definition.

Tenant Policy Example
The <fvTenant> tag identifies the beginning of the tenant element.

<fvTenant name="solar">

All of the policies for this tenant are defined in this element. The name of the tenant in this example is solar.
The tenant name must be unique in the system. The primary elements that the tenant contains are filters,
contracts, outside networks, bridge domains, and application profiles that contain EPGs.

Filters
The filter element starts with a <vzFilter> tag and contains elements that are indicated with a <vzEntry>
tag.

The following example defines "Http" and "Https" filters. The first attribute of the filter is its name and the
value of the name attribute is a string that is unique to the tenant. These names can be reused in different
tenants. These filters are used in the subject elements within contracts later on in the example.

<vzFilter name="Http">
<vzEntry name="e1" etherT="ipv4" prot="tcp" dFromPort="80" dToPort="80"/>

</vzFilter>

<vzFilter name="Https">
<vzEntry name="e1" etherT="ipv4" prot="tcp" dFromPort="443" dToPort="443"/>

</vzFilter>

This example defines these two filters: Http and Https. The first attribute of the filter is its name and the value
of the name attribute is a string that is unique to the tenant, i.e. these names can be reused in different tenants.
These filters will be used in the subject elements within contracts later on in the example.

Each filter can have one or more entries where each entry describes a set of Layer 4 TCP or UDP port numbers.
Some of the possible attributes of the <vzEntry> element are as follows:

• name

• prot

• dFromPort

• dToPort

• sFromPort

• sToPort

• etherT

• ipFlags

• arpOpc

Cisco APIC REST API Configuration Guide, Release 4.1(x)
161

Part 3: Setting Up APIC and the Fabric Using the REST API
Policy Universe

• tcpRules

In this example, each entry’s name attribute is specified. The name is an ASCII string that must be unique
within the filter but can be reused in other filters. Because this example does not refer to a specific entry later
on, it is given a simple name of “e1”.

The EtherType attribute, etherT, is next. It is assigned the value of ipv4 to specify that the filter is for IPv4
packets. There are many other possible values for this attribute. Common ones include ARP, RARP, andIPv6.
The default is unspecified so it is important to assign it a value.

Following the EtherType attribute is the prot attribute that is set to tcp to indicate that this filter is for TCP
traffic. Alternate protocol attributes include udp, icmp, and unspecified (default).

After the protocol, the destination TCP port number is assigned to be in the range from 80 to 80 (exactly TCP
port 80) with the dFromPort and dToPort attributes. If the from and to are different, they specify a range of
port numbers.

In this example, these destination port numbers are specified with the attributes dFromPort and dToPort.
However, when they are used in the contract, they should be used for the destination port from the TCP client
to the server and as the source port for the return traffic. See the attribute revFltPorts later in this example
for more information.

The second filter does essentially the same thing, but for port 443 instead.

Filters are referred to by subjects within contracts by their target distinguished name, tDn. The tDn name is
constructed as follows:

uni/tn-<tenant name>/flt-<filter name>

For example, the tDn of the first filter above is uni/tn-coke/flt-Http. The second filter has the name
uni/tn-coke/flt-Https. In both cases, solar comes from the tenant name.

Contracts
The contract element is tagged vzBrCP and it has a name attribute.

<vzBrCP name="webCtrct">
<vzSubj name="http" revFltPorts="true" provmatchT="All">

<vzRsSubjFiltAtt tnVzFilterName="Http"/>
<vzRsSubjGraphAtt graphName="G1" termNodeName="TProv"/>
<vzProvSubjLbl name="openProv"/>
<vzConsSubjLbl name="openCons"/>

</vzSubj>
<vzSubj name="https" revFltPorts="true" provmatchT="All">

<vzProvSubjLbl name="secureProv"/>
<vzConsSubjLbl name="secureCons"/>
<vzRsFiltAtt tnVzFilterName="Https "/>
<vzRsOutTermGraphAtt graphName="G2" termNodeName="TProv"/>

</vzSubj>
</vzBrCP>

Contracts are the policy elements between EPGs. They contain all of the filters that are applied between EPGs
that produce and consume the contract. The contract element is tagged vzBrCP and it has a name attribute.
Refer to the object model reference documentation for other attributes that can be used in the contract element.
This example has one contract named webCtrct.

The contract contains multiple subject elements where each subject contains a set of filters. In this example,
the two subjects are http and https.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
162

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracts

The contract is later referenced by EPGs that either provide or consume it. They reference it by its name in
in the following manner:

uni/tn-[tenant-name]/brc-[contract-name]

tenant-name is the name of the tenant, “solar” in this example, and the contract-name is the name of the
contract. For this example, the tDn name of the contract is uni/tn-solar/brc-webCtrct.

Subjects
The subject element starts with the tag vzSubj and has three attributes: name, revFltPorts, and matchT. The
name is simply the ASCII name of the subject.

revFltPorts is a flag that indicates that the Layer 4 source and destination ports in the filters of this subject
should be used as specified in the filter description in the forward direction (that is, in the direction of from
consumer to producer EPG), and should be used in the opposite manner for the reverse direction. In this
example, the “http” subject contains the “Http” filter that defined TCP destination port 80 and did not specify
the source port. Because the revFltPorts flag is set to true, the policy will be TCP destination port 80 and
any source port for traffic from the consumer to the producer, and it will be TCP destination port any and
source port 80 for traffic from the producer to the consumer. The assumption is that the consumer initiates
the TCP connection to the producer (the consumer is the client and the producer is the server).

The default value for the revFltPrts attribute is false if it is not specified.

Labels
The match type attribute, provmatchT (for provider matching) and consmatchT (for consumer matching)
determines how the subject labels are compared to determine if the subject applies for a given pair of consumers
and producers. The following match type values are available:

• All

• AtLeastOne (default)

• None

• ExactlyOne

When deciding whether a subject applies to the traffic between a producer and consumer EPG, the match
attribute determines how the subject labels that are defined (or not) in those EPGs should be compared to the
labels in the subject. If the match attribute value is set to All, it only applies to the providers whose provider
subject labels, vzProvSubjLbl, match all of the vzProvSubjLbl labels that are defined in the subject. If two
labels are defined, both must also be in the provider. If a provider EPG has 10 labels, as long as all of the
provider labels in the subject are present, a match is confirmed. A similar criteria is used for the consumers
that use the vzConsSubjLbl. If the matchT attribute value is AtLeastOne, only one of the labels must match.
If the matchT attribute is None, the match only occurs if none of the provider labels in the subject match the
provider labels of the provider EPGs and similarly for the consumer.

If the producer or consumer EPGs do not have any subject labels and the subject does not have any labels, a
match occurs for All, AtLeastOne, and None (if you do not use labels, the subject is used and the matchT
attribute does not matter).

An optional attribute of the subject not shown in the example is prio where the priority of the traffic that
matches the filter is specified. Possible values are gold, silver, bronze, or unspecified (default).

Cisco APIC REST API Configuration Guide, Release 4.1(x)
163

Part 3: Setting Up APIC and the Fabric Using the REST API
Subjects

In the example, the subject element contains references to filter elements, subject label elements, and graph
elements. <vzRsSubjFiltAtt tDn=“uni/tn-coke/flt-Http”/> is a reference to a previously defined filter.
This element is identified by the vzRsSubjFiltAtt tag.

<vzRsSubjGraphAtt graphName=“G1” termNodeName=“TProv”/> defines a terminal connection.

<vzProvSubjLbl name=“openProv”/> defines a provider label named “openProv”. The label is used to qualify
or filter which subjects get applied to which EPGs. This particular one is a provider label and the corresponding
consumer label is identified by the tag vzConsSubjLbl. These labels are matched with the corresponding label
of the provider or consumer EPG that is associated with the current contract. If a match occurs according to
the matchT criteria described above, a particular subject applies to the EPG. If no match occurs, the subject
is ignored.

Multiple provider and consumer subject labels can be added to a subject to allow more complicated matching
criteria. In this example, there is just one label of each type on each subject. However, the labels on the first
subject are different from the labels on the second subject, which allows these two subjects to be handled
differently depending on the labels of the corresponding EPGs. The order of the elements within the subject
element does not matter.

VRF
The Virtual Routing and Forwarding (VRF) (also known as a context or private network) is identified by the
fvCtx tag and contains a name attribute.

A tenant can contain multiple VRFs. For this example, the tenant uses one VRF named “solartx1”. The name
must be unique within the tenant.

The VRF defines a Layer 3 address domain. All of the endpoints within the Layer 3 domain must have unique
IPv4 or IPv6 addresses, because it is possible to directly forward packets between these devices if the policy
allows it.

Although a VRF defines a unique IP address space, the corresponding subnets are defined within bridge
domains. Each bridge domain is then associated with the VRF.

Bridge Domains
The bridge domain element is identified with the fvBD tag and has a name attribute.

<fvBD name="solarBD1">
<fvRsCtx tnFvCtxName="solarctx1" />
<fvSubnet ip="11.22.22.20/24">

<fvRsBDSubnetToProfile
tnL3extOutName="rout1"
tnRtctrlProfileName="profExport" />

</fvSubnet>
<fvSubnet ip="11.22.23.211/24">

<fvRsBDSubnetToProfile
tnL3extOutName="rout1"
tnRtctrlProfileName="profExport"/>

</fvSubnet>
</fvBD>

Within the bridge domain element, subnets are defined and a reference is made to the corresponding Virtual
Routing and Forwarding (VRF) instance (also known as a context or private network). Each bridge domain
must be linked to a VRF and have at least one subnet.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
164

Part 3: Setting Up APIC and the Fabric Using the REST API
VRF

This example uses one bridge domain named “solarBD1”. In this example, the “solarctx1” VRF is referenced
by using the element tagged fvRsCtx and the tnFvCtxName attribute is given the value “solarctx1”. This name
comes from the VRF defined above.

The subnets are contained within the bridge domain and a bridge domain can contain multiple subnets. This
example defines two subnets. All of the addresses used within a bridge domain must fall into one of the address
ranges that is defined by the subnets. However, the subnet can also be a supernet which is a very large subnet
that includes many addresses that might never be used. Specifying one giant subnet that covers all current
future addresses can simplify the bridge domain specification. However, different subnets must not overlap
within a bridge domain or with subnets defined in other bridge domains that are associated with the same
VRF. Subnets can overlap with other subnets that are associated with other VRFs.

The subnets described above are 11.22.22.xx/24 and 11.22.23.xx/24. However, the full 32 bits of the address
is given even though the mask says that only 24 are used, because this IP attribute also identifies the full IP
address for the router in that subnet. In the first case, the router IP address (default gateway) is 11.22.22.20
and for the second subnet, it is 11.22.23.211.

The entry 11.22.22.20/24 is equivalent to the following, but in compact form:

• Subnet: 11.22.22.00

• Subnet Mask: 255.255.255.0

• Default gateway: 11.22.22.20

Application Profiles
The start of the application profile is indicated by the fvAp tag and has a name attribute.

<fvAp name="sap">

This example has one application network profile and it is named “sap.”

The application profile is a container that holds the EPGs. EPGs can communicate with other EPGs in the
same application profile and with EPGs in other application profiles. The application profile is simply a
convenient container that is used to hold multiple EPGs that are logically related to one another. They can be
organized by the application they provide such as “sap,” by the function they provide such as “infrastructure,”
by where they are in the structure of the data center such as “DMZ,” or whatever organizing principle the
administrator chooses to use.

The primary object that the application profile contains is an endpoint group (EPG). In this example, the “sap”
application profile contains 4 EPGs: web1, web2, app, and db.

Endpoints and Endpoint Groups (EPGs)
EPGs begin with the tag fvAEPg and have a name attribute.

<fvAEPg name="web1">
<fvRsBd tnFvBDName="solarBD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
<fvRsProv tnVzBrCPName="webCtrct" matchT ="All">

<vzProvSubjLbl name="openProv"/>
<vzProvSubjLbl name="secureProv"/>
<vzProvLbl name="green"/>

</fvRsProv>
</fvAEPg>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
165

Part 3: Setting Up APIC and the Fabric Using the REST API
Application Profiles

The EPG is the most important fundamental object in the policy model. It represents a collection of endpoints
that are treated in the same fashion from a policy perspective. Rather than configure andmanage those endpoints
individually, they are placed within an EPG and are managed as a collection or group.

The EPG object is where labels are defined that govern what policies are applied and which other EPGs can
communicate with this EPG. It also contains a reference to the bridge domain that the endpoints within the
EPG are associated with as well as which virtual machine manager (VMM) domain they are associated with.
VMMallows virtual machinemobility between twoVM servers instantaneously with no application downtime.

The first EPG in the example is named “web1.” The fvRsBd element within the EPG defines which bridge
domain that it is associated with. The bridge domain is identified by the value of the tnFxBDName attribute.
This EPG is associated with the “solarBD1” bridge domain named in the “Bridge Domain” section above.
The binding to the bridge domain is used by the system to understand what the default gateway address should
be for the endpoints in this EPG. It does not imply that the endpoints are all in the same subnet or that they
can only communicate through bridging. Whether an endpoint’s packets are bridged or routed is determined
by whether the source endpoint sends the packet to its default gateway or the final destination desired. If it
sends the packet to the default gateway, the packet is routed.

The VMM domain used by this EPG is identified by the fvRsDomAtt tag. This element references the VMM
domain object defined elsewhere. The VMM domain object is identified by its tDn name attribute. This
example shows only one VMM domain called “uni/vmmp-VMware/dom-mininet.”

The next element in the “web1” EPG defines which contract this EPG provides and is identified by the
fvRsProv tag. If “web1” were to provide multiple contracts, there would be multiple fvRsProv elements.
Similarly, if it were to consume one or more contracts, there would be fvRsCons elements as well.

The fvRsProv element has a required attribute that is the name of the contract that is being provided. “web1”
is providing the contract “webCtrct” that was defined earlier that was called tDn=“uni/tn-coke/brc-webCtrct”.

The next attribute is the matchT attribute, which has the same semantics for matching provider or consumer
labels as it did in the contract for subject labels (it can take on the values of All, AtLeastOne, or None). This
criteria applies to the provider labels as they are compared to the corresponding consumer labels. A match of
the labels implies that the consumer and provider can communicate if the contract between them allows it. In
other words, the contract has to allow communication and the consumer and provider labels have to match
using the match criteria specified at the provider.

The consumer has no correspondingmatch criteria. Thematch type used is always determined by the provider.

Inside the provider element, fvRsProv, an administrator needs to specify the labels that are to be used. There
are two kinds of labels, provider labels and provider subject labels. The provider labels, vzProvLbl, are used
to match consumer labels in other EPGs that use the matchT criteria described earlier. The provider subject
labels, vzProvSubjLbl, are used to match the subject labels that are specified in the contract. The only attribute
of the label is its name attribute.

In the “web1” EPG, two provider subject labels, openProv and secureProv, are specified to match with the
“http” and “https” subjects of the “webCtrct” contract. One provider label, “green” is specified with a match
criteria of All that will match with the same label in the “App” EPG.

The next EPG in the example, “web2,” is very similar to “web1” except that there is only one vzProvSubjLbl
and the labels themselves are different.

The third EPG is one called “app” and it is defined as follows:

<fvAEPg name="app">
<fvRsBd tnFvBDName="solarBD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
<fvRsCons tnVzBrCPName="webCtrct">

<vzConsSubjLbl name="openCons"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
166

Part 3: Setting Up APIC and the Fabric Using the REST API
Endpoints and Endpoint Groups (EPGs)

<vzConsSubjLbl name="secureCons"/>
<vzConsLbl name="green"/>

</fvRsCons>
</fvAEPg>

The first part is nearly the same as the “web1” EPG. The major difference is that this EPG is a consumer of
the “webCtrct” and has the corresponding consumer labels and consumer subject labels. The syntax is nearly
the same except that “Prov” is replaced by “Cons” in the tags. There is no match attribute in the FvRsCons
element because the match type for matching the provider with consumer labels is specified in the provider.

In the last EPG, “db” is very similar to the “app” EPG in that it is purely a consumer.

While in this example, the EPGs were either consumers or producers of a single contract, it is typical for an
EPG to be at once a producer of multiple contracts and a consumer of multiple contracts.

Closing

</fvAp>
</fvTenant>

</polUni>

The final few lines complete the policy.

What the Example Tenant Policy Does
The following figure shows how contracts govern endpoint group (EPG) communications.

Figure 9: Labels and Contract Determine EPG to EPG Communications

The four EPGs are named EPG:web1, EPG:web2, EPG:app, and EPG:db. EPG:web1 and EPG:web2 provide
a contract called webCtrct. EPG:app and EPG:db consume that same contract.

EPG:web1 can only communicate with EPG:app and EPG:web2 can only communicate with EPG:db. This
interaction is controlled through the provider and consumer labels “green” and “red”.

When EPG:web1 communicateswith EPG:app, they use thewebCtrct contract. EPG:app can initiate connections
to EPG:web1 because it consumes the contract that EPG:web1 provides.

The subjects that EPG:web1 and EPG:app can use to communicate are both http and https because EPG:web1
has the provider subject label “openProv” and the http subject also has it. EPG:web1 has the provider subject

Cisco APIC REST API Configuration Guide, Release 4.1(x)
167

Part 3: Setting Up APIC and the Fabric Using the REST API
Closing

label “secureProv” as does the subject https. In a similar fashion, EPG:app has subject labels “openCons” and
“secureCons” that subjects http and https have.

When EPG:web2 communicates with EPG:db, they can only use the https subject because only the https
subject carries the provider and consumer subject labels. EPG:db can initiate the TCP connection to EPG:web2
because EPG:db consumes the contract provided by EPG:web2.

Figure 10: Bridge Domain, Subnets, and Layer 3 VRF

The example policy specifies the relationship between EPGs, application profiles, bridge domains, and Layer
3 Virtual Routing and Forwarding (VRF) instances in the followingmanner: the EPGs EPG:web1, EPG:web2,
EPG:app, and EPG:db are all members of the application profile called “sap.”

These EPGs are also linked to the bridge domain “solarBD1.” solarBD1 has two subnets, 11.22.22.XX/24
and 11.22.23.XX/24. The endpoints in the four EPGs must be within these two subnet ranges. The IP address
of the default gateway in those two subnets will be 11.22.22.20 and 11.22.23.211. The solarBD1 bridge domain
is linked to the “solarctx1” Layer 3 VRF.

All these policy details are contained within a tenant called “solar.”

EPGs

Deploying an Application EPG through an AEP or Interface Policy Group to
Multiple Ports

Through the APIC Advanced GUI and REST API, you can associate attached entity profiles directly with
application EPGs. By doing so, you deploy the associated application EPGs to all those ports associated with
the attached entity profile in a single configuration.

Through the APIC REST API or the NX-OS style CLI, you can deploy an application EPG to multiple ports
through an Interface Policy Group.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
168

Part 3: Setting Up APIC and the Fabric Using the REST API
EPGs

Deploying an EPG on a Specific Port with APIC Using the REST API

Before you begin

The tenant where you deploy the EPG is created.

Deploy an EPG on a specific port.

Example:
<fvTenant name="<tenant_name>" dn="uni/tn-test1" >

<fvCtx name="<network_name>" pcEnfPref="enforced" knwMcastAct="permit"/>
<fvBD name="<bridge_domain_name>" unkMcastAct="flood" >

<fvRsCtx tnFvCtxName="<network_name>"/>
</fvBD>
<fvAp name="<application_profile>" >

<fvAEPg name="<epg_name>" >
<fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/13]" mode="regular"

instrImedcy="immediate" encap="vlan-20"/>
</fvAEPg>

</fvAp>
</fvTenant>

Deploying an EPG through an AEP to Multiple Interfaces Using the REST API
The interface selectors in the AEP enable you to configure multiple paths for an AEPg. The following can be
selected:

1. A node or a group of nodes

2. An interface or a group of interfaces

The interfaces consume an interface policy group (and so an infra:AttEntityP).

3. The infra:AttEntityP is associated to the AEPg, thus specifying the VLANs to use.

An infra:AttEntityP can be associated with multiple AEPgs with different VLANs.

When you associate the infra:AttEntityP with the AEPg, as in 3, this deploys the AEPg on the nodes selected
in 1, on the interfaces in 2, with the VLAN provided by 3.

In this example, the AEPg uni/tn-Coke/ap-AP/epg-EPG1 is deployed on interfaces 1/10, 1/11, and 1/12 of
nodes 101 and 102, with vlan-102.

Before you begin

• Create the target application EPG (AEPg).

• Create the VLAN pool containing the range of VLANs you wish to use for EPG deployment with the
Attached Entity Profile (AEP).

• Create the physical domain and link it to the VLAN pool and AEP.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
169

Part 3: Setting Up APIC and the Fabric Using the REST API
Deploying an EPG on a Specific Port with APIC Using the REST API

To deploy an AEPg on selected nodes and interfaces, send a post with XML such as the following:

Example:
<infraInfra dn="uni/infra">
<infraNodeP name=“NodeProfile">

<infraLeafS name=“NodeSelector" type="range">
<infraNodeBlk name=“NodeBlok" from_="101" to_=“102”/>
<infraRsAccPortP tDn="uni/infra/accportprof-InterfaceProfile"/>

</infraLeafS>
</<infraNodeP>

<infraAccPortP name="InterfaceProfile">
<infraHPortS name="InterfaceSelector" type="range">

<infraPortBlk name=“ InterfaceBlock" fromCard="1" toCard="1" fromPort="10" toPort=“12"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-PortGrp" />

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="PortGrp”>

<infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfile"/>
</infraAccPortGrp>

</infraFuncP>

<infraAttEntityP name=“AttEntityProfile” >
<infraGeneric name=“default” >

<infraRsFuncToEpg tDn=“uni/tn-Coke/ap-AP/epg-EPG1” encap=“vlan-102"/>
</infraGeneric>

</infraAttEntityP>
</infraInfra>

Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using
the REST API

Before you begin

• The tenant where you deploy the EPG is already created.

• An EPG is statically deployed on a specific port.

Step 1 Create the interface profile, switch profile and the Attach Entity Profile (AEP).

Example:
<infraInfra>

<infraNodeP name="<switch_profile_name>" dn="uni/infra/nprof-<switch_profile_name>" >
<infraLeafS name="SwitchSeletor" descr="" type="range">

<infraNodeBlk name="nodeBlk1" descr="" to_="1019" from_="1019"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-<interface_profile_name>"/>

</infraNodeP>

<infraAccPortP name="<interface_profile_name>" dn="uni/infra/accportprof-<interface_profile_name>"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
170

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API

>
<infraHPortS name="portSelector" type="range">

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-<port_group_name>" fexId="101"/>

<infraPortBlk name="block2" toPort="13" toCard="1" fromPort="11" fromCard="1"/>
</infraHPortS>

</infraAccPortP>

<infraAccPortGrp name="<port_group_name>" dn="uni/infra/funcprof/accportgrp-<port_group_name>"
>

<infraRsAttEntP tDn="uni/infra/attentp-<attach_entity_profile_name>"/>
<infraRsHIfPol tnFabricHIfPolName="1GHifPol"/>

</infraAccPortGrp>

<infraAttEntityP name="<attach_entity_profile_name>"
dn="uni/infra/attentp-<attach_entity_profile_name>" >

<infraRsDomP tDn="uni/phys-<physical_domain_name>"/>
</infraAttEntityP>

<infraInfra>

Step 2 Create a domain.

Example:
<physDomP name="<physical_domain_name>" dn="uni/phys-<physical_domain_name>">

<infraRsVlanNs tDn="uni/infra/vlanns-[<vlan_pool_name>]-static"/>
</physDomP>

Step 3 Create a VLAN range.

Example:
<fvnsVlanInstP name="<vlan_pool_name>" dn="uni/infra/vlanns-[<vlan_pool_name>]-static"
allocMode="static">

<fvnsEncapBlk name="" descr="" to="vlan-25" from="vlan-10"/>
</fvnsVlanInstP>

Step 4 Associate the EPG with the domain.

Example:
<fvTenant name="<tenant_name>" dn="uni/tn-" >

<fvAEPg prio="unspecified" name="<epg_name>" matchT="AtleastOne"
dn="uni/tn-test1/ap-AP1/epg-<epg_name>" descr="">

<fvRsDomAtt tDn="uni/phys-<physical_domain_name>" instrImedcy="immediate"
resImedcy="immediate"/>

</fvAEPg>
</fvTenant>

Intra-EPG Isolation

Intra-EPG Isolation for Bare Metal Servers
Intra-EPG endpoint isolation policies can be applied to directly connected endpoints such as bare metal servers.

Examples use cases include the following:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
171

Part 3: Setting Up APIC and the Fabric Using the REST API
Intra-EPG Isolation

• Backup clients have the same communication requirements for accessing the backup service, buy they
don't need to communicate with each other.

• Servers behind a load balancer have the same communication requirements, but isolating them from each
other protects against a server that is compromised or infected.

Figure 11: Intra-EPG Isolation for Bare Metal Servers

Bare metal EPG isolation is enforced at the leaf switch. Bare metal servers use VLAN encapsulation. All
unicast, multicast and broadcast traffic is dropped (denied) within isolation enforced EPGs. ACI bridge-domains
can have a mix of isolated and regular EPGs. Each Isolated EPG can have multiple VLANs where intra-vlan
traffic is denied.

Configuring Intra-EPG Isolation for Bare Metal Servers Using the REST API

Before you begin

The port the EPG uses must be associated with a bare metal server interface in the physical domain.

SUMMARY STEPS

1. Send this HTTP POST message to deploy the application using the XML API.
2. Include this XML structure in the body of the POST message.

DETAILED STEPS

Step 1 Send this HTTP POST message to deploy the application using the XML API.

Example:
POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

Cisco APIC REST API Configuration Guide, Release 4.1(x)
172

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Intra-EPG Isolation for Bare Metal Servers Using the REST API

Step 2 Include this XML structure in the body of the POST message.

Example:
<fvTenant name="Tenant_BareMetal" >
<fvAp name="Web">
<fvAEPg name="IntraEPGDeny" pcEnfPref="enforced">

<!-- pcEnfPref="enforced" ENABLES ISOLATION-->
<fvRsBd tnFvBDName="bd" />
<fvRsDomAtt tDn="uni/phys-Dom1" />
<!-- PATH ASSOCIATION -->
<fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/2]" encap="vlan-51"

primaryEncap="vlan-100" instrImedcy='immediate'/>
</fvAEPg>

</fvAp>
</fvTenant>

Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch
Intra-EPG Isolation is an option to prevent physical or virtual endpoint devices that are in the same base EPG
or uSeg EPG from communicating with each other. By default, endpoint devices included in the same EPG
are allowed to communicate with one another. However, conditions exist in which total isolation of the endpoint
devices from on another within an EPG is desirable. For example, you may want to enforce intra-EPG isolation
if the endpoint VMs in the same EPG belong to multiple tenants, or to prevent the possible spread of a virus.

A Cisco ACI virtual machine manager (VMM) domain creates an isolated PVLAN port group at the VMware
VDS or Microsoft Hyper-V Virtual Switch for each EPG that has intra-EPG isolation enabled. A fabric
administrator specifies primary encapsulation or the fabric dynamically specifies primary encapsulation at
the time of EPG-to-VMM domain association. When the fabric administrator selects the VLAN-pri and
VLAN-sec values statically, the VMM domain validates that the VLAN-pri and VLAN-sec are part of a static
block in the domain pool.

When intra-EPG isolation is not enforced, the VLAN-pri value is ignored even if it is specified in the
configuration.

Note

VLAN-pri/VLAN-sec pairs for the VMware VDS orMicrosoft Hyper-VVirtual Switch are selected per VMM
domain during the EPG-to-domain association. The port group created for the intra-EPG isolation EPGs uses
the VLAN-sec tagged with type set to PVLAN. The VMware VDS or the Microsoft Hyper-V Virtual Switch
and fabric swap the VLAN-pri/VLAN-sec encapsulation:

• Communication from the Cisco ACI fabric to the VMware VDS or Microsoft Hyper-V Virtual Switch
uses VLAN-pri.

• Communication from the VMware VDS or Microsoft Hyper-V Virtual Switch to the Cisco ACI fabric
uses VLAN-sec.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
173

Part 3: Setting Up APIC and the Fabric Using the REST API
Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch

Figure 12: Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch

Note these details regarding this illustration:

1. EPG-DB sends VLAN traffic to the Cisco ACI leaf switch. The Cisco ACI egress leaf switch encapsulates
traffic with a primary VLAN (PVLAN) tag and forwards it to the Web-EPG endpoint.

2. The VMware VDS or Microsoft Hyper-V Virtual Switch sends traffic to the Cisco ACI leaf switch using
VLAN-sec. The Cisco ACI leaf switch drops all intra-EPG traffic because isolation is enforced for all
intra VLAN-sec traffic within the Web-EPG.

3. The VMware VDS or Microsoft Hyper-V Virtual Switch VLAN-sec uplink to the Cisco ACI Leaf is in
isolated trunk mode. The Cisco ACI leaf switch uses VLAN-pri for downlink traffic to the VMware VDS
or Microsoft Hyper-V Virtual Switch.

4. The PVLAN map is configured in the VMware VDS or Microsoft Hyper-V Virtual Switch and Cisco
ACI leaf switches. VM traffic from WEB-EPG is encapsulated in VLAN-sec. The VMware VDS or
Microsoft Hyper-V Virtual Switch denies local intra-WEB EPG VM traffic according to the PVLAN tag.
All intra-ESXi host or Microsoft Hyper-V host VM traffic is sent to the Cisco ACI leaf using VLAN-Sec.

Related Topics

For information on configuring intra-EPG isolation in a Cisco AVS environment, see Intra-EPG Isolation
Enforcement for Cisco AVS, on page 176.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
174

Part 3: Setting Up APIC and the Fabric Using the REST API
Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch

Configuring Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual
Switch using the REST API

SUMMARY STEPS

1. Send this HTTP POST message to deploy the application using the XML API.
2. For a VMware VDS orMicrosoft Hyper-VVirtual Switch deployment, include one of the following XML

structures in the body of the POST message.

DETAILED STEPS

Step 1 Send this HTTP POST message to deploy the application using the XML API.

Example:
POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

Step 2 For a VMware VDS or Microsoft Hyper-V Virtual Switch deployment, include one of the following XML structures in
the body of the POST message.

Example:

The following example is for VMware VDS:
<fvTenant name="Tenant_VMM" >
<fvAp name="Web">
<fvAEPg name="IntraEPGDeny" pcEnfPref="enforced">

<!-- pcEnfPref="enforced" ENABLES ISOLATION-->
<fvRsBd tnFvBDName="bd" />
<!-- STATIC ENCAP ASSOCIATION TO VMM DOMAIN-->
<fvRsDomAtt encap="vlan-2001" instrImedcy="lazy" primaryEncap="vlan-2002"

resImedcy="immediate" tDn="uni/vmmp-VMware/dom-DVS1”>
</fvAEPg>

</fvAp>
</fvTenant>

Example:

The following example is for Microsoft Hyper-V Virtual Switch:
<fvTenant name="Tenant_VMM" >
<fvAp name="Web">
<fvAEPg name="IntraEPGDeny" pcEnfPref="enforced">

<!-- pcEnfPref="enforced" ENABLES ISOLATION-->
<fvRsBd tnFvBDName="bd" />
<!-- STATIC ENCAP ASSOCIATION TO VMM DOMAIN-->

<fvRsDomAtt tDn="uni/vmmp-Microsoft/dom-domain1”>
<fvRsDomAtt encap="vlan-2004" instrImedcy="lazy" primaryEncap="vlan-2003"
resImedcy="immediate" tDn="uni/vmmp-Microsoft/dom-domain2”>
</fvAEPg>

</fvAp>
</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
175

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch using the REST API

Intra-EPG Isolation Enforcement for Cisco AVS
By default, endpoints with an EPG can communicate with each other without any contracts in place. However,
you can isolate endpoints within an EPG from each other. In some instances, you might want to enforce
endpoint isolation within an EPG to prevent a VM with a virus or other problem from affecting other VMs
in the EPG.

You can configure isolation on all or none of the endpoints within an application EPG; you cannot configure
isolation on some endpoints but not on others.

Isolating endpoints within an EPG does not affect any contracts that enable the endpoints to communicate
with endpoints in another EPG.

Isolating endpoints within an EPG will trigger a fault when the EPG is associated with Cisco AVS domains
in VLAN mode.

Using intra-EPG isolation on a Cisco AVS microsegment (uSeg) EPG is not currently supported.
Communication is possible between two endpoints that reside in separate uSeg EPGs if either has intra-EPG
isolation enforced, regardless of any contract that exists between the two EPGs.

Note

Configuring Intra-EPG Isolation for Cisco AVS Using the REST API

Before you begin

Make sure that Cisco AVS is in VXLAN mode.

Step 1 Send this HTTP POST message to deploy the application using the XML API.

Example:
POST

https://192.0.20.123/api/mo/uni/tn-ExampleCorp.xml

Step 2 For a VMM deployment, include the XML structure in the following example in the body of the POST message.

Example:
Example:
<fvTenant name="Tenant_VMM" >
<fvAp name="Web">
<fvAEPg name="IntraEPGDeny" pcEnfPref="enforced">
<!-- pcEnfPref="enforced" ENABLES ISOLATION-->
<fvRsBd tnFvBDName="bd" />
<fvRsDomAtt encap="vlan-2001" tDn="uni/vmmp-VMware/dom-DVS1”>

</fvAEPg>
</fvAp>

</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
176

Part 3: Setting Up APIC and the Fabric Using the REST API
Intra-EPG Isolation Enforcement for Cisco AVS

What to do next

You can select statistics and view them to help diagnose problems involving the endpoint. See the sections
"Choosing Statistics to View for Isolated Endpoints" and "Viewing Statistics for Isolated Endpoints" in the
Cisco AVS Configuration Guide or the Cisco APIC Layer 2 Configuration Guide.

Microsegmentation

Using Microsegmentation with Network-based Attributes on Bare Metal
You can use Cisco APIC to configure Microsegmentation with Cisco ACI to create a new, attribute-based
EPG using a network-based attribute, a MAC address or one or more IP addresses. You can configure
Microsegmentation with Cisco ACI using network-based attributes to isolate VMs or physical endpoints
within a single base EPG or VMs or physical endpoints in different EPGs.

Using an IP-based Attribute

You can use an IP-based filter to isolate a single IP address, a subnet, or multiple of noncontiguous IP addresses
in a single microsegment. You might want to isolate physical endpoints based on IP addresses as a quick and
simply way to create a security zone, similar to using a firewall.

Using a MAC-based Attribute

You can use a MAC-based filter to isolate a single MAC address or multiple MAC addresses. You might
want to do this if you have a server sending bad traffic int he network. By creating a microsegment with a
MAC-based filter, you can isolate the server.

Configuring an IP-based Microsegmented EPG as a Shared Resource Using
the REST API

You can configure a microsegmented EPGwith an IP-Address with 32 bit mask as a shared service, accessible
by clients outside of the VRF and the current fabric.

SUMMARY STEPS

1. To configure an IP address-attribute microsegmented EPG epg3 with a shared subnet, with an IP address
and 32-bit mask, send a post with XML such as the following example. In the IP attributes, the attribute
usefvSubnet is set to "yes."

DETAILED STEPS

To configure an IP address-attribute microsegmented EPG epg3with a shared subnet, with an IP address and 32-bit mask,
send a post with XML such as the following example. In the IP attributes, the attribute usefvSubnet is set to "yes."

Example:
<fvAEPg descr="" dn="uni/tn-t0/ap-a0/epg-epg3" fwdCtrl=""

isAttrBasedEPg="yes" matchT="AtleastOne" name="epg3" pcEnfPref="unenforced"
prefGrMemb="exclude"prio="unspecified">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
177

Part 3: Setting Up APIC and the Fabric Using the REST API
Microsegmentation

<fvRsCons prio="unspecified" tnVzBrCPName="ip-epg"/>
<fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular"

tDn="topology/pod-2/node-106"/>
<fvSubnet ctrl="" descr="" ip="56.4.0.2/32" name="" preferred="no"

scope="public,shared" virtual="no"/>
<fvRsDomAtt classPref="encap" delimiter="" encap="unknown" encapMode="auto"

instrImedcy="immediate"
primaryEncap="unknown" resImedcy="immediate" tDn="uni/phys-vpc"/>

<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsBd tnFvBDName="b2"/>
<fvCrtrn descr="" match="any" name="default" ownerKey="" ownerTag="" prec="0">

<fvIpAttr descr="" ip="1.1.1.3" name="ipv4" ownerKey="" ownerTag="" usefvSubnet="yes”/>
</fvCrtrn>
<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="ip-epg"/>
<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="shared-svc"/>

</fvAEPg>

Configuring a Network-Based Microsegmented EPG in a Bare-Metal
Environment Using the REST API

This section describes how to configure network attribute microsegmentation with Cisco ACI in a bare-metal
environment using the REST API.

SUMMARY STEPS

1. Log in to the Cisco APIC.
2. Post the policy to https://apic-ip-address/api/node/mo/.xml.

DETAILED STEPS

Step 1 Log in to the Cisco APIC.
Step 2 Post the policy to https://apic-ip-address/api/node/mo/.xml.

Example:

A: The following example configures a microsegment named 41-subnet using an IP-based attribute.

<polUni>
<fvTenant dn="uni/tn-User-T1" name="User-T1">

<fvAp dn="uni/tn-User-T1/ap-Base-EPG" name="Base-EPG">
<fvAEPg dn="uni/tn-User-T1/ap-Base-EPG/epg-41-subnet" name="41-subnet" pcEnfPref="enforced”

isAttrBasedEPg="yes" >
<fvRsBd tnFvBDName="BD1" />
<fvCrtrn name="Security1">

<fvIpAttr name="41-filter" ip="12.41.0.0/16"/>
</fvCrtrn>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Example:

This example is for base EPG for Example A: .

Cisco APIC REST API Configuration Guide, Release 4.1(x)
178

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Network-Based Microsegmented EPG in a Bare-Metal Environment Using the REST API

<polUni>
<fvTenant dn="uni/tn-User-T1" name="User-T1">

<fvAp dn="uni/tn-User-T1/ap-Base-EPG" name="Base-EPG">
<fvAEPg dn="uni/tn-User-T1/ap-Base-EPG/baseEPG” name=“baseEPG” pcEnfPref="enforced” >

<fvRsBd tnFvBDName="BD1" />
</fvAEPg>

</fvAp>
</fvTenant>

</polUni>

Example:

B: The following example configures a microsegment named useg-epg using a MAC-based attribute.
<polUni>
<fvTenant name="User-T1">

<fvAp name="customer">
<fvAEPg name="useg-epg" isAttrBasedEPg="true">
<fvRsBd tnFvBDName="BD1"/>
<fvRsDomAtt instrImedcy="immediate" resImedcy="immediate" tDn="uni/phys-phys" />

<fvRsNodeAtt tDn="topology/pod-1/node-101" instrImedcy="immediate" />
<fvCrtrn name="default">

<fvMacAttr name="mac" mac="00:11:22:33:44:55" />
</fvCrtrn>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Configuring Microsegmentation on Virtual Switches
Microsegmentationwith the CiscoApplication Centric Infrastructure (ACI) provides the ability to automatically
assign endpoints to logical security zones called endpoint groups (EPGs) based on various network-based or
virtual machine (VM)-based attributes. This section contains instructions for configuring microsegment (uSeg)
EPGs on virtual switches.

Microsegmentation with Cisco ACI provides support for virtual endpoints attached to the following:

• VMware vSphere Distributed Switch (VDS)

• Cisco Application Virtual Switch (AVS)

• Microsoft vSwitch

See the Cisco ACI Virtualization Guide for information about how Microsegmentation with Cisco ACI
works, prerequisites, guidelines, and scenarios.

Configuring Microsegmentation with Cisco ACI Using the REST API
This section describes how to configure Microsegmentation with Cisco ACI for Cisco ACI Virtual Edge,
Cisco AVS, VMware VDS, or Microsoft Hyper-V Virtual Switch using the REST API.

Step 1 Log in to the Cisco APIC.
Step 2 Post the policy to https://apic-ip-address/api/node/mo/.xml.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
179

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Microsegmentation on Virtual Switches

http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html

Example:

This example configures a uSeg EPG with the attributes VM Name containing "vm" and Operating System attributes
containing values of "CentOS" and "Linux," with matching for all attributes and with an EPG Match Precedence of 1.
<fvAEPg name="Security" isAttrBasedEPg="yes" pcEnfPref="unenforced" status="">

<fvRsBd tnFvBDName="BD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet”/>
<fvCrtrn name="default" match=“all” prec=“1”>

<fvVmAttr name="foo" type="vm-name" operator="contains" value="vm"/>
<fvSCrtrn name="sub-def" match=“any”>

<fvVmAttr name="foo1" type="guest-os" operator="contains" value="CentOS"/>
<fvVmAttr name="foo2" type="guest-os" operator="contains" value="Linux"/>

</fvSCrtrn>
</fvCrtrn>

</fvAEPg>

Example:

This example is for an application EPG with microsegmentation enabled.

<polUni>
<fvTenant dn="uni/tn-User-T1" name="User-T1">

<fvAp dn="uni/tn-User-T1/ap-Application-EPG" name="Application-EPG">
<fvAEPg dn="uni/tn-User-T1/ap-Application-EPG/applicationEPG” name=“applicationEPG”

pcEnfPref="enforced” >
<fvRsBd tnFvBDName="BD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-cli-vmm1" classPref=“useg”/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

In the example above, the string <fvRsDomAtt tDn="uni/vmmp-VMware/dom-cli-vmm1"
classPref=“useg”/> is relevant only for VMware VDS and not for Cisco ACI Virtual Edge, Cisco AVS, or
Microsoft Hyper-V Virtual Switch.

Example:

This example attaches a uSeg EPG to a Cisco ACI Virtual Edge VMM domain to add the switching mode.
<fvRsDomAtt resImedcy="immediate" instrImedcy="immediate" switchingMode="AVE" encapMode="auto"
tDn="uni/vmmp-VMware/dom-AVE-CISCO" primaryEncapInner="" secondaryEncapInner=""/>

Application Profiles

Three-Tier Application Deployment
A filter specifies the data protocols to be allowed or denied by a contract that contains the filter. A contract
can contain multiple subjects. A subject can be used to realize uni- or bidirectional filters. A unidirectional
filter is a filter that is used in one direction, either from consumer-to-provider (IN) or from provider-to-consumer
(OUT) filter. A bidirectional filter is the same filter that is used in both directions. It is not reflexive.

Contracts are policies that enable inter-End Point Group (inter-EPG) communication. These policies are the
rules that specify communication between application tiers. If no contract is attached to the EPG, inter-EPG

Cisco APIC REST API Configuration Guide, Release 4.1(x)
180

Part 3: Setting Up APIC and the Fabric Using the REST API
Application Profiles

communication is disabled by default. No contract is required for intra-EPG communication because intra-EPG
communication is always allowed.

Application profiles enable you to model application requirements that the APIC then automatically renders
in the network and data center infrastructure. The application profiles enable administrators to approach the
resource pool in terms of applications rather than infrastructure building blocks. The application profile is a
container that holds EPGs that are logically related to one another. EPGs can communicate with other EPGs
in the same application profile and with EPGs in other application profiles.

To deploy an application policy, you must create the required application profiles, filters, and contracts.
Typically, the APIC fabric hosts a three-tier application within a tenant network. In this example, the application
is implemented by using three servers (a web server, an application server, and a database server). See the
following figure for an example of a three-tier application.

The web server has the HTTP filter, the application server has the Remote Method Invocation (RMI) filter,
and the database server has the Structured Query Language (SQL) filter. The application server consumes the
SQL contract to communicate with the database server. The web server consumes the RMI contract to
communicate with the application server. The traffic enters from the web server and communicates with the
application server. The application server then communicates with the database server, and the traffic can
also communicate externally.

Figure 13: Three-Tier Application Diagram

Parameters to Create a Filter for http
The parameters to create a filter for http in this example is as follows:

Filter for httpParameter Name

httpName

2Number of Entries

Dport-80

Dport-443

Entry Name

IPEthertype

tcp

tcp

Protocol

Cisco APIC REST API Configuration Guide, Release 4.1(x)
181

Part 3: Setting Up APIC and the Fabric Using the REST API
Parameters to Create a Filter for http

Filter for httpParameter Name

http

https

Destination Port

Parameters to Create Filters for rmi and sql
The parameters to create filters for rmi and sql in this example are as follows:

Filter for sqlFilter for rmiParameter Name

sqlrmiName

11Number of Entries

Dport-1521Dport-1099Entry Name

IPIPEthertype

tcptcpProtocol

15211099Destination Port

Deploying an Application Profile Using the REST API
The port the EPG uses must belong to one of the VMManagers (VMM) or physical domains associated with
the EPG.

SUMMARY STEPS

1. Send this HTTP POST message to deploy the application using the XML API.
2. Include this XML structure in the body of the POST message.

DETAILED STEPS

Step 1 Send this HTTP POST message to deploy the application using the XML API.

Example:
POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

Step 2 Include this XML structure in the body of the POST message.

Example:

<fvTenant name="ExampleCorp">

<fvAp name="OnlineStore">
<fvAEPg name="web">

<fvRsBd tnFvBDName="bd1"/>
<fvRsCons tnVzBrCPName="rmi"/>
<fvRsProv tnVzBrCPName="web"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"delimiter=@/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
182

Part 3: Setting Up APIC and the Fabric Using the REST API
Parameters to Create Filters for rmi and sql

</fvAEPg>

<fvAEPg name="db">
<fvRsBd tnFvBDName="bd1"/>
<fvRsProv tnVzBrCPName="sql"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"/>

</fvAEPg>

<fvAEPg name="app">
<fvRsBd tnFvBDName="bd1"/>
<fvRsProv tnVzBrCPName="rmi"/>
<fvRsCons tnVzBrCPName="sql"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"/>

</fvAEPg>
</fvAp>

<vzFilter name="http" >
<vzEntry dFromPort="80" name="DPort-80" prot="tcp" etherT="ip"/>
<vzEntry dFromPort="443" name="DPort-443" prot="tcp" etherT="ip"/>
</vzFilter>
<vzFilter name="rmi" >
<vzEntry dFromPort="1099" name="DPort-1099" prot="tcp" etherT="ip"/>
</vzFilter>
<vzFilter name="sql">
<vzEntry dFromPort="1521" name="DPort-1521" prot="tcp" etherT="ip"/>
</vzFilter>

<vzBrCP name="web">
<vzSubj name="web">

<vzRsSubjFiltAtt tnVzFilterName="http"/>
</vzSubj>

</vzBrCP>

<vzBrCP name="rmi">
<vzSubj name="rmi">

<vzRsSubjFiltAtt tnVzFilterName="rmi"/>
</vzSubj>

</vzBrCP>

<vzBrCP name="sql">
<vzSubj name="sql">

<vzRsSubjFiltAtt tnVzFilterName="sql"/>
</vzSubj>

</vzBrCP>
</fvTenant>

In the string fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"delimiter=@/, delimiter=@ is
optional. If you do not enter a delimiter, the system will use the default | delimiter.

In the XML structure, the first line modifies, or creates if necessary, the tenant named ExampleCorp.

<fvTenant name="ExampleCorp">

This line creates an application network profile named OnlineStore.

<fvAp name="OnlineStore">

The elements within the application network profile create three endpoint groups, one for each of the three
servers. The following lines create an endpoint group named web and associate it with an existing bridge

Cisco APIC REST API Configuration Guide, Release 4.1(x)
183

Part 3: Setting Up APIC and the Fabric Using the REST API
Deploying an Application Profile Using the REST API

domain named bd1. This endpoint group is a consumer, or destination, of the traffic allowed by the binary
contract named rmi and is a provider, or source, of the traffic allowed by the binary contract named web. The
endpoint group is associated with the VMM domain named datacenter.

<fvAEPg name="web">
<fvRsBd tnFvBDName="bd1"/>
<fvRsCons tnVzBrCPName="rmi"/>
<fvRsProv tnVzBrCPName="web"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"/>

</fvAEPg>

The remaining two endpoint groups, for the application server and the database server, are created in a similar
way.

The following lines define a traffic filter named http that specifies TCP traffic of types HTTP (port 80) and
HTTPS (port 443).

<vzFilter name="http" >
<vzEntry dFromPort="80" name="DPort-80" prot="tcp" etherT="ip"/>
<vzEntry dFromPort="443" name="DPort-443" prot="tcp" etherT="ip"/>
</vzFilter>

The remaining two filters, for application data and database (sql) data, are created in a similar way.

The following lines create a binary contract named web that incorporates the filter named http:

<vzBrCP name="web">
<vzSubj name="web">

<vzRsSubjFiltAtt tnVzFilterName="http"/>
</vzSubj>

</vzBrCP>

The remaining two contracts, for rmi and sql data protocols, are created in a similar way.

The final line closes the structure:

</fvTenant>

Contracts, Taboo Contracts, and Preferred Groups

Security Policy Enforcement
As traffic enters the leaf switch from the front panel interfaces, the packets are marked with the EPG of the
source EPG. The leaf switch then performs a forwarding lookup on the packet destination IP address within
the tenant space. A hit can result in any of the following scenarios:

1. A unicast (/32) hit provides the EPG of the destination endpoint and either the local interface or the remote
leaf switch VTEP IP address where the destination endpoint is present.

2. A unicast hit of a subnet prefix (not /32) provides the EPG of the destination subnet prefix and either the
local interface or the remote leaf switch VTEP IP address where the destination subnet prefix is present.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
184

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracts, Taboo Contracts, and Preferred Groups

3. A multicast hit provides the local interfaces of local receivers and the outer destination IP address to use
in the VXLAN encapsulation across the fabric and the EPG of the multicast group.

Multicast and external router subnets always result in a hit on the ingress leaf switch. Security policy
enforcement occurs as soon as the destination EPG is known by the ingress leaf switch.

Note

A miss result in the forwarding table causes the packet to be sent to the forwarding proxy in the spine switch.
The forwarding proxy then performs a forwarding table lookup. If it is a miss, the packet is dropped. If it is
a hit, the packet is sent to the egress leaf switch that contains the destination endpoint. Because the egress leaf
switch knows the EPG of the destination, it performs the security policy enforcement. The egress leaf switch
must also know the EPG of the packet source. The fabric header enables this process because it carries the
EPG from the ingress leaf switch to the egress leaf switch. The spine switch preserves the original EPG in
the packet when it performs the forwarding proxy function.

On the egress leaf switch, the source IP address, source VTEP, and source EPG information are stored in the
local forwarding table through learning. Because most flows are bidirectional, a return packet populates the
forwarding table on both sides of the flow, which enables the traffic to be ingress filtered in both directions.

Contracts and Taboo Contracts

Contracts Contain Security Policy Specifications
In the ACI security model, contracts contain the policies that govern the communication between EPGs. The
contract specifies what can be communicated and the EPGs specify the source and destination of the
communications. Contracts link EPGs, as shown below.

EPG 1 --------------- CONTRACT --------------- EPG 2

Endpoints in EPG 1 can communicate with endpoints in EPG 2 and vice versa if the contract allows it. This
policy construct is very flexible. There can be many contracts between EPG 1 and EPG 2, there can be more
than two EPGs that use a contract, and contracts can be reused across multiple sets of EPGs, and more.

There is also directionality in the relationship between EPGs and contracts. EPGs can either provide or consume
a contract. An EPG that provides a contract is typically a set of endpoints that provide a service to a set of
client devices. The protocols used by that service are defined in the contract. An EPG that consumes a contract
is typically a set of endpoints that are clients of that service. When the client endpoint (consumer) tries to
connect to a server endpoint (provider), the contract checks to see if that connection is allowed. Unless
otherwise specified, that contract would not allow a server to initiate a connection to a client. However, another
contract between the EPGs could easily allow a connection in that direction.

This providing/consuming relationship is typically shown graphically with arrows between the EPGs and the
contract. Note the direction of the arrows shown below.

EPG 1 <-------consumes-------- CONTRACT <-------provides-------- EPG 2

The contract is constructed in a hierarchical manner. It consists of one or more subjects, each subject contains
one or more filters, and each filter can define one or more protocols.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
185

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracts and Taboo Contracts

Figure 14: Contract Filters

The following figure shows how contracts govern EPG communications.

Figure 15: Contracts Determine EPG to EPG Communications

For example, you may define a filter called HTTP that specifies TCP port 80 and port 8080 and another filter
called HTTPS that specifies TCP port 443. You might then create a contract called webCtrct that has two sets
of subjects. openProv and openCons are the subjects that contain the HTTP filter. secureProv and secureCons
are the subjects that contain the HTTPS filter. This webCtrct contract can be used to allow both secure and
non-secure web traffic between EPGs that provide the web service and EPGs that contain endpoints that want
to consume that service.

These same constructs also apply for policies that govern virtual machine hypervisors.When an EPG is placed
in a virtual machine manager (VMM) domain, the APIC downloads all of the policies that are associated with
the EPG to the leaf switches with interfaces connecting to the VMM domain. For a full explanation of VMM
domains, see the Virtual Machine Manager Domains chapter of Application Centric Infrastructure
Fundamentals. When this policy is created, the APIC pushes it (pre-populates it) to a VMM domain that
specifies which switches allow connectivity for the endpoints in the EPGs. The VMM domain defines the set

Cisco APIC REST API Configuration Guide, Release 4.1(x)
186

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracts Contain Security Policy Specifications

of switches and ports that allow endpoints in an EPG to connect to. When an endpoint comes on-line, it is
associated with the appropriate EPGs.When it sends a packet, the source EPG and destination EPG are derived
from the packet and the policy defined by the corresponding contract is checked to see if the packet is allowed.
If yes, the packet is forwarded. If no, the packet is dropped.

Contracts consist of 1 or more subjects. Each subject contains 1 or more filters. Each filter contains 1 or more
entries. Each entry is equivalent to a line in an Access Control List (ACL) that is applied on the Leaf switch
to which the endpoint within the endpoint group is attached.

In detail, contracts are comprised of the following items:

• Name—All contracts that are consumed by a tenant must have different names (including contracts
created under the common tenant or the tenant itself).

• Subjects—A group of filters for a specific application or service.

• Filters—Used to classify traffic based upon layer 2 to layer 4 attributes (such as Ethernet type, protocol
type, TCP flags and ports).

• Actions—Action to be taken on the filtered traffic. The following actions are supported:

• Permit the traffic (regular contracts, only)

• Mark the traffic (DSCP/CoS) (regular contracts, only)

• Redirect the traffic (regular contracts, only, through a service graph)

• Copy the traffic (regular contracts, only, through a service graph or SPAN)

• Block the traffic (taboo contracts)

With Cisco APIC Release 3.2(x) and switches with names that end in EX or FX, you can alternatively
use a subject Deny action or Contract or Subject Exception in a standard contract to block traffic
with specified patterns.

• Log the traffic (taboo contracts and regular contracts)

• Aliases—(Optional) A changeable name for an object. Although the name of an object, once created,
cannot be changed, the Alias is a property that can be changed.

Thus, the contract allows more complex actions than just allow or deny. The contract can specify that traffic
that matches a given subject can be re-directed to a service, can be copied, or can have its QoS level modified.
With pre-population of the access policy in the concrete model, endpoints can move, new ones can come
on-line, and communication can occur even if the APIC is off-line or otherwise inaccessible. The APIC is
removed from being a single point of failure for the network. Upon packet ingress to the ACI fabric, security
policies are enforced by the concrete model running in the switch.

Contracts
In addition to EPGs, contracts (vzBrCP) are key objects in the policy model. EPGs can only communicate
with other EPGs according to contract rules. The following figure shows the location of contracts in the
management information tree (MIT) and their relation to other objects in the tenant.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
187

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracts

Figure 16: Contracts

An administrator uses a contract to select the type(s) of traffic that can pass between EPGs, including the
protocols and ports allowed. If there is no contract, inter-EPG communication is disabled by default. There
is no contract required for intra-EPG communication; intra-EPG communication is always implicitly allowed.

You can also configure contract preferred groups that enable greater control of communication between EPGs
in a VRF. If most of the EPGs in the VRF should have open communication, but a few should only have
limited communication with the other EPGs, you can configure a combination of a contract preferred group
and contracts with filters to control communication precisely.

Contracts govern the following types of endpoint group communications:

• Between ACI fabric application EPGs (fvAEPg), both intra-tenant and inter-tenant

In the case of a shared service mode, a contract is required for inter-tenant
communication. A contract is used to specify static routes across VRFs, even
though the tenant VRF does not enforce a policy.

Note

• Between ACI fabric application EPGs and Layer 2 external outside network instance EPGs (l2extInstP)

• Between ACI fabric application EPGs and Layer 3 external outside network instance EPGs (l3extInstP)

• Between ACI fabric out-of-band (mgmtOoB) or in-band (mgmtInB) management EPGs

Contracts govern the communication between EPGs that are labeled providers, consumers, or both. EPG
providers expose contracts with which a would-be consumer EPG must comply. The relationship between an
EPG and a contract can be either a provider or consumer. When an EPG provides a contract, communication
with that EPG can be initiated from other EPGs as long as the communication complies with the provided
contract.When an EPG consumes a contract, the endpoints in the consuming EPGmay initiate communication
with any endpoint in an EPG that is providing that contract.

An EPG can both provide and consume the same contract. An EPG can also provide and consume multiple
contracts simultaneously.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
188

Part 3: Setting Up APIC and the Fabric Using the REST API
Contracts

Configuring a Contract Using the REST API

SUMMARY STEPS

1. Configure a contract using an XML POST request similar to the following example:

DETAILED STEPS

Configure a contract using an XML POST request similar to the following example:

Example:
<vzBrCP name="webCtrct">

<vzSubj name="http" revFltPorts="true" provmatchT="All">
<vzRsSubjFiltAtt tnVzFilterName="Http"/>
<vzRsSubjGraphAtt graphName="G1" termNodeName="TProv"/>
<vzProvSubjLbl name="openProv"/>
<vzConsSubjLbl name="openCons"/>

</vzSubj>
<vzSubj name="https" revFltPorts="true" provmatchT="All">

<vzProvSubjLbl name="secureProv"/>
<vzConsSubjLbl name="secureCons"/>
< vzRsSubjFiltAtt tnVzFilterName="Https"/>
<vzRsOutTermGraphAtt graphName="G2" termNodeName="TProv"/>

</vzSubj>
</vzBrCP>

Configuring a Taboo Contract Using the REST API

Before you begin

The following objects must be created:

• The tenant that will be associated with this Taboo Contract

• An application profile for the tenant

• At least one EPG for the tenant

To create a taboo contract with the REST API, use XML such as in the following example:

Example:
<vzTaboo ownerTag="" ownerKey="" name="VRF64_Taboo_Contract"
dn="uni/tn-Tenant64/taboo-VRF64_Taboo_Contract" descr=""><vzTSubj
name="EPG_subject" descr=""><vzRsDenyRule tnVzFilterName="default"
directives="log"/>
</vzTSubj>
</vzTaboo>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
189

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Contract Using the REST API

Contract and Subject Exceptions

Configuring Contract or Subject Exceptions for Contracts
In Cisco APIC Release 3.2(1), contracts between EPGs are enhanced to enable denying a subset of contract
providers or consumers from participating in the contract. Inter-EPG contracts and Intra-EPG contracts are
supported with this feature.

You can enable a provider EPG to communicate with all consumer EPGs except those that match criteria
configured in a subject or contract exception. For example, if you want to enable an EPG to provide services
to all EPGs for a tenant, except a subset, you can enable those EPGs to be excluded. To configure this, you
create an exception in the contract or one of the subjects in the contract. The subset is then denied access to
providing or consuming the contract.

Labels, counters, and permit and deny logs are supported with contracts and subject exceptions.

To apply an exception to all subjects in a contract, add the exception to the contract. To apply an exception
only to a single subject in the contract, add the exception to the subject.

When adding filters to subjects, you can set the action of the filter (to permit or deny objects that match the
filter criteria). Also forDeny filters, you can set the priority of the filter. Permit filters always have the default
priority. Marking the subject-to-filter relation to deny automatically applies to each pair of EPGs where there
is a match for the subject. Contracts and subjects can include multiple subject-to-filter relationships that can
be independently set to permit or deny the objects that match the filters.

Exception Types

Contract and subject exceptions can be based on the following types and include regular expressions, such as
the * wildcard:

DescriptionExampleException criteria exclude these
objects as defined in the Consumer
Regex and Provider Regex fields

This example, excludes EPGs using
the common tenant from consuming
contracts provided by the t1 tenant.

<vzException consRegex=

“common” field= “Tenant” name=

“excep03” provRegex= “t1” />

Tenant

This example excludes members of
ctx1 from consuming the services
provided by the same VRF.

<vzException consRegex= “ctx1”

field= “Ctx” name= “excep05”

provRegex= “ctx1” />

VRF

The example assumes that multiple
EPGs exist, with names starting
with EPGPa, and they should all be
denied as consumers for the
contract provided by EPg03

<vzException consRegex=

“EPgPa.*” field= “EPg” name=

“excep03” provRegex= “EPg03”

/>

EPG

This example excludes epg193 from
consuming the contract provided
by epg200.

<vzException consRegex=

“uni/tn-t36/ap-customer/epg-epg193”

field= “Dn” name=“excep04”

provRegex=

“uni/tn-t36/ap-customer/epg-epg200”

/>

Dn

Cisco APIC REST API Configuration Guide, Release 4.1(x)
190

Part 3: Setting Up APIC and the Fabric Using the REST API
Contract and Subject Exceptions

DescriptionExampleException criteria exclude these
objects as defined in the Consumer
Regex and Provider Regex fields

The example excludes objects
marked with the red tag from
consuming and those marked with
the green tag from participating in
the contract.

<vzException consRegex= “red”

field= “Tag” name= “excep01”

provRegex= “green” />

Tag

Configure a Contract or Subject Exception Using the REST API
In this task, you configure a contract that will allow most of the EPGs to communicate, but deny access to a
subset of them. Multiple exceptions can be added to a contract or a subject.

Before you begin

Configure the tenant, VRF, application profile, and EPGs to provide and consume the contract.

Step 1 Create a filter by sending a post with XML, such as the following example:

Example:
<vzFilter name='http-filter'>

<vzEntry name='http-e' etherT='ip' prot='tcp'/>
<vzEntry name='https-e' etherT='ip' prot='tcp'/>

</vzFilter>

Step 2 Create a contract that excludes EPg01 from consuming the subject and EPg03 from providing it, by sending a post with
XML, such as the following example:

The vzException MO can be contained by the vzBrCP or vzSubj MOs.

Example:

<vzBrCP name="httpCtrct" scope="context">
<vzSubj name="subj1"

<vzException consRegex="EPg01" field="EPg" name="excep01" provRegex=EPg03"/>
<vzSubj/>

<vzRsSubjFiltAtt tnVzFilterName="http-filter" Action="deny"/>
<vzRsSubjFiltAtt tnVzFilterName="https-filter" Action="permit"/>

</vzSubj>
</vzBrCP>

Configuring EPG Contract Inheritance Using the REST API

About Contract Inheritance
To streamline associating contracts to new EPGs, you can now enable an EPG to inherit all the (provided and
consumed) contracts associated directly to another EPG in the same tenant. Contract inheritance can be
configured for application, microsegmented, L2Out, and L3Out EPGs.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
191

Part 3: Setting Up APIC and the Fabric Using the REST API
Configure a Contract or Subject Exception Using the REST API

With Release 3.x, you can also configure contract inheritance for Inter-EPG contracts, both provided and
consumed. Inter-EPG contracts are supported on Cisco Nexus 9000 Series switches with EX or FX at the end
of their model name or later models.

You can enable an EPG to inherit all the contracts associated directly to another EPG, using the APIC GUI,
NX-OS style CLI, and the REST API.

Figure 17: Contract Inheritance

In the diagram above, EPG A is configured to inherit Provided-Contract 1 and 2 and Consumed-Contract 3
from EPG B (contract master for EPG A).

Use the following guidelines when configuring contract inheritance:

• Contract inheritance can be configured for application, microsegmented (uSeg), external L2Out EPGs,
and external L3Out EPGs. The relationships must be between EPGs of the same type.

• Both provided and consumed contracts are inherited from the contract master when the relationship is
established.

• Contract masters and the EPGs inheriting contracts must be within the same tenant.

• Changes to the masters’ contracts are propagated to all the inheritors. If a new contract is added to the
master, it is also added to the inheritors.

• An EPG can inherit contracts from multiple contract masters.

• Contract inheritance is only supported to a single level (cannot be chained) and a contract master cannot
inherit contracts.

• Labels with contract inheritance is supported. When EPG A inherits a contract from EPG B, if different
subject labels are configured under EPG A and EPG B, APIC uses the label configured under EPG B
for the contract inherited from EPG B. APIC uses the label configured under EPG A for the contract
where EPG A is directly involved.

• Whether an EPG is directly associated to a contract or inherits a contract, it consumes entries in TCAM.
So contract scale guidelines still apply. For more information, see the Verified Scalability Guide for your
release.

• vzAny security contracts and taboo contracts are not supported.

For information about configuring Contract Inheritance and viewing inherited and standalone contracts, see
Cisco APIC Basic Configuration Guide.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
192

Part 3: Setting Up APIC and the Fabric Using the REST API
About Contract Inheritance

Configuring Application EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the application EPG, to serve as the EPG Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

To configure contract inheritance using the REST API, send a post with XML such as the following XML and JSON
examples, with a URL directed to the EPG that will inherit the contracts:

Example:

XML Example

<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/node/mo/uni/tn-coke/ap-AP/epg-EPg_B.xml -->
<polUni>

<fvEPg>

<fvRsSecInherited tDn="uni/tn-coke/ap-AP/epg-EPg_B/>
</fvEPg>

</polUni>

JSON Example

https://192.168.200.10/api/node/mo/uni/tn-coke/ap-AP/epg-EPg_B.json
fvAEPg":{"attributes":{

"dn":"uni/tn-coke/ap-AP/epg-EPg_B","name":"EPg_C",
"rn":"epg-EPg_C",
"status":"created"},
"children":[{
"fvRsBd":{"attributes":{

"tnFvBDName":"default",
"status":"created,modified"},
"children":[]}},{

"fvRsSecInherited":{"attributes":{
"tDn":"uni/tn-coke/ap-AP/epg-EPg_B",
"status":"created"},
"children":[]}}]}}

Configuring uSeg EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the application EPG, to serve as the EPG Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

To configure uSeg contract inheritance using the REST API, send a post with XML such as the following example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
193

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Application EPG Contract Inheritance Using the REST API

Example:
<polUni>

<fvTenant name="Tn1" >
<fvAEPg descr="" dn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_120" fwdCtrl="" isAttrBasedEPg="yes"

matchT="AtleastOne" name="uSeg1_301_120" pcEnfPref="unenforced" prefGrMemb="exclude" prio="unspecified">

<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_100" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_110" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_50" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_60" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_30" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_10" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_40" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_70" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_90" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_20" />
<fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_80" />
<fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/node-108" />
<fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/node-109" />
<fvRsDomAtt classPref="encap" delimiter="" encap="vlan-301" encapMode="auto"

instrImedcy="immediate" netflowPref="disabled" primaryEncap="unknown" resImedcy="immediate"
tDn="uni/phys-PhysDom1" />

<fvRsCustQosPol tnQosCustomPolName="" />
<fvRsBd tnFvBDName="T1BD21" />

<fvCrtrn descr="" match="any" name="default" nameAlias="" ownerKey="" ownerTag="" prec="0">

<fvIpAttr descr="" ip="192.14.1.120" name="0" nameAlias="" ownerKey="" ownerTag=""
usefvSubnet="no" />

</fvCrtrn>
</fvAEPg>

</fvTenant>
</polUni>

What to do next

Configuring L2Out EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the L2Out EPG, to serve as the L2Out Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

To configure L2Out EPG contract inheritance using the RESTAPI, send a post with XML such as the following example:

Example:
<polUni>
<fvTenant name="Tn1" >

<l2extOut name="l2out1">
<l2extRsEBd encap="vlan-51" tnFvBDName="T1BD1" />
<l2extRsL2DomAtt tDn="uni/l2dom-l2Dom1" />
<l2extLNodeP name="default" >

<l2extLIfP name="default" >

Cisco APIC REST API Configuration Guide, Release 4.1(x)
194

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring L2Out EPG Contract Inheritance Using the REST API

<l2extRsPathL2OutAtt tDn="topology/pod-1/protpaths-108-109/pathep-[VPC83]" />
</l2extLIfP>

</l2extLNodeP>
<l2extInstP matchT="AtleastOne" name="l2Ext1">

<fvSubnet ctrl="nd" ip="192.13.1.10/24" preferred="no" scope="public,shared" virtual="no"
/>

<fvRsProv tnVzBrCPName="T1ctr_tcp" />
</l2extInstP>

</l2extOut>

<l2extOut name="l2out2">
<l2extRsEBd encap="vlan-53" tnFvBDName="T1BD3" />
<l2extRsL2DomAtt tDn="uni/l2dom-l2Dom1" />
<l2extLNodeP name="default" >

<l2extLIfP name="default" >
<l2extRsPathL2OutAtt tDn="topology/pod-1/protpaths-108-109/pathep-[VPC84]" />

</l2extLIfP>
</l2extLNodeP>
<l2extInstP matchT="AtleastOne" name="l2Ext3" prefGrMemb="exclude">

<fvSubnet ctrl="nd" ip="192.13.2.10/24" preferred="no" scope="public,shared" virtual="no"
/>

<fvRsSecInherited tDn="uni/tn-Tn1/l2out-l2out1/instP-l2Ext1" />
</l2extInstP>

</l2extOut>

</fvTenant>
</polUni>

Configuring L3Out EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the L3Out EPG, to serve as the L3Out Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

To configure L3Out EPG contract inheritance using the RESTAPI, send a post with XML such as the following example:

Example:
<polUni>
<fvTenant name="Tn6" >

<!— L3out creation -->
<ospfIfPol deadIntvl="40" helloIntvl="10" name="ospf1" pfxSuppress="inherit" prio="1"

rexmitIntvl="5" xmitDelay="1" />
<l3extOut enforceRtctrl="export" name="T6L3out821">

<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.1" areaType="regular"
/>

<l3extRsL3DomAtt tDn="uni/l3dom-L3Dom1" />
<l3extRsEctx tnFvCtxName="T6ctx21" />
<l3extLNodeP name="l3out_vpc82_prof" >

<l3extRsNodeL3OutAtt rtrId="1.1.1.8" rtrIdLoopBack="yes" tDn="topology/pod-1/node-108">
<l3extInfraNodeP fabricExtCtrlPeering="no" />

</l3extRsNodeL3OutAtt>
<l3extRsNodeL3OutAtt rtrId="1.1.1.9" rtrIdLoopBack="yes" tDn="topology/pod-1/node-109">

<l3extInfraNodeP fabricExtCtrlPeering="no" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
195

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring L3Out EPG Contract Inheritance Using the REST API

</l3extRsNodeL3OutAtt>
<l3extLIfP name="ospf1" >

<ospfIfP authKeyId="1" authType="none" >
<ospfRsIfPol tnOspfIfPolName="ospf1" />

</ospfIfP>
<l3extRsPathL3OutAtt encap="vlan-551" ifInstT="ext-svi" mode="regular" mtu="1500"

tDn="topology/pod-1/protpaths-108-109/pathep-[VPC82]" >
<l3extMember addr="192.16.51.1/24" llAddr="0.0.0.0" side="B" />
<l3extMember addr="192.16.51.2/24" llAddr="0.0.0.0" side="A" />

</l3extRsPathL3OutAtt>
<l3extRsNdIfPol tnNdIfPolName="" />

</l3extLIfP>
</l3extLNodeP>

<l3extInstP matchT="AtleastOne" name="T6l3Ext821">
<fvRsProv tnVzBrCPName="T6ctr_UDP_TCP2" />
<fvRsCons tnVzBrCPName="T6ctr_UDP_TCP1" />

<l3extSubnet ip="192.16.51.0/24" scope="import-security,shared-rtctrl,shared-security" />

<l3extSubnet ip="192.16.61.0/24" scope="import-security,shared-rtctrl,shared-security"
/>

<vzConsSubjLbl name="tcp" tag="green" />
<vzProvSubjLbl name="tcp" tag="green" />

</l3extInstP>

<l3extInstP matchT="AtleastOne" name="T6l3Ext823">
<fvRsSecInherited tDn="uni/tn-Tn6/out-T6L3out821/instP-T6l3Ext821" />

<l3extSubnet ip="192.16.63.0/24" scope="import-security,shared-rtctrl,shared-security"
/>

</l3extInstP>
</l3extOut>

</fvTenant>
</polUni>

Contract Preferred Groups

About Contract Preferred Groups
There are two types of policy enforcements available for EPGs in a VRF with a contract preferred group
configured:

• Included EPGs: EPGs can freely communicate with each other without contracts, if they havemembership
in a contract preferred group. This is based on the source-any-destination-any-permit default rule.

• Excluded EPGs: EPGs that are not members of preferred groups require contracts to communicate with
each other. Otherwise, the default source-any-destination-any-deny rule applies.

The contract preferred group feature enables greater control of communication between EPGs in a VRF. If
most of the EPGs in the VRF should have open communication, but a few should only have limited
communication with the other EPGs, you can configure a combination of a contract preferred group and
contracts with filters to control inter-EPG communication precisely.

EPGs that are excluded from the preferred group can only communicate with other EPGs if there is a contract
in place to override the source-any-destination-any-deny default rule.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
196

Part 3: Setting Up APIC and the Fabric Using the REST API
Contract Preferred Groups

Figure 18: Contract Preferred Group Overview

Service Graph Support

As of APIC release 4.0(1), EPGs created by service graphs can be included in contract preferred groups. A
new policy (Service EPG Policy) is available for defining the preferred group membership type (include or
exclude). Once configured, it can be applied through the device selection policy or through the application of
a service graph template.

Also, shadow EPGs can now be configured to be included or excluded in preferred groups.

Limitations

The following limitations apply to contract preferred groups:

• In topologies where an L3Out and application EPG are configured in a Contract Preferred Group, and
the EPG is deployed only on a VPC, you may find that only one leaf switch in the VPC has the prefix
entry for the L3Out. In this situation, the other leaf switch in the VPC does not have the entry, and
therefore drops the traffic.

To workaround this issue, you can do one of the following:

• Disable and reenable the contract group in the VRF

• Delete and recreate the prefix entries for the L3Out EPG

Cisco APIC REST API Configuration Guide, Release 4.1(x)
197

Part 3: Setting Up APIC and the Fabric Using the REST API
About Contract Preferred Groups

• Also, where the provider or consumer EPG in a service graph contract is included in a contract group,
the shadow EPG can not be excluded from the contract group. The shadow EPG will be permitted in the
contract group, but it does not trigger contract group policy deployment on the node where the shadow
EPG is deployed. To download the contract group policy to the node, you deploy a dummy EPG within
the contract group .

• Due to CSCvm63145, an EPG in a Contract Preferred Group can consume a shared service contract, but
cannot be a provider for a shared service contract with an L3Out EPG as consumer.

Configuring Contract Preferred Groups Using the REST API
The following example creates a contract preferred group in vrf64, and creates three EPGs in the VRF:

• epg-ldap—Included in the preferred group

• mail—Included in the preferred group

• radius—Excluded from the preferred group

Before you begin

Create the tenants, VRFs, and the EPGs in the VRF.

Create a contract preferred group by sending a post, with XML such as the example:

Example:
<polUni>
<fvTenant name="tenant64">
<fvCtx name="vrf64"> <vzAny prefGrMemb="enabled"/> </fvCtx>
<fvBD name="bd64"> <fvRsCtx tnFvCtxName="vrf64"/> </fvBD>
<fvAp name="app-lldp">
<fvAEPg name="epg-ldap" prefGrMemb="include">
<fvRsBd tnFvBDName="bd64"/>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" encap="vlan-113"

instrImedcy="immediate"/>
</fvAEPg>
<fvAEPg name="mail" prefGrMemb="include">
<fvRsBd tnFvBDName="bd64"/>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/4]" encap="vlan-114"

instrImedcy="immediate"/>
</fvAEPg>
<fvAEPg name="radius" prefGrMemb="exclude">
<fvRsBd tnFvBDName="bd64"/>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/5]" encap="vlan-115"

instrImedcy="immediate"/>
</fvAEPg>

</fvAp>
</fvTenant>

</polUni>

What to do next

Create a contract governing the communication of the radius EPG with other EPGs.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
198

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Contract Preferred Groups Using the REST API

Configuring an Enforced Bridge Domain
An enforced bridge domain configuration entails creating an endpoint in a subject endpoint group (EPG) that
can only ping subnet gateways within the associated bridge domain. With this configuration, you can then
create a global exception list of IP addresses that can ping any subnet gateway.

Figure 19: Enforced Bridge Domain

• The exception IP addresses can ping all of the bridge domain gateways across all of your VRF instances.

• A loopback interface configured for an L3Out does not enforce reachability to the IP address that is
configured for the subject loopback interface.

• When an eBGP peer IP address exists in a different subnet than the subnet of the L3Out interface, you
must add the peer subnet to the allowed exception subnets. Otherwise, eBGP traffic is blocked because
the source IP address exists in a different subnet than the L3Out interface subnet.

• For a BGP prefixed-based peer, you must add the peer subnet to the list of allowed exception subnets.
For example, if 20.1.1.0/24 is configured as BGP prefixed-based peer, you must add 20.1.1.0/24 to the
list of allowed exception subnets.

• An enforced bridge domain is not supported with theManagement tenant, regardless if the VRF instances
are in-band or out-of-band, and any rules to control the traffic to these VRF instances should be configured
using regular contracts.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
199

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring an Enforced Bridge Domain

Configuring an Enforced Bridge Domain Using the REST API

SUMMARY STEPS

1. Create a tenant.
2. Create a VRF and bridge domain.

DETAILED STEPS

PurposeCommand or Action

When the POST succeeds, you see the object that you
created in the output.

Create a tenant.

Example:

Step 1

POST https://apic-ip-address/api/mo/uni.xml
<fvTenant name="ExampleCorp"/>

Create a VRF and bridge domain.Step 2 The Gateway Address can be an IPv4 or an IPv6
address. For more about details IPv6 gateway
address, see the related KB article, KB: Creating
a Tenant, VRF, and Bridge Domain with IPv6
Neighbor Discovery .

Note

Example:
URL for POST:
https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name="ExampleCorp">
<fvCtx name="pvn1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="pvn1"
bdEnforceEnable="yes"/>

<fvSubnet ip="10.10.100.1/24"/>
</fvBD>

</fvTenant>

For adding an exception IP, use the following post:

https://apic-ip-address/api/node/mo/uni/infra.xml

<bdEnforceExceptionCont>

<bdEnforceExceptIp ip="11.0.1.0/24"/>

</bdEnforceExceptionCont>

If you have a public subnet when you configure
the routed outside, you must associate the bridge
domain with the outside configuration.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
200

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring an Enforced Bridge Domain Using the REST API

C H A P T E R 13
Provisioning Core Services

• DHCP, on page 201
• DNS, on page 205
• NTP, on page 207
• Tetration, on page 208
• NetFlow, on page 209
• DOM Statistics, on page 214
• Syslog, on page 215
• Data Plane Policing, on page 218
• Traffic Storm Control, on page 220
• Rogue Endpoint Control, on page 222

DHCP

Configuring a DHCP Relay Policy
A DHCP relay policy may be used when the DHCP client and server are in different subnets. If the client is
on an ESX hypervisor with a deployed vShield Domain profile, then the use of a DHCP relay policy
configuration is mandatory.

When a vShield controller deploys a Virtual Extensible Local Area Network (VXLAN), the hypervisor hosts
create a kernel (vmkN, virtual tunnel end-point [VTEP]) interface. These interfaces need an IP address in the
infrastructure tenant that uses DHCP. Therefore, you must configure a DHCP relay policy so that the Cisco
Application Policy Infrastructure Controller (APIC) can act as the DHCP server and provide these IP addresses.

When a Cisco Application Centric Infrastructure (ACI) fabric acts as a DHCP relay, it inserts the DHCP
Option 82 (the DHCP Relay Agent Information Option) in DHCP requests that it proxies on behalf of clients.
If a response (DHCP offer) comes back from a DHCP server without Option 82, it is silently dropped by the
fabric. Therefore, when the Cisco ACI fabric acts as a DHCP relay, DHCP servers providing IP addresses to
compute nodes attached to the Cisco ACI fabric must support Option 82.

Configuring a DHCP Server Policy for the APIC Infrastructure Using the REST
API

• This task is a prerequisite for users who want to create a vShield domain profile.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
201

• The port and the encapsulation used by the application endpoint group must belong to a physical or VM
Manager (VMM) domain. If no such association with a domain is established, the Cisco Application
Policy Infrastructure Controller (APIC) continues to deploy the EPG but raises a fault.

• Cisco APIC supports DHCP relay for both IPv4 and IPv6 tenant subnets. DHCP server addresses can
be IPv4 or IPv6. DHCPv6 relay will occur only if IPv6 is enabled on the fabric interface and one or more
DHCPv6 relay servers are configured.

Before you begin

Make sure that Layer 2 or Layer 3 management connectivity is configured.

Configure the Cisco APIC as the DHCP server policy for the infrastructure tenant.

This relay policy will be pushed to all the leaf ports that are connected hypervisors using the attach entity profile
configuration. For details about configuring with attach entity profile, see the examples related to creating VMM
domain profiles.

Note

Example:

DHCP Relay Policy for EPG

<!-- api/policymgr/mo/.xml -->
<polUni>

POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="infra">

<dhcpRelayP name="DhcpRelayP" owner="tenant">
<dhcpRsProv tDn="uni/tn-infra/ap-access/epg-default" addr="10.0.0.1" />

</dhcpRelayP>

<fvBD name="default">
<dhcpLbl name="DhcpRelayP" owner="tenant"/>

</fvBD>

</fvTenant>
</polUni>

Example:

DHCP Relay Policy for Layer 3 Outside

You must specify DHCP Relay label under l3extLIfP with an appropriate name and owner.Note

<polUni>
<fvTenant name="dhcpTn">
<l3extOut name="Out1" >
<l3extLNodeP name="NodeP" >
<l3extLIfP name="Intf1">

<dhcpLbl name="DhcpRelayPol" owner="tenant" />
</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>
<polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
202

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a DHCP Server Policy for the APIC Infrastructure Using the REST API

POST https://apic-ip-address/api/mo/uni.xml

Layer 2 and Layer 3 DHCP Relay Sample Policies
This sample policy provides an example of a consumer tenant L3extOut DHCP relay configuration:
<polUni>

<!-- Consumer Tenant 2 -->
<fvTenant
dn="uni/tn-tenant1"
name="tenant1">
<fvCtx name="dhcp"/>

<!-- DHCP client bridge domain -->
<fvBD name="cons2">

<fvRsBDToOut tnL3extOutName='L3OUT'/>
<fvRsCtx tnFvCtxName="dhcp" />

<fvSubnet ip="20.20.20.1/24"/>
<dhcpLbl name="DhcpRelayP" owner="tenant"/>

</fvBD>
<!-- L3Out EPG DHCP -->

<l3extOut name="L3OUT">
<l3extRsEctx tnFvCtxName="dhcp"/>
<l3extInstP name="l3extInstP-1">

<!-- Allowed routes to L3out to send traffic -->
<l3extSubnet ip="100.100.100.0/24" />

</l3extInstP>
<l3extLNodeP name="l3extLNodeP-pc">
<!-- VRF External loopback interface on node -->

<l3extRsNodeL3OutAtt
tDn="topology/pod-1/node-1018"
rtrId="10.10.10.1" />

<l3extLIfP name='l3extLIfP-pc'>
<l3extRsPathL3OutAtt

tDn="topology/pod-1/paths-1018/pathep-[eth1/7]"
encap='vlan-900'
ifInstT='sub-interface'
addr="100.100.100.50/24"
mtu="1500"/>

</l3extLIfP>
</l3extLNodeP>

</l3extOut>
<!-- Static DHCP Client Configuration -->
<fvAp name="cons2">

<fvAEPg name="APP">
<fvRsBd tnFvBDName="cons2"/>

<fvRsDomAtt tDn="uni/phys-mininet"/>
<fvRsPathAtt

tDn="topology/pod-1/paths-1017/pathep-[eth1/3]"
encap="vlan-1000"
instrImedcy='immediate'
mode='native'/>

</fvAEPg>
</fvAp>

<!-- DHCP Server Configuration -->
<dhcpRelayP

name="DhcpRelayP"
owner="tenant"
mode="visible">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
203

Part 3: Setting Up APIC and the Fabric Using the REST API
Layer 2 and Layer 3 DHCP Relay Sample Policies

<dhcpRsProv
tDn="uni/tn-tenant1/out-L3OUT/instP-l3extInstP-1"
addr="100.100.100.1"/>

</dhcpRelayP>
</fvTenant>
</polUni>

This sample policy provides an example of a consumer tenant L2extOut DHCP relay configuration:
<fvTenant
dn="uni/tn-dhcpl2Out"
name="dhcpl2Out">
<fvCtx name="dhcpl2Out"/>

<!-- bridge domain -->

<fvBD name="provBD">
<fvRsCtx tnFvCtxName="dhcpl2Out" />

<fvSubnet ip="100.100.100.50/24" scope="shared"/>
</fvBD>

<!-- Consumer bridge domain -->
<fvBD name="cons2">
<fvRsCtx tnFvCtxName="dhcpl2Out" />

<fvSubnet ip="20.20.20.1/24"/>
<dhcpLbl name="DhcpRelayP" owner="tenant"/>

</fvBD>

<vzFilter name='t0f0' >
<vzEntry name='t0f0e9'></vzEntry>
</vzFilter>

<vzBrCP name="webCtrct" scope="global">
<vzSubj name="app">

<vzRsSubjFiltAtt tnVzFilterName="t0f0"/>
</vzSubj>

</vzBrCP>

<l2extOut name="l2Out">
<l2extLNodeP name='l2ext'>
<l2extLIfP name='l2LifP'>
<l2extRsPathL2OutAtt tDn="topology/pod-1/paths-1018/pathep-[eth1/7]"/>

</l2extLIfP>
</l2extLNodeP>

<l2extInstP name='l2inst'>
<fvRsProv tnVzBrCPName="webCtrct"/>

</l2extInstP>
<l2extRsEBd tnFvBDName="provBD" encap='vlan-900'/>
</l2extOut>

<fvAp name="cons2">
<fvAEPg name="APP">
<fvRsBd tnFvBDName="cons2" />

<fvRsDomAtt tDn="uni/phys-mininet" />
<fvRsBd tnFvBDName="SolarBD2" />
<fvRsPathAtt tDn="topology/pod-1/paths-1018/pathep-[eth1/48]"

encap="vlan-1000" instrImedcy='immediate' mode='native'/>
</fvAEPg>

</fvAp>
<dhcpRelayP name="DhcpRelayP" owner="tenant" mode="visible">
<dhcpRsProv tDn="uni/tn-dhcpl2Out/l2out-l2Out/instP-l2inst" addr="100.100.100.1"/>

</dhcpRelayP>
</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
204

Part 3: Setting Up APIC and the Fabric Using the REST API
Layer 2 and Layer 3 DHCP Relay Sample Policies

DNS

DNS
The ACI fabric DNS service is contained in the fabric managed object. The fabric global default DNS profile
can be accessed throughout the fabric. The figure below shows the logical relationships of the DNS-managed
objects within the fabric.

Figure 20: DNS

AVRF (context) must contain a dnsLBL object in order to use the global default DNS service. Label matching
enables tenant VRFs to consume the global DNS provider. Because the name of the global DNS profile is
“default,” the VRF label name is "default" (dnsLBL name = default).

Configuring a DNS Service Policy to Connect with DNS Providers Using the
REST API

Before you begin

Make sure that Layer 2 or Layer 3 management connectivity is configured.

SUMMARY STEPS

1. Configure the DNS service policy.
2. Configure the DNS label under the out-of-band management tenant.

DETAILED STEPS

Step 1 Configure the DNS service policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
205

Part 3: Setting Up APIC and the Fabric Using the REST API
DNS

Example:
POST URL :
https://apic-IP-address/api/node/mo/uni/fabric.xml

<dnsProfile name="default">

<dnsProv addr="172.21.157.5" preferred="yes"/>
<dnsProv addr="172.21.157.6"/>

<dnsDomain name="cisco.com" isDefault="yes"/>

<dnsRsProfileToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</dnsProfile>

Step 2 Configure the DNS label under the out-of-band management tenant.

Example:
POST URL: https://apic-IP-address/api/node/mo/uni/tn-mgmt/ctx-oob.xml
<dnsLbl name="default" tag="yellow-green"/>

DNS Policy Example
This sample policy creates a DNS profile and associates it with a tenant.

Create the DNS profile:
<!-- /api/policymgr/mo/.xml -->
<polUni>
<fabricInst>
<dnsProfile name="default">

<dnsProv addr="172.21.157.5" preferred="yes"/>
<dnsDomain name="insieme.local" isDefault="yes"/>
<dnsRsProfileToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</dnsProfile>
</fabricInst>
</polUni>

Associate the profile with the tenant that will consume it:
<!-- /api/policymgr/mo/.xml -->
<polUni>
<fvTenant name=’t1’>
<fvCtx name=’ctx0’>
<dnsLbl name=’default’/>

</fvCtx>
</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
206

Part 3: Setting Up APIC and the Fabric Using the REST API
DNS Policy Example

NTP

Time Synchronization and NTP
Within the Cisco Application Centric Infrastructure (ACI) fabric, time synchronization is a crucial capability
upon which many of the monitoring, operational, and troubleshooting tasks depend. Clock synchronization
is important for proper analysis of traffic flows as well as for correlating debug and fault time stamps across
multiple fabric nodes.

An offset present on one or more devices can hamper the ability to properly diagnose and resolve many
common operational issues. In addition, clock synchronization allows for the full utilization of the atomic
counter capability that is built into the ACI upon which the application health scores depend. Nonexistent or
improper configuration of time synchronization does not necessarily trigger a fault or a low health score. You
should configure time synchronization before deploying a full fabric or applications so as to enable proper
usage of these features. The most widely adapted method for synchronizing a device clock is to use Network
Time Protocol (NTP).

Prior to configuring NTP, consider what management IP address scheme is in place within the ACI fabric.
There are two options for configuring management of all ACI nodes and Application Policy Infrastructure
Controllers (APICs), in-bandmanagement and/or out-of-bandmanagement. Depending uponwhichmanagement
option is chosen for the fabric, configuration of NTP will vary. Another consideration in deploying time
synchronization is where the time source is located. The reliability of the source must be carefully considered
when determining if you will use a private internal clock or an external public clock.

Configuring NTP Using the REST API

There is a risk of hostname resolution failure for hostname based NTP servers if the DNS server used is
configured to be reachable over in-band or out-of-band connectivity. If you use a hostname, ensure that the
DNS service policy to connect with the DNS providers is configured. Also ensure that the appropriate DNS
label is configured for the in-band or out-of-band VRF instances of the management EPG that you chose when
you configured the DNS profile policy.

Note

Step 1 Configure NTP.

Example:
POST url: https://APIC-IP/api/node/mo/uni/fabric/time-test.xml

<imdata totalCount="1">
<datetimePol adminSt="enabled" authSt="disabled" descr="" dn="uni/fabric/time-CiscoNTPPol"

name="CiscoNTPPol" ownerKey="" ownerTag="">
<datetimeNtpProv descr="" keyId="0" maxPoll="6" minPoll="4" name="10.10.10.11" preferred="yes">

<datetimeRsNtpProvToEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
</datetimeNtpProv>

</datetimePol>
</imdata>

Step 2 Add the default Date Time Policy to the pod policy group.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
207

Part 3: Setting Up APIC and the Fabric Using the REST API
NTP

Example:

POST url: https://APIC-IP/api/node/mo/uni/fabric/funcprof/podpgrp-calo1/rsTimePol.xml

POST payload: <imdata totalCount="1">
<fabricRsTimePol tnDatetimePolName=“CiscoNTPPol”>
</fabricRsTimePol>
</imdata>

Step 3 Add the pod policy group to the default pod profile.

Example:
POST url: https://APIC-IP/api/node/mo/uni/fabric/podprof-default/pods-default-typ-ALL/rspodPGrp.xml

payload: <imdata totalCount="1">
<fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-calo1" status="created">
</fabricRsPodPGrp>
</imdata>

Tetration

Overview
This article provides examples of how to configure Cisco Tetration when using the Cisco APIC. The following
information applies when configuring Cisco Tetration.

• An inband management IP address must be configured on each leaf where the Cisco Tetration agent is
active.

• Define an analytics policy and specify the destination IP address of the Cisco Tetration server.

• Create a switch profile and include the policy group created in the previous step.

Configuring Cisco Tetration Analytics Using the REST API

Step 1 Create the analytics policy.

Example:
<analyticsCluster name="tetration" >
<analyticsCfgSrv name="srv1" ip="10.30.30.7" >
</analyticsCfgSrv>
</analyticsCluster>

Step 2 Associate analytics with the policy group.

Example:
<fabricLeNodePGrp descr="" name="mypolicy6" ownerKey="" ownerTag="" rn="lenodepgrp-mypolicy6" status="">

<fabricRsNodeCfgSrv rn="rsnodeProv" status=""
tDn="uni/fabric/analytics/cluster-tetration/cfgsrv-srv1" />
</fabricLeNodePGrp>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
208

Part 3: Setting Up APIC and the Fabric Using the REST API
Tetration

Step 3 Associate the policy group with the switch.

Example:
<fabricLeafP name="leafs" rn="leprof-leafs" status="" >

<fabricLeafS name="sw" rn="leaves-sw-typ-range" status="">
<fabricRsLeNodePGrp rn="rsleNodePGrp" tDn="uni/fabric/funcprof/lenodepgrp-mypolicy6"/>
<fabricNodeBlk name="switches" from_="101" to_="101" />

</fabricLeafS>
</fabricLeafP>

NetFlow

About NetFlow
The NetFlow technology provides the metering base for a key set of applications, including network traffic
accounting, usage-based network billing, network planning, as well as denial of services monitoring, network
monitoring, outbound marketing, and data mining for both service providers and enterprise customers. Cisco
provides a set of NetFlow applications to collect NetFlow export data, perform data volume reduction, perform
post-processing, and provide end-user applications with easy access to NetFlow data. If you have enabled
NetFlow monitoring of the traffic flowing through your datacenters, this feature enables you to perform the
same level of monitoring of the traffic flowing through the Cisco Application Centric Infrastructure (Cisco
ACI) fabric.

Instead of hardware directly exporting the records to a collector, the records are processed in the supervisor
engine and are exported to standard NetFlow collectors in the required format.

For detailed information about configuring and using NetFlow, see Cisco APIC and NetFlow.

For information about configuring NetFlowwith virtual machine networking, see theCisco ACI Virtualization
Guide.

NetFlow on EX Platform Switches
In addition to the generic support information, the following limitations apply to EX platform switches:

• NetFlow can be supported on a bridge domain; however, NetFlow cannot distinguish between bridged
and routed packets. If you configure NetFlow on an interface VLAN (SVI) to capture only routed packets,
NetFlow cannot limit collection to this type in EX switches.

• EX switches cannot provide an encapsulation VLAN in the flow record.

• EX switches do not have a MAC address packet classify feature, so the configuration engine flow record
will contain only non-IP address flows (ARP is already treated as IP).

• EX switches do not support regularly-deployed and understood NetFlow sampling, such as packet-based
sampling (M out of N).

• Having a type of service or source interface as part of the flow hash is not supported. Source interface
information is collected in the record, but no type of service information is collected in EX switches.

• EX switches have fixed flow collection parameters.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
209

Part 3: Setting Up APIC and the Fabric Using the REST API
NetFlow

• EX switches support only two flow records of each type. The exception is that four configuration engine
flow records are supported.

• EX switches assign the following protocol numbers to identify the ARP and ND packets:

• ARP Req 249

• ARP Res 250

• RARP Req 247

• RARP Res 248

• Nd Sol 249

• Nd Adv 250

All other ARP and ND packets are set to 255.

Configuring a NetFlow Exporter Policy for VM Networking Using the REST
API

The following example XML shows how to configure a NetFlow exporter policy for VM networking using
the REST API:
<polUni>

<infraInfra>
<netflowVmmExporterPol name=“vmExporter1” dstAddr=“2.2.2.2” dstPort=“1234”

srcAddr=“4.4.4.4”/>
</infraInfra>

</polUni>

Configuring NetFlow Infra Selectors Using REST API
You can use the REST API to configure NetFlow infra selectors. The infra selectors are used for attaching a
Netflow monitor to a PHY, port channel, virtual port channel, fabric extender (FEX), or port channel fabric
extender (FEXPC) interface.

The following example XML shows how to configure NetFlow infra selectors using the REST API:
<infraInfra>

<!--Create Monitor Policy /-->
<netflowMonitorPol name='monitor_policy1' descr='This is a monitor policy.'>

<netflowRsMonitorToRecord tnNetflowRecordPolName='record_policy1' />
<!-- A Max of 2 exporters allowed per Monitor Policy /-->
<netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy1' />
<netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy2' />

</netflowMonitorPol>

<!--Create Record Policy /-->
<netflowRecordPol name='record_policy1' descr='This is a record policy.'

match='src-ipv4,src-port'/>

<!--Create Exporter Policy /-->
<netflowExporterPol name='exporter_policy1' dstAddr='10.10.1.1' srcAddr='10.10.1.10'

ver='v9' descr='This is an exporter policy.'>
<!--Exporter can be behind app EPG or external L3 EPG (InstP) /-->
<netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg1'/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
210

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a NetFlow Exporter Policy for VM Networking Using the REST API

<!--This Ctx needs to be the same Ctx that EPG1’s BD is part of /-->
<netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1'/>

</netflowExporterPol>

<!--Node-level Policy for collection Interval /-->
<netflowNodePol name='node_policy1' collectIntvl='500' />

<!-- Node Selectors - usual config /-->
<infraNodeP name="infraNodeP-17" >

<infraLeafS name="infraLeafS-17" type="range">
<!-- NOTE: The nodes can also be fex nodes /-->
<infraNodeBlk name="infraNodeBlk-17" from_="101" to_="101"/>
<infraRsAccNodePGrp tDn='uni/infra/funcprof/accnodepgrp-nodePGrp1' />

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-infraAccPortP"/>

</infraNodeP>

<!-- Port Selectors - usual config /-->
<infraAccPortP name="infraAccPortP" >

<infraHPortS name="infraHPortS" type="range">
<!-- NOTE: The interfaces can also be Port-channels, fex interfaces or fex PCs

/-->
<infraPortBlk name="infraPortBlk" fromCard="1" toCard="1" fromPort="8"

toPort="8"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-infraAccPortGrp"/>

</infraHPortS>
</infraAccPortP>

<!-- Policy Groups - usual config /-->
<infraFuncP>

<!-- Node Policy Group - to setup Netflow Node Policy /-->
<infraAccNodePGrp name='nodePGrp1' >

<infraRsNetflowNodePol tnNetflowNodePolName='node_policy1' />
</infraAccNodePGrp>

<!-- Access Port Policy Group - to setup Netflow Monitor Policy /-->
<infraAccPortGrp name="infraAccPortGrp" >

<!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
<infraRsNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1'

fltType='ipv4'/>
<infraRsNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2'

fltType='ipv6'/>
<infraRsNetflowMonitorPol tnNetflowMonitorPolName=‘monitor_policy2' fltType=‘ce'/>

</infraAccPortGrp>
</infraFuncP>

</infraInfra>

Configuring NetFlow Tenant Hierarchy Using REST API
You can use the REST API to configure the NetFlow tenant hierarchy. The tenant hierarchy is used for
attaching a NetFlow monitor to a bridge domain, Layer 3 sub-interface, or Layer 3 switched virtual interface
(SVI).

The following example XML shows how to configure the NetFlow tenant hierarchy using the REST API:
<?xml version="1.0" encoding="UTF-8"?>

<!-- api/policymgr/mo/.xml -->
<polUni>

<fvTenant name="t1">

<!--Create Monitor Policy /-->

Cisco APIC REST API Configuration Guide, Release 4.1(x)
211

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring NetFlow Tenant Hierarchy Using REST API

<netflowMonitorPol name='monitor_policy1' descr='This is a monitor policy.'>
<netflowRsMonitorToRecord tnNetflowRecordPolName='record_policy1' />
<!-- A Max of 2 exporters allowed per Monitor Policy /-->
<netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy1' />
<netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy2' />

</netflowMonitorPol>
<!--Create Record Policy /-->
<netflowRecordPol name='record_policy1' descr='This is a record policy.'/>

<!--Create Exporter Policy /→
<netflowExporterPol name='exporter_policy1' dstAddr='10.0.0.1' srcAddr='10.0.0.4'>

<!--Exporter can be behind app EPG or external L3 EPG (InstP) /-->
<netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg2'/>
<!--netflowRsExporterToEPg tDn='uni/tn-t1/out-out1/instP-accountingInst' /-->
<!--This Ctx needs to be the same Ctx that EPG2’s BD is part of /-->
<netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1' />

</netflowExporterPol>

<!--Create 2nd Exporter Policy /-->
<netflowExporterPol name='exporter_policy2' dstAddr='11.0.0.1' srcAddr='11.0.0.4'>

<netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg2'/>
<netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1' />

</netflowExporterPol>

<fvCtx name="ctx1" />

<fvBD name="bd1" unkMacUcastAct="proxy" >
<fvSubnet descr="" ip="11.0.0.0/24"\>
<fvRsCtx tnFvCtxName="ctx1" />

<!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
<fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1'

fltType='ipv4'/>
<fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2'

fltType='ipv6'/>
<fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName=‘monitor_policy2'

fltType='ce'/>
</fvBD>

<!--Create App EPG /-->
<fvAp name="app1">

<fvAEPg name="epg2" >
<fvRsBd tnFvBDName="bd1" />
<fvRsPathAtt encap="vlan-20" instrImedcy="lazy" mode="regular"

tDn="topology/pod-1/paths-101/pathep-[eth1/20]"/>
</fvAEPg>

</fvAp>

<!--L3 Netflow Config for sub-intf and SVI /-->
<l3extOut name="out1">

<l3extLNodeP name="lnodep1" >
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="1.2.3.4" />
<l3extLIfP name='lifp1'>

<!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
<l3extRsLIfPToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1'

fltType='ipv4' />
<l3extRsLIfPToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2'

fltType='ipv6' />
<l3extRsLIfPToNetflowMonitorPol tnNetflowMonitorPolName=‘monitor_policy2'

fltType=‘ce' />

<!--Sub-interface 1/40.40 on node 101 /-->
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
212

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring NetFlow Tenant Hierarchy Using REST API

ifInstT='sub-interface' encap='vlan-40' />

<!--SVI 50 attached to eth1/25 on node 101 /-->
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]"

ifInstT='external-svi' encap='vlan-50' />
</l3extLIfP>

</l3extLNodeP>

<!--External L3 EPG for Exporter behind external L3 Network /-->
<l3extInstP name="accountingInst">

<l3extSubnet ip="11.0.0.0/24" />
</l3extInstP>
<l3extRsEctx tnFvCtxName="ctx1"/>

</l3extOut>
</fvTenant>

</polUni>

Consuming a NetFlow Exporter Policy Under a VMM Domain Using the REST
API for VMware VDS

The following example XML shows how to consume a NetFlow exporter policy under a VMM domain using
the REST API:
<polUni>

<vmmProvP vendor=“VMware”>
<vmmDomP name=“mininet”>

<vmmVSwitchPolicyCont>
<vmmRsVswitchExporterPol tDn=“uni/infra/vmmexporterpol-vmExporter1”

activeFlowTimeOut=“62” idleFlowTimeOut=“16” samplingRate=“1”/>
</vmmVSwitchPolicyCont>

</vmmDomP>
</vmmProvP>

</polUni>

Configuring NetFlow or Tetration Analytics Priority Using REST API
You can specify whether to use the NetFlow or Cisco Tetration Analytics feature by setting the FeatureSel
attribute of the <fabricNodeControl> element. The FeatureSel attribute can have one of the following values:

• analytics—Specifies Cisco Tetration Analytics. This is the default value.

• netflow—Specifies NetFlow.

The following example REST API post specifies for the switch "test1" to use the NetFlow feature:
http://192.168.10.1/api/node/mo/uni/fabric.xml
<fabricNodeControl name="test1" FeatureSel="netflow" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
213

Part 3: Setting Up APIC and the Fabric Using the REST API
Consuming a NetFlow Exporter Policy Under a VMM Domain Using the REST API for VMware VDS

DOM Statistics

About Digital Optical Monitoring
Real-time digital optical monitoring (DOM) data is collected from SFPs, SFP+, and XFPs periodically and
compared with warning and alarm threshold table values. The DOM data collected are transceiver transmit
bias current, transceiver transmit power, transceiver receive power, and transceiver power supply voltage.

Enabling Digital Optical Monitoring Using the REST API
Before you can view digital optical monitoring (DOM) statistics about a physical interface, enable DOM on
the interface.

To enable DOM using the REST API:

Step 1 Create a fabric node control policy (fabricNodeControlPolicy) as in the following example:
<fabricNodeControl dn="uni/fabric/nodecontrol-testdom" name="testdom" control="1"
rn="nodecontrol-testdom" status="created" />

Step 2 Associate a fabric node control policy to a policy group as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<fabricLeNodePGrp dn="uni/fabric/funcprof/lenodepgrp-nodegrp2" name="nodegrp2"
rn="lenodepgrp-nodegrp2" status="created,modified" >

<fabricRsMonInstFabricPol tnMonFabricPolName="default" status="created,modified" />
<fabricRsNodeCtrl tnFabricNodeControlName="testdom" status="created,modified" />

</fabricLeNodePGrp>

Step 3 Associate a policy group to a switch (in the following example, the switch is 103) as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<fabricLeafP>
<attributes>
<dn>uni/fabric/leprof-leafSwitchProfile</dn>
<name>leafSwitchProfile</name>
<rn>leprof-leafSwitchProfile</rn>
<status>created,modified</status>
</attributes>
<children>
<fabricLeafS>
<attributes>
<dn>uni/fabric/leprof-leafSwitchProfile/leaves-test-typ-range</dn>
<type>range</type>
<name>test</name>
<rn>leaves-test-typ-range</rn>
<status>created,modified</status>
</attributes>
<children>
<fabricNodeBlk>
<attributes>
<dn>uni/fabric/leprof-leafSwitchProfile/leaves-test-typ-range/nodeblk-09533c1d228097da</dn>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
214

Part 3: Setting Up APIC and the Fabric Using the REST API
DOM Statistics

<from_>103</from_>
<to_>103</to_>
<name>09533c1d228097da</name>
<rn>nodeblk-09533c1d228097da</rn>
<status>created,modified</status>
</attributes>
</fabricNodeBlk>
</children>
<children>
<fabricRsLeNodePGrp>
<attributes>
<tDn>uni/fabric/funcprof/lenodepgrp-nodegrp2</tDn>
<status>created</status>
</attributes>
</fabricRsLeNodePGrp>
</children>
</fabricLeafS>
</children>
</fabricLeafP>

Syslog

About Syslog
During operation, a fault or event in the Cisco Application Centric Infrastructure (ACI) system can trigger
the sending of a system log (syslog) message to the console, to a local file, and to a logging server on another
system. A system log message typically contains a subset of information about the fault or event. A system
log message can also contain audit log and session log entries.

For a list of syslog messages that the APIC and the fabric nodes can generate, see http://www.cisco.com/c/
en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/syslog/guide/aci_syslog/ACI_SysMsg.html.

Note

Many system log messages are specific to the action that a user is performing or the object that a user is
configuring or administering. These messages can be the following:

• Informational messages, providing assistance and tips about the action being performed

• Warning messages, providing information about system errors related to an object, such as a user account
or service profile, that the user is configuring or administering

In order to receive and monitor system log messages, you must specify a syslog destination, which can be the
console, a local file, or one or more remote hosts running a syslog server. In addition, you can specify the
minimum severity level of messages to be displayed on the console or captured by the file or host. The local
file for receiving syslog messages is /var/log/external/messages.

A syslog source can be any object for which an object monitoring policy can be applied. You can specify the
minimum severity level of messages to be sent, the items to be included in the syslog messages, and the syslog
destination.

You can change the display format for the Syslogs to NX-OS style format.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
215

Part 3: Setting Up APIC and the Fabric Using the REST API
Syslog

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/syslog/guide/aci_syslog/ACI_SysMsg.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/syslog/guide/aci_syslog/ACI_SysMsg.html

Additional details about the faults or events that generate these system messages are described in the Cisco
APIC Faults, Events, and System Messages Management Guide, and system log messages are listed in the
Cisco ACI System Messages Reference Guide.

Not all system log messages indicate problems with your system. Some messages are purely informational,
while others may help diagnose problemswith communications lines, internal hardware, or the system software.

Note

Configuring a Syslog Group and Destination Using the REST API
This procedure configures syslog data destinations for logging and evaluation. You can export syslog data to
the console, to a local file, or to one or more syslog servers in a destination group. This example sends alerts
to the console, information to a local file, and warnings to a remote syslog server.

To create a syslog group and destination using the REST API, send a post with XML such as the following example:

Example:
<syslogGroup name name="tenant64_SyslogDest" format="aci" dn="uni/fabric/slgroup-tenant64_SyslogDest">

<syslogConsole name="" format="aci" severity="alerts" adminState="enabled"/>
<syslogFile name="" format="aci" severity="information" adminState="enabled"/>
<syslogProf name="syslog" adminState="enabled"/>
<syslogRemoteDest name="Syslog_remoteDest" format="aci" severity="warnings"

adminState="enabled" port="514" host="192.168.100.20" forwardingFacility="local7">
<fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</syslogRemoteDest>
</syslogGroup>

Creating a Syslog Source Using the REST API
A syslog source can be any object for which an object monitoring policy can be applied.

Before you begin

Create a syslog monitoring destination group.

To create a syslog source, send a POST request with XML such as the following example:

Example:
<syslogSrc

name="VRF64_SyslogSource" minSev="warnings" incl="faults"
dn="uni/tn-tenant64/monepg-MonPol1/slsrc-VRF64_SyslogSource">
<syslogRsDestGroup tDn="uni/fabric/slgroup-tenant64_SyslogDest"/>

</syslogSrc>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
216

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Syslog Group and Destination Using the REST API

Enabling Syslog to Display in NX-OS CLI Format, Using the REST API
By default the Syslog format is RFC 3164 compliant. You can change the default display of Syslogs to NX-OS
type format, similar to the following example:

apic1# moquery -c "syslogRemoteDest"

Total Objects shown: 1

syslog.RemoteDest
host : 172.23.49.77
adminState : enabled
childAction :
descr :
dn : uni/fabric/slgroup-syslog-mpod/rdst-172.23.49.77
epgDn :
format : nxos
forwardingFacility : local7
ip :
lcOwn : local
modTs : 2016-05-17T16:51:57.231-07:00
monPolDn : uni/fabric/monfab-default
name : syslog-dest
operState : unknown
port : 514
rn : rdst-172.23.49.77
severity : information
status :
uid : 15374
vrfId : 0
vrfName :

To enable the Syslogs to display in NX-OS type format, perform the following steps, using the REST API.

Step 1 Enable the Syslogs to display in NX-OS type format, as in the following example:
POST https://192.168.20.123/api/node/mo/uni/fabric.xml
<syslogGroup name="DestGrp77" format="nxos">
<syslogRemoteDest name="slRmtDest77" host="172.31.138.20" severity="debugging"/>
</syslogGroup>

The syslogGroup is the Syslog monitoring destination group, the sysLogRemoteDest is the name you previously
configured for your Syslog server, and the host is the IP address for the previously configured Syslog server.

Step 2 Set the Syslog format back to the default RFC 3164 format, as in the following example:
POST https://192.168.20.123/api/node/mo/uni/fabric.xml
<syslogGroup name="DestGrp77" format="aci">
<syslogRemoteDest name="slRmtDest77" host="172.31.138.20" severity="debugging"/>
</syslogGroup>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
217

Part 3: Setting Up APIC and the Fabric Using the REST API
Enabling Syslog to Display in NX-OS CLI Format, Using the REST API

Data Plane Policing

Overview of Data Plane Policing
Use data plane policing (DPP) to manage bandwidth consumption on Cisco Application Centric Infrastructure
(ACI) fabric access interfaces. DPP policies can apply to egress traffic, ingress traffic, or both. DPP monitors
the data rates for a particular interface.When the data rate exceeds user-configured values, marking or dropping
of packets occurs immediately. Policing does not buffer the traffic; therefore, the transmission delay is not
affected. When traffic exceeds the data rate, the Cisco ACI fabric can either drop the packets or mark QoS
fields in them.

Before the 3.2 release, the standard behavior for the policer was to be per-EPG member in the case of DPP
policy being applied to the EPG, while the same policer was allocated on the leaf switch for the Layer 2 and
Layer 3 case. This distinction was done because the DPP policer for Layer 2/Layer 3 case was assumed to be
per-interface already, hence it was assumed different interfaces might get different ones. While the per-EPG
DPP policy was introduced, it was clear that on a given leaf switch, several members could be present and
therefore the policer it made sense to be per-member in order to avoid unwanted drops.

Starting with release 3.2, a clear semantic is given to the Data Plane Policer policy itself, as well as a new
flag introducing the sharing-mode setting as presented in the CLI. Essentially, there is no longer an implicit
behavior, which is different if the Data Plane Policer is applied to Layer 2/Layer 3 or to per-EPG case. Now
the user has the control of the behavior. If the sharing-mode is set to shared, then all the entities on the leaf
switch referring to the same Data Plane Policer, will share the same hardware policer. If the sharing-mode is
set to dedicated then there would be a different HW policer allocated for each Layer 2 or Layer 3 or EPG
member on the leaf switch. The policer is then dedicated to the entity that needs to be policed.

DPP policies can be single-rate, dual-rate, and color-aware. Single-rate policies monitor the committed
information rate (CIR) of traffic. Dual-rate policers monitor both CIR and peak information rate (PIR) of
traffic. In addition, the system monitors associated burst sizes. Three colors, or conditions, are determined by
the policer for each packet depending on the data rate parameters supplied: conform (green), exceed (yellow),
or violate (red).

Typically, DPP policies are applied to physical or virtual layer 2 connections for virtual or physical devices
such as servers or hypervisors, and on layer 3 connections for routers. DPP policies applied to leaf switch
access ports are configured in the fabric access (infra) portion of the Cisco ACI fabric, and must be configured
by a fabric administrator. DPP policies applied to interfaces on border leaf switch access ports (l3extOut or
l2extOut) are configured in the tenant (fvTenant) portion of the Cisco ACI fabric, and can be configured by
a tenant administrator.

The data plane policer can also be applied on an EPG so that traffic that enters the Cisco ACI fabric from a
group of endpoints are limited per member access interface of the EPG. This is useful to prevent monopolization
of any single EPG where access links are shared by various EPGs.

Only one action can be configured for each condition. For example, a DPP policy can to conform to the data
rate of 256000 bits per second, with up to 200 millisecond bursts. The system applies the conform action to
traffic that falls within this rate, and it would apply the violate action to traffic that exceeds this rate. Color-aware
policies assume that traffic has been previously marked with a color. This information is then used in the
actions taken by this type of policer.

For information about traffic storm control, see the Cisco APIC Layer 2 Networking Configuration Guide.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
218

Part 3: Setting Up APIC and the Fabric Using the REST API
Data Plane Policing

Configuring Data Plane Policing Using the REST API
To police the L2 traffic coming in to the Leaf:

<!-- api/node/mo/uni/.xml -->
<infraInfra>
<qosDppPol name="infradpp5" burst="2000" rate="2000" be="400" sharingMode="shared"/>
<!--
List of nodes. Contains leaf selectors. Each leaf selector contains list of node blocks
-->
<infraNodeP name="leaf1">
<infraLeafS name="leaf1" type="range">
<infraNodeBlk name="leaf1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-portselector1"/>
</infraNodeP>
<!--
PortP contains port selectors. Each port selector contains list of ports. It

also has association to port group policies
-->
<infraAccPortP name="portselector1">
<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="48" toPort="49"></infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portSet2"/>
</infraHPortS>
</infraAccPortP>
<!-- FuncP contains access bundle group policies -->
<infraFuncP>
<infraAccPortGrp name="portSet2">
<infraRsQosIngressDppIfPol tnQosDppPolName="infradpp5"/>
</infraAccPortGrp>
</infraFuncP>
</infraInfra>

To police the L2 traffic going out of the Leaf:
<!-- api/node/mo/uni/.xml -->
<infraInfra>
<qosDppPol name="infradpp2" burst="4000" rate="4000"/>
<!--
List of nodes. Contains leaf selectors. Each leaf selector contains list of node blocks
-->
<infraNodeP name="leaf1">
<infraLeafS name="leaf1" type="range">
<infraNodeBlk name="leaf1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-portselector2"/>
</infraNodeP>
<!--
PortP contains port selectors. Each port selector contains list of ports. It

also has association to port group policies
-->
<infraAccPortP name="portselector2">
<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="37" toPort="38"></infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portSet2"/>
</infraHPortS>
</infraAccPortP>
<!-- FuncP contains access bundle group policies -->
<infraFuncP>
<infraAccPortGrp name="portSet2">
<infraRsQosEgressDppIfPol tnQosDppPolName="infradpp2"/>
</infraAccPortGrp>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
219

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Data Plane Policing Using the REST API

</infraFuncP>
</infraInfra>

To police the L3 traffic coming in to the Leaf:
<!-- api/node/mo/uni/.xml -->
<fvTenant name="dppTenant">
<qosDppPol name="gmeo" burst="2000" rate="2000"/>
<l3extOut name="Outside">
<l3extInstP name="extroute"/>
<l3extLNodeP name="borderLeaf">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="10.0.0.1">
<ipRouteP ip="0.0.0.0">
<ipNexthopP nhAddr="192.168.62.2"/>
</ipRouteP>
</l3extRsNodeL3OutAtt>
<l3extLIfP name="portProfile">
<l3extRsPathL3OutAtt addr="192.168.40.1/30" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/40]"/>
<l3extRsPathL3OutAtt addr="192.168.41.1/30" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/41]"/>
<l3extRsIngressQosDppPol tnQosDppPolName="gmeo"/>
</l3extLIfP>
</l3extLNodeP>
</l3extOut>
</fvTenant>

To police the L3 traffic going out of the Leaf:
<!-- api/node/mo/uni/.xml -->
<fvTenant name="dppTenant">
<qosDppPol name="gmeo" burst="2000" rate="2000"/>
<l3extOut name="Outside">
<l3extInstP name="extroute"/>
<l3extLNodeP name="borderLeaf">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="10.0.0.1">
<ipRouteP ip="0.0.0.0">
<ipNexthopP nhAddr="192.168.62.2"/>
</ipRouteP>
</l3extRsNodeL3OutAtt>
<l3extLIfP name="portProfile">
<l3extRsPathL3OutAtt addr="192.168.40.1/30" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/40]"/>
<l3extRsPathL3OutAtt addr="192.168.41.1/30" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/41]"/>
<l3extRsEgressQosDppPol tnQosDppPolName="gmeo"/>
</l3extLIfP>
</l3extLNodeP>
</l3extOut>
</fvTenant>

Traffic Storm Control

About Traffic Storm Control
A traffic storm occurs when packets flood the LAN, creating excessive traffic and degrading network
performance. You can use traffic storm control policies to prevent disruptions on Layer 2 ports by broadcast,
unknown multicast, or unknown unicast traffic storms on physical interfaces.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
220

Part 3: Setting Up APIC and the Fabric Using the REST API
Traffic Storm Control

By default, storm control is not enabled in the ACI fabric. ACI bridge domain (BD) Layer 2 unknown unicast
flooding is enabled by default within the BD but can be disabled by an administrator. In that case, a storm
control policy only applies to broadcast and unknown multicast traffic. If Layer 2 unknown unicast flooding
is enabled in a BD, then a storm control policy applies to Layer 2 unknown unicast flooding in addition to
broadcast and unknown multicast traffic.

Traffic storm control (also called traffic suppression) allows you to monitor the levels of incoming broadcast,
multicast, and unknown unicast traffic over a one second interval. During this interval, the traffic level, which
is expressed either as percentage of the total available bandwidth of the port or as the maximum packets per
second allowed on the given port, is compared with the traffic storm control level that you configured. When
the ingress traffic reaches the traffic storm control level that is configured on the port, traffic storm control
drops the traffic until the interval ends. An administrator can configure a monitoring policy to raise a fault
when a storm control threshold is exceeded.

Configuring a Traffic Storm Control Policy Using the REST API
To configure a traffic storm control policy, create a stormctrl:IfPol object with the desired properties.

To create a policy named MyStormPolicy, send this HTTP POST message:
POST https://192.0.20.123/api/mo/uni/infra/stormctrlifp-MyStormPolicy.json

In the body of the POST message, Include the following JSON payload structure to specify the policy by
percentage of available bandwidth:

{"stormctrlIfPol":
{"attributes":

{"dn":"uni/infra/stormctrlifp-MyStormPolicy",
"name":"MyStormPolicy",
"rate":"75",
"burstRate":"85",
"rn":"stormctrlifp-MyStormPolicy",
"status":"created"
},
"children":[]

}
}

In the body of the POST message, Include the following JSON payload structure to specify the policy by
packets per second:

{"stormctrlIfPol":
{"attributes":

{"dn":"uni/infra/stormctrlifp-MyStormPolicy",
"name":"MyStormPolicy",
"ratePps":"12000",
"burstPps":"15000",
"rn":"stormctrlifp-MyStormPolicy",
"status":"created"
},
"children":[]

}
}

Cisco APIC REST API Configuration Guide, Release 4.1(x)
221

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Traffic Storm Control Policy Using the REST API

Rogue Endpoint Control

About the Rogue Endpoint Control Policy
A rogue endpoint attacks leaf switches through frequently, repeatedly injecting packets on different leaf switch
ports and changing 802.1Q tags (thus, emulating endpoint moves) causing learned class and EPG port changes.
Misconfigurations can also cause frequent IP and MAC address changes (moves).

Such rapid movement in the fabric causes significant network instability, high CPU usage, and in rare instances,
endpoint mapper (EPM) and EPM client (EPMC) crashes due to significant and prolonged messaging and
transaction service (MTS) buffer consumption. Also, such frequent moves may result in the EPM and EPMC
logs rolling over very quickly, hampering debugging for unrelated endpoints.

The rogue endpoint control feature addresses this vulnerability by quickly:

• Identifying such rapidly moving MAC and IP endpoints.

• Stopping the movement by temporarily making endpoints static, thus quarantining the endpoint.

• Prior to 3.2(6) release: Keeping the endpoint static for the Rogue EP Detection Interval and dropping
the traffic to and from the rogue endpoint. After this time expires, deleting the unauthorized MAC or IP
address.

• In the 3.2(6) release and later: Keeping the endpoint static for the Rogue EP Detection Interval (this
feature no longer drops the traffic). After this time expires, deleting the unauthorizedMAC or IP address.

• Generating a host tracking packet to enable the system to re-learn the impacted MAC or IP address.

• Raising a fault to enable corrective action.

The rogue endpoint control policy is configured globally and, unlike other loop preventionmethods, functions
at the level of individual endpoints (IP and MAC addresses). It does not distinguish between local or remote
moves; any type of interface change is considered a move in determining if an endpoint should be quarantined.

The rogue endpoint control feature is disabled by default.

Configure the Rogue Endpoint Control Policy Using the REST API
You can configure the rogue endpoint control policy for the fabric to detect and delete unauthorized endpoints
using the REST API.

Step 1 To configure the rogue endpoint control policy, send a post with XML similar to the following example:

Example:
<polUni>

<infraInfra>
<epControlP name="default" adminSt="enabled" holdIntvl="1800" rogueEpDetectIntvl="60"

rogueEpDetectMult="6"/>
</infraInfra>

</polUni>

• adminSt: The administrative state of rogue endpoint control. Specify enable to enable rogue endpoint control.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
222

Part 3: Setting Up APIC and the Fabric Using the REST API
Rogue Endpoint Control

• holdIntvl: Rogue endpoint hold interval. The hold interval is a period of time in seconds after the endpoint is
declared rogue that the endpoint is kept static so that learning is prevented, and the traffic to and from the endpoint
is dropped. After this interval, the endpoint is deleted. The valid values are from 1800 to 3600 seconds. The default
is 1800.

• rogueEpDetectIntvl: Rogue endpoint detection interval. The detection interval is a period of time in seconds during
which rogue endpoint control counts the number of moves for an endpoint. If the count during this interval exceeds
the value specified by the detection multiplication factor, the endpoint is declared rogue. Valid values are from 0 to
65535 seconds. The default is 60.

• rogueEpDetectMult: Rogue endpoint detection multiplication factor. If an endpoint moves more times than the
value specified by the detection multiplication factor during a period of time specified by the detection interval, the
endpoint is declared rogue. Valid values are from 2 to 10. The default is 6.

Step 2 In the 3.2(6) release and later, you can revert this feature's behavior so that it once again drops the traffic to and from
rogue endpoints by sending a post with XML similar to the following example:

Example:
<infraImplicitSetPol rogueModeAction="quarantine-fault-and-drop" infraDn="uni/infra"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
223

Part 3: Setting Up APIC and the Fabric Using the REST API
Configure the Rogue Endpoint Control Policy Using the REST API

Cisco APIC REST API Configuration Guide, Release 4.1(x)
224

Part 3: Setting Up APIC and the Fabric Using the REST API
Configure the Rogue Endpoint Control Policy Using the REST API

C H A P T E R 14
Provisioning Layer 2 Networks

• Networking Domains, VLANs, and AEPs, on page 225
• Interfaces, on page 231
• FCoE, on page 243
• Fibre Channel NPV, on page 257
• 802.1Q Tunnels, on page 264
• Breakout Ports, on page 271
• Port Profiles to Change Uplinks to Downlinks and Downlinks to Uplinks, on page 276
• IGMP Snooping, on page 281
• Proxy ARP, on page 285
• Flood on Encapsulation, on page 292
• MACsec, on page 297

Networking Domains, VLANs, and AEPs

Networking Domains
A fabric administrator creates domain policies that configure ports, protocols, VLAN pools, and encapsulation.
These policies can be used exclusively by a single tenant, or shared. Once a fabric administrator configures
domains in the ACI fabric, tenant administrators can associate tenant endpoint groups (EPGs) to domains.

The following networking domain profiles can be configured:

• VMM domain profiles (vmmDomP) are required for virtual machine hypervisor integration.

• Physical domain profiles (physDomP) are typically used for bare metal server attachment and management
access.

• Bridged outside network domain profiles (l2extDomP) are typically used to connect a bridged external
network trunk switch to a leaf switch in the ACI fabric.

• Routed outside network domain profiles (l3extDomP) are used to connect a router to a leaf switch in the
ACI fabric.

• Fibre Channel domain profiles (fcDomP) are used to connect Fibre Channel VLANs and VSANs.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
225

A domain is configured to be associated with a VLAN pool. EPGs are then configured to use the VLANs
associated with a domain.

EPG port and VLAN configurations must match those specified in the domain infrastructure configuration
with which the EPG associates. If not, the APIC will raise a fault. When such a fault occurs, verify that the
domain infrastructure configuration matches the EPG port and VLAN configurations.

Note

Configuring a Physical Domain Using the REST API
A physical domain acts as the link between the VLAN pool and the Access Entity Profile (AEP). The domain
also ties the fabric configuration to the tenant configuration, as the tenant administrator is the one who associates
domains to EPGs, while the domains are created under the fabric tab. When configuring in this order, only
the profile name and the VLAN pool are configured.

Configure a physical domain by sending a post with XML such as the following example:

Example:

<physDomP dn="uni/phys-bsprint-PHY" lcOwn="local" modTs="2015-02-23T16:13:21.906-08:00"
monPolDn="uni/fabric/monfab-default" name="bsprint-PHY" ownerKey="" ownerTag="" status="" uid="8131">

<infraRsVlanNs childAction="" forceResolve="no" lcOwn="local"
modTs="2015-02-23T16:13:22.065-08:00"

monPolDn="uni/fabric/monfab-default" rType="mo" rn="rsvlanNs" state="formed" stateQual="none"

status="" tCl="fvnsVlanInstP" tDn="uni/infra/vlanns-[bsprint-vlan-pool]-static" tType="mo"
uid="8131"/>

<infraRsVlanNsDef forceResolve="no" lcOwn="local" modTs="2015-02-23T16:13:22.065-08:00" rType="mo"

rn="rsvlanNsDef" state="formed" stateQual="none" status="" tCl="fvnsAInstP"
tDn="uni/infra/vlanns-[bsprint-vlan-pool]-static" tType="mo"/>

<infraRtDomP lcOwn="local" modTs="2015-02-23T16:13:52.945-08:00"
rn="rtdomP-[uni/infra/attentp-bsprint-AEP]"

status="" tCl="infraAttEntityP" tDn="uni/infra/attentp-bsprint-AEP"/>
</physDomP>

Creating VLAN Pools
In this example, configuring newly-connected bare metal servers first requires creation of a physical domain
and then association of the domain to a VLAN pool. As mentioned in the previous section, VLAN pools
define a range of VLAN IDs that will be used by the EPGs.

The servers are connected to two different leaf nodes in the fabric. Each server will be tagging using 802.1Q
or VXLAN encapsulation. The range of VLANs used in the configuration example is 100-199. As depicted
in the following figure, the ACI fabric can also act as a gateway between disparate encapsulation types such
as untagged traffic, 802.1Q VLAN tags, VXLAN VNIDs, and NVGRE tags. The leaf switches normalize the
traffic by stripping off tags and reapplying the required tags on fabric egress. In ACI, it is important to
understand that the definition of VLANs as they pertain to the leaf switch ports is utilized only for identification
purposes. When a packet arrives ingress to a leaf switch in the fabric, ACI has to know beforehand how to

Cisco APIC REST API Configuration Guide, Release 4.1(x)
226

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Physical Domain Using the REST API

classify packets into the different EPGs, using identifiers like VLANs, VXLAN, NVGRE, physical port IDs,
virtual port IDs.

Figure 21: Encapsulation normalization

Creating a VLAN Pool Using the REST API
The following example REST request creates a VLAN pool:
<fvnsVlanInstP allocMode="static" childAction="" configIssues="" descr=""
dn="uni/infra/vlanns-[bsprint-vlan-pool]-static" lcOwn="local"

modTs="2015-02-23T15:58:33.538-08:00"
monPolDn="uni/fabric/monfab-default" name="bsprint-vlan-pool"
ownerKey="" ownerTag="" status="" uid="8131">
<fvnsRtVlanNs childAction="" lcOwn="local" modTs="2015-02-25T11:35:33.365-08:00"
rn="rtinfraVlanNs-[uni/l2dom-JC-L2-Domain]" status="" tCl="l2extDomP"

tDn="uni/l2dom-JC-L2-Domain"/>
<fvnsRtVlanNs childAction="" lcOwn="local" modTs="2015-02-23T16:13:22.007-08:00"
rn="rtinfraVlanNs-[uni/phys-bsprint-PHY]" status="" tCl="physDomP"

tDn="uni/physbsprint-PHY"/>
<fvnsEncapBlk childAction="" descr="" from="vlan-100" lcOwn="local"

modTs="2015-02-23T15:58:33.538-08:00"
name="" rn="from-[vlan-100]-to-[vlan-199]" status="" to="vlan-199" uid="8131"/>

</fvnsVlanInstP>

Configuring Q-in-Q Encapsulation Mapping for EPGs

Q-in-Q Encapsulation Mapping for EPGs
Using Cisco Application Policy Infrastructure Controller (APIC), you can map double-tagged VLAN traffic
ingressing on a regular interface, PC, or vPC to an EPG. When this feature is enabled, when double-tagged
traffic enters the network for an EPG, both tags are processed individually in the fabric and restored to
double-tags when egressing the Cisco Application Centric Infrastructure (ACI) switch. Ingressing single-tagged
and untagged traffic is dropped.

The following guidelines and limitations apply:

• This feature is only supported on Cisco Nexus 9300-FX platform switches.

• Both the outer and inner tag must be of EtherType 0x8100.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
227

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating a VLAN Pool Using the REST API

• MAC learning and routing are based on the EPG port, sclass, and VRF instance, not on the access
encapsulations.

• QoS priority settings are supported, derived from the outer tag on ingress, and rewritten to both tags on
egress.

• EPGs can simultaneously be associated with other interfaces on a leaf switch, that are configured for
single-tagged VLANs.

• Service graphs are supported for provider and consumer EPGs that are mapped to Q-in-Q encapsulated
interfaces. You can insert service graphs, as long as the ingress and egress traffic on the service nodes
is in single-tagged encapsulated frames.

• When vPC ports are enabled for Q-in-Q encapsulationmode, VLAN consistency checks are not performed.

The following features and options are not supported with this feature:

• Per-port VLAN feature

• FEX connections

• Mixed mode

For example, an interface in Q-in-Q encapsulation mode can have a static path binding to an EPG with
double-tagged encapsulation only, not with regular VLAN encapsulation.

• STP and the "Flood in Encapsulation" option

• Untagged and 802.1p mode

• Multi-pod and Multi-Site

• Legacy bridge domain

• L2Out and L3Out connections

• VMM integration

• Changing a port mode from routed to Q-in-Q encapsulation mode

• Per-VLAN mis-cabling protocol on ports in Q-in-Q encapsulation mode

Mapping EPGs to Q-in-Q Encapsulation Enabled Interfaces Using the REST API

Before you begin

Create the tenant, application profile, and application EPG that will be mapped with an interface configured
for Q-in-Q mode.

SUMMARY STEPS

1. Enable an interface for Q-in-Q encapsulation and associate the interface with an EPG, with XML such
as the following example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
228

Part 3: Setting Up APIC and the Fabric Using the REST API
Mapping EPGs to Q-in-Q Encapsulation Enabled Interfaces Using the REST API

DETAILED STEPS

Enable an interface for Q-in-Q encapsulation and associate the interface with an EPG, with XML such as the following
example:

Example:
<polUni>
<fvTenant dn="uni/tn-tenant64" name="tenant64">
<fvCtx name="VRF64"/>
<fvBD name="BD64_1">
<fvRsCtx tnFvCtxName="VRF64"/>
<fvSubnet ip="20.0.1.2/24"/>

</fvBD>
<fvAp name="AP64">
<fvAEPg name="WEB7">
<fvRsBd tnFvBDName="BD64_1"/>
<fvRsQinqPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]" encap="qinq-202-203"/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Attachable Entity Profile
The ACI fabric provides multiple attachment points that connect through leaf ports to various external entities
such as bare metal servers, virtual machine hypervisors, Layer 2 switches (for example, the Cisco UCS fabric
interconnect), or Layer 3 routers (for example Cisco Nexus 7000 Series switches). These attachment points
can be physical ports, FEX ports, port channels, or a virtual port channel (vPC) on leaf switches.

When creating a VPC domain between two leaf switches, both switches must be in the same switch generation,
one of the following:

• Generation 1 - Cisco Nexus N9K switches without “EX” or "FX" on the end of the switch name; for
example, N9K-9312TX

• Generation 2 – Cisco Nexus N9K switches with “EX” or "FX" on the end of the switch model name; for
example, N9K-93108TC-EX

Switches such as these two are not compatible VPC peers. Instead, use switches of the same generation.

Note

An Attachable Entity Profile (AEP) represents a group of external entities with similar infrastructure policy
requirements. The infrastructure policies consist of physical interface policies that configure various protocol
options, such as Cisco Discovery Protocol (CDP), Link Layer Discovery Protocol (LLDP), or Link Aggregation
Control Protocol (LACP).

An AEP is required to deploy VLAN pools on leaf switches. Encapsulation blocks (and associated VLANs)
are reusable across leaf switches. An AEP implicitly provides the scope of the VLAN pool to the physical
infrastructure.

The following AEP requirements and dependencies must be accounted for in various configuration scenarios,
including network connectivity, VMM domains, and multipod configuration:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
229

Part 3: Setting Up APIC and the Fabric Using the REST API
Attachable Entity Profile

• The AEP defines the range of allowed VLANS but it does not provision them. No traffic flows unless
an EPG is deployed on the port. Without defining a VLAN pool in an AEP, a VLAN is not enabled on
the leaf port even if an EPG is provisioned.

• A particular VLAN is provisioned or enabled on the leaf port that is based on EPG events either statically
binding on a leaf port or based on VM events from external controllers such as VMware vCenter or
Microsoft Azure Service Center Virtual Machine Manager (SCVMM).

• Attached entity profiles can be associated directly with application EPGs, which deploy the associated
application EPGs to all those ports associated with the attached entity profile. The AEP has a configurable
generic function (infraGeneric), which contains a relation to an EPG (infraRsFuncToEpg) that is deployed
on all interfaces that are part of the selectors that are associated with the attachable entity profile.

A virtual machine manager (VMM) domain automatically derives physical interface policies from the interface
policy groups of an AEP.

An override policy at the AEP can be used to specify a different physical interface policy for a VMM domain.
This policy is useful in scenarios where a VM controller is connected to the leaf switch through an intermediate
Layer 2 node, and a different policy is desired at the leaf switch and VM controller physical ports. For example,
you can configure LACP between a leaf switch and a Layer 2 node. At the same time, you can disable LACP
between the VM controller and the Layer 2 switch by disabling LACP under the AEP override policy.

Creating an Attachable Access Entity Profile Using the REST API
The following example REST request creates an attachable access entity profile (AEP):
<infraAttEntityP childAction="" configIssues="" descr="" dn="uni/infra/attentpbsprint-AEP"
lcOwn="local" modTs="2015-02-23T16:13:52.874-08:00" monPolDn="uni/fabric/monfab-default"
name="bsprint-AEP" ownerKey="" ownerTag="" status="" uid="8131">
<infraContDomP childAction="" lcOwn="local" modTs="2015-02-23T16:13:52.874-08:00"
rn="dompcont" status="">
<infraAssocDomP childAction="" dompDn="uni/phys-bsprint-PHY" lcOwn="local"
modTs="2015-02-23T16:13:52.961-08:00" rn="assocdomp-[uni/phys-bsprint-PHY]"

status=""/>
<infraAssocDomP childAction="" dompDn="uni/l2dom-JC-L2-Domain" lcOwn="local"
modTs="2015-02-25T11:35:33.570-08:00" rn="assocdomp-[uni/l2dom-JC-L2-Domain]"
status=""/>

</infraContDomP>
<infraContNS childAction="" lcOwn="local" modTs="2015-02-23T16:13:52.874-08:00"
monPolDn="uni/fabric/monfab-default" rn="nscont" status="">
<infraRsToEncapInstDef childAction="" deplSt="" forceResolve="no" lcOwn="local"
modTs="2015-02-23T16:13:52.961-08:00" monPolDn="uni/fabric/monfabdefault"
rType="mo" rn="rstoEncapInstDef-[allocencap-[uni/infra]/encapnsdef-
[uni/infra/vlanns-[bsprint-vlan-pool]-static]]" state="formed" stateQual="none"
status="" tCl="stpEncapInstDef" tDn="allocencap-[uni/infra]/encapnsdef-
[uni/infra/vlanns-[bsprint-vlan-pool]-static]" tType="mo">
<fabricCreatedBy childAction="" creatorDn="uni/l2dom-JC-L2-Domain"
deplSt="" domainDn="uni/l2dom-JC-L2-Domain" lcOwn="local" modTs="2015-02-
25T11:35:33.570-08:00" monPolDn="uni/fabric/monfab-default" profileDn=""
rn="source-[uni/l2dom-JC-L2-Domain]" status=""/>

<fabricCreatedBy childAction="" creatorDn="uni/phys-bsprint-PHY" deplSt=""
domainDn="uni/phys-bsprint-PHY" lcOwn="local"

modTs="2015-02-23T16:13:52.961-08:00"
monPolDn="uni/fabric/monfab-default" profileDn=""

rn="source-[uni/phys-bsprint-PHY]"
status=""/>

</infraRsToEncapInstDef>
</infraContNS>
<infraRtAttEntP childAction="" lcOwn="local" modTs="2015-02-24T11:59:37.980-08:00"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
230

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating an Attachable Access Entity Profile Using the REST API

rn="rtattEntP-[uni/infra/funcprof/accportgrp-bsprint-AccessPort]" status=""
tCl="infraAccPortGrp" tDn="uni/infra/funcprof/accportgrp-bsprint-AccessPort"/>

<infraRsDomP childAction="" forceResolve="no" lcOwn="local" modTs="2015-02-
25T11:35:33.570-08:00" monPolDn="uni/fabric/monfab-default" rType="mo"
rn="rsdomP-[uni/l2dom-JC-L2-Domain]" state="formed" stateQual="none" status=""
tCl="l2extDomP" tDn="uni/l2dom-JC-L2-Domain" tType="mo" uid="8754"/>

<infraRsDomP childAction="" forceResolve="no" lcOwn="local"
modTs="2015-02-23T16:13:52.961-08:00" monPolDn="uni/fabric/monfab-default" rType="mo"

rn="rsdomP-[uni/phys-bsprint-PHY]" state="formed" stateQual="none" status=""
tCl="physDomP"

tDn="uni/phys-bsprint-PHY" tType="mo" uid="8131"/>
</infraAttEntityP>

Interfaces

Ports, PCs, and VPCs

Configuring a Single Port Channel Applied to Multiple Switches
This example creates a port channel on leaf switch 17, another port channel on leaf switch 18, and a third one
on leaf switch 20. On each leaf switch, the same interfaces will be part of the port channel (interfaces 1/10 to
1/15 and 1/20 to 1/25). All these port channels will have the same configuration.

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switch and protocol(s) are configured and available.

To create the port channel, send a post with XML such as the following:

Example:
<infraInfra dn="uni/infra">

<infraNodeP name=”test">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk” from_=”17" to_=”18”/>
<infraNodeBlk name="nblk” from_=”20" to_=”20”/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test"/>

</infraNodeP>

<infraAccPortP name="test">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort="10" toPort=”15”/>

<infraPortBlk name="blk2"
fromCard="1" toCard="1"
fromPort=”20" toPort=”25”/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
231

Part 3: Setting Up APIC and the Fabric Using the REST API
Interfaces

<infraRsAccBaseGrp
tDn="uni/infra/funcprof/accbundle-bndlgrp"/>

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccBndlGrp name="bndlgrp" lagT="link">

<infraRsHIfPol tnFabricHIfPolName=“default"/>
<infraRsCdpIfPol tnCdpIfPolName=”default”/>
<infraRsLacpPol tnLacpLagPolName=”default"/>

</infraAccBndlGrp>
</infraFuncP>

</infraInfra>

Configuring a Single Virtual Port Channel Across Two Switches Using the REST API
The two steps for creating a virtual port channel across two switches are as follows:

• Create a fabricExplicitGEp: this policy specifies the leaf switch that pairs to form the virtual port
channel.

• Use the infra selector to specify the interface configuration.

The APIC performs several validations of the fabricExplicitGEp and faults are raised when any of these
validations fail. A leaf can be paired with only one other leaf. The APIC rejects any configuration that breaks
this rule. When creating a fabricExplicitGEp, an administrator must provide the IDs of both of the leaf
switches to be paired. The APIC rejects any configuration which breaks this rule. Both switches must be up
when fabricExplicitGEp is created. If one switch is not up, the APIC accepts the configuration but raises a
fault. Both switches must be leaf switches. If one or both switch IDs corresponds to a spine, the APIC accepts
the configuration but raises a fault.

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switch and protocol(s) are configured and available.

To create the fabricExplicitGEp policy and use the intra selector to specify the interface, send a post with XML such
as the following example:

Example:
<fabricProtPol pairT="explicit">
<fabricExplicitGEp name="tG" id="2">
<fabricNodePEp id=”18”/>
<fabricNodePEp id=”25"/>

</fabricExplicitGEp>
</fabricProtPol>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
232

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Single Virtual Port Channel Across Two Switches Using the REST API

Configuring Two Port Channels Applied to Multiple Switches Using the REST API
This example creates two port channels (PCs) on leaf switch 17, another port channel on leaf switch 18, and
a third one on leaf switch 20. On each leaf switch, the same interfaces will be part of the PC (interface 1/10
to 1/15 for port channel 1 and 1/20 to 1/25 for port channel 2). The policy uses two switch blocks because
each a switch block can contain only one group of consecutive switch IDs. All these PCs will have the same
configuration.

Even though the PC configurations are the same, this example uses two different interface policy groups.
Each Interface Policy Group represents a PC on a switch. All interfaces associated with a given interface
policy group are part of the same PCs.

Note

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switch and protocol(s) are configured and available.

To create the two PCs, send a post with XML such as the following:

Example:
<infraInfra dn="uni/infra">

<infraNodeP name=”test">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk”
from_=”17" to_=”18”/>

<infraNodeBlk name="nblk”
from_=”20" to_=”20”/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test1"/>
<infraRsAccPortP tDn="uni/infra/accportprof-test2"/>

</infraNodeP>

<infraAccPortP name="test1">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort="10" toPort=”15”/>

<infraRsAccBaseGrp
tDn="uni/infra/funcprof/accbundle-bndlgrp1"/>

</infraHPortS>
</infraAccPortP>

<infraAccPortP name="test2">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort=“20" toPort=”25”/>

<infraRsAccBaseGrp
tDn="uni/infra/funcprof/accbundle-bndlgrp2" />

</infraHPortS>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
233

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Two Port Channels Applied to Multiple Switches Using the REST API

</infraAccPortP>

<infraFuncP>
<infraAccBndlGrp name="bndlgrp1" lagT="link">

<infraRsHIfPol tnFabricHIfPolName=“default"/>
<infraRsCdpIfPol tnCdpIfPolName=”default”/>
<infraRsLacpPol tnLacpLagPolName=”default"/>

</infraAccBndlGrp>

<infraAccBndlGrp name="bndlgrp2" lagT="link">
<infraRsHIfPol tnFabricHIfPolName=“default"/>
<infraRsCdpIfPol tnCdpIfPolName=”default”/>
<infraRsLacpPol tnLacpLagPolName=”default"/>

</infraAccBndlGrp>
</infraFuncP>

</infraInfra>

Configuring a Virtual Port Channel on Selected Port Blocks of Two Switches Using the REST API
This policy creates a single virtual port channel (vPC) on leaf switches 18 and 25, using interfaces 1/10 to
1/15 on leaf 18, and interfaces 1/20 to 1/25 on leaf 25.

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switch and protocol(s) are configured and available.

When creating a vPC domain between two leaf switches, both switches must be in the same switch generation,
one of the following:

• Generation 1 - Cisco Nexus N9K switches without “EX” on the end of the switch name; for example,
N9K-9312TX

• Generation 2 – Cisco Nexus N9K switches with “EX” on the end of the switch model name; for example,
N9K-93108TC-EX

Switches such as these two are not compatible vPC peers. Instead, use switches of the same generation.

Note

To create the vPC send a post with XML such as the following example:

Example:
<infraInfra dn="uni/infra">

<infraNodeP name=”test1">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk”
from_=”18" to_=”18”/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
234

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Virtual Port Channel on Selected Port Blocks of Two Switches Using the REST API

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test1"/>

</infraNodeP>

<infraNodeP name=”test2">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk”
from_=”25" to_=”25”/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test2"/>

</infraNodeP>

<infraAccPortP name="test1">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort="10" toPort=”15”/>

<infraRsAccBaseGrp
tDn="uni/infra/funcprof/accbundle-bndlgrp" />

</infraHPortS>
</infraAccPortP>

<infraAccPortP name="test2">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort=“20" toPort=”25”/>

<infraRsAccBaseGrp
tDn="uni/infra/funcprof/accbundle-bndlgrp" />

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccBndlGrp name="bndlgrp" lagT=”node">

<infraRsHIfPol tnFabricHIfPolName=“default"/>
<infraRsCdpIfPol tnCdpIfPolName=”default”/>
<infraRsLacpPol tnLacpLagPolName=”default"/>

</infraAccBndlGrp>
</infraFuncP>

</infraInfra>

Configuring a Virtual Port Channel and Applying it to a Static Port Using the REST API

Before you begin

• Install the APIC, verify that the APIC controllers are online, and that the APIC cluster is formed and
healthy.

• Verify that an APIC fabric administrator account is available that will enable you to create the necessary
fabric infrastructure.

• Verify that the target leaf switches are registered in the ACI fabric and available.

Step 1 To build vPCs, send a post with XML such as the following example:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
235

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Virtual Port Channel and Applying it to a Static Port Using the REST API

https://apic-ip-address/api/policymgr/mo/.xml
<polUni>
<infraInfra>
<infraNodeP name="switchProfileforVPC_201">
<infraLeafS name="switchProfileforVPC_201" type="range">
<infraNodeBlk name="nodeBlk" from_="201" to_="201"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-intProfileforVPC_201"/>
</infraNodeP>
<infraNodeP name="switchProfileforVPC_202">
<infraLeafS name="switchProfileforVPC_202" type="range">
<infraNodeBlk name="nodeBlk" from_="202" to_="202"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-intProfileforVPC_202"/>
</infraNodeP>
<infraAccPortP name="intProfileforVPC_201">
<infraHPortS name="vpc201-202" type="range">
<infraPortBlk name="vpcPort1-15" fromCard="1" toCard="1" fromPort="15"
toPort="15"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-intPolicyGroupforVPC"/>
</infraHPortS>
</infraAccPortP>
<infraAccPortP name="intProfileforVPC_202">
<infraHPortS name="vpc201-202" type="range">
<infraPortBlk name="vpcPort1-1" fromCard="1" toCard="1" fromPort="1"
toPort="1"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-intPolicyGroupforVPC"/>
</infraHPortS>
</infraAccPortP>
<infraFuncP>
<infraAccBndlGrp name="intPolicyGroupforVPC" lagT="node">
<infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfileforCisco"/>
<infraRsCdpIfPol tnCdpIfPolName="CDP_ON" />
<infraRsLacpPol tnLacpLagPolName="LACP_ACTIVE" />
<infraRsHIfPol tnFabricHIfPolName="10GigAuto" />
</infraAccBndlGrp>
</infraFuncP>
</infraInfra>
</polUni>

Step 2 To attach the VPC to static port bindings, send a post with XML such as the following:

Example:

https://apic-ip-address/api/node/mo/uni.xml
<polUni>
<fvTenant dn="uni/tn-Cisco" name="Cisco" ownerKey="" ownerTag="">
<fvAp name="CCO" ownerKey="" ownerTag="" prio="unspecified">
<fvAEPg matchT="AtleastOne" name="Web" prio="unspecified">
<fvRsPathAtt encap="vlan-1201" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/protpaths-201-202/pathep-[vpc201-202]” />
</fvAEPg>
<fvAEPg matchT="AtleastOne" name="App" prio="unspecified">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/protpaths-201-202/pathep-[vpc201-202]” />
</fvAEPg>
</fvAp>
</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
236

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Virtual Port Channel and Applying it to a Static Port Using the REST API

Reflective Relay (802.1Qbg)
Reflective relay is a switching option beginning with Cisco APIC Release 2.3(1). Reflective relay—the tagless
approach of IEEE standard 802.1Qbg—forwards all traffic to an external switch, which then applies policy
and sends the traffic back to the destination or target VM on the server as needed. There is no local switching.
For broadcast or multicast traffic, reflective relay provides packet replication to each VM locally on the server.

One benefit of reflective relay is that it leverages the external switch for switching features and management
capabilities, freeing server resources to support the VMs. Reflective relay also allows policies that you configure
on the Cisco APIC to apply to traffic between the VMs on the same server.

In the Cisco ACI, you can enable reflective relay, which allows traffic to turn back out of the same port it
came in on. You can enable reflective relay on individual ports, port channels, or virtual port channels as a
Layer 2 interface policy using the APIC GUI, NX-OS CLI, or REST API. It is disabled by default.

The term Virtual Ethernet Port Aggregator (VEPA) is also used to describe 802.1Qbg functionality.

Reflective Relay Support

Reflective relay supports the following:

• IEEE standard 802.1Qbg tagless approach, known as reflective relay.

Cisco APIC Release 2.3(1) release does not support the IEE standard 802.1Qbg S-tagged approach with
multichannel technology.

• Physical domains.

Virtual domains are not supported.

• Physical ports, port channels (PCs), and virtual port channels (vPCs).

Cisco Fabric Extender (FEX) and blade servers are not supported. If reflective relay is enabled on an
unsupported interface, a fault is raised, and the last valid configuration is retained. Disabling reflective
relay on the port clears the fault.

• Cisco Nexus 9000 series switches with EX or FX at the end of their model name.

Enabling Reflective Relay Using the REST API
Reflective relay is disabled by default; however, you can enable it on a port, port channel, or virtual port
channel as a Layer 2 interface policy on the switch.

Before you begin

This procedure assumes that you have set up the Cisco Application Centric Infrastructure (ACI) fabric and
installed the physical switches.

Step 1 Configure a Layer 2 Interface policy with reflective relay enabled.

Example:
<l2IfPol name=“VepaL2IfPol” vepa=“enabled" />

Step 2 Apply the Layer 2 interface policy to a leaf access port policy group.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
237

Part 3: Setting Up APIC and the Fabric Using the REST API
Reflective Relay (802.1Qbg)

<infraAccPortGrp name=“VepaPortG">
<infraRsL2IfPol tnL2IfPolName=“VepaL2IfPol”/>

</infraAccPortGrp>

Step 3 Configure an interface profile with an interface selector.

Example:
<infraAccPortP name=“vepa">

<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk"

fromCard="1" toCard="1" fromPort="20" toPort="22">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-VepaPortG" />

</infraHPortS>
</infraAccPortP>

Step 4 Configure a node profile with node selector.

Example:
<infraNodeP name=“VepaNodeProfile">

<infraLeafS name=“VepaLeafSelector" type="range">
<infraNodeBlk name=“VepaNodeBlk" from_="101" to_="102"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-vepa"/>

</infraNodeP>

Interface Speed

Interface Configuration Guidelines
When configuring interfaces in a Cisco Application Centric Infrastructure (ACI) fabric, follow these guidelines.

Half duplex at 100Mbps speed is not supported

In a Cisco ACI leaf switch that supports 100Mbps speed, the 100Mbps speed is supported only if the link is
in full duplex mode and if autonegotiation is configured the same on both the local and remote peer. The
Cisco ACI leaf switch and the remote link should both be configured in full duplex mode with autonegotiation
disabled on both devices or enabled on both devices.

Connecting an SFP module requires a link speed policy

When you connect an SFP module to a new card, you must create a link speed policy for the module to
communicate with the card. Follow these steps to create a link speed policy.

1. Create an interface policy to specify the link speed, as in this example:
<fabricHIfPol name="mySpeedPol" speed="1G"/>

2. Reference the link speed policy within an interface policy group, as in this example:
<infraAccPortGrp name="myGroup">

<infraRsHIfPol tnFabricHIfPolName="SpeedPol"/>
</infraAccPortGrp>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
238

Part 3: Setting Up APIC and the Fabric Using the REST API
Interface Speed

MAC Pinning

MAC pinning is used for pinning VM traffic in a round-robin fashion to each uplink based on the MAC
address of the VM. In a normal virtual port channel (vPC), a hash algorithm uses the source and destination
MAC address to determine which uplink will carry a packet. In a vPC with MAC pinning, VM1 might be
pinned to the first uplink, VM2 pinned to the second uplink, and so on.

MAC pinning is the recommended option for channeling when connecting to upstream switches that do not
support Multichassis EtherChannel (MEC).

Consider these guidelines and restrictions when configuring MAC pinning:

• When a Cisco Application Virtual Switch or Cisco ACI Virtual Edge is deployed behind a vPC with
MAC pinning and a host is connected to two leaf switches using that same vPC, reloading one of the
two leaf switches can result in a few minutes of traffic disruption.

• In the API, MAC pinning is selected in the LACP policy by setting lacp:LagPol:mode to mac-pin. When
the policy is applied to a vPC, the vPC status as shown in pc:AggrIf:pcMode and in
pc:AggrIf:operChannelMode is displayed as active, not as mac-pin.

Changing Interface Speed
This task creates a policy that configures the speed for a set of interfaces.

To set the speed for a set of interfaces, send a post with XML such as the following example:

Example:
<infraInfra dn="uni/infra">

<infraNodeP name=”test1">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk” from_=”18" to_=”18”/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test1"/>

</infraNodeP>

<infraNodeP name=”test2">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk” from_=”25" to_=”25”/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test2"/>

</infraNodeP>

<infraAccPortP name="test1">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort="10" toPort=”15”/>

<infraRsAccBaseGrp
tDn="uni/infra/funcprof/accbundle-bndlgrp" />

</infraHPortS>
</infraAccPortP>

<infraAccPortP name="test2">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk1”
fromCard="1" toCard="1"
fromPort=“20" toPort=”25”/>

<infraRsAccBaseGrp

Cisco APIC REST API Configuration Guide, Release 4.1(x)
239

Part 3: Setting Up APIC and the Fabric Using the REST API
Changing Interface Speed

tDn="uni/infra/funcprof/accbundle-bndlgrp" />
</infraHPortS>

</infraAccPortP>

<infraFuncP>
<infraAccBndlGrp name="bndlgrp" lagT=”node">

<infraRsHIfPol tnFabricHIfPolName=“default"/>
<infraRsCdpIfPol tnCdpIfPolName=”default”/>
<infraRsLacpPol tnLacpLagPolName=”default"/>

</infraAccBndlGrp>
</infraFuncP>

</infraInfra>

FEXs

ACI FEX Guidelines
Observe the following guidelines when deploying a FEX:

• Assuming that no leaf switch front panel ports are configured to deploy and EPG andVLANs, a maximum
of 10,000 port EPGs are supported for being deployed using a FEX.

• For each FEX port or vPC that includes FEX ports as members, a maximum of 20 EPGs per VLAN are
supported.

• A vPC with FEX interfaces ignores the minimum and maximum number of links configured in its
port-channel policy. The vPC remains up even if the number of links is less than the minimum or greater
than the maximum.

Configuring an FEX VPC Policy Using the REST API
This task creates a FEX virtual port channel (VPC) policy.

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switch, interfaces, and protocol(s) are configured and available.

• The FEXes are configured, powered on, and connected to the target leaf interfaces

Cisco APIC REST API Configuration Guide, Release 4.1(x)
240

Part 3: Setting Up APIC and the Fabric Using the REST API
FEXs

When creating a VPC domain between two leaf switches, both switches must be in the same switch generation,
one of the following:

• Generation 1 - Cisco Nexus N9K switches without “EX” on the end of the switch name; for example,
N9K-9312TX

• Generation 2 – Cisco Nexus N9K switches with “EX” on the end of the switch model name; for example,
N9K-93108TC-EX

Switches such as these two are not compatible VPC peers. Instead, use switches of the same generation.

Note

To create the policy linking the FEX through a VPC to two switches, send a post with XML such as the following example:

Example:
<polUni>
<infraInfra dn="uni/infra">

<infraNodeP name="fexNodeP105">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="test" from_="105" to_="105"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-fex116nif105" />

</infraNodeP>

<infraNodeP name="fexNodeP101">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="test" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-fex113nif101" />

</infraNodeP>

<infraAccPortP name="fex116nif105">
<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk1"

fromCard="1" toCard="1" fromPort="45" toPort="48" >
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexHIF116/fexbundle-fex116" fexId="116" />

</infraHPortS>
</infraAccPortP>

<infraAccPortP name="fex113nif101">
<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk1"

fromCard="1" toCard="1" fromPort="45" toPort="48" >
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexHIF113/fexbundle-fex113" fexId="113" />

</infraHPortS>
</infraAccPortP>

<infraFexP name="fexHIF113">
<infraFexBndlGrp name="fex113"/>
<infraHPortS name="pselc-fexPC" type="range">

<infraPortBlk name="blk"
fromCard="1" toCard="1" fromPort="15" toPort="16" >

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexPCbundle" />

</infraHPortS>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
241

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring an FEX VPC Policy Using the REST API

<infraHPortS name="pselc-fexVPC" type="range">
<infraPortBlk name="blk"

fromCard="1" toCard="1" fromPort="1" toPort="8" >
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexvpcbundle" />

</infraHPortS>
<infraHPortS name="pselc-fexaccess" type="range">

<infraPortBlk name="blk"
fromCard="1" toCard="1" fromPort="47" toPort="47">

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-fexaccport" />

</infraHPortS>

</infraFexP>

<infraFexP name="fexHIF116">
<infraFexBndlGrp name="fex116"/>
<infraHPortS name="pselc-fexPC" type="range">

<infraPortBlk name="blk"
fromCard="1" toCard="1" fromPort="17" toPort="18" >

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexPCbundle" />

</infraHPortS>
<infraHPortS name="pselc-fexVPC" type="range">
<infraPortBlk name="blk"

fromCard="1" toCard="1" fromPort="1" toPort="8" >
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexvpcbundle" />

</infraHPortS>
<infraHPortS name="pselc-fexaccess" type="range">
<infraPortBlk name="blk"

fromCard="1" toCard="1" fromPort="47" toPort="47">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-fexaccport" />

</infraHPortS>

</infraFexP>

<infraFuncP>
<infraAccBndlGrp name="fexPCbundle" lagT="link">

<infraRsLacpPol tnLacpLagPolName='staticLag'/>
<infraRsHIfPol tnFabricHIfPolName="1GHIfPol" />
<infraRsAttEntP tDn="uni/infra/attentp-fexvpcAttEP"/>

</infraAccBndlGrp>

<infraAccBndlGrp name="fexvpcbundle" lagT="node">
<infraRsLacpPol tnLacpLagPolName='staticLag'/>
<infraRsHIfPol tnFabricHIfPolName="1GHIfPol" />
<infraRsAttEntP tDn="uni/infra/attentp-fexvpcAttEP"/>

</infraAccBndlGrp>
</infraFuncP>

<fabricHIfPol name="1GHIfPol" speed="1G" />
<infraAttEntityP name="fexvpcAttEP">

<infraProvAcc name="provfunc"/>
<infraRsDomP tDn="uni/phys-fexvpcDOM"/>

</infraAttEntityP>

<lacpLagPol dn="uni/infra/lacplagp-staticLag"
ctrl="susp-individual,graceful-conv"
minLinks="2"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
242

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring an FEX VPC Policy Using the REST API

maxLinks="16">
</lacpLagPol>

FCoE

Supporting Fibre Channel over Ethernet Traffic on the ACI Fabric
Cisco ACI enables you to configure and manage support for Fibre Channel over Ethernet (FCoE) traffic on
the ACI fabric.

FCoE is a protocol that encapsulates Fibre Channel (FC) packets within Ethernet packets, thus enabling storage
traffic to move seamlessly between a Fibre Channel SAN and an Ethernet network.

A typical implementation of FCoE protocol support on the ACI fabric enables hosts located on the
Ethernet-based ACI fabric to communicate with SAN storage devices located on an FC network. The hosts
are connecting through virtual F ports deployed on an ACI leaf switch. The SAN storage devices and FC
network are connected through a Fibre Channel Forwarding (FCF) bridge to the ACI fabric through a virtual
NP port, deployed on the same ACI leaf switch as is the virtual F port. Virtual NP ports and virtual F ports
are also referred to generically as virtual Fibre Channel (vFC) ports.

In the FCoE topology, the role of the ACI leaf switch is to provide a path for FCoE traffic between the locally
connected SAN hosts and a locally connected FCF device. The leaf switch does not perform local switching
between SAN hosts, and the FCoE traffic is not forwarded to a spine switch.

Note

Topology Supporting FCoE Traffic Through ACI

The topology of a typical configuration supporting FCoE traffic over the ACI fabric consists of the following
components:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
243

Part 3: Setting Up APIC and the Fabric Using the REST API
FCoE

Figure 22: ACI Topology Supporting FCoE Traffic

• One or more ACI leaf switches configured through FC SAN policies to function as an NPV backbone.

• Selected interfaces on the NPV-configured leaf switches configured to function as virtual F ports, which
accommodate FCoE traffic to and from hosts running SANmanagement or SAN-consuming applications.

• Selected interfaces on the NPV-configured leaf switches configured to function as virtual NP ports, which
accommodate FCoE traffic to and from a Fibre Channel Forwarding (FCF) bridge.

The FCF bridge receives FC traffic from fibre channel links typically connecting SAN storage devices and
encapsulates the FC packets into FCoE frames for transmission over the ACI fabric to the SAN management
or SAN Data-consuming hosts. It receives FCoE traffic and repackages it back to FC for transmission over
the fibre channel network.

In the above ACI topology, FCoE traffic support requires direct connections between the hosts and virtual F
ports and direct connections between the FCF device and the virtual NP port.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
244

Part 3: Setting Up APIC and the Fabric Using the REST API
Supporting Fibre Channel over Ethernet Traffic on the ACI Fabric

APIC servers enable an operator to configure and monitor the FCoE traffic through the APIC GUI, the APIC
NX-OS style CLI, or through application calls to the APIC REST API.

Topology Supporting FCoE Initialization

In order for FCoE traffic flow to take place as described, you must also set up separate VLAN connectivity
over which SANHosts broadcast FCoE Initialization protocol (FIP) packets to discover the interfaces enabled
as F ports.

vFC Interface Configuration Rules

Whether you set up the vFC network and EPG deployment through the APIC GUI, NX-OS style CLI, or the
REST API, the following general rules apply across platforms:

• F port mode is the default mode for vFC ports. NP port mode must be specifically configured in the
Interface policies.

• The load balancing default mode is for leaf-switch or interface level vFC configuration is src-dst-ox-id.

• One VSAN assignment per bridge domain is supported.

• The allocation mode for VSAN pools and VLAN pools must always be static.

• vFC ports require association with a VSAN domain (also called Fibre Channel domain) that contains
VSANs mapped to VLANs.

Configuring FCoE Connectivity Using the REST API
You can configure FCoE-enabled interfaces and EPGs accessing those interfaces using the FCoE protocol
with the REST API.

Step 1 To create a VSAN pool, send a post with XML such as the following example.

The example creates VSAN pool vsanPool1 and specifies the range of VSANs to be included.

Example:
https://apic-ip-address/api/mo/uni/infra/vsanns-[vsanPool1]-static.xml

<!-- Vsan-pool -->
<fvnsVsanInstP name="vsanPool1" allocMode="static">

<fvnsVsanEncapBlk name="encap" from="vsan-5" to="vsan-100"/>
</fvnsVsanInstP>

Step 2 To create a VLAN pool, send a post with XML such as the following example.

The example creates VLAN pool vlanPool1 and specifies the range of VLANs to be included.

Example:
https://apic-ip-address/api/mo/uni/infra/vlanns-[vlanPool1]-static.xml

<!-- Vlan-pool -->
<fvnsVlanInstP name="vlanPool1" allocMode="static">
<fvnsEncapBlk name="encap" from="vlan-5" to="vlan-100"/>
</fvnsVlanInstP>

Step 3 To create a VSAN-Attribute policy, send a post with XML such as the following example.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
245

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Connectivity Using the REST API

The example creates VSAN attribute policy vsanattri1, maps vsan-10 to vlan-43, and maps vsan-11 to vlan-44.

Example:
https://apic-ip-address/api/mo/uni/infra/vsanattrp-[vsanattr1].xml

<fcVsanAttrP name="vsanattr1">

<fcVsanAttrPEntry vlanEncap="vlan-43" vsanEncap="vsan-10"/>
<fcVsanAttrPEntry vlanEncap="vlan-44" vsanEncap="vsan-11"
lbType="src-dst-ox-id"/>

</fcVsanAttrP>

Step 4 To create a Fibre Channel domain, send a post with XML such as the following example.

The example creates VSAN domain vsanDom1.

Example:
https://apic-ip-address/api/mo/uni/fc-vsanDom1.xml
<!-- Vsan-domain -->
<fcDomP name="vsanDom1">

<fcRsVsanAttr tDn="uni/infra/vsanattrp-[vsanattr1]"/>
<infraRsVlanNs tDn="uni/infra/vlanns-[vlanPool1]-static"/>
<fcRsVsanNs tDn="uni/infra/vsanns-[vsanPool1]-static"/>

</fcDomP>

Step 5 To create the tenant, application profile, EPG and associate the FCoE bridge domain with the EPG, send a post with XML
such as the following example.

The example creates a bridge domain bd1 under a target tenant configured to support FCoE and an application EPG
epg1. It associates the EPG with VSAN domain vsanDom1 and a Fibre Channel path (to interface 1/39 on leaf switch
101. It deletes a Fibre channel path to interface 1/40 by assigning the <fvRsFcPathAtt> object with "deleted" status. Each
interface is associated with a VSAN.

Two other possible alternative vFC deployments are also displayed. One sample deploys vFC on a port channel.
The other sample deploys vFC on a virtual port channel.

Note

Example:
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" >
<fvRsCtx tnFvCtxName="vrf1" />

</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1">
<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
vsan="vsan-11" vsanMode="native"/>
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
vsan="vsan-10" vsanMode="regular" status="deleted"/>

</fvAEPg>

<!-- Sample deployment of vFC on a port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
246

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Connectivity Using the REST API

tDN="topology/pod-1/paths 101/pathep-pc01"/>

<!-- Sample deployment of vFC on a virtual port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-101/pathep-vpc01"/>
<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-102/pathep-vpc01"/>

</fvAp>
</fvTenant>

Step 6 To create a port policy group and an AEP, send a post with XML such as the following example.

The example executes the following requests:

• Creates a policy group portgrp1 that includes an FC interface policy fcIfPol1, a priority flow control policy pfcIfPol1
and a slow-drain policy sdIfPol1.

• Creates an attached entity profile (AEP) AttEntP1 that associates the ports in VSAN domain vsanDom1 with the
settings to be specified for fcIfPol1, pfcIfPol1, and sdIfPol1.

Example:
https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>
<infraFuncP>
<infraAccPortGrp name="portgrp1">
<infraRsFcIfPol tnFcIfPolName="fcIfPol1"/>
<infraRsAttEntP tDn="uni/infra/attentp-AttEntP1" />
<infraRsQosPfcIfPol tnQosPfcIfPolName="pfcIfPol1"/>
<infraRsQosSdIfPol tnQosSdIfPolName="sdIfPol1"/>

</infraAccPortGrp>
</infraFuncP>

<infraAttEntityP name="AttEntP1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>

</infraAttEntityP>
<qosPfcIfPol dn="uni/infra/pfc-pfcIfPol1" adminSt="on">
</qosPfcIfPol>
<qosSdIfPol dn="uni/infra/qossdpol-sdIfPol1" congClearAction="log"
congDetectMult="5" flushIntvl="100" flushAdminSt="enabled">
</qosSdIfPol>
<fcIfPol dn="uni/infra/fcIfPol-fcIfPol1" portMode="np">
</fcIfPol>

</infraInfra>
</polUni>

Step 7 To create a node selector and a port selector, send a post with XML such as the following example.

The example executes the following requests:

• Creates node selector leafsel1 that specifies leaf node 101.

• Creates port selector portsel1 that specifies port 1/39.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
247

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Connectivity Using the REST API

https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>
<infraNodeP name="nprof1">
<infraLeafS name="leafsel1" type="range">
<infraNodeBlk name="nblk1" from_="101" to_="101"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof1"/>

</infraNodeP>

<infraAccPortP name="pprof1">
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk"
fromCard="1" toCard="1" fromPort="39" toPort="39">
</infraPortBlk>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portgrp1" />
</infraHPortS>

</infraAccPortP>
</infraInfra>
</polUni>

Step 8 To create a vPC, send a post with XML such as the following example.

Example:
https://apic-ip-address/api/mo/uni.xml
<polUni>
<fabricInst>

<vpcInstPol name="vpc01" />

<fabricProtPol pairT="explicit" >
<fabricExplicitGEp name="vpc01" id="100" >

<fabricNodePEp id="101"/>
<fabricNodePEp id="102"/>
<fabricRsVpcInstPol tnVpcInstPolName="vpc01" />
<!-- <fabricLagId accBndlGrp="infraAccBndlGrp_{{pcname}}" /> -->

</fabricExplicitGEp>
</fabricProtPol>

</fabricInst>
</polUni>

Configuring FCoE Over FEX Using REST API

Before you begin

• Follow the steps 1 through 4 as described in Configuring FCoE Connectivity Using the REST API, on
page 245

Step 1 Configure FCoE over FEX (Selectors): Port:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
248

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Over FEX Using REST API

<infraInfra dn="uni/infra">
<infraNodeP name="nprof1">
<infraLeafS name="leafsel1" type="range">
<infraNodeBlk name="nblk1" from_="101" to_="101"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof1" />

</infraNodeP>

<infraAccPortP name="pprof1">
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk"
fromCard="1" toCard="1" fromPort="17" toPort="17"></infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof1/fexbundle-fexbundle1" fexId="110" />

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="portgrp1">
<infraRsAttEntP tDn="uni/infra/attentp-attentp1" />

</infraAccPortGrp>
</infraFuncP>

<infraFexP name="fexprof1">
<infraFexBndlGrp name="fexbundle1"/>
<infraHPortS name="portsel2" type="range">
<infraPortBlk name="blk2"
fromCard="1" toCard="1" fromPort="20" toPort="20"></infraPortBlk>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portgrp1"/>
</infraHPortS>

</infraFexP>

<infraAttEntityP name="attentp1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>
</infraAttEntityP>
</infraInfra>

Step 2 Tenant configuration:

Example:
fvTenant name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" >
<fvRsCtx tnFvCtxName="vrf1" />
</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1">

<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />

<fvRsFcPathAtt tDn="topology/pod-1/paths-101/extpaths-110/pathep-[eth1/17]" vsan="vsan-11"
vsanMode="native"/>

</fvAEPg>
</fvAp>

</fvTenant>

Step 3 Configure FCoE over FEX (Selectors): Port-Channel:

Example:
<infraInfra dn="uni/infra">
<infraNodeP name="nprof1">
<infraLeafS name="leafsel1" type="range">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
249

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Over FEX Using REST API

<infraNodeBlk name="nblk1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof1" />

</infraNodeP>

<infraAccPortP name="pprof1">
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk1"
fromCard="1" toCard="1" fromPort="18" toPort="18"></infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof1/fexbundle-fexbundle1" fexId="111" />

</infraHPortS>
</infraAccPortP>

<infraFexP name="fexprof1">
<infraFexBndlGrp name="fexbundle1"/>
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk1"
fromCard="1" toCard="1" fromPort="20" toPort="20"></infraPortBlk>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-pc1"/>
</infraHPortS>

</infraFexP>

<infraFuncP>
<infraAccBndlGrp name="pc1">
<infraRsAttEntP tDn="uni/infra/attentp-attentp1" />

</infraAccBndlGrp>
</infraFuncP>

<infraAttEntityP name="attentp1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>
</infraAttEntityP>
</infraInfra>

Step 4 Tenant configuration:

Example:
<fvTenant name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" >
<fvRsCtx tnFvCtxName="vrf1" />
</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1">

<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />

<fvRsFcPathAtt tDn="topology/pod-1/paths-101/extpaths-111/pathep-[pc1]" vsan="vsan-11" vsanMode="native"
/>

</fvAEPg>
</fvAp>

</fvTenant>

Step 5 Configure FCoE over FEX (Selectors): vPC:

Example:
<polUni>
<fabricInst>
<vpcInstPol name="vpc1" />
<fabricProtPol pairT="explicit" >
<fabricExplicitGEp name="vpc1" id="100" >
<fabricNodePEp id="101"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
250

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Over FEX Using REST API

<fabricNodePEp id="102"/>
<fabricRsVpcInstPol tnVpcInstPolName="vpc1" />
</fabricExplicitGEp>
</fabricProtPol>
</fabricInst>
</polUni>

Step 6 Tenant configuration:

Example:
<fvTenant name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" >
<fvRsCtx tnFvCtxName="vrf1" />
</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1">

<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />

<fvRsFcPathAtt vsanMode="native" vsan="vsan-11"
tDn="topology/pod-1/protpaths-101-102/extprotpaths-111-111/pathep-[vpc1]" />
</fvAEPg>

</fvAp>
</fvTenant>

Step 7 Selector configuration:

Example:
<polUni>
<infraInfra>
<infraNodeP name="nprof1">
<infraLeafS name="leafsel1" type="range">
<infraNodeBlk name="nblk1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof1" />
</infraNodeP>

<infraNodeP name="nprof2">
<infraLeafS name="leafsel2" type="range">
<infraNodeBlk name="nblk2" from_="102" to_="102"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof2" />
</infraNodeP>

<infraAccPortP name="pprof1">
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk1"
fromCard="1" toCard="1" fromPort="18" toPort="18">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof1/fexbundle-fexbundle1" fexId="111" />
</infraHPortS>
</infraAccPortP>
<infraAccPortP name="pprof2">
<infraHPortS name="portsel2" type="range">
<infraPortBlk name="blk2"
fromCard="1" toCard="1" fromPort="18" toPort="18">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof2/fexbundle-fexbundle2" fexId="111" />
</infraHPortS>
</infraAccPortP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
251

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FCoE Over FEX Using REST API

<infraFexP name="fexprof1">
<infraFexBndlGrp name="fexbundle1"/>
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk1"
fromCard="1" toCard="1" fromPort="20" toPort="20">
</infraPortBlk>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-vpc1"/>
</infraHPortS>
</infraFexP>

<infraFexP name="fexprof2">
<infraFexBndlGrp name="fexbundle2"/>
<infraHPortS name="portsel2" type="range">
<infraPortBlk name="blk2"
fromCard="1" toCard="1" fromPort="20" toPort="20">

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-vpc1"/>
</infraHPortS>
</infraFexP>

<infraFuncP>
<infraAccBndlGrp name="vpc1" lagT="node">

<infraRsAttEntP tDn="uni/infra/attentp-attentp1" />
</infraAccBndlGrp>
</infraFuncP>

<infraAttEntityP name="attentp1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>
</infraAttEntityP>
</infraInfra>
</polUni>

Undeploying FCoE Connectivity through the REST API or SDK
To undeploy FCoE connectivity through the APIC RESTAPI or SDK , delete the following objects associated
with the deployment:

DescriptionObject

The Fibre Channel path specifies the vFC path to the actual
interface. Deleting each object of this type removes the deployment
from that object's associated interfaces.

<fvRsFcPathAtt> (Fibre Channel Path)

The VSAN/VLAN map maps the VSANs to their associated
VLANs deleting this object removes the association between the
VSANs that support FCoE connectivity and their underlying
VSANs.

<fcVsanAttrpP> (VSAN/VLAN map)

The VSAN pool specifies the set of VSANs available to support
FCoE connectivity. Deleting this pool removes those VSANs.

<fvnsVsanInstP> (VSAN pool)

Cisco APIC REST API Configuration Guide, Release 4.1(x)
252

Part 3: Setting Up APIC and the Fabric Using the REST API
Undeploying FCoE Connectivity through the REST API or SDK

DescriptionObject

The VLAN pool specifies the set of VLANs available for VSAN
mapping. Deleting the associated VLAN pool cleans up after an
FCoE undeployment, removing the underlying VLAN entities over
which the VSAN entities ran.

<fvnsVlanIsntP> ((VLAN pool)

The Fibre Channel domain includes all the VSANs and their
mappings. Deleting this object undeploys vFC from all interfaces
associated with this domain.

<fcDomP> (VSAN or Fibre Channel
domain)

The application EPG associated with the FCoE connectivity. If the
purpose of the application EPGs was only to support FCoE-related
activity, you might consider deleting this object.

<fvAEPg> (application EPG)

The application profile associated with the FCoE connectivity. If
the purpose of the application profile was only to support
FCoE-related activity, you might consider deleting this object.

<fvAp> (application profile)

The tenant associated with the FCoE connectivity. If the purpose
of the tenant was only to support FCoE-related activity, you might
consider deleting this object.

<fvTenant> (tenant)

If during clean up you delete the Ethernet configuration object (infraHPortS) for a vFC port, the default vFC
properties remain associated with that interface. For example it the interface configuration for vFC NP port
1/20 is deleted, that port remains a vFC port but with default F port setting rather than non-default NP port
setting applied.

Note

The following steps undeploy FCoE-enabled interfaces and EPGs accessing those interfaces using the FCoE
protocol.

Step 1 To delete the associated Fibre Channel path objects, send a post with XML such as the following example.

The example deletes all instances of the Fibre Channel path object <fvRsFcPathAtt>.

Deleting the Fibre Channel paths undeploys the vFC from the ports/VSANs that used them.Note

Example:
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" >
<fvRsCtx tnFvCtxName="vrf1" />

</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1">
<fvRsBd tnFvBDName="bd1" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
253

Part 3: Setting Up APIC and the Fabric Using the REST API
Undeploying FCoE Connectivity through the REST API or SDK

<fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
vsan="vsan-11" vsanMode="native" status="deleted"/>
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
vsan="vsan-10" vsanMode="regular" status="deleted"/>

</fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

</fvAp>
</fvTenant>

Step 2 To delete the associated VSAN/VLAN map, send a post such as the following example.

The example deletes the VSAN/VLAN map vsanattri1 and its associated <fcVsanAttrpP> object.

Example:
https://apic-ip-address/api/mo/uni/infra/vsanattrp-[vsanattr1].xml

<fcVsanAttrP name="vsanattr1" status="deleted">

<fcVsanAttrPEntry vlanEncap="vlan-43" vsanEncap="vsan-10" status="deleted"/>
<fcVsanAttrPEntry vlanEncap="vlan-44" vsanEncap="vsan-11"
lbType="src-dst-ox-id" status="deleted" />

</fcVsanAttrP>

Step 3 To delete the associated VSAN pool, send a post such as the following example.

The example deletes the VSAN pool vsanPool1 and its associated <fvnsVsanInstP> object.

Example:
https://apic-ip-address/api/mo/uni/infra/vsanns-[vsanPool1]-static.xml

<!-- Vsan-pool -->
<fvnsVsanInstP name="vsanPool1" allocMode="static" status="deleted">
<fvnsVsanEncapBlk name="encap" from="vsan-5" to="vsan-100" />
</fvnsVsanInstP>

Step 4 To delete the associated VLAN pool, send a post with XML such as the following example.

The example deletes the VLAN pool vlanPool1 and its associated <fvnsVlanIsntP> object.

Example:
https://apic-ip-address/api/mo/uni/infra/vlanns-[vlanPool1]-static.xml

<!-- Vlan-pool -->
<fvnsVlanInstP name="vlanPool1" allocMode="static" status="deleted">
<fvnsEncapBlk name="encap" from="vlan-5" to="vlan-100" />
</fvnsVlanInstP>

Step 5 To delete the associated Fibre Channel domain, send a post with XML such as the following example.

The example deletes the VSAN domain vsanDom1 and its associated <fcDomP> object.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
254

Part 3: Setting Up APIC and the Fabric Using the REST API
Undeploying FCoE Connectivity through the REST API or SDK

Example:
https://apic-ip-address/api/mo/uni/fc-vsanDom1.xml
<!-- Vsan-domain -->
<fcDomP name="vsanDom1" status="deleted">

<fcRsVsanAttr tDn="uni/infra/vsanattrp-[vsanattr1]"/>
<infraRsVlanNs tDn="uni/infra/vlanns-[vlanPool1]-static"/>
<fcRsVsanNs tDn="uni/infra/vsanns-[vsanPool1]-static"/>

</fcDomP>

Step 6 Optional: If appropriate, you can delete the associated application EPG, the associated application profile, or the associated
tenant.

Example:

In the following sample, the associated application EPG epg1 and its associated <fvAEPg> object is deleted.
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1"/>
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" >
<fvRsCtx tnFvCtxName="vrf1" />

</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1" status= "deleted">
<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
vsan="vsan-11" vsanMode="native" status="deleted"/>
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
vsan="vsan-10" vsanMode="regular" status="deleted"/>

</fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

</fvAp>
</fvTenant>

Example:

In the following example, the associated application profile app1 and its associated <fvAp> object is deleted.
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc">
<fvRsCtx tnFvCtxName="vrf1" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
255

Part 3: Setting Up APIC and the Fabric Using the REST API
Undeploying FCoE Connectivity through the REST API or SDK

</fvBD>

<fvAp name="app1" status="deleted">
<fvAEPg name="epg1" status= "deleted">
<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
vsan="vsan-11" vsanMode="native" status="deleted"/>
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
vsan="vsan-10" vsanMode="regular" status="deleted"/>

</fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

</fvAp>
</fvTenant>

Example:

In the following example, the entire tenant tenant1 and its associated <fvTenant> object is deleted.
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1" status="deleted">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
<fvBD name="bd1" type="fc" status="deleted">
<fvRsCtx tnFvCtxName="vrf1" />

</fvBD>

<fvAp name="app1">
<fvAEPg name="epg1" status= "deleted">
<fvRsBd tnFvBDName="bd1" />
<fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
vsan="vsan-11" vsanMode="native" status="deleted"/>
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
vsan="vsan-10" vsanMode="regular" status="deleted"/>

</fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
<fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
256

Part 3: Setting Up APIC and the Fabric Using the REST API
Undeploying FCoE Connectivity through the REST API or SDK

</fvAp>
</fvTenant>

Fibre Channel NPV

Fibre Channel Connectivity Overview
Cisco ACI supports Fibre Channel (FC) connectivity on a leaf switch using N-Port Virtualization (NPV)
mode. NPV allows the switch to aggregate FC traffic from locally connected host ports (N ports) into a node
proxy (NP port) uplink to a core switch.

A switch is in NPV mode after enabling NPV. NPV mode applies to an entire switch. Each end device
connected to an NPV mode switch must log in as an N port to use this feature (loop-attached devices are not
supported). All links from the edge switches (in NPV mode) to the NPV core switches are established as NP
ports (not E ports), which are used for typical inter-switch links.

In the FC NPV application, the role of the ACI leaf switch is to provide a path for FC traffic between the
locally connected SAN hosts and a locally connected core switch. The leaf switch does not perform local
switching between SAN hosts, and the FC traffic is not forwarded to a spine switch.

Note

FC NPV Benefits

FC NPV provides the following:

• Increases the number of hosts that connect to the fabric without adding domain IDs in the fabric. The
domain ID of the NPV core switch is shared among multiple NPV switches.

• FC and FCoE hosts connect to SAN fabrics using native FC interfaces.

• Automatic traffic mapping for load balancing. For newly added servers connected to NPV, traffic is
automatically distributed among the external uplinks based on current traffic loads.

• Static traffic mapping. A server connected to NPV can be statically mapped to an external uplink.

FC NPV Mode

Feature-set fcoe-npv in ACI will be enabled automatically by default when the first FCoE/FC configuration
is pushed.

FC Topology

The topology of various configurations supporting FC traffic over the ACI fabric is shown in the following
figure:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
257

Part 3: Setting Up APIC and the Fabric Using the REST API
Fibre Channel NPV

• Server/storage host interfaces on the ACI leaf switch can be configured to function as either native F
ports or as virtual FC (FCoE) ports.

• An uplink interface to a FC core switch can be configured as any of the following port types:

• native FC NP port

• SAN-PO NP port

• An uplink interface to a FCF switch can be configured as any of the following port types:

• virtual (vFC) NP port

• vFC-PO NP port

• N-Port ID Virtualization (NPIV) is supported and enabled by default, allowing an N port to be assigned
multiple N port IDs or Fibre Channel IDs (FCID) over a single link.

• Trunking can be enabled on an NP port to the core switch. Trunking allows a port to support more than
one VSAN. When trunk mode is enabled on an NP port, it is referred to as a TNP port.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
258

Part 3: Setting Up APIC and the Fabric Using the REST API
Fibre Channel Connectivity Overview

• Multiple NP ports can be combined as a SAN port channel (SAN-PO) to the core switch. Trunking is
supported on a SAN port channel.

• FC F ports support 4/16/32 Gbps and auto speed configuration, but 8Gbps is not supported for host
interfaces. The default speed is "auto."

• FC NP ports support 4/8/16/32 Gbps and auto speed configuration. The default speed is "auto."

• Multiple FDISC followed by Flogi (nested NPIV) is supported with FC/FCoE host and FC/FCoE NP
links.

• Starting in the 4.1(1) release, an FCoE host behind a FEX is supported over the Fibre Channel NP/uplink.

• All FCoE hosts behind one FEX can either be load balanced across multiple vFC and vFC-PO uplinks,
or through a single Fibre Channel/SAN port channel uplink.

• SAN boot is supported on a FEX through a Fibre Channel or SAN port channel uplink.

• Starting in the 4.1(1) release, SAN boot is supported over both FC and FCoE uplinks.

Fibre Channel N-Port Virtualization Guidelines and Limitations
When configuring Fibre Channel N-Port Virtualization (NPV), note the following guidelines and limitations:

• Fibre Channel NP ports support trunk mode, but Fibre Channel F ports do not.

• On a trunk Fibre Channel port, internal login happens on the highest VSAN.

• On the core switch, the following features must be enabled:

feature npiv
feature fport-channel-trunk

• To use an 8G uplink speed, you must configure the IDLE fill pattern on the core switch.

Following is an example of configuring IDLE fill pattern on a CiscoMDS switch:

Switch(config)# int fc2/3
Switch(config)# switchport fill-pattern IDLE speed 8000
Switch(config)# show run int fc2/3

interface fc2/3
switchport speed 8000
switchport mode NP
switchport fill-pattern IDLE speed 8000
no shutdown

Note

• Fibre Channel NPV support is limited to the Cisco N9K-C93180YC-FX switch.

• You can use ports 1 through 48 for Fibre Channel configuration. Ports 49 through 54 cannot be Fibre
Channel ports.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
259

Part 3: Setting Up APIC and the Fabric Using the REST API
Fibre Channel N-Port Virtualization Guidelines and Limitations

• If you convert a port from Ethernet to Fibre Channel or the other way around, you must reload the switch.
Currently, you can convert only one contiguous range of ports to Fibre Channel ports, and this range
must be a multiple of 4, ending with a port number that is a multiple of 4. For example, 1-4, 1-8, or 21-24.

• Fibre Channel Uplink (NP) connectivity to Brocade Port Blade Fibre Channel 16-32 is not supported
when a Cisco N9K-93180YC-FX leaf switch port is configured in 8G speed.

• The selected port speed must be supported by the SFP. For example, because a 32G SFP supports
8/16/32G, a 4G port speed requires an 8G or 16G SFP. Because a 16G SFP supports 4/8/16G, a 32G
port speed requires a 32G SFP.

• Speed autonegotiation is supported. The default speed is 'auto'.

• You cannot use Fibre Channel on 40G and breakout ports.

• FEX cannot be directly connected to FC ports.

• FEX HIF ports cannot be converted to FC.

• SAN boot is supported on FEX for FCoE hosts (not Fibre Channel hosts), but not through a vPC.

• Reloading a switch after changing a switch's port profile configuration interrupts traffic through the data
plane.

Configuring FC Connectivity Using the REST API
You can configure FC-enabled interfaces and EPGs accessing those interfaces using the FC protocol with the
REST API.

Step 1 To create a VSAN pool, send a post with XML such as the following example. The example creates VSAN pool
myVsanPool1 and specifies the range of VSANs to be included as vsan-50 to vsan-60:

Example:
https://apic-ip-address/api/mo/uni/infra/vsanns-[myVsanPool1]-static.xml

<fvnsVsanInstP allocMode="static" name="myVsanPool1">
<fvnsVsanEncapBlk from="vsan-50" name="encap" to="vsan-60"/>

</fvnsVsanInstP>

Step 2 To create a Fibre Channel domain, send a post with XML such as the following example. The example creates Fibre
Channel domain (VSAN domain) myFcDomain1 and associates it with the VSAN pool myVsanPool1:

Example:
https://apic-ip-address/api/mo/uni/fc-myFcDomain1.xml

<fcDomP name="myFcDomain1">
<fcRsVsanNs tDn="uni/infra/vsanns-[myVsanPool1]-static"/>

</fcDomP>

Step 3 To create an Attached Entity Policy (AEP) for the FC ports, send a post with XML such as the following example. The
example creates the AEP myFcAEP1 and associates it with the Fibre Channel domain myFcDomain1:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
260

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FC Connectivity Using the REST API

https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>

<infraAttEntityP name="myFcAEP1">
<infraRsDomP tDn="uni/fc-myFcDomain1"/>

</infraAttEntityP>
</infraInfra>
</polUni>

Step 4 To create a FC interface policy and a policy group for server host ports, send a post with XML. This example executes
the following requests:

• Creates a FC interface policy myFcHostIfPolicy1 for server host ports. These are F ports with no trunking.

• Creates a FC interface policy group myFcHostPortGroup1 that includes the FC host interface policy
myFcHostIfPolicy1.

• Associates the policy group to the FC interface policy to convert these ports to FC ports.

• Creates a host port profile myFcHostPortProfile.

• Creates a port selector myFcHostSelector that specifies ports in range 1/1-8.

• Creates a node selector myFcNode1 that specifies leaf node 104.

• Creates a node selector myLeafSelector that specifies leaf node 104.

• Associates the host ports to the leaf node.

Example:
https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>

<fcIfPol name="myFcHostIfPolicy1" portMode="f" trunkMode="trunk-off" speed="auto"/>
<infraFuncP>

<infraFcAccPortGrp name="myFcHostPortGroup1">
<infraRsFcL2IfPol tnFcIfPolName="myFcHostIfPolicy1" />

</infraFcAccPortGrp>
</infraFuncP>
<infraAccPortP name="myFcHostPortProfile">

<infraHPortS name="myFcHostSelector" type="range">
<infraPortBlk name="myHostPorts" fromCard="1" toCard="1" fromPort="1" toPort="8" />
<infraRsAccBaseGrp tDn="uni/infra/funcprof/fcaccportgrp-myFcHostPortGroup1" />

</infraHPortS>
</infraAccPortP>
<infraNodeP name="myFcNode1">

<infraLeafS name="myLeafSelector" type="range">
<infraNodeBlk name="myLeaf104" from_="104" to_="104" />

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-myHostPorts" />

</infraNodeP>
</infraInfra>

</polUni>

When this configuration is applied, a switch reload is required to bring up the ports as FC ports.

Currently only one contiguous range of ports can be converted to FC ports, and this range must be multiple of 4
ending with a port number that is multiple of 4. Examples are 1-4, 1-8, or 21-24.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
261

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FC Connectivity Using the REST API

Step 5 To create a FC uplink port interface policy and a policy group for uplink port channels, send a post with XML. This
example executes the following requests:

• Creates a FC interface policy myFcUplinkIfPolicy2 for uplink ports. These are NP ports with trunking enabled.

• Creates a FC interface bundle policy group myFcUplinkBundleGroup2 that includes the FC uplink interface policy
myFcUplinkIfPolicy2.

• Associates the policy group to the FC interface policy to convert these ports to FC ports.

• Creates an uplink port profile myFcUplinkPortProfile.

• Creates a port selector myFcUplinkSelector that specifies ports in range 1/9-12.

• Associates the host ports to the leaf node 104.

Example:
https://apic-ip-address/api/mo/uni.xml

<polUni>
<infraInfra>

<fcIfPol name="myFcUplinkIfPolicy2" portMode="np" trunkMode="trunk-on" speed="auto"/>
<infraFuncP>

<infraFcAccBndlGrp name="myFcUplinkBundleGroup2">
<infraRsFcL2IfPol tnFcIfPolName="myFcUplinkIfPolicy2" />

</infraFcAccBndlGrp>
</infraFuncP>
<infraAccPortP name="myFcUplinkPortProfile">

<infraHPortS name="myFcUplinkSelector" type="range">
<infraPortBlk name="myUplinkPorts" fromCard="1" toCard="1" fromPort="9" toPort="12"

/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/fcaccportgrp-myFcUplinkBundleGroup2" />

</infraHPortS>
</infraAccPortP>
<infraNodeP name="myFcNode1">

<infraLeafS name="myLeafSelector" type="range">
<infraNodeBlk name="myLeaf104" from_="104" to_="104" />

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-myUplinkPorts" />

</infraNodeP>
</infraInfra>

</polUni>

When this configuration is applied, a switch reload is required to bring up the ports as FC ports.

Currently only one contiguous range of ports can be converted to FC ports, and this range must be multiple of 4
ending with a port number that is multiple of 4. Examples are 1-4, 1-8, or 21-24.

Note

Step 6 To create the tenant, application profile, EPG and associate the FC bridge domain with the EPG, send a post with XML
such as the following example. The example creates a bridge domain myFcBD1 under a target tenant configured to
support FC and an application EPG epg1. It associates the EPG with Fibre Channel domain myFcDomain1 and a Fibre
Channel path to interface 1/7 on leaf switch 104. Each interface is associated with a VSAN.

Example:
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant name="tenant1">
<fvCtx name="myFcVRF"/>
<fvBD name="myFcBD1" type="fc">
<fvRsCtx tnFvCtxName="myFcVRF"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
262

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FC Connectivity Using the REST API

</fvBD>
<fvAp name="app1">
<fvAEPg name="epg1">
<fvRsBd tnFvBDName="myFcBD1"/>
<fvRsDomAtt tDn="uni/fc-myFcDomain1"/>
<fvRsFcPathAtt tDn="topology/pod-1/paths-104/pathep-[fc1/1]" vsan="vsan-50" vsanMode="native"/>

<fvRsFcPathAtt tDn="topology/pod-1/paths-104/pathep-[fc1/2]" vsan="vsan-50" vsanMode="native"/>

</fvAEPg>
</fvAp>

</fvTenant>

Step 7 To create a traffic map to pin server ports to uplink ports, send a post with XML such as the following example. The
example creates a traffic map to pin server port vFC 1/47 to uplink port FC 1/7:

Example:
https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant name="tenant1">
<fvAp name="app1">
<fvAEPg name="epg1">
<fvRsFcPathAtt tDn="topology/pod-1/paths-104/pathep-[eth1/47]" vsan="vsan-50" vsanMode="native">

<fcPinningLbl name="label1"/>
</fvRsFcPathAtt>

</fvAEPg>
</fvAp>

</fvTenant>

https://apic-ip-address/api/mo/uni/tn-vfc_t1.xml

<fvTenant name="tenant1">
<fcPinningP name="label1">
<fcRsPinToPath tDn="topology/pod-1/paths-104/pathep-[fc1/7]"/>

</fcPinningP>
</fvTenant>

If traffic map pinning is configured for the first time, the server host port must be shut before configuring the first
traffic map.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
263

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FC Connectivity Using the REST API

802.1Q Tunnels

About ACI 802.1Q Tunnels
Figure 23: ACI 802.1Q Tunnels

With Cisco ACI and Cisco APIC Release 2.2(1x) and higher, you can configure 802.1Q tunnels on edge
(tunnel) ports to enable point-to-multi-point tunneling of Ethernet frames in the fabric, with Quality of Service
(QoS) priority settings. A Dot1q Tunnel transports untagged, 802.1Q tagged, and 802.1ad double-tagged
frames as-is across the fabric. Each tunnel carries the traffic from a single customer and is associated with a
single bridge domain. ACI front panel ports can be part of a Dot1q Tunnel. Layer 2 switching is done based
on Destination MAC (DMAC) and regular MAC learning is done in the tunnel. Edge-port Dot1q Tunnels
are supported on second-generation (and later) Cisco Nexus 9000 series switches with "EX" on the end of the
switch model name.

With Cisco ACI and Cisco APIC Release 2.3(x) and higher, you can also configure multiple 802.1Q tunnels
on the same core port to carry double-tagged traffic from multiple customers, each distinguished with an
access encapsulation configured for each 802.1Q tunnel. You can also disable MAC Address Learning on
802.1Q tunnels. Both edge ports and core ports can belong to an 802.1Q tunnel with access encapsulation and
disabled MAC Address Learning. Both edge ports and core ports in Dot1q Tunnels are supported on
third-generation Cisco Nexus 9000 series switches with "FX" and "FX2" on the end of the switch model name.

Terms used in this document may be different in the Cisco Nexus 9000 Series documents.

Table 3: 802.1Q Tunnel Terminology

Cisco Nexus 9000 Series DocumentsACI Documents

Tunnel PortEdge Port

Trunk PortCore Port

Cisco APIC REST API Configuration Guide, Release 4.1(x)
264

Part 3: Setting Up APIC and the Fabric Using the REST API
802.1Q Tunnels

The following guidelines and restrictions apply:

• Layer 2 tunneling of VTP, CDP, LACP, LLDP, and STP protocols is supported with the following
restrictions:

• Link Aggregation Control Protocol (LACP) tunneling functions as expected only with point-to-point
tunnels using individual leaf interfaces. It is not supported on port-channels (PCs) or virtual
port-channels (vPCs).

• CDP and LLDP tunneling with PCs or vPCs is not deterministic; it depends on the link it chooses
as the traffic destination.

• To use VTP for Layer 2 protocol tunneling, CDP must be enabled on the tunnel.

• STP is not supported in an 802.1Q tunnel bridge domain when Layer 2 protocol tunneling is enabled
and the bridge domain is deployed on Dot1q Tunnel core ports.

• ACI leaf switches react to STP TCN packets by flushing the end points in the tunnel bridge domain
and flooding them in the bridge domain.

• CDP and LLDP tunneling with more than two interfaces flood packets on all interfaces.

• With Cisco APICRelease 2.3(x) or higher, the destinationMAC address of Layer 2 protocol packets
tunneled from edge to core ports is rewritten as 01-00-0c-cd-cd-d0 and the destinationMAC address
of Layer 2 protocol packets tunneled from core to edge ports is rewritten with the standard default
MAC address for the protocol.

• If a PC or vPC is the only interface in a Dot1q Tunnel and it is deleted and reconfigured, remove the
association of the PC/VPC to the Dot1q Tunnel and reconfigure it.

• For 802.1Q tunnels deployed on switches that have EX in the product ID, Ethertype combinations of
0x8100+0x8100, 0x8100+0x88a8, 0x88a8+0x8100, and 0x88a8+0x88a8 for the first two VLAN tags
are not supported.

If the tunnels are deployed on a combination of EX and FX or later switches, then this restriction still
applies.

If the tunnels are deployed only on switches that have FX or later in the product ID, then this restriction
does not apply.

• For core ports, the Ethertypes for double-tagged frames must be 0x8100 followed by 0x8100.

• You can include multiple edge ports and core ports (even across leaf switches) in a Dot1q Tunnel.

• An edge port may only be part of one tunnel, but a core port can belong to multiple Dot1q tunnels.

• With Cisco APIC Release 2.3(x) and higher, regular EPGs can be deployed on core ports that are used
in 802.1Q tunnels.

• L3Outs are not supported on interfaces enabled for Dot1q Tunnels.

• FEX interfaces are not supported as members of a Dot1q Tunnel.

• Interfaces configured as breakout ports do not support 802.1Q tunnels.

• Interface-level statistics are supported for interfaces in Dot1q Tunnels, but statistics at the tunnel level
are not supported.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
265

Part 3: Setting Up APIC and the Fabric Using the REST API
About ACI 802.1Q Tunnels

Configuring 802.1Q Tunnels With Ports Using the REST API
Create a Dot1q Tunnel, using ports, and configure the interfaces for it with steps such as the following
examples.

Before you begin

Configure the tenant that will use the Dot1q Tunnel.

Step 1 Create a Dot1q Tunnel using the REST API with XML such as the following example.

The example configures the tunnel with the LLDP Layer 2 tunneling protocol, adds the access encapsulation VLAN, and
disables MAC learning in the tunnel.

Example:
<fvTnlEPg name="VRF64_dot1q_tunnel" qiqL2ProtTunMask="lldp" accEncap="vlan-10"
fwdCtrl="mac-learn-disable" >

<fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/13]"/>
</fvTnlEPg>

Step 2 Configure a Layer 2 Interface policy with static binding with XML such as the following example.

The example configures a Layer 2 interface policy for edge-switch ports. To configure a policy for core-switch ports,
use corePort instead of edgePort in the l2IfPolMO.

Example:
<l2IfPol name="VRF64_L2_int_pol" qinq="edgePort" />

Step 3 Apply the Layer 2 Interface policy to a Leaf Access Port Policy Group with XML such as the following example.

Example:
<infraAccPortGrp name="VRF64_L2_Port_Pol_Group" >

<infraRsL2IfPol tnL2IfPolName="VRF64_L2_int_pol"/>
</infraAccPortGrp>

Step 4 Configure a Leaf Profile with an Interface Selector with XML such as the following example:

Example:
<infraAccPortP name="VRF64_dot1q_leaf_profile" >

<infraHPortS name="vrf64_access_port_selector" type="range">
<infraPortBlk name="block2" toPort="15" toCard="1" fromPort="13" fromCard="1"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-VRF64_L2_Port_Pol_Group" />

</infraHPortS>
</infraAccPortP>

Example

The following example shows the port configuration for edge ports in two posts.

XML with Post 1:
<polUni>
<infraInfra>
<l2IfPol name="testL2IfPol" qinq="edgePort"/>
<infraNodeP name="Node_101_phys">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
266

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1Q Tunnels With Ports Using the REST API

<infraLeafS name="phys101" type="range">
<infraNodeBlk name="test" from_="101" to_="101"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-phys21"/>

</infraNodeP>
<infraAccPortP name="phys21">
<infraHPortS name="physHPortS" type="range">
<infraPortBlk name="phys21" fromCard="1" toCard="1" fromPort="21" toPort="21"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-21"/>

</infraHPortS>
</infraAccPortP>
<infraFuncP>
<infraAccPortGrp name="21">
<infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
<infraRsAttEntP tDn="uni/infra/attentp-AttEntityProf1701"/>

</infraAccPortGrp>
</infraFuncP>
<l2IfPol name='testL2IfPol' qinq=‘edgePort'/>
<infraAttEntityP name="AttEntityProf1701">
<infraRsDomP tDn="uni/phys-dom1701"/>

</infraAttEntityP>
</infraInfra>

</polUni>

XML with Post 2:
<polUni>
<fvTenant dn="uni/tn-Coke" name="Coke">
<fvTnlEPg name="WEB5" qiqL2ProtTunMask="lldp" accEncap="vlan-10"

fwdCtrl="mac-learn-disable" >
<fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/21]"/>

</fvTnlEPg>
</fvTenant>

</polUni>

Configuring 802.1Q Tunnels With PCs Using the REST API
Create aDot1q Tunnel, using PCs, and configure the interfaces for it with steps such as the following examples.

Before you begin

Configure the tenant that will use the Dot1q Tunnel.

Step 1 Create a Dot1q Tunnel using the REST API with XML such as the following example.

The example configures the tunnel with the LLDP Layer 2 tunneling protocol, adds the access encapsulation VLAN, and
disables MAC learning in the tunnel.

Example:
<fvTnlEPg name="WEB" qiqL2ProtTunMask=lldp accEncap="vlan-10" fwdCtrl="mac-learn-disable" >

<fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[po2]"/>
</fvTnlEPg>

Step 2 Configure a Layer 2 Interface policy with static binding with XML such as the following example.

The example configures a Layer 2 interface policy for edge-switch ports. To configure a Layer 2 interface policy for
core-switch ports, use corePort instead of edgePort in the l2IfPolMO.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
267

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1Q Tunnels With PCs Using the REST API

<l2IfPol name="testL2IfPol" qinq="edgePort"/>

Step 3 Apply the Layer 2 Interface policy to a PC Interface Policy Group with XML such as the following:

Example:
<infraAccBndlGrp name="po2" lagT="link">

<infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
</infraAccBndlGrp>

Step 4 Configure a Leaf Profile with an Interface Selector with XML such as the following:

Example:
<infraAccPortP name="PC">

<infraHPortS name="allow" type="range">
<infraPortBlk name="block2" fromCard="1" toCard="1" fromPort="10" toPort="11" />
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-po2"/>
</infraHPortS>
</infraAccPortP>

Example

The following example shows the PC configuration in two posts.

This example configures the PC ports as edge ports. To configure them as core ports, use corePort
instead of edgePort in the l2IfPolMO, in Post 1.

XML with Post 1:
<infraInfra dn="uni/infra">

<infraNodeP name="bLeaf3">
<infraLeafS name="leafs3" type="range">

<infraNodeBlk name="nblk3" from_="101" to_="101">
</infraNodeBlk>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-shipping3"/>

</infraNodeP>
<infraAccPortP name="shipping3">
<infraHPortS name="pselc3" type="range">

<infraPortBlk name="blk3" fromCard="1" toCard="1" fromPort="24" toPort="25"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-accountingLag3" />
</infraHPortS>

</infraAccPortP>
<infraFuncP>

<infraAccBndlGrp name="accountingLag3" lagT='link'>
<infraRsAttEntP tDn="uni/infra/attentp-default"/>

<infraRsLacpPol tnLacpLagPolName='accountingLacp3'/>
<infraRsL2IfPol tnL2IfPolName="testL2IfPol3"/>

</infraAccBndlGrp>
</infraFuncP>
<lacpLagPol name='accountingLacp3' ctrl='15' descr='accounting' maxLinks='14' minLinks='1'
mode='active' />
<l2IfPol name='testL2IfPol3' qinq='edgePort'/>
<infraAttEntityP name="default">
</infraAttEntityP>
</infraInfra>

XML with Post 2:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
268

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1Q Tunnels With PCs Using the REST API

<polUni>
<fvTenant dn="uni/tn-Coke" name="Coke">
<!-- bridge domain -->
<fvTnlEPg name="WEB6" qiqL2ProtTunMask="lldp" accEncap="vlan-10"

fwdCtrl="mac-learn-disable" >
<fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[accountingLag1]"/>

</fvTnlEPg>
</fvTenant>

</polUni>

Configuring 802.1 Q Tunnels With vPCs Using the REST API
Create a Dot1q Tunnel, using vPCs, and configure the interfaces for it with steps such as the following
examples.

Before you begin

Configure the tenant that will use the Dot1q Tunnel.

Step 1 Create an 802.1Q tunnel using the REST API with XML such as the following example.

The example configures the tunnel with a Layer 2 tunneling protocol, adds the access encapsulation VLAN, and disables
MAC learning in the tunnel.

Example:
<fvTnlEPg name="WEB" qiqL2ProtTunMask=lldp accEncap="vlan-10" fwdCtrl="mac-learn-disable" >

<fvRsTnlpathAtt tDn="topology/pod-1/protpaths-101-102/pathep-[po4]" />
</fvTnlEPg>

Step 2 Configure a Layer 2 interface policy with static binding with XML such as the following example.

The example configures a Layer 2 interface policy for edge-switch ports. To configure a Layer 2 interface policy for
core-switch ports, use the qinq="corePort" port type.

Example:
<l2IfPol name="testL2IfPol" qinq="edgePort"/>

Step 3 Apply the Layer 2 Interface policy to a VPC Interface Policy Group with XML such as the following:

Example:
<infraAccBndlGrp name="po4" lagT="node">

<infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
</infraAccBndlGrp>

Step 4 Configure a Leaf Profile with an Interface Selector with XML such as the following:

Example:
<infraAccPortP name="VPC">
<infraHPortS name="allow" type="range">
<infraPortBlk name="block2" fromCard="1" toCard="1" fromPort="10" toPort="11" />
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-po4"/>
</infraHPortS>
</infraAccPortP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
269

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1 Q Tunnels With vPCs Using the REST API

Example

The following example shows the vPC configuration in three posts.

This example configures the vPC ports as edge ports. To configure them as core ports, use corePort
instead of edgePort in the l2IfPolMO, in Post 2

XML with Post 1:
<polUni>

<fabricInst>
<fabricProtPol pairT="explicit">

<fabricExplicitGEp name="101-102-vpc1" id="30">
<fabricNodePEp id="101"/>
<fabricNodePEp id="102"/>

</fabricExplicitGEp>
</fabricProtPol>

</fabricInst>
</polUni>

XML with Post 2:
<infraInfra dn="uni/infra">

<infraNodeP name="bLeaf1">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk" from_="101" to_="101">
</infraNodeBlk>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-shipping1"/>

</infraNodeP>

<infraNodeP name="bLeaf2">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk" from_="102" to_="102">
</infraNodeBlk>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-shipping2"/>

</infraNodeP>

<infraAccPortP name="shipping1">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="4" toPort="4"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-accountingLag1" />

</infraHPortS>
</infraAccPortP>

<infraAccPortP name="shipping2">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="2" toPort="2"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-accountingLag2" />

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccBndlGrp name="accountingLag1" lagT='node'>
<infraRsAttEntP tDn="uni/infra/attentp-default"/>

<infraRsLacpPol tnLacpLagPolName='accountingLacp1'/>
<infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>

</infraAccBndlGrp>
<infraAccBndlGrp name="accountingLag2" lagT='node'>
<infraRsAttEntP tDn="uni/infra/attentp-default"/>

<infraRsLacpPol tnLacpLagPolName='accountingLacp1'/>
<infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
270

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1 Q Tunnels With vPCs Using the REST API

</infraAccBndlGrp>
</infraFuncP>
<lacpLagPol name='accountingLacp1' ctrl='15' descr='accounting' maxLinks='14' minLinks='1'
mode='active' />
<l2IfPol name='testL2IfPol' qinq='edgePort'/>

<infraAttEntityP name="default">
</infraAttEntityP>
</infraInfra>

XML with Post 3:
<polUni>
<fvTenant dn="uni/tn-Coke" name="Coke">
<!-- bridge domain -->
<fvTnlEPg name="WEB6" qiqL2ProtTunMask="lldp" accEncap="vlan-10"

fwdCtrl="mac-learn-disable" >
<fvRsTnlpathAtt tDn="topology/pod-1/protpaths-101-102/pathep-[accountingLag2]"/>

</fvTnlEPg>
</fvTenant>

</polUni>

Breakout Ports

Configuration of Dynamic Breakout Ports
Breakout cables are suitable for very short links and offer a cost effective way to connect within racks and
across adjacent racks.

Breakout enables a 40 Gigabit (Gb) port to be split into four independent and logical 10Gb ports or a 100Gb
port to be split into four independent and logical 25Gb ports.

Before you configure breakout ports, connect a 40Gb port to four 10Gb ports or a 100Gb port to four 25Gb
ports with one of the following cables:

• Cisco QSFP-4SFP10G

• Cisco QSFP-4SFP25G

• Cisco QSFP-4X10G-AOC

• MPO to breakout splitter cable with QSFP-40G-SR4 and 4 x SFP-10G-SR on the ends

• MPO to breakout splitter cable with QSFP-100G-SR4-S and 4 x SFP-25G-SR-S on the ends

For the supported optics and cables, see the Cisco Optics-to-Device Compatibility Matrix:

https://tmgmatrix.cisco.com/

Note

The 40Gb to 10Gb dynamic breakout feature is supported on the access facing ports of the following switches:

• N9K-C9332PQ

• N9K-C93180LC-EX

Cisco APIC REST API Configuration Guide, Release 4.1(x)
271

Part 3: Setting Up APIC and the Fabric Using the REST API
Breakout Ports

https://tmgmatrix.cisco.com/

• N9K-C9336C-FX2

• N9K-C93360YC-FX2

• N9K-C93216TC-FX2

The 100Gb to 25Gb breakout feature is supported on the access facing ports of the following switches:

• N9K-C93180LC-EX

• N9K-C9336C-FX2

• N9K-C93180YC-FX

• N9K-C93360YC-FX2

• N9K-C93216TC-FX2

Observe the following guidelines and limitations:

• For the Cisco N9K-C9332PQ switch, you can configure ports 1 to 26 as downlink ports. Of those ports,
breakout ports can be configured on port 1 to 12 and 15 to 26. Ports 13 and 14 do not support breakout.

• Breakout ports are supported only on downlinks and converted downlinks.

• Starting in Cisco Application Policy Infrastructure Controller (APIC) release 3.2(1), dynamic
breakouts (both 100Gb and 40Gb) are supported on profiled QSFP ports on the Cisco
N9K-C93180YC-FX switch.

• Starting in Cisco APIC release 4.1(2), dynamic breakouts (both 100Gb and 40Gb) are supported
on profiled QSFP ports on the Cisco N9K-C93216TC-FX2 switch.

• Starting in Cisco APIC release 4.1(2), dynamic breakouts (both 100Gb and 40Gb) are supported
on profiled QSFP ports on the Cisco N9K-C93360YC-FX2 switch.

• Breakout ports cannot be used for Cisco APIC connectivity.

• Fast Link Failover policies are not supported on the same port with the dynamic breakout feature.

• Breakout subports can be used in the same way other port types in the policy model are used.

• When a port is enabled for dynamic breakout, other policies (expect monitoring policies) on the parent
port are no longer valid.

• When a port is enabled for dynamic breakout, other EPG deployments on the parent port are no longer
valid.

• A breakout sub-port can not be further broken out using a breakout policy group.

• If the LACP transmit rate on port channels that have breakout sub-ports need to be changed, then all the
port channels that include breakout sub-ports need to use the same LACP transmit rate configuration.
You can configure an override policy to set the transmit rate as follows:

1. Configure/change the default port channel member policy to include Fast Transmit Rate (Fabric >
Access Policies > Policies > Interface > Port Channel Member).

2. Configure all the PC/vPC interface policy groups to include the above default port channel member
policy under the override policy groups (Fabric >Access Policies > Interfaces > Leaf Interfaces >
Policy Groups > PC/vPC Interface).

Cisco APIC REST API Configuration Guide, Release 4.1(x)
272

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuration of Dynamic Breakout Ports

Configuring Dynamic Breakout Ports Using the REST API
Configure a Breakout Leaf Port with an Leaf Interface Profile, associate the profile with a switch, and configure
the sub ports with the following steps.

For switch support for the breakout feature, see Configuration of Dynamic Breakout Ports, on page 271.

Procedure

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switches are registered in the ACI fabric and available.

• The 40GE or 100GE leaf switch ports are connected with Cisco breakout cables to the downlink ports.

Step 1 Configure a breakout policy group for the breakout port with JSON, such as the following example:

Example:

In this example, we create an interface profile 'brkout44' with the only port 44 underneath its port selector. The port
selector is pointed to a breakout policy group 'new-brkoutPol'.
{

"infraAccPortP": {
"attributes": {
"dn":"uni/infra/accportprof-brkout44",
"name":"brkout44",
"rn":"accportprof-brkout44",
"status":"created,modified"
},
"children":[{

"infraHPortS": {
"attributes": {
"dn":"uni/infra/accportprof-brkout44/hports-new-brekoutPol-typ-range",
"name":"new-brkoutPol",
"rn":"hports-new-brkoutPol-typ-range",
"status":"created,modified"

},
"children":[{

"infraPortBlk": {
"attributes": {

"dn":"uni/infra/accportprof-brkout44/hports-new-brkoutPol-typ-range/portblk-block2",
"fromPort":"44",
"toPort":"44",
"name":"block2",
"rn":"portblk-block2",
"status":"created,modified"

},
"children":[] }

}, {
"infraRsAccBaseGrp": {
"attributes":{

"tDn":"uni/infra/funcprof/brkoutportgrp-new-brkoutPol",
"status":"created,modified"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
273

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Dynamic Breakout Ports Using the REST API

},
"children":[]
}

}
]

}
}

]
}
}

Step 2 Create a new switch profile and associate it with the port profile, previously created, with JSON such as the following
example:

Example:

In this example, we create a new switch profile 'leaf1017' with switch 1017 as the only node.We associate this new switch
profile with the port profile 'brkout44' created above. After this, the port 44 on switch 1017 will have 4 sub ports.

Example:
{

"infraNodeP": {
"attributes": {
"dn":"uni/infra/nprof-leaf1017",
"name":"leaf1017","rn":"nprof-leaf1017",
"status":"created,modified"
},
"children": [{
"infraLeafS": {
"attributes": {
"dn":"uni/infra/nprof-leaf1017/leaves-1017-typ-range",
"type":"range",
"name":"1017",
"rn":"leaves-1017-typ-range",
"status":"created"

},
"children": [{
"infraNodeBlk": {
"attributes": {
"dn":"uni/infra/nprof-leaf1017/leaves-1017-typ-range/nodeblk-102bf7dc60e63f7e",
"from_":"1017","to_":"1017",
"name":"102bf7dc60e63f7e",
"rn":"nodeblk-102bf7dc60e63f7e",
"status":"created"
},
"children": [] }
}

]
}

}, {
"infraRsAccPortP": {
"attributes": {
"tDn":"uni/infra/accportprof-brkout44",
"status":"created,modified"

},
"children": [] }
}

]
}

}

Step 3 Configure the subports.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
274

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Dynamic Breakout Ports Using the REST API

This example configures subports 1/44/1, 1/44/2, 1/44/3, 1/44/4 on switch 1017, for instance, in the example below, we
configure interface 1/44/3. It also creates the infraSubPortBlk object instead of the infraPortBlk object.
{

"infraAccPortP": {
"attributes": {
"dn":"uni/infra/accportprof-brkout44",
"name":"brkouttest1",
"rn":"accportprof-brkout44",
"status":"created,modified"

},
"children": [{
"infraHPortS": {
"attributes": {
"dn":"uni/infra/accportprof-brkout44/hports-sel1-typ-range",
"name":"sel1",
"rn":"hports-sel1-typ-range",
"status":"created,modified"

},
"children": [{
"infraSubPortBlk": {
"attributes": {
"dn":"uni/infra/accportprof-brkout44/hports-sel1-typ-range/subportblk-block2",
"fromPort":"44",
"toPort":"44",
"fromSubPort":"3",
"toSubPort":"3",
"name":"block2",
"rn":"subportblk-block2",
"status":"created"
},
"children":[]}
},

{
"infraRsAccBaseGrp": {

"attributes": {
"tDn":"uni/infra/funcprof/accportgrp-p1",
"status":"created,modified"

},
"children":[]}
}

]
}

}
]

}
}

Step 4 Deploy an EPG on a specific port.

Example:
<fvTenant name="<tenant_name>" dn="uni/tn-test1" >

<fvCtx name="<network_name>" pcEnfPref="enforced" knwMcastAct="permit"/>
<fvBD name="<bridge_domain_name>" unkMcastAct="flood" >

<fvRsCtx tnFvCtxName="<network_name>"/>
</fvBD>
<fvAp name="<application_profile>" >

<fvAEPg name="<epg_name>" >
<fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/13]" mode="regular"

instrImedcy="immediate" encap="vlan-20"/>
</fvAEPg>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
275

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Dynamic Breakout Ports Using the REST API

</fvAp>
</fvTenant>

Port Profiles to Change Uplinks to Downlinks and Downlinks
to Uplinks

Configuring Port Profiles
Prior to Cisco Application Policy Infrastructure Controller (APIC) release 3.1(1), conversion from uplink port
to downlink port or downlink port to uplink port (in a port profile) was not supported on Cisco ACI leaf
switches. Starting with Cisco APIC release 3.1(1), uplink and downlink conversion is supported on Cisco
Nexus 9000 series switches with names that end in EX or FX, and later (for example, N9K-C9348GC-FXP
or N9K-C93240YC-FX2). A FEX connected to converted downlinks is also supported.

This functionality is supported on the following Cisco switches:

• N9K-C9348GC-FXP (does not support FEX)

• N9K-C93180LC-EX

• N9K-C93180YC-FX and N9K-93180YC-EX

• N9K-C93108TC-EX and N9K-C93108TC-FX (only uplink to downlink conversion is supported)

• N9K-C9336C-FX2 (only downlink to uplink conversion is supported)

• N9K-C93240YC-FX2

When an uplink port is converted to a downlink port, it acquires the same capabilities as any other downlink
port.

Restrictions

• Fast Link Failover policies and port profiles are not supported on the same port. If port profile is enabled,
Fast Link Failover cannot be enabled or vice versa.

• The last 2 uplink ports of supported leaf switches cannot be converted to downlink ports (they are reserved
for uplink connections.)

• Dynamic breakouts (both 100Gb and 40Gb) are supported on profiled QSFP ports on the
N9K-C93180YC-FX switch. Breakout and port profile are supported together for conversion of uplink
to downlink on ports 49-52. Breakout (both 10g-4x or 25g-4x options) is supported on downlink profiled
ports.

• The N9K-C9348GC-FXP does not support FEX.

• Breakout is supported only on downlink ports, and not on fabric ports that are connected to other switches.

• A Cisco ACI leaf switch cannot have more than 56 fabric links.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
276

Part 3: Setting Up APIC and the Fabric Using the REST API
Port Profiles to Change Uplinks to Downlinks and Downlinks to Uplinks

• Reloading a switch after changing a switch's port profile configuration interrupts traffic through the data
plane.

Guidelines

In converting uplinks to downlinks and downlinks to uplinks, consider the following guidelines.

GuidelineSubject

If a decommissioned node has the port profile feature deployed on it, the port
conversions are not removed even after decommissioning the node. It is
necessary to manually delete the configurations after decommission, for the
ports to return to the default state. To do this, log onto the switch, run the
setup-clean-config.sh script, and wait for it to run. Then, enter the reload
command. Optionally, you can specify -k with the setup-clean-config.sh
script to allow the port-profile setting to persist across the reload, making an
additional reboot unnecessary.

Decommissioning nodes
with port profiles

When you enable or disable Federal Information Processing Standards (FIPS)
on a Cisco ACI fabric, you must reload each of the switches in the fabric for
the change to take effect. The configured scale profile setting is lost when you
issue the first reload after changing the FIPS configuration. The switch remains
operational, but it uses the default scale profile. This issue does not happen on
subsequent reloads if the FIPS configuration has not changed.

FIPS is supported on Cisco NX-OS release 13.1(1) or later.

If you must downgrade the firmware from a release that supports FIPS to a
release that does not support FIPS, you must first disable FIPS on the Cisco
ACI fabric and reload all the switches in the fabric for the FIPS configuration
change.

FIPS

Cisco APIC REST API Configuration Guide, Release 4.1(x)
277

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Port Profiles

GuidelineSubject

When the maximum uplink port limit is reached and ports 25 and 27 are
converted from uplink to downlink and back to uplink on Cisco 93180LC-EX
switches:

On Cisco 93180LC-EX Switches, ports 25 and 27 are the native uplink ports.
Using the port profile, if you convert port 25 and 27 to downlink ports, ports
29, 30, 31, and 32 are still available as four native uplink ports. Because of the
threshold on the number of ports (which is maximum of 12 ports) that can be
converted, you can convert 8 more downlink ports to uplink ports. For example,
ports 1, 3, 5, 7, 9, 13, 15, 17 are converted to uplink ports and ports 29, 30, 31
and 32 are the 4 native uplink ports (the maximum uplink port limit on Cisco
93180LC-EX switches).

When the switch is in this state and if the port profile configuration is deleted
on ports 25 and 27, ports 25 and 27 are converted back to uplink ports, but
there are already 12 uplink ports on the switch (as mentioned earlier). To
accommodate ports 25 and 27 as uplink ports, 2 random ports from the port
range 1, 3, 5, 7, 9, 13, 15, 17 are denied the uplink conversion and this situation
cannot be controlled by the user.

Therefore, it is mandatory to clear all the faults before reloading the leaf node
to avoid any unexpected behavior regarding the port type. It should be noted
that if a node is reloaded without clearing the port profile faults, especially
when there is a fault related to limit-exceed, the port might not be in an expected
operational state.

Maximum uplink port limit

Breakout Limitations

LimitationsReleasesSwitch

• 40Gb dynamic breakouts into 4X10Gb ports
are supported.

• Ports 13 and 14 do not support breakouts.

• Port profiles and breakouts are not supported
on the same port.

Cisco APIC 2.2 (1n) and
higher

N9K-C9332PQ

• 40Gb and 100Gb dynamic breakouts are
supported on ports 1 through 24 on odd
numbered ports.

• When the top ports (odd ports) are broken out,
then the bottom ports (even ports) are error
disabled.

• Port profiles and breakouts are not supported
on the same port.

Cisco APIC 3.1(1i) and
higher

N9K-C93180LC-EX

Cisco APIC REST API Configuration Guide, Release 4.1(x)
278

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Port Profiles

LimitationsReleasesSwitch

• 40Gb and 100Gb dynamic breakouts are
supported on ports 1 through 30.

• Port profiles and breakouts are not supported
on the same port.

Cisco APIC 3.2(1l) and
higher

N9K-C9336C-FX2

• 40Gb and 100Gb dynamic breakouts are
supported on ports 49 though 52, when they
are on profiled QSFP ports. To use them for
dynamic breakout, perform the following
steps:

• Convert ports 49-52 to front panel ports
(downlinks).

• Perform a port-profile reload, using one
of the following methods:

• In the Cisco APIC GUI, navigate to
Fabric > Inventory > Pod > Leaf,
right-click Chassis and choose
Reload.

• In the iBash CLI, enter the reload
command.

• Apply breakouts on the profiled ports
49-52.

• Ports 53 and 54 do not support either port
profiles or breakouts.

Cisco APIC 3.2(1l) and
higher

N9K-C93180YC-FX

Breakout is not supported on converted downlinks.Cisco APIC 4.0(1) and
higher

N9K-C93240YC-FX2

Port Profile Configuration Summary
The following table summarizes supported uplinks and downlinks for the switches that support port profile
conversions from Uplink to Downlink and Downlink to Uplink.

Release
Supported

Max Downlinks
(Server Ports)

Max Uplinks (Fabric
Ports)

Default LinksSwitch Model

3.1(1i)Same as default48 x 100M/1G
BASE-T downlinks

4 x 10/25-Gbps SFP28
uplinks

2 x 40/100-Gbps
QSFP28 uplinks

48 x 100M/1G
BASE-T downlinks

4 x 10/25-Gbps SFP28
downlinks

2 x 40/100-Gbps
QSFP28 uplinks

N9K-C9348GC-FXP

Cisco APIC REST API Configuration Guide, Release 4.1(x)
279

Part 3: Setting Up APIC and the Fabric Using the REST API
Port Profile Configuration Summary

Release
Supported

Max Downlinks
(Server Ports)

Max Uplinks (Fabric
Ports)

Default LinksSwitch Model

3.1(1i)4 x 40-Gbps QSFP 28
downlinks

2 x 40/100-Gbps
QSFP 28 downlinks

4 x 40/100-Gbps
uplinks

Or

12 x 100-Gbps QSFP
28 downlinks

2 x 40/100-Gbps
QSFP 28 downlinks

4 x 40/100-Gbps
uplinks

12 x 40-GbpsQSFP 28
downlinks

12 x 40/100-Gbps
QSFP 28 uplinks

Or

6 x 100-GbpsQSFP 28
downlinks

12 x 40/100-Gbps
QSFP 28 uplinks

24 x 40-Gbps QSFP 28
downlinks

6 x 40/100-Gbps QSFP
28 uplinks

Or

12 x 100-Gbps QSFP
28 downlinks

6 x 40/100-Gbps QSFP
28 uplinks

N9K-C93180LC-EX

3.1(1i)48 x 10/25-Gbps fiber
downlinks

4 x 40/100-Gbps
QSFP28 downlinks

2 x 40/100-Gbps
QSFP28 uplinks

48 x 10/25-Gbps fiber
downlinks

6 x 40/100-Gbps
QSFP28 uplinks

48 x 10/25-Gbps fiber
downlinks

6 x 40/100-Gbps
QSFP28 uplinks

N9K-C93180YC-EX

N9K-C93180YC-FX

3.1(1i)48 x 10/25-Gbps fiber
downlinks

4 x 40/100-Gbps
QSFP28 downlinks

2 x 40/100-Gbps
QSFP28 uplinks

Same as default48 x 10GBASE-T
downlinks

6 x 40/100-Gbps
QSFP28 uplinks

N9K-C93108TC-EX

N9K-C93108TC-FX

3.2(1l)Same as default18 x 40/100-Gbps
QSFP28 downlinks

18 x 40/100-Gbps
QSFP28 uplinks

30 x 40/100-Gbps
QSFP28 downlinks

6 x 40/100-Gbps
QSFP28 uplinks

N9K-C9336C-FX2

Configuring a Port Profile Using the REST API

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating or modifying the necessary
fabric infrastructure configurations.

• The target leaf switches are registered in the ACI fabric and available.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
280

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Port Profile Using the REST API

Step 1 To create a port profile that converts a downlink to an uplink, send a post with XML such as the following:
<!-- /api/node/mo/uni/infra/prtdirec.xml -->
<infraRsPortDirection tDn="topology/pod-1/paths-106/pathep-[eth1/7]" direc=“UpLink” />

Step 2 To create a port profile that converts an uplink to a downlink, send a post with XML such as the following:

Example:
<!-- /api/node/mo/uni/infra/prtdirec.xml -->
<infraRsPortDirection tDn="topology/pod-1/paths-106/pathep-[eth1/52]" direc=“DownLink” />

IGMP Snooping

About Cisco APIC and IGMP Snooping
IGMP snooping is the process of listening to Internet Group Management Protocol (IGMP) network traffic.
The feature allows a network switch to listen in on the IGMP conversation between hosts and routers and
filter multicasts links that do not need them, thus controlling which ports receive specific multicast traffic.

Cisco APIC provides support for the full IGMP snooping feature included on a traditional switch such as the
N9000 standalone.

• Policy-based IGMP snooping configuration per bridge domain

APIC enables you to configure a policy in which you enable, disable, or customize the properties of
IGMP Snooping on a per bridge-domain basis. You can then apply that policy to one or multiple bridge
domains.

• Static port group implementation

IGMP static port grouping enables you to pre-provision ports, already statically-assigned to an application
EPG, as the switch ports to receive and process IGMP multicast traffic. This pre-provisioning prevents
the join latency which normally occurs when the IGMP snooping stack learns ports dynamically.

Static group membership can be pre-provisioned only on static ports (also called, static-binding ports)
assigned to an application EPG.

• Access group configuration for application EPGs

An “access-group” is used to control what streams can be joined behind a given port.

An access-group configuration can be applied on interfaces that are statically assigned to an application
EPG in order to ensure that the configuration can be applied on ports that will actually belong to the that
EPG.

Only Route-map-based access groups are allowed.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
281

Part 3: Setting Up APIC and the Fabric Using the REST API
IGMP Snooping

You can use vzAny to enable protocols such as IGMP Snooping for all the EPGs in a VRF. For more
information about vzAny, see Use vzAny to Automatically Apply Communication Rules to all EPGs in a
VRF.

To use vzAny, navigate to Tenants > tenant-name > Networking > VRFs > vrf-name > EPG Collection
for VRF.

Note

How IGMP Snooping is Implemented in the ACI Fabric

We recommend that you do not disable IGMP snooping on bridge domains. If you disable IGMP snooping,
you may see reduced multicast performance because of excessive false flooding within the bridge domain.

Note

IGMP snooping software examines IP multicast traffic within a bridge domain to discover the ports where
interested receivers reside. Using the port information, IGMP snooping can reduce bandwidth consumption
in a multi-access bridge domain environment to avoid flooding the entire bridge domain. By default, IGMP
snooping is enabled on the bridge domain.

This figure shows the IGMP routing functions and IGMP snooping functions both contained on an ACI leaf
switch with connectivity to a host. The IGMP snooping feature snoops the IGMP membership reports, and
leaves messages and forwards them only when necessary to the IGMP router function.

Figure 24: IGMP Snooping function

Cisco APIC REST API Configuration Guide, Release 4.1(x)
282

Part 3: Setting Up APIC and the Fabric Using the REST API
How IGMP Snooping is Implemented in the ACI Fabric

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_KB_Use_vzAny_to_AutomaticallyApplyCommunicationRules_toEPGs.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_KB_Use_vzAny_to_AutomaticallyApplyCommunicationRules_toEPGs.html

IGMP snooping operates upon IGMPv1, IGMPv2, and IGMPv3 control plane packets where Layer 3 control
plane packets are intercepted and influence the Layer 2 forwarding behavior.

IGMP snooping has the following proprietary features:

• Source filtering that allows forwarding of multicast packets based on destination and source IP addresses

• Multicast forwarding based on IP addresses rather than the MAC address

• Multicast forwarding alternately based on the MAC address

The ACI fabric supports IGMP snooping only in proxy-reporting mode, in accordance with the guidelines
provided in Section 2.1.1, "IGMP Forwarding Rules," in RFC 4541:

IGMP networks may also include devices that implement "proxy-
reporting", in which reports received from downstream hosts are
summarized and used to build internal membership states. Such
proxy-reporting devices may use the all-zeros IP Source-Address
when forwarding any summarized reports upstream. For this reason,
IGMP membership reports received by the snooping switch must not
be rejected because the source IP address is set to 0.0.0.0.

As a result, the ACI fabric will send IGMP reports with the source IP address of 0.0.0.0.

For more information about IGMP snooping, see RFC 4541.Note

Virtualization Support
You can define multiple virtual routing and forwarding (VRF) instances for IGMP snooping.

On leaf switches, you can use the show commandswith a VRF argument to provide a context for the information
displayed. The default VRF is used if no VRF argument is supplied.

Configuring and Assigning an IGMP Snooping Policy to a Bridge Domain using
the REST API

SUMMARY STEPS

1. To configure an IGMP Snooping policy and assign it to a bridge domain, send a post with XML such as
the following example:

DETAILED STEPS

To configure an IGMP Snooping policy and assign it to a bridge domain, send a post with XML such as the following
example:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
283

Part 3: Setting Up APIC and the Fabric Using the REST API
Virtualization Support

https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="mcast_tenant1">

<!-- Create an IGMP snooping template, and provide the options -->
<igmpSnoopPol name="igmp_snp_bd_21"

adminSt="enabled"
lastMbrIntvl="1"
queryIntvl="125"
rspIntvl="10"
startQueryCnt="2"
startQueryIntvl="31"
/>

<fvCtx name="ip_video"/>

<fvBD name="bd_21">
<fvRsCtx tnFvCtxName="ip_video"/>

<!-- Bind IGMP snooping to a BD -->
<fvRsIgmpsn tnIgmpSnoopPolName="igmp_snp_bd_21"/>

</fvBD></fvTenant>

This example creates and configures the IGMP Snooping policy, igmp_snp_bd_12 with the following properties, and
binds the IGMP policy, igmp_snp_bd_21, to bridge domain, bd_21:

• Administrative state is enabled

• Last Member Query Interval is the default 1 second.

• Query Interval is the default 125.

• Query Response interval is the default 10 seconds

• The Start Query Count is the default 2 messages

• The Start Query interval is 35 seconds.

Enabling Group Access to IGMP Snooping and Multicast using the REST API
After you have enabled IGMP snooping and multicast on ports that have been statically assigned to an EPG,
you can then create and assign access groups of users that are permitted or denied access to the IGMP snooping
and multicast traffic enabled on those ports.

To define the access group, F23broker, send a post with XML such as in the following example.

The example configures access group F23broker, associated with tenant_A, Rmap_A, application_A, epg_A, on leaf
102, interface 1/10, VLAN 202. By association with Rmap_A, the access group F23broker has access to multicast traffic
received at multicast address 226.1.1.1/24 and is denied access to traffic received at multicast address 227.1.1.1/24.

Example:

<!-- api/node/mo/uni/.xml --> <fvTenant name="tenant_A"> <pimRouteMapPol name="Rmap_A"> <pimRouteMapEntry
action="permit" grp="226.1.1.1/24" order="10"/> <pimRouteMapEntry action="deny" grp="227.1.1.1/24" order="20"/>
</pimRouteMapPol> <fvAp name="application_A"> <fvAEPg name="epg_A"> <fvRsPathAtt encap="vlan-202"
instrImedcy="immediate" mode="regular" tDn="topology/pod-1/paths-102/pathep-[eth1/10]"> <!-- IGMP snooping

Cisco APIC REST API Configuration Guide, Release 4.1(x)
284

Part 3: Setting Up APIC and the Fabric Using the REST API
Enabling Group Access to IGMP Snooping and Multicast using the REST API

access group case --> <igmpSnoopAccessGroup name="F23broker"> <igmpRsSnoopAccessGroupFilterRMap
tnPimRouteMapPolName="Rmap_A"/></igmpSnoopAccessGroup></fvRsPathAtt> </fvAEPg></fvAp></fvTenant>

Enabling IGMP Snooping and Multicast on Static Ports Using the REST API
You can enable IGMP snooping and multicast processing on ports that have been statically assigned to an
EPG. You can create and assign access groups of users that are permitted or denied access to the IGMP snoop
and multicast traffic enabled on those ports.

SUMMARY STEPS

1. To configure application EPGs with static ports, enable those ports to receive and process IGMP snooping
and multicast traffic, and assign groups to access or be denied access to that traffic, send a post with XML
such as the following example.

DETAILED STEPS

To configure application EPGs with static ports, enable those ports to receive and process IGMP snooping and multicast
traffic, and assign groups to access or be denied access to that traffic, send a post with XML such as the following example.

In the following example, IGMP snooping is enabled on leaf 102 interface 1/10 on VLAN 202. Multicast IP addresses
224.1.1.1 and 225.1.1.1 are associated with this port.

Example:
https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="tenant_A">
<fvAp name="application">
<fvAEPg name="epg_A">
<fvRsPathAtt encap="vlan-202" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/paths-102/pathep-[eth1/10]">
<!-- IGMP snooping static group case -->
<igmpSnoopStaticGroup group="224.1.1.1" source="0.0.0.0"/>
<igmpSnoopStaticGroup group="225.1.1.1" source="2.2.2.2"/>

</fvRsPathAtt>
</fvAEPg>

</fvAp>
</fvTenant>

Proxy ARP

About Proxy ARP
Proxy ARP in Cisco ACI enables endpoints within a network or subnet to communicate with other endpoints
without knowing the real MAC address of the endpoints. Proxy ARP is aware of the location of the traffic
destination, and offers its own MAC address as the final destination instead.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
285

Part 3: Setting Up APIC and the Fabric Using the REST API
Enabling IGMP Snooping and Multicast on Static Ports Using the REST API

To enable Proxy ARP, intra-EPG endpoint isolation must be enabled on the EPG see the following figure for
details. For more information about intra-EPG isolation and Cisco ACI, see the Cisco ACI Virtualization
Guide.

Figure 25: Proxy ARP and Cisco APIC

Proxy ARP within the Cisco ACI fabric is different from the traditional proxy ARP. As an example of the
communication process, when proxy ARP is enabled on an EPG, if an endpoint A sends an ARP request for
endpoint B and if endpoint B is learned within the fabric, then endpoint A will receive a proxy ARP response
from the bridge domain (BD) MAC. If endpoint A sends an ARP request for endpoint B, and if endpoint B
is not learned within the ACI fabric already, then the fabric will send a proxy ARP request within the BD.
Endpoint B will respond to this proxy ARP request back to the fabric. At this point, the fabric does not send
a proxy ARP response to endpoint A, but endpoint B is learned within the fabric. If endpoint A sends another
ARP request to endpoint B, then the fabric will send a proxy ARP response from the BD MAC.

The following example describes the proxy ARP resolution steps for communication between clients VM1
and VM2:

1. VM1 to VM2 communication is desired.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
286

Part 3: Setting Up APIC and the Fabric Using the REST API
About Proxy ARP

Figure 26: VM1 to VM2 Communication is Desired.

Table 4: ARP Table State

StateDevice

IP = * MAC = *VM1

IP = * MAC = *ACI fabric

IP = * MAC = *VM2

2. VM1 sends an ARP request with a broadcast MAC address to VM2.

Figure 27: VM1 sends an ARP Request with a Broadcast MAC address to VM2

Cisco APIC REST API Configuration Guide, Release 4.1(x)
287

Part 3: Setting Up APIC and the Fabric Using the REST API
About Proxy ARP

Table 5: ARP Table State

StateDevice

IP = VM2 IP; MAC = ?VM1

IP = VM1 IP; MAC = VM1 MACACI fabric

IP = * MAC = *VM2

3. The ACI fabric floods the proxy ARP request within the bridge domain (BD).

Figure 28: ACI Fabric Floods the Proxy ARP Request within the BD

Table 6: ARP Table State

StateDevice

IP = VM2 IP; MAC = ?VM1

IP = VM1 IP; MAC = VM1 MACACI fabric

IP = VM1 IP; MAC = BD MACVM2

4. VM2 sends an ARP response to the ACI fabric.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
288

Part 3: Setting Up APIC and the Fabric Using the REST API
About Proxy ARP

Figure 29: VM2 Sends an ARP Response to the ACI Fabric

Table 7: ARP Table State

StateDevice

IP = VM2 IP; MAC = ?VM1

IP = VM1 IP; MAC = VM1 MACACI fabric

IP = VM1 IP; MAC = BD MACVM2

5. VM2 is learned.

Figure 30: VM2 is Learned

Cisco APIC REST API Configuration Guide, Release 4.1(x)
289

Part 3: Setting Up APIC and the Fabric Using the REST API
About Proxy ARP

Table 8: ARP Table State

StateDevice

IP = VM2 IP; MAC = ?VM1

IP = VM1 IP; MAC = VM1 MAC

IP = VM2 IP; MAC = VM2 MAC

ACI fabric

IP = VM1 IP; MAC = BD MACVM2

6. VM1 sends an ARP request with a broadcast MAC address to VM2.

Figure 31: VM1 Sends an ARP Request with a Broadcast MAC Address to VM2

Table 9: ARP Table State

StateDevice

IP = VM2 IP MAC = ?VM1

IP = VM1 IP; MAC = VM1 MAC

IP = VM2 IP; MAC = VM2 MAC

ACI fabric

IP = VM1 IP; MAC = BD MACVM2

7. The ACI fabric sends a proxy ARP response to VM1.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
290

Part 3: Setting Up APIC and the Fabric Using the REST API
About Proxy ARP

Figure 32: ACI Fabric Sends a Proxy ARP Response to VM1

Table 10: ARP Table State

StateDevice

IP = VM2 IP; MAC = BD MACVM1

IP = VM1 IP; MAC = VM1 MAC

IP = VM2 IP; MAC = VM2 MAC

ACI fabric

IP = VM1 IP; MAC = BD MACVM2

Guidelines and Limitations
Consider these guidelines and limitations when using Proxy ARP:

• Proxy ARP is supported only on isolated EPGs. If an EPG is not isolated, a fault will be raised. For
communication to happen within isolated EPGs with proxy ARP enabled, you must configure uSeg
EPGs. For example, within the isolated EPG, there could be multiple VMs with different IP addresses,
and you can configure a uSeg EPG with IP attributes matching the IP address range of these VMs.

• ARP requests from isolated endpoints to regular endpoints and from regular endpoints to isolated endpoints
do not use proxy ARP. In such cases, endpoints communicate using the real MAC addresses of destination
VMs.

Configuring Proxy ARP Using the REST API

Before you begin

• Intra-EPG isolation must be enabled on the EPG where proxy ARP has to be enabled.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
291

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations

Configure proxy ARP.

Example:

<polUni>
<fvTenant name="Tenant1" status="">
<fvCtx name="EngNet"/>
<!-- bridge domain -->
<fvBD name="BD1">

<fvRsCtx tnFvCtxName="EngNet" />
<fvSubnet ip="1.1.1.1/24"/>

</fvBD>
<fvAp name="Tenant1_app">

<fvAEPg name="Tenant1_epg" pcEnfPref-"enforced" fwdCtrl="proxy-arp">
<fvRsBd tnFvBDName="BD1" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-dom9"/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Flood on Encapsulation

Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across
Encapsulations

Cisco Application Centric Infrastructure (ACI) uses the bridge domain as the Layer 2 broadcast boundary.
Each bridge domain can include multiple endpoint groups (EPGs), and each EPG can be mapped to multiple
virtual or physical domains. Each EPG can also use different VLAN encapsulation pools in each domain.
Each EPG can also use different VLAN or VXLAN encapsulation pools in each domain.

Ordinarily, when you put multiple EPGs within bridge domains, broadcast flooding sends traffic to all the
EPGs in the bridge domain. Because EPGs are used to group endpoints and manage traffic to fulfill specific
functions, sending the same traffic to all the EPGs in the bridge domain is not always practical.

The flood in encapsulation feature helps to consolidate bridge domains in your network. The feature does so
by enabling you to control broadcast flooding to endpoints within the bridge domain based on the encapsulation
of the virtual or physical domain that the EPGs are associated with.

Flood in encapsulation requires the bridge domain to be configured with a subnet and with IP routing because
in order to allow communication between endpoints of different EPGs in the same bridge domain Cisco ACI
performs proxy ARP.

Example of Flood in Encapsulation Use Case with VLAN Encapsulation

Flood in encapsulation is often used when the external device is using Virtual Connect Tunnel mode where
one MAC address is maintained per vNet because of VLAN-agnostic MAC learning.

Using multiple VLANs in tunnel mode can introduce a few challenges. In a typical deployment using Cisco
ACI with a single tunnel, as illustrated in the following figure, there are multiple EPGs under one bridge

Cisco APIC REST API Configuration Guide, Release 4.1(x)
292

Part 3: Setting Up APIC and the Fabric Using the REST API
Flood on Encapsulation

domain. In this case, certain traffic is flooded within the bridge domain (and thus in all the EPGs), with the
risk of MAC learning ambiguities that can cause forwarding errors.

Figure 33: Challenges of Cisco ACI with VLAN Tunnel Mode

In this topology, the blade switch (virtual connect in this example) has a single tunnel network defined that
uses one uplink to connect with the Cisco ACI leaf node. Two user VLANs, VLAN 10 and VLAN 11 are
carried over this link. The bridge domain is set in flooding mode as the servers’ gateways are outside the
Cisco ACI cloud. ARP negotiations occur in the following process:

• The server sends one ARP broadcast request over the VLAN 10 network.

• The ARP packet travels through the tunnel network to the external server, which records the sourceMAC
address, learned from its downlink.

• The server then forwards the packet out its uplink to the Cisco ACI leaf switch.

• The Cisco ACI fabric sees the ARP broadcast packet entering on access port VLAN 10 and maps it to
EPG1.

• Because the bridge domain is set to flood ARP packets, the packet is flooded within the bridge domain
and thus to the ports under both EPGs as they are in the same bridge domain.

• The same ARP broadcast packet comes back over the same uplink.

• The blade switch sees the original source MAC address from this uplink.

Result: The blade switch has the same MAC address learned from both the downlink port and uplink port
within its single MAC forwarding table, causing traffic disruptions.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
293

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across Encapsulations

Recommended Solution

The flood in encapsulation option is used to limit flooding traffic inside the bridge domain to a single
encapsulation. When EPG1/VLAN X and EPG2/VLAN Y share the same bridge domain and flood in
encapsulation is enabled, the encapsulation flooding traffic does not reach the other EPG/VLAN.

Beginning with Cisco Application Policy Infrastructure Controller (APIC) release 3.1(1), on the Cisco Nexus
9000 series switches (with names ending with EX and FX and onwards), all protocols are flooded in
encapsulation. Also, when flood in encapsulation is enabled under the bridge domain for any inter-VLAN
traffic, Proxy ARP ensures that the MAC flap issue does not occur. It also limits all flooding (ARP, GARP,
and BUM) to the encapsulation. The restriction applies for all EPGs under the bridge domain where it is
enabled.

Before Cisco APIC release 3.1(1), these features are not supported (proxy ARP and all protocols being included
when flooding within encapsulation). In an earlier Cisco APIC release or earlier generation switches (without
EX or FX on their names), if you enable flood in encapsulation it does not function, no informational fault is
generated, but Cisco APIC decreases the health score by 1.

Beginning with Cisco APIC release 3.2(5), you can configure flood in encapsulation for EPGs associated
with VXLAN encapsulation. Previously, only VLANs were supported for flood in encapsulation for virtual
domains. You configure flood in encapsulation when you create or modify a bridge domain or an EPG.

Note

The recommended solution is to support multiple EPGs under one bridge domain by adding an external switch.
This design with multiple EPGs under one bridge domain with an external switch is illustrated in the following
figure.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
294

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across Encapsulations

Figure 34: Design with Multiple EPGs Under one Bridge Domain with an External Switch

Within the same bridge domain, some EPGs can be service nodes and other EPGs can have flood in
encapsulation configured. A load balancer resides on a different EPG. The load balancer receives packets
from the EPGs and sends them to the other EPGs; there is no Proxy ARP and flood within encapsulation does
not take place.

Multi-Destination Protocol Traffic

The EPG/bridge domain level broadcast segmentation is supported for the following network control protocols:

• OSPF

• EIGRP

• LACP

• IS-IS

• BGP

Cisco APIC REST API Configuration Guide, Release 4.1(x)
295

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across Encapsulations

• IGMP

• PIM

• STP-BPDU (flooded within EPG)

• ARP/GARP (controlled by ARP Proxy)

• ND

Flood in Encapsulation Limitations

The following limitations apply when using flood in encapsulation for all protocols:

• Flood in encapsulation does not work in ARP unicast mode.

• Neighbor Solicitation (Proxy NS/ND) is not supported for this release.

• Because proxy Address Resolution Protocol (ARP) is enabled implicitly, ARP traffic can go to the CPU
for communication between different encapsulations.

To ensure even distribution to different ports to process ARP traffic, enable per-port Control Plane
Policing (CoPP) for ARP with flood in encapsulation.

• Flood in encapsulation is supported only in bridge domain in flood mode and ARP in flood mode. Bridge
domain spine proxy mode is not supported.

• IPv4 Layer 3 multicast is not supported.

• IPv6 NS/ND proxy is not supported when flood in encapsulation is enabled. As a result, the connection
between two endpoints that are under same IPv6 subnet but resident in EPGswith different encapsulation
may not work.

• Virtual machine migration to a different VLAN has momentary issues (60 seconds).

• Setting up communication between virtual machines through a firewall, as a gateway, is not recommended
because if the virtual machine IP address changes to the gateway IP address instead of the firewall IP
address, then the firewall can be bypassed.

• Prior releases are not supported (even interoperating between prior and current releases).

• A mixed-mode topology with older-generation Application Leaf Engine (ALE) and Application Spine
Engine (ASE) is not recommended and is not supported with flood in encapsulation. Enabling them
together can prevent QoS priorities from being enforced.

• Flood in encapsulation is not supported with Remote Leaf switches and Cisco ACI Multi-Site.

• Flood in encapsulation is not supported for Common Pervasive Gateway. See the chapter "Common
Pervasive Gateway" in the Cisco APIC Layer 3 Networking Configuration Guide.

• Flood in encapsulation is not supported on EPGs where microsegmentation is configured.

• If you configure the flood in encapsulation on all EPGs of a bridge domain, ensure that you configure
the flood in encapsulation on the bridge domain as well.

• IGMP snooping is not supported with flood in encapsulation.

• There is a condition that causes Cisco ACI to flood in the bridge domain (instead of the encapsulation)
packets that are received on an EPG that is configured for flood in encapsulation. This happens regardless

Cisco APIC REST API Configuration Guide, Release 4.1(x)
296

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across Encapsulations

https://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html

of whether the administrator configured flood in encapsulation directly on the EPG or on the bridge
domain. The condition for this forwarding behavior is if the ingress leaf node has a remote endpoint for
the destination MAC address while the egress leaf node does not have a corresponding local endpoint.
This can happen due to reasons such as an interface flapping, an endpoint flush due to STP TCN, learning
being disabled on the bridge domain due to an excessive amount of moves, and so on.

• A Layer 3 gateway must be in the Cisco ACI fabric.

Configuring Flood on Encapsulation Using the REST API
Configure flood on encapsulation using the REST API.

Enable flood on encapsulation.

To enable flood on encapsulation, send a post with XML such as the following:

Example:

<fvAEPg prio="unspecified" prefGrMemb="exclude" pcEnfPref="unenforced" nameAlias="" name="epg900"
matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl="" floodOnEncap="enabled"
dn="uni/tn-coke/ap-customer/epg-epg900" descr="">

</fvAEPg>

MACsec

About MACsec
MACsec is an IEEE 802.1AE standards based Layer 2 hop-by-hop encryption that provides data confidentiality
and integrity for media access independent protocols.

MACsec, provides MAC-layer encryption over wired networks by using out-of-band methods for encryption
keying. The MACsec Key Agreement (MKA) Protocol provides the required session keys and manages the
required encryption keys.

The 802.1AE encryption with MKA is supported on all types of links, that is, host facing links (links between
network access devices and endpoint devices such as a PC or IP phone), or links connected to other switches
or routers.

MACsec encrypts the entire data except for the Source and DestinationMAC addresses of an Ethernet packet.
The user also has the option to skip encryption up to 50 bytes after the source and destination MAC address.

To provide MACsec services over the WAN or Metro Ethernet, service providers offer Layer 2 transparent
services such as E-Line or E-LAN using various transport layer protocols such as Ethernet over Multiprotocol
Label Switching (EoMPLS) and L2TPv3.

The packet body in an EAP-over-LAN (EAPOL) Protocol Data Unit (PDU) is referred to as a MACsec Key
Agreement PDU (MKPDU).When noMKPDU is received from a participants after 3 hearbeats (each hearbeat
is of 2 seconds), peers are deleted from the live peer list. For example, if a client disconnects, the participant

Cisco APIC REST API Configuration Guide, Release 4.1(x)
297

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Flood on Encapsulation Using the REST API

on the switch continues to operate MKA until 3 heartbeats have elapsed after the last MKPDU is received
from the client.

APIC Fabric MACsec

The APIC will be responsible for the MACsec keychain distribution to all the nodes in a Pod or to particular
ports on a node. Below are the supported MACsec keychain and MACsec policy distribution supported by
the APIC.

• A single user provided keychain and policy per Pod

• User provided keychain and user provided policy per fabric interface

• Auto generated keychain and user provided policy per Pod

A node can have multiple policies deployed for more than one fabric link. When this happens, the per fabric
interface keychain and policy are given preference on the affected interface. The auto generated keychain and
associated MACsec policy are then given the least preference.

APIC MACsec supports two security modes. The MACsec must secure only allows encrypted traffic on the
link while the should secure allows both clear and encrypted traffic on the link. Before deploying MACsec
in must secure mode, the keychain must be deployed on the affected links or the links will go down. For
example, a port can turn on MACsec in must secure mode before its peer has received its keychain resulting
in the link going down. To address this issue the recommendation is to deploy MACsec in should secure
mode and once all the links are up then change the security mode to must secure.

Any MACsec interface configuration change will result in packet drops.Note

MACsec policy definition consists of configuration specific to keychain definition and configuration related
to feature functionality. The keychain definition and feature functionality definitions are placed in separate
policies. Enabling MACsec per Pod or per interface involves deploying a combination of a keychain policy
and MACsec functionality policy.

Using internal generated keychains do not require the user to specify a keychain.Note

APIC Access MACsec

MACsec is used to secure links between leaf switch L3out interfaces and external devices. APIC provides
GUI and CLI to allow users to program the MACsec keys and MacSec configuration for the L3Out interfaces
on the fabric on a per physical/pc/vpc interface basis. It is the responsibility of the user to make sure that the
external peer devices are programmed with the correct MacSec information.

Guidelines and Limitations for MACsec
Configure MACsec according to the following guidelines and limitations:

• MACsec is supported on the following switches:

• N9K-C93108TC-FX

Cisco APIC REST API Configuration Guide, Release 4.1(x)
298

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for MACsec

• N9K-C93180YC-FX

• N9K-C93216TC-FX2

• N9K-C93240YC-FX2

• N9K-C9332C

• N9K-C93360YC-FX2

• N9K-C9336C-FX2

• N9K-C9348GC-FXP, only with 10G+

• N9K-C9364C

• MACsec is supported on the following line card:

• N9K-X9736C-FX

• MACsec is not supported on 10G QSA modules.

• Beginning with Cisco Application Policy Infrastructure Controller (APIC) release 4.0, MACsec is
supported on remote leaf switches.

• FEX ports are not supported for MACsec.

• The must-secure mode is not supported at the pod level.

• A MACsec policy with the name "default" is not supported.

• Auto key generation is only supported at the pod level for fabric ports.

• Do not clean reboot a node if the fabric ports of that node is running MACsec in must-secure mode.

• Adding a new node to a pod or stateless reboot of a node in a pod that is running MACsec, must-secure
mode requires changing the mode to should-secure for the node to join the pod.

• Only initiate an upgrade or downgrade if the fabric links are in the should-securemode. After the upgrade
or downgrade has completed, you can change the mode to must-secure. Upgrading or downgrading in
the must-secure mode results in nodes losing connectivity to the fabric. Recovering from connectivity
loss requires you to configure in should-secure mode the fabric links of the nodes that are visible to the
Cisco APIC. If the fabric was downgraded to a version which does not support MACsec, then nodes
which are out of fabric will need to be clean rebooted.

• For a PC or vPC interface, MACsec can be deployed using policy groups per PC or vPC interface. Port
selectors are used to deploy the policies to a particular set of ports. Therefore, you must create the correct
port selector that corresponds to the L3Out interfaces.

• We recommend that you configure MACsec polices with the should-secure mode before you export a
configuration.

• All of the links on a spine switch are considered to be fabric links. However, if a spine switch link is
used for IPN connectivity, then this link will be treated as an access link. This means that a MACsec
access policy must be used to deploy MACsec on these links.

• If a remote leaf fabric link is used for IPN connectivity, then this link will be treated as an access link.
A MACsec access policy needs to be used to deploy MACsec on these links.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
299

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for MACsec

• Improper deployment of must-secure mode on remote leaf switch fabric links can result in loss of
connectivity to the fabric. Follow the instructions provided in Deploying must-secure mode, on page 300
to prevent such issues.

• MACsec sessions can take up to a minute to form or tear down when a new key is added to an empty
keychain or an active key is deleted from a keychain.

• Before reloading a line card or fabric module on a spine switch, allmust-secure links should be changed
to the should-secure mode. After the reload completes and the session comes up in the should-secure
mode, change the mode to must-secure.

• When selecting the cipher suite AES 128 or AES 256 without Extended Packet Numbering (XPN), you
must explicitly specify the Security Association Key (SAK) expiry time. Leaving the SAK expiry time
value at the default ("disabled") can cause interfaces to go out of service randomly.

• A replay window is necessary to support the use of MACsec over provider networks that reorder frames.
Frames within the window can be received out of order, but are not replay protected. The default window
size is 64. The replay window size can be configured in the range of 0 to 232-1 if you use the Cisco APIC
GUI or CLI. If you use a XPN cipher suite, the maximum replay window size is 230-1, and if you configure
a higher window size, the window size gets restricted to 230-1. If you change the cipher suite to a non-XPN
cipher suite, then there is no restriction and the configured window size is used.

• Link-level flow control (LLFC) and priority flow control (PFC) are not supported with MACsec.

• Cisco APIC does not support passing MACsec through its infrastrucutre for clients.

Deploying must-secure mode

Incorrect deployment procedure of a policy that is configured for must-secure mode can result in a loss of
connectivity. The procedure below should be followed in order to prevent such issues:

• It is necessary to ensure that each link pair has their keychains before enabling MACsec must-secure
mode. To ensure this, the recommendation is to deploy the policy in should-secure mode, and once
MACsec sessions are active on the expected links, change the mode to must-secure.

• Attempting to replace the keychain on a MACsec policy that is configured to must-secure can cause
links to go down. The recommended procedure outlined below should be followed in this case:

• Change MACsec policy that is using the new keychain to should-secure mode.

• Verify that the affected interfaces are using should-secure mode.

• Update MACsec policy to use new keychain.

• Verify that relevant interfaces with active MACsec sessions are using the new keychain.

• Change MACsec policy to must-secure mode.

• The following procedure should be followed to disable/remove aMACsec policy deployed in must-secure
mode:

• Change the MACsec policy to should-secure.

• Verify that the affected interfaces are using should-secure mode.

• Disable/remove the MACsec policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
300

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for MACsec

Keychain Definition

• There should be one key in the keychain with a start time of now. If must-secure is deployed with a
keychain that doesn’t have a key that is immediately active then traffic will be blocked on that link until
the key becomes current and a MACsec session is started. If should-secure mode is being used then
traffic will be unencrypted until the key becomes current and a MACsec session has started.

• There should be one key in the keychain with an end time of infinite. When a keychain expires, then
traffic is blocked on affected interfaces which are configured formust-securemode. Interfaces configured
for should-secure mode transmit unencrypted traffic.

• There should be overlaps in the end time and start time of keys that are used sequentially to ensure the
MACsec session stays up when there is a transition between keys.

Configuring MACsec Using the REST API
Apply a MACsec fabric policy to all Pods in the fabric:

Example:

<fabricInst>
<macsecFabPolCont>

<macsecFabParamPol name="fabricParam1" secPolicy="should-secure" replayWindow="120"
>

</macsecFabParamPol>
<macsecKeyChainPol name="fabricKC1">

<macsecKeyPol name="Key1"
preSharedKey="0102030405060708090A0B0C0D0E0F100102030405060708090A0B0C0D0E0F10"
keyName="A1A2A3A0" startTime="now" endTime="infinite"/>

</macsecKeyChainPol>
</macsecFabPolCont>

<macsecFabIfPol name="fabricPodPol1" useAutoKeys="0">
<macsecRsToParamPol tDn="uni/fabric/macsecpcontfab/fabparamp-fabricParam1"/>
<macsecRsToKeyChainPol tDn="uni/fabric/macsecpcontfab/keychainp-fabricKC1"/>

</macsecFabIfPol>

<fabricFuncP>
<fabricPodPGrp name = "PodPG1">
<fabricRsMacsecPol tnMacsecFabIfPolName="fabricPodPol1"/>
</fabricPodPGrp>

</fabricFuncP>

<fabricPodP name="PodP1">
<fabricPodS name="pod1" type="ALL">
<fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-PodPG1"/>
</fabricPodS>

</fabricPodP>

</fabricInst>

Applying a MACsec access policy on eth1/4 of leaf-101:

Example:

<infraInfra>
<macsecPolCont>

<macsecParamPol name="accessParam1" secPolicy="should-secure" replayWindow="120"
>

</macsecParamPol>
<macsecKeyChainPol name="accessKC1">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
301

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring MACsec Using the REST API

<macsecKeyPol name="Key1"
preSharedKey="0102030405060708090A0B0C0D0E0F100102030405060708090A0B0C0D0E0F10"
keyName="A1A2A3A0" startTime="now" endTime="infinite"/>

</macsecKeyChainPol>
</macsecPolCont>

<macsecIfPol name="accessPol1">
<macsecRsToParamPol tDn="uni/infra/macsecpcont/paramp-accessParam1"/>
<macsecRsToKeyChainPol tDn="uni/infra/macsecpcont/keychainp-accessKC1"/>

</macsecIfPol>

<infraFuncP>
<infraAccPortGrp name = "LeTestPGrp">
<infraRsMacsecIfPol tnMacsecIfPolName="accessPol1"/>
</infraAccPortGrp>

</infraFuncP>

<infraHPathS name="leaf">
<infraRsHPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/4]" />
<infraRsPathToAccBaseGrp tDn="uni/infra/funcprof/accportgrp-LeTestPGrp" />
</infraHPathS>

</infraInfra>

Applying a MACsec fabric policy on eth1/49 of leaf-101 and eth 5/1 of spine-102:

<fabricInst>
<macsecFabPolCont>

<macsecFabParamPol name="fabricParam1" secPolicy="should-secure" replayWindow="120"
>

</macsecFabParamPol>
<macsecKeyChainPol name="fabricKC1">

<macsecKeyPol name="Key1"
preSharedKey="0102030405060708090A0B0C0D0E0F100102030405060708090A0B0C0D0E0F10"
keyName="A1A2A3A0" startTime="now" endTime="infinite"/>

</macsecKeyChainPol>
</macsecFabPolCont>

<macsecFabIfPol name="fabricPol1" useAutoKeys="0">
<macsecRsToParamPol tDn="uni/fabric/macsecpcontfab/fabparamp-fabricParam1"/>
<macsecRsToKeyChainPol tDn="uni/fabric/macsecpcontfab/keychainp-fabricKC1"/>

</macsecFabIfPol>

<fabricFuncP>
<fabricLePortPGrp name = "LeTestPGrp">
<fabricRsMacsecFabIfPol tnMacsecFabIfPolName="fabricPol1"/>
</fabricLePortPGrp>

<fabricSpPortPGrp name = "SpTestPGrp">
<fabricRsMacsecFabIfPol tnMacsecFabIfPolName="fabricPol1"/>
</fabricSpPortPGrp>

</fabricFuncP>

<fabricLFPathS name="leaf">
<fabricRsLFPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/49]" />
<fabricRsPathToLePortPGrp tDn="uni/fabric/funcprof/leportgrp-LeTestPGrp" />
</fabricLFPathS>

<fabricSpPortP name="spine_profile">
<fabricSFPortS name="spineIf" type="range">
<fabricPortBlk name="spBlk" fromCard="5" fromPort="1" toCard="5" toPort="1" />
<fabricRsSpPortPGrp tDn="uni/fabric/funcprof/spportgrp-SpTestPGrp" />
</fabricSFPortS>
</fabricSpPortP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
302

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring MACsec Using the REST API

<fabricSpineP name="SpNode" >
<fabricRsSpPortP tDn="uni/fabric/spportp-spine_profile" />
<fabricSpineS name="spsw" type="range">
<fabricNodeBlk name="node102" to_="102" from_="102" />
</fabricSpineS>
</fabricSpineP>
</fabricInst>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
303

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring MACsec Using the REST API

Cisco APIC REST API Configuration Guide, Release 4.1(x)
304

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring MACsec Using the REST API

C H A P T E R 15
Provisioning Layer 3 Outside Connections

• Layer 3 Outside Connections, on page 305
• Layer 3 Routed and Sub-Interface Port Channels, on page 315
• Cisco ACI GOLF, on page 320
• Multipod, on page 328
• Anycast Services, on page 333
• Remote Leaf Switches, on page 335
• HSRP, on page 347
• IP Multicast, on page 351
• Pervasive Gateway, on page 357
• Explicit Prefix Lists, on page 358
• IP Address Aging Tracking, on page 366
• Route Summarization, on page 367
• Route Controls, on page 371
• Layer 3 to Layer 3 Out Inter-VRF Leaking, on page 372
• Overview Interleak Redistribution for MP-BGP, on page 374
• Configuring Interleak of External Routes Using the REST API, on page 374
• SVI External Encapsulation Scope, on page 375
• SVI Auto State, on page 378
• Routing Protocols, on page 380
• Neighbor Discovery, on page 398
• Microsoft NLB, on page 402
• MLD Snooping, on page 403

Layer 3 Outside Connections

Configuring a Tenant Layer 3 Outside Network Connection Overview
This topic provides a typical example of how to configure a Layer 3 Outside for tenant networks when using
Cisco APIC.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
305

Cisco ACI does not support IP fragmentation. Therefore, when you configure Layer 3 Outside (L3Out)
connections to external routers, or Multi-Pod connections through an Inter-Pod Network (IPN), it is
recommended that the interface MTU is set appropriately on both ends of a link. On some platforms, such as
Cisco ACI, Cisco NX-OS, and Cisco IOS, the configurableMTU value does not take into account the Ethernet
headers (matching IP MTU, and excluding the 14-18 Ethernet header size), while other platforms, such as
IOS-XR, include the Ethernet header in the configured MTU value. A configured value of 9000 results in a
max IP packet size of 9000 bytes in Cisco ACI, Cisco NX-OS, and Cisco IOS, but results in a max IP packet
size of 8986 bytes for an IOS-XR untagged interface.

For the appropriate MTU values for each platform, see the relevant configuration guides.

We highly recommend that you test the MTU using CLI-based commands. For example, on the Cisco NX-OS
CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

Note

Configuring Layer 3 Outside for Tenant Networks Using the REST API
The external routed network that is configured in the example can also be extended to support both IPv4 and
IPv6. Both IPv4 and IPv6 routes can be advertised to and learned from the external routed network. To
configure an L3Out for a tenant network, send a post with XML such as the example.

This example is broken into steps for clarity. For a merged example, see REST API Example: L3Out, on page
312.

Before you begin

• Configure the node, port, functional profile, AEP, and Layer 3 domain.

• Create the external routed domain and associate it to the interface for the L3Out.

• Configure a BGP route reflector policy to propagate the routes within the fabric.

For an XML example of these prerequisites, see REST API Example: L3Out Prerequisites, on page 311.

Step 1 Configure the tenant, VRF, and bridge domain.

This example configures tenant t1 with VRF v1 and bridge domain bd1. The tenant, VRF, and BD are not yet deployed.

Example:
<fvTenant name="t1">

<fvCtx name="v1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="v1"/>
<fvSubnet ip="44.44.44.1/24" scope="public"/>
<fvRsBDToOut tnL3extOutName="l3out1"/>

</fvBD>/>
</fvTenant>

Step 2 Configure an application profile and application EPG.

This example configures application profile app1 (on node 101), EPG epg1, and associates the EPG with bd1 and the
contract httpCtrct, as the consumer.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
306

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

<fvAp name="app1">
<fvAEPg name="epg1">

<fvRsDomAtt instrImedcy="immediate" tDn="uni/phys-dom1"/>
<fvRsBd tnFvBDName="bd1" />
<fvRsPathAtt encap="vlan-2011" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/paths-101/pathep-[eth1/3]"/>
<fvRsCons tnVzBrCPName="httpCtrct"/>

</fvAEPg>
</fvAp>

Step 3 Configure the node and interface.

This example configures VRF v1 on node 103 (the border leaf switch), with the node profile, nodep1, and router ID
11.11.11.103. It also configures interface eth1/3 as a routed interface (Layer 3 port), with IP address 12.12.12.1/24
and Layer 3 domain dom1.

Example:
<l3extOut name="l3out1">

<l3extRsEctx tnFvCtxName="v1"/>
<l3extLNodeP name="nodep1">

<l3extRsNodeL3OutAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>
<l3extLIfP name="ifp1"/>
<l3extRsPathL3OutAtt addr="12.12.12.3/24" ifInstT="l3-port"

tDn="topology/pod-1/paths-103/pathep-[eth1/3]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-dom1"/>

</l3extOut>

Step 4 Configure the routing protocol.

This example configures BGP as the primary routing protocol, with a BGP peer with the IP address, 15.15.15.2 and
ASN 100.

Example:
<l3extOut name="l3out1">

<l3extLNodeP name="nodep1">
<bgpPeerP addr="15.15.15.2">

<bgpAsP asn="100"/>
</bgpPeerP>

</l3extLNodeP>
<bgpExtP/>

</l3extOut>

Step 5 Configure the connectivity routing protocol.

This example configures OSPF as the communication protocol, with regular area ID 0.0.0.0.

Example:
<l3extOut name="l3out1">

<ospfExtP areaId="0.0.0.0" areaType="regular"/>
<l3extLNodeP name="nodep1">

<l3extLIfP name="ifp1">
<ospfIfP/>

<l3extIfP>
<l3extLNodeP>

</l3extOut>

Step 6 Configure the external EPG.

This example configures the network 20.20.20.0/24 as external network extnw1. It also associates extnw1with the route
control profile rp1 and the contract httpCtrct, as the provider.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
307

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

Example:
<l3extOut name="l3out1">

<l3extInstP name="extnw1">
<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
</l3extOut>

Step 7 Optional. Configure a route map.

This example configures a route map for the BGP peer in the outbound direction. The route map is applied for routes that
match a destination of 200.3.2.0/24. Also, on a successful match (if the route matches this range) the route AS PATH
attribute is updated to 200 and 100.

Example:
<fvTenant name="t1">

<rtctrlSubjP name="match-rule1">
<rtctrlMatchRtDest ip="200.3.2.0/24"/>

</rtctrlSubjP>
<l3extOut name="l3out1">

<rtctrlProfile name="rp1">
<rtctrlCtxP name="ctxp1" action="permit" order="0">

<rtctrlScope>
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrp1"/>

</rtctrlScope>
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule1"/>

</rtctrlCtxP>
</rtctrlProfile>
<l3extInstP name="extnw1">

<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction='export' tnRtctrlProfileName="rp1"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
</l3extOut>

</fvTenant>

Step 8 This example creates filters and contracts to enable the EPGs to communicate. The external EPG and the application
EPG are already associated with the contract httpCtrct as provider and consumer respectively. The scope of the contract
(where it is applied) can be within the application profile, the tenant, the VRF, or it can be used globally (throughout the
fabric). In this example, the scope is the VRF (context).

Example:
<vzFilter name="http-filter">

<vzEntry name="http-e" etherT="ip" prot="tcp"/>
</vzFilter>
<vzBrCP name="httpCtrct" scope="context">

<vzSubj name="subj1">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>

</vzSubj>
</vzBrCP>

Step 9 Configure Advertise Host Routes.

Example:
"<fvBD dn="uni/tn-t1/BD-b100" hostBasedRouting="yes"/>”

Cisco APIC REST API Configuration Guide, Release 4.1(x)
308

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

Configuring Layer 3 Outside for Tenant Networks Using the REST API
The external routed network that is configured in the example can also be extended to support both IPv4 and
IPv6. Both IPv4 and IPv6 routes can be advertised to and learned from the external routed network. To
configure an L3Out for a tenant network, send a post with XML such as the example.

This example is broken into steps for clarity. For a merged example, see REST API Example: L3Out, on page
312.

Before you begin

• Configure the node, port, functional profile, AEP, and Layer 3 domain.

• Create the external routed domain and associate it to the interface for the L3Out.

• Configure a BGP route reflector policy to propagate the routes within the fabric.

For an XML example of these prerequisites, see REST API Example: L3Out Prerequisites, on page 311.

Step 1 Configure the tenant, VRF, and bridge domain.

This example configures tenant t1 with VRF v1 and bridge domain bd1. The tenant, VRF, and BD are not yet deployed.

Example:
<fvTenant name="t1">

<fvCtx name="v1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="v1"/>
<fvSubnet ip="44.44.44.1/24" scope="public"/>
<fvRsBDToOut tnL3extOutName="l3out1"/>

</fvBD>/>
</fvTenant>

Step 2 Configure an application profile and application EPG.

This example configures application profile app1 (on node 101), EPG epg1, and associates the EPG with bd1 and the
contract httpCtrct, as the consumer.

Example:
<fvAp name="app1">

<fvAEPg name="epg1">
<fvRsDomAtt instrImedcy="immediate" tDn="uni/phys-dom1"/>
<fvRsBd tnFvBDName="bd1" />
<fvRsPathAtt encap="vlan-2011" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/paths-101/pathep-[eth1/3]"/>
<fvRsCons tnVzBrCPName="httpCtrct"/>

</fvAEPg>
</fvAp>

Step 3 Configure the node and interface.

This example configures VRF v1 on node 103 (the border leaf switch), with the node profile, nodep1, and router ID
11.11.11.103. It also configures interface eth1/3 as a routed interface (Layer 3 port), with IP address 12.12.12.1/24
and Layer 3 domain dom1.

Example:
<l3extOut name="l3out1">

<l3extRsEctx tnFvCtxName="v1"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
309

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

<l3extLNodeP name="nodep1">
<l3extRsNodeL3OutAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>
<l3extLIfP name="ifp1"/>
<l3extRsPathL3OutAtt addr="12.12.12.3/24" ifInstT="l3-port"

tDn="topology/pod-1/paths-103/pathep-[eth1/3]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-dom1"/>

</l3extOut>

Step 4 Configure the routing protocol.

This example configures BGP as the primary routing protocol, with a BGP peer with the IP address, 15.15.15.2 and
ASN 100.

Example:
<l3extOut name="l3out1">

<l3extLNodeP name="nodep1">
<bgpPeerP addr="15.15.15.2">

<bgpAsP asn="100"/>
</bgpPeerP>

</l3extLNodeP>
<bgpExtP/>

</l3extOut>

Step 5 Configure the connectivity routing protocol.

This example configures OSPF as the communication protocol, with regular area ID 0.0.0.0.

Example:
<l3extOut name="l3out1">

<ospfExtP areaId="0.0.0.0" areaType="regular"/>
<l3extLNodeP name="nodep1">

<l3extLIfP name="ifp1">
<ospfIfP/>

<l3extIfP>
<l3extLNodeP>

</l3extOut>

Step 6 Configure the external EPG.

This example configures the network 20.20.20.0/24 as external network extnw1. It also associates extnw1with the route
control profile rp1 and the contract httpCtrct, as the provider.

Example:
<l3extOut name="l3out1">

<l3extInstP name="extnw1">
<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
</l3extOut>

Step 7 Optional. Configure a route map.

This example configures a route map for the BGP peer in the outbound direction. The route map is applied for routes that
match a destination of 200.3.2.0/24. Also, on a successful match (if the route matches this range) the route AS PATH
attribute is updated to 200 and 100.

Example:
<fvTenant name="t1">

<rtctrlSubjP name="match-rule1">
<rtctrlMatchRtDest ip="200.3.2.0/24"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
310

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Outside for Tenant Networks Using the REST API

</rtctrlSubjP>
<l3extOut name="l3out1">

<rtctrlProfile name="rp1">
<rtctrlCtxP name="ctxp1" action="permit" order="0">

<rtctrlScope>
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrp1"/>

</rtctrlScope>
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule1"/>

</rtctrlCtxP>
</rtctrlProfile>
<l3extInstP name="extnw1">

<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction='export' tnRtctrlProfileName="rp1"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
</l3extOut>

</fvTenant>

Step 8 This example creates filters and contracts to enable the EPGs to communicate. The external EPG and the application
EPG are already associated with the contract httpCtrct as provider and consumer respectively. The scope of the contract
(where it is applied) can be within the application profile, the tenant, the VRF, or it can be used globally (throughout the
fabric). In this example, the scope is the VRF (context).

Example:
<vzFilter name="http-filter">

<vzEntry name="http-e" etherT="ip" prot="tcp"/>
</vzFilter>
<vzBrCP name="httpCtrct" scope="context">

<vzSubj name="subj1">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>

</vzSubj>
</vzBrCP>

Step 9 Configure Advertise Host Routes.

Example:
"<fvBD dn="uni/tn-t1/BD-b100" hostBasedRouting="yes"/>”

REST API Example: L3Out Prerequisites
This example configures the node, port, functional profile, AEP, and Layer 3 domain:
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>

<infraInfra>
<!-- Node profile -->
<infraNodeP name="nodeP1">

<infraLeafS name="leafS1" type="range">
<infraNodeBlk name="NodeBlk1" from_="101" to_="103" />

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-PortP1" />

</infraNodeP>
<!-- Port profile -->
<infraAccPortP name="PortP1">

<!-- 12 regular ports -->
<infraHPortS name="PortS1" type="range">

<infraPortBlk name="portBlk1" fromCard="1" toCard="1" fromPort="3"
toPort="32"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
311

Part 3: Setting Up APIC and the Fabric Using the REST API
REST API Example: L3Out Prerequisites

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-default" />
</infraHPortS>

</infraAccPortP>
<!-- Functional profile -->
<infraFuncP>

<!-- Regular port group -->
<infraAccPortGrp name="default">

<infraRsAttEntP tDn="uni/infra/attentp-aeP1" />
</infraAccPortGrp>

</infraFuncP>
<infraAttEntityP name="aeP1">

<infraRsDomP tDn="uni/phys-dom1"/>
<infraRsDomP tDn="uni/l3dom-dom1/>

</infraAttEntityP>
<fvnsVlanInstP name="vlan-1024-2048" allocMode="static">

<fvnsEncapBlk name="encap" from="vlan-1024" to="vlan-2048" status="created"/>
</fvnsVlanInstP>

</infraInfra>
<physDomP dn="uni/phys-dom1" name="dom1">

<infraRsVlanNs tDn="uni/infra/vlanns-[vlan-1024-2048]-static"/>
</physDomP>
<l3extDomP name="dom1">

<infraRsVlanNs tDn="uni/infra/vlanns-[vlan-1024-2048]-static" />
</l3extDomP>

</polUni>

The following example configures the required BGP route reflectors:
<!-- Spine switches 104 and 105 are configured as route reflectors -->
<?xml version="1.0" encoding="UTF8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>

<bgpInstPol name="default">
<bgpAsP asn="100"/>
<bgpRRP>

<bgpRRNodePEp id="104"/>
<bgpRRNodePEp id="105"/>

</bgpRRP>
</bgpInstPol>
<fabricFuncP>

<fabricPodPGrp name="bgpRRPodGrp1">
<fabricRsPodPGrpBGPRRP tnBgpInstPolName="default"/>

</fabricPodPGrp>
</fabricFuncP>
<fabricPodP name="default">

<fabricPodS name="default" type="ALL">
<fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-bgpRRPodGrp1"/>

</fabricPodS>
</fabricPodP>

</polUni>

REST API Example: L3Out
The following example provides a merged version of the steps to configure an L3Out using the REST API.
<?xml version="1.0" encoding="UTF8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>

<fvTenant name="t1">
<fvCtx name="v1"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="v1"/>
<fvSubnet ip="44.44.44.1/24" scope="public"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
312

Part 3: Setting Up APIC and the Fabric Using the REST API
REST API Example: L3Out

<fvRsBDToOut tnL3extOutName="l3out1"/>
</fvBD>
<fvAp name="app1">

<fvAEPg name="epg1">
<fvRsDomAtt instrImedcy="immediate" tDn="uni/phys-dom1"/>
<fvRsBd tnFvBDName="bd1" />
<fvRsPathAtt encap="vlan-2011" instrImedcy="immediate" mode="regular"

tDn="topology/pod-1/paths-101/pathep-[eth1/3]"/>
<fvRsCons tnVzBrCPName="httpCtrct"/>

</fvAEPg>
</fvAp>
<l3extOut name="l3out1">

<l3extRsEctx tnFvCtxName="v1"/>
<l3extLNodeP name="nodep1">

<l3extRsNodeL3OutAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>
<l3extLIfP name="ifp1">

<l3extRsPathL3OutAtt addr="12.12.12.3/24" ifInstT="l3-port"
tDn="topology/pod-1/paths-103/pathep-[eth1/3]"/>

</l3extLIfP>
<bgpPeerP addr="15.15.15.2">

<bgpAsP asn="100"/>
</bgpPeerP>

</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-dom1"/>
<bgpExtP/>
<ospfExtP areaId="0.0.0.0" areaType="regular"/>
<l3extInstP name="extnw1" >

<l3extSubnet ip="20.20.20.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction="export" tnRtctrlProfileName="rp1"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>

</l3extInstP>
<rtctrlProfile name="rp1">

<rtctrlCtxP name="ctxp1" action="permit" order="0">
<rtctrlScope>

<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrp1"/>
</rtctrlScope>
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule1"/>

</rtctrlCtxP>
</rtctrlProfile>

</l3extOut>
<rtctrlSubjP name="match-rule1">

<rtctrlMatchRtDest ip="200.3.2.0/24"/>
</rtctrlSubjP>
<rtctrlAttrP name="attrp1">

<rtctrlSetASPath criteria="prepend">
<rtctrlSetASPathASN asn="100" order="2"/>
<rtctrlSetASPathASN asn="200" order="1"/>

</rtctrlSetASPath>
</rtctrlAttrP>
<vzFilter name='http-filter'>

<vzEntry name="http-e" etherT="ip" prot="tcp"/>
</vzFilter>
<vzBrCP name="httpCtrct" scope="context">

<vzSubj name="subj1">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>

</vzSubj>
</vzBrCP>

</fvTenant>
</polUni>

REST API Example: Tenant External Network Policy
The following XML code is an example of a Tenant Layer 3 external network policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
313

Part 3: Setting Up APIC and the Fabric Using the REST API
REST API Example: Tenant External Network Policy

<polUni>

<fvTenant name='t0'>
<fvCtx name="o1">

<fvRsOspfCtxPol tnOspfCtxPolName="ospfCtxPol"/>
</fvCtx>
<fvCtx name="o2">
</fvCtx>

<fvBD name="bd1">
<fvRsBDToOut tnL3extOutName='T0-o1-L3OUT-1'/>
<fvSubnet ip='10.16.1.1/24' scope='public'/>
<fvRsCtx tnFvCtxName="o1"/>

</fvBD>

<fvAp name="AP1">
<fvAEPg name="bd1-epg1">

<fvRsCons tnVzBrCPName="vzBrCP-1">
</fvRsCons>
<fvRsProv tnVzBrCPName="vzBrCP-1">
</fvRsProv>
<fvSubnet ip='10.16.2.1/24' scope='private'/>
<fvSubnet ip='10.16.3.1/24' scope='private'/>
<fvRsBd tnFvBDName="bd1"/>
<fvRsDomAtt tDn="uni/phys-physDomP"/>
<fvRsPathAtt

tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
encap='vlan-100'
mode='regular'
instrImedcy='immediate' />

</fvAEPg>

<fvAEPg name="bd1-epg2">
<fvRsCons tnVzBrCPName="vzBrCP-1">
</fvRsCons>
<fvRsProv tnVzBrCPName="vzBrCP-1">
</fvRsProv>
<fvSubnet ip='10.16.4.1/24' scope='private'/>
<fvSubnet ip='10.16.5.1/24' scope='private'/>
<fvRsBd tnFvBDName="bd1"/>
<fvRsDomAtt tDn="uni/phys-physDomP"/>
<fvRsPathAtt

tDn="topology/pod-1/paths-101/pathep-[eth1/41]"
encap='vlan-200'
mode='regular'
instrImedcy='immediate'/>

</fvAEPg>
</fvAp>

<l3extOut name="T0-o1-L3OUT-1">

<l3extRsEctx tnFvCtxName="o1"/>
<ospfExtP areaId='60'/>
<l3extInstP name="l3extInstP-1">

<fvRsCons tnVzBrCPName="vzBrCP-1">
</fvRsCons>
<fvRsProv tnVzBrCPName="vzBrCP-1">
</fvRsProv>
<l3extSubnet ip="192.5.1.0/24" />
<l3extSubnet ip="192.5.2.0/24" />
<l3extSubnet ip="192.6.0.0/16" />
<l3extSubnet ip="199.0.0.0/8" />

</l3extInstP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
314

Part 3: Setting Up APIC and the Fabric Using the REST API
REST API Example: Tenant External Network Policy

<l3extLNodeP name="l3extLNodeP-1">
<l3extRsNodeL3OutAtt

tDn=“topology/pod-1/node-101" rtrId="10.17.1.1">
<ipRouteP ip="10.16.101.1/32">

<ipNexthopP nhAddr="10.17.1.99"/>
</ipRouteP>
<ipRouteP ip="10.16.102.1/32">

<ipNexthopP nhAddr="10.17.1.99"/>
</ipRouteP>
<ipRouteP ip="10.17.1.3/32">

<ipNexthopP nhAddr="10.11.2.2"/>
</ipRouteP>

</l3extRsNodeL3OutAtt >

<l3extLIfP name='l3extLIfP-1'>
<l3extRsPathL3OutAtt

tDn=“topology/pod-1/paths-101/pathep-[eth1/25]"
encap='vlan-1001'
ifInstT='sub-interface'
addr="10.11.2.1/24"
mtu="1500"/>

<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>

</ospfIfP>
</l3extLIfP>

</l3extLNodeP>
</l3extOut>

<ospfIfPol name="ospfIfPol" />
<ospfCtxPol name="ospfCtxPol" />

<vzFilter name="vzFilter-in-1">
<vzEntry name="vzEntry-in-1"/>

</vzFilter>
<vzFilter name="vzFilter-out-1">

<vzEntry name="vzEntry-out-1"/>
</vzFilter>

<vzBrCP name="vzBrCP-1">
<vzSubj name="vzSubj-1">

<vzInTerm>
<vzRsFiltAtt tnVzFilterName="vzFilter-in-1"/>

</vzInTerm>
<vzOutTerm>

<vzRsFiltAtt tnVzFilterName="vzFilter-out-1"/>
</vzOutTerm>

</vzSubj>
</vzBrCP>

</fvTenant>
</polUni>

Layer 3 Routed and Sub-Interface Port Channels

About Layer 3 Port Channels
Previously, Cisco APIC supported only Layer 2 port channels. Starting with release 3.2(1), Cisco APIC now
supports Layer 3 port channels.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
315

Part 3: Setting Up APIC and the Fabric Using the REST API
Layer 3 Routed and Sub-Interface Port Channels

Figure 35: Switch Port Channel Configuration

Layer 3 routed and sub-interface port channels on border leaf switches are supported only on new generation
switches, which are switch models with "EX", "FX" or "FX2" at the end of the switch name.

Note

Configuring Port Channels Using the REST API

Before you begin

The procedures in this section are meant specifically for configuring port channels as a prerequisite to the
procedures for configuring a Layer 3 routed or sub-interface port channel. For general instructions on
configuring leaf switch port channels, refer to the Cisco APIC Basic Configuration Guide or Cisco APIC
Layer 2 Networking Configuration Guide.

Note

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switches are registered in the ACI fabric and available.

In the following REST API example, long single lines of text are broken up with the \ character to improve
readability.

Note

To configure a port channel using the REST API, send a post with XML such as the following:

Example:
<polUni>
<infraInfra dn="uni/infra">

<infraNodeP name="test1">
<infraLeafS name="leafs" type="range">

<infraNodeBlk name="nblk" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test1"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
316

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Port Channels Using the REST API

</infraNodeP>
<infraAccPortP name="test1">

<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk1" fromCard="1" toCard="1" fromPort="18" \
toPort="19"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-po17_PolGrp"/>

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccBndlGrp name="po17_PolGrp" lagT="link">

<infraRsHIfPol tnFabricHIfPolName="default"/>
<infraRsCdpIfPol tnCdpIfPolName="default"/>
<infraRsLacpPol tnLacpLagPolName="default"/>

</infraAccBndlGrp>
</infraFuncP>

</infraInfra>
</polUni>

What to do next

Configure a Layer 3 routed port channel or sub-interface port channel using the REST API.

Configuring a Layer 3 Routed Port Channel Using the REST API

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switches are registered in the ACI fabric and available.

• Port channels are configured using the procedures in "Configuring Port Channels Using the REST API".

In the following REST API example, long single lines of text are broken up with the \ character to improve
readability.

Note

To configure a Layer 3 route to the port channels that you created previously using the REST API, send a post with XML
such as the following:

Example:
<polUni>
<fvTenant name=pep9>

<l3extOut descr="" dn="uni/tn-pep9/out-routAccounting" enforceRtctrl="export" \
name="routAccounting" nameAlias="" ownerKey="" ownerTag="" \
targetDscp="unspecified">

<l3extRsL3DomAtt tDn="uni/l3dom-Dom1"/>
<l3extRsEctx tnFvCtxName="ctx9"/>
<l3extLNodeP configIssues="" descr="" name="node101" nameAlias="" ownerKey="" \

Cisco APIC REST API Configuration Guide, Release 4.1(x)
317

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Layer 3 Routed Port Channel Using the REST API

ownerTag="" tag="yellow-green" targetDscp="unspecified">
<l3extRsNodeL3OutAtt rtrId="10.1.0.101" rtrIdLoopBack="yes" \
tDn="topology/pod-1/node-101">

<l3extInfraNodeP descr="" fabricExtCtrlPeering="no" \
fabricExtIntersiteCtrlPeering="no" name="" nameAlias="" spineRole=""/>

</l3extRsNodeL3OutAtt>
<l3extLIfP descr="" name="lifp17" nameAlias="" ownerKey="" ownerTag="" \
tag="yellow-green">

<ospfIfP authKeyId="1" authType="none" descr="" name="" nameAlias="">
<ospfRsIfPol tnOspfIfPolName=""/>

</ospfIfP>
<l3extRsPathL3OutAtt addr="10.1.5.3/24" autostate="disabled" descr="" \
encap="unknown" encapScope="local" ifInstT="l3-port" llAddr="::" \
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" \
tDn="topology/pod-1/paths-101/pathep-[po17_PolGrp]" \
targetDscp="unspecified"/>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>

</l3extLIfP>
</l3extLNodeP>
<l3extInstP descr="" floodOnEncap="disabled" matchT="AtleastOne" \
name="accountingInst" nameAlias="" prefGrMemb="exclude" prio="unspecified" \
targetDscp="unspecified">

<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>
<l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="0.0.0.0/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl,import-security"/>
<l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="::/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl,import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

</l3extInstP>
<l3extConsLbl descr="" name="golf" nameAlias="" owner="infra" ownerKey="" \
ownerTag="" tag="yellow-green"/>

</l3extOut>
</fvTenant>
</polUni>

Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

• The target leaf switches are registered in the ACI fabric and available.

• Port channels are configured using the procedures in "Configuring Port Channels Using the REST API".

In the following REST API example, long single lines of text are broken up with the \ character to improve
readability.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
318

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

To configure a Layer 3 sub-interface route to the port channels that you created previously using the REST API, send a
post with XML such as the following:

Example:
<polUni>
<fvTenant name=pep9>

<l3extOut descr="" dn="uni/tn-pep9/out-routAccounting" enforceRtctrl="export" \
name="routAccounting" nameAlias="" ownerKey="" ownerTag="" targetDscp="unspecified">

<l3extRsL3DomAtt tDn="uni/l3dom-Dom1"/>
<l3extRsEctx tnFvCtxName="ctx9"/>
<l3extLNodeP configIssues="" descr="" name="node101" nameAlias="" ownerKey="" \
ownerTag="" tag="yellow-green" targetDscp="unspecified">

<l3extRsNodeL3OutAtt rtrId="10.1.0.101" rtrIdLoopBack="yes" \
tDn="topology/pod-1/node-101">

<l3extInfraNodeP descr="" fabricExtCtrlPeering="no" \
fabricExtIntersiteCtrlPeering="no" name="" nameAlias="" spineRole=""/>

</l3extRsNodeL3OutAtt>
<l3extLIfP descr="" name="lifp27" nameAlias="" ownerKey="" ownerTag="" \
tag="yellow-green">

<ospfIfP authKeyId="1" authType="none" descr="" name="" nameAlias="">
<ospfRsIfPol tnOspfIfPolName=""/>

</ospfIfP>
<l3extRsPathL3OutAtt addr="11.1.5.3/24" autostate="disabled" descr="" \
encap="vlan-2001" encapScope="local" ifInstT="sub-interface" \
llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" \
tDn="topology/pod-1/paths-101/pathep-[po27_PolGrp]" \
targetDscp="unspecified"/>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>

</l3extLIfP>
</l3extLNodeP>
<l3extInstP descr="" floodOnEncap="disabled" matchT="AtleastOne" \
name="accountingInst" nameAlias="" prefGrMemb="exclude" prio="unspecified" \
targetDscp="unspecified">

<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>
<l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="0.0.0.0/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl,import-security"/>
<l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="::/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl,import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

</l3extInstP>
<l3extConsLbl descr="" name="golf" nameAlias="" owner="infra" ownerKey="" \
ownerTag="" tag="yellow-green"/>

</l3extOut>
</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
319

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

Cisco ACI GOLF

Cisco ACI GOLF
The Cisco ACI GOLF feature (also known as Layer 3 EVPN Services for Fabric WAN) enables much more
efficient and scalable ACI fabric WAN connectivity. It uses the BGP EVPN protocol over OSPF for WAN
routers that are connected to spine switches.

Figure 36: Cisco ACI GOLF Topology

All tenantWAN connections use a single session on the spine switches where theWAN routers are connected.
This aggregation of tenant BGP sessions towards the Data Center Interconnect Gateway (DCIG) improves
control plane scale by reducing the number of tenant BGP sessions and the amount of configuration required
for all of them. The network is extended out using Layer 3 subinterfaces configured on spine fabric ports.
Transit routing with shared services using GOLF is not supported.

A Layer 3 external outside network (L3extOut) for GOLF physical connectivity for a spine switch is specified
under the infra tenant, and includes the following:

• LNodeP (l3extInstP is not required within the L3Out in the infra tenant.)

• A provider label for the L3extOut for GOLF in the infra tenant.

• OSPF protocol policies

Cisco APIC REST API Configuration Guide, Release 4.1(x)
320

Part 3: Setting Up APIC and the Fabric Using the REST API
Cisco ACI GOLF

• BGP protocol policies

All regular tenants use the above-defined physical connectivity. The L3extOut defined in regular tenants
requires the following:

• An l3extInstP (EPG) with subnets and contracts. The scope of the subnet is used to control import/export
route control and security policies. The bridge domain subnet must be set to advertise externally and it
must be in the same VRF as the application EPG and the GOLF L3Out EPG.

• Communication between the application EPG and the GOLF L3Out EPG is governed by explicit contracts
(not Contract Preferred Groups).

• An l3extConsLbl consumer label that must be matched with the same provider label of an L3Out for
GOLF in the infra tenant. Label matching enables application EPGs in other tenants to consume the
LNodeP external L3Out EPG.

• The BGP EVPN session in the matching provider L3extOut in the infra tenant advertises the tenant
routes defined in this L3Out.

Configuring GOLF Using the REST API

SUMMARY STEPS

1. The following example shows how to deploy nodes and spine switch interfaces for GOLF, using the REST
API:

2. The XML below configures the spine switch interfaces and infra tenant provider of the GOLF service.
Include this XML structure in the body of the POST message.

3. The XML below configures the tenant consumer of the infra part of the GOLF service. Include this XML
structure in the body of the POST message.

DETAILED STEPS

Step 1 The following example shows how to deploy nodes and spine switch interfaces for GOLF, using the REST API:

Example:
POST
https://192.0.20.123/api/mo/uni/golf.xml

Step 2 The XML below configures the spine switch interfaces and infra tenant provider of the GOLF service. Include this XML
structure in the body of the POST message.

Example:
<l3extOut descr="" dn="uni/tn-infra/out-golf" enforceRtctrl="export,import"

name="golf"
ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="overlay-1"/>
<l3extProvLbl descr="" name="golf"

ownerKey="" ownerTag="" tag="yellow-green"/>
<l3extLNodeP configIssues="" descr=""

name="bLeaf" ownerKey="" ownerTag=""
tag="yellow-green" targetDscp="unspecified">
<l3extRsNodeL3OutAtt rtrId="10.10.3.3" rtrIdLoopBack="no"

tDn="topology/pod-1/node-111">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
321

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring GOLF Using the REST API

<l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<l3extLoopBackIfP addr="10.10.3.3" descr="" name=""/>

</l3extRsNodeL3OutAtt>
<l3extRsNodeL3OutAtt rtrId="10.10.3.4" rtrIdLoopBack="no"

tDn="topology/pod-1/node-112">
<l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<l3extLoopBackIfP addr="10.10.3.4" descr="" name=""/>
</l3extRsNodeL3OutAtt>
<l3extLIfP descr="" name="portIf-spine1-3"

ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>

</ospfIfP>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="7.2.1.1/24" descr=""

encap="vlan-4"
encapScope="local"
ifInstT="sub-interface"
llAddr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="1500"
tDn="topology/pod-1/paths-111/pathep-[eth1/12]"
targetDscp="unspecified"/>

</l3extLIfP>
<l3extLIfP descr="" name="portIf-spine2-1"

ownerKey=""
ownerTag=""
tag="yellow-green">
<ospfIfP authKeyId="1"

authType="none"
descr=""
name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>

</ospfIfP>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="7.1.0.1/24" descr=""

encap="vlan-4"
encapScope="local"
ifInstT="sub-interface"
llAddr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="9000"
tDn="topology/pod-1/paths-112/pathep-[eth1/11]"
targetDscp="unspecified"/>

</l3extLIfP>
<l3extLIfP descr="" name="portif-spine2-2"

ownerKey=""
ownerTag=""
tag="yellow-green">
<ospfIfP authKeyId="1"

authType="none" descr=""
name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>

</ospfIfP>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="7.2.2.1/24" descr=""

encap="vlan-4"
encapScope="local"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
322

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring GOLF Using the REST API

ifInstT="sub-interface"
llAddr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="1500"
tDn="topology/pod-1/paths-112/pathep-[eth1/12]"
targetDscp="unspecified"/>

</l3extLIfP>
<l3extLIfP descr="" name="portIf-spine1-2"

ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">

<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospfIfP>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="9.0.0.1/24" descr=""
encap="vlan-4"
encapScope="local"
ifInstT="sub-interface"

llAddr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="9000"
tDn="topology/pod-1/paths-111/pathep-[eth1/11]"
targetDscp="unspecified"/>

</l3extLIfP>
<l3extLIfP descr="" name="portIf-spine1-1"

ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">

<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospfIfP>
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="7.0.0.1/24" descr=""
encap="vlan-4"
encapScope="local"
ifInstT="sub-interface"
llAddr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="1500"
tDn="topology/pod-1/paths-111/pathep-[eth1/10]"

targetDscp="unspecified"/>
</l3extLIfP>
<bgpInfraPeerP addr="10.10.3.2"

allowedSelfAsCnt="3"
ctrl="send-com,send-ext-com"
descr="" name="" peerCtrl=""
peerT="wan"
privateASctrl="" ttl="2" weight="0">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="150" descr="" name="aspn"/>

</bgpInfraPeerP>
<bgpInfraPeerP addr="10.10.4.1"

allowedSelfAsCnt="3"
ctrl="send-com,send-ext-com" descr="" name="" peerCtrl=""
peerT="wan"
privateASctrl="" ttl="1" weight="0">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="100" descr="" name=""/>

</bgpInfraPeerP>
<bgpInfraPeerP addr="10.10.3.1"
allowedSelfAsCnt="3"
ctrl="send-com,send-ext-com" descr="" name="" peerCtrl=""
peerT="wan"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
323

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring GOLF Using the REST API

privateASctrl="" ttl="1" weight="0">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="100" descr="" name=""/>

</bgpInfraPeerP>
</l3extLNodeP>
<bgpRtTargetInstrP descr="" name="" ownerKey="" ownerTag="" rtTargetT="explicit"/>
<l3extRsL3DomAtt tDn="uni/l3dom-l3dom"/>
<l3extInstP descr="" matchT="AtleastOne" name="golfInstP"

prio="unspecified"
targetDscp="unspecified">
<fvRsCustQosPol tnQosCustomPolName=""/>

</l3extInstP>
<bgpExtP descr=""/>
<ospfExtP areaCost="1"

areaCtrl="redistribute,summary"
areaId="0.0.0.1"
areaType="regular" descr=""/>

</l3extOut>

Step 3 The XML below configures the tenant consumer of the infra part of the GOLF service. Include this XML structure in the
body of the POST message.

Example:
<fvTenant descr="" dn="uni/tn-pep6" name="pep6" ownerKey="" ownerTag="">

<vzBrCP descr="" name="webCtrct"
ownerKey="" ownerTag="" prio="unspecified"
scope="global" targetDscp="unspecified">
<vzSubj consMatchT="AtleastOne" descr=""

name="http" prio="unspecified" provMatchT="AtleastOne"
revFltPorts="yes" targetDscp="unspecified">
<vzRsSubjFiltAtt directives="" tnVzFilterName="default"/>

</vzSubj>
</vzBrCP>
<vzBrCP descr="" name="webCtrct-pod2"

ownerKey="" ownerTag="" prio="unspecified"
scope="global" targetDscp="unspecified">
<vzSubj consMatchT="AtleastOne" descr=""

name="http" prio="unspecified"
provMatchT="AtleastOne" revFltPorts="yes"
targetDscp="unspecified">
<vzRsSubjFiltAtt directives=""

tnVzFilterName="default"/>
</vzSubj>

</vzBrCP>
<fvCtx descr="" knwMcastAct="permit"

name="ctx6" ownerKey="" ownerTag=""
pcEnfDir="ingress" pcEnfPref="enforced">
<bgpRtTargetP af="ipv6-ucast"

descr="" name="" ownerKey="" ownerTag="">
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
rt="route-target:as4-nn2:100:1256"
type="export"/>
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""

rt="route-target:as4-nn2:100:1256"
type="import"/>

</bgpRtTargetP>
<bgpRtTargetP af="ipv4-ucast"

descr="" name="" ownerKey="" ownerTag="">
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""

rt="route-target:as4-nn2:100:1256"
type="export"/>

<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
rt="route-target:as4-nn2:100:1256"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
324

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring GOLF Using the REST API

type="import"/>
</bgpRtTargetP>
<fvRsCtxToExtRouteTagPol tnL3extRouteTagPolName=""/>
<fvRsBgpCtxPol tnBgpCtxPolName=""/>
<vzAny descr="" matchT="AtleastOne" name=""/>
<fvRsOspfCtxPol tnOspfCtxPolName=""/>
<fvRsCtxToEpRet tnFvEpRetPolName=""/>
<l3extGlobalCtxName descr="" name="dci-pep6"/>

</fvCtx>
<fvBD arpFlood="no" descr="" epMoveDetectMode=""

ipLearning="yes"
limitIpLearnToSubnets="no"
llAddr="::" mac="00:22:BD:F8:19:FF"
mcastAllow="no"
multiDstPktAct="bd-flood"
name="bd107" ownerKey="" ownerTag="" type="regular"
unicastRoute="yes"
unkMacUcastAct="proxy"
unkMcastAct="flood"
vmac="not-applicable">
<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsBDToOut tnL3extOutName="routAccounting-pod2"/>
<fvRsCtx tnFvCtxName="ctx6"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvSubnet ctrl="" descr="" ip="27.6.1.1/24"

name="" preferred="no"
scope="public"
virtual="no"/>
<fvSubnet ctrl="nd" descr="" ip="2001:27:6:1::1/64"

name="" preferred="no"
scope="public"
virtual="no">
<fvRsNdPfxPol tnNdPfxPolName=""/>

</fvSubnet>
<fvRsBdToEpRet resolveAct="resolve" tnFvEpRetPolName=""/>

</fvBD>
<fvBD arpFlood="no" descr="" epMoveDetectMode=""

ipLearning="yes"
limitIpLearnToSubnets="no"
llAddr="::" mac="00:22:BD:F8:19:FF"
mcastAllow="no"
multiDstPktAct="bd-flood"
name="bd103" ownerKey="" ownerTag="" type="regular"
unicastRoute="yes"
unkMacUcastAct="proxy"
unkMcastAct="flood"
vmac="not-applicable">
<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsBDToOut tnL3extOutName="routAccounting"/>
<fvRsCtx tnFvCtxName="ctx6"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvSubnet ctrl="" descr="" ip="23.6.1.1/24"

name="" preferred="no"
scope="public"
virtual="no"/>

<fvSubnet ctrl="nd" descr="" ip="2001:23:6:1::1/64"
name="" preferred="no"
scope="public" virtual="no">
<fvRsNdPfxPol tnNdPfxPolName=""/>

</fvSubnet>
<fvRsBdToEpRet resolveAct="resolve" tnFvEpRetPolName=""/>

</fvBD>
<vnsSvcCont/>
<fvRsTenantMonPol tnMonEPGPolName=""/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
325

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring GOLF Using the REST API

<fvAp descr="" name="AP1"
ownerKey="" ownerTag="" prio="unspecified">
<fvAEPg descr=""

isAttrBasedEPg="no"
matchT="AtleastOne"
name="epg107"
pcEnfPref="unenforced" prio="unspecified">
<fvRsCons prio="unspecified"

tnVzBrCPName="webCtrct-pod2"/>
<fvRsPathAtt descr=""

encap="vlan-1256"
instrImedcy="immediate"
mode="regular" primaryEncap="unknown"
tDn="topology/pod-2/paths-107/pathep-[eth1/48]"/>

<fvRsDomAtt classPref="encap" delimiter=""
encap="unknown"
instrImedcy="immediate"
primaryEncap="unknown"
resImedcy="lazy" tDn="uni/phys-phys"/>

<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsBd tnFvBDName="bd107"/>
<fvRsProv matchT="AtleastOne"

prio="unspecified"
tnVzBrCPName="default"/>

</fvAEPg>
<fvAEPg descr=""

isAttrBasedEPg="no"
matchT="AtleastOne"
name="epg103"
pcEnfPref="unenforced" prio="unspecified">
<fvRsCons prio="unspecified" tnVzBrCPName="default"/>
<fvRsCons prio="unspecified" tnVzBrCPName="webCtrct"/>
<fvRsPathAtt descr="" encap="vlan-1256"

instrImedcy="immediate"
mode="regular" primaryEncap="unknown"
tDn="topology/pod-1/paths-103/pathep-[eth1/48]"/>
<fvRsDomAtt classPref="encap" delimiter=""

encap="unknown"
instrImedcy="immediate"
primaryEncap="unknown"
resImedcy="lazy" tDn="uni/phys-phys"/>

<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsBd tnFvBDName="bd103"/>

</fvAEPg>
</fvAp>
<l3extOut descr=""

enforceRtctrl="export"
name="routAccounting-pod2"
ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="ctx6"/>
<l3extInstP descr=""

matchT="AtleastOne"
name="accountingInst-pod2"
prio="unspecified" targetDscp="unspecified">

<l3extSubnet aggregate="export-rtctrl,import-rtctrl"
descr="" ip="::/0" name=""
scope="export-rtctrl,import-rtctrl,import-security"/>

<l3extSubnet aggregate="export-rtctrl,import-rtctrl"
descr=""
ip="0.0.0.0/0" name=""
scope="export-rtctrl,import-rtctrl,import-security"/>

<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsProv matchT="AtleastOne"

prio="unspecified" tnVzBrCPName="webCtrct-pod2"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
326

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring GOLF Using the REST API

</l3extInstP>
<l3extConsLbl descr=""

name="golf2"
owner="infra"
ownerKey="" ownerTag="" tag="yellow-green"/>

</l3extOut>
<l3extOut descr=""

enforceRtctrl="export"
name="routAccounting"
ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="ctx6"/>
<l3extInstP descr=""

matchT="AtleastOne"
name="accountingInst"
prio="unspecified" targetDscp="unspecified">

<l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr=""
ip="0.0.0.0/0" name=""
scope="export-rtctrl,import-rtctrl,import-security"/>

<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>
</l3extInstP>
<l3extConsLbl descr=""

name="golf"
owner="infra"
ownerKey="" ownerTag="" tag="yellow-green"/>

</l3extOut>
</fvTenant>

Distributing BGP EVPN Type-2 Host Routes to a DCIG
In APIC up to release 2.0(1f), the fabric control plane did not send EVPN host routes directly, but advertised
public bridge domain (BD) subnets in the form of BGP EVPN type-5 (IP Prefix) routes to a Data Center
Interconnect Gateway (DCIG). This could result in suboptimal traffic forwarding. To improve forwarding,
in APIC release 2.1x, you can enable fabric spines to also advertise host routes using EVPN type-2 (MAC-IP)
host routes to the DCIG along with the public BD subnets.

To do so, you must perform the following steps:

1. When you configure the BGP Address Family Context Policy, enable Host Route Leak.

2. When you leak the host route to BGP EVPN in a GOLF setup:

a. To enable host routes when GOLF is enabled, the BGP Address Family Context Policy must be
configured under the application tenant (the application tenant is the consumer tenant that leaks the
endpoint to BGP EVPN) rather than under the infrastructure tenant.

b. For a single-pod fabric, the host route feature is not required. The host route feature is required to
avoid sub-optimal forwarding in a multi-pod fabric setup. However, if a single-pod fabric is setup,
then in order to leak the endpoint to BGP EVPN, a Fabric External Connection Policy must be
configured to provide the ETEP IP address. Otherwise, the host route will not leak to BGP EVPN.

3. When you configure VRF properties:

a. Add the BGP Address Family Context Policy to the BGP Context Per Address Families for IPv4 and
IPv6.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
327

Part 3: Setting Up APIC and the Fabric Using the REST API
Distributing BGP EVPN Type-2 Host Routes to a DCIG

b. Configure BGP Route Target Profiles that identify routes that can be imported or exported from the
VRF.

Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST
API

Enable distributing BGP EVPN type-2 host routes using the REST API, as follows:

Before you begin

EVPN services must be configured.

Step 1 Configure the Host Route Leak policy, with a POST containing XML such as in the following example:

Example:
<bgpCtxAfPol descr="" ctrl="host-rt-leak" name="bgpCtxPol_0 status=""/>

Step 2 Apply the policy to the VRF BGP Address Family Context Policy for one or both of the address families using a POST
containing XML such as in the following example:

Example:
<fvCtx name="vni-10001">
<fvRsCtxToBgpCtxAfPol af="ipv4-ucast" tnBgpCtxAfPolName="bgpCtxPol_0"/>
<fvRsCtxToBgpCtxAfPol af="ipv6-ucast" tnBgpCtxAfPolName="bgpCtxPol_0"/>
</fvCtx>

Multipod

Multipod
Multipod enables provisioning a more fault tolerant fabric comprised of multiple pods with isolated control
plane protocols. Also, multipod provides more flexibility with regard to the full mesh cabling between leaf
and spine switches. For example, if leaf switches are spread across different floors or different buildings,
multipod enables provisioning multiple pods per floor or building and providing connectivity between pods
through spine switches.

Multipod uses MP-BGP EVPN as the control-plane communication protocol between the ACI spines in
different Pods.WAN routers can be provisioned in the IPN, directly connected to spine switches, or connected
to border leaf switches. Multipod uses a single APIC cluster for all the pods; all the pods act as a single fabric.
Individual APIC controllers are placed across the pods but they are all part of a single APIC cluster.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
328

Part 3: Setting Up APIC and the Fabric Using the REST API
Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API

Figure 37: Multipod Overview

For control plane isolation, IS-IS and COOP are not extended across pods. Endpoints synchronize across pods
using BGP EVPN over the IPN between the pods. Two spines in each pod are configured to have BGP EVPN
sessions with spines of other pods. The spines connected to the IPN get the endpoints and multicast groups
from COOP within a pod, but they advertise them over the IPN EVPN sessions between the pods. On the
receiving side, BGP gives them back to COOP and COOP synchs them across all the spines in the pod. WAN
routes are exchanged between the pods using BGP VPNv4/VPNv6 address families; they are not exchanged
using the EVPN address family.

There are two modes of setting up the spine switches for communicating across pods as peers and route
reflectors:

• Automatic

• Automatic mode is a route reflector based mode that does not support a full mesh where all spines
peer with each other. The administrator must post an existing BGP route reflector policy and select
IPN aware (EVPN) route reflectors. All the peer/client settings are automated by the APIC.

• The administrator does not have an option to choose route reflectors that don’t belong to the fabric
(for example, in the IPN).

• Manual

• The administrator has the option to configure full mesh where all spines peer with each other without
route reflectors.

• In manual mode, the administrator must post the already existing BGP peer policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
329

Part 3: Setting Up APIC and the Fabric Using the REST API
Multipod

Observe the following multipod guidelines and limitations:

• When adding a pod to the ACI fabric, wait for the control plane to converge before adding another pod.

• OSPF is deployed on ACI spine switches and IPN switches to provide reachability between PODs. Layer
3 subinterfaces are created on spines to connect to IPN switches. OSPF is enabled on these Layer 3
subinterfaces and per POD TEP prefixes are advertised over OSPF. There is one subinterface created on
each external spine link. Provision many external links on each spine if the expectation is that the amount
of east-west traffic between PODs will be large. Currently, ACI spine switches support up to 64 external
links on each spine, and each subinterface can be configured for OSPF. Spine proxy TEP addresses are
advertised in OSPF over all the subinterfaces leading to a maximum of 64 way ECMP on the IPN switch
for proxy TEP addresses. Similarly, spines would receive proxy TEP addresses of other PODs from IPN
switches over OSPF and the spine can have up to 64 way ECMP for remote pod proxy TEP addresses.
In this way, traffic between PODs spread over all these external links provides the desired bandwidth.

• When the all fabric links of a spine switch are down, OSPF advertises the TEP routes with the maximum
metric. This will force the IPN switch to remove the spine switch from ECMP which will prevent the
IPN from forwarding traffic to the down spine switch. Traffic is then received by other spines that have
up fabric links.

• Up to APIC release 2.0(2), multipod is not supported with GOLF. In release 2.0 (2) the two features are
supported in the same fabric only over Cisco Nexus N9000K switches without “EX” on the end of the
switch name; for example, N9K-9312TX. Since the 2.1(1) release, the two features can be deployed
together over all the switches used in the multipod and EVPN topologies.

• In a multipod fabric, if a spine in POD1 uses the infra tenant L3extOut-1, the TORs for the other pods (
POD2, POD3) cannot use the same infra L3extOut (L3extOut-1) for Layer 3 EVPN control plane
connectivity. Each POD must use their own spine switch and infra L3extOut, because it is not supported
to use a pod as a transit for WAN connectivity of other pods.

• No filtering is done for limiting the routes exchanged across pods. All end-point andWAN routes present
in each pod are exported to other pods.

• Inband management across pods is automatically configured by a self tunnel on every spine.

• Themaximum latency supported between pods is 10msec RTT, which roughly translates to a geographical
distance of up to 500 miles.

Setting Up Multi-Pod Fabric Using the REST API

Step 1 Login to Cisco APIC:

Example:
http://<apic-name/ip>:80/api/aaaLogin.xml

data: <aaaUser name="admin" pwd="ins3965!”/>

Step 2 Configure the TEP pool:

Example:
http://<apic-name/ip>:80/api/policymgr/mo/uni/controller.xml

<fabricSetupPol status=''>
<fabricSetupP podId="1" tepPool="10.0.0.0/16" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
330

Part 3: Setting Up APIC and the Fabric Using the REST API
Setting Up Multi-Pod Fabric Using the REST API

<fabricSetupP podId="2" tepPool="10.1.0.0/16" status='' />
</fabricSetupPol>

Step 3 Configure the node ID policy:

Example:
http://<apic-name/ip>:80/api/node/mo/uni/controller.xml

<fabricNodeIdentPol>
<fabricNodeIdentP serial="SAL1819RXP4" name="ifav4-leaf1" nodeId="101" podId="1"/>
<fabricNodeIdentP serial="SAL1803L25H" name="ifav4-leaf2" nodeId="102" podId="1"/>
<fabricNodeIdentP serial="SAL1934MNY0" name="ifav4-leaf3" nodeId="103" podId="1"/>
<fabricNodeIdentP serial="SAL1934MNY3" name="ifav4-leaf4" nodeId="104" podId="1"/>
<fabricNodeIdentP serial="SAL1748H56D" name="ifav4-spine1" nodeId="201" podId="1"/>
<fabricNodeIdentP serial="SAL1938P7A6" name="ifav4-spine3" nodeId="202" podId="1"/>
<fabricNodeIdentP serial="SAL1938PHBB" name="ifav4-leaf5" nodeId="105" podId="2"/>
<fabricNodeIdentP serial="SAL1942R857" name="ifav4-leaf6" nodeId="106" podId="2"/>
<fabricNodeIdentP serial="SAL1931LA3B" name="ifav4-spine2" nodeId="203" podId="2"/>
<fabricNodeIdentP serial="FGE173400A9" name="ifav4-spine4" nodeId="204" podId="2"/>
</fabricNodeIdentPol>

Step 4 Configure infra L3Out and external connectivity profile:

Example:
http://<apic-name/ip>:80/api/node/mo/uni.xml

<polUni>

<fvTenant descr="" dn="uni/tn-infra" name="infra" ownerKey="" ownerTag="">

<l3extOut descr="" enforceRtctrl="export" name="multipod" ownerKey="" ownerTag=""
targetDscp="unspecified" status=''>

<ospfExtP areaId='0' areaType='regular' status=''/>
<l3extRsEctx tnFvCtxName="overlay-1"/>
<l3extProvLbl descr="" name="prov_mp1" ownerKey="" ownerTag="" tag="yellow-green"/>

<l3extLNodeP name="bSpine">
<l3extRsNodeL3OutAtt rtrId="201.201.201.201" rtrIdLoopBack="no" tDn="topology/pod-1/node-201">

<l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<l3extLoopBackIfP addr="201::201/128" descr="" name=""/>
<l3extLoopBackIfP addr="201.201.201.201/32" descr="" name=""/>

</l3extRsNodeL3OutAtt>

<l3extRsNodeL3OutAtt rtrId="202.202.202.202" rtrIdLoopBack="no" tDn="topology/pod-1/node-202">

<l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<l3extLoopBackIfP addr="202::202/128" descr="" name=""/>
<l3extLoopBackIfP addr="202.202.202.202/32" descr="" name=""/>

</l3extRsNodeL3OutAtt>

<l3extRsNodeL3OutAtt rtrId="203.203.203.203" rtrIdLoopBack="no" tDn="topology/pod-2/node-203">

<l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<l3extLoopBackIfP addr="203::203/128" descr="" name=""/>
<l3extLoopBackIfP addr="203.203.203.203/32" descr="" name=""/>

</l3extRsNodeL3OutAtt>

<l3extRsNodeL3OutAtt rtrId="204.204.204.204" rtrIdLoopBack="no" tDn="topology/pod-2/node-204">

<l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<l3extLoopBackIfP addr="204::204/128" descr="" name=""/>
<l3extLoopBackIfP addr="204.204.204.204/32" descr="" name=""/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
331

Part 3: Setting Up APIC and the Fabric Using the REST API
Setting Up Multi-Pod Fabric Using the REST API

</l3extRsNodeL3OutAtt>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-1/paths-201/pathep-[eth1/1]"

encap='vlan-4' ifInstT='sub-interface' addr="201.1.1.1/30" />
<l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-1/paths-201/pathep-[eth1/2]"

encap='vlan-4' ifInstT='sub-interface' addr="201.2.1.1/30" />
<l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-1/paths-202/pathep-[eth1/2]"

encap='vlan-4' ifInstT='sub-interface' addr="202.1.1.1/30" />
<l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-2/paths-203/pathep-[eth1/1]"

encap='vlan-4' ifInstT='sub-interface' addr="203.1.1.1/30" />
<l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-2/paths-203/pathep-[eth1/2]"

encap='vlan-4' ifInstT='sub-interface' addr="203.2.1.1/30" />
<l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-2/paths-204/pathep-[eth4/31]"

encap='vlan-4' ifInstT='sub-interface' addr="204.1.1.1/30" />

<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>

</ospfIfP>

</l3extLIfP>
</l3extLNodeP>

<l3extInstP descr="" matchT="AtleastOne" name="instp1" prio="unspecified"
targetDscp="unspecified">

<fvRsCustQosPol tnQosCustomPolName=""/>
</l3extInstP>

</l3extOut>

<fvFabricExtConnP descr="" id="1" name="Fabric_Ext_Conn_Pol1" rt="extended:as2-nn4:5:16" status=''>

<fvPodConnP descr="" id="1" name="">
<fvIp addr="100.11.1.1/32"/>

</fvPodConnP>
<fvPodConnP descr="" id="2" name="">

<fvIp addr="200.11.1.1/32"/>
</fvPodConnP>
<fvPeeringP descr="" name="" ownerKey="" ownerTag="" type="automatic_with_full_mesh"/>
<l3extFabricExtRoutingP descr="" name="ext_routing_prof_1" ownerKey="" ownerTag="">

<l3extSubnet aggregate="" descr="" ip="100.0.0.0/8" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="200.0.0.0/8" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="201.1.0.0/16" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="201.2.0.0/16" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="202.1.0.0/16" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="203.1.0.0/16" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="203.2.0.0/16" name="" scope="import-security"/>
<l3extSubnet aggregate="" descr="" ip="204.1.0.0/16" name="" scope="import-security"/>

</l3extFabricExtRoutingP>
</fvFabricExtConnP>

</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
332

Part 3: Setting Up APIC and the Fabric Using the REST API
Setting Up Multi-Pod Fabric Using the REST API

Anycast Services

About Anycast Services
Anycast services are supported in the Cisco ACI fabric. A typical use case is to support Cisco Adaptive
Security Appliance (ASA) firewalls in the pods of a multipod fabric, but Anycast could be used to enable
other services, such as DNS servers or printing services. In the ASA use case, a firewall is installed in every
pod and Anycast is enabled, so the firewall can be offered as an Anycast service. One instance of a firewall
going down does not affect clients, as the requests are routed to the next, nearest instance available. You install
ASA firewalls in each pod, then enable Anycast and configure the IP address and MAC addresses to be used.

APIC deploys the configuration of the Anycast MAC and IP addresses to the leaf switches where the VRF is
deployed or where there is a contract to allow an Anycast EPG.

Initially, each leaf switch installs the Anycast MAC and IP addresses as a proxy route to the spine switch.
When the first packet from the Anycast Service is received, the destination information for the service is
installed on the leaf switch behind which the service is installed. All other leaf switches continue to point to
the spine proxy. When the Anycast service has been learned, located behind a leaf in a pod, COOP installs
the entry on the spine switch to point to the service that is local to the pod.

When the Anycast service is running in one pod, the spine receives the route information for the Anycast
service present in the pod through BGP-EVPN. If the Anycast service is already locally present, then COOP
caches the Anycast service information of the remote pod. This route through the remote pod is only installed
when the local instance of the service goes down.

Configuring Anycast Services Using the REST API
These examples show how to configure Anycast services in three methods:

• Behind an EPG.

• As part of a Layer 4 to Layer 7 Service Graph with Policy Based Redirect (PBR)

• As part of a Layer 4 to Layer 7 Service Graph without PBR

Before you begin

• The tenant, application profile, and application EPG have been created.

• The node group and L3Out policies have already been created.

• The Interpod Network (IPN) is already configured.

• Multipod is configured.

• In each pod, the spine switch used to connect to the IPN is also connected to at least one leaf switch.

• ASA firewalls are installed in each pod.

Step 1 To configure Anycast services behind an EPG, send a post with XML such as the following example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
333

Part 3: Setting Up APIC and the Fabric Using the REST API
Anycast Services

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/policymgr/mo/.xml -->
<polUni>

<fvTenant name="tn1" status="created,modified">
<fvAp name="a0">

<fvAEPg name="web">
<fvSubnet ctrl="no-default-gateway" ip="200.50.3.4/32" scope="private>

<fvEpAnycast mac="00:44:55:66:55:01"/>
</fvSubnet>
<fvRsDomAtt tDn="uni/phys-test"/>

<fvRsBd tnFvBDName="lab"/>
</fvAEPg>

</fvAp>
</fvTenant>

</polUni>

Step 2 To configure Anycast services as part of a Layer 4 to Layer 7 service graph with PBR, send a post with XML such as the
following example:

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/policymgr/mo/.xml -->
<polUni>

<fvTenant name="tn1" >
<vnsSvcCont>

<vnsSvcRedirectPol name="N1Ext" AnycastEnabled="yes">
<vnsRedirectDest ip="2000::25/128" mac="00:00:00:00:00:07"/>

</vnsSvcRedirectPol>
<vnsSvcRedirectPol name="N1Int" AnycastEnabled="yes">

<vnsRedirectDest ip="30.30.30.100/32" mac="00:00:00:00:00:08"/>
</vnsSvcRedirectPol>

</vnsSvcCont>
</fvTenant>

</polUni>

Step 3 To configure Anycast services as part of a Layer 4 to Layer 7 service graph without PBR, send a post with XML such as
the following example:

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/policymgr/mo/.xml -->
<polUni>

<fvTenant name="tn1" >
<vnsLDevCtx ctrctNameOrLbl="webCtrct" graphNameOrLbl="WebGraph" nodeNameOrLbl="N1">

<vnsRsLDevCtxToLDev tDn="uni/tn-tn1/lDevVip-N1"/>
<vnsLIfCtx connNameOrLbl="provider">

<fvSubnet ip="50.50.50.50/32" ctrl="no-default-gateway">
<fvEpAnycast mac="00:00:00:00:00:50"/>

</fvSubnet>
<vnsRsLIfCtxToBD tDn="uni/tn-coke/BD-N1IntBD"/>

<vnsRsLIfCtxToLIf tDn="uni/tn-coke/lDevVip-N1/lIf-internal"/>
</vnsLIfCtx>
<vnsLIfCtx connNameOrLbl="consumer">

<fvSubnet ip="2000::25/128" ctrl="no-default-gateway">
<fvEpAnycast mac="00:00:00:00:00:51"/>

</fvSubnet>
<vnsRsLIfCtxToBD tDn="uni/tn-coke/BD-N1ExtBD"/>

<vnsRsLIfCtxToLIf tDn="uni/tn-coke/lDevVip-N1/lIf-external"/>
</vnsLIfCtx>

</vnsLDevCtx>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
334

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Anycast Services Using the REST API

</fvTenant>
</polUni>

Remote Leaf Switches

About Remote Leaf Switches in the ACI Fabric
With an ACI fabric deployed, you can extend ACI services and APIC management to remote data centers
with Cisco ACI leaf switches that have no local spine switch or APIC attached.

The remote leaf switches are added to an existing pod in the fabric. All policies deployed in the main data
center are deployed in the remote switches, which behave like local leaf switches belonging to the pod. In
this topology, all unicast traffic is through VXLAN over Layer 3. Layer 2 broadcast, unknown unicast, and
multicast (BUM) messages are sent using Head End Replication (HER) tunnels without the use of Layer 3
multicast (bidirectional PIM) over theWAN. Any traffic that requires use of the spine switch proxy is forwarded
to the main data center.

The APIC system discovers the remote leaf switches when they come up. From that time, they can be managed
through APIC, as part of the fabric.

• All inter-VRF traffic (pre-release 4.0(1)) goes to the spine switch before being forwarded.

• For releases prior to Release 4.1(2), before decommissioning a remote leaf switch, you must first delete
the vPC.

Note

Characteristics of Remote Leaf Switch Behavior in Release 4.0(1)

Starting in Release 4.0(1), Remote Leaf behavior takes on the following characteristics:

• Reduction of WAN bandwidth use by decoupling services from spine-proxy:

• PBR: For local PBR devices or PBR devices behind a vPC, local switching is used without going
to the spine proxy. For PBR devices on orphan ports on a peer remote leaf, a RL-vPC tunnel is used.
This is true when the spine link to the main DC is functional or not functional.

• ERSPAN: For peer destination EPGs, a RL-vPC tunnel is used. EPGs on local orphan or vPC ports
use local switching to the destination EPG. This is true when the spine link to the main DC is
functional or not functional.

• Shared Services: Packets do not use spine-proxy path reducing WAN bandwidth consumption.

• Inter-VRF traffic is forwarded through an upstream router and not placed on the spine.

• This enhancement is only applicable for a remote leaf vPC pair. For communication across remote
leaf pairs, a spine proxy is still used.

• Resolution of unknown L3 endpoints (through ToR glean process) in a remote leaf location when
spine-proxy is not reachable.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
335

Part 3: Setting Up APIC and the Fabric Using the REST API
Remote Leaf Switches

Characteristics of Remote Leaf Switch Behavior in Release 4.1(2)

Before Release 4.1(2), all local switching (within the remote leaf vPC peer) traffic on the remote leaf location
is switched directly between endpoints, whether physical or virtual, as shown in the following figure.

Figure 38: Local Switching Traffic: Prior to Release 4.1(2)

In addition, before Release 4.1(2), traffic between the remote leaf switch vPC pairs, either within a remote
location or between remote locations, is forwarded to the spine switches in the ACI main data center pod, as
shown in the following figure.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
336

Part 3: Setting Up APIC and the Fabric Using the REST API
About Remote Leaf Switches in the ACI Fabric

Figure 39: Remote Switching Traffic: Prior to Release 4.1(2)

Starting in Release 4.1(2), support is now available for direct traffic forwarding between remote leaf switches
in different remote locations. This functionality offers a level of redundancy and availability in the connections
between remote locations, as shown in the following figure.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
337

Part 3: Setting Up APIC and the Fabric Using the REST API
About Remote Leaf Switches in the ACI Fabric

Figure 40: Remote Leaf Switch Behavior: Release 4.1(2)

In addition, remote leaf switch behavior also takes on the following characteristics starting in release 4.1(2):

• Starting with Release 4.1(2), with direct traffic forwarding, when a spine switch fails within a single-pod
configuration, the following occurs:

• Local switching will continue to function for existing and new end point traffic between the remote
leaf switch vPC peers, as shown in the "Local Switching Traffic: Prior to Release 4.1(2)" figure
above.

• For traffic between remote leaf switches across remote locations:

• New end point traffic will fail because the remote leaf switch-to-spine switch tunnel would be
down. From the remote leaf switch, new end point details will not get synced to the spine
switch, so the other remote leaf switch pairs in the same or different locations cannot download
the new end point information from COOP.

• For uni-directional traffic, existing remote end points will age out after 300 secs, so traffic will
fail after that point. Bi-directional traffic within a remote leaf site (between remote leaf VPC
pairs) in a pod will get refreshed and will continue to function. Note that Bi-directional traffic
to remote locations (remote leaf switches) will be affected as the remote end points will be
expired by COOP after a timeout of 900 seconds.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
338

Part 3: Setting Up APIC and the Fabric Using the REST API
About Remote Leaf Switches in the ACI Fabric

• Bi-directional traffic within a remote leaf site (between remote leaf VPC pairs) in a pod will
get refreshed and will continue to function. Note that Bi-directional traffic to remote locations
(remote leaf switches) will be affected as the remote end points will be expired by COOP after
a timeout of 900 seconds.

• For shared services (inter-VRF), bi-directional traffic between end points belonging to remote
leaf switches attached to two different remote locations in the same pod will fail after the remote
leaf switch COOP end point age-out time (900 sec). This is because the remote leaf
switch-to-spine COOP session would be down in this situation. However, shared services traffic
between end points belonging to remote leaf switches attached to two different pods will fail
after 30 seconds, which is the COOP fast-aging time.

• L3Out-to-L3Out communication would not be able to continue because the BGP session to
the spine switches would be down.

• When there is remote leaf direct uni-directional traffic, where the traffic is from remote leaf switch to
remote leaf switch or from remote leaf switch to local leaf switch, there will be a milli-second traffic
loss every time the remote end point (XR EP) timeout of 300 seconds occurs.

You can configure Remote Leaf in the APIC GUI, either with and without a wizard, or use the REST API or
the NX-OS style CLI.

Remote Leaf Switch Hardware Requirements
The following switches are supported for the Remote Leaf Switch feature.

Fabric Spine Switches

For the spine switch at the ACI Main Datacenter that is connected to the WAN router, the following spine
switches are supported:

• Fixed spine switches Cisco Nexus 9000 series:

• N9K-C9316D-GX

• N9K-C9332C

• N9K-C9364C

• N9K-C9364C-GX

• For modular spine switches, only Cisco Nexus 9000 series switches with names that end in EX, and later
(for example, N9K-X9732C- EX) are supported.

• Older generation spine switches, such as the fixed spine switch N9K-C9336PQ or modular spine switches
with the N9K-X9736PQ linecard are supported in the Main Datacenter, but only next generation spine
switches are supported to connect to the WAN.

Remote Leaf Switches

• For the remote leaf switches, only Cisco Nexus 9000 series switches with names that end in EX, and
later (for example, N9K-C93180LC-EX) are supported.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
339

Part 3: Setting Up APIC and the Fabric Using the REST API
Remote Leaf Switch Hardware Requirements

• The remote leaf switches must be running a switch image of 13.1.x or later (aci-n9000-dk9.13.1.x.x.bin)
before they can be discovered. This may require manual upgrades on the leaf switches.

Remote Leaf Switch Restrictions and Limitations
The following guidelines and restrictions apply to remote leaf switches:

• A remote leaf vPC pair has a split brain condition when the DP-TEP address of one of the switches is
not reachable from the peer. In this case, both remote leaf switches are up and active in the fabric and
the COOP session is also up on both of the peers. One of the remote leaf switches does not have a route
to the DP-TEP address of its peer, and due to this, the vPC has a split brain condition. Both of the node
roles is changed to "primary" and all the front panel links are up in both of the peers while the zero
message queue (ZMQ) session is down.

• The remote leaf solution requires the /32 tunnel end point (TEP) IP addresses of the remote leaf switches
and main data center leaf/spine switches to be advertised across the main data center and remote leaf
switches without summarization.

• If you move a remote leaf switch to a different site within the same pod and the new site has the same
node ID as the original site, you must delete and recreate the virtual port channel (vPC).

• With the Cisco N9K-C9348GC-FXP switch, you can perform the initial remote leaf switch discovery
only on ports 1/53 or 1/54. Afterward, you can use the other ports for fabric uplinks to the ISN/IPN for
the remote leaf switch.

The following sections provide information on what is supported and not supported with remote leaf switches:

• Supported Features, on page 340

• Unsupported Features, on page 341

Supported Features

Beginning with Cisco APIC release 4.1(2), the following features are supported:

• Remote leaf switches with ACI Multi-Site

• Traffic forwarding directly across two remote leaf vPC pairs in the same remote data center or across
data centers, when those remote leaf pairs are associated to the same pod or to pods that are part of the
same multipod fabric

• Transit L3Out across remote locations, which is when the main Cisco ACI data center pod is a transit
between two remote locations (the L3Out in RL location-1 and L3Out in RL location-2 are
advertising prefixes for each other)

Beginning with Cisco APIC release 4.0(1), the following features are supported:

• Q-in-Q Encapsulation Mapping for EPGs

• PBR Tracking on remote leaf switches (with system-level global GIPo enabled)

• PBR Resilient Hashing

• Netflow

• MacSec Encryption

Cisco APIC REST API Configuration Guide, Release 4.1(x)
340

Part 3: Setting Up APIC and the Fabric Using the REST API
Remote Leaf Switch Restrictions and Limitations

• Troubleshooting Wizard

• Atomic counters

Unsupported Features

Full fabric and tenant policies are supported on remote leaf switches in this release with the exception of the
following features, which are unsupported:

• GOLF

• vPod

• Floating L3Out

• Fast-convergence mode

• Stretching of L3Out SVI between local leaf switches (ACI main data center switches) and remote leaf
switches or stretching across two different vPC pairs of remote leaf switches

• Copy service is not supported when deployed on local leaf switches and when the source or destination
is on the remote leaf switch. In this situation, the routable TEP IP address is not allocated for the local
leaf switch. For more information, see the section "Copy Services Limitations" in the "Configuring Copy
Services" chapter in the Cisco APIC Layer 4 to Layer 7 Services Deployment Guide, available in the
APIC documentation page.

• Layer 2 Outside Connections (except Static EPGs)

• 802.1Q Tunnels

• Copy services with vzAny contract

• FCoE connections on remote leaf switches

• Flood in encapsulation for bridge domains or EPGs

• Fast Link Failover policies

• Managed Service Graph-attached devices at remote locations

• Traffic Storm Control

• Cloud Sec Encryption

• First Hop Security

• Layer 3 Multicast routing on remote leaf switches

• Maintenance mode

• TEP to TEP atomic counters

The following scenarios are not supported when integrating remote leaf switches in a Multi-Site architecture
in conjunction with the intersite L3Out functionality:

• Transit routing between L3Outs deployed on remote leaf switch pairs associated to separate sites

• Endpoints connected to a remote leaf switch pair associated to a site communicating with the L3Out
deployed on the remote leaf switch pair associated to a remote site

Cisco APIC REST API Configuration Guide, Release 4.1(x)
341

Part 3: Setting Up APIC and the Fabric Using the REST API
Remote Leaf Switch Restrictions and Limitations

https://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html

• Endpoints connected to the local site communicating with the L3Out deployed on the remote leaf switch
pair associated to a remote site

• Endpoints connected to a remote leaf switch pair associated to a site communicating with the L3Out
deployed on a remote site

The limitations above do not apply if the different data center sites are deployed as pods as part of the same
Multi-Pod fabric.

Note

The following deployments and configurations are not supported with the remote leaf switch feature:

• It is not supported to stretch a bridge domain between remote leaf nodes associated to a given site (APIC
domain) and leaf nodes part of a separate site of a Multi-Site deployment (in both scenarios where those
leaf nodes are local or remote) and a fault is generated on APIC to highlight this restriction. This applies
independently from the fact that BUM flooding is enabled or disabled when configuring the stretched
bridge domain on theMulti-Site Orchestrator (MSO). However, a bridge domain can always be stretched
(with BUM flooding enabled or disabled) between remote leaf nodes and local leaf nodes belonging to
the same site (APIC domain).

• Spanning Tree Protocol across remote leaf location and main data center

• APICs directly connected to remote leaf switches

• Orphan port channel or physical ports on remote leaf switches, with a vPC domain (this restriction applies
for releases 3.1 and earlier)

• With and without service node integration, local traffic forwarding within a remote location is only
supported if the consumer, provider, and services nodes are all connected to remote leaf switches are in
vPC mode

• /32 loopbacks advertised from the spine switch to the IPN must not be suppressed/aggregated toward
the remote leaf switch. The /32 loopbacks must be advertised to the remote leaf switch.

WAN Router and Remote Leaf Switch Configuration Guidelines
Before a remote leaf is discovered and incorporated in APIC management, you must configure the WAN
router and the remote leaf switches.

Configure the WAN routers that connect to the fabric spine switch external interfaces and the remote leaf
switch ports, with the following requirements:

WAN Routers

• Enable OSPF on the interfaces, with the same details, such as area ID, type, and cost.

• Configure DHCP Relay on the interface leading to each APIC's IP address in the main fabric.

• The interfaces on the WAN routers which connect to the VLAN-5 interfaces on the spine switches must
be on different VRFs than the interfaces connecting to a regular multipod network.

Remote Leaf Switches

Cisco APIC REST API Configuration Guide, Release 4.1(x)
342

Part 3: Setting Up APIC and the Fabric Using the REST API
WAN Router and Remote Leaf Switch Configuration Guidelines

• Connect the remote leaf switches to an upstream router by a direct connection from one of the fabric
ports. The following connections to the upstream router are supported:

• 40 Gbps & higher connections

• With a QSFP-to-SFP Adapter, supported 1G/10G SFPs

Bandwidth in the WANmust be a minimum of 100 Mbps and maximum supported latency is 300 msecs.

• It is recommended, but not required to connect the pair of remote leaf switches with a vPC. The switches
on both ends of the vPC must be remote leaf switches at the same remote datacenter.

• Configure the northbound interfaces as Layer 3 sub-interfaces on VLAN-4, with unique IP addresses.

If you connect more than one interface from the remote leaf switch to the router, configure each interface
with a unique IP address.

• Enable OSPF on the interfaces, but do not set the OSPF area type as stub area.

• The IP addresses in the remote leaf switch TEP Pool subnet must not overlap with the pod TEP subnet
pool. The subnet used must be /24 or lower.

• Multipod is supported, but not required, with the Remote Leaf feature.

• When connecting a pod in a single-pod fabric with remote leaf switches, configure an L3Out from a
spine switch to the WAN router and an L3Out from a remote leaf switch to the WAN router, both using
VLAN-4 on the switch interfaces.

• When connecting a pod in a multipod fabric with remote leaf switches, configure an L3Out from a spine
switch to theWAN router and an L3Out from a remote leaf switch to theWAN router, both using VLAN-4
on the switch interfaces. Also configure a multipod-internal L3Out using VLAN-5 to support traffic that
crosses pods destined to a remote leaf switch. The regular multipod and multipod-internal connections
can be configured on the same physical interfaces, as long as they use VLAN-4 and VLAN-5.

• When configuring theMultipod-internal L3Out, use the same router ID as for the regular multipod L3Out,
but deselect the Use Router ID as Loopback Address option for the router-id and configure a different
loopback IP address. This enables ECMP to function.

Configure Remote Leaf Switches Using the REST API
To enable Cisco APIC to discover and connect the IPN router and remote leaf switches, perform the steps in
this topic.

This example assumes that the remote leaf switches are connected to a pod in a multipod topology. It includes
two L3Outs configured in the infra tenant, with VRF overlay-1:

• One is configured on VLAN-4, that is required for both the remote leaf switches and the spine switch
that is connected to the WAN router.

• One is the multipod-internal L3Out configured on VLAN-5, that is required for the multipod and Remote
Leaf features, when they are deployed together.

Step 1 To define the TEP pool for two remote leaf switches to be connected to a pod, send a post with XML such as the following
example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
343

Part 3: Setting Up APIC and the Fabric Using the REST API
Configure Remote Leaf Switches Using the REST API

Example:
<fabricSetupPol>

<fabricSetupP tepPool="10.0.0.0/16" podId="1" >
<fabricExtSetupP tepPool="30.0.128.0/20" extPoolId="1"/>

</fabricSetupP>
<fabricSetupP tepPool="10.1.0.0/16" podId="2" >

<fabricExtSetupP tepPool="30.1.128.0/20" extPoolId="1"/>
</fabricSetupP>

</fabricSetupPol>

Step 2 To define the node identity policy, send a post with XML, such as the following example:

Example:
<fabricNodeIdentPol>

<fabricNodeIdentP serial="SAL17267Z7W" name="leaf1" nodeId="101" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>

<fabricNodeIdentP serial="SAL17267Z7X" name="leaf2" nodeId="102" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>

<fabricNodeIdentP serial="SAL17267Z7Y" name="leaf3" nodeId="201" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>

<fabricNodeIdentP serial="SAL17267Z7Z" name="leaf4" nodeId="201" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>
</fabricNodeIdentPol>

Step 3 To configure the Fabric External Connection Profile, send a post with XML such as the following example:

Example:
<?xml version="1.0" encoding="UTF-8"?>
<imdata totalCount="1">

<fvFabricExtConnP dn="uni/tn-infra/fabricExtConnP-1" id="1" name="Fabric_Ext_Conn_Pol1"
rt="extended:as2-nn4:5:16" siteId="0">

<l3extFabricExtRoutingP name="test">
<l3extSubnet ip="150.1.0.0/16" scope="import-security"/>

</l3extFabricExtRoutingP>
<l3extFabricExtRoutingP name="ext_routing_prof_1">

<l3extSubnet ip="204.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="209.2.0.0/16" scope="import-security"/>
<l3extSubnet ip="202.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="207.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="200.0.0.0/8" scope="import-security"/>
<l3extSubnet ip="201.2.0.0/16" scope="import-security"/>
<l3extSubnet ip="210.2.0.0/16" scope="import-security"/>
<l3extSubnet ip="209.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="203.2.0.0/16" scope="import-security"/>
<l3extSubnet ip="208.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="207.2.0.0/16" scope="import-security"/>
<l3extSubnet ip="100.0.0.0/8" scope="import-security"/>
<l3extSubnet ip="201.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="210.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="203.1.0.0/16" scope="import-security"/>
<l3extSubnet ip="208.2.0.0/16" scope="import-security"/>

</l3extFabricExtRoutingP>
<fvPodConnP id="1">

<fvIp addr="100.11.1.1/32"/>
</fvPodConnP>
<fvPodConnP id="2">

<fvIp addr="200.11.1.1/32"/>
</fvPodConnP>
<fvPeeringP type="automatic_with_full_mesh"/>

</fvFabricExtConnP>
</imdata>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
344

Part 3: Setting Up APIC and the Fabric Using the REST API
Configure Remote Leaf Switches Using the REST API

Step 4 To configure an L3Out on VLAN-4, that is required for both the remote leaf switches and the spine switch connected to
the WAN router, enter XML such as the following example.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<polUni>
<fvTenant name="infra">
<l3extOut name="rleaf-wan-test">
<ospfExtP areaId="0.0.0.5"/>
<bgpExtP/>
<l3extRsEctx tnFvCtxName="overlay-1"/>
<l3extRsL3DomAtt tDn="uni/l3dom-l3extDom1"/>
<l3extProvLbl descr="" name="prov_mp1" ownerKey="" ownerTag="" tag="yellow-green"/>
<l3extLNodeP name="rleaf-101">
<l3extRsNodeL3OutAtt rtrId="202.202.202.202" tDn="topology/pod-1/node-101">
</l3extRsNodeL3OutAtt>
<l3extLIfP name="portIf">
<l3extRsPathL3OutAtt ifInstT="sub-interface" tDn="topology/pod-1/paths-101/pathep-[eth1/49]"

addr="202.1.1.2/30" mac="AA:11:22:33:44:66" encap='vlan-4'/>
<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>

</ospfIfP>
</l3extLIfP>

</l3extLNodeP>
<l3extLNodeP name="rlSpine-201">
<l3extRsNodeL3OutAtt rtrId="201.201.201.201" rtrIdLoopBack="no" tDn="topology/pod-1/node-201">

<!--
<l3extLoopBackIfP addr="201::201/128" descr="" name=""/>
<l3extLoopBackIfP addr="201.201.201.201/32" descr="" name=""/>
-->
<l3extLoopBackIfP addr="::" />

</l3extRsNodeL3OutAtt>
<l3extLIfP name="portIf">
<l3extRsPathL3OutAtt ifInstT="sub-interface" tDn="topology/pod-1/paths-201/pathep-[eth8/36]"

addr="201.1.1.1/30" mac="00:11:22:33:77:55" encap='vlan-4'/>
<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>

</ospfIfP>
</l3extLIfP>

</l3extLNodeP>
<l3extInstP descr="" matchT="AtleastOne" name="instp1" prio="unspecified" targetDscp="unspecified">

<fvRsCustQosPol tnQosCustomPolName=""/>
</l3extInstP>

</l3extOut>
<ospfIfPol name="ospfIfPol" nwT="bcast"/>

</fvTenant>
</polUni>

Step 5 For releases prior to Release 4.1(2), to configure the multipod L3Out on VLAN-5, that is required for both multipod and
the remote leaf topology, send a post such as the following example.

Do not enter this information if you are deploying new remote leaf switches running Release 4.1(2) or later and
you are enabling direct traffic forwarding on those remote leaf switches. Configuring an OSPF instance using
VLAN-5 for multipod is not needed in this case.

Note

Example:
<?xml version="1.0" encoding="UTF-8"?>
<polUni>

<fvTenant name="infra" >

Cisco APIC REST API Configuration Guide, Release 4.1(x)
345

Part 3: Setting Up APIC and the Fabric Using the REST API
Configure Remote Leaf Switches Using the REST API

<l3extOut name="ipn-multipodInternal">
<ospfExtP areaCtrl="inherit-ipsec,redistribute,summary" areaId="0.0.0.5" multipodInternal="yes"

/>
<l3extRsEctx tnFvCtxName="overlay-1" />
<l3extLNodeP name="bLeaf">
<l3extRsNodeL3OutAtt rtrId="202.202.202.202" rtrIdLoopBack="no" tDn="topology/pod-2/node-202">

<l3extLoopBackIfP addr="202.202.202.212"/>
</l3extRsNodeL3OutAtt>
<l3extRsNodeL3OutAtt rtrId="102.102.102.102" rtrIdLoopBack="no" tDn="topology/pod-1/node-102">

<l3extLoopBackIfP addr="102.102.102.112"/>
</l3extRsNodeL3OutAtt>
<l3extLIfP name="portIf">
<ospfIfP authKeyId="1" authType="none">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol" />

</ospfIfP>
<l3extRsPathL3OutAtt addr="10.0.254.233/30" encap="vlan-5" ifInstT="sub-interface"

tDn="topology/pod-2/paths-202/pathep-[eth5/2]"/>
<l3extRsPathL3OutAtt addr="10.0.255.229/30" encap="vlan-5" ifInstT="sub-interface"

tDn="topology/pod-1/paths-102/pathep-[eth5/2]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extInstP matchT="AtleastOne" name="ipnInstP" />

</l3extOut>
</fvTenant>

</polUni>

Prerequisites Required Prior to Downgrading Remote Leaf Switches

If you have remote leaf switches deployed, if you downgrade the APIC software from Release 3.1(1) or later,
to an earlier release that does not support the Remote Leaf feature, you must decommission the remote nodes
and remove the remote leaf-related policies (including the TEP Pool), before downgrading. Formore information
on decommissioning switches, see Decommissioning and Recommissioning Switches in the Cisco APIC
Troubleshooting Guide.

Note

Before you downgrade remote leaf switches, verify that the followings tasks are complete:

• Delete the vPC domain.

• Delete the vTEP - Virtual Network Adapter if using SCVMM.

• Decommission the remote leaf nodes, and wait 10 -15 minutes after the decommission for the task to
complete.

• Delete the remote leaf to WAN L3out in the infra tenant.

• Delete the infra-l3out with VLAN 5 if using Multipod.

• Delete the remote TEP pools.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
346

Part 3: Setting Up APIC and the Fabric Using the REST API
Prerequisites Required Prior to Downgrading Remote Leaf Switches

HSRP

About HSRP
HSRP is a first-hop redundancy protocol (FHRP) that allows a transparent failover of the first-hop IP router.
HSRP provides first-hop routing redundancy for IP hosts on Ethernet networks configured with a default
router IP address. You use HSRP in a group of routers for selecting an active router and a standby router. In
a group of routers, the active router is the router that routes packets, and the standby router is the router that
takes over when the active router fails or when preset conditions are met.

Many host implementations do not support any dynamic router discovery mechanisms but can be configured
with a default router. Running a dynamic router discovery mechanism on every host is not practical for many
reasons, including administrative overhead, processing overhead, and security issues. HSRP provides failover
services to such hosts.

When you use HSRP, you configure the HSRP virtual IP address as the default router of the host (instead of
the IP address of the actual router). The virtual IP address is an IPv4 or IPv6 address that is shared among a
group of routers that run HSRP.

When you configure HSRP on a network segment, you provide a virtual MAC address and a virtual IP address
for the HSRP group. You configure the same virtual address on each HSRP-enabled interface in the group.
You also configure a unique IP address andMAC address on each interface that acts as the real address. HSRP
selects one of these interfaces to be the active router. The active router receives and routes packets destined
for the virtual MAC address of the group.

HSRP detects when the designated active router fails. At that point, a selected standby router assumes control
of the virtual MAC and IP addresses of the HSRP group. HSRP also selects a new standby router at that time.

HSRP uses a priority designator to determine which HSRP-configured interface becomes the default active
router. To configure an interface as the active router, you assign it with a priority that is higher than the priority
of all the other HSRP-configured interfaces in the group. The default priority is 100, so if you configure just
one interface with a higher priority, that interface becomes the default active router.

Interfaces that run HSRP send and receive multicast User Datagram Protocol (UDP)-based hello messages
to detect a failure and to designate active and standby routers. When the active router fails to send a hello
message within a configurable period of time, the standby router with the highest priority becomes the active
router. The transition of packet forwarding functions between the active and standby router is completely
transparent to all hosts on the network.

You can configure multiple HSRP groups on an interface. The virtual router does not physically exist but
represents the common default router for interfaces that are configured to provide backup to each other. You
do not need to configure the hosts on the LAN with the IP address of the active router. Instead, you configure
them with the IP address of the virtual router (virtual IP address) as their default router. If the active router
fails to send a hello message within the configurable period of time, the standby router takes over, responds
to the virtual addresses, and becomes the active router, assuming the active router duties. From the host
perspective, the virtual router remains the same.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
347

Part 3: Setting Up APIC and the Fabric Using the REST API
HSRP

Packets received on a routed port destined for the HSRP virtual IP address terminate on the local router,
regardless of whether that router is the active HSRP router or the standby HSRP router. This process includes
ping and Telnet traffic. Packets received on a Layer 2 (VLAN) interface destined for the HSRP virtual IP
address terminate on the active router.

Note

Guidelines and Limitations
Follow these guidelines and limitations:

• The HSRP state must be the same for both HSRP IPv4 and IPv6. The priority and preemption must be
configured to result in the same state after failovers.

• Currently, only one IPv4 and one IPv6 group is supported on the same sub-interface in Cisco ACI. Even
when dual stack is configured, Virtual MAC must be the same in IPv4 and IPv6 HSRP configurations.

• BFD IPv4 and IPv6 is supported when the network connecting the HSRP peers is a pure layer 2 network.
You must configure a different router MAC address on the leaf switches. The BFD sessions become
active only if you configure different MAC addresses in the leaf interfaces.

• Usersmust configure the sameMAC address for IPv4 and IPv6HSRP groups for dual stack configurations.

• HSRP VIP must be in the same subnet as the interface IP.

• It is recommended that you configure interface delay for HSRP configurations.

• HSRP is only supported on routed-interface or sub-interface. HSRP is not supported on VLAN interfaces
and switched virtual interface (SVI). Therefore, no VPC support for HSRP is available.

• Object tracking on HSRP is not supported.

• HSRP Management Information Base (MIB) for SNMP is not supported.

• Multiple group optimization (MGO) is not supported with HSRP.

• ICMP IPv4 and IPv6 redirects are not supported.

• Cold Standby and Non-Stop Forwarding (NSF) are not supported because HSRP cannot be restarted in
the Cisco ACI environment.

• There is no extended hold-down timer support as HSRP is supported only on leaf switches. HSRP is not
supported on spine switches.

• HSRP version change is not supported in APIC. You must remove the configuration and reconfigure
with the new version.

• HSRP version 2 does not inter-operate with HSRP version 1. An interface cannot operate both version
1 and version 2 because both versions are mutually exclusive. However, the different versions can be
run on different physical interfaces of the same router.

• Route Segmentation is programmed in Cisco Nexus 93128TX, Cisco Nexus 9396PX, and Cisco Nexus
9396TX leaf switches when HSRP is active on the interface. Therefore, there is no DMAC=router MAC
check conducted for route packets on the interface. This limitation does not apply for Cisco Nexus
93180LC-EX, Cisco Nexus 93180YC-EX, and Cisco Nexus 93108TC-EX leaf switches.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
348

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations

• HSRP configurations are not supported in the Basic GUImode. The Basic GUImode has been deprecated
starting with APIC release 3.0(1).

• Fabric to Layer 3 Out traffic will always load balance across all the HSRP leaf switches, irrespective of
their state. If HSRP leaf switches span multiple pods, the fabric to out traffic will always use leaf switches
in the same pod.

• This limitation applies to some of the earlier Cisco Nexus 93128TX, Cisco Nexus 9396PX, and Cisco
Nexus 9396TX switches. When using HSRP, the MAC address for one of the routed interfaces or routed
sub-interfaces must be modified to prevent MAC address flapping on the Layer 2 external device. This
is because Cisco APIC assigns the same MAC address (00:22:BD:F8:19:FF) to every logical interface
under the interface logical profiles.

Configuring HSRP in APIC Using REST API
HSRP is enabled when the leaf switch is configured.

Before you begin

• The tenant and VRF must be configured.

• VLAN pools must be configured with the appropriate VLAN range defined and the appropriate Layer
3 domain created and attached to the VLAN pool.

• The Attach Entity Profile must also be associated with the Layer 3 domain.

• The interface profile for the leaf switches must be configured as required.

Step 1 Create port selectors.

Example:
<polUni>
<infraInfra dn="uni/infra">
<infraNodeP name="TenantNode_101">
<infraLeafS name="leafselector" type="range">
<infraNodeBlk name="nodeblk" from_="101" to_="101">

</infraNodeBlk>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-TenantPorts_101"/>

</infraNodeP>
<infraAccPortP name="TenantPorts_101">
<infraHPortS name="portselector" type="range">
<infraPortBlk name="portblk" fromCard="1" toCard="1" fromPort="41" toPort="41">

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-TenantPortGrp_101"/>

</infraHPortS>
</infraAccPortP>
<infraFuncP>
<infraAccPortGrp name="TenantPortGrp_101">
<infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfTenant"/>
<infraRsHIfPol tnFabricHIfPolName="default"/>

</infraAccPortGrp>
</infraFuncP>

</infraInfra>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
349

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring HSRP in APIC Using REST API

Step 2 Create a tenant policy.

Example:
<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<fvCtx name="t9_ctx1" pcEnfPref="unenforced">
</fvCtx>
<fvBD name="t9_bd1" unkMacUcastAct="flood" arpFlood="yes">
<fvRsCtx tnFvCtxName="t9_ctx1"/>
<fvSubnet ip="101.9.1.1/24" scope="shared"/>

</fvBD>
<l3extOut dn="uni/tn-t9/out-l3extOut1" enforceRtctrl="export" name="l3extOut1">
<l3extLNodeP name="Node101">
<l3extRsNodeL3OutAtt rtrId="210.210.121.121" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>

</l3extLNodeP>
<l3extRsEctx tnFvCtxName="t9_ctx1"/>
<l3extRsL3DomAtt tDn="uni/l3dom-dom1"/>
<l3extInstP matchT="AtleastOne" name="extEpg" prio="unspecified" targetDscp="unspecified">
<l3extSubnet aggregate="" descr="" ip="176.21.21.21/21" name="" scope="import-security"/>

</l3extInstP>
</l3extOut>

</fvTenant>
</polUni>

Step 3 Create an HSRP interface policy.

Example:

<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<hsrpIfPol name="hsrpIfPol" ctrl="bfd" delay="4" reloadDelay="11"/>

</fvTenant>
</polUni>

Step 4 Create an HSRP group policy.

Example:
<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<hsrpIfPol name="hsrpIfPol" ctrl="bfd" delay="4" reloadDelay="11"/>

</fvTenant>
</polUni>

Step 5 Create an HSRP interface profile and an HSRP group profile.

Example:
<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<l3extOut dn="uni/tn-t9/out-l3extOut1" enforceRtctrl="export" name="l3extOut1">
<l3extLNodeP name="Node101">
<l3extLIfP name="eth1-41-v6" ownerKey="" ownerTag="" tag="yellow-green">
<hsrpIfP name="eth1-41-v6" version="v2">
<hsrpRsIfPol tnHsrpIfPolName="hsrpIfPol"/>
<hsrpGroupP descr="" name="HSRPV6-2" groupId="330" groupAf="ipv6" ip="fe80::3"

mac="00:00:0C:18:AC:01" ipObtainMode="admin">
<hsrpRsGroupPol tnHsrpGroupPolName="G1"/>

</hsrpGroupP>
</hsrpIfP>
<l3extRsPathL3OutAtt addr="2002::100/64" descr="" encap="unknown" encapScope="local"

ifInstT="l3-port" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/41]" targetDscp="unspecified">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
350

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring HSRP in APIC Using REST API

<l3extIp addr="2004::100/64"/>
</l3extRsPathL3OutAtt>

</l3extLIfP>
<l3extLIfP name="eth1-41-v4" ownerKey="" ownerTag="" tag="yellow-green">
<hsrpIfP name="eth1-41-v4" version="v1">
<hsrpRsIfPol tnHsrpIfPolName="hsrpIfPol"/>
<hsrpGroupP descr="" name="HSRPV4-2" groupId="51" groupAf="ipv4" ip="177.21.21.21"

mac="00:00:0C:18:AC:01" ipObtainMode="admin">
<hsrpRsGroupPol tnHsrpGroupPolName="G1"/>

</hsrpGroupP>
</hsrpIfP>
<l3extRsPathL3OutAtt addr="177.21.21.11/24" descr="" encap="unknown" encapScope="local"

ifInstT="l3-port" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/41]" targetDscp="unspecified">

<l3extIp addr="177.21.23.11/24"/>
</l3extRsPathL3OutAtt>

</l3extLIfP>
</l3extLNodeP>

</l3extOut>
</fvTenant>

</polUni>

IP Multicast

Tenant Routed Multicast
Cisco Application Centric Infrastructure (ACI) Tenant Routed Multicast (TRM) enables Layer 3 multicast
routing in Cisco ACI tenant VRF instances. TRM supports multicast fowarding between senders and receivers
within the same or different subnets. Multicast sources and receivers can be connected to the same or different
leaf switches or external to the fabric using L3Out connections.

In the Cisco ACI fabric, most unicast and IPv4 multicast routing operate together on the same border leaf
switches, with the IPv4 multicast protocol operating over the unicast routing protocols.

In this architecture, only the border leaf switches run the full Protocol Independent Multicast (PIM) protocol.
Non-border leaf switches run PIM in a passive mode on the interfaces. They do not peer with any other PIM
routers. The border leaf switches peer with other PIM routers connected to them over L3Outs and also with
each other.

The following figure shows border leaf switch 1 and border leaf switch 2 connecting to router 1 and router 2
in the IPv4 multicast cloud. Each virtual routing and forwarding (VRF) instance in the fabric that requires
IPv4 multicast routing will peer separately with external IPv4 multicast routers.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
351

Part 3: Setting Up APIC and the Fabric Using the REST API
IP Multicast

Figure 41: Overview of Multicast Cloud

Guidelines and Restrictions for Configuring Layer 3 Multicast
See the following guidelines and restrictions:

• Custom QoS policy is not supported for Layer 3 multicast traffic sourced from outside the ACI fabric
(received from L3Out).

• Enabling PIMv4 (Protocol-Independent Multicast, version 4) and Advertise Host routes on a BD is not
supported.

• If the border leaf switches in your ACI fabric are running multicast and you disable multicast on the
L3Out while you still have unicast reachability, you will experience traffic loss if the external peer is a
Cisco Nexus 9000 switch. This impacts cases where traffic is destined towards the fabric (where the
sources are outside the fabric but the receivers are inside the fabric) or transiting through the fabric (where
the source and receivers are outside the fabric, but the fabric is transit).

• If the (s, g) entry is installed on a border leaf switch, you might see drops in unicast traffic that comes
from the fabric to this source outside the fabric when the following conditions are met:

• Preferred group is used on the L3Out EPG

• Unicast routing table for the source is using the default route 0.0.0.0/0

This behavior is expected.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
352

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Restrictions for Configuring Layer 3 Multicast

• The Layer 3 multicast configuration is done at the VRF level so protocols function within the VRF and
multicast is enabled in a VRF, and each multicast VRF can be turned on or off independently.

• Once a VRF is enabled for multicast, the individual bridge domains (BDs) and L3Outs under the enabled
VRF can be enabled for multicast configuration. By default, multicast is disabled in all BDs and Layer
3 Outs.

• Any Source Multicast (ASM) and Source-Specific Multicast (SSM) are supported.

• You can configure a maximum of four ranges for SSM multicast in the route map per VRF.

• Bidirectional PIM and PIM IPv6 are currently not supported.

• IGMP snooping cannot be disabled on pervasive bridge domains with multicast routing enabled.

• Multicast routers are not supported in pervasive bridge domains.

• The Layer 3 multicast feature is supported on the following leaf switches:

• EX models:

• N9K-93108TC-EX

• N9K-93180LC-EX

• N9K-93180YC-EX

• FX models:

• N9K-93108TC-FX

• N9K-93180YC-FX

• N9K-C9348GC-FXP

• FX2 models:

• N9K-93240YC-FX2

• N9K-C9336C-FX2

• PIM is supported on Layer 3 Out routed interfaces and routed subinterfaces including Layer 3 port-channel
interfaces. PIM is not supported on Layer 3 Out SVI interfaces.

• Enabling PIM on an L3Out causes an implicit external network to be configured. This action results in
the L3Out being deployed and protocols potentially coming up even if you have not defined an external
network.

• If the multicast source is connected to Leaf-A as an orphan port and you have an L3Out on Leaf-B, and
Leaf-A and Leaf-B are in a vPC pair, the EPG encapsulation VLAN tied to the multicast source will
need to be deployed on Leaf-B.

• For Layer 3 multicast support, when the ingress leaf switch receives a packet from a source that is attached
on a bridge domain, and the bridge domain is enabled for multicast routing, the ingress leaf switch sends
only a routed VRF copy to the fabric (routed implies that the TTL is decremented by 1, and the source-mac
is rewritten with a pervasive subnet MAC). The egress leaf switch also routes the packet into receivers
in all the relevant bridge domains. Therefore, if a receiver is on the same bridge domain as the source,
but on a different leaf switch than the source, that receiver continues to get a routed copy, although it is

Cisco APIC REST API Configuration Guide, Release 4.1(x)
353

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Restrictions for Configuring Layer 3 Multicast

in the same bridge domain. This also applies if the source and receiver are on the same bridge domain
and on the same leaf switch, if PIM is enabled on this bridge domain.

For more information, see details about Layer 3 multicast support for multipod that leverages existing
Layer 2 design, at the following link Adding Pods.

• Starting with release 3.1(1x), Layer 3 multicast is supported with FEX. Multicast sources or receivers
that are connected to FEX ports are supported. For further details about how to add FEX in your testbed,
see Configure a Fabric Extender with Application Centric Infrastructure at this URL:
https://www.cisco.com/c/en/us/support/docs/cloud-systems-management/
application-policy-infrastructure-controller-apic/200529-Configure-a-Fabric-Extender-with-Applica.html.
For releases preceeding Release 3.1(1x), Layer 3 multicast is not supported with FEX. Multicast sources
or receivers that are connected to FEX ports are not supported.

• You cannot use a filter with inter-VRF multicast communication.

Cisco ACI does not support IP fragmentation. Therefore, when you configure Layer 3 Outside (L3Out)
connections to external routers, or Multi-Pod connections through an Inter-Pod Network (IPN), it is
recommended that the interface MTU is set appropriately on both ends of a link. On some platforms, such as
Cisco ACI, Cisco NX-OS, and Cisco IOS, the configurableMTU value does not take into account the Ethernet
headers (matching IP MTU, and excluding the 14-18 Ethernet header size), while other platforms, such as
IOS-XR, include the Ethernet header in the configured MTU value. A configured value of 9000 results in a
max IP packet size of 9000 bytes in Cisco ACI, Cisco NX-OS, and Cisco IOS, but results in a max IP packet
size of 8986 bytes for an IOS-XR untagged interface.

For the appropriate MTU values for each platform, see the relevant configuration guides.

We highly recommend that you test the MTU using CLI-based commands. For example, on the Cisco NX-OS
CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

Note

Configuring Layer 3 Multicast Using REST API

Step 1 Configure a tenant and VRF and enable multicast on a VRF.

Example:
<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">

<fvCtx knwMcastAct="permit" name="ctx1">
<pimCtxP mtu="1500">
</pimCtxP>

</fvCtx>
</fvTenant>

Step 2 Configure L3 Out and enable multicast (PIM, IGMP) on the L3 Out.

Example:
<l3extOut enforceRtctrl="export" name="l3out-pim_l3out1">

<l3extRsEctx tnFvCtxName="ctx1"/>
<l3extLNodeP configIssues="" name="bLeaf-CTX1-101">
<l3extRsNodeL3OutAtt rtrId="200.0.0.1" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
<l3extLIfP name="if-PIM_Tenant-CTX1" tag="yellow-green">
<igmpIfP/>
<pimIfP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
354

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Multicast Using REST API

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/getting-started/b_Getting_Started_Guide_Rel_2_x/b_Getting_Started_Guide_Rel_2_x_chapter_011.html
https://www.cisco.com/c/en/us/support/docs/cloud-systems-management/application-policy-infrastructure-controller-apic/200529-Configure-a-Fabric-Extender-with-Applica.html
https://www.cisco.com/c/en/us/support/docs/cloud-systems-management/application-policy-infrastructure-controller-apic/200529-Configure-a-Fabric-Extender-with-Applica.html

<pimRsIfPol tDn="uni/tn-PIM_Tenant/pimifpol-pim_pol1"/>
</pimIfP>
<l3extRsPathL3OutAtt addr="131.1.1.1/24" ifInstT="l3-port" mode="regular" mtu="1500"

tDn="topology/pod-1/paths-101/pathep-[eth1/46]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-l3outDom"/>
<l3extInstP name="l3out-PIM_Tenant-CTX1-1topo" >
</l3extInstP>
<pimExtP enabledAf="ipv4-mcast" name="pim"/>

</l3extOut>

Step 3 Configure a BD under the tenant and enable multicast and IGMP on the BD.

Example:
<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">

<fvBD arpFlood="yes" mcastAllow="yes" multiDstPktAct="bd-flood" name="bd2" type="regular"
unicastRoute="yes" unkMacUcastAct="flood" unkMcastAct="flood">

<igmpIfP/>
<fvRsBDToOut tnL3extOutName="l3out-pim_l3out1"/>
<fvRsCtx tnFvCtxName="ctx1"/>
<fvRsIgmpsn/>
<fvSubnet ctrl="" ip="41.1.1.254/24" preferred="no" scope="private" virtual="no"/>

</fvBD>
</fvTenant>

Step 4 Configure an IGMP policy and assign it to the BD.

Example:
<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">

<igmpIfPol grpTimeout="260" lastMbrCnt="2" lastMbrRespTime="1" name="igmp_pol" querierTimeout="255"
queryIntvl="125" robustFac="2" rspIntvl="10" startQueryCnt="2" startQueryIntvl="125" ver="v2">

</igmpIfPol>
<fvBD arpFlood="yes" mcastAllow="yes" name="bd2">
<igmpIfP>

<igmpRsIfPol tDn="uni/tn-PIM_Tenant/igmpIfPol-igmp_pol"/>
</igmpIfP>
</fvBD>

</fvTenant>

Step 5 Configure a route map, PIM, and RP policy on the VRF.

When configuring a fabric RP using the REST API, first configure a static RP.Note

Example:

Configuring a static RP:
<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">

<pimRouteMapPol name="rootMap">
<pimRouteMapEntry action="permit" grp="224.0.0.0/4" order="10" rp="0.0.0.0" src="0.0.0.0/0"/>

</pimRouteMapPol>
<fvCtx knwMcastAct="permit" name="ctx1">
<pimCtxP ctrl="" mtu="1500">
<pimStaticRPPol>
<pimStaticRPEntryPol rpIp="131.1.1.2">
<pimRPGrpRangePol>
<rtdmcRsFilterToRtMapPol tDn="uni/tn-PIM_Tenant/rtmap-rootMap"/>

</pimRPGrpRangePol>
</pimStaticRPEntryPol>

</pimStaticRPPol>
</pimCtxP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
355

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Multicast Using REST API

</fvCtx>
</fvTenant>

Configuring a fabric RP:

<fvTenant name="t0">
<pimRouteMapPol name="fabricrp-rtmap">

<pimRouteMapEntry grp="226.20.0.0/24" order="1" />
</pimRouteMapPol>

<fvCtx name="ctx1">
<pimCtxP ctrl="">

<pimFabricRPPol status="">
<pimStaticRPEntryPol rpIp="6.6.6.6">

<pimRPGrpRangePol>
<rtdmcRsFilterToRtMapPol tDn="uni/tn-t0/rtmap-fabricrp-rtmap" />

</pimRPGrpRangePol>
</pimStaticRPEntryPol>

</pimFabricRPPol>
</pimCtxP>

</fvCtx>
</fvTenant>

Step 6 Configure a PIM interface policy and apply it on the L3 Out.

Example:
<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">
<pimIfPol authKey="" authT="none" ctrl="" drDelay="60" drPrio="1" helloItvl="30000" itvl="60"

name="pim_pol1"/>
<l3extOut enforceRtctrl="export" name="l3out-pim_l3out1" targetDscp="unspecified">

<l3extRsEctx tnFvCtxName="ctx1"/>
<l3extLNodeP name="bLeaf-CTX1-101">
<l3extRsNodeL3OutAtt rtrId="200.0.0.1" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
<l3extLIfP name="if-SIRI_VPC_src_recv-CTX1" tag="yellow-green">
<pimIfP>
<pimRsIfPol tDn="uni/tn-tn-PIM_Tenant/pimifpol-pim_pol1"/>

</pimIfP>
</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>

Step 7 Configure inter-VRF multicast.

Example:
<fvTenant name="t0">

<pimRouteMapPol name="intervrf" status="">
<pimRouteMapEntry grp="225.0.0.0/24" order="1" status=""/>
<pimRouteMapEntry grp="226.0.0.0/24" order="2" status=""/>
<pimRouteMapEntry grp="228.0.0.0/24" order="3" status="deleted"/>

</pimRouteMapPol>
<fvCtx name="ctx1">

<pimCtxP ctrl="">
<pimInterVRFPol status="">

<pimInterVRFEntryPol srcVrfDn="uni/tn-t0/ctx-stig_r_ctx" >
<rtdmcRsFilterToRtMapPol tDn="uni/tn-t0/rtmap-intervrf" />
</pimInterVRFEntryPol>

</pimInterVRFPol>
</pimCtxP>

</fvCtx>
</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
356

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 3 Multicast Using REST API

Pervasive Gateway

Common Pervasive Gateway
Multiple ACI fabrics can be configured with an IPv4 common gateway on a per bridge domain basis. Doing
so enables moving one or more virtual machines (VM) or conventional hosts across the fabrics while the host
retains its IP address. VM host moves across fabrics can be done automatically by the VM hypervisor. The
ACI fabrics can be co-located, or provisioned across multiple sites. The Layer 2 connection between the ACI
fabrics can be a local link, or can be across a routed WAN link. The following figure illustrates the basic
common pervasive gateway topology.

Figure 42: ACI Multi-Fabric Common Pervasive Gateway

The per-bridge domain common pervasive gateway configuration requirements are as follows:

• The bridge domain MAC (mac) values for each fabric must be unique.

The default bridge domain MAC (mac) address values are the same for all ACI
fabrics. The common pervasive gateway requires an administrator to configure
the bridge domain MAC (mac) values to be unique for each ACI fabric.

Note

• The bridge domain virtual MAC (vmac) address and the subnet virtual IP address must be the same across
all ACI fabrics for that bridge domain. Multiple bridge domains can be configured to communicate across
connected ACI fabrics. The virtual MAC address and the virtual IP address can be shared across bridge
domains.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
357

Part 3: Setting Up APIC and the Fabric Using the REST API
Pervasive Gateway

Configuring Common Pervasive Gateway Using the REST API

Before you begin

• The tenant, VRF, and bridge domain are created.

Configure common pervasive gateway.

In the following example REST API XML, the bolded text is relevant to configuring a common pervasive gateway.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
<fvTenant name="test">
<fvCtx name="test"/>

<fvBD name="test" vmac="12:34:56:78:9a:bc">
<fvRsCtx tnFvCtxName="test"/>
<!-- Primary address -->
<fvSubnet ip="192.168.15.254/24" preferred="yes"/>
<!-- Virtual address -->
<fvSubnet ip="192.168.15.1/24" virtual="yes"/>

</fvBD>

<fvAp name="test">
<fvAEPg name="web">
<fvRsBd tnFvBDName="test"/>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" encap="vlan-1002"/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Explicit Prefix Lists

About Explicit Prefix List Support for Route Maps/Profile
In Cisco APIC, for public bridge domain (BD) subnets and external transit networks, inbound and outbound
route controls are provided through an explicit prefix list. Inbound and outbound route control for Layer 3
Out is managed by the routemap/profile (rtctrlProfile). The routemap/profile policy supports a fully controllable
prefix list for Layer 3 Out in the Cisco ACI fabric.

The subnets in the prefix list can represent the bridge domain public subnets or external networks. Explicit
prefix list presents an alternate method and can be used instead of the following:

• Advertising BD subnets through BD to Layer 3 Out relation.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
358

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Common Pervasive Gateway Using the REST API

The subnet in the BD must be marked public for the subnet to be advertised out.Note

• Specifying a subnet in the l3extInstP with export/import route control for advertising transit and external
networks.

Explicit prefix list is defined through a new match type that is called match route destination
(rtctrlMatchRtDest). An example usage is provided in the API example that follows.

Figure 43: External Policy Model of API

Additional information about match rules, set rules when using explicit prefix list are as follows:

Match Rules

• Under the tenant (fvTenant), you can create match profiles (rtctrlSubjP) for route map filtering. Each
match profile can contain one or more match rules. Match rule supports multiple match types. Prior to
Cisco APIC release 2.1(x), match types supported were explicit prefix list and community list.

Starting with Cisco APIC release 2.1(x), explicit prefix match or match route destination
(rtctrlMatchRtDest) is supported.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
359

Part 3: Setting Up APIC and the Fabric Using the REST API
About Explicit Prefix List Support for Route Maps/Profile

Match prefix list (rtctrlMatchRtDest) supports one or more subnets with an optional aggregate flag.
Aggregate flags are used for allowing prefixmatches withmultiplemasks startingwith themaskmentioned
in the configuration till the maximum mask allowed for the address family of the prefix . This is the
equivalent of the "le " option in the prefix-list in NX-OS software (example, 10.0.0.0/8 le 32).

The prefix list can be used for covering the following cases:

• Allow all (0.0.0.0/0 with aggregate flag, equivalent of 0.0.0.0/0 le 32)

• One or more of specific prefixes (example: 10.1.1.0/24)

• One or more of prefixes with aggregate flag (example, equivalent of 10.1.1.0/24 le 32).

When a route map with a match prefix “0.0.0.0/0 with aggregate flag” is used
under an L3Out EPG in the export direction, the rule is applied only for
redistribution from dynamic routing protocols. Therefore, the rule is not applied
to the following (in routing protocol such as OSPF or EIGRP):

• Bridge domain (BD) subnets

• Directly connected subnets on the border leaf switch

• Static routes defined on the L3Out

Note

• The explicit prefix match rules can contain one or more subnets, and these subnets can be bridge domain
public subnets or external networks. Subnets can also be aggregated up to the maximum subnet mask
(/32 for IPv4 and /128 for IPv6).

• When multiple match rules of different types are present (such as match community and explicit prefix
match), the match rule is allowed only when the match statements of all individual match types match.
This is the equivalent of the AND filter. The explicit prefix match is contained by the subject profile
(rtctrlSubjP) and will form a logical AND if other match rules are present under the subject profile.

• Within a given match type (such as match prefix list), at least one of the match rules statement must
match. Multiple explicit prefix match (rtctrlMatchRtDest) can be defined under the same subject profile
(rtctrlSubjP) which will form a logical OR.

Set Rules

• Set policies must be created to define set rules that are carried with the explicit prefixes such as set
community, set tag.

Guidelines and Limitations
• Youmust choose one of the following twomethods to configure your route maps. If you use both methods,
it will result in double entries and undefined route maps.

• Add routes under the bridge domain (BD) and configure a BD to Layer 3 Outside relation

• Configure the match prefix under rtctrlSubjP match profiles.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
360

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations

• Starting 2.3(x), deny-static implicit entry has been removed from Export Route Map. The user needs to
configure explicitly the permit and deny entries required to control the export of static routes.

• Route-map per peer in an L3Oout is not supported. Route-map can only be applied on L3Out as a whole.

Following are possible workarounds to this issue:

• Block the prefix from being advertised from the other side of the neighbor.

• Block the prefix on the route-map on the existing L3Out where you don't want to learn the prefix,
and move the neighbor to another L3Out where you want to learn the prefix and create a separate
route-map.

• Creating route-maps using a mixture of GUI and API commands is not supported. As a possible
workaround, you can create a route-map different from the default route-map using the GUI, but the
route-map created through the GUI on an L3Out cannot be applied to per-peer.

About Route Map/Profile
The route profile is a logical policy that defines an ordered set (rtctrlCtxP) of logical match action rules with
associated set action rules. The route profile is the logical abstract of a route map. Multiple route profiles can
be merged into a single route map. A route profile can be one of the following types:

• Match Prefix and Routing Policy: Pervasive subnets (fvSubnet) and external subnets (l3extSubnet) are
combined with a route profile and merged into a single route map (or route map entry). Match Prefix
and Routing Policy is the default value.

• Match Routing Policy Only: The route profile is the only source of information to generate a route map,
and it will overwrite other policy attributes.

When explicit prefix list is used, the type of the route profile should be set to "match routing policy only".Note

After the match and set profiles are defined, the route map must be created in the Layer 3 Out. Route maps
can be created using one of the following methods:

• Create a "default-export" route map for export route control, and a "default-import" route map for import
route control.

• Create other route maps (not named default-export or default-import) and setup the relation from one or
more l3extInstPs or subnets under the l3extInstP.

• In either case, match the route map on explicit prefix list by pointing to the rtctrlSubjP within the route
map.

In the export and import route map, the set and match rules are grouped together along with the relative
sequence across the groups (rtctrlCtxP). Additionally, under each group of match and set statements (rtctrlCtxP)
the relation to one or more match profiles are available (rtctrlSubjP).

Any protocol enabled on Layer 3 Out (for example BGP protocol), will use the export and import route map
for route filtering.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
361

Part 3: Setting Up APIC and the Fabric Using the REST API
About Route Map/Profile

Aggregation Support for Explicit Prefix List
Each prefix (rtctrlMatchRtDest) in the match prefixes list can be aggregated to support multiple subnets
matching with one prefix list entry.

Aggregated Prefixes and BD Private Subnets

Although subnets in the explicit prefix list match may match the BD private subnets using aggregated or exact
match, private subnets will not be advertised through the routing protocol using the explicit prefix list. The
scope of the BD subnet must be set to "public" for the explicit prefix list feature to advertise the BD subnets.

Differences in Behavior for 0.0.0.0/0 with Aggregation

The 0.0.0.0/0 with Aggregate configuration creates an IP prefix-list equivalent to “0.0.0.0/0 le 32”. The
0.0.0.0/0 with Aggregate configuration can be used mainly in two situations:

• “Export Route Control Subnet” with “Aggregate Export” scope in L3Out subnet under the L3Out network
(L3Out EPG)

• An explicit prefix-list (Match Prefix rule) assigned to a route map with the name “default-export”

When used with the “Export Route Control Subnet” scope under the L3Out subnet, the route map will only
match routes learned from dynamic routing protocols. It will not match BD subnets or directly-connected
networks.

When used with the explicit route map configuration, the route map will match all routes, including BD
subnets and directly-connected networks.

Consider the following examples to get a better understanding of the expected and unexpected (inconsistent)
behavior in the two situations described above.

Scenario 1

For the first scenario, we configure a route map (with a name of rpm_with_catch_all) using a
configuration post similar to the following:

<l3extOut annotation="" descr="" dn="uni/tn-t9/out-L3-out" enforceRtctrl="export"
name="L3-out" nameAlias="" ownerKey="" ownerTag="" targetDscp="unspecified">

<rtctrlProfile annotation="" descr="" name="rpm_with_catch_all" nameAlias="" ownerKey=""
ownerTag="" type="combinable">

<rtctrlCtxP action="permit" annotation="" descr="" name="catch_all" nameAlias=""
order="0">

<rtctrlScope annotation="" descr="" name="" nameAlias="">
<rtctrlRsScopeToAttrP annotation="" tnRtctrlAttrPName="set_metric_type"/>

</rtctrlScope>
</rtctrlCtxP>

</rtctrlProfile>
<ospfExtP annotation="" areaCost="1" areaCtrl="redistribute,summary" areaId="backbone"

areaType="regular" descr="" multipodInternal="no" nameAlias=""/>
<l3extRsEctx annotation="" tnFvCtxName="ctx0"/>
<l3extLNodeP annotation="" configIssues="" descr="" name="leaf" nameAlias="" ownerKey=""

ownerTag="" tag="yellow-green" targetDscp="unspecified">
<l3extRsNodeL3OutAtt annotation="" configIssues="" rtrId="20.2.0.2" rtrIdLoopBack="no"

tDn="topology/pod-1/node-104">
<l3extLoopBackIfP addr="14.1.1.1/32" annotation="" descr="" name="" nameAlias=""/>

<l3extInfraNodeP annotation="" descr="" fabricExtCtrlPeering="no"
fabricExtIntersiteCtrlPeering="no" name="" nameAlias="" spineRole=""/>

</l3extRsNodeL3OutAtt>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
362

Part 3: Setting Up APIC and the Fabric Using the REST API
Aggregation Support for Explicit Prefix List

<l3extLIfP annotation="" descr="" name="interface" nameAlias="" ownerKey=""
ownerTag="" tag="yellow-green">

<ospfIfP annotation="" authKeyId="1" authType="none" descr="" name=""
nameAlias="">

<ospfRsIfPol annotation="" tnOspfIfPolName=""/>
</ospfIfP>
<l3extRsPathL3OutAtt addr="36.1.1.1/24" annotation="" autostate="disabled"

descr="" encap="vlan-3063" encapScope="local" ifInstT="ext-svi" ipv6Dad="enabled" llAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-104/pathep-[accBndlGrp_104_pc13]" targetDscp="unspecified"/>

<l3extRsNdIfPol annotation="" tnNdIfPolName=""/>
<l3extRsIngressQosDppPol annotation="" tnQosDppPolName=""/>
<l3extRsEgressQosDppPol annotation="" tnQosDppPolName=""/>

</l3extLIfP>
</l3extLNodeP>
<l3extInstP annotation="" descr="" exceptionTag="" floodOnEncap="disabled"

matchT="AtleastOne" name="epg" nameAlias="" prefGrMemb="exclude" prio="unspecified"
targetDscp="unspecified">

<l3extRsInstPToProfile annotation="" direction="export"
tnRtctrlProfileName="rpm_with_catch_all"/>

<l3extSubnet aggregate="" annotation="" descr="" ip="0.0.0.0/0" name="" nameAlias=""
scope="import-security"/>

<fvRsCustQosPol annotation="" tnQosCustomPolName=""/>
</l3extInstP>

</l3extOut>

<rtctrlAttrP annotation="" descr="" dn="uni/tn-t9/attr-set_metric_type" name="set_metric_type"
nameAlias="">

<rtctrlSetRtMetricType annotation="" descr="" metricType="ospf-type1" name="" nameAlias=""
type="metric-type"/>
</rtctrlAttrP>

<rtctrlSubjP annotation="" descr="" dn="uni/tn-t9/subj-catch_all_ip" name="catch_all_ip"
nameAlias="">

<rtctrlMatchRtDest aggregate="yes" annotation="" descr="" ip="0.0.0.0/0" name=""
nameAlias=""/>
</rtctrlSubjP>

With this route map, what we would expect with 0.0.0.0/0 is that all the routes would go with the property
metricType="ospf-type1", but only for the OSPF route.

In addition, we also have a subnet configured under a bridge domain (for example, 209.165.201.0/27), with
a bridge domain to L3Out relation, using a route map with a pervasive subnet (fvSubnet) for a static route.
However, even though the route map shown above is combinable, we do not want it applied for the subnet
configured under the bridge domain, because we want 0.0.0.0/0 in the route map above to apply only for the
transit route, not on the static route.

Following is the output for the show route-map and show ip prefix-list commands, where
exp-ctx-st-2555939 is the name of the outbound route map for the subnet configured under the bridge
domain, and the name of the prefix list is provided within the output from the show route-map command:

leaf4# show route-map exp-ctx-st-2555939
route-map exp-ctx-st-2555939, deny, sequence 1
Match clauses:
tag: 4294967295

Set clauses:
route-map exp-ctx-st-2555939, permit, sequence 15801
Match clauses:
ip address prefix-lists: IPv4-st16391-2555939-exc-int-inferred-export-dst
ipv6 address prefix-lists: IPv6-deny-all

Cisco APIC REST API Configuration Guide, Release 4.1(x)
363

Part 3: Setting Up APIC and the Fabric Using the REST API
Aggregation Support for Explicit Prefix List

Set clauses:

leaf4# show ip prefix-list IPv4-st16391-2555939-exc-int-inferred-export-dst
ip prefix-list IPv4-st16391-2555939-exc-int-inferred-export-dst: 1 entries

seq 1 permit 209.165.201.0/27

leaf4#

In this situation, everything behaves as expected, because when the bridge domain subnet goes out, it is not
applying the rpm_with_catch_all route map policies.

Scenario 2

For the second scenario, we configure a "default-export" route map for export route control, where an explicit
prefix-list (Match Prefix rule) is assigned to the "default-export" route map, using a configuration post similar
to the following:

<l3extOut annotation="" descr="" dn="uni/tn-t9/out-L3-out" enforceRtctrl="export"
name="L3-out" nameAlias="" ownerKey="" ownerTag="" targetDscp="unspecified">

<rtctrlProfile annotation="" descr="" name="default-export" nameAlias="" ownerKey=""
ownerTag="" type="combinable">

<rtctrlCtxP action="permit" annotation="" descr="" name="set-rule" nameAlias=""
order="0">

<rtctrlScope annotation="" descr="" name="" nameAlias="">
<rtctrlRsScopeToAttrP annotation="" tnRtctrlAttrPName="set_metric_type"/>

</rtctrlScope>
</rtctrlCtxP>

</rtctrlProfile>
<ospfExtP annotation="" areaCost="1" areaCtrl="redistribute,summary" areaId="backbone"

areaType="regular" descr="" multipodInternal="no" nameAlias=""/>
<l3extRsEctx annotation="" tnFvCtxName="ctx0"/>
<l3extLNodeP annotation="" configIssues="" descr="" name="leaf" nameAlias="" ownerKey=""

ownerTag="" tag="yellow-green" targetDscp="unspecified">
<l3extRsNodeL3OutAtt annotation="" configIssues="" rtrId="20.2.0.2" rtrIdLoopBack="no"

tDn="topology/pod-1/node-104">
<l3extLoopBackIfP addr="14.1.1.1/32" annotation="" descr="" name="" nameAlias=""/>

<l3extInfraNodeP annotation="" descr="" fabricExtCtrlPeering="no"
fabricExtIntersiteCtrlPeering="no" name="" nameAlias="" spineRole=""/>

</l3extRsNodeL3OutAtt>
<l3extLIfP annotation="" descr="" name="interface" nameAlias="" ownerKey=""

ownerTag="" tag="yellow-green">
<ospfIfP annotation="" authKeyId="1" authType="none" descr="" name=""

nameAlias="">
<ospfRsIfPol annotation="" tnOspfIfPolName=""/>

</ospfIfP>
<l3extRsPathL3OutAtt addr="36.1.1.1/24" annotation="" autostate="disabled"

descr="" encap="vlan-3063" encapScope="local" ifInstT="ext-svi" ipv6Dad="enabled" llAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-104/pathep-[accBndlGrp_104_pc13]" targetDscp="unspecified"/>

<l3extRsNdIfPol annotation="" tnNdIfPolName=""/>
<l3extRsIngressQosDppPol annotation="" tnQosDppPolName=""/>
<l3extRsEgressQosDppPol annotation="" tnQosDppPolName=""/>

</l3extLIfP>
</l3extLNodeP>
<l3extInstP annotation="" descr="" exceptionTag="" floodOnEncap="disabled"

matchT="AtleastOne" name="epg" nameAlias="" prefGrMemb="exclude" prio="unspecified"
targetDscp="unspecified">

<l3extSubnet aggregate="" annotation="" descr="" ip="0.0.0.0/0" name="" nameAlias=""
scope="import-security"/>

<fvRsCustQosPol annotation="" tnQosCustomPolName=""/>
</l3extInstP>

</l3extOut>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
364

Part 3: Setting Up APIC and the Fabric Using the REST API
Aggregation Support for Explicit Prefix List

Notice that this default-export route map has similar information as the rpm_with_catch_all
route map, where the IP is set to 0.0.0.0/0 (ip=0.0.0.0/0), and the set rule in the default-export route
map is configured only with the Set Metric Type (tnRtctrlAttrPName=set_metric_type).

Similar to the situation in the previous example, we also have the same subnet configured under the bridge
domain, with a bridge domain to L3Out relation, as we did in the previous example.

However, following is the output in this scenario for the show route-map and show ip prefix-list commands:

leaf4# show route-map exp-ctx-st-2555939
route-map exp-ctx-st-2555939, deny, sequence 1
Match clauses:
tag: 4294967295

Set clauses:
route-map exp-ctx-st-2555939, permit, sequence 8201
Match clauses:
ip address prefix-lists:

IPv4-st16391-2555939-exc-int-out-default-export2set-rule0pfx-only-dst
ipv6 address prefix-lists: IPv6-deny-all

Set clauses:
metric-type type-1

leaf4# show ip prefix-list IPv4-st16391-2555939-exc-int-inferred-export-dst
% Policy IPv4-st16391-2555939-exc-int-inferred-export-dst not found
ifav82-leaf4# show ip prefix-list
IPv4-st16391-2555939-exc-int-out-default-export2set-rule0pfx-only-dst
ip prefix-list IPv4-st16391-2555939-exc-int-out-default-export2set-rule0pfx-only-dst: 1
entries

seq 1 permit 209.165.201.0/27

leaf4#

Notice that in this situation, when the bridge domain subnet goes out, it is applying the default-export
route map policies. In this situation, that route map matches all routes, including BD subnets and
directly-connected networks. This is inconsistent behavior.

Configuring Route Map/Profile with Explicit Prefix List Using REST API

Before you begin

• Tenant and VRF must be configured.

Configure the route map/profile using explicit prefix list.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<fvTenant name="PM" status="">

<rtctrlAttrP name="set_dest">
<rtctrlSetComm community="regular:as2-nn2:5:24" />

</rtctrlAttrP>
<rtctrlSubjP name="allow_dest">

<rtctrlMatchRtDest ip="192.169.0.0/24" />
<rtctrlMatchCommTerm name="term1">

<rtctrlMatchCommFactor community="regular:as2-nn2:5:24" status="" />
<rtctrlMatchCommFactor community="regular:as2-nn2:5:25" status="" />

</rtctrlMatchCommTerm>
<rtctrlMatchCommRegexTerm commType="regular" regex="200:*" status="" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
365

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Route Map/Profile with Explicit Prefix List Using REST API

</rtctrlSubjP>
<rtctrlSubjP name="deny_dest">

<rtctrlMatchRtDest ip="192.168.0.0/24" />
</rtctrlSubjP>
<fvCtx name="ctx" />
<l3extOut name="L3Out_1" enforceRtctrl="import,export" status="">

<l3extRsEctx tnFvCtxName="ctx" />
<l3extLNodeP name="bLeaf">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="1.2.3.4" />
<l3extLIfP name="portIf">
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]" ifInstT="sub-interface"

encap="vlan-1503" addr="10.11.12.11/24" />
<ospfIfP />

</l3extLIfP>
<bgpPeerP addr="5.16.57.18/32" ctrl="send-com" />
<bgpPeerP addr="6.16.57.18/32" ctrl="send-com" />

</l3extLNodeP>
<bgpExtP />
<ospfExtP areaId="0.0.0.59" areaType="nssa" status="" />
<l3extInstP name="l3extInstP_1" status="">

<l3extSubnet ip="17.11.1.11/24" scope="import-security" />
</l3extInstP>
<rtctrlProfile name="default-export" type="global" status="">

<rtctrlCtxP name="ctx_deny" action="deny" order="1">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="deny_dest" status="" />

</rtctrlCtxP>
<rtctrlCtxP name="ctx_allow" order="2">

<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="allow_dest" status="" />
</rtctrlCtxP>
<rtctrlScope name="scope" status="">

<rtctrlRsScopeToAttrP tnRtctrlAttrPName="set_dest" status="" />
</rtctrlScope>

</rtctrlProfile>
</l3extOut>
<fvBD name="testBD">

<fvRsBDToOut tnL3extOutName="L3Out_1" />
<fvRsCtx tnFvCtxName="ctx" />
<fvSubnet ip="40.1.1.12/24" scope="public" />
<fvSubnet ip="40.1.1.2/24" scope="private" />
<fvSubnet ip="2003::4/64" scope="public" />

</fvBD>
</fvTenant>

IP Address Aging Tracking

Overview
The IP Aging policy tracks and ages unused IP addresses on an endpoint. Tracking is performed using the
endpoint retention policy configured for the bridge domain to send ARP requests (for IPv4) and neighbor
solicitations (for IPv6) at 75% of the local endpoint aging interval. When no response is received from an IP
address, that IP address is aged out.

This document explains how to configure the IP Aging policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
366

Part 3: Setting Up APIC and the Fabric Using the REST API
IP Address Aging Tracking

Configuring IP Aging Using the REST API
This section explains how to enable and disable the IP aging policy using the REST API.

Step 1 To enable the IP aging policy:

Example:
<epIpAgingP adminSt="enabled" descr="" dn="uni/infra/ipAgingP-default" name="default" ownerKey=""
ownerTag=""/>

Step 2 To disable the IP aging policy:

Example:
<epIpAgingP adminSt="disabled" descr="" dn="uni/infra/ipAgingP-default" name="default" ownerKey=""
ownerTag=""/>

What to do next

To specify the interval used for tracking IP addresses on endpoints, create an Endpoint Retention policy by
sending a post with XML such as the following example:
<fvEpRetPol bounceAgeIntvl="630" bounceTrig="protocol"
holdIntvl="350" lcOwn="local" localEpAgeIntvl="900" moveFreq="256"
name="EndpointPol1" remoteEpAgeIntvl="350"/>

Route Summarization

Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST
API

Step 1 Configure BGP route summarization using the REST API as follows:

Example:

<fvTenant name="common">
<fvCtx name="vrf1"/>

<bgpRtSummPol name=“bgp_rt_summ” cntrl=‘as-set'/>
<l3extOut name=“l3_ext_pol” >

<l3extLNodeP name="bLeaf">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId=“20.10.1.1"/>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/31]" ifInstT=‘l3-port’

addr=“10.20.1.3/24/>
</l3extLIfP>

</l3extLNodeP>
<bgpExtP />
<l3extInstP name="InstP" >

<l3extSubnet ip="10.0.0.0/8" scope=“export-rtctrl">
<l3extRsSubnetToRtSumm tDn=“uni/tn-common/bgprtsum-bgp_rt_summ”/>
<l3extRsSubnetToProfile tnRtctrlProfileName=“rtprof"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
367

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring IP Aging Using the REST API

</l3extSubnet>
</l3extInstP>
<l3extRsEctx tnFvCtxName=“vrf1”/>

</l3extOut>
</fvTenant>

Step 2 Configure OSPF inter-area and external summarization using the following REST API:

Example:

<?xml version="1.0" encoding="utf-8"?>
<fvTenant name="t20">
<!--Ospf Inter External route summarization Policy-->
<ospfRtSummPol cost="unspecified" interAreaEnabled="no" name="ospfext"/>
<!--Ospf Inter Area route summarization Policy-->
<ospfRtSummPol cost="16777215" interAreaEnabled="yes" name="interArea"/>
<fvCtx name="ctx0" pcEnfDir="ingress" pcEnfPref="enforced"/>
<!-- L3OUT backbone Area-->
<l3extOut enforceRtctrl="export" name="l3_1" ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="ctx0"/>
<l3extLNodeP name="node-101">
<l3extRsNodeL3OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP name="intf-1">
<l3extRsPathL3OutAtt addr="20.1.5.2/24" encap="vlan-1001" ifInstT="sub-interface"

tDn="topology/pod-1/paths-101/pathep-[eth1/33]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extInstP name="l3InstP1">
<fvRsProv tnVzBrCPName="default"/>
<!--Ospf External Area route summarization-->
<l3extSubnet aggregate="" ip="193.0.0.0/8" name="" scope="export-rtctrl">
<l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-ospfext"/>

</l3extSubnet>
</l3extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="backbone" areaType="regular"/>

</l3extOut>
<!-- L3OUT Regular Area-->
<l3extOut enforceRtctrl="export" name="l3_2">
<l3extRsEctx tnFvCtxName="ctx0"/>
<l3extLNodeP name="node-101">
<l3extRsNodeL3OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP name="intf-2">
<l3extRsPathL3OutAtt addr="20.1.2.2/24" encap="vlan-1014" ifInstT="sub-interface"

tDn="topology/pod-1/paths-101/pathep-[eth1/11]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extInstP matchT="AtleastOne" name="l3InstP2">
<fvRsCons tnVzBrCPName="default"/>
<!--Ospf Inter Area route summarization-->
<l3extSubnet aggregate="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
<l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-interArea"/>

</l3extSubnet>
</l3extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.57" areaType="regular"/>

</l3extOut>
</fvTenant>

Step 3 Configure EIGRP summarization using the following REST API:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
368

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API

<fvTenant name="exampleCorp">
<l3extOut name="out1">
<l3extInstP name="eigrpSummInstp" >
<l3extSubnet aggregate="" descr="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
<l3extRsSubnetToRtSumm/>

</l3extSubnet>
</l3extInstP>

</l3extOut>
<eigrpRtSummPol name="pol1" />

There is no route summarization policy to be configured for EIGRP. The only configuration needed for enabling
EIGRP summarization is the summary subnet under the InstP.

Note

Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST
API

Step 1 Configure BGP route summarization using the REST API as follows:

Example:

<fvTenant name="common">
<fvCtx name="vrf1"/>

<bgpRtSummPol name=“bgp_rt_summ” cntrl=‘as-set'/>
<l3extOut name=“l3_ext_pol” >

<l3extLNodeP name="bLeaf">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId=“20.10.1.1"/>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/31]" ifInstT=‘l3-port’

addr=“10.20.1.3/24/>
</l3extLIfP>

</l3extLNodeP>
<bgpExtP />
<l3extInstP name="InstP" >

<l3extSubnet ip="10.0.0.0/8" scope=“export-rtctrl">
<l3extRsSubnetToRtSumm tDn=“uni/tn-common/bgprtsum-bgp_rt_summ”/>
<l3extRsSubnetToProfile tnRtctrlProfileName=“rtprof"/>

</l3extSubnet>
</l3extInstP>
<l3extRsEctx tnFvCtxName=“vrf1”/>

</l3extOut>
</fvTenant>

Step 2 Configure OSPF inter-area and external summarization using the following REST API:

Example:

<?xml version="1.0" encoding="utf-8"?>
<fvTenant name="t20">
<!--Ospf Inter External route summarization Policy-->
<ospfRtSummPol cost="unspecified" interAreaEnabled="no" name="ospfext"/>
<!--Ospf Inter Area route summarization Policy-->
<ospfRtSummPol cost="16777215" interAreaEnabled="yes" name="interArea"/>
<fvCtx name="ctx0" pcEnfDir="ingress" pcEnfPref="enforced"/>
<!-- L3OUT backbone Area-->

Cisco APIC REST API Configuration Guide, Release 4.1(x)
369

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API

<l3extOut enforceRtctrl="export" name="l3_1" ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="ctx0"/>
<l3extLNodeP name="node-101">
<l3extRsNodeL3OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP name="intf-1">
<l3extRsPathL3OutAtt addr="20.1.5.2/24" encap="vlan-1001" ifInstT="sub-interface"

tDn="topology/pod-1/paths-101/pathep-[eth1/33]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extInstP name="l3InstP1">
<fvRsProv tnVzBrCPName="default"/>
<!--Ospf External Area route summarization-->
<l3extSubnet aggregate="" ip="193.0.0.0/8" name="" scope="export-rtctrl">
<l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-ospfext"/>

</l3extSubnet>
</l3extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="backbone" areaType="regular"/>

</l3extOut>
<!-- L3OUT Regular Area-->
<l3extOut enforceRtctrl="export" name="l3_2">
<l3extRsEctx tnFvCtxName="ctx0"/>
<l3extLNodeP name="node-101">
<l3extRsNodeL3OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP name="intf-2">
<l3extRsPathL3OutAtt addr="20.1.2.2/24" encap="vlan-1014" ifInstT="sub-interface"

tDn="topology/pod-1/paths-101/pathep-[eth1/11]"/>
</l3extLIfP>

</l3extLNodeP>
<l3extInstP matchT="AtleastOne" name="l3InstP2">
<fvRsCons tnVzBrCPName="default"/>
<!--Ospf Inter Area route summarization-->
<l3extSubnet aggregate="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
<l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-interArea"/>

</l3extSubnet>
</l3extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.57" areaType="regular"/>

</l3extOut>
</fvTenant>

Step 3 Configure EIGRP summarization using the following REST API:

Example:

<fvTenant name="exampleCorp">
<l3extOut name="out1">
<l3extInstP name="eigrpSummInstp" >
<l3extSubnet aggregate="" descr="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
<l3extRsSubnetToRtSumm/>

</l3extSubnet>
</l3extInstP>

</l3extOut>
<eigrpRtSummPol name="pol1" />

There is no route summarization policy to be configured for EIGRP. The only configuration needed for enabling
EIGRP summarization is the summary subnet under the InstP.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
370

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API

Route Controls

About Configuring a Routing Control Protocol Using Import and Export Controls
This topic provides a typical example that shows how to configure a routing control protocol using import
and export controls. It assumes that you have configured Layer 3 outside network connections with BGP.
You can also perform these tasks for a Layer 3 outside network configured with OSPF.

Cisco ACI does not support IP fragmentation. Therefore, when you configure Layer 3 Outside (L3Out)
connections to external routers, or Multi-Pod connections through an Inter-Pod Network (IPN), it is
recommended that the interface MTU is set appropriately on both ends of a link. On some platforms, such as
Cisco ACI, Cisco NX-OS, and Cisco IOS, the configurableMTU value does not take into account the Ethernet
headers (matching IP MTU, and excluding the 14-18 Ethernet header size), while other platforms, such as
IOS-XR, include the Ethernet header in the configured MTU value. A configured value of 9000 results in a
max IP packet size of 9000 bytes in Cisco ACI, Cisco NX-OS, and Cisco IOS, but results in a max IP packet
size of 8986 bytes for an IOS-XR untagged interface.

For the appropriate MTU values for each platform, see the relevant configuration guides.

We highly recommend that you test the MTU using CLI-based commands. For example, on the Cisco NX-OS
CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

Note

Configuring a Route Control Protocol to Use Import and Export Controls, With
the REST API

This example assumes that you have configured the Layer 3 outside network connections using BGP. It is
also possible to perform these tasks for a network using OSPF.

Before you begin

• The tenant, private network, and bridge domain are created.

• The Layer 3 outside tenant network is configured.

Configure the route control protocol using import and export controls.

Example:

<l3extOut descr="" dn="uni/tn-Ten_ND/out-L3Out1" enforceRtctrl="export" name="L3Out1" ownerKey=""
ownerTag="" targetDscp="unspecified">

<l3extLNodeP descr="" name="LNodeP1" ownerKey="" ownerTag="" tag="yellow-green"
targetDscp="unspecified">

<l3extRsNodeL3OutAtt rtrId="1.2.3.4" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101">
<l3extLoopBackIfP addr="2000::3" descr="" name=""/>

</l3extRsNodeL3OutAtt>
<l3extLIfP descr="" name="IFP1" ownerKey="" ownerTag="" tag="yellow-green">

<ospfIfP authKeyId="1" authType="none" descr="" name="">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
371

Part 3: Setting Up APIC and the Fabric Using the REST API
Route Controls

<ospfRsIfPol tnOspfIfPolName=""/>
</ospfIfP>
<l3extRsNdIfPol tnNdIfPolName=""/>

<l3extRsPathL3OutAtt addr="10.11.12.10/24" descr="" encap="unknown" ifInstT="l3-port"

llAddr="::" mac="00:22:BD:F8:19:FF" mtu="1500" tDn="topology/pod-1/paths-101/pathep-[eth1/17]"
targetDscp="unspecified"/>

</l3extLIfP>
</l3extLNodeP>
<l3extRsEctx tnFvCtxName="PVN1"/>
<l3extInstP descr="" matchT="AtleastOne" name="InstP1" prio="unspecified"

targetDscp="unspecified">
<fvRsCustQosPol tnQosCustomPolName=""/>
<l3extSubnet aggregate="" descr="" ip="192.168.1.0/24" name="" scope=""/>

</l3extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.1" areaType="nssa"

descr=""/>
<rtctrlProfile descr="" name="default-export" ownerKey="" ownerTag="">

<rtctrlCtxP descr="" name="routecontrolpvtnw" order="3">
<rtctrlScope descr="" name="">

<rtctrlRsScopeToAttrP tnRtctrlAttrPName="actionruleprofile2"/>
</rtctrlScope>

</rtctrlCtxP>
</rtctrlProfile>

</l3extOut>

Layer 3 to Layer 3 Out Inter-VRF Leaking

Layer 3 Out to Layer 3 Out Inter-VRF Leaking
Starting with Cisco APIC release 2.2(2e) , when there are two Layer 3 Outs in two different VRFs, inter-VRF
leaking is supported.

For this feature to work, the following conditions must be satisfied:

• A contract between the two Layer 3 Outs is required.

• Routes of connected and transit subnets for a Layer 3 Out are leaked by enforcing contracts (L3Out-L3Out
as well as L3Out-EPG) and without leaking the dynamic or static routes between VRFs.

• Dynamic or static routes are leaked for a Layer 3 Out by enforcing contracts (L3Out-L3Out as well as
L3Out-EPG) and without advertising directly connected or transit routes between VRFs.

• Shared Layer 3 Outs in different VRFs can communicate with each other.

• There is no associated L3Out required for the bridge domain. When an Inter-VRF shared L3Out is used,
it is not necessary to associate the user tenant bridge domains with the L3Out in tenant common. If you
had a tenant-specific L3Out, it would still be associated to your bridge domains in your respective tenants.

• Two Layer 3 Outs can be in two different VRFs, and they can successfully exchange routes.

• This enhancement is similar to the Application EPG to Layer 3 Out inter-VRF communications. The
only difference is that instead of an Application EPG there is another Layer 3 Out. Therefore, in this
case, the contract is between two Layer 3 Outs.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
372

Part 3: Setting Up APIC and the Fabric Using the REST API
Layer 3 to Layer 3 Out Inter-VRF Leaking

In the following figure, there are two Layer 3 Outs with a shared subnet. There is a contract between the Layer
3 external instance profile (l3extInstP) in both the VRFs. In this case, the Shared Layer 3 Out for VRF1 can
communicate with the Shared Layer 3 Out for VRF2.

Figure 44: Shared Layer 3 Outs Communicating Between Two VRFs

Configuring Two Shared Layer 3 Outs in Two VRFs Using REST API
The following REST API configuration example that displays how two shared Layer 3 Outs in two VRFs
communicate.

Step 1 Configure the provider Layer 3 Out.

Example:
<tenant name=“t1_provider”>
<fvCtx name=“VRF1">
<l3extOut name="T0-o1-L3OUT-1">

<l3extRsEctx tnFvCtxName="o1"/>
<ospfExtP areaId='60'/>
<l3extInstP name="l3extInstP-1">
<fvRsProv tnVzBrCPName="vzBrCP-1">
</fvRsProv>

<l3extSubnet ip="192.168.2.0/24" scope=“shared-rtctrl, shared-security" aggregate=""/>
</l3extInstP>

</l3extOut>
</tenant>

Step 2 Configure the consumer Layer 3 Out.

Example:
<tenant name=“t1_consumer”>
<fvCtx name=“VRF2">
<l3extOut name="T0-o1-L3OUT-1">

<l3extRsEctx tnFvCtxName="o1"/>
<ospfExtP areaId=‘70'/>
<l3extInstP name="l3extInstP-2">
<fvRsCons tnVzBrCPName="vzBrCP-1">
</fvRsCons>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
373

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Two Shared Layer 3 Outs in Two VRFs Using REST API

<l3extSubnet ip="199.16.2.0/24" scope=“shared-rtctrl, shared-security"
aggregate=""/>

</l3extInstP>
</l3extOut>
</tenant>

Overview Interleak Redistribution for MP-BGP
This topic provides how to configure an interleak redistribution in the Cisco Application Centric Infrastructure
(ACI) fabric using Cisco Application Policy Infrastructure Controller (APIC).

In Cisco ACI, a border leaf node on which Layer 3 Outsides (L3Outs) are deployed redistributes L3Out routes
to the BGP IPv4/IPv6 address family and then to the MP-BGP VPNv4/VPNv6 address family along with the
VRF information so that L3Out routes are distributed from a border leaf node to other leaf nodes through the
spine nodes. Interleak redistribution in the Cisco ACI fabric refers to this redistribution of L3Out routes to
the BGP IPv4/IPv6 address family. By default, interleak happens for all L3Out routes, such as routes learned
through dynamic routing protocols, static routes, and directly-connected subnets of L3Out interfaces, except
for routes learned through BGP. Routes learned through BGP are already in the BGP IPv4/IPv6 table and are
ready to be exported to MP-BGP VPNv4/VPNv6 without interleak.

Interleak redistribution allows users to apply a route-map to redistribute L3Out routes selectively into BGP
to control which routes should be visible to other leaf nodes, or to set some attributes to the routes, such as
BGP community, preference, metric, and so on. This redistribution enables selective transit routing to be
performed on another border leaf node based on the attributes set by the ingress border leaf node or so that
other leaf nodes can prefer routes from one border leaf node to another.

Applying a route map to interleak redistribution from OSPF and EIGRP routes has been available in earlier
releases.

Configuring Interleak of External Routes Using the REST API
Before you begin

• The tenant, VRF, and bridge domain are created.

• The external routed domain is created.

Configure an interleak of external routes:

Example:

<l3extOut descr="" enforceRtctrl="export" name="out1" ownerKey="" ownerTag="" targetDscp="unspecified">

<l3extLNodeP configIssues="" descr="" name="Lnodep1" ownerKey="" ownerTag="" tag="yellow-green"
targetDscp="unspecified">

<l3extRsNodeL3OutAtt rtrId="1.2.3.4" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
<l3extLIfP descr="" name="lifp1" ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">
<ospfRsIfPol tnOspfIfPolName=""/>

</ospfIfP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
374

Part 3: Setting Up APIC and the Fabric Using the REST API
Overview Interleak Redistribution for MP-BGP

<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="12.12.7.16/24" descr="" encap="unknown" encapScope="local"

ifInstT="l3-port" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/11]" targetDscp="unspecified"/>

</l3extLIfP>
</l3extLNodeP>
<l3extRsEctx tnFvCtxName="ctx1"/>
<l3extRsInterleakPol tnRtctrlProfileName="interleak"/>
<l3extRsL3DomAtt tDn="uni/l3dom-Domain"/>
<l3extInstP descr="" matchT="AtleastOne" name="InstP1" prio="unspecified"

targetDscp="unspecified">
<fvRsCustQosPol tnQosCustomPolName=""/>
<l3extSubnet aggregate="" descr="" ip="14.15.16.0/24" name=""

scope="export-rtctrl,import-security"/>
</l3extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.1" areaType="nssa" descr=""/>

</l3extOut>

SVI External Encapsulation Scope

About SVI External Encapsulation Scope
In the context of a Layer 3 Out configuration, a switch virtual interfaces (SVI), is configured to provide
connectivity between the ACI leaf switch and a router.

By default, when a single Layer 3 Out is configured with SVI interfaces, the VLAN encapsulation spans
multiple nodes within the fabric. This happens because the ACI fabric configures the same bridge domain
(VXLAN VNI) across all the nodes in the fabric where the Layer 3 Out SVI is deployed as long as all SVI
interfaces use the same external encapsulation (SVI) as shown in the figure.

However, when different Layer 3 Outs are deployed, the ACI fabric uses different bridge domains even if
they use the same external encapsulation (SVI) as shown in the figure:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
375

Part 3: Setting Up APIC and the Fabric Using the REST API
SVI External Encapsulation Scope

Figure 45: Local Scope Encapsulation and One Layer 3 Out

Figure 46: Local Scope Encapsulation and Two Layer 3 Outs

Starting with Cisco APIC release 2.3, it is now possible to choose the behavior when deploying two (or more)
Layer 3 Outs using the same external encapsulation (SVI).

The encapsulation scope can now be configured as Local or VRF:

• Local scope (default): The example behavior is displayed in the figure titled Local Scope Encapsulation
and Two Layer 3 Outs.

• VRF scope: The ACI fabric configures the same bridge domain (VXLAN VNI) across all the nodes and
Layer 3 Out where the same external encapsulation (SVI) is deployed. See the example in the figure
titled VRF Scope Encapsulation and Two Layer 3 Outs.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
376

Part 3: Setting Up APIC and the Fabric Using the REST API
About SVI External Encapsulation Scope

Figure 47: VRF Scope Encapsulation and Two Layer 3 Outs

Encapsulation Scope Syntax
The options for configuring the scope of the encapsulation used for the Layer 3 Out profile are as follows:

• Ctx—The same external SVI in all Layer 3 Outs in the same VRF for a given VLAN encapsulation. This
is a global value.

• Local —A unique external SVI per Layer 3 Out. This is the default value.

The mapping among the CLI, API, and GUI syntax is as follows:

Table 11: Encapsulation Scope Syntax

GUIAPICLI

Locallocall3out

VRFctxvrf

The CLI commands to configure encapsulation scope are only supported when the VRF is configured through
a named Layer 3 Out configuration.

Note

Configuring SVI Interface Encapsulation Scope Using the REST API

Before you begin

The interface selector is configured.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
377

Part 3: Setting Up APIC and the Fabric Using the REST API
Encapsulation Scope Syntax

Configure the SVI interface encapsulation scope.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/node/mo/.xml -->
<polUni>
<fvTenant name="coke">
<l3extOut descr="" dn="uni/tn-coke/out-l3out1" enforceRtctrl="export" name="l3out1" nameAlias=""

ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsL3DomAtt tDn="uni/l3dom-Dom1"/>
<l3extRsEctx tnFvCtxName="vrf0"/>
<l3extLNodeP configIssues="" descr="" name="__ui_node_101" nameAlias="" ownerKey="" ownerTag=""

tag="yellow-green" targetDscp="unspecified">
<l3extRsNodeL3OutAtt rtrId="1.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP descr="" name="int1_11" nameAlias="" ownerKey="" ownerTag="" tag="yellow-green">
<l3extRsPathL3OutAtt addr="1.2.3.4/24" descr="" encap="vlan-2001" encapScope="ctx"

ifInstT="ext-svi" llAddr="0.0.0.0" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/5]" targetDscp="unspecified"/>

<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
</l3extLIfP>
</l3extLNodeP>
<l3extInstP descr="" matchT="AtleastOne" name="epg1" nameAlias="" prefGrMemb="exclude"

prio="unspecified" targetDscp="unspecified">
<l3extSubnet aggregate="" descr="" ip="101.10.10.1/24" name="" nameAlias=""

scope="import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</l3extInstP>
</l3extOut>
</fvTenant>
</polUni>

SVI Auto State

About SVI Auto State

This feature is available in the APIC Release 2.2(3x) release and going forward with APIC Release 3.1(1). It
is not supported in APIC Release 3.0(x).

Note

The Switch Virtual Interface (SVI) represents a logical interface between the bridging function and the routing
function of a VLAN in the device. SVI can have members that are physical ports, direct port channels, or
virtual port channels. The SVI logical interface is associated with VLANs, and the VLANs have port
membership.

The SVI state does not depend on the members. The default auto state behavior for SVI in Cisco APIC is that
it remains in the up state when the auto state value is disabled. This means that the SVI remains active even
if no interfaces are operational in the corresponding VLAN/s.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
378

Part 3: Setting Up APIC and the Fabric Using the REST API
SVI Auto State

If the SVI auto state value is changed to enabled, then it depends on the port members in the associated VLANs.
When a VLAN interface has multiple ports in the VLAN, the SVI goes to the down state when all the ports
in the VLAN go down.

Table 12: SVI Auto State

Description of SVI StateSVI Auto State

SVI remains in the up state even if no interfaces are operational
in the corresponding VLAN/s.

Disabled is the default SVI auto state value.

Disabled

SVI depends on the port members in the associated VLANs.
When a VLAN interface contains multiple ports, the SVI goes
into the down state when all the ports in the VLAN go down.

Enabled

Guidelines and Limitations for SVI Auto State Behavior
Read the following guidelines:

• When you enable or disable the auto state behavior for SVI, you configure the auto state behavior per
SVI. There is no global command.

Configuring SVI Auto State Using the REST API

Before you begin

• The tenant and VRF configured.

• A Layer 3 Out is configured and a logical node profile and a logical interface profile under the Layer 3
Out is configured.

Enable the SVI auto state value.

Example:

<fvTenant name="t1" >
<l3extOut name="out1">

<l3extLNodeP name="__ui_node_101" >
<l3extLIfP descr="" name="__ui_eth1_10_vlan_99_af_ipv4" >

<l3extRsPathL3OutAtt addr="19.1.1.1/24" autostate="enabled" descr="" encap="vlan-100"
encapScope="local" ifInstT="ext-svi" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/10]" targetDscp="unspecified" />

</l3extLIfP>
</l3extLNodeP>

</l3extOut>
</fvTenant>

To disable the autostate, youmust change the value to disabled in the above example. For example, autostate="disabled".

Cisco APIC REST API Configuration Guide, Release 4.1(x)
379

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for SVI Auto State Behavior

Routing Protocols

BGP and BFD

Guidelines for Configuring a BGP Layer 3 Outside Network Connection
When configuring a BGP external routed network, follow these guidelines:

• The BGP direct route export behavior changed after release 3.2(1), where ACI does not evaluate the
originating route type (such as static, direct, and so on) when matching export route map clauses. As a
result, the "match direct" deny clause that is always included in the outbound neighbor route map no
longer matches direct routes, and direct routes are now advertised based on whether or not a user-defined
route map clause matches.

Therefore, the direct route must be advertised explicitly through the route map. Failure to do so will
implicitly deny the direct route being advertised.

• The AS override option in the BGP Controls field in the BGP Peer Connectivity Profile for an L3Out
was introduced in release 3.1(2). It allows Cisco Application Centric Infrastructure (ACI) to overwrite
a remote AS in the AS_PATH with ACI BGP AS. In Cisco ACI, it is typically used when performing
transit routing from an eBGP L3Out to another eBGP L3Out with the same AS number.

However, an issue arises if you enable the AS override option when the eBGP neighbor has a different
AS number. In this situation, strip the peer-as from the AS_PATH when reflecting it to a peer.

• TheLocal-AS Number option in the BGP Peer Connectivity Profile is supported only for eBGP peering.
This enables Cisco ACI border leaf switches to appear to be a member of another AS in addition to its
real AS assigned to the fabric MP-BGP Route Reflector Policy. This means that the local AS number
must be different from the real AS number of the Cisco ACI fabric. When this feature is configured,
Cisco ACI border leaf switches prepend the local AS number to the AS_PATH of the incoming updates
and append the same to the AS_PATH of the outgoing updates. Prepending of the local AS number to
the incoming updates can be disabled by the no-prepend setting in the Local-AS Number Config. The
no-prepend + replace-as setting can be used to prevents the local AS number from being appended to
the outgoing updates in addition to not prepending the same to the incoming updates.

• A router ID for an L3Out for any routing protocols cannot be the same IP address or the same subnet as
the L3Out interfaces such as routed interface, sub-interface or SVI. However, if needed, a router ID can
be the same as one of the L3Out loopback IP addresses.

• If you have multiple L3Outs of the same routing protocol on the same leaf switch in the same VRF
instance, the router ID for those must be the same. If you need a loopback with the same IP address as
the router ID, you can configure the loopback in only one of those L3Outs.

• There are two ways to define the BGP peer for an L3Out:

• Through the BGP peer connectivity profile (bgpPeerP) at the logical node profile level
(l3extLNodeP), which associates the BGP peer to the loopback IP address. When the BGP peer is
configured at this level, a loopback address is expected for BGP connectivity, so a fault is raised if
the loopback address configuration is missing.

• Through the BGP peer connectivity profile (bgpPeerP) at the logical interface profile level
(l3extRsPathL3OutAtt), which associates the BGP peer to the respective interface or sub-interface.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
380

Part 3: Setting Up APIC and the Fabric Using the REST API
Routing Protocols

• You must configure an IPv6 address to enable peering over loopback using IPv6.

• Tenant networking protocol policies for BGP l3extOut connections can be configured with a maximum
prefix limit that enables monitoring and restricting the number of route prefixes received from a peer.
After the maximum prefix limit is exceeded, a log entry can be recorded, further prefixes can be rejected,
the connection can be restarted if the count drops below the threshold in a fixed interval, or the connection
is shut down. You can use only one option at a time. The default setting is a limit of 20,000 prefixes,
after which new prefixes are rejected. When the reject option is deployed, BGP accepts one more prefix
beyond the configured limit and the Cisco Application Policy Infrastructure Controller (APIC) raises a
fault.

Cisco ACI does not support IP fragmentation. Therefore, when you configure
Layer 3 Outside (L3Out) connections to external routers, orMulti-Pod connections
through an Inter-Pod Network (IPN), it is recommended that the interface MTU
is set appropriately on both ends of a link. On some platforms, such as Cisco
ACI, Cisco NX-OS, and Cisco IOS, the configurable MTU value does not take
into account the Ethernet headers (matching IP MTU, and excluding the 14-18
Ethernet header size), while other platforms, such as IOS-XR, include the Ethernet
header in the configured MTU value. A configured value of 9000 results in a
max IP packet size of 9000 bytes in Cisco ACI, Cisco NX-OS, and Cisco IOS,
but results in a max IP packet size of 8986 bytes for an IOS-XR untagged interface.

For the appropriateMTU values for each platform, see the relevant configuration
guides.

We highly recommend that you test the MTU using CLI-based commands. For
example, on the CiscoNX-OSCLI, use a command such as ping 1.1.1.1 df-bit

packet-size 9000 source-interface ethernet 1/1.

Note

BGP Connection Types and Loopback Guidelines
The ACI supports the following BGP connection types and summarizes the loopback guidelines for them:

Static/OSPF route requiredLoopback same as
Router ID

Loopback
required

BGP Connection Type

NoNot applicableNoiBGP direct

YesNo, if multiple
Layer 3 out are on
the same node

Yes, a separate
loopback per
L3Out

iBGP loopback peering

NoNot applicableNoeBGP direct

YesNo, if multiple
Layer 3 out are on
the same node

Yes, a separate
loopback per
L3Out

eBGP loopback peering (multi-hop)

Per VRF Per Node BGP Timer Values
Prior to the introduction of this feature, for a given VRF, all nodes used the same BGP timer values.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
381

Part 3: Setting Up APIC and the Fabric Using the REST API
BGP Connection Types and Loopback Guidelines

With the introduction of the per VRF per node BGP timer values feature, BGP timers can be defined and
associated on a per VRF per node basis. A node can have multiple VRFs, each corresponding to a fvCtx. A
node configuration (l3extLNodeP) can now contain configuration for BGP Protocol Profile (bgpProtP) which
in turn refers to the desired BGP Context Policy (bgpCtxPol). This makes it possible to have a different node
within the same VRF contain different BGP timer values.

For each VRF, a node has a bgpDom concrete MO. Its name (primary key) is the VRF, <fvTenant>:<fvCtx>.
It contains the BGP timer values as attributes (for example, holdIntvl, kaIntvl, maxAsLimit).

All the steps necessary to create a valid Layer 3 Out configuration are required to successfully apply a per
VRF per node BGP timer. For example,MOs such as the following are required: fvTenant, fvCtx, l3extOut,

l3extInstP, LNodeP, bgpRR.

On a node, the BGP timer policy is chosen based on the following algorithm:

• If bgpProtP is specified, then use bgpCtxPol referred to under bgpProtP.

• Else, if specified, use bgpCtxPol referred to under corresponding fvCtx.

• Else, if specified, use the default policy under the tenant, for example,
uni/tn-<tenant>/bgpCtxP-default.

• Else, use the default policy under tenant common, for example, uni/tn-common/bgpCtxP-default. This
one is pre-programmed.

Configuring an MP-BGP Route Reflector Using the REST API

Step 1 Mark the spine switches as route reflectors.

Example:
POST https://apic-ip-address/api/policymgr/mo/uni/fabric.xml

<bgpInstPol name="default">
<bgpAsP asn="1" />
<bgpRRP>

<bgpRRNodePEp id=“<spine_id1>”/>
<bgpRRNodePEp id=“<spine_id2>”/>

</bgpRRP>
</bgpInstPol>

Step 2 Set up the pod selector using the following post.

Example:

For the FuncP setup—
POST https://apic-ip-address/api/policymgr/mo/uni.xml

<fabricFuncP>
<fabricPodPGrp name="bgpRRPodGrp”>
<fabricRsPodPGrpBGPRRP tnBgpInstPolName="default" />

</fabricPodPGrp>
</fabricFuncP>

Example:

For the PodP setup—

Cisco APIC REST API Configuration Guide, Release 4.1(x)
382

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring an MP-BGP Route Reflector Using the REST API

POST https://apic-ip-address/api/policymgr/mo/uni.xml

<fabricPodP name="default">
<fabricPodS name="default" type="ALL">
<fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-bgpRRPodGrp"/>

</fabricPodS>
</fabricPodP>

Configuring BGP External Routed Network Using the REST API

Before you begin

The tenant where you configure the BGP external routed network is already created.

The following shows how to configure the BGP external routed network using the REST API:

For Example:

Example:

<l3extOut descr="" dn="uni/tn-t1/out-l3out-bgp" enforceRtctrl="export" name="l3out-bgp" ownerKey=""
ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="ctx3"/>
<l3extLNodeP configIssues="" descr="" name="l3extLNodeP_1" ownerKey="" ownerTag="" tag="yellow-green"
targetDscp="unspecified">
<l3extRsNodeL3OutAtt rtrId="1.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP descr="" name="l3extLIfP_2" ownerKey="" ownerTag="" tag="yellow-green">
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="3001::31:0:1:2/120" descr="" encap="vlan-3001" encapScope="local"

ifInstT="sub-interface" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/8]" targetDscp="unspecified">

<bgpPeerP addr="3001::31:0:1:0/120" allowedSelfAsCnt="3" ctrl="send-com,send-ext-com" descr=""
name="" peerCtrl="bfd" privateASctrl="remove-all,remove-exclusive,replace-as" ttl="1" weight="1000">

<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="3001" descr="" name=""/>
</bgpPeerP>
</l3extRsPathL3OutAtt>
</l3extLIfP>
<l3extLIfP descr="" name="l3extLIfP_1" ownerKey="" ownerTag="" tag="yellow-green">
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="31.0.1.2/24" descr="" encap="vlan-3001" encapScope="local"

ifInstT="sub-interface" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[eth1/8]" targetDscp="unspecified">

<bgpPeerP addr=“31.0.1.0/24" allowedSelfAsCnt="3" ctrl="send-com,send-ext-com" descr="" name=""
peerCtrl="" privateASctrl="remove-all,remove-exclusive,replace-as" ttl="1" weight="100">

<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpLocalAsnP asnPropagate="none" descr="" localAsn="200" name=""/>
<bgpAsP asn="3001" descr="" name=""/>
</bgpPeerP>
</l3extRsPathL3OutAtt>
</l3extLIfP>
</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-l3-dom"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
383

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BGP External Routed Network Using the REST API

<l3extRsDampeningPol af="ipv6-ucast" tnRtctrlProfileName="damp_rp"/>
<l3extRsDampeningPol af="ipv4-ucast" tnRtctrlProfileName="damp_rp"/>
<l3extInstP descr="" matchT="AtleastOne" name="l3extInstP_1" prio="unspecified"
targetDscp="unspecified">
<l3extSubnet aggregate="" descr="" ip="130.130.130.0/24" name="" scope="import-rtctrl"></l3extSubnet>

<l3extSubnet aggregate="" descr="" ip="130.130.131.0/24" name="" scope="import-rtctrl"/>
<l3extSubnet aggregate="" descr="" ip="120.120.120.120/32" name=""

scope="export-rtctrl,import-security"/>
<l3extSubnet aggregate="" descr="" ip="3001::130:130:130:100/120" name="" scope="import-rtctrl"/>
</l3extInstP>
<bgpExtP descr=""/>
</l3extOut>
<rtctrlProfile descr="" dn="uni/tn-t1/prof-damp_rp" name="damp_rp" ownerKey="" ownerTag=""
type="combinable">
<rtctrlCtxP descr="" name="ipv4_rpc" order="0">
<rtctrlScope descr="" name="">
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="act_rule"/>
</rtctrlScope>
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlAttrP descr="" dn="uni/tn-t1/attr-act_rule" name="act_rule">
<rtctrlSetDamp descr="" halfLife="15" maxSuppressTime="60" name="" reuse="750" suppress="2000"
type="dampening-pol"/>
</rtctrlAttrP>

Configuring BFD Consumer Protocols Using the REST API

Step 1 The following example shows the interface configuration for bidirectional forwarding detection (BFD):

Example:

<fvTenant name="ExampleCorp">
<bfdIfPol name=“bfdIfPol" minTxIntvl="400" minRxIntvl="400" detectMult="5" echoRxIntvl="400"

echoAdminSt="disabled"/>
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<l3extLIfP name='portIpv4'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port'

addr="10.0.0.1/24" mtu="1500"/>
<bfdIfP type=“sha1” key=“password">

<bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
</bfdIfP>

</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>

Step 2 The following example shows the interface configuration for enabling BFD on OSPF and EIGRP:

Example:

BFD on leaf switch

<fvTenant name=“ExampleCorp">
<ospfIfPol name="ospf_intf_pol" cost="10" ctrl="bfd”/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
384

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BFD Consumer Protocols Using the REST API

<eigrpIfPol ctrl="nh-self,split-horizon,bfd" dn="uni/tn-Coke/eigrpIfPol-eigrp_if_default"
</fvTenant>

Example:

BFD on spine switch

<l3extLNodeP name="bSpine">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-103" rtrId="192.3.1.8">
<l3extLoopBackIfP addr="10.10.3.1" />
<l3extInfraNodeP fabricExtCtrlPeering="false" />

</l3extRsNodeL3OutAtt>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-103/pathep-[eth5/10]" encap='vlan-4'

ifInstT='sub-interface' addr="20.3.10.1/24"/>
<ospfIfP>

<ospfRsIfPol tnOspfIfPolName='ospf_intf_pol'/>
</ospfIfP>
<bfdIfP name="test" type="sha1" key="hello" status="created,modified">

<bfdRsIfPol tnBfdIfPolName='default' status="created,modified"/>
</bfdIfP>

</l3extLIfP>

</l3extLNodeP>

Step 3 The following example shows the interface configuration for enabling BFD on BGP:

Example:

<fvTenant name="ExampleCorp">
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<l3extLIfP name='portIpv4'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port'

addr="10.0.0.1/24" mtu="1500">
<bgpPeerP addr="4.4.4.4/24" allowedSelfAsCnt="3" ctrl="bfd" descr="" name=""

peerCtrl="" ttl="1">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="3" descr="" name=""/>

</bgpPeerP>
</l3extRsPathL3OutAtt>

</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>

Step 4 The following example shows the interface configuration for enabling BFD on Static Routes:

Example:

BFD on leaf switch

<fvTenant name="ExampleCorp">
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2">
<ipRouteP ip=“192.168.3.4" rtCtrl="bfd">
<ipNexthopP nhAddr="192.168.62.2"/>

</ipRouteP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
385

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BFD Consumer Protocols Using the REST API

</l3extRsNodeL3OutAtt>
<l3extLIfP name='portIpv4'>

<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" ifInstT='l3-port'
addr="10.10.10.2/24" mtu="1500" status="created,modified" />

</l3extLIfP>

</l3extLNodeP>

</l3extOut>
</fvTenant>

Example:

BFD on spine switch

<l3extLNodeP name="bSpine">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-103" rtrId="192.3.1.8">
<ipRouteP ip="0.0.0.0" rtCtrl="bfd">
<ipNexthopP nhAddr="192.168.62.2"/>

</ipRouteP>
</l3extRsNodeL3OutAtt>

<l3extLIfP name='portIf'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-103/pathep-[eth5/10]" encap='vlan-4'

ifInstT='sub-interface' addr="20.3.10.1/24"/>

<bfdIfP name="test" type="sha1" key="hello" status="created,modified">
<bfdRsIfPol tnBfdIfPolName='default' status="created,modified"/>

</bfdIfP>
</l3extLIfP>

</l3extLNodeP>

Step 5 The following example shows the interface configuration for enabling BFD on IS-IS:

Example:

<fabricInst>
<l3IfPol name="testL3IfPol" bfdIsis="enabled"/>

<fabricLeafP name="LeNode" >
<fabricRsLePortP tDn="uni/fabric/leportp-leaf_profile" />
<fabricLeafS name="spsw" type="range">
<fabricNodeBlk name="node101" to_="102" from_="101" />
</fabricLeafS>

</fabricLeafP>

<fabricSpineP name="SpNode" >
<fabricRsSpPortP tDn="uni/fabric/spportp-spine_profile" />
<fabricSpineS name="spsw" type="range">

<fabricNodeBlk name="node103" to_="103" from_="103" />
</fabricSpineS>

</fabricSpineP>

<fabricLePortP name="leaf_profile">
<fabricLFPortS name="leafIf" type="range">
<fabricPortBlk name="spBlk" fromCard="1" fromPort="49" toCard="1" toPort="49" />

<fabricRsLePortPGrp tDn="uni/fabric/funcprof/leportgrp-LeTestPGrp" />
</fabricLFPortS>

</fabricLePortP>

<fabricSpPortP name="spine_profile">
<fabricSFPortS name="spineIf" type="range">

<fabricPortBlk name="spBlk" fromCard="5" fromPort="1" toCard="5" toPort="2" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
386

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BFD Consumer Protocols Using the REST API

<fabricRsSpPortPGrp tDn="uni/fabric/funcprof/spportgrp-SpTestPGrp" />
</fabricSFPortS>

</fabricSpPortP>

<fabricFuncP>
<fabricLePortPGrp name = "LeTestPGrp">

<fabricRsL3IfPol tnL3IfPolName="testL3IfPol"/>
</fabricLePortPGrp>

<fabricSpPortPGrp name = "SpTestPGrp">
<fabricRsL3IfPol tnL3IfPolName="testL3IfPol"/>

</fabricSpPortPGrp>

</fabricFuncP>

</fabricInst>

Configuring BFD Globally Using the REST API

The following REST API shows the global configuration for bidirectional forwarding detection (BFD):

Example:

<polUni>
<infraInfra>

<bfdIpv4InstPol name="default" echoSrcAddr="1.2.3.4" slowIntvl="1000" minTxIntvl="150"
minRxIntvl="250" detectMult="5" echoRxIntvl="200"/>

<bfdIpv6InstPol name="default" echoSrcAddr="34::1/64" slowIntvl="1000" minTxIntvl="150"
minRxIntvl="250" detectMult="5" echoRxIntvl="200"/>
</infraInfra>
</polUni>

Configuring BFD Interface Override Using the REST API

The following REST API shows the interface override configuration for bidirectional forwarding detection (BFD):

Example:

<fvTenant name="ExampleCorp">
<bfdIfPol name=“bfdIfPol" minTxIntvl="400" minRxIntvl="400" detectMult="5" echoRxIntvl="400"

echoAdminSt="disabled"/>
<l3extOut name="l3-out">

<l3extLNodeP name="leaf1">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<l3extLIfP name='portIpv4'>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port'

addr="10.0.0.1/24" mtu="1500"/>
<bfdIfP type=“sha1” key=“password">

<bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
</bfdIfP>

</l3extLIfP>

</l3extLNodeP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
387

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BFD Globally Using the REST API

</l3extOut>
</fvTenant>

Configuring a Per VRF Per Node BGP Timer Using the REST API
The following example shows how to configure Per VRF Per node BGP timer in a node. Configure bgpProtP
under l3extLNodeP configuration. Under bgpProtP, configure a relation (bgpRsBgpNodeCtxPol) to the desired
BGP Context Policy (bgpCtxPol).

Configure a node specific BGP timer policy on node1, and configure node2 with a BGP timer policy that is not node
specific.

Example:
POST https://apic-ip-address/mo.xml

<fvTenant name="tn1" >
<bgpCtxPol name="pol1" staleIntvl="25" />
<bgpCtxPol name="pol2" staleIntvl="35" />
<fvCtx name="ctx1" >
<fvRsBgpCtxPol tnBgpCtxPolName="pol1"/>

</fvCtx>
<l3extout name="out1" >
<l3extRsEctx toFvCtxName="ctx1" />
<l3extLNodeP name="node1" >
<bgpProtP name="protp1" >

<bgpRsBgpNodeCtxPol tnBgpCtxPolName="pol2" />
</bgpProtP>

</l3extLNodeP>
<l3extLNodeP name="node2" >
</l3extLNodeP>

In this example, node1 gets BGP timer values from policy pol2, and node2 gets BGP timer values from pol1. The timer
values are applied to the bgpDom corresponding to VRF tn1:ctx1. This is based upon the BGP timer policy that is chosen
following the algorithm described in the Per VRF Per Node BPG Timer Values section.

Deleting a Per VRF Per Node BGP Timer Using the REST API
The following example shows how to delete an existing Per VRF Per node BGP timer in a node.

Delete the node specific BGP timer policy on node1.

Example:
POST https://apic-ip-address/mo.xml

<fvTenant name="tn1" >
<bgpCtxPol name="pol1" staleIntvl="25" />
<bgpCtxPol name="pol2" staleIntvl="35" />
<fvCtx name="ctx1" >
<fvRsBgpCtxPol tnBgpCtxPolName="pol1"/>

</fvCtx>
<l3extout name="out1" >
<l3extRsEctx toFvCtxName="ctx1" />
<l3extLNodeP name="node1" >
<bgpProtP name="protp1" status="deleted" >

Cisco APIC REST API Configuration Guide, Release 4.1(x)
388

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Per VRF Per Node BGP Timer Using the REST API

<bgpRsBgpNodeCtxPol tnBgpCtxPolName="pol2" />
</bgpProtP>

</l3extLNodeP>
<l3extLNodeP name="node2" >
</l3extLNodeP>

The code phrase <bgpProtP name="protp1" status="deleted" > in the example above, deletes the BGP timer policy.
After the deletion, node1 defaults to the BGP timer policy for the VRF with which node1 is associated, which is pol1 in
the above example.

Configuring BGP Max Path
The following feature enables you to add the maximum number of paths to the route table to enable equal
cost, multipath load balancing.

Configuring BGP Max Path Using the REST API

This following example provides information on how to configure the BGPMax Path feature using the REST
API:

<fvTenant descr="" dn="uni/tn-t1" name="t1">
<fvCtx name="v1">

<fvRsCtxToBgpCtxAfPol af="ipv4-ucast" tnBgpCtxAfPolName="bgpCtxPol1"/>
</fvCtx>
<bgpCtxAfPol name="bgpCtxPol1" maxEcmp="8" maxEcmpIbgp="4"/>

</fvTenant>

Configuring AS Path Prepend
A BGP peer can influence the best-path selection by a remote peer by increasing the length of the AS-Path
attribute. AS-Path Prepend provides a mechanism that can be used to increase the length of the AS-Path
attribute by prepending a specified number of AS numbers to it.

AS-Path prepending can only be applied in the outbound direction using route-maps. AS Path prepending
does not work in iBGP sessions.

The AS Path Prepend feature enables modification as follows:

Appends the specified AS number to the AS path of the route matched by
the route map.

Note • You can configure more than one AS number.

• 4 byte AS numbers are supported.

• You can prepend a total 32 AS numbers. You must specify the
order in which the AS Number is inserted into the AS Path
attribute.

Prepend

Prepends the last AS numbers to the AS path with a range between 1 and 10.Prepend-last-as

The following table describes the selection criteria for implementation of AS Path Prepend:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
389

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BGP Max Path

Prepend the specified AS number.1Prepend

Prepend the last AS numbers to the AS path.2Prepend-last-as

Prepend the specified AS number.Prepend(1)DEFAULT

Configuring AS Path Prepend Using the REST API

This following example provides information on how to configure the AS Path Prepend feature using the
REST API:

<?xml version="1.0" encoding="UTF-8"?>
<fvTenant name="coke">

<rtctrlAttrP name="attrp1">
<rtctrlSetASPath criteria="prepend">

<rtctrlSetASPathASN asn="100" order="1"/>
<rtctrlSetASPathASN asn="200" order="10"/>
<rtctrlSetASPathASN asn="300" order="5"/>

<rtctrlSetASPath/>
<rtctrlSetASPath criteria="prepend-last-as" lastnum=”9" />

</rtctrlAttrP>

<l3extOut name="out1">
<rtctrlProfile name="rp1">

<rtctrlCtxP name="ctxp1" order="1">
<rtctrlScope>

<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrp1"/>
</rtctrlScope>

</rtctrlCtxP>
</rtctrlProfile>

</l3extOut>
</fvTenant>

About BGP Autonomous System Override
Loop prevention in BGP is done by verifying the Autonomous System number in the Autonomous System
Path. If the receiving router sees its own Autonomous System number in the Autonomous System path of the
received BGP packet, the packet is dropped. The receiving router assumes that the packet originated from its
own Autonomous System and has reached the same place from where it originated initially. This setting is
the default to prevent route loops from occurring.

The default setting to prevent route loops from occurring could create an issue if you use the same Autonomous
System number along various sites and disallow user sites with identical Autonomous System numbers to
link by another Autonomous System number. In such a scenario, routing updates from one site is dropped
when the other site receives them.

To prevent such a situation from occurring, beginning with the Cisco APIC Release 3.1(2m), you can now
enable the BGP Autonomous System override feature to override the default setting. You must also enable
the Disable Peer AS Check at the same time.

The Autonomous System override function replaces the Autonomous System number from the originating
router with the Autonomous System number of the sending BGP router in the AS Path of the outbound routes.
This feature can be enabled per feature per address family (IPv4 or IPv6).

The Autonomous System Override feature is supported with GOLF Layer 3 configurations and Non-GOLF
Layer 3 configurations.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
390

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring AS Path Prepend Using the REST API

Figure 48: Example Topology Illustrating the Autonomous System Override Process

Router 1 and Router 2 are the two customers with multiple sites (Site-A and Site-B). Customer Router 1
operates under AS 100 and customer Router 2 operates under AS 200.

The above diagram illustrates the Autonomous System (AS) override process as follows:

1. Router 1-Site-A advertises route 10.3.3.3 with AS100.

2. Router PE-1 propagates this as an internal route to PE2 as AS100.

3. Router PE-2 prepends 10.3.3.3 with AS121 (replaces 100 in the AS path with 121), and propagates the
prefix.

4. Router 2-Site-B accepts the 10.3.3.3 update.

Configuring BGP External Routed Network with Autonomous System Override Enabled Using the
REST API

SUMMARY STEPS

1. Configure the BGP External Routed Network with Autonomous override enabled.

DETAILED STEPS

Configure the BGP External Routed Network with Autonomous override enabled.

The line of code that is in bold displays the BGP AS override portion of the configuration. This feature was
introduced in the Cisco APIC Release 3.1(2m).

Note

Example:

<fvTenant name="coke">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
391

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BGP External Routed Network with Autonomous System Override Enabled Using the REST API

<fvCtx name="coke" status="">
<bgpRtTargetP af="ipv4-ucast">

<bgpRtTarget type="import" rt="route-target:as4-nn2:1234:1300" />
<bgpRtTarget type="export" rt="route-target:as4-nn2:1234:1300" />

</bgpRtTargetP>
<bgpRtTargetP af="ipv6-ucast">

<bgpRtTarget type="import" rt="route-target:as4-nn2:1234:1300" />
<bgpRtTarget type="export" rt="route-target:as4-nn2:1234:1300" />

</bgpRtTargetP>
</fvCtx>

<fvBD name="cokeBD">
<!-- Association from Bridge Doamin to Private Network -->
<fvRsCtx tnFvCtxName="coke" />
<fvRsBDToOut tnL3extOutName="routAccounting" />
<!-- Subnet behind the bridge domain-->
<fvSubnet ip="20.1.1.1/16" scope="public"/>
<fvSubnet ip="2000:1::1/64" scope="public"/>

</fvBD>
<fvBD name="cokeBD2">

<!-- Association from Bridge Doamin to Private Network -->
<fvRsCtx tnFvCtxName="coke" />
<fvRsBDToOut tnL3extOutName="routAccounting" />
<!-- Subnet behind the bridge domain-->
<fvSubnet ip="30.1.1.1/16" scope="public"/>

</fvBD>
<vzBrCP name="webCtrct" scope="global">

<vzSubj name="http">
<vzRsSubjFiltAtt tnVzFilterName="default"/>

</vzSubj>
</vzBrCP>

<!-- GOLF L3Out -->
<l3extOut name="routAccounting">

<l3extConsLbl name="golf_transit" owner="infra" status=""/>
<bgpExtP/>
<l3extInstP name="accountingInst">

<!--
<l3extSubnet ip="192.2.2.0/24" scope="import-security,import-rtctrl" />
<l3extSubnet ip="192.3.2.0/24" scope="export-rtctrl"/>
<l3extSubnet ip="192.5.2.0/24" scope="export-rtctrl"/>
<l3extSubnet ip="64:ff9b::c007:200/120" scope="export-rtctrl" />
-->
<l3extSubnet ip="0.0.0.0/0"

scope="export-rtctrl,import-security"
aggregate="export-rtctrl"

/>
<fvRsProv tnVzBrCPName="webCtrct"/>

</l3extInstP>

<l3extRsEctx tnFvCtxName="coke"/>
</l3extOut>

<fvAp name="cokeAp">
<fvAEPg name="cokeEPg" >

<fvRsBd tnFvBDName="cokeBD" />
<fvRsPathAtt tDn="topology/pod-1/paths-103/pathep-[eth1/20]" encap="vlan-100"

instrImedcy="immediate" mode="regular"/>
<fvRsCons tnVzBrCPName="webCtrct"/>

</fvAEPg>
<fvAEPg name="cokeEPg2" >

<fvRsBd tnFvBDName="cokeBD2" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
392

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BGP External Routed Network with Autonomous System Override Enabled Using the REST API

<fvRsPathAtt tDn="topology/pod-1/paths-103/pathep-[eth1/20]" encap="vlan-110"
instrImedcy="immediate" mode="regular"/>

<fvRsCons tnVzBrCPName="webCtrct"/>
</fvAEPg>

</fvAp>

<!-- Non GOLF L3Out-->
<l3extOut name="NonGolfOut">

<bgpExtP/>
<l3extLNodeP name="bLeaf">

<!--
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="20.1.13.1"/>
-->
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="20.1.13.1">
<l3extLoopBackIfP addr="1.1.1.1"/>

<ipRouteP ip="2.2.2.2/32" >
<ipNexthopP nhAddr="20.1.12.3"/>

</ipRouteP>

</l3extRsNodeL3OutAtt>
<l3extLIfP name='portIfV4'>

<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/17]" encap='vlan-1010'
ifInstT='sub-interface' addr="20.1.12.2/24">

</l3extRsPathL3OutAtt>
</l3extLIfP>
<l3extLIfP name='portIfV6'>

<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/17]" encap='vlan-1010'
ifInstT='sub-interface' addr="64:ff9b::1401:302/120">

<bgpPeerP addr="64:ff9b::1401:d03" ctrl="send-com,send-ext-com" />
</l3extRsPathL3OutAtt>

</l3extLIfP>
<bgpPeerP addr="2.2.2.2" ctrl="as-override,disable-peer-as-check, send-com,send-ext-com"

status=""/>
</l3extLNodeP>
<!--
<bgpPeerP addr="2.2.2.2" ctrl="send-com,send-ext-com" status=""/>
-->
<l3extInstP name="accountingInst">

<l3extSubnet ip="192.10.0.0/16" scope="import-security,import-rtctrl" />
<l3extSubnet ip="192.3.3.0/24" scope="import-security,import-rtctrl" />
<l3extSubnet ip="192.4.2.0/24" scope="import-security,import-rtctrl" />
<l3extSubnet ip="64:ff9b::c007:200/120" scope="import-security,import-rtctrl" />
<l3extSubnet ip="192.2.2.0/24" scope="export-rtctrl" />
<l3extSubnet ip="0.0.0.0/0"

scope="export-rtctrl,import-rtctrl,import-security"
aggregate="export-rtctrl,import-rtctrl"

/>
</l3extInstP>
<l3extRsEctx tnFvCtxName="coke"/>

</l3extOut>

</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
393

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring BGP External Routed Network with Autonomous System Override Enabled Using the REST API

OSPF

OSPF Layer 3 Outside Connections
OSPF Layer 3 Outside connections can be normal or NSSA areas. The backbone (area 0) area is also supported
as an OSPF Layer 3 Outside connection area. ACI supports both OSPFv2 for IPv4 and OSPFv3 for IPv6.
When creating an OSPF Layer 3 Outside, it is not necessary to configure the OSPF version. The correct OSPF
process is created automatically based on the interface profile configuration (IPv4 or IPv6 addressing). Both
IPv4 and IPv6 protocols are supported on the same interface (dual stack) but it is necessary to create two
separate interface profiles.

Layer 3 Outside connections are supported for the routed interfaces, routed sub-interfaces, and SVIs. The
SVIs are used when there is a need to share the physical connect for both Layer 2 and Layer 3 traffic. The
SVIs are supported on ports, port channels, and virtual port channels (vPCs).

Figure 49: OSPF Layer3 Out Connections

When an SVI is used for an Layer 3 Outside connection, an external bridge domain is created on the border
leaf switches. The external bridge domain allows connectivity between the two VPC switches across the ACI
fabric. This allows both the VPC switches to establish the OSPF adjacencies with each other and the external
OSPF device.

When running OSPF over a broadcast network, the time to detect a failed neighbor is the dead time interval
(default 40 seconds). Reestablishing the neighbor adjacencies after a failure may also take longer due to
designated router (DR) election.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
394

Part 3: Setting Up APIC and the Fabric Using the REST API
OSPF

• A link or port channel failure to one vPCNode does not cause an OSPF adjacency to go down. The OSPF
adjacency can stay up using the external bridge domain accessible through the other vPC node.

• When an OSPF time policy or a BGP, OSPF, or EIGRP address family policy is applied to an L3Out,
you can observe the following behaviors:

• If the L3Out and the policy are defined in the same tenant, then there is no change in behavior.

• If the L3Out is configured in a user tenant other than the common tenant, the L3Out VRF instance
is resolved to the common tenant, and the policy is defined in the common tenant, then only the
default values are applied. Any change in the policy will not take effect.

• If a border leaf switch forms OSPF adjacency with two external switches and one of the two switches
experiences a route loss while the adjacent switches does not, the Cisco ACI border leaf switch reconverges
the route for both neighbors.

• OSPF supports aggressive timers. However, these timers quickly bring down the adjancency and cause
CPU churn. Therefore, we recommend that you use the default timers and use bidirectional forwarding
detection (BFD) to get sub-second failure detection.

Note

Creating OSPF External Routed Network for Management Tenant Using REST API
• You must verify that the router ID and the logical interface profile IP address are different and do not
overlap.

• The following steps are for creating an OSPF external routed network for a management tenant. To create
an OSPF external routed network for a tenant, you must choose a tenant and create a VRF for the tenant.

• For more details, see Cisco APIC and Transit Routing.

Create an OSPF external routed network for management tenant.

Example:
POST: https://apic-ip-address/api/mo/uni/tn-mgmt.xml

<fvTenant name="mgmt">
<fvBD name="bd1">

<fvRsBDToOut tnL3extOutName="RtdOut" />
<fvSubnet ip="1.1.1.1/16" />
<fvSubnet ip="1.2.1.1/16" />
<fvSubnet ip="40.1.1.1/24" scope="public" />
<fvRsCtx tnFvCtxName="inb" />

</fvBD>
<fvCtx name="inb" />

<l3extOut name="RtdOut">
<l3extRsL3DomAtt tDn="uni/l3dom-extdom"/>
<l3extInstP name="extMgmt">
</l3extInstP>
<l3extLNodeP name="borderLeaf">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="10.10.10.10"/>
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-102" rtrId="10.10.10.11"/>
<l3extLIfP name='portProfile'>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
395

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating OSPF External Routed Network for Management Tenant Using REST API

<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]" ifInstT='l3-port'
addr="192.168.62.1/24"/>

<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-102/pathep-[eth1/40]" ifInstT='l3-port'
addr="192.168.62.5/24"/>

<ospfIfP/>
</l3extLIfP>

</l3extLNodeP>
<l3extRsEctx tnFvCtxName="inb"/>
<ospfExtP areaId="57" />

</l3extOut>
</fvTenant>

EIGRP

Overview
This article provides a typical example of how to configure Enhanced Interior Gateway Routing Protocol
(EIGRP) when using the Cisco APIC. The following information applies when configuring EIGRP:

• The tenant, VRF, and bridge domain must already be created.

• The Layer 3 outside tenant network must already be configured.

• The route control profile under routed outside must already be configured.

• The EIGRP VRF policy is the same as the EIGRP family context policy.

• EIGRP supports only export route control profile. The configuration related to route controls is common
across all the protocols.

You can configure EIGRP to perform automatic summarization of subnet routes (route summarization) into
network-level routes. For example, you can configure subnet 131.108.1.0 to be advertised as 131.108.0.0 over
interfaces that have subnets of 192.31.7.0 configured. Automatic summarization is performed when there are
two or more network router configuration commands configured for the EIGRP process. By default, this
feature is enabled.

For more information about route summarization, see the Cisco Application Centric Infrastructure
Fundamentals Guide.

Configuring EIGRP Using the REST API

Step 1 Configure an EIGRP context policy.

Example:
<polUni>

<fvTenant name="cisco_6">
<eigrpCtxAfPol actIntvl="3" descr="" dn="uni/tn-cisco_6/eigrpCtxAfP-eigrp_default_pol"

extDist="170"
intDist="90" maxPaths="8" metricStyle="narrow" name="eigrp_default_pol" ownerKey=""

ownerTag=""/>
</fvTenant>

</polUni>

Step 2 Configure an EIGRP interface policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
396

Part 3: Setting Up APIC and the Fabric Using the REST API
EIGRP

Example:
<polUni>

<fvTenant name="cisco_6">
<eigrpIfPol bw="10" ctrl="nh-self,split-horizon" delay="10" delayUnit="tens-of-micro" descr=""

dn="uni/tn-cisco_6/eigrpIfPol-eigrp_if_default"
helloIntvl="5" holdIntvl="15" name="eigrp_if_default" ownerKey="" ownerTag=""/>

</fvTenant>
</polUni>

Step 3 Configure an EIGRP VRF.

Example:

IPv4:
<polUni>

<fvTenant name="cisco_6">
<fvCtx name="dev">
<fvRsCtxToEigrpCtxAfPol tnEigrpCtxAfPolName="eigrp_ctx_pol_v4" af="1"/>

</fvCtx>
</fvTenant>

</polUni>

IPv6:
<polUni>

<fvTenant name="cisco_6">
<fvCtx name="dev">
<fvRsCtxToEigrpCtxAfPol tnEigrpCtxAfPolName="eigrp_ctx_pol_v6" af="ipv6-ucast"/>

</fvCtx>
</fvTenant>

</polUni>

Step 4 Configure an EIGRP Layer3 Outside.

Example:

IPv4
<polUni>

<fvTenant name="cisco_6">
<l3extOut name="ext">

<eigrpExtP asn="4001"/>
<l3extLNodeP name="node1">

<l3extLIfP name="intf_v4">
<l3extRsPathL3OutAtt addr="201.1.1.1/24" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>

<eigrpIfP name="eigrp_ifp_v4">
<eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v4"/>

</eigrpIfP>
</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>
</polUni>

IPv6
<polUni>

<fvTenant name="cisco_6">
<l3extOut name="ext">

<eigrpExtP asn="4001"/>
<l3extLNodeP name="node1">

<l3extLIfP name="intf_v6">
<l3extRsPathL3OutAtt addr="2001::1/64" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
397

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring EIGRP Using the REST API

<eigrpIfP name="eigrp_ifp_v6">
<eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v6"/>

</eigrpIfP>
</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>
</polUni>

IPv4 and IPv6
<polUni>

<fvTenant name="cisco_6">
<l3extOut name="ext">

<eigrpExtP asn="4001"/>
<l3extLNodeP name="node1">

<l3extLIfP name="intf_v4">
<l3extRsPathL3OutAtt addr="201.1.1.1/24" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>

<eigrpIfP name="eigrp_ifp_v4">
<eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v4"/>

</eigrpIfP>
</l3extLIfP>

<l3extLIfP name="intf_v6">
<l3extRsPathL3OutAtt addr="2001::1/64" ifInstT="l3-port"
tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>

<eigrpIfP name="eigrp_ifp_v6">
<eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v6"/>

</eigrpIfP>
</l3extLIfP>

</l3extLNodeP>
</l3extOut>

</fvTenant>
</polUni>

Step 5 (Optional) Configure the interface policy knobs.

Example:
<polUni>

<fvTenant name="cisco_6">
<eigrpIfPol bw="1000000" ctrl="nh-self,split-horizon" delay="10"
delayUnit="tens-of-micro" helloIntvl="5" holdIntvl="15" name="default"/>

</fvTenant>
</polUni>

The bandwidth (bw) attribute is defined in Kbps. The delayUnit attribute can be "tens of micro" or "pico".

Neighbor Discovery

Neighbor Discovery
The IPv6 Neighbor Discovery (ND) protocol is responsible for the address auto configuration of nodes,
discovery of other nodes on the link, determining the link-layer addresses of other nodes, duplicate address
detection, finding available routers and DNS servers, address prefix discovery, and maintaining reachability
information about the paths to other active neighbor nodes.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
398

Part 3: Setting Up APIC and the Fabric Using the REST API
Neighbor Discovery

ND-specific Neighbor Solicitation or Neighbor Advertisement (NS or NA) and Router Solicitation or Router
Advertisement (RS or RA) packet types are supported on all ACI fabric Layer 3 interfaces, including physical,
Layer 3 sub interface, and SVI (external and pervasive). Up to APIC release 3.1(1x), RS/RA packets are used
for auto configuration for all Layer 3 interfaces but are only configurable for pervasive SVIs.

Starting with APIC release 3.1(2x), RS/RA packets are used for auto configuration and are configurable on
Layer 3 interfaces including routed interface, Layer 3 sub interface, and SVI (external and pervasive).

ACI bridge domain ND always operates in flood mode; unicast mode is not supported.

The ACI fabric ND support includes the following:

• Interface policies (nd:IfPol) control ND timers and behavior for NS/NA messages.

• ND prefix policies (nd:PfxPol) control RA messages.

• Configuration of IPv6 subnets for ND (fv:Subnet).

• ND interface policies for external networks.

• Configurable ND subnets for external networks, and arbitrary subnet configurations for pervasive bridge
domains are not supported.

Configuration options include the following:

• Adjacencies

• Configurable Static Adjacencies: (<vrf, L3Iface, ipv6 address> --> mac address)

• Dynamic Adjacencies: Learned via exchange of NS/NA packets

• Per Interface

• Control of ND packets (NS/NA)

• Neighbor Solicitation Interval

• Neighbor Solicitation Retry count

• Control of RA packets

• Suppress RA

• Suppress RA MTU

• RA Interval, RA Interval minimum, Retransmit time

• Per Prefix (advertised in RAs) control

• Lifetime, preferred lifetime

• Prefix Control (auto configuration, on link)

• Neighbor Discovery Duplicate Address Detection (DAD)

Cisco APIC REST API Configuration Guide, Release 4.1(x)
399

Part 3: Setting Up APIC and the Fabric Using the REST API
Neighbor Discovery

Creating the Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery
on the Bridge Domain Using the REST API

Create a tenant, VRF, bridge domain with a neighbor discovery interface policy and a neighbor discovery prefix policy.

Example:
<fvTenant descr="" dn="uni/tn-ExampleCorp" name="ExampleCorp" ownerKey="" ownerTag="">

<ndIfPol name="NDPol001" ctrl="managed-cfg” descr="" hopLimit="64" mtu="1500" nsIntvl="1000"
nsRetries=“3" ownerKey="" ownerTag="" raIntvl="600" raLifetime="1800" reachableTime="0"
retransTimer="0"/>

<fvCtx descr="" knwMcastAct="permit" name="pvn1" ownerKey="" ownerTag="" pcEnfPref="enforced">
</fvCtx>
<fvBD arpFlood="no" descr="" mac="00:22:BD:F8:19:FF" multiDstPktAct="bd-flood" name="bd1"

ownerKey="" ownerTag="" unicastRoute="yes" unkMacUcastAct="proxy" unkMcastAct="flood">
<fvRsBDToNdP tnNdIfPolName="NDPol001"/>
<fvRsCtx tnFvCtxName="pvn1"/>
<fvSubnet ctrl="nd" descr="" ip="34::1/64" name="" preferred="no" scope="private">

<fvRsNdPfxPol tnNdPfxPolName="NDPfxPol001"/>
</fvSubnet>
<fvSubnet ctrl="nd" descr="" ip="33::1/64" name="" preferred="no" scope="private">

<fvRsNdPfxPol tnNdPfxPolName="NDPfxPol002"/>
</fvSubnet>

</fvBD>
<ndPfxPol ctrl="auto-cfg,on-link" descr="" lifetime="1000" name="NDPfxPol001" ownerKey=""

ownerTag="" prefLifetime="1000"/>
<ndPfxPol ctrl="auto-cfg,on-link" descr="" lifetime="4294967295" name="NDPfxPol002" ownerKey=""

ownerTag="" prefLifetime="4294967295"/>
</fvTenant>

If you have a public subnet when you configure the routed outside, you must associate the bridge domain with
the outside configuration.

Note

Guidelines and Limitations
The following guidelines and limitations apply to Neighbor Discovery Router Advertisement (NDRA) Prefixes
for Layer 3 Interfaces:

• An ND RA configuration applies only to IPv6 Prefixes. Any attempt to configure an ND policy on IPv4
Prefixes will fail to apply.

Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer
3 Interface Using the REST API

Configure an IPv6 neighbor discovery interface policy and associate it with a Layer 3 interface:

The following example displays the configuration in a non-VPC set up.

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
400

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating the Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery on the Bridge Domain Using the REST API

<fvTenant dn="uni/tn-ExampleCorp" name="ExampleCorp">
<ndIfPol name="NDPol001" ctrl="managed-cfg" hopLimit="64" mtu="1500" nsIntvl="1000" nsRetries="3"
raIntvl="600" raLifetime="1800" reachableTime="0" retransTimer="0"/>
<fvCtx name="pvn1" pcEnfPref="enforced">

</fvCtx>
<l3extOut enforceRtctrl="export" name="l3extOut001">
<l3extRsEctx tnFvCtxName="pvn1"/>
<l3extLNodeP name="lnodeP001">
<l3extRsNodeL3OutAtt rtrId="11.11.205.1" rtrIdLoopBack="yes" tDn="topology/pod-2/node-2011"/>
<l3extLIfP name="lifP001">
<l3extRsPathL3OutAtt addr="2001:20:21:22::2/64" ifInstT="l3-port" llAddr="::"

mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-2/paths-2011/pathep-[eth1/1]">

<ndPfxP>
<ndRsPfxPToNdPfxPol tnNdPfxPolName="NDPfxPol001"/>

</ndPfxP>
</l3extRsPathL3OutAtt>
<l3extRsNdIfPol tnNdIfPolName="NDPol001"/>

</l3extLIfP>
</l3extLNodeP>
<l3extInstP name="instp"/>

</l3extOut>
<ndPfxPol ctrl="auto-cfg,on-link" descr="" lifetime="1000" name="NDPfxPol001" ownerKey="" ownerTag=""
prefLifetime="1000"/>
</fvTenant>

For VPC ports, ndPfxP must be a child of l3extMember instead of l3extRsNodeL3OutAtt. The following code
snippet shows the configuration in a VPC setup.

<l3extLNodeP name="lnodeP001">
<l3extRsNodeL3OutAtt rtrId="11.11.205.1" rtrIdLoopBack="yes" tDn="topology/pod-2/node-2011"/>
<l3extRsNodeL3OutAtt rtrId="12.12.205.1" rtrIdLoopBack="yes" tDn="topology/pod-2/node-2012"/>
<l3extLIfP name="lifP002">
<l3extRsPathL3OutAtt addr="0.0.0.0" encap="vlan-205" ifInstT="ext-svi" llAddr="::"

mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-2/protpaths-2011-2012/pathep-[vpc7]" >

<l3extMember addr="2001:20:25:1::1/64" descr="" llAddr="::" name="" nameAlias="" side="A">

<ndPfxP >
<ndRsPfxPToNdPfxPol tnNdPfxPolName="NDPfxPol001"/>

</ndPfxP>
</l3extMember>
<l3extMember addr="2001:20:25:1::2/64" descr="" llAddr="::" name="" nameAlias="" side="B">

<ndPfxP >
<ndRsPfxPToNdPfxPol tnNdPfxPolName="NDPfxPol001"/>

</ndPfxP>
</l3extMember>

</l3extRsPathL3OutAtt>
<l3extRsNdIfPol tnNdIfPolName="NDPol001"/> </l3extLIfP>
</l3extLNodeP>

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
401

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer 3 Interface Using the REST API

Microsoft NLB

Configuring Microsoft NLB in Unicast Mode Using the REST API

To configure Microsoft NLB in unicast mode, send a post with XML such as the following example:

Example:
https://apic-ip-address/api/node/mo/uni/.xml
<polUni>

<fvTenant name="tn2" >
<fvCtx name="ctx1"/>
<fvBD name="bd2">

<fvRsCtx tnFvCtxName="ctx1" />
</fvBD>
<fvAp name = "ap1">

<fvAEPg name = "ep1">
<fvRsBd tnFvBDName = "bd2"/>
<fvSubnet ip="10.0.1.1/32" scope="public" ctrl="no-default-gateway">

<fvEpNlb mac="12:21:21:35" mode="mode-uc"/>
</fvSubnet>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Configuring Microsoft NLB in Multicast Mode Using the REST API

To configure Microsoft NLB in multicast mode, send a post with XML such as the following example:

Example:
https://apic-ip-address/api/node/mo/uni/.xml
<polUni>

<fvTenant name="tn2" >
<fvCtx name="ctx1"/>
<fvBD name="bd2">

<fvRsCtx tnFvCtxName="ctx1" />
</fvBD>
<fvAp name = "ap1">

<fvAEPg name = "ep1">
<fvRsBd tnFvBDName = "bd2"/>
<fvSubnet ip="2001:0db8:85a3:0000:0000:8a2e:0370:7344/128" scope="public"

ctrl="no-default-gateway">
<fvEpNlb mac="03:21:21:35" mode="mode-mcast--static"/>

</fvSubnet>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/6]" encap="vlan-911" >

<fvNlbStaticGroup mac = "03:21:21:35" />
</fvRsPathAtt>

</fvAEPg>
</fvAp>

</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
402

Part 3: Setting Up APIC and the Fabric Using the REST API
Microsoft NLB

</polUni>

Configuring Microsoft NLB in IGMP Mode Using the REST API

To configure Microsoft NLB in IGMP mode, send a post with XML such as the following example:

Example:
https://apic-ip-address/api/node/mo/uni/.xml
<polUni>

<fvTenant name="tn2" >
<fvCtx name="ctx1"/>
<fvBD name="bd2">

<fvRsCtx tnFvCtxName="ctx1" />
</fvBD>
<fvAp name = "ap1">

<fvAEPg name = "ep1">
<fvRsBd tnFvBDName = "bd2"/>
<fvSubnet ip="10.0.1.3/32" scope="public" ctrl="no-default-gateway">

<fvEpNlb group ="224.132.18.17" mode="mode-mcast-igmp" />
</fvSubnet>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

MLD Snooping

Configuring and Assigning an MLD Snooping Policy to a Bridge Domain using
the REST API

To configure an MLD Snooping policy and assign it to a bridge domain, send a post with XML such as the following
example:

Example:
https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="mldsn">

<mldSnoopPol adminSt="enabled" ctrl="fast-leave,querier" name="mldsn-it-fabric-querier-policy"
queryIntvl="125"

rspIntvl="10" startQueryCnt="2" startQueryIntvl="31" status=""/>
<fvBD name="mldsn-bd3">

<fvRsMldsn status="" tnMldSnoopPolName="mldsn-it-policy"/>
</fvBD>

</fvTenant>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
403

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Microsoft NLB in IGMP Mode Using the REST API

This example creates and configures theMLD Snooping policy mldsnwith the following properties, and binds theMLD
policy mldsn-it-fabric-querier-policy to bridge domain mldsn-bd3:

• Fast leave processing is enabled

• Querier processing is enabled

• Query Interval is set at 125

• Max query response time is set at 10

• Number of initial queries to send is set at 2

• Time for sending initial queries is set at 31

Cisco APIC REST API Configuration Guide, Release 4.1(x)
404

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring and Assigning an MLD Snooping Policy to a Bridge Domain using the REST API

C H A P T E R 16
Configuring QoS

• QoS for L3Outs, on page 405
• CoS Preservation, on page 407
• Multipod QoS, on page 408
• Translating QoS Ingress Markings to Egress Markings, on page 410

QoS for L3Outs

L3Outs QoS
L3Out QoS can be configured using Contracts applied at the external EPG level. Starting with Release 4.0(1),
L3Out QoS can also be configured directly on the L3Out interfaces.

If you are running Cisco APIC Release 4.0(1) or later, we recommend using the custom QoS policies applied
directly to the L3Out to configure QoS for L3Outs.

Note

Packets are classified using the ingress DSCP or CoS value so it is possible to use custom QoS policies to
classify the incoming traffic into Cisco ACI QoS queues. A custom QoS policy contains a table mapping the
DSCP/CoS values to the user queue and to the new DSCP/CoS value (in case of marking). If there is no
mapping for a specific DSCP/CoS value, the user queue is selected by the QoS priority setting of the ingress
L3Out interface if configured.

Configuring QoS Directly on L3Out Using REST API
This section describes how to configure QoS directly on an L3Out. This is the preferred way of configuring
L3Out QoS starting with Cisco APIC Release 4.0(1).

You can configure QoS for L3Out on one of the following objects:

• Switch Virtual Interface (SVI)

• Sub Interface

• Routed Outside

Cisco APIC REST API Configuration Guide, Release 4.1(x)
405

Step 1 Configure QoS priorities for a L3Out SVI.

Example:
<l3extLIfP descr="" dn="uni/tn-DT/out-L3_4_2_24_SVI17/lnodep-L3_4_E2_24/lifp-L3_4_E2_24_SVI_19"

name="L3_4_E2_24_SVI_19" prio="level6" tag="yellow-green">
<l3extRsPathL3OutAtt addr="0.0.0.0" autostate="disabled" descr="SVI19" encap="vlan-19"

encapScope="local" ifInstT="ext-svi" ipv6Dad="enabled" llAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/protpaths-103-104/pathep-[V_L3_l4_2-24]"
targetDscp="unspecified">

<l3extMember addr="107.2.1.253/24" ipv6Dad="enabled" llAddr="::" side="B"/>
<l3extMember addr="107.2.1.252/24" ipv6Dad="enabled" llAddr="::" side="A"/>

</l3extRsPathL3OutAtt>
<l3extRsLIfPCustQosPol tnQosCustomPolName="VrfQos006"/>

</l3extLIfP>

Step 2 Configure QoS priorities for a sub-interface.

Example:
<l3extLIfP dn="uni/tn-DT/out-L4E48_inter_tenant/lnodep-L4E48_inter_tenant/lifp-L4E48"

name="L4E48" prio="level4" tag="yellow-green">
<l3extRsPathL3OutAtt addr="210.1.0.254/16" autostate="disabled" encap="vlan-20"

encapScope="local" ifInstT="sub-interface" ipv6Dad="enabled" llAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-104/pathep-[eth1/48]" targetDscp="unspecified"/>

<l3extRsNdIfPol annotation="" tnNdIfPolName=""/>
<l3extRsLIfPCustQosPol annotation="" tnQosCustomPolName=" vrfQos002"/>

</l3extLIfP>

Step 3 Configure QoS priorities for a routed outside.

Example:
<l3extLIfP dn="uni/tn-DT/out-L2E37/lnodep-L2E37/lifp-L2E37OUT"

name="L2E37OUT" prio="level5" tag="yellow-green">
<l3extRsPathL3OutAtt addr="30.1.1.1/24" autostate="disabled" encap="unknown"

encapScope="local" ifInstT="l3-port" ipv6Dad="enabled"
llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular"
mtu="inherit" targetDscp="unspecified"
tDn="topology/pod-1/paths-102/pathep-[eth1/37]"/>

<l3extRsNdIfPol annotation="" tnNdIfPolName=""/>
<l3extRsLIfPCustQosPol tnQosCustomPolName="vrfQos002"/>

</l3extLIfP>

Configuring QoS Contract for L3Out Using REST API
This section describes how to configure QoS for L3Outs using Contracts.

Starting with Release 4.0(1), we recommend using custom QoS policies for L3Out QoS as described in
Configuring QoS Directly on L3Out Using REST API, on page 405 instead.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
406

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring QoS Contract for L3Out Using REST API

Step 1 When configuring the tenant, VRF, and bridge domain, configure the VRF for egress mode (pcEnfDir="egress") with
policy enforcement enabled (pcEnfPref="enforced"). Send a post with XML similar to the following example:

Example:
<fvTenant name="t1">

<fvCtx name="v1" pcEnfPref="enforced" pcEnfDir="egress"/>
<fvBD name="bd1">

<fvRsCtx tnFvCtxName="v1"/>
<fvSubnet ip="44.44.44.1/24" scope="public"/>
<fvRsBDToOut tnL3extOutName="l3out1"/>

</fvBD>"/>
</fvTenant>

Step 2 When creating the filters and contracts to enable the EPGs participating in the L3Out to communicate, configure the QoS
priority.

The contract in this example includes the QoS priority, level1, for traffic ingressing on the L3Out. Alternatively, it could
define a target DSCP value. QoS policies are supported on either the contract or the subject.

The filter also has the matchDscp="EF" criteria, so that traffic with this specific TAG received by the L3out processes
through the queue specified in the contract subject.

VRF enforcement should be ingress, for QOS or custom QOS on L3out interface, VRF enforcement need be
egress, only when the QOS classification is going to be done in the contract for traffic between EPG and L3out
or L3out to L3out.

Note

If QOS classification is set in the contract and VRF enforcement is egress, then contract QOS classification would
override the L3out interface QOS or Custom QOS classification, So either we need to configure this one or the
new one.

Note

Example:
<vzFilter name="http-filter">

<vzEntry name="http-e" etherT="ip" prot="tcp" matchDscp="EF"/>
</vzFilter>
<vzBrCP name="httpCtrct" prio="level1" scope="context">

<vzSubj name="subj1">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>

</vzSubj>
</vzBrCP>

CoS Preservation

Class of Service (CoS) Preservation for Ingress and Egress Traffic
When traffic enters the Cisco ACI fabric, each packet's priority is mapped to a Cisco ACI QoS level. These
QoS levels are then stored in the CoS field and DE bit of the packet's outer header while the original headers
are discarded.

If you want to preserve the original CoS values of the ingressing packets and restore it when the packet leaves
the fabric, you can enable the 802.1p Class of Service (CoS) preservation using a global fabric QoS policy
as described in this section.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
407

Part 3: Setting Up APIC and the Fabric Using the REST API
CoS Preservation

The CoS preservation is supported in single pod and multipod topologies, however in multipod topologies,
CoS preservation can be used only when you are not concerned with preserving the settings in the IPN between
pods. To preserve the CoS values of the packets as they are transiting the IPN, use the DSCP translation policy
as described in Multipod QoS and DSCP Translation Policy, on page 408.

Enable Class Of Service (CoS) Preservation Using REST API
This section describes how to enable CoS preservation to ensure that QoS priority settings are handled the
same for traffic entering and transiting a single-pod fabric as for traffic entering one pod and egressing another
in a multipod fabric.

Enabling CoS preservation applies a default CoS-to-DSCP mapping to the various traffic types.Note

Enable CoS preservation.
POST https://<apic-ip>/api/node/mo/uni/infra/qosinst-default.xml

Example:
<qosInstPol name="default" dn="uni/infra/qosinst-default" ctrl="dot1p-preserve"/>

Disable CoS preservation.

Example:
<qosInstPol name="default" dn="uni/infra/qosinst-default" ctrl=""/>

Multipod QoS

Multipod QoS and DSCP Translation Policy
When traffic is sent and received within the Cisco ACI fabric, the QoS Level is determined based on the CoS
value of the VXLAN packet's outer header. In multipod topologies, where devices that are not under Cisco
APIC's management may modify the CoS values in the transiting packets, you can preserve the QoS Level
setting by creating a mapping between the Cisco ACI and the DSCP value within the packet.

If you are not concerned with preserving the QoS settings in the IPN traffic between pods, but would like to
preserve the original CoS values of the packets ingressing and egressing the fabric, see Class of Service (CoS)
Preservation for Ingress and Egress Traffic, on page 407 instead.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
408

Part 3: Setting Up APIC and the Fabric Using the REST API
Enable Class Of Service (CoS) Preservation Using REST API

Figure 50: Multipod Topology

As illustrated in this figure, traffic between pods in a multipod topology passes through an IPN, which may
contain devices that are not under Cisco APIC's management. When a network packet is sent from a spine or
a leaf switch in POD1, the devices in the IPN may modify the 802.1p value in the packet. In this case, when
the frame reaches a spine or a leaf switch in POD2, it would have an 802.1p value that was assigned by the
IPN device, instead of the Cisco ACI QoS Level value assigned at the source in POD1.

In order to preserve the proper QoS Level of the packet and avoid high priority packets from being delayed
or dropped, you can use a DSCP translation policy for traffic that goes between multiple PODs connected by
an IPN. When a DSCP translation policy is enabled, Cisco APIC converts the QoS Level value (represented
by the CoS value of the VXLAN packet) to a DSCP value according to the mapping rules you specify. When
a packet sent from POD1 reaches POD2, the mapped DSCP value is translated back into the original CoS
value for the appropriate QoS Level.

Creating DSCP Translation Policy Using REST API
This section describes how to create a DSCP translation policy to guarantee QoS Level settings across multiple
PODs connected by an IPN.

Step 1 Enable and configure a DSCP translation policy.

POST https://<apic-ip>/api/node/mo/uni/tn-infra/dscptranspol-default.xml

Example:
<qosDscpTransPol dn="uni/tn-infra/dscptranspol-default" adminSt="enabled"

traceroute="AF43" span="AF42" policy="AF22" level3="AF13"
level2="AF12" level1="AF11" control="AF21" />

Step 2 Disable the DSCP translation policy.

POST https://<apic-ip>/api/node/mo/uni/tn-infra/dscptranspol-default.xml

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
409

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating DSCP Translation Policy Using REST API

<qosDscpTransPol dn="uni/tn-infra/dscptranspol-default" adminSt="disabled"
traceroute="AF43" span="AF42" policy="AF22" level3="AF13"
level2="AF12" level1="AF11" control="AF21"/>

Translating QoS Ingress Markings to Egress Markings

Translating Ingress to Egress QoS Markings
Cisco APIC enables translating the DSCP and CoS values of the ingressing traffic to a QoS Level to be used
inside the Cisco ACI fabric. Translation is supported only if the DSCP values are present in the IP packet and
CoS values are present in the Ethernet frames.

For example, this functionality allows the Cisco ACI fabric to classify the traffic for devices that classify the
traffic based only on the CoS value, such as Layer-2 packets, which do not have an IP header.

CoS Translation Guidelines and Limitations

Youmust enable the global fabric CoS preservation policy, as described in Class of Service (CoS) Preservation
for Ingress and Egress Traffic, on page 407.

CoS translation is not supported on external L3 interfaces.

CoS translation is supported only if the egress frame is 802.1Q encapsulated.

CoS translation is not supported when the following configuration options are enabled:

• Contracts are configured that include QoS.

• The outgoing interface is on a FEX.

• Multipod QoS using a DSCP policy is enabled.

• Dynamic packet prioritization is enabled.

• If an EPG is configured with intra-EPG endpoint isolation enforced.

• If an EPG is configured with allow-microsegmentation enabled.

Creating Custom QoS Policy Using REST API
This section describes how to create a custom QoS policy and associate it with an EPG using the REST API.

Before you begin

You must have created the tenant, application, and EPGs that will consume the custom QoS policy.

Step 1 Create a custom QoS policy.

Example:
<qosCustomPol name="vrfQos001" dn="uni/tn-t001/qoscustom-vrfQos001">

<qosDscpClass to="AF31" targetCos="6" target="unspecified"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
410

Part 3: Setting Up APIC and the Fabric Using the REST API
Translating QoS Ingress Markings to Egress Markings

prio="unspecified" from="AF23"/>
<qosDot1PClass to="1" targetCos="6" target="unspecified"

prio="unspecified" from="0"/>
</qosCustomPol>

Step 2 Associate the policy with an EPG that will consume it.

Example:
<fvAEPg prio="unspecified" prefGrMemb="exclude" pcEnfPref="unenforced"

name="ep2" matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl=""
dn="uni/tn-t001/ap-ap2/epg-ep2">

<fvRsDomAtt tDn="uni/vmmp-VMware/dom-vs1" resImedcy="lazy"
primaryEncap="unknown" netflowPref="disabled"
instrImedcy="lazy" encapMode="auto" encap="unknown"
delimiter="" classPref="encap"/>

<fvRsCustQosPol tnQosCustomPolName="vrfQos001"/>
<fvRsBd tnFvBDName="default"/>

</fvAEPg>

Troubleshooting Cisco APIC QoS Policies
The following table summarizes common troubleshooting scenarios for Cisco APIC QoS.

SolutionProblem

1. Invoke the following API to ensure that qospDscpRule is present on the leaf.
GET https://192.0.20.123/api/node/class/qospDscpRule.xml

2. Ensure that the QoS rules are accurately configured and associated to the EPG
ID to which the policy is attached.

Use the following NX-OS style CLI commands to verify the configuration.
leaf1#
show vlan

leaf1#
show system internal aclqos qos policy detail

apic1#
show running-config tenant tenant-name policy-map type
qos custom-qos-policy-name

apic1#
show running-config tenant tenant-name application
application-name epg epg-name

Unable to update a
configured QoS
policy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
411

Part 3: Setting Up APIC and the Fabric Using the REST API
Troubleshooting Cisco APIC QoS Policies

SolutionProblem

CLI displays statistics for eth1/1 for only QoS classes – level1, leve2, level3, level4,
level5, level6, and policy-plane – if you don’t use “detail” option.
NXOS ibash cli:
tor-leaf1# show queuing interface ethernet 1/1 [detail]

If you want to display statistics for control-plane and span classes for an interface,
you need to use CLI with the “detail” option.

Example: fabric 107 show queuing interface ethernet 1/1 detail
APIC CLI:
swtb123-ifc1# fabric node_id show queuing interface ethernet 1/1

Show QoS interface
statistics.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
412

Part 3: Setting Up APIC and the Fabric Using the REST API
Troubleshooting Cisco APIC QoS Policies

C H A P T E R 17
Managing Layer 4 to Layer 7 Services

• About Layer 4 to Layer 7 Services, on page 413
• Access for Managing Layer 4 to Layer 7 Services, on page 414
• Device Packages, on page 417
• Trunking, on page 419
• Device Selection Policies, on page 420
• Policy Based Redirect and Service Nodes Tracking, on page 421
• Service Graph Templates, on page 427
• Layer 4 to Layer 7 Parameters, on page 429
• Copy Services, on page 433
• Developing Automation, on page 435
• Example: Configuring Layer 4 to Layer 7 Services (Firewall), on page 443
• Example: Configuring Layer 4 to Layer 7 Route Peering, on page 452

About Layer 4 to Layer 7 Services

About Application-Centric Infrastructure Layer 4 to Layer 7 Services
Although VLAN and virtual routing and forwarding (VRF) stitching is supported by traditional service
insertion models, the Application Policy Infrastructure Controller (APIC) can automate service insertion while
acting as a central point of policy control. The APIC policies manage both the network fabric and services
appliances. The APIC can configure the network automatically so that traffic flows through the services. The
APIC can also automatically configure the service according to the application's requirements, which allows
organizations to automate service insertion and eliminate the challenge of managing the complex techniques
of traditional service insertion.

Before you begin, the following APIC objects must be configured:

• The tenant that will provide/consume the Layer 4 to Layer 7 services

• A Layer 3 outside network for the tenant

• At least one bridge domain

• An application profile

• A physical domain or a VMM domain

Cisco APIC REST API Configuration Guide, Release 4.1(x)
413

For a VMM domain, configure VMM domain credentials and configure a vCenter/vShield controller
profile.

• A VLAN pool with an encapsulation block range

• At least one contract

• At least one EPG

You must perform the following tasks to deploy Layer 4 to Layer 7 services:

1. Import a Device Package .

Only the provider administrator can import the device package.

2. Register the device and the logical interfaces.

This task also registers concrete devices and concrete interfaces, and configures concrete device parameters.

3. Create a Logical Device.

4. Configure device parameters.

5. Optional. If you are configuring an ASA Firewall service, enable trunking on the device.

6. Configure a Device Selection Policy.

7. Configure a Service Graph Template.

a. Select the default service graph template parameters from an application profile.

b. Configure additional service graph template parameters, if needed.

8. Attach the service graph template to a contract.

9. Configure additional configuration parameters, if needed.

For more information about deploying Layer 4 to Layer 7 services, see the Cisco APIC Layer 4 to Layer 7
Services Deployment Guide.

Access for Managing Layer 4 to Layer 7 Services

Configure In-Band Connectivity to Devices Using Tenant's VRF Using the REST
API

The following is an example of using REST APIs to configure in-band connectivity to devices using tenant's
VRF:

1. Define the EPG that is to be used for management.

Ensure to open up the ports to the domain mappings using the appropriate selectors configuration.Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
414

Part 3: Setting Up APIC and the Fabric Using the REST API
Access for Managing Layer 4 to Layer 7 Services

In the following, the EPG "services" is used for the management of the Services Devices/VMs subnet
that is used for Tenant vrf devicemanagement (3.3.3.0/24).

<polUni>
<fvTenant name="tenant1">
<fvCtx name="mgmt_ctx1"/>
<vnsCtrlrMgmtPol ctxDn="uni/tn-tenant1/ctx-mgmt_ctx1">
<vnsRsMgmtAddr tDn="uni/tn-tenant1/ap-services/epg-ifc/CtrlrAddrInst-ifc"/>

</vnsCtrlrMgmtPol>
<fvBD name="mgmt_ServicesMgmtBD">
<fvRsCtx tnFvCtxName="mgmt_ctx1"/>
<fvSubnet ip="3.3.3.3/24"/>

</fvBD>
<fvAp name="services">
<fvAEPg name="ifc">
<fvRsBd tnFvBDName="mgmt_ServicesMgmtBD"/>
<vnsAddrInst name="ifc">
<fvnsUcastAddrBlk from="3.3.3.100/24" to="3.3.3.200/24"/>

</vnsAddrInst>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet"/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

2. Associate the EPG to the LDevVip.

<polUni>
<fvTenant name="tenant1">

<vnsLDevVip name="ADCCluster1"
funcType="GoTo" devtype="VIRTUAL">

<vnsRsMDevAtt tDn="uni/infra/mDev-Citrix-NetScaler-10.5"/>
<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-mininet"/>
<vnsRsDevEpg tDn="uni/tn-tenant1/ap-services/epg-ifc"/>

<vnsCMgmt name="devMgmt"
host="3.3.3.180"
port="80"/>

<vnsCCred name="username"
value="nsroot"/>

<vnsCCredSecret name="password"
value="nsroot"/>

</vnsLDevVip>
</fvTenant>

</polUni>

Configuring In-Band Connectivity to Devices Using Management Tenant VRF
Using the REST API

The following is an example of using REST APIs to configure in-band connectivity to devices using
management tenant VRF:

1. Create an EPG l4l7MgmtEpg in tenant management.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
415

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring In-Band Connectivity to Devices Using Management Tenant VRF Using the REST API

l4l7MgmtEpg is a part of bd access which is under inb context in tn-mgmt.

contract1 is the contract between the tn-mgmt l4l7MgmtEpg and tn-mgmt inb default EPG.

Note

<polUni>
<fvTenant dn="uni/tn-mgmt">

<fvAp name="services">
<fvAEPg name="l4l7MgmtEpg">
<fvRsBd tnFvBDName="access" />
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />

<fvRsCons tnVzBrCPName='contract1'>
</fvRsCons>

</fvAEPg>
</fvAp>
<fvBD name="access">

<fvSubnet ip="3.3.3.3/24" />
<fvRsCtx tnFvCtxName="inb"/>

</fvBD>
<vzFilter name='all'>

<vzEntry name='all' ></vzEntry>
</vzFilter>
<vzBrCP name="contract1" scope="tenant">

<vzSubj name='subj1'>
<vzInTerm>

<vzRsFiltAtt tnVzFilterName="all" />
</vzInTerm>
<vzOutTerm>

<vzRsFiltAtt tnVzFilterName="all" />
</vzOutTerm>

</vzSubj>
</vzBrCP>

</fvTenant>
</polUni>

2. Ensure that the Service Device/VM has the mgmt IP address in the subnet 3.3.3.0/24.

This is the same subnet that tn-mgmt access BD has been configured with. (See configuration in earlier
step.)

3. Add the following to the LDevVip:

This points to the EPG that was created in the earlier step

<vnsRsDevEpg tDn="uni/tn-mgmt/ap-services/epg-l4l7MgmtEpg"/>.

Note

<polUni>
<fvTenant name="mgmt">

<vnsLDevVip name="ADCCluster1"
funcType="GoTo" devtype="VIRTUAL">

<vnsRsMDevAtt tDn="uni/infra/mDev-Citrix-NetScaler-10.5"/>
<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-mininet"/>
<vnsRsDevEpg tDn="uni/tn-mgmt/ap-services/epg-l4l7MgmtEpg"/>

<vnsCMgmt name="devMgmt"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
416

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring In-Band Connectivity to Devices Using Management Tenant VRF Using the REST API

host="3.3.3.180"
port="80"/>

<vnsCCred name="username"
value="nsroot"/>

<vnsCCredSecret name="password"
value="nsroot"/>

</vnsLDevVip>

</fvTenant>
</polUni>

4. Add the route in service Device/VM to point to the IFC inband gateway.

For example, on the route on netScaler, add route 3.0.0.0 255.255.255.0 3.3.3.3, where 3.0.0.0/24 is the
IFC inband subnet and 3.3.3.3 is the SVI IP for l4l7MgmtEpg.

5. Verify the following:

• The route table on IFC has an entry for ifc inband IP.

• The IFC can ping the l4l7MgmtEpg gateway on the leaf.

• The service node can ping the l4l7MgmtEpg SVI gateway and IFC inb SVI Ip.

Device Packages

About the Device Package
The Application Policy Infrastructure Controller (APIC) requires a device package to configure and monitor
service devices. A device package manages a single class of service devices and provides the APIC with
information about the device and its capabilities.

For more information about device packages, see the Cisco APIC Layer 4 to Layer 7 Device Package
Development Guide.

Notes for Installing a Device Package with the REST APIs
• A device package can be installed using an HTTP or HTTPS POST.

• If HTTP is enabled on APIC, the URL for the POST is "http://10.10.10.10/ppi/node/mo/.xml".

• If HTTPS is enabled on APIC, the URL for the POST is "https://10.10.10.10/ppi/node/mo/.xml".

• The message must have a valid session cookie.

• The body of the POST should contain the device package being uploaded. Only one package is allowed
in a POST.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
417

Part 3: Setting Up APIC and the Fabric Using the REST API
Device Packages

Uploading a Device Package File Using the API
To install a service device, youmust upload a device package file to APIC. The API command for this operation
uses a special form of URI:

{ http | https } :// host [:port] /ppi /node /mo / . { json | xml }

The URI path contains 'ppi' (package programming interface) instead of 'api', and the command is sent as a
POST operation with the device package file as the body of the message. The device package file is a zip file.

This example shows an API operation that uploads a device package file:

POST https://192.0.20.123/ppi/node/mo/.json

For more information about installing L4-L7 service device packages, see Cisco APIC Layer 4 to Layer 7
Services Deployment Guide.

Installing a Device Package Using the REST API
You can install a device package using an HTTP or HTTPS POST.

Install the device package.

• If HTTP is enabled on the Application Policy Infrastructure Controller (APIC) , the URL for the POST is as follows:
http://10.10.10.10/ppi/node/mo/.xml

• If HTTPS is enabled on the APIC, the URL for the POST is as follows:
https://10.10.10.10/ppi/node/mo/.xml

The message must have a valid session cookie.

The body of the POST should contain the device package being uploaded. Only one package is allowed in a POST.

Using an Imported Device with the REST APIs
The following REST API uses an imported device:
<polUni>
<fvTenant dn="uni/tn-tenant1" name="tenant1">
<vnsLDevIf ldev="uni/tn-mgmt/lDevVip-ADCCluster1"/>
<vnsLDevCtx ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any">
<vnsRsLDevCtxToLDev tDn="uni/tn-tenant1/lDevIf-[uni/tn-mgmt/lDevVip-ADCCluster1]"/>
<vnsLIfCtx connNameOrLbl="inside">
<vnsRsLIfCtxToLIf

tDn="uni/tn-tenant1/lDevIf-[uni/tn-mgmt/lDevVip-ADCCluster1]/lDevIfLIf-inside"/>
<fvSubnet ip="10.10.10.10/24"/>
<vnsRsLIfCtxToBD tDn="uni/tn-tenant1/BD-tenant1BD1"/>

</vnsLIfCtx>
<vnsLIfCtx connNameOrLbl="outside">
<vnsRsLIfCtxToLIf

tDn="uni/tn-tenant1/lDevIf-[uni/tn-mgmt/lDevVip-ADCCluster1]/lDevIfLIf-outside"/>
<fvSubnet ip="70.70.70.70/24"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
418

Part 3: Setting Up APIC and the Fabric Using the REST API
Uploading a Device Package File Using the API

<vnsRsLIfCtxToBD tDn="uni/tn-tenant1/BD-tenant1BD4"/>
</vnsLIfCtx>

</vnsLDevCtx>
</fvTenant>

</polUni>

Trunking

About Trunking
You can enable trunking for a Layer 4 to Layer 7 virtual ASA device, which uses trunk port groups to aggregate
the traffic of endpoint groups. Without trunking, a virtual service device can have only 1 VLAN per interface
and up to 10 service graphs. With trunking enabled, the virtual service device can have an unlimited number
of service graphs.

For more information about trunk port groups, see the Cisco ACI Virtualization Guide.

Trunking is supported only on a virtual ASA device. The ASA device package must be version 1.2.7.8 or
later.

Enabling Trunking on a Layer 4 to Layer 7 Virtual ASA device Using the REST
APIs

The following procedure provides an example of enabling trunking on a Layer 4 to Layer 7 virtual ASA device
using the REST APIs.

Before you begin

• You must have configured a Layer 4 to Layer 7 virtual ASA device.

Enable trunking on the Layer 4 to Layer 7 device named InsiemeCluster:
<polUni>

<fvTenant name="tenant1">
<vnsLDevVip name="InsiemeCluster" devtype=“VIRTUAL” trunking=“yes">

...

...
</vnsLDevVip>

</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
419

Part 3: Setting Up APIC and the Fabric Using the REST API
Trunking

Device Selection Policies

About Device Selection Policies
A device can be selected based on a contract name, a graph name, or the function node name inside the graph.
After you create a device, you can create a device context, which provides a selection criteria policy for a
device.

A device selection policy (also known as a device context) specifies the policy for selecting a device for a
service graph template. This allows an administrator to have multiple device and then be able to use them for
different service graph templates. For example, an administrator can have a device that has high-performance
ADC appliances and another device that has lower-performance ADC appliances. Using two different device
selection policies, one for the high-performance ADC device and the other for the low-performance ADC
device, the administrator can select the high-performance ADC device for the applications that require higher
performance and select the low-performance ADC devices for the applications that require lower performance.

Creating a Device Selection Policy Using the REST API
The following REST API creates a device selection policy:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vnsLDevCtx ctrctNameOrLbl="webCtrct" graphNameOrLbl="G1" nodeNameOrLbl="Node1">

<vnsRsLDevCtxToLDev tDn="uni/tn-acme/lDevVip-ADCCluster1"/>

<!-- The connector name C4, C5, etc.. should match the
Function connector name used in the service graph template -->

<vnsLIfCtx connNameOrLbl=“C4">
<vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/LIf-ext"/>

</vnsLIfCtx>
<vnsLIfCtx connNameOrLbl=“C5">

<vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/LIf-int"/>
</vnsLIfCtx>

</vnsLDevCtx>
</fvTenant>

</polUni>

Adding a Logical Interface in a Device Using the REST APIs
The following REST API adds a logical interface in a device:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vnsLDevVip name="ADCCluster1">

<!-- The LIF name defined here (such as e.g., ext, or int) should match the
vnsRsLIfCtxToLIf ‘tDn' defined in LifCtx -->

<vnsLIf name=“ext">

<vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-outside"/>
<vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-ext"/>

</vnsLIf>
<vnsLIf name=“int">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
420

Part 3: Setting Up APIC and the Fabric Using the REST API
Device Selection Policies

<vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-inside"/>
<vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-int"/>

</vnsLIf>
</vnsLDevVip>

</fvTenant>
</polUni>

Policy Based Redirect and Service Nodes Tracking

Policy-Based Redirect and Tracking Service Nodes
Beginning with the Cisco Application Policy Infrastructure Controller (APIC) 2.2(3) and 3.1(1) releases (but,
excluding the 3.0 releases), the policy-based redirect feature (PBR) supports the ability to track service nodes.
Tracking enables you to prevent redirection of traffic to a service node that is down. If a service node (PBR
destination) is down, the PBR hashing can begin selecting an available PBR destination in a policy. This
feature requires Cisco Nexus 9300-EX, -FX, or later platform leaf switches.

Service nodes can support dual IP address stacking. Therefore, this feature has the capability to track both
IPv4 and IPv6 addresses at the same time. When both IPv4 and IPv6 addresses are "up," the PBR destination
is marked as "up."

Switches internally use the Cisco IP SLA monitoring feature to support PBR tracking. The tracking feature
marks a redirect destination node as "down" if the service node is not reachable. The tracking feature marks
a redirect destination as node "up" if the service node resumes connectivity. When a service node is marked
as "down," it will not be used to send or hash the traffic. Instead, the traffic will be sent or hashed to a different
service node in the cluster of redirection destination nodes.

To avoid black holing of the traffic in one direction, you can associate a service node's ingress and egress
redirect destination nodes with a redirection health policy. Doing so ensures that if either an ingress or egress
redirection destination node is down, the other redirection destination node will also be marked as "down."
Hence, both ingress and egress traffic gets hashed to a different service node in the cluster of the redirect
destination nodes.

You can use the following protocols for tracking:

• ICMP (for Layer 3 PBR)

• TCP (for Layer 3 PBR)

• L2ping (for Layer 1/2 PBR)

Policy-Based Redirect and Threshold Settings for Tracking Service Nodes
The following threshold settings are available when configuring a policy-based redirect (PBR) policy for
tracking service nodes:

• Threshold enabled or disabled:When the threshold is enabled, you an specify the minimum andmaximum
threshold percentages. Threshold enabled is required when you want to disable the redirect destination
group completely and prevent any redirection. When there is no redirection, the traffic is directly sent
between the consumer and the provider.

• Minimum threshold: The minimum threshold percentage specified. If the traffic goes below the minimum
percentage, the packet is permitted instead of being redirected. The default value is 0.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
421

Part 3: Setting Up APIC and the Fabric Using the REST API
Policy Based Redirect and Service Nodes Tracking

• Maximum threshold: The maximum threshold percentage specified. Once the minimum threshold is
reached, to get back to operational state, the maximum percentage must first be reached. The default
value is 0.

Let us assume as an example that there are three redirect destinations in a policy. The minimum threshold is
specified at 70% and the maximum threshold is specified at 80%. If one of the three redirect destination
policies goes down, the percentage of availability goes down by one of three (or 33%), which is less than the
minimum threshold. As a result, the minimum threshold percentage of the redirect destination group is brought
down and traffic begins to get permitted instead of being redirected. Continuing with the same example, if
the maximum threshold is 80%, to bring the redirect policy destination group back to the operational state, a
percentage greater than the maximum threshold percentage must be reached.

Guidelines and Limitations for Policy-Based Redirect With Tracking Service
Nodes

Follow these guidelines and limitations when using policy-based redirect (PBR) tracking with service nodes:

• Beginning in release 4.0(1), remote leaf switch configurations support PBR tracking, but only if
system-level global GIPo is enabled. See Configuring Global GIPo for Remote Leaf Using the GUI.

• Beginning in release 4.0(1), remote leaf switch configurations support PBR resilient hashing.

• A Cisco ACI Multi-Pod fabric setup is supported.

• A Cisco ACI Multi-Site setup is not supported.

• An L3Out is supported for the consumer and provider EPGs.

• TCP or ICMP protocol types are used to track the redirect destination nodes.

• PBR supports up to 100 trackable IP addresses in leaf switches and 200 trackable IP addresses in the
Cisco Application Centric Infrastructure (ACI) fabric.

• PBR supports up to 1,000 service graph instances per Cisco ACI fabric.

• PBR supports up to 100 service graph instances per device.

• You can configure up to 40 service nodes per PBR policy.

• You can configure up to 3 service nodes per service chain.

• Shared services are supported with PBR tracking.

• The following threshold down actions are supported:

• deny action

• permit action

• If multiple PBR policies have the same PBR destination IP address in the same VRF instance, the policies
must use the same IP SLA policy and health group for the PBR destination.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
422

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for Policy-Based Redirect With Tracking Service Nodes

Configuring PBR to Support Tracking Service Nodes Using the REST API

Configure PBR to support tracking service nodes.

Example:
<polUni>

<fvTenant name="t1" >
<fvIPSLAMonitoringPol name="tcp_Freq60_Pol1" slaType="tcp" slaFrequency="60" slaPort="2222" />
<vnsSvcCont>

<vnsRedirectHealthGroup name="fwService1"/>
<vnsSvcRedirectPol name="fwExt" hashingAlgorithm="sip" thresholdEnable="yes"
minThresholdPercent="20" maxThresholdPercent="80">
<vnsRedirectDest ip="40.40.40.100" mac="00:00:00:00:00:01">

<vnsRsRedirectHealthGroup tDn="uni/tn-t1/svcCont/redirectHealthGroup-fwService1"/>
</vnsRedirectDest>
<vnsRsIPSLAMonitoringPol tDn="uni/tn-t1/ipslaMonitoringPol-tcp_Freq60_Pol1"/>

</vnsSvcRedirectPol>
<vnsSvcRedirectPol name="fwInt" hashingAlgorithm="sip" thresholdEnable="yes"
minThresholdPercent="20" maxThresholdPercent="80">
<vnsRedirectDest ip="30.30.30.100" mac="00:00:00:00:00:02">

<vnsRsRedirectHealthGroup tDn="uni/tn-t1/svcCont/redirectHealthGroup-fwService1"/>
</vnsRedirectDest>
<vnsRsIPSLAMonitoringPol tDn="uni/tn-t1/ipslaMonitoringPol-tcp_Freq60_Pol1"/>

</vnsSvcRedirectPol>
</vnsSvcCont>

</fvTenant>
</polUni>

About Location-Aware Policy Based Redirect
Location-Aware Policy Based Redirect (PBR) is now supported. This feature is useful in a multipod
configuration scenario. Now there is pod-awareness support, and you can specify the preferred local PBR
node. When you enable location-aware redirection, and Pod IDs are specified, all the redirect destinations in
the Layer 4-Layer 7 PBR policy will have pod awareness. The redirect destination is programmed only in the
leaf switches located in a specific pod.

The following image displays an example with two pods. PBR nodes A and B are in Pod 1 and PBR nodes
C and D are in Pod 2. When you enable the location-aware PBR configuration, the leaf switches in Pod 1
prefer to use PBR nodes A and B, and the leaf switches in Pod 2 use PBR nodes in C and D. If PBR nodes A
and B in Pod 1 are down, then the leaf switches in Pod 1 will start to use PBR nodes C and D. Similarly, if
PBR nodes C and D in Pod 2 are down, the leaf switches in Pod 2 will start to use PBR nodes A and B.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
423

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring PBR to Support Tracking Service Nodes Using the REST API

Figure 51: An Example of Location Aware PBR Configuration with Two Pods

Guidelines for Location-Aware PBR
Follow these guidelines when using location-aware PBR:

• The Cisco Nexus 9300 (except Cisco Nexus 9300–EX and 9300–FX) platform switches do not support
the location-aware PBR feature.

• Use location-aware PBR for north-south firewall integration with GOLF host advertisement.

Use location-aware PBR for a contract that is enforced on the same leaf nodes for incoming and returning
traffic, such as an intra-VRF contract for external-EPG-to-EPG and an inter-VRF contract for EPG-to-EPG
traffic. Otherwise, there can be a loss of traffic symmetry.

• If multiple PBR policies have the same PBR destination IP address in the same VRF, then all of the
policies must either have Pod ID aware redirection enabled or Pod ID aware redirection disabled. The
same (VRF, IP address) pair cannot be used in Pod ID aware redirection enabled and Pod ID aware
redirection disabled policies at the same time. For example, the following configuration is not supported:

• PBR-policy1 has PBR destination 192.168.1.1 in VRF A, Pod ID aware redirection enabled, and
192.168.1.1 is set to POD 1.

• PBR-policy2 has PBR destination 192.168.1.1 in VRF A and Pod ID aware redirection disabled.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
424

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines for Location-Aware PBR

Configuring Location-Aware PBR Using the REST API
You must configure two items to enable location-aware PBR and to program redirect destinations in the leaf
switches located in the specific pods. The attributes that are configured to enable location-aware PBR in the
following example are: programLocalPodOnly and podId.

Configure location-aware PBR.

Example:

<polUni>
<fvTenant name="coke" >
<fvIPSLAMonitoringPol name="icmp_Freq60_Pol1" slaType="icmp" slaFrequency="60"/>
<vnsSvcCont>

<vnsRedirectHealthGroup name="fwService1"/>
<vnsSvcRedirectPol name="fwExt" hashingAlgorithm="sip" thresholdEnable="yes"

minThresholdPercent="20" maxThresholdPercent="80" programLocalPodOnly="yes">
<vnsRedirectDest ip="40.40.40.100" mac="00:00:00:00:00:01" podId="2">

<vnsRsRedirectHealthGroup tDn="uni/tn-coke/svcCont/redirectHealthGroup-fwService1"/>
</vnsRedirectDest>
<vnsRsIPSLAMonitoringPol tDn="uni/tn-coke/ipslaMonitoringPol-icmp_Freq60_Pol1"/>

</vnsSvcRedirectPol>
<vnsSvcRedirectPol name="fwInt" hashingAlgorithm="dip" thresholdEnable="yes"

minThresholdPercent="20" maxThresholdPercent="80">
<vnsRedirectDest ip="30.30.30.100" mac="00:00:00:00:00:02">

<vnsRsRedirectHealthGroup tDn="uni/tn-coke/svcCont/redirectHealthGroup-fwService1"/>

</vnsRedirectDest>
<vnsRsIPSLAMonitoringPol tDn="uni/tn-coke/ipslaMonitoringPol-icmp_Freq60_Pol1"/>

</vnsSvcRedirectPol>
</vnsSvcCont>

</fvTenant>
</polUni>

About Layer 1/Layer 2 Policy-Based Redirect
Using a Layer 1 device is typically referred to as inline mode or wire mode and is used for firewalls and
intrusion prevention systems (IPS) if the service device is expected to perform security functions that are not
participating in Layer 2 or Layer 3 forwarding.

Using a Layer 2 device is typically referred to as transparent mode or bridged mode and is used for firewalls
and IPS.

Using a Layer 3 device is typically referred to as routed mode and is used for router firewalls and load balancers.

Prior to Cisco Application Policy Infrastructure Controller(APIC) release 4.1, PBR could be configured to
redirect traffic to a Layer 4 to Layer 7 services device configured only in Layer 3 device (Go-To) mode. If
the Layer 4 to Layer 7 services device is a Layer 1 or Layer 2 device, such as a transparent firewall, PBR
could not be used. You could only deploy a Layer 4 to Layer 7 services device operating in Layer 1 or Layer
2 mode by using a service graph and defining the Layer 4 to Layer 7 services device in Go-Through mode.

Beginning with Cisco APIC release 4.1, PBR can be configured to redirect traffic to a Layer 4 to Layer 7
services device configured in the Layer 1/Layer 2 device mode as well. PBR can be used with inline IPS or
a transparent firewall, in addition to a routed mode firewall.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
425

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Location-Aware PBR Using the REST API

As part of the Layer 1/Layer 2 PBR feature, the Cisco APIC can verify whether the Layer 4 to Layer 7 services
device is forwarding traffic by using Layer 2 ping packets for link layer tracking.

Unlike the Go-Through mode, which can also forward non-IP address traffic, Layer 1/Layer 2 PBR is
applicable only to IP address traffic.

Guidelines and Limitations for Layer 1/Layer 2 Policy-Based Redirect
Observe the following guidelines and limitations when planning Layer 1/Layer 2 Policy-Based Redirect (PBR)
service nodes:

• Layer 1/Layer 2 PBR is not supported from the CLI.

• Active-active deployment/ECMP paths are not supported for Layer 1/Layer 2 PBR devices.

• The two legs of the Layer 1 service device need to be configured on a different leaf switch to avoid packet
loops. Per port VLAN is not supported.

• A shared bridge domain is not supported. A Layer 1/Layer 2 device bridge domain cannot be shared with
Layer 3 device or regular EPGs.

• A service node in managed mode is not supported.

• Layer 1/Layer 2 devices support physical domains only. VMM domains are not supported.

• As active-active is not supported, the threshold is not applicable. The down action is denywhen tracking
is enabled. The down action permit can not be set.

• Tracking is mandatory when service devices are in active/standby HA mode.

• For both Layer 1 and Layer 2 PBR, the MAC address is an optional parameter. Cisco APIC assigns the
MAC address if it is not configured. In both cases, traffic is routed to the device using the MAC address,
which can be user configured or implicitly assigned by Cisco APIC.

• Beginning with the Cisco APIC release 4.1, Layer 1/Layer 2 PBR supports redirection to transparent
services.

Configuring Layer 1/ Layer 2 PBR Using the REST API

Layer 1/ Layer 2 Policy-Based Redirect configuration:

Example:
<polUni>

<fvTenant name="coke" >

<!—If L1/L2 device in active-active mode -- >
<vnsLDevVip name="N1" activeActive="yes" funcType="L1" managed="no">
</vnsLDevVip>
<!—If L1/L2 device in active-standby mode -- >
<vnsLDevVip name="N1" activeActive="no" funcType="L1" managed="no">
</vnsLDevVip>

<vnsAbsGraph descr="" dn="uni/tn-coke/AbsGraph-WebGraph" name="WebGraph" ownerKey="" ownerTag=""
uiTemplateType="UNSPECIFIED">

<!—For L2 device -- >

Cisco APIC REST API Configuration Guide, Release 4.1(x)
426

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for Layer 1/Layer 2 Policy-Based Redirect

<vnsAbsNode descr="" funcTemplateType="OTHER" funcType="L2" isCopy="no" managed="no" name="N1"
ownerKey="" ownerTag="" routingMode="Redirect" sequenceNumber="0" shareEncap="no">

</vnsAbsNode>

<!—For L1 device -- >
<vnsAbsNode descr="" funcTemplateType="OTHER" funcType="L1" isCopy="no" managed="no" name="N1"

ownerKey="" ownerTag="" routingMode="Redirect" sequenceNumber="0" shareEncap="no">
</vnsAbsNode>

</vnsAbsGraph>

<fvIPSLAMonitoringPol name="Pol2" slaType="l2ping"/>
<vnsSvcCont>
<vnsRedirectHealthGroup name="2" />

<vnsSvcRedirectPol name="N1Ext" destType="L2">
<vnsRsIPSLAMonitoringPol tDn="uni/tn-coke/ipslaMonitoringPol-Pol2"/>

<vnsL1L2RedirectDest destName="1">
<vnsRsL1L2RedirectHealthGroup tDn="uni/tn-coke/svcCont/redirectHealthGroup-2"/>

<vnsRsToCIf tDn="uni/tn-coke/lDevVip-N1/cDev-ASA1/cIf-[Gig0/0]"/>
</vnsL1L2RedirectDest>

</vnsSvcRedirectPol>

<vnsSvcRedirectPol name="N1Int" destType="L2">
<vnsRsIPSLAMonitoringPol tDn="uni/tn-coke/ipslaMonitoringPol-Pol2"/>

<vnsL1L2RedirectDest destName="2">
<vnsRsL1L2RedirectHealthGroup tDn="uni/tn-coke/svcCont/redirectHealthGroup-2"/>

<vnsRsToCIf tDn="uni/tn-coke/lDevVip-N1/cDev-ASA1/cIf-[Gig0/1]"/>
</vnsL1L2RedirectDest>

</vnsSvcRedirectPol>
</vnsSvcCont>

</fvTenant>
</polUni>

Service Graph Templates

About Service Graph Templates
The Cisco Application Centric Infrastructure (ACI) allows you to define a sequence of meta-devices, such a
firewall of a certain type followed by a load balancer of a certain make and version. This is called an service
graph template, also known as an abstract graph. When a service graph template is referenced by a contract,
the service graph template is instantiated by mapping it to concrete devices, such as the firewall and load
balancers that are present in the fabric. The mapping happens with the concept of a context. The device context
is the mapping configuration that allows Cisco ACI to identify which firewalls and which load balancers can
be mapped to the service graph template. Another key concept is the logical device, which represents the
cluster of concrete devices. The rendering of the service graph template is based on identifying the suitable
logical devices that can be inserted in the path that is defined by a contract.

Cisco ACI treats services as an integral part of an application. Any services that are required are treated as a
service graph that is instantiated on the Cisco ACI fabric from the Cisco Application Policy Infrastructure
Controller (APIC). Users define the service for the application, while service graph templates identify the set
of network or service functions that are needed by the application. Once the graph is configured in the Cisco
APIC, the Cisco APIC automatically configures the services according to the service function requirements
that are specified in the service graph template. The Cisco APIC also automatically configures the network

Cisco APIC REST API Configuration Guide, Release 4.1(x)
427

Part 3: Setting Up APIC and the Fabric Using the REST API
Service Graph Templates

according to the needs of the service function that is specified in the service graph template, which does not
require any change in the service device.

Configuring a Service Graph Template Using the REST APIs
You can configure a service graph template using the following REST API:
<polUni>
<fvTenant name="acme">
<vnsAbsGraph name="G1">
<vnsAbsTermNodeCon name="Input1">
<vnsAbsTermConn name="C1">

</vnsAbsTermConn>
</vnsAbsTermNodeCon>
<vnsAbsNode name="Node" funcType="GoTo">
<vnsRsDefaultScopeToTerm
tDn="uni/tn-acme/AbsGraph-G1/AbsTermNodeProv-Output1/outtmnl"/>

<vnsAbsFuncConn name="inside">
<vnsRsMConnAtt
tDn="uni/infra/mDev-Insieme-Generic-1.0/mFunc-SubnetFunc/mConn-external"/>

</vnsAbsFuncConn>
<vnsAbsFuncConn name="outside">
<vnsRsMConnAtt
tDn="uni/infra/mDev-Insieme-Generic-1.0/mFunc-SubnetFunc/mConn-internal"/>

</vnsAbsFuncConn>
<vnsAbsDevCfg>
<vnsAbsFolder key="oneFolder" name="f1">
<vnsAbsParam key="oneParam" name="p1" value="v1"/>

</vnsAbsFolder>
</vnsAbsDevCfg>
<vnsAbsFuncCfg>
<vnsAbsFolder key="folder" name="folder1" devCtxLbl="C1">
<vnsAbsParam key="param" name="param" value="value"/>

</vnsAbsFolder>
<vnsAbsFolder key="folder" name="folder2" devCtxLbl="C2">
<vnsAbsParam key="param" name="param" value="value"/>

</vnsAbsFolder>
</vnsAbsFuncCfg>
<vnsRsNodeToMFunc tDn="uni/infra/mDev-Insieme-Generic-1.0/mFunc-SubnetFunc"/>

</vnsAbsNode>
<vnsAbsTermNodeProv name="Output1">
<vnsAbsTermConn name="C6">

</vnsAbsTermConn>
</vnsAbsTermNodeProv>
<vnsAbsConnection name="CON1">
<vnsRsAbsConnectionConns
tDn="uni/tn-acme/AbsGraph-G1/AbsTermNodeCon-Input1/AbsTConn"/>

<vnsRsAbsConnectionConns tDn="uni/tn-acme/AbsGraph-G1/AbsNode-Node/AbsFConn-inside"/>

</vnsAbsConnection>
<vnsAbsConnection name="CON3">
<vnsRsAbsConnectionConns tDn="uni/tn-acme/AbsGraph-G1/AbsNode-Node/AbsFConn-outside"/>

<vnsRsAbsConnectionConns
tDn="uni/tn-acme/AbsGraph-G1/AbsTermNodeProv-Output1/AbsTConn"/>

</vnsAbsConnection>
</vnsAbsGraph>

</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
428

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring a Service Graph Template Using the REST APIs

Creating a Security Policy Using the REST APIs
You can create a security policy using the following REST API:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vzFilter name="HttpIn">

<vzEntry name="e1" prot="6" dToPort="80"/>
</vzFilter>
<vzBrCP name="webCtrct">

<vzSubj name="http">
<vzRsSubjFiltAtt tnVzFilterName="HttpIn"/>

</vzSubj>
</vzBrCP>

</fvTenant>
</polUni>

Layer 4 to Layer 7 Parameters

About Modifying the Configuration Parameters of a Deployed Service Graph
When you first deploy a service graph, the configuration parameters or functions for the service graph must
be defined before you can successfully deploy the service graph. These configuration parameters or functions
include device network configurations, such as IP addresses, route prefix, and next hop information, as well
as the services configuration, such as the IP access list for a firewall or server load balancing configuration
for a load balancer.

You must modify the service graph function as part of the day-to-day operation of the Application Policy
Infrastructure Controller (APIC). You can modify a service graph's configuration parameters and functions
by using the GUI or CLI of the APIC. Modifying functions of a service device through the APIC does not
require changes on a service device.

Example XML POST for an Application EPG With Configuration Parameters
The following XML example shows configuration parameters inside of the device package:
<fvAEPg dn="uni/tn-acme/ap-myApp/epg-app" name="app">

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any" key="Monitor"

name="monitor1">
<vnsRsFolderInstToMFolder tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Monitor"/>

<vnsParamInst name="weight" key="weight" value="10"/>
</vnsFolderInst>

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any" key="Service"

name="Service1">
<vnsParamInst name="servicename" key="servicename" value="crpvgrtst02-8010"/>
<vnsParamInst name="servicetype" key="servicetype" value="TCP"/>
<vnsParamInst name="servername" key="servername" value="s192.168.100.100"/>

<vnsParamInst name="serveripaddress" key="serveripaddress" value="192.168.100.100"/>

<vnsParamInst name="serviceport" key="serviceport" value="8080"/>
<vnsParamInst name="svrtimeout" key="svrtimeout" value="9000" />

Cisco APIC REST API Configuration Guide, Release 4.1(x)
429

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating a Security Policy Using the REST APIs

<vnsParamInst name="clttimeout" key="clttimeout" value="9000" />
<vnsParamInst name="usip" key="usip" value="NO" />
<vnsParamInst name="useproxyport" key="useproxyport" value="" />
<vnsParamInst name="cip" key="cip" value="ENABLED" />
<vnsParamInst name="cka" key="cka" value="NO" />
<vnsParamInst name="sp" key="sp" value="OFF" />
<vnsParamInst name="cmp" key="cmp" value="NO" />
<vnsParamInst name="maxclient" key="maxclient" value="0" />
<vnsParamInst name="maxreq" key="maxreq" value="0" />
<vnsParamInst name="tcpb" key="tcpb" value="NO" />
<vnsCfgRelInst name="MonitorConfig" key="MonitorConfig" targetName="monitor1"/>

</vnsFolderInst>

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any" key="Network"

name="Network">
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any" key="vip"

name="vip">
<vnsParamInst name="vipaddress1" key="vipaddress" value="10.10.10.200"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any"
devCtxLbl="C1" key="snip" name="snip1">
<vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.200"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any"
devCtxLbl="C2" key="snip" name="snip2">

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any" key="Network"

name="Network">
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any" key="vip"

name="vip">
<vnsParamInst name="vipaddress1" key="vipaddress" value="10.10.10.100"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any"
devCtxLbl="C1" key="snip" name="snip1">
<vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.100"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any"
devCtxLbl="C2" key="snip" name="snip2">
<vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.101"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any"
devCtxLbl="C3" key="snip" name="snip3">
<vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.102"/>

</vnsFolderInst>
</vnsFolderInst>

<!-- SLB Configuration -->
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any" key="VServer"

name="VServer">
<!-- Virtual Server Configuration -->
<vnsParamInst name="port" key="port" value="8010"/>
<vnsParamInst name="vip" key="vip" value="10.10.10.100"/>
<vnsParamInst name="vservername" key="vservername" value="crpvgrtst02-vip-8010"/>
<vnsParamInst name="servicename" key="servicename" value="crpvgrtst02-8010"/>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any"
key="VServerGlobalConfig" name="VServerGlobalConfig">
<vnsCfgRelInst name="ServiceConfig" key="ServiceConfig" targetName="Service1"/>

<vnsCfgRelInst name="VipConfig" key="VipConfig" targetName="Network/vip"/>
</vnsFolderInst>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
430

Part 3: Setting Up APIC and the Fabric Using the REST API
Example XML POST for an Application EPG With Configuration Parameters

</vnsFolderInst>
</fvAEPg>

Example XML of Configuration Parameters Inside the Device Package
The following XML example shows configuration parameters inside of the device package:
<vnsMFolder key="VServer" scopedBy="epg">

<vnsRsConnector tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external"/>
<vnsMParam key="vservername" description="Name of VServer" mandatory="true"/>
<vnsMParam key="vip" description="Virtual IP"/>
<vnsMParam key="subnet" description="Subnet IP"/>
<vnsMParam key="port" description="Port for Virtual server"/>
<vnsMParam key="persistencetype" description="persistencetype"/>
<vnsMParam key="servicename" description="Service bound to this vServer"/>
<vnsMParam key="servicetype" description="Service bound to this vServer"/>
<vnsMParam key="clttimeout" description="Client timeout"/>
<vnsMFolder key="VServerGlobalConfig"
description="This references the global configuration">
<vnsMRel key="ServiceConfig">

<vnsRsTarget tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Service"/>
</vnsMRel>
<vnsMRel key="ServerConfig">

<vnsRsTarget tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Server"/>
</vnsMRel>
<vnsMRel key="VipConfig">

<vnsRsTarget
tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Network/mFolder-vip"/>

<vnsRsConnector tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external"/>
</vnsMRel>

</vnsMFolder>
</vnsMFolder>

Example XML POST for an Abstract Function Node With Configuration
Parameters

The following XML POST example shows an abstract function node with configuration parameters:
<vnsAbsNode name = "SLB" funcType="GoTo" >

<vnsRsDefaultScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>

<vnsAbsFuncConn name = "C4" direction = "input">
<vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external" />

</vnsAbsFuncConn>
<vnsAbsFuncConn name = "C5" direction = "output">

<vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-internal" />
</vnsAbsFuncConn>

<vnsAbsDevCfg>
<vnsAbsFolder key="Network" name="Network" scopedBy="epg">

<!-- Following scopes this folder to input terminal or Src Epg -->
<vnsRsScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>

<!-- VIP address -->
<vnsAbsFolder key="vip" name="vip" scopedBy="epg">

<vnsAbsParam name="vipaddress" key="vipaddress" value=""/>
</vnsAbsFolder>

<!-- SNIP address -->

Cisco APIC REST API Configuration Guide, Release 4.1(x)
431

Part 3: Setting Up APIC and the Fabric Using the REST API
Example XML of Configuration Parameters Inside the Device Package

<vnsAbsFolder key="snip" name="snip" scopedBy="epg">
<vnsAbsParam name="snipaddress" key="snipaddress" value=""/>

</vnsAbsFolder>

</vnsAbsFolder>

<vnsAbsFolder key="Service" name="Service" scopedBy="epg" cardinality="n">
<vnsRsScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>

<vnsAbsParam name="servicename" key="servicename" value=""/>
<vnsAbsParam name="servername" key="servername" value=""/>
<vnsAbsParam name="serveripaddress" key="serveripaddress" value=""/>

</vnsAbsFolder>
</vnsAbsDevCfg>

<vnsAbsFuncCfg>
<vnsAbsFolder key="VServer" name="VServer" scopedBy="epg">

<vnsRsScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>

<!-- Virtual Server Configuration -->
<vnsAbsParam name="vip" key="vip" value=""/>
<vnsAbsParam name="vservername" key="vservername" value=""/>
<vnsAbsParam name="servicename" key="servicename"/>
<vnsRsCfgToConn tDn="uni/tn-tenant1/AbsGraph-G3/AbsNode-Node2/AbsFConn-C4" />

</vnsAbsFolder>
</vnsAbsFuncCfg>
<vnsRsNodeToMFunc tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB"/>

</vnsAbsNode>

Example XML POST for an Abstract Function Profile With Configuration
Parameters

The following XML POST example shows an abstract function profile with configuration parameters:
<vnsAbsFuncProfContr name = "NP">

<vnsAbsFuncProfGrp name = "Grp1">
<vnsAbsFuncProf name = "P1">

<vnsRsProfToMFunc tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB"/>
<vnsAbsDevCfg name="D1">

<vnsAbsFolder key="Service" name="Service-Default" cardinality="n">
<vnsAbsParam name="servicetype" key="servicetype" value="TCP"/>
<vnsAbsParam name="serviceport" key="serviceport" value="80"/>
<vnsAbsParam name="maxclient" key="maxclient" value="1000"/>
<vnsAbsParam name="maxreq" key="maxreq" value="100"/>
<vnsAbsParam name="cip" key="cip" value="enable"/>
<vnsAbsParam name="usip" key="usip" value="enable"/>
<vnsAbsParam name="sp" key="sp" value=""/>
<vnsAbsParam name="svrtimeout" key="svrtimeout" value="60"/>
<vnsAbsParam name="clttimeout" key="clttimeout" value="60"/>
<vnsAbsParam name="cka" key="cka" value="NO"/>
<vnsAbsParam name="tcpb" key="tcpb" value="NO"/>
<vnsAbsParam name="cmp" key="cmp" value="NO"/>

</vnsAbsFolder>
</vnsAbsDevCfg>
<vnsAbsFuncCfg name="SLB">

<vnsAbsFolder key="VServer" name="VServer-Default">
<vnsAbsParam name="port" key="port" value="80"/>
<vnsAbsParam name="persistencetype" key="persistencetype"
value="cookie"/>

<vnsAbsParam name="clttimeout" key="clttimeout" value="100"/>
<vnsAbsParam name="servicetype" key="servicetype" value="TCP"/>
<vnsAbsParam name="servicename" key="servicename"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
432

Part 3: Setting Up APIC and the Fabric Using the REST API
Example XML POST for an Abstract Function Profile With Configuration Parameters

</vnsAbsFolder>
</vnsAbsFuncCfg>

</vnsAbsFuncProf>
</vnsAbsFuncProfGrp>

</vnsAbsFuncProfContr>

Copy Services

About Copy Services
Unlike Switched Port Analyzer (SPAN), which duplicates all traffic, the CiscoApplication Centric Infrastructure
(ACI) copy services feature enables selectively copying portions of the traffic between endpoint groups,
according to the specifications of the contract. Broadcast, unknown unicast and multicast (BUM), and control
plan traffic not covered by the contract are not copied. In contrast, SPAN copies everything out of endpoint
groups, access ports, or uplink ports. Unlike SPAN, copy services do not add headers to the copied traffic.
Copy service traffic is managed internally in the switch to minimize impact on normal traffic forwarding.

For more information about deploying Layer 4 to Layer 7 services, see the Cisco APIC Layer 4 to Layer 7
Services Deployment Guide.

Configuring Copy Services Using the REST API
A copy device is used as part of the copy services feature to create a copy node. A copy node specifies at
which point of the data flow between endpoint groups to copy traffic.

This procedure provides examples of using the REST API to configure copy services.

When you configure a copy device, the context aware parameter is not used. The context aware parameter
has a default value of single context, which can be ignored.

Note

Before you begin

You must have configured a tenant.

Step 1 Create a copy device.

Example:
<vnsLDevVip contextAware="single-Context" devtype="PHYSICAL" funcType="None" isCopy="yes"
managed="no" mode="legacy-Mode" name="copy0" packageModel="" svcType="COPY" trunking="no">
<vnsRsALDevToPhysDomP tDn="uni/phys-phys_scale_copy"/>
<vnsCDev devCtxLbl="" name="copy_Dyn_Device_0" vcenterName="" vmName="">

<vnsCIf name="int1" vnicName="">
<vnsRsCIfPathAtt tDn="topology/pod-1/paths-104/pathep-[eth1/15]"/>

</vnsCIf>
<vnsCIf name="int2" vnicName="">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-105/pathep-[eth1/15]"/>
</vnsCIf>

</vnsCDev>
<vnsLIf encap="vlan-3540" name="TAP">

<vnsRsCIfAttN tDn="uni/tn-t22/lDevVip-copy0/cDev-copy_Dyn_Device_0/cIf-[int2]"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
433

Part 3: Setting Up APIC and the Fabric Using the REST API
Copy Services

<vnsRsCIfAttN tDn="uni/tn-t22/lDevVip-copy0/cDev-copy_Dyn_Device_0/cIf-[int1]"/>
</vnsLIf>

</vnsLDevVip>

Step 2 Create a logical device context (also known as a device selection policy).

Example:
<vnsLDevCtx ctrctNameOrLbl="c0" descr="" graphNameOrLbl="g0" name="" nodeNameOrLbl="CP1">

<vnsRsLDevCtxToLDev tDn="uni/tn-t22/lDevVip-copy0"/>
<vnsLIfCtx connNameOrLbl="copy" descr="" name="">

<vnsRsLIfCtxToLIf tDn="uni/tn-t22/lDevVip-copy0/lIf-TAP"/>
</vnsLIfCtx>

</vnsLDevCtx>

Step 3 Create and apply the copy graph template.

Example:
<vnsAbsGraph descr="" name="g0" ownerKey="" ownerTag="" uiTemplateType="UNSPECIFIED">

<vnsAbsTermNodeCon descr="" name="T1" ownerKey="" ownerTag="">
<vnsAbsTermConn attNotify="no" descr="" name="1" ownerKey="" ownerTag=""/>
<vnsInTerm descr="" name=""/>
<vnsOutTerm descr="" name=""/>

</vnsAbsTermNodeCon>
<vnsAbsTermNodeProv descr="" name="T2" ownerKey="" ownerTag="">

<vnsAbsTermConn attNotify="no" descr="" name="1" ownerKey="" ownerTag=""/>
<vnsInTerm descr="" name=""/>
<vnsOutTerm descr="" name=""/>

</vnsAbsTermNodeProv>
<vnsAbsConnection adjType="L2" connDir="provider" connType="external" descr="" name="C1"
ownerKey="" ownerTag="" unicastRoute="yes">
<vnsRsAbsConnectionConns tDn="uni/tn-t22/AbsGraph-g0/AbsTermNodeCon-T1/AbsTConn"/>
<vnsRsAbsConnectionConns tDn="uni/tn-t22/AbsGraph-g0/AbsTermNodeProv-T2/AbsTConn"/>
<vnsRsAbsCopyConnection tDn="uni/tn-t22/AbsGraph-g0/AbsNode-CP1/AbsFConn-copy"/>

</vnsAbsConnection>
<vnsAbsNode descr="" funcTemplateType="OTHER" funcType="None" isCopy="yes" managed="no"
name="CP1" ownerKey="" ownerTag="" routingMode="unspecified" sequenceNumber="0"
shareEncap="no">
<vnsAbsFuncConn attNotify="no" descr="" name="copy" ownerKey="" ownerTag=""/>
<vnsRsNodeToLDev tDn="uni/tn-t22/lDevVip-copy0"/>

</vnsAbsNode>
</vnsAbsGraph>

Step 4 Define the relation to the copy graph in the contract that is associated with the endpoint groups.

Example:
<vzBrCP descr="" name="c0" ownerKey="" ownerTag="" prio="unspecified" scope="tenant"
targetDscp="unspecified">
<vzSubj consMatchT="AtleastOne" descr="" name="Subject" prio="unspecified"
provMatchT="AtleastOne" revFltPorts="yes" targetDscp="unspecified">
<vzRsSubjFiltAtt directives="" tnVzFilterName="default"/>
<vzRsSubjGraphAtt directives="" tnVnsAbsGraphName="g0"/>

</vzSubj>
</vzBrCP>

Step 5 Attach the contract to the endpoint group.

Example:
<fvAEPg name="epg2860">

<fvRsCons tnVzBrCPName="c0"/>
<fvRsBd tnFvBDName="bd0"/>
<fvRsDomAtt tDn="uni/phys-phys_scale_SB"/>
<fvRsPathAtt tDn="topology/pod-1/paths-104/pathep-[PC_int2_g1]" encap="vlan-2860"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
434

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Copy Services Using the REST API

instrImedcy="immediate"/>
</fvAEPg>
<fvAEPg name="epg2861">

<fvRsProv tnVzBrCPName="c0"/>
<fvRsBd tnFvBDName="bd0"/>
<fvRsDomAtt tDn="uni/phys-phys_scale_SB"/>
<fvRsPathAtt tDn="topology/pod-1/paths-105/pathep-[PC_policy]" encap="vlan-2861"
instrImedcy="immediate"/>

</fvAEPg>

Developing Automation

About the REST APIs
Automation relies on the Application Policy Infrastructure Controller (APIC) northbound Representational
State Transfer (REST) APIs. Anything that can be done through the Cisco APIC GUI can also be done using
XML-based REST POSTs using the northbound APIs. For example, you can monitor events through those
APIs, dynamically enable EPGs, and add policies.

You can also use the northbound REST APIs to monitor for notifications that a device has been brought
onboard, and to monitor faults. In both cases, you can monitor events that trigger specific actions. For example,
if you see faults that occur on a specific application tier and determine that there is a loss of connectivity and
a leaf node is going down, you can trigger an action to redeploy those applications somewhere else. If you
have certain contracts on which you detect packet drops occurring, you could enable some copies of those
contracts on the particular application. You can also use a statistics monitoring policy, where you monitor
certain counters because of issues that have been reported.

For information on how to construct the XML files submitted to the Cisco APIC northbound API, see Cisco
APIC Layer 4 to Layer 7 Device Package Development Guide.

The following Python APIs, defined in the Cisco APIC Management Information Model Reference can be
used to submit REST POST calls using the northbound API:

• vns:LDevVip: Upload a device cluster

• vns:CDev: Upload a device

• vns:LIf: Create logical interfaces

• vns:AbsGraph: Create a graph

• vz:BrCP: Attach a graph to a contract

Examples of Automating Using the REST APIs
This section contains examples of using the REST APIs to automate tasks.

The following REST request creates a tenant with a broadcast domain, a Layer 3 network, application endpoint
groups, and an application profile:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
435

Part 3: Setting Up APIC and the Fabric Using the REST API
Developing Automation

<!—L3 Network-->
<fvCtx name="MyNetwork"/>

<!-- Bridge Domain for MySrvr EPG -->
<fvBD name="MySrvrBD">

<fvRsCtx tnFvCtxName="MyNetwork"/>
<fvSubnet ip="10.10.10.10/24">
</fvSubnet>

</fvBD>

<!-- Bridge Domain for MyClnt EPG -->
<fvBD name="MyClntBD">

<fvRsCtx tnFvCtxName="MyNetwork"/>
<fvSubnet ip="20.20.20.20/24">
</fvSubnet>

</fvBD>

<fvAp dn="uni/tn-acme/ap-MyAP" name="MyAP">

<fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MyClnt" name="MyClnt">
<fvRsBd tnFvBDName="MySrvrBD"/>
<fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
<fvRsProv tnVzBrCPName="webCtrct"> </fvRsProv>
<fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]"
encap="vlan-202"/>

<fvRsPathAtt tDn="topology/pod-1/paths-18/pathep-[eth1/21]"
encap="vlan-202"/>

</fvAEPg>

<fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MySRVR" name="MySRVR">
<fvRsBd tnFvBDName="MyClntBD"/>
<fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
<fvRsCons tnVzBrCPName="webCtrct"> </fvRsCons>
<fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]"
encap="vlan-203"/>

<fvRsPathAtt tDn="topology/pod-1/paths-18/pathep-[eth1/21]"
encap="vlan-203"/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

The following REST request creates a VLAN namespace:
<polUni>

<infraInfra>
<fvnsVlanInstP name="MyNS" allocMode="dynamic">

<fvnsEncapBlk name="encap" from="vlan-201" to="vlan-300"/>
</fvnsVlanInstP>

</infraInfra>
</polUni>

The following REST request creates a VMM domain:
<polUni>

<vmmProvP vendor="Vendor1">
<vmmDomP name="MyVMs">

<infraRsVlanNs tDn="uni/infra/vlanns-MyNS-dynamic"/>
<vmmUsrAccP name="admin" usr="administrator" pwd="in$1eme"/>
<vmmCtrlrP name="vcenter1" hostOrIp="192.168.64.186">

<vmmRsAcc tDn="uni/vmmp-Vendor1/dom-MyVMs/usracc-admin"/>
</vmmCtrlrP>

</vmmDomP>
</vmmProvP>

</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
436

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

The following REST request creates a physical domain:
<polUni>

<physDomP name="phys">
<infraRsVlanNs tDn="uni/infra/vlanns-MyNS-dynamic"/>

</physDomP>
</polUni>

The following REST request creates a managed device cluster:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vnsLDevVip name="ADCCluster1" contextAware=1>

<vnsRsMDevAtt tDn="uni/infra/mDev-Acme-ADC-1.0"/>
<vnsRsDevEpg tDn="uni/tn-acme/ap-services/epg-ifc"/>
<vnsRsALDevToPhysDomP tDn="uni/phys-phys"/>
<vnsCMgmt name="devMgmt" host="42.42.42.100" port="80"/>
<vnsCCred name="username"value="admin"/>
<vnsCCredSecret name="password" value="admin"/>

</vnsLDevVip>
</fvTenant>

</polUni>

The following REST request creates an unmanaged device cluster:
<polUni>

<fvTenant name="HA_Tenant1">
<vnsLDevVip name="ADCCluster1" devtype="VIRTUAL" managed="no">

<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-mininet"/>
</vnsLDevVip>

</fvTenant>
</polUni>

The following REST request creates a device cluster context:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vnsLDevCtx ctrctNameOrLbl="webCtrct" graphNameOrLbl="G1" nodeNameOrLbl="Node1">

<vnsRsLDevCtxToLDev tDn="uni/tn-acme/lDevVip-ADCCluster1"/>
<vnsLIfCtx connNameOrLbl="provider">

<vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-int"/>
</vnsLIfCtx>
<vnsLIfCtx connNameOrLbl="consumer">

<vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-ext"/>
</vnsLIfCtx>

</vnsLDevCtx>
</fvTenant>

</polUni>

The following REST request creates a device cluster context used in route peering:
<polUni>

<fvTenant dn="uni/tn-coke{{tenantId}}" name="coke{{tenantId}}">
<vnsRtrCfg name="Dev1Ctx1" rtrId="180.0.0.12"/>

<vnsLDevCtx ctrctNameOrLbl="webCtrct1" graphNameOrLbl="WebGraph"
nodeNameOrLbl="FW">
<vnsRsLDevCtxToLDev tDn="uni/tn-tenant1/lDevVip-Firewall"/>
<vnsRsLDevCtxToRtrCfg tnVnsRtrCfgName="FwRtrCfg"/>
<vnsLIfCtx connNameOrLbl="internal">

<vnsRsLIfCtxToInstP tDn="uni/tn-tenant1/out-OspfInternal/instP-IntInstP"

status="created,modified"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-tenant1/lDevVip-Firewall/lIf-internal"/>

</vnsLIfCtx>
<vnsLIfCtx connNameOrLbl="external">

<vnsRsLIfCtxToInstP tDn="uni/tn-common/out-OspfExternal/instP-ExtInstP"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
437

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

status="created,modified"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-tenant1/lDevVip-Firewall/lIf-external"/>

</vnsLIfCtx>
</vnsLDevCtx>

</fvTenant>
</polUni>

For information about configuring external connectivity for tenants (a Layer 3 outside), see the Cisco APIC
Basic Configuration Guide.

Note

The following REST request adds a logical interface in a device cluster:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vnsLDevVip name="ADCCluster1">

<vnsLIf name="C5">
<vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-outside"/>
<vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-int"/>

</vnsLIf>
<vnsLIf name="C4">

<vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-inside"/>
<vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-ext"/>

</vnsLIf>
</vnsLDevVip>

</fvTenant>
</polUni>

The following REST request adds a concrete device in a physical device cluster:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vnsLDevVip name="ADCCluster1">

<vnsCDev name="ADC1" devCtxLbl="C1">
<vnsCIf name="int">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/22]"/>
</vnsCIf>
<vnsCIf name="ext">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]"/>
</vnsCIf>
<vnsCIf name="mgmt">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/20]"/>
</vnsCIf>
<vnsCMgmt name="devMgmt" host="172.30.30.100" port="80"/>
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password" value="admin"/>

</vnsCDev>
<vnsCDev name="ADC2" devCtxLbl="C2">

<vnsCIf name="int">
<vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/23]"/>

</vnsCIf>
<vnsCIf name="ext">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/24]"/>
</vnsCIf>
<vnsCIf name="mgmt">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/30]"/>
</vnsCIf>
<vnsCMgmt name="devMgmt" host="172.30.30.200" port="80"/>
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password" value="admin"/>

</vnsCDev>
</vnsLDevVip>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
438

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

</fvTenant>
</polUni>

The following REST request adds a concrete device in a virtual device cluster:
<polUni>

<fvTenant dn="uni/tn-coke5" name="coke5">
<vnsLDevVip name="Firewall5" devtype="VIRTUAL">

<vnsCDev name="ASA5" vcenterName="vcenter1" vmName="ifav16-ASAv-scale-05">
<vnsCIf name="Gig0/0" vnicName="Network adapter 2"/>
<vnsCIf name="Gig0/1" vnicName="Network adapter 3"/>
<vnsCIf name="Gig0/2" vnicName="Network adapter 4"/>
<vnsCIf name="Gig0/3" vnicName="Network adapter 5"/>
<vnsCIf name="Gig0/4" vnicName="Network adapter 6"/>
<vnsCIf name="Gig0/5" vnicName="Network adapter 7"/>
<vnsCIf name="Gig0/6" vnicName="Network adapter 8"/>
<vnsCIf name="Gig0/7" vnicName="Network adapter 9"/>
<vnsCMgmt name="devMgmt" host="3.5.3.170" port="443"/>
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password" value="insieme"/>

</vnsCDev>
</vnsLDevVip>

</fvTenant>
</polUni>

The following REST request creates a service graph in managed mode:
<polUni>

<fvTenant name="acme">
<vnsAbsGraph name = "G1">

<vnsAbsTermNode name = "Input1">
<vnsAbsTermConn name = "C1" direction = "output">
</vnsAbsTermConn>

</vnsAbsTermNode>

<!-- Node1 Provides SLB functionality -->
<vnsAbsNode name = "Node1" funcType="GoTo" >

<vnsRsDefaultScopeToTerm
tDn="uni/tn-acme/AbsGraph-G1/AbsTermNode-Output1/outtmnl"/>

<vnsAbsFuncConn name = "C4" direction = "input">
<vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external"/>

<vnsRsConnToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-C4"/>
</vnsAbsFuncConn>

<vnsAbsFuncConn name = "C5" direction = "output">
<vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-internal"/>

<vnsRsConnToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-C5"/>
</vnsAbsFuncConn>

<vnsRsNodeToMFunc tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB"/>
</vnsAbsNode>

<vnsAbsTermNode name = "Output1">
<vnsAbsTermConn name = "C6" direction = "input">
</vnsAbsTermConn>

</vnsAbsTermNode>

<vnsAbsConnection name = "CON1">
<vnsRsAbsConnectionConns

tDn="uni/tn-acme/AbsGraph-G1/AbsTermNode-Input1/AbsTConn"/>
<vnsRsAbsConnectionConns

Cisco APIC REST API Configuration Guide, Release 4.1(x)
439

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

tDn="uni/tn-acme/AbsGraph-G1/AbsNode-Node1/AbsFConn-C4"/>
</vnsAbsConnection>

<vnsAbsConnection name = "CON3">
<vnsRsAbsConnectionConns

tDn="uni/tn-acme/AbsGraph-G1/AbsNode-Node1/AbsFConn-C5"/>
<vnsRsAbsConnectionConns

tDn="uni/tn-acme/AbsGraph-G1/AbsTermNode-Output1/AbsTConn"/>
</vnsAbsConnection>

</vnsAbsGraph>
</fvTenant>

</polUni>

The following REST request creates a service graph in unmanaged mode:
<polUni>

<fvTenant name="HA_Tenant1">
<vnsAbsGraph name="g1">

<vnsAbsTermNodeProv name="Input1">
<vnsAbsTermConn name="C1">
</vnsAbsTermConn>

</vnsAbsTermNodeProv>

<!-- Node1 Provides LoadBalancing functionality -->
<vnsAbsNode name="Node1" managed="no">

<vnsRsDefaultScopeToTerm
tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsTermNodeProv-Input1/outtmnl"/>

<vnsAbsFuncConn name="outside" attNotify="true">
</vnsAbsFuncConn>
<vnsAbsFuncConn name="inside" attNotify="true">
</vnsAbsFuncConn>

</vnsAbsNode>

<vnsAbsTermNodeCon name="Output1">
<vnsAbsTermConn name="C6">
</vnsAbsTermConn>

</vnsAbsTermNodeCon>

<vnsAbsConnection name="CON2" adjType="L3" unicastRoute="yes">
<vnsRsAbsConnectionConns
tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsTermNodeCon-Output1/AbsTConn"/>

<vnsRsAbsConnectionConns
tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsNode-Node1/AbsFConn-outside"/>

</vnsAbsConnection>

<vnsAbsConnection name="CON1" adjType="L2" unicastRoute="no">
<vnsRsAbsConnectionConns
tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsNode-Node1/AbsFConn-inside"/>

<vnsRsAbsConnectionConns
tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsTermNodeProv-Input1/AbsTConn"/>

</vnsAbsConnection>

</vnsAbsGraph>
</fvTenant>

</polUni>

The following REST request creates a filter and a security policy (contract):
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">
<vzFilter name="HttpIn">

<vzEntry name="e1" prot="6" dToPort="80"/>
</vzFilter>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
440

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

<vzBrCP name="webCtrct">
<vzSubj name="http">

<vzRsSubjFiltAtt tnVzFilterName="HttpIn"/>
</vzSubj>

</vzBrCP>
</fvTenant>

</polUni>

The following REST request provides graph configuration parameters from an application EPG:
<polUni>

<fvTenant dn="uni/tn-acme" name="acme">

<!-- Application Profile -->
<fvAp dn="uni/tn-acme/ap-MyAP" name="MyAP">

<!-- EPG 1 -->
<fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MyClnt" name="MyClnt">

<fvRsBd tnFvBDName="MyClntBD"/>
<fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
<fvRsProv tnVzBrCPName="webCtrct">
</fvRsProv>

<fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/20]" encap="vlan-201"/>

<fvSubnet name="SrcSubnet" ip="192.168.10.1/24"/>
</fvAEPg>

<!-- EPG 2 -->
<fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MySRVR" name="MySRVR">

<fvRsBd tnFvBDName="MyClntBD"/>
<fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
<fvRsCons tnVzBrCPName="webCtrct">
</fvRsCons>

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any"
key="Monitor" name="monitor1">
<vnsParamInst name="weight" key="weight" value="10"/>

</vnsFolderInst>

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any"
key="Service" name="Service1">
<vnsParamInst name="servicename" key="servicename"
value="crpvgrtst02-8010"/>

<vnsParamInst name="servicetype" key="servicetype" value="TCP"/>
<vnsParamInst name="servername" key="servername"
value="s192.168.100.100"/>

<vnsParamInst name="serveripaddress" key="serveripaddress"
value="192.168.100.100"/>

<vnsParamInst name="serviceport" key="serviceport" value="8080"/>
<vnsParamInst name="svrtimeout" key="svrtimeout" value="9000"/>
<vnsParamInst name="clttimeout" key="clttimeout" value="9000"/>
<vnsParamInst name="usip" key="usip" value="NO"/>
<vnsParamInst name="useproxyport" key="useproxyport" value=""/>
<vnsParamInst name="cip" key="cip" value="ENABLED"/>
<vnsParamInst name="cka" key="cka" value="NO"/>
<vnsParamInst name="sp" key="sp" value="OFF"/>
<vnsParamInst name="cmp" key="cmp" value="NO"/>
<vnsParamInst name="maxclient" key="maxclient" value="0"/>
<vnsParamInst name="maxreq" key="maxreq" value="0"/>
<vnsParamInst name="tcpb" key="tcpb" value="NO"/>
<vnsCfgRelInst name="MonitorConfig" key="MonitorConfig"
targetName="monitor1"/>

</vnsFolderInst>

<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
441

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

nodeNameOrLbl="any" key="Network" name="Network">
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
nodeNameOrLbl="any" key="vip" name="vip">
<vnsParamInst name="vipaddress1" key="vipaddress"
value="10.10.10.100"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
nodeNameOrLbl="any" devCtxLbl="C1" key="snip" name="snip1">
<vnsParamInst name="snipaddress" key="snipaddress"
value="192.168.1.100"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
nodeNameOrLbl="any" devCtxLbl="C2" key="snip" name="snip2">
<vnsParamInst name="snipaddress" key="snipaddress"
value="192.168.1.101"/>

</vnsFolderInst>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
nodeNameOrLbl="any" devCtxLbl="C3" key="snip" name="snip3">
<vnsParamInst name="snipaddress" key="snipaddress"
value="192.168.1.102"/>

</vnsFolderInst>
</vnsFolderInst>

<!-- SLB Configuration -->
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
nodeNameOrLbl="any" key="VServer" name="VServer">
<!-- Virtual Server Configuration -->
<vnsParamInst name="port" key="port" value="8010"/>
<vnsParamInst name="vip" key="vip" value="10.10.10.100"/>
<vnsParamInst name="vservername" key="vservername"
value="crpvgrtst02-vip-8010"/>

<vnsParamInst name="servicename" key="servicename"
value="crpvgrtst02-8010"/>

<vnsParamInst name="servicetype" key="servicetype" value="TCP"/>
<vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
nodeNameOrLbl="any" key="VServerGlobalConfig" name="VServerGlobalConfig">

<vnsCfgRelInst name="ServiceConfig" key="ServiceConfig"
targetName="Service1"/>

<vnsCfgRelInst name="VipConfig" key="VipConfig"
targetName="Network/vip"/>

</vnsFolderInst>
</vnsFolderInst>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

The following REST request attaches a service graph to a contract:
<polUni>

<fvTenant name="acme">
<vzBrCP name="webCtrct">

<vzSubj name="http">
<vzRsSubjGraphAtt graphName="G1" termNodeName="Input1"/>

</vzSubj>
</vzBrCP>

</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
442

Part 3: Setting Up APIC and the Fabric Using the REST API
Examples of Automating Using the REST APIs

Example: Configuring Layer 4 to Layer 7 Services (Firewall)

Example: Configuring Layer 4 to Layer 7 Services Using the REST API
This topic shows the steps for configuring Layer 4 to Layer 7 services (ASA Firewall) using the REST API.

Before you begin

• Create the tenant to use the Layer 4 to Layer 7 services, with a Layer 3 outside network and bridge
domains.

• Create application profiles.

• Configure a physical or VMM domain.

• Import and register the device packages and configure parameters for them.

Step 1 Create a Layer 4 to Layer 7 ASAv device package model, using XML such as the following example:

Example:
<vnsLDevVip trunking="no" svcType="FW"
packageModel="ASAv" name="ASAv" mode="legacy-Mode"
managed="yes" isCopy="no" funcType="GoTo"
dn="uni/tn-Tenant-test/lDevVip-ASAv" devtype="VIRTUAL"
contextAware="single-Context">

<vnsCCred name="username" value="admin"/>
<vnsRsMDevAtt tDn="uni/infra/mDev-CISCO-ASA-1.2"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-ACI_vDS"/>
<vnsCDev name="Device1" vmName="ASAv-L3" vcenterName="vcenter" devCtxLbl="">
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsCIf name="GigabitEthernet0/1" vnicName="Network adapter 3"/>
<vnsCIf name="GigabitEthernet0/0" vnicName="Network adapter 2"/>
<vnsRsCDevToCtrlrP tDn="uni/vmmp-VMware/dom-ACI_vDS/ctrlr-vcenter"/>
</vnsCDev>

<vnsLIf name="provider" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-internal" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/1]"/>
</vnsLIf>

<vnsLIf name="consumer" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-external" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/0]"/>
</vnsLIf>
</vnsLDevVip>

Step 2 Configure a Layer 4 to Layer 7 FW-Graph using XML such as the following example:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
443

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services (Firewall)

<vnsAbsGraph uiTemplateType="UNSPECIFIED" ownerTag="" ownerKey="" name="FW-Graph"
dn="uni/tn-Tenant-test/AbsGraph-FW-Graph" descr="">

<vnsAbsTermNodeCon ownerTag="" ownerKey="" name="T1" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeCon>

<vnsAbsTermNodeProv ownerTag="" ownerKey="" name="T2" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeProv>

<vnsAbsConnection ownerTag="" ownerKey="" name="C1" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-consumer"/>
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeCon-T1/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsConnection ownerTag="" ownerKey="" name="C2" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-provider"/>
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeProv-T2/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsNode ownerTag="" ownerKey="" name="N1" descr="" shareEncap="no" sequenceNumber="0"
routingMode="unspecified" managed="yes" isCopy="no" funcType="GoTo" funcTemplateType="FW_ROUTED">
<vnsAbsFuncConn ownerTag="" ownerKey="" name="consumer" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-external"/>
</vnsAbsFuncConn>

<vnsAbsFuncConn ownerTag="" ownerKey="" name="provider" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-internal"/>
</vnsAbsFuncConn>
<vnsRsNodeToAbsFuncProf
tDn="uni/infra/mDev-CISCO-ASA-1.2/absFuncProfContr/absFuncProfGrp-WebServiceProfileGroup/absFuncProf-WebPolicyForRoutedMode"/>
<vnsRsNodeToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>
<vnsRsNodeToMFunc tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall"/>
</vnsAbsNode>
</vnsAbsGraph>

Step 3 Create a device selection policy, using XML such as the following example:

Example:
<vnsLDevCtx nodeNameOrLbl="N1" name="" graphNameOrLbl="FW-Graph"
dn="uni/tn-Tenant-test/ldevCtx-c-Client-to-Web-g-FW-Graph-n-N1" descr="" ctrctNameOrLbl="Client-to-Web">
<vnsRsLDevCtxToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>

<vnsLIfCtx name="" descr="" connNameOrLbl="provider">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD2"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-provider"/>
</vnsLIfCtx>

<vnsLIfCtx name="" descr="" connNameOrLbl="consumer">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD1"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-consumer"/>
</vnsLIfCtx>
</vnsLDevCtx>

Step 4 Configure a contract, associated with the FW-Graph service graph template, using XML such as the following example:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
444

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<vzBrCP targetDscp="unspecified" scope="tenant" prio="unspecified" ownerTag=""
ownerKey="" name="Client-to-Web" dn="uni/tn-Tenant-test/brc-Client-to-Web" descr="">

<vzSubj targetDscp="unspecified" prio="unspecified" name="Subject" descr=""
revFltPorts="yes" provMatchT="AtleastOne" consMatchT="AtleastOne"
<vzRsSubjFiltAtt tnVzFilterName="default" directives=""/>
<vzRsSubjGraphAtt directives="" tnVnsAbsGraphName="FW-Graph"/>
</vzSubj>
</vzBrCP>

Step 5 Create the Client EPG, using XML such as the following example:

Example:
<fvAEPg prio="unspecified" pcEnfPref="unenforced" name="Client"
matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl="" dn="uni/tn-Tenant-test/ap-ANP/epg-Client" descr="">
<fvRsCons prio="unspecified" tnVzBrCPName="Client-to-Web"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD1"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</fvAEPg>

Step 6 Create the Web EPG, using XML such as the following example:

Example:
-<fvAEPg prio="unspecified" pcEnfPref="unenforced" name="Web" matchT="AtleastOne"
isAttrBasedEPg="no" fwdCtrl="" dn="uni/tn-Tenant-test/ap-ANP/epg-Web" descr="">
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD2"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

<vnsFolderInst name="internalIf" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="Interface"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsFolderInst name="internalIfCfg" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="InterfaceConfig"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="internal_security_level" locked="no" key="security_level" cardinality="unspecified"

value="100" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="externalIf" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="Interface"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsFolderInst name="ExtAccessGroup" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessGroup"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsCfgRelInst name="name" locked="no" key="inbound_access_list_name" cardinality="unspecified"
mandatory="no"
targetName="access-list-inbound"/>
</vnsFolderInst>

<vnsFolderInst name="externalIfCfg" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="InterfaceConfig"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsParamInst name="external_security_level" locked="no" key="security_level"
cardinality="unspecified" value="50" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
445

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<vnsFolderInst name="IntConfig" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="InIntfConfigRelFolder"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsCfgRelInst name="InConfigrel" locked="no" key="InIntfConfigRel"
cardinality="unspecified" mandatory="no" targetName="internalIf"/>
</vnsFolderInst>

<vnsFolderInst name="ExtConfig" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="ExIntfConfigRelFolder"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsCfgRelInst name="ExtConfigrel" locked="no" key="ExIntfConfigRel" cardinality="unspecified"
mandatory="no"
targetName="externalIf"/>
</vnsFolderInst>

<vnsFolderInst name="access-list-inbound" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessList"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsFolderInst name="permit-https" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="AccessControlEntry"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified" value="permit"

validation="" mandatory="no"/>
<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10" validation=""
mandatory="no"/>

<vnsFolderInst name="dest-service" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="destination_service"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified" value="eq" validation=""
mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified" value="https"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="dest-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="destination_address"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation=""
mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="source_address"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation=""
mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="protocol"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified" value="tcp"
validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="permit-http" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessControlEntry"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified" value="permit"

validation="" mandatory="no"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
446

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10" validation=""
mandatory="no"/>

<vnsFolderInst name="dest-service" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="destination_service"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified" value="eq" validation=""
mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified" value="http"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="dest-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no"
key="destination_address"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation=""
mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="source_address"

graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation=""
mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="protocol"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified"
value="tcp" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>
</vnsFolderInst>

<fvRsProv prio="unspecified" matchT="AtleastOne" tnVzBrCPName="Client-to-Web"/>
</fvAEPg>

Example

To configure the entire Layer 4 to Layer 7 ASAv firewall services for a tenant, use XML such as the
following example;
<fvTenant ownerTag="" ownerKey="" name="Tenant-test" dn="uni/tn-Tenant-test" descr="">

<vnsLDevCtx name="" descr="" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web"><vnsRsLDevCtxToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>

<vnsLIfCtx name="" descr="" connNameOrLbl="provider">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD2"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-provider"/>
</vnsLIfCtx>

<vnsLIfCtx name="" descr="" connNameOrLbl="consumer">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD1"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-consumer"/>
</vnsLIfCtx>
</vnsLDevCtx>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
447

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<vzBrCP ownerTag="" ownerKey="" name="Client-to-Web" descr="" targetDscp="unspecified"
scope="tenant" prio="unspecified">

<vzSubj name="Subject" descr="" targetDscp="unspecified" prio="unspecified" revFltPorts="yes"

provMatchT="AtleastOne" consMatchT="AtleastOne">
<vzRsSubjFiltAtt tnVzFilterName="default" directives=""/>
<vzRsSubjGraphAtt directives="" tnVnsAbsGraphName="FW-Graph"/>
</vzSubj>
</vzBrCP>

<vnsAbsGraph ownerTag="" ownerKey="" name="FW-Graph" descr="" uiTemplateType="UNSPECIFIED">
<vnsAbsTermNodeCon ownerTag="" ownerKey="" name="T1" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeCon>

<vnsAbsTermNodeProv ownerTag="" ownerKey="" name="T2" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeProv>

<vnsAbsConnection ownerTag="" ownerKey="" name="C1" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns
tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-consumer"/>
<vnsRsAbsConnectionConns
tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeCon-T1/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsConnection ownerTag="" ownerKey="" name="C2" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns
tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-provider"/>
<vnsRsAbsConnectionConns
tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeProv-T2/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsNode ownerTag="" ownerKey="" name="N1" descr="" shareEncap="no" sequenceNumber="0"
routingMode="unspecified" managed="yes" isCopy="no" funcType="GoTo"
funcTemplateType="FW_ROUTED">

<vnsAbsFuncConn ownerTag="" ownerKey="" name="consumer" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-external"/>
</vnsAbsFuncConn>

<vnsAbsFuncConn ownerTag="" ownerKey="" name="provider" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-internal"/>
</vnsAbsFuncConn>
<vnsRsNodeToAbsFuncProf
tDn="uni/infra/mDev-CISCO-ASA-1.2/absFuncProfContr/absFuncProfGrp-WebServiceProfileGroup/absFuncProf-WebPolicyForRoutedMode"/>
<vnsRsNodeToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>
<vnsRsNodeToMFunc tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall"/>
</vnsAbsNode>
</vnsAbsGraph>

<fvBD ownerTag="" ownerKey="" name="BD1" descr="" unicastRoute="yes" vmac="not-applicable"

unkMcastAct="flood" unkMacUcastAct="proxy" type="regular" multiDstPktAct="bd-flood"
mcastAllow="no"
mac="00:22:BD:F8:19:FF" llAddr="::" limitIpLearnToSubnets="no" ipLearning="yes"
epMoveDetectMode="" arpFlood="no">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
448

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsCtx tnFvCtxName="VRF1"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvRsBdToEpRet tnFvEpRetPolName="" resolveAct="resolve"/>
</fvBD>

<fvBD ownerTag="" ownerKey="" name="BD2" descr="" unicastRoute="yes" vmac="not-applicable"

unkMcastAct="flood" unkMacUcastAct="proxy" type="regular" multiDstPktAct="bd-flood"
mcastAllow="no"
mac="00:22:BD:F8:19:FF" llAddr="::" limitIpLearnToSubnets="no" ipLearning="yes"
epMoveDetectMode="" arpFlood="no">
<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsCtx tnFvCtxName="VRF1"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvRsBdToEpRet tnFvEpRetPolName="" resolveAct="resolve"/>
</fvBD>

<fvCtx ownerTag="" ownerKey="" name="VRF1" descr="" pcEnfPref="enforced" pcEnfDir="ingress"

knwMcastAct="permit">
<fvRsBgpCtxPol tnBgpCtxPolName=""/>
<fvRsCtxToExtRouteTagPol tnL3extRouteTagPolName=""/>
<fvRsOspfCtxPol tnOspfCtxPolName=""/>
<vzAny name="" descr="" matchT="AtleastOne"/>
<fvRsCtxToEpRet tnFvEpRetPolName=""/>
</fvCtx>
<vnsSvcCont/>

<fvAp ownerTag="" ownerKey="" name="ANP" descr="" prio="unspecified">

<fvAEPg name="Web" descr="" prio="unspecified" pcEnfPref="unenforced"
matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl="">
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD2"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

<vnsFolderInst name="internalIf" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web"scopedBy="epg" locked="no" key="Interface"
devCtxLbl="" cardinality="unspecified">

<vnsFolderInst name="internalIfCfg" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="InterfaceConfig"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="internal_security_level" locked="no" key="security_level"
cardinality="unspecified"
value="100" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="externalIf" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="Interface"
devCtxLbl="" cardinality="unspecified">

<vnsFolderInst name="ExtAccessGroup" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessGroup" devCtxLbl=""
cardinality="unspecified">
<vnsCfgRelInst name="name" locked="no" key="inbound_access_list_name"
cardinality="unspecified"
mandatory="no" targetName="access-list-inbound"/>
</vnsFolderInst>

<vnsFolderInst name="externalIfCfg" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"

Cisco APIC REST API Configuration Guide, Release 4.1(x)
449

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="InterfaceConfig"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="external_security_level" locked="no" key="security_level"
cardinality="unspecified" value="50" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="IntConfig" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="InIntfConfigRelFolder"
devCtxLbl="" cardinality="unspecified">
<vnsCfgRelInst name="InConfigrel" locked="no" key="InIntfConfigRel" cardinality="unspecified"

mandatory="no" targetName="internalIf"/>
</vnsFolderInst>

<vnsFolderInst name="ExtConfig" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="ExIntfConfigRelFolder"
devCtxLbl="" cardinality="unspecified">
<vnsCfgRelInst name="ExtConfigrel" locked="no" key="ExIntfConfigRel" cardinality="unspecified"

mandatory="no" targetName="externalIf"/>
</vnsFolderInst>

<vnsFolderInst name="access-list-inbound" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessList" devCtxLbl=""
cardinality="unspecified">

<vnsFolderInst name="permit-https" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessControlEntry"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified"
value="permit" validation="" mandatory="no"/>
<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10"
validation="" mandatory="no"/>

<vnsFolderInst name="dest-service" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_service"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified"
value="eq" validation="" mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified"
value="https" validation="" mandatory="no"/>
</vnsFolderInst>
<vnsFolderInst name="dest-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_address"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="source_address"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="protocol" devCtxLbl=""
cardinality="unspecified">
<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified"
value="tcp" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
450

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<vnsFolderInst name="permit-http" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessControlEntry"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified"
value="permit" validation="" mandatory="no"/>
<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10"
validation="" mandatory="no"/>

<vnsFolderInst name="dest-service" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_service"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified" value="eq"
validation="" mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified" value="http"

validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="dest-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_address"
devCtxLbl=""
cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="source_address" devCtxLbl=""

cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="protocol" devCtxLbl=""
cardinality="unspecified">

<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified" value="tcp"

validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>
</vnsFolderInst>
<fvRsProv prio="unspecified" matchT="AtleastOne" tnVzBrCPName="Client-to-Web"/>
</fvAEPg>

<fvAEPg name="Client" descr="" prio="unspecified" pcEnfPref="unenforced" matchT="AtleastOne"

isAttrBasedEPg="no" fwdCtrl="">
<fvRsCons prio="unspecified" tnVzBrCPName="Client-to-Web"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD1"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</fvAEPg>
</fvAp>
<fvRsTenantMonPol tnMonEPGPolName=""/>

<vnsLDevVip name="ASAv" managed="yes" isCopy="no" funcType="GoTo" trunking="no"
svcType="FW" packageModel="ASAv" mode="legacy-Mode" devtype="VIRTUAL"
contextAware="single-Context">
<vnsCCred name="username" value="admin"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
451

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Services Using the REST API

<vnsRsMDevAtt tDn="uni/infra/mDev-CISCO-ASA-1.2"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-ACI_vDS"/>

<vnsCDev name="Device1" devCtxLbl="" vmName="ASAv-L3" vcenterName="vcenter">
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsCIf name="GigabitEthernet0/1" vnicName="Network adapter 3"/>
<vnsCIf name="GigabitEthernet0/0" vnicName="Network adapter 2"/>
<vnsRsCDevToCtrlrP tDn="uni/vmmp-VMware/dom-ACI_vDS/ctrlr-vcenter"/>
</vnsCDev>

<vnsLIf name="provider" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-internal" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/1]"/>
</vnsLIf>

<vnsLIf name="consumer" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-external" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/0]"/>
</vnsLIf>
</vnsLDevVip>
</fvTenant>

Example: Configuring Layer 4 to Layer 7 Route Peering

Configuring Layer 4 to Layer 7 Route Peering With the REST API
These l3extOut policies specify the OSPF configurations needed to enable OSPF on the fabric leaf and are
very similar to the l3extOut policies used for external communication.

The l3extOut policies also specify the prefix-based EPGs that control which routes are distributed in/out of
the fabric. The scope=import attribute controls two things: which endpoint prefixes are learned; and directs
the external L4-L7 device to advertise this route. The scope=export attribute specifies that the fabric has to
advertise this route to the L4-L7 device.

Two sample l3extOut policies are shown below: OspfInternal deployed on eth1/23, and
OspfExternal deployed on eth1/25.

Before you begin

Create one or more l3extOut external network connections and deploy them on the fabric leaf nodes where
the service device is connected.

Step 1 To configure OspfInternal on eth1/23, send a post with XML similar to the following example:

Example:
<?xml version="1.0" encoding="UTF-8?>
<!-- /api/policymgr/mo.xml -->
<polUni>

<fvTenant name="coke{{tenantId}}">
{% if status is not defined %}

{% set status = "created,modified" %}

Cisco APIC REST API Configuration Guide, Release 4.1(x)
452

Part 3: Setting Up APIC and the Fabric Using the REST API
Example: Configuring Layer 4 to Layer 7 Route Peering

{% endif %}

<l3extOut name="OspfInternal" status="{{status}}">

<l3extLNodeP name="bLeaf-101">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="180.0.0.11"/>

<l3extLifP name='portIf''>
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/23]"

ifInstT='ext-svi' encap='vlan-3844' addr="30.30.30.100/28" mtu='1500'/>
<!-- <ospfIfP authKey="tecom" authType="md5" authKeyId='1'> -->

<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>

</ospfIfP>
</l3extLIfP>

</l3extLNodeP>

<ospfExtP areaId='111' areaType='nssa' areaCtrl='redistribute'/>

<l3extInstP name="OspfInternalInstP">
<l3extSubnet ip="30.30.30.100/28" scope="import"/>
<l3extSubnet ip="20.20.20.0/24" scope="import"/>
<l3extSubnet ip="10.10.10.0/24" scope="export"/>

</l3extInstP>

<l3extRsEctx tnFvCtxName="cokectx1"/>

</l3extOut>

<ospfIfPol name="ospfIfPol" nwT='bcast' xmitDelay='1'
helloIntvl='10' deadIntvl='40' status="created,modified"/>

</fvTenant>
</polUni>

Step 2 To configure OspfExternal on eth1/25, send a post with XML similar to the following example:

Example:
<?xml version="1.0" encoding="UTF-8?>
<!-- /api/policymgr/mo.xml -->

<polUni>
<fvTenant name="common">

<fvCtx name="commonctx"/>

{% if status is not defined %}
{% set status="created,modified" %}

{% endif %}

<l3extOut name=OspfExternal" status="{{status}}">
<l3extLNodeP name="bLeaf-101">

<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="180.0.0.8/28"/>
<l3extLIfP name='portIf'>
{% if intfType is not defined %}

{% set intfType="ext-svi" %}
{% endif %}
<l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]"
ifInstT='ext-svi' encap='vlan-3843' addr="40.40.40.100/28" mtu='1500'/>
<!-- ospfIfP authKey="tecom" authType="md5" authKeyId='1'> -->
<ospfIfP>

<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
</ospfIfP>

</l3extIfP>
</l3extLNodeP>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
453

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Layer 4 to Layer 7 Route Peering With the REST API

<ospfExtP areaId='111' areaType='nssa' areaCtrl='redistribute'/>

<l3extInstP name="OspfExternalInstP">
<l3extSubnet ip="40.40.40.100/28" scope="import"/>
<l3extSubnet ip="10.10.10.0/24" scope="import"/>
<l3extSubnet ip="20.20.20.0/24" scope="export"/>

</l3extInstP>

<l3extRsEctx tnfvCtxName="commonctx"/>

</l3extOut>

<ospfIfPol name="ospfIfPol" nwT='bcast' xmitDelay='1' helloIntvl='10' deadIntvl='40'
status="created,modified"/>

</fvTenant>
</polUni>

The l3extInstP object specifies that prefixes 40.40.40.100/28 and 10.10.10.0/24 are to be used for prefix based endpoint
association and indicate that the L4-L7 device should advertise these routes.

The l3extRsPathL3OutAtt object specifies where each L3extOut is deployed.

For route peering to work, the l3extRsPathL3OutAtt must match the RsCIfPathAtt where the L4-L7 logical
device cluster is connected.

Note

Specifying an l3extOut Policy for Layer 4 to L7 Route Peering
A specific l3extOut policy can be used for a logical device cluster using its selection policy vnsLIfCtx. The
vnsRsLIfCtxToInstP points the LIfCtx to the appropriateOspfInternal andOspfExternal l3extInstP

EPGs. To configure an L3extOut policy used for Layer 4 to Layer 7 Route Peering, send a post with XML
such as the following example:
<vnsLDevCtx ctrctNameOrLbl="webCtrct{{graphId}}" graphNameOrLbl="WebGraph" nodeNameOrLbl="FW">

<vnsRsLDevCtxToLDev tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall"/>
<vnsLIfCtx connNameOrLbl="internal">

{% if L3ExtOutInternal is not defined %}
<fvSubnet ip="10.10.10.10/24"/>
{% endif %}
<vnsRsLIfCtxToBD tDn="uni/tn-solar{{tenantId}}/BD-solarBD1"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall/lIf-internal"/>
{% if L3ExtOutInternal is defined %}
<vnsRsLIfCtxToInstP

tDn="uni/tn-solar{{tenantId}}/out-OspfInternal/instP-OspfInternalInstP"
status={{L3ExtOutInternal}}"/>

{% endif %}
</vnsLIfCtx>
<vnsLIfCtx connNameOrLbl="external">

{% if L3ExtOutExternal is not defined %}
<fvSubnet ip="40.40.40.40/24"/>
{% endif %}
<vnsRsLIfCtxToBD tDn="uni/tn-solar{{tenantId}}/BD-solarBD4"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall/lIf-external"/>
{% if L3ExtOutExternal is defined %}
<vnsRsLIfCtxToInstP

tDn="uni/tn-solar{{tenantId}}/out-OspfExternal/instP-OspfExternalInstP"
status={{L3ExtOutExternal}}"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
454

Part 3: Setting Up APIC and the Fabric Using the REST API
Specifying an l3extOut Policy for Layer 4 to L7 Route Peering

{% endif %}
</vnsLIfCtx>

</vnsLDevCtx>

The associated concrete device needs to have a vnsRsCIfPathAtt that deploys it to the same fabric leaf as
shown in the following example:
<vnsCDev name="ASA">

<vnsRsLDevCtxToLDev tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall"/>
<vnsCIf name="Gig0/0">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-101/pathep-[eht1/23]"/>
</vnsCIf>
<vnsCIf name="Gig0/1">

<vnsRsCIfPathAtt tDn="topology/pod-1/paths-101/pathep-[eht1/25]"/>
</vnsCIf>
<vnsCMgmt name="devMgmt" host="{{asaIp}}" port="443" />
<vnsCCred name="username" value="admin" />
<vnsCCredSecret name="password" value="insieme" />

</vnsCDev>

The following figure shows how route peering works end-to-end.

Figure 52: Sample Deployment

In this 2-leaf, 1-spine topology, the linux web server is at IP 10.10.10.101/24 and is hosted on an ESX server
connected to dev2-leaf1. A service graph is deployed consisting of a two-arm firewall that is also connected
to dev2-leaf1. The service graph is associated with a contract that binds an external l3extOut
L3OutInternetwith the provider EPG (WebVM). Two internal l3extOut policies, an L3OutExternal,
and an L3OutInteral are also deployed to the leaf ports where the service device is connected.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
455

Part 3: Setting Up APIC and the Fabric Using the REST API
Specifying an l3extOut Policy for Layer 4 to L7 Route Peering

Cisco APIC REST API Configuration Guide, Release 4.1(x)
456

Part 3: Setting Up APIC and the Fabric Using the REST API
Specifying an l3extOut Policy for Layer 4 to L7 Route Peering

C H A P T E R 18
Configuring Security

• Enabling TACACS+, RADIUS, and LDAP, on page 457
• Configuring FIPS, on page 460
• Configuring Fabric Secure Mode, on page 461
• Enabling RBAC, on page 462
• Enabling Port Security, on page 476
• Enabling COOP Authentication, on page 478
• Enabling Control Plane Policing, on page 479
• Configuring First Hop Security, on page 484
• Configuring 802.1x, on page 487

Enabling TACACS+, RADIUS, and LDAP

Overview
This article provides step by step instructions on how to enable RADIUS, TACACS+, and LDAP users to
access the APIC. It assumes the reader is thoroughly familiar with theCisco Application Centric Infrastructure
Fundamentals manual, especially the User Access, Authentication, and Accounting chapter.

In the case of a disaster scenario such as the loss of all but one APIC in the cluster, APIC disables remote
authentication. In this scenario, only a local administrator account can log into the fabric devices.

Note

Remote users for AAAAuthentication with shell:domains=all/read-all/ will not be able to access Leaf switches
and Spine switches in the fabric for security purposes. This pertains to all version up to 4.0(1h).

Note

Configuring APIC for TACACS+ Using the REST API
• The Cisco Application Centric Infrastructure (ACI) fabric must be installed, Application Policy
Infrastructure Controllers (APICs) must be online, and the APIC cluster must be formed and healthy.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
457

• The TACACS+ server host name or IP address, port, and key must be available.

• The APIC management endpoint group must be available.

Step 1 Configure the TACACS+ Provider by sending a POST request with XML such as the following example:

Example:
<aaaTacacsPlusProvider timeout="5" retries="1" port="49" name="192.168.200.1" monitoringUser="test"
monitorServer="disabled"
dn="uni/userext/tacacsext/tacacsplusprovider-192.168.200.1" authProtocol="pap"/>

Step 2 Configure the TACACS+ Provider Group by sending a POST request with XML such as the following example:

Example:
<aaaTacacsPlusProviderGroup name="TENANT64_TACACS_provGrp"
dn="uni/userext/tacacsext/tacacsplusprovidergroup-TENANT64_TACACS_provGrp"/>

Step 3 Configure the TACACS+ Login Domain by sending a POST request with XML such as the following example:

Example:
<aaaLoginDomain name="TENANT64_TACACS_LoginDom" dn="uni/userext/logindomain-TENANT64_TACACS_LoginDom"/>

Example

The entire configuration can be sent in one POST request, with XML such as this example:
<aaaTacacsPlusProvider timeout="5" retries="1" port="49"
name="192.168.200.1" monitoringUser="test" monitorServer="disabled"
dn="uni/userext/tacacsext/tacacsplusprovider-192.168.200.1" authProtocol="pap"/>
<aaaTacacsPlusProviderGroup name="TENANT64_TACACS_provGrp"
dn="uni/userext/tacacsext/tacacsplusprovidergroup-TENANT64_TACACS_provGrp"/>
<aaaLoginDomain name="TENANT64_TACACS_LoginDom"
dn="uni/userext/logindomain-TENANT64_TACACS_LoginDom"/>

Configuring APIC for RADIUS Using the REST API

Before you begin

• The ACI fabric must be installed, Application Policy Infrastructure Controllers (APICs) must be online,
and the APIC cluster must be formed and healthy.

• The RADIUS server host name or IP address, port, authorization protocol, and key must be available.

• The APIC management endpoint group must be available.

Step 1 Configure the RADIUS Provider by sending a POST request with XML such as the following example:

Example:
<aaaRadiusProvider timeout="5" retries="1" name="TENANT64_RADIUS-host.com"
monitoringUser="test" monitorServer="disabled"
dn="uni/userext/radiusext/radiusprovider-TENANT64_RADIUS-host.com" authProtocol="pap" authPort="1812"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
458

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring APIC for RADIUS Using the REST API

Step 2 Configure the RADIUS Provider Group by sending a POST request with XML such as the following example:

Example:
<aaaRadiusProviderGroup name="TENANT64_RADIUS_provGrp"
dn="uni/userext/radiusext/radiusprovidergroup-TENANT64_RADIUS_provGrp"/>

Step 3 Configure the RADIUS Login Domain by sending a POST request with XML such as the following example:

Example:
<aaaLoginDomain name="TENANT64_RADIUSLoginDom"
dn="uni/userext/logindomain-TENANT64_RADIUSLoginDom"/>

Example

The entire configuration can be sent as one POST request, with XML such as this example:
<aaaRadiusProvider
timeout="5" retries="1" name="TENANT64_RADIUS-host.com" monitoringUser="test"
monitorServer="disabled"
dn="uni/userext/radiusext/radiusprovider-TENANT64_RADIUS-host.com" authProtocol="pap"
authPort="1812"/>
<aaaRadiusProviderGroup
name="TENANT64_RADIUS_provGrp"
dn="uni/userext/radiusext/radiusprovidergroup-TENANT64_RADIUS_provGrp"/>
<aaaLoginDomain
name="TENANT64_RADIUSLoginDom" dn="uni/userext/logindomain-TENANT64_RADIUSLoginDom"/>

Configuring APIC for LDAP Using the REST API

Before you begin

• The Cisco Application Centric Infrastructure (ACI) fabric must be installed, Application Policy
Infrastructure Controllers (APICs) must be online, and the APIC cluster must be formed and healthy.

• The LDAP server host name or IP address, port, bind DN, Base DN, and password must be available.

• The APIC management endpoint group must be available.

Step 1 Configure the LDAP Provider by sending a POST request with XML such as the following example:

Example:
<aaaLdapProvider timeout="30" rootdn="" retries="1" port="389" name="TENANT64_LDAP-host.com"
monitoringUser="test" monitorServer="disabled" filter="cn=$userid" enableSSL="yes"
dn="uni/userext/ldapext/ldapprovider-TENANT64_LDAP-host.com" descr="" basedn=""
attribute="CiscoAVPair" SSLValidationLevel="strict"/>

Step 2 Configure the LDAP Provider Group by sending a POST request with XML such as the following example:

Example:
<aaaLdapProviderGroup name="TENANT64_LDAP-ProvGrp"
dn="uni/userext/ldapext/ldapprovidergroup-TENANT64_LDAP-ProvGrp"/>

Step 3 Configure the LDAP Login Domain by sending a POST request with XML such as the following example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
459

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring APIC for LDAP Using the REST API

Example:
<aaaDomainAuth realm="ldap" providerGroup="TENANT64_LDAP-ProvGrp"
dn="uni/userext/logindomain-TENANT64_LDAPLoginDom/domainauth"/>

Example

The entire configuration can be sent in one POST request, with XML such as the following example:
<aaaLdapProvider
timeout="30" rootdn="" retries="1" port="389" name="TENANT64_LDAP-host.com"
monitoringUser="test" monitorServer="disabled" filter="cn=$userid" enableSSL="yes"
dn="uni/userext/ldapext/ldapprovider-TENANT64_LDAP-host.com" descr="" basedn=""
attribute="CiscoAVPair" SSLValidationLevel="strict"/>
<aaaLdapProviderGroup
name="TENANT64_LDAP-ProvGrp"dn="uni/userext/ldapext/ldapprovidergroup-TENANT64_LDAP-ProvGrp"/>
<aaaDomainAuth
realm="ldap" providerGroup="TENANT64_LDAP-ProvGrp"
dn="uni/userext/logindomain-TENANT64_LDAPLoginDom/domainauth"/>

Configuring FIPS

About Federal Information Processing Standards (FIPS)
The Federal Information Processing Standards (FIPS) Publication 140-2, Security Requirements for
Cryptographic Modules, details the U.S. government requirements for cryptographic modules. FIPS 140-2
specifies that a cryptographic module should be a set of hardware, software, firmware, or some combination
that implements cryptographic functions or processes, including cryptographic algorithms and, optionally,
key generation, and is contained within a defined cryptographic boundary.

FIPS specifies certain cryptographic algorithms as secure, and it also identifies which algorithms should be
used if a cryptographic module is to be called FIPS compliant.

Guidelines and Limitations for FIPS
The following guidelines and limitations apply to FIPS:

• When FIPS is enabled, FIPS is applied across the Cisco Application Policy Infrastructure Controller
(APIC).

• When FIPS is enabled, you must disable FIPS before you downgrade the Cisco APIC to a release that
does not support FIPS.

• Make your passwords a minimum of eight characters in length.

• Disable Telnet. Log in using only SSH.

• Delete all SSH Server RSA1 keypairs.

• Secure Shell (SSH) and SNMP are supported.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
460

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FIPS

• Disable SNMP v1 and v2. Any existing user accounts on the switch that have been configured for SNMPv3
should be configured only with SHA for authentication and AES for privacy.

• Disable remote authentication through RADIUS/TACACS+. Only local and LDAP users can be
authenticated.

• After enabling FIPS on the Cisco APIC, reload the dual supervisor spine switches twice for FIPS to take
effect.

• On a dual supervisor spine switch that has FIPS enabled, if a supervisor is replaced, then the spine switch
must be reloaded twice for FIPS to take effect on the new supervisor.

• Starting with the 2.3(1) release, FIPS can be configured at the switch level.

• Starting with the 3.1(1) release, when FIPs is enabled, NTPwill operate in FIPSmode, Under FIPSmode
NTP supports authentication with HMAC-SHA1 and no authentication.

Configuring FIPS for Cisco APIC Using REST API
When FIPS is enabled, it is applied across Cisco APIC.

Configure FIPS for all tenants.

Example:

https://apic1.cisco.com/api/node/mo/uni/userext.xml
<aaaFabricSec fipsMode="enable" />

You must reboot to complete the configuration. Anytime you change the mode, you must reboot to complete the
configuration.

Note

Configuring Fabric Secure Mode

Fabric Secure Mode
Fabric secure mode prevents parties with physical access to the fabric equipment from adding a switch or
APIC controller to the fabric without manual authorization by an administrator. Starting with release 1.2(1x),
the firmware checks that switches and controllers in the fabric have valid serial numbers associated with a
valid Cisco digitally signed certificate. This validation is performed upon upgrade to this release or during an
initial installation of the fabric. The default setting for this feature is permissive mode; an existing fabric
continues to run as it has after an upgrade to release 1.2(1) or later. An administrator with fabric-wide access
rights must enable strict mode. The following table summarizes the two modes of operation:

Strict ModePermissive Mode (default)

Only switches with a valid Cisco serial number and
SSL certificate are allowed.

Allows an existing fabric to operate normally even
though one or more switches have an invalid
certificate.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
461

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FIPS for Cisco APIC Using REST API

Strict ModePermissive Mode (default)

Enforces serial number authorization.Does not enforce serial number based authorization .

Requires an administrator to manually authorize
controllers and switches to join the fabric.

Allows auto-discovered controllers and switches to
join the fabric without enforcing serial number
authorization.

Configuring Fabric Secure Mode Using the REST API
To manage Secure Fabric Mode using the REST API, perform the following steps:

Step 1 To enable strict mode, send a POST request with XML such as the following example:

Example:
POST https://apic-ip-address/api/node/mo/uni.xml?
<pkiFabricCommunicationEp mode="strict"/>

Step 2 To enable permissive mode, send a POST request with XML such as the following example:

Example:
POST https://apic-ip-address/api/node/mo/uni.xml?
<pkiFabricCommunicationEp mode="permissive"/>

Step 3 To authorize a controller, send a POST request with XML such as the following example:

Example:
POST https://apic-ip-address/api/mo/uni/controller.xml?
<fabricNodeIdentPol>

<fabricCtrlrIdentP serial=“TEP-1-1”/>
</fabricNodeIdentPol>

Step 4 To reject a controller, send a POST request with XML such as the following example:

Example:
POST https://apic-ip-address/api/mo/uni/controller.xml?
<fabricNodeIdentPol>

<fabricCtrlrIdentP serial="FCH1750V025" reject=“yes"/>
</fabricNodeIdentPol>

Enabling RBAC

Access Rights Workflow Dependencies
The Cisco Application Centric Infrastructure (ACI) RBAC rules enable or restrict access to some or all of the
fabric. For example, in order to configure a leaf switch for bare metal server access, the logged in administrator
must have rights to the infra domain. By default, a tenant administrator does not have rights to the infra
domain. In this case, a tenant administrator who plans to use a bare metal server connected to a leaf switch

Cisco APIC REST API Configuration Guide, Release 4.1(x)
462

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring Fabric Secure Mode Using the REST API

could not complete all the necessary steps to do so. The tenant administrator would have to coordinate with
a fabric administrator who has rights to the infra domain. The fabric administrator would set up the switch
configuration policies that the tenant administrator would use to deploy an application policy that uses the
bare metal server attached to an ACI leaf switch.

AAA RBAC Roles and Privileges
The Application Policy Infrastructure Controller (APIC) provides the following AAA roles and privileges:

For each of the defined roles in Cisco APIC, the APIC Roles and Privileges Matrix shows which managed
object classes can be written and which can be read. The matrix can be found at this URL:
https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/apicroles/roles.html

Note

DescriptionPrivilegeRole

Used for configuring authentication, authorization,
accounting, and import/export policies.

aaaaaa

Provides full access to all of the features of the fabric.
The admin privilege can be considered to be a union
of all other privileges.

adminadmin

Role: access-admin

DescriptionPrivilege

Used for Layer 1 configuration under infra. Example: selectors and
port Layer 1 policy configurations.

access-connectivity-l1

Used for Layer 2 configuration under infra. Example: encap
configurations on selectors, and attachable entity.

access-connectivity-l2

Used for Layer 3 configuration under infra and static route
configurations under a tenant's L3Out.

access-connectivity-l3

Used for management infra policies.access-connectivity-mgmt

Used for tenant ERSPAN policies.access-connectivity-util

Used for access port configuration.access-equipment

Used for Layer 1 protocol configurations under infra.access-protocol-l1

Used for Layer 2 protocol configurations under infra.access-protocol-l2

Used for Layer 3 protocol configurations under infra.access-protocol-l3

Used for fabric-wide policies for NTP, SNMP, DNS, and image
management.

access-protocol-mgmt

Cisco APIC REST API Configuration Guide, Release 4.1(x)
463

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/apicroles/roles.html

Role: access-admin

DescriptionPrivilege

Used for operations-related access policies such as cluster policy and
firmware policies.

access-protocol-ops

Used for changing CoPP and QoS-related policies.access-qos

Role:fabric-admin

DescriptionPrivilege

Used for Layer 1 configuration under the fabric. Example: selectors
and port Layer 1 policy and vPC protection.

fabric-connectivity-l1

Used in firmware and deployment policies for raising warnings for
estimating policy deployment impact.

fabric-connectivity-l2

Used for Layer 3 configuration under the fabric. Example: Fabric
IPv4, IPv6, and MAC protection groups.

fabric-connectivity-l3

Used for atomic counter and diagnostic policies on leaf switches and
spine switches.

fabric-connectivity-mgmt

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

fabric-connectivity-util

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

fabric-equipment

Used for Layer 1 protocol configurations under the fabric.fabric-protocol-l1

Used for Layer 2 protocol configurations under the fabric.fabric-protocol-l2

Used for Layer 3 protocol configurations under the fabric.fabric-protocol-l3

Used for fabric-wide policies for NTP, SNMP, DNS, and image
management.

fabric-protocol-mgmt

Used for ERSPAN and health score policies.fabric-protocol-ops

Used for firmware management traceroute and endpoint tracking
policies.

fabric-protocol-util

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

tenant-connectivity-util

Used for Layer 2 connectivity changes, including bridge domains
and subnets.

tenant-connectivity-l2

Used for Layer 3 connectivity changes, including VRFs.tenant-connectivity-l3

Used for tenant traceroute policies.tenant-protocol-ops

Cisco APIC REST API Configuration Guide, Release 4.1(x)
464

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

DescriptionPrivilegeRole

Used for managing Layer 4 to Layer 7 service devices.nw-svc-devicenw-svc-admin

Used for managing shared Layer 4 to Layer 7 service
devices.

nw-svc-devshare

Used for managing Layer 4 to Layer 7 network service
orchestration.

nw-svc-policy

Used for managing Layer 4 to Layer 7 service policies.nw-svc-paramsnw-svc-params

Role: ops

DescriptionPrivilege

Used for viewing the policies configured including
troubleshooting policies.

The ops role cannot be used for creating new
monitoring and troubleshooting policies.
Those policies need to be created by using
the admin privilege, just like any other
configurations in the Cisco APIC.

Note

ops

Role: read-all

DescriptionPrivilege

Used for Layer 1 configuration under infra. Example: selectors and
port Layer 1 policy configurations.

access-connectivity-l1

Used for Layer 2 configuration under infra. Example: Encap
configurations on selectors, and attachable entity.

access-connectivity-l2

Used for Layer 3 configuration under infra and static route
configurations under a tenant's L3Out.

access-connectivity-l3

Used for management infra policies.access-connectivity-mgmt

Used for tenant ERSPAN policies.access-connectivity-util

Used for access port configuration.access-equipment

Used for Layer 1 protocol configurations under infra.access-protocol-l1

Used for Layer 2 protocol configurations under infra.access-protocol-l2

Used for Layer 3 protocol configurations under infra.access-protocol-l3

Used for fabric-wide policies for NTP, SNMP, DNS, and image
management.

access-protocol-mgmt

Cisco APIC REST API Configuration Guide, Release 4.1(x)
465

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: read-all

DescriptionPrivilege

Used for operations-related access policies such as cluster policy and
firmware policies.

access-protocol-ops

Used for changing CoPP and QoS-related policies.access-qos

Used for Layer 1 configuration under the fabric. Example: selectors
and port Layer 1 policy and vPC protection.

fabric-connectivity-l1

Used in firmware and deployment policies for raising warnings for
estimating policy deployment impact.

fabric-connectivity-l2

Used for Layer 3 configuration under the fabric. Example: Fabric IPv4,
IPv6, and MAC protection groups.

fabric-connectivity-l3

Used for Layer 1 protocol configurations under the fabric.fabric-protocol-l1

Used for Layer 2 protocol configurations under the fabric.fabric-protocol-l2

Used for Layer 3 protocol configurations under the fabric.fabric-protocol-l3

Used for managing Layer 4 to Layer 7 service devices.nw-svc-device

Used for managing shared Layer 4 to Layer 7 service devices.nw-svc-devshare

Used for managing Layer 4 to Layer 7 service policies.nw-svc-params

Used for managing Layer 4 to Layer 7 network service orchestration.nw-svc-policy

Used for viewing the policies configured including troubleshooting
policies.

The ops role cannot be used for creating new monitoring and
troubleshooting policies. Those policies need to be created by
using the admin privilege, just like any other configurations
in the Cisco APIC.

Note

ops

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

tenant-connectivity-util

Used for Layer 2 connectivity changes, including bridge domains and
subnets.

tenant-connectivity-l2

Used for Layer 3 connectivity changes, including VRFs.tenant-connectivity-l3

Used for tenant in-band and out-of-band management connectivity
configurations and for debugging/monitoring policies such as atomic
counters and health score.

tenant-connectivity-mgmt

Used for managing tenant configurations such as deleting/creating
endpoint groups.

tenant-epg

Cisco APIC REST API Configuration Guide, Release 4.1(x)
466

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: read-all

DescriptionPrivilege

Used for write access firmware policies.tenant-ext-connectivity-l1

Used for managing tenant L2Out configurations.tenant-ext-connectivity-l2

Used for managing tenant L3Out configurations.tenant-ext-connectivity-l3

Used as write access for firmware policies.tenant-ext-connectivity-mgmt

Used for debugging/monitoring/observer policies such as traceroute,
ping, oam, and eptrk.

tenant-ext-connectivity-util

Used for managing tenant external Layer 1 protocols. Generally only
used for write access for firmware policies.

tenant-ext-protocol-l1

Used for managing tenant external Layer 2 protocols. Generally only
used for write access for firmware policies.

tenant-ext-protocol-l2

Used for managing tenant external Layer 3 protocols such as BGP,
OSPF, PIM, and IGMP.

tenant-ext-protocol-l3

Used as write access for firmware policies.tenant-ext-protocol-mgmt

Used for debugging/monitoring/observer policies such as traceroute,
ping, oam, and eptrk.

tenant-ext-protocol-util

Used for managing tenant configurations, such as deleting and creating
network profiles, and deleting and creating endpoint groups.

tenant-network-profile

Used for managing configurations for Layer 1 protocols under a tenant.tenant-protocol-l1

Used for managing configurations for Layer 2 protocols under a tenant.tenant-protocol-l2

Used for managing configurations for Layer 3 protocols under a tenant.tenant-protocol-l3

Only used as write access for firmware policies.tenant-protocol-mgmt

Used for tenant traceroute policies.tenant-protocol-ops

Used for QoS-related configurations for a tenant.tenant-QoS

Used for contract-related configurations for a tenant.tenant-security

Used to read all the objects in Cisco APIC's VMM inventory required
for virtual machine connectivity.

vmm-connectivity

Used to read virtual machine and hypervisor endpoints in the Cisco
APIC's VMM inventory.

vmm-ep

Used for managing policies for virtual machine networking.vmm-policy

Not used by VMM policies.vmm-protocol-ops

Cisco APIC REST API Configuration Guide, Release 4.1(x)
467

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: read-all

DescriptionPrivilege

Used for managing authentication policies for VMM, such as the
username and password for VMware vCenter.

vmm-security

Role: tenant-admin

DescriptionPrivilege

Used for configuring authentication, authorization, accouting and
import/export policies.

aaa

Used for Layer 1 configuration under infra. Example: selectors and
port Layer 1 policy configurations.

access-connectivity-l1

Used for Layer 2 configuration under infra. Example: Encap
configurations on selectors, and attachable entity.

access-connectivity-l2

Used for Layer 3 configuration under infra and static route
configurations under a tenant's L3Out.

access-connectivity-l3

Used for management infra policies.access-connectivity-mgmt

Used for tenant ERSPAN policies.access-connectivity-util

Used for access port configuration.access-equipment

Used for Layer 1 protocol configurations under infra.access-protocol-l1

Used for Layer 2 protocol configurations under infra.access-protocol-l2

Used for Layer 3 protocol configurations under infra.access-protocol-l3

Used for fabric-wide policies for NTP, SNMP, DNS, and image
management.

access-protocol-mgmt

Used for operations-related access policies such as cluster policy and
firmware policies.

access-protocol-ops

Used for changing CoPP and QoS-related policies.access-qos

Used for Layer 1 configuration under the fabric. Example: selectors
and port Layer 1 policy and vPC protection.

fabric-connectivity-l1

Used in firmware and deployment policies for raising warnings for
estimating policy deployment impact.

fabric-connectivity-l2

Used for Layer 3 configuration under the fabric. Example: Fabric IPv4,
IPv6, and MAC protection groups.

fabric-connectivity-l3

Used for atomic counter and diagnostic policies on leaf switches and
spine switches.

fabric-connectivity-mgmt

Cisco APIC REST API Configuration Guide, Release 4.1(x)
468

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: tenant-admin

DescriptionPrivilege

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

fabric-connectivity-util

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

fabric-equipment

Used for Layer 1 protocol configurations under the fabric.fabric-protocol-l1

Used for Layer 2 protocol configurations under the fabric.fabric-protocol-l2

Used for Layer 3 protocol configurations under the fabric.fabric-protocol-l3

Used for fabric-wide policies for NTP, SNMP, DNS, and image
management.

fabric-protocol-mgmt

Used for ERSPAN and health score policies.fabric-protocol-ops

Used for firmware management traceroute and endpoint tracking
policies.

fabric-protocol-util

Used for managing Layer 4 to Layer 7 service devices.nw-svc-device

Used for managing shared Layer 4 to Layer 7 service devices.nw-svc-devshare

Used for managing Layer 4 to Layer 7 service policies.nw-svc-params

Used for managing Layer 4 to Layer 7 network service orchestration.nw-svc-policy

Used for viewing the policies configured including troubleshooting
policies.

The ops role cannot be used for creating new monitoring and
troubleshooting policies. Those policies need to be created by
using the admin privilege, just like any other configurations
in the Cisco APIC.

Note

ops

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

tenant-connectivity-util

Used for Layer 2 connectivity changes, including bridge domains and
subnets.

tenant-connectivity-l2

Used for Layer 3 connectivity changes, including VRFs.tenant-connectivity-l3

Used for tenant in-band and out-of-band management connectivity
configurations and for debugging/monitoring policies such as atomic
counters and health score.

tenant-connectivity-mgmt

Used for managing tenant configurations such as deleting/creating
endpoint groups.

tenant-epg

Cisco APIC REST API Configuration Guide, Release 4.1(x)
469

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: tenant-admin

DescriptionPrivilege

Used for write access firmware policies.tenant-ext-connectivity-l1

Used for managing tenant L2Out configurations.tenant-ext-connectivity-l2

Used for managing tenant L3Out configurations.tenant-ext-connectivity-l3

Used as write access for firmware policies.tenant-ext-connectivity-mgmt

Used for debugging/monitoring/observer policies such as traceroute,
ping, oam, and eptrk.

tenant-ext-connectivity-util

Used for managing tenant external Layer 1 protocols. Generally only
used for write access for firmware policies.

tenant-ext-protocol-l1

Used for managing tenant external Layer 2 protocols. Generally only
used for write access for firmware policies.

tenant-ext-protocol-l2

Used for managing tenant external Layer 3 protocols such as BGP,
OSPF, PIM, and IGMP.

tenant-ext-protocol-l3

Used as Write access for firmware policies.tenant-ext-protocol-mgmt

Used for debugging/monitoring/observer policies such as traceroute,
ping, oam, and eptrk.

tenant-ext-protocol-util

Used for managing tenant configurations, such as deleting and creating
network profiles, and deleting and creating endpoint groups.

tenant-network-profile

Used for managing configurations for Layer 1 protocols under a tenant.tenant-protocol-l1

Used for managing configurations for Layer 2 protocols under a tenant.tenant-protocol-l2

Used for managing configurations for Layer 3 protocols under a tenant.tenant-protocol-l3

Only used as write access for firmware policies.tenant-protocol-mgmt

Used for tenant traceroute policies.tenant-protocol-ops

Used for QoS-related configurations for a tenant.tenant-QoS

Used for contract-related configurations for a tenant.tenant-security

Used to read all the objects in Cisco APIC's VMM inventory required
for virtual machine connectivity.

vmm-connectivity

Used to read virtual machine and hypervisor endpoints in the Cisco
APIC's VMM inventory.

vmm-ep

Used for managing policies for virtual machine networking.vmm-policy

Not used by VMM policies.vmm-protocol-ops

Cisco APIC REST API Configuration Guide, Release 4.1(x)
470

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: tenant-admin

DescriptionPrivilege

Used for managing authentication policies for VMM, such as the
username and password for VMware vCenter.

vmm-security

Role: tenant-ext-admin

DescriptionPrivilege

Used for atomic counter, diagnostic, and image management policies
on leaf switches and spine switches.

tenant-connectivity-util

Used for Layer 2 connectivity changes, including bridge domains and
subnets.

tenant-connectivity-l2

Used for Layer 3 connectivity changes, including VRFs.tenant-connectivity-l3

Used for tenant in-band and out-of-band management connectivity
configurations and for debugging/monitoring policies such as atomic
counters and health score.

tenant-connectivity-mgmt

Used for managing tenant configurations such as deleting/creating
endpoint groups.

tenant-epg

Used for write access firmware policies.tenant-ext-connectivity-l1

Used for managing tenant L2Out configurations.tenant-ext-connectivity-l2

Used for managing tenant L3Out configurations.tenant-ext-connectivity-l3

Used as write access for firmware policies.tenant-ext-connectivity-mgmt

Used for debugging/monitoring/observer policies such as traceroute,
ping, oam, and eptrk.

tenant-ext-connectivity-util

Used for managing tenant external Layer 1 protocols. Generally only
used for write access for firmware policies.

tenant-ext-protocol-l1

Used for managing tenant external Layer 2 protocols. Generally only
used for write access for firmware policies.

tenant-ext-protocol-l2

Used for managing tenant external Layer 3 protocols such as BGP,
OSPF, PIM, and IGMP.

tenant-ext-protocol-l3

Used as Write access for firmware policies.tenant-ext-protocol-mgmt

Used for debugging/monitoring/observer policies such as traceroute,
ping, oam, and eptrk.

tenant-ext-protocol-util

Used for managing tenant configurations, such as deleting and creating
network profiles, and deleting and creating endpoint groups.

tenant-network-profile

Used for managing configurations for Layer 1 protocols under a tenant.tenant-protocol-l1

Cisco APIC REST API Configuration Guide, Release 4.1(x)
471

Part 3: Setting Up APIC and the Fabric Using the REST API
AAA RBAC Roles and Privileges

Role: tenant-ext-admin

DescriptionPrivilege

Used for managing configurations for Layer 2 protocols under a tenant.tenant-protocol-l2

Used for managing configurations for Layer 3 protocols under a tenant.tenant-protocol-l3

Only used as write access for firmware policies.tenant-protocol-mgmt

Used for tenant traceroute policies.tenant-protocol-ops

Used for QoS-related configurations for a tenant.tenant-QoS

Used for contract-related configurations for a tenant.tenant-security

Used to read all the objects in Cisco APIC's VMM inventory required
for virtual machine connectivity.

vmm-connectivity

Used to read virtual machine and hypervisor endpoints in the Cisco
APIC's VMM inventory.

vmm-ep

Used for managing policies for virtual machine networking.vmm-policy

Not used by VMM policies.vmm-protocol-ops

Used for managing authentication policies for VMM, such as the
username and password for VMware vCenter.

vmm-security

Role: vmm-admin

DescriptionPrivilege

Used to read all the objects in Cisco APIC's VMM inventory required
for virtual machine connectivity.

vmm-connectivity

Used to read virtual machine and hypervisor endpoints in the Cisco
APIC's VMM inventory.

vmm-ep

Used for managing policies for virtual machine networking.vmm-policy

Not used by VMM policies.vmm-protocol-ops

Used for managing authentication policies for a VMM, such as the
username and password for VMware vCenter.

vmm-security

Custom Roles
You can create custom roles and assign privileges to the roles. The interface internally assigns one or more
privileges to all managed object classes. In an XML model, privileges are assigned in an access attribute.
Privilege bits are assigned at compile time and apply per class, and not per instance or object of the class.

In addition to the 45 privilege bits, the "aaa" privilege bit applies to all AAA-subsystem configuration and
read operations. The following table provides a matrix of the supported privilege combinations. The rows in

Cisco APIC REST API Configuration Guide, Release 4.1(x)
472

Part 3: Setting Up APIC and the Fabric Using the REST API
Custom Roles

the table represent Cisco Application Centric Infrastructure (ACI) modules and the columns represent
functionality for a given module. A value of "Yes" in a cell indicates that the functionality for the module is
accessible and there exists a privilege bit to access that functionality. An empty cell indicates that the particular
functionality for module is not accessible by any privilege bit. See the privilege bit descriptions to learn what
each bit does.

Service
Chain

Service
Profile

ProviderStatsFaultApplicationSecurityQoSConnectivity

YesYesYesYesYesVMM

YesYesYesYesYesYesYesFabric

YesYesYesYesYesYesExternal

YesYesYesEPG, NPYesYesYesTenant

YesYesYesYesYesYesYesInfra

YesYesOps

YesYesYesYesYesYesStorage

YesYesYesYesYesYesYesNetwork Service

Sample RBAC Rules
The RBAC rules in the sample JSON file below enable both trans-tenant access and tenant access to a VMM
domain resource. The resources needed by the consumer are uni/tn-prov1/brc-webCtrct and
vmmp-Vmware/dom-Datacenter.

The following two RBAC rules enable the consumer tenant to post the consumer postman query in the JSON
file below.

<aaaRbacEp>
<aaaRbacRule objectDn="uni/vmmp-VMware/dom-Datacenter" domain="cons1"/>
<aaaRbacRule objectDn="uni/tn-prov1/brc-webCtrct" domain="cons1"/>

</aaaRbacEp>

The JSON file below contains these two RBAC rules:
{"id":"ac62a200-9210-f53b-7114-a8f4cffb9a36","name":"SharedContracts","timestamp":1398806919868,"requests":
[{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"2dfc75cc-431e-e136-622c-a577ce7622d8",
"name":"login as prov1",
"description":"",
"url":"http://http://solar.local:8000/api/aaaLogin.json",
"method":"POST",
"headers":"",
"data":
"{\"aaaUser\":{\"attributes\":{\"name\": \"prov1\", \"pwd\": \"secret!\"}}}",
"dataMode":"raw","timestamp":0,"version":2,"time":1398807562828},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"56e46db0-77ea-743f-a64e-c5f7b1f59807",
"name":"Root login",
"description":"",
"url":"http://http://solar.local:8000/api/aaaLogin.json",
"method":"POST",

Cisco APIC REST API Configuration Guide, Release 4.1(x)
473

Part 3: Setting Up APIC and the Fabric Using the REST API
Sample RBAC Rules

"headers":"",
"data":
"{\"aaaUser\":{\"attributes\":{\"name\": \"admin\", \"pwd\": \"secret!\"}}}",
"dataMode":"raw","timestamp":0,"responses":[],"version":2},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"804893f1-0915-6d35-169d-3af0eb3e64ec",
"name":"consumer tenant only",
"description":"",
"url":"http://http://solar.local:8000/api/policymgr/mo/uni/tn-cons1.xml",
"method":"POST",
"headers":"",
"data":
"<fvTenant name=\"cons1\">

<aaaDomainRef name=\"cons1\"/>\n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398968007487},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"85802d50-8089-bf8b-4481-f149bec258c8",
"name":"login as cons1",
"description":"",
"url":"http://solar.local:8000/api/aaaLogin.json",
"method":"POST",
"headers":"",
"data":
"{\"aaaUser\":{\"attributes\":{\"name\": \"cons1\", \"pwd\": \"secret!\"}}}",
"dataMode":"raw","timestamp":0,"version":2,"time":1398807575531},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"a2739d92-5f9d-f16c-8894-0f64b6f967a3",
"name":"consumer",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/tn-cons1.xml",
"method":"POST","headers":"","data":
"<fvTenant name=\"cons1\" status=\"modified\">\n

<fvCtx name=\"cons1\"/>\n
<!-- bridge domain -->\n

<fvBD name=\"cons1\">\n
<fvRsCtx tnFvCtxName=\"cons1\" />\n

<fvSubnet ip=\"10.0.2.128/24\" scope='shared'/>\n
</fvBD>\n

\n <!-- DNS Shared Service Contract Interface-->\n
<vzCPIf name=\"consIf\">\n

<vzRsIf tDn=\"uni/tn-prov1/brc-webCtrct\" >\n
</vzRsIf>\n

</vzCPIf>\n \n
<fvAp name=\"cons1\">\n

<fvAEPg name=\"APP\">\n
<fvRsBd tnFvBDName=\"cons1\" />\n

<fvRsNodeAtt tDn=\"topology/pod-1/node-101\" encap=\"vlan-4000\" instrImedcy=\"immediate\"
mode=\"regular\"/>\n

<fvRsDomAtt tDn=\"uni/vmmp-VMware/dom-Datacenter\"/>\n
<fvRsConsIf tnVzCPIfName=\"consIf\"/>\n

</fvAEPg>\n
</fvAp>\n

</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398818639692},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"c0bd866d-600a-4f45-46ec-6986398cbf78",
"name":"provider tenant only",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/tn-prov1.xml",
"method":"POST",
"headers":"",
"data":
"<fvTenant name=\"prov1\"><aaaDomainRef name=\"prov1\"/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
474

Part 3: Setting Up APIC and the Fabric Using the REST API
Sample RBAC Rules

\n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398818137518},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"d433a213-e95d-646d-895e-3a9e2e2b7ba3",
"name":"create RbacRule",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni.xml",
"method":"POST",
"headers":"",
"data":
"<aaaRbacEp>\n

<aaaRbacRule objectDn=\"uni/vmmp-VMware/dom-Datacenter\" domain=\"cons1\"/>\n
<aaaRbacRule objectDn=\"uni/tn-prov1/brc-webCtrct\" domain=\"cons1\"/>\n

</aaaRbacEp>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1414195420515},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"d5c5d580-a11a-7c61-34ac-cbdac249157f",
"name":"provider",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/tn-prov1.xml",
"method":"POST",
"headers":"",
"data":
"<fvTenant name=\"prov1\" status=\"modified\">\n

<fvCtx name=\"prov1\"/>\n
\n <!-- bridge domain -->\n

<fvBD name=\"prov1\">\n
<fvRsCtx tnFvCtxName=\"prov1\" />\n

</fvBD>\n \n
<vzFilter name='t0f0' >\n

<vzEntry etherT='ip' dToPort='10' prot='6' name='t0f0e9' dFromPort='10'>
</vzEntry>\n
</vzFilter>\n \n
<vzFilter name='t0f1'>\n

<vzEntry etherT='ip' dToPort='209' prot='6' name='t0f1e8' dFromPort='109'>
</vzEntry>\n

</vzFilter>\n \n
<vzBrCP name=\"webCtrct\" scope=\"global\">\n
<vzSubj name=\"app\">\n
<vzRsSubjFiltAtt tnVzFilterName=\"t0f0\"/>\n

<vzRsSubjFiltAtt tnVzFilterName=\"t0f1\"/>\n
</vzSubj>\n

</vzBrCP>\n \n
<fvAp name=\"prov1AP\">\n

<fvAEPg name=\"Web\">\n
<fvRsBd tnFvBDName=\"prov1\" />\n

<fvRsNodeAtt tDn=\"topology/pod-1/node-17\" encap=\"vlan-4000\"
instrImedcy=\"immediate\" mode=\"regular\"/>\n

<fvRsProv tnVzBrCPName=\"webCtrct\"/>\n
<fvRsDomAtt tDn=\"uni/vmmp-VMware/dom-Datacenter\"/>\n

<fvSubnet ip=\"10.0.1.128/24\" scope='shared'/>\n
</fvAEPg>\n
</fvAp>\n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398818660457},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"e8866493-2188-8893-8e0c-4ca0903b18b8",
"name":"add user prov1",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/userext.xml",
"method":"POST",
"headers":"",
"data":

Cisco APIC REST API Configuration Guide, Release 4.1(x)
475

Part 3: Setting Up APIC and the Fabric Using the REST API
Sample RBAC Rules

"<aaaUserEp>\n
<aaaUser name=\"prov1\" pwd=\"secret!\">
<aaaUserDomain name=\"prov1\">

<aaaUserRole name=\"tenant-admin\" privType=\"writePriv\"/>
<aaaUserRole name=\"vmm-admin\" privType=\"writePriv\"/>

</aaaUserDomain>
</aaaUser>\n

<aaaUser name=\"cons1\" pwd=\"secret!\">
<aaaUserDomain name=\"cons1\">
<aaaUserRole name=\"tenant-admin\" privType=\"writePriv\"/>
<aaaUserRole name=\"vmm-admin\" privType=\"writePriv\"/>
</aaaUserDomain>
</aaaUser>\n

<aaaDomain name=\"prov1\"/>\n
<aaaDomain name=\"cons1\"/>\n

</aaaUserEp>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398820966635}]}

Enabling Port Security

About Port Security and ACI
The port security feature protects the ACI fabric from being flooded with unknownMAC addresses by limiting
the number of MAC addresses learned per port. The port security feature support is available for physical
ports, port channels, and virtual port channels.

Port Security Guidelines and Restrictions
The guidelines and restrictions are as follows:

• Port security is available per port.

• Port security is supported for physical ports, port channels, and virtual port channels (vPCs).

• Static and dynamic MAC addresses are supported.

• MAC address moves are supported from secured to unsecured ports and from unsecured ports to secured
ports.

• The MAC address limit is enforced only on the MAC address and is not enforced on a MAC and IP
address.

• Port security is not supported with the Fabric Extender (FEX).

Port Security and Learning Behavior
For non-vPC ports or port channels, whenever a learn event comes for a new endpoint, a verification is made
to see if a new learn is allowed. If the corresponding interface has a port security policy not configured or
disabled, the endpoint learning behavior is unchanged with what is supported. If the policy is enabled and the
limit is reached, the current supported action is as follows:

• Learn the endpoint and install it in the hardware with a drop action.

• Silently discard the learn.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
476

Part 3: Setting Up APIC and the Fabric Using the REST API
Enabling Port Security

If the limit is not reached, the endpoint is learned and a verification is made to see if the limit is reached
because of this new endpoint. If the limit is reached, and the learn disable action is configured, learning will
be disabled in the hardware on that interface (on the physical interface or on a port channel or vPC). If the
limit is reached and the learn disable action is not configured, the endpoint will be installed in hardware with
a drop action. Such endpoints are aged normally like any other endpoints.

When the limit is reached for the first time, the operational state of the port security policy object is updated
to reflect it. A static rule is defined to raise a fault so that the user is alerted. A syslog is also raised when the
limit is reached.

In case of vPC, when theMAC limit is reached, the peer leaf switch is also notified so learning can be disabled
on the peer. As the vPC peer can be rebooted any time or vPC legs can become unoperational or restart, this
state will be reconciled with the peer so vPC peers do not go out of sync with this state. If they get out of sync,
there can be a situation where learning is enabled on one leg and disabled on the other leg.

By default, once the limit is reached and learning is disabled, it will be automatically re-enabled after the
default timeout value of 60 seconds.

Port Security at Port Level
In the APIC, the user can configure the port security on switch ports. Once the MAC limit has exceeded the
maximum configured value on a port, all traffic from the exceededMAC addresses is forwarded. The following
attributes are supported:

• Port Security Timeout—The current supported range for the timeout value is from 60 to 3600 seconds.

• Violation Action—The violation action is available in protect mode. In the protect mode, MAC learning
is disabled and MAC addresses are not added to the CAM table. Mac learning is re-enabled after the
configured timeout value.

• Maximum Endpoints—The current supported range for the maximum endpoints configured value is
from 0 to 12000. If the maximum endpoints value is 0, the port security policy is disabled on that port.

Protect Mode
The protect mode prevents further port security violations from occurring. Once the MAC limit exceeds the
maximum configured value on a port, all traffic from excess MAC addresses will be dropped and further
learning is disabled.

Configuring Port Security Using REST API

Configure the port security.

Example:
<polUni>
<infraInfra>

<l2PortSecurityPol name="testL2PortSecurityPol" maximum="10" violation=”protect” timeout=“300"/>

<infraNodeP name="test">
<infraLeafS name="test" type="range">

Cisco APIC REST API Configuration Guide, Release 4.1(x)
477

Part 3: Setting Up APIC and the Fabric Using the REST API
Port Security at Port Level

<infraNodeBlk name="test" from_="101" to_="102"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-test"/>

</infraNodeP>

<infraAccPortP name="test">
<infraHPortS name="pselc" type="range">

<infraPortBlk name="blk"
fromCard="1" toCard="1" fromPort="20" toPort="22">

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-testPortG" />

</infraHPortS>
</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="testPortG">

<infraRsL2PortSecurityPol tnL2PortSecurityPolName="testL2PortSecurityPol"/>
<infraRsAttEntP tDn="uni/infra/attentp-test" />

</infraAccPortGrp>
</infraFuncP>

<infraAttEntityP name="test">
<infraRsDomP tDn="uni/phys-mininet"/>

</infraAttEntityP>
</infraInfra>
</polUni>

Enabling COOP Authentication

Overview
Council of Oracle Protocol (COOP) is used to communicate the mapping information (location and identity)
to the spine proxy. A leaf switch forwards endpoint address information to the spine switch 'Oracle' using
Zero Message Queue (ZMQ). COOP running on the spine nodes will ensure all spine nodes maintain a
consistent copy of endpoint address and location information and additionally maintain the distributed hash
table (DHT) repository of endpoint identity to location mapping database.

COOP data path communication provides high priority to transport using secured connections. COOP is
enhanced to leverage the MD5 option to protect COOP messages from malicious traffic injection. The APIC
controller and switches support COOP protocol authentication.

COOP protocol is enhanced to support two ZMQ authentication modes: strict and compatible.

• Strict mode: COOP allows MD5 authenticated ZMQ connections only.

• Compatible mode: COOP accepts both MD5 authenticated and non-authenticated ZMQ connections for
message transportation.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
478

Part 3: Setting Up APIC and the Fabric Using the REST API
Enabling COOP Authentication

Using COOP with Cisco APIC
To support COOP Zero Message Queue (ZMQ) authentication support across the Cisco Application Centric
Infrastructure (ACI) fabric, the Application Policy Infrastructure Controller (APIC) supports theMD5 password
and also supports the COOP secure mode.

COOP ZMQ Authentication Type Configuration—A new managed object, coop:AuthP, is added to the Data
Management Engine (DME)/COOP database (coop/inst/auth). The default value for the attribute type is
"compatible", and users have the option to configure the type to be "strict".

COOPZMQAuthenticationMD5 password—TheAPIC provides amanaged object (fabric:SecurityToken),
that includes an attribute to be used for theMD5 password. An attribute in this managed object, called "token",
is a string that changes every hour. COOP obtains the notification from the DME to update the password for
ZMQ authentication. The attribute token value is not displayed.

Guidelines and Limitations
Follow these guidelines and limitations:

• During an ACI fabric upgrade, the COOP strict mode is disallowed until all switches are upgraded. This
protection prevents the unexpected rejection of a COOP connection that could be triggered by prematurely
enabling the strict mode.

Configuring COOP Authentication Using the REST API

Configure a COOP authentication policy.

In the example, the strict mode is chosen.

Example:
https://172.23.53.xx/api/node/mo/uni/fabric/pol-default.xml

<coopPol type="strict">
</coopPol>

Enabling Control Plane Policing

About Control Plane Policing
Control plane policing (CoPP) protects the control plane, which ensures network stability, reachability, and
packet delivery.

This feature allows specification of parameters, for each protocol that can reach the control processor to be
rate-limited using a policer. The policing is applied to all traffic destined to any of the IP addresses of the
router or Layer 3 switch. A common attack vector for network devices is the denial-of-service (DoS) attack,
where excessive traffic is directed at the device interfaces.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
479

Part 3: Setting Up APIC and the Fabric Using the REST API
Using COOP with Cisco APIC

The Cisco Application Centric Infrastructure (ACI) leaf and spine switch NX-OS provides CoPP to prevent
DoS attacks from impacting performance. Such attacks, which can be perpetrated either inadvertently or
maliciously, typically involve high rates of traffic destined to the supervisor module of a Cisco ACI leaf and
spine switch CPU or CPU itself.

The supervisor module of Cisco ACI leaf and spine switch switches divides the traffic that it manages into
two functional components or planes:

• Data plane—Handles all the data traffic. The basic functionality of a Cisco NX-OS device is to forward
packets from one interface to another. The packets that are not meant for the switch itself are called the
transit packets. These packets are handled by the data plane.

• Control plane—Handles all routing protocol control traffic. These protocols, such as the Border Gateway
Protocol (BGP) and the Open Shortest Path First (OSPF) Protocol, send control packets between devices.
These packets are destined to router addresses and are called control plane packets.

The Cisco ACI leaf and spine switch supervisor module has a control plane and is critical to the operation of
the network. Any disruption or attacks to the supervisor module will result in serious network outages. For
example, excessive traffic to the supervisor module could overload and slow down the performance of the
entire Cisco ACI fabric. Another example is a DoS attack on the Cisco ACI leaf and spine switch supervisor
module that could generate IP traffic streams to the control plane at a very high rate, forcing the control plane
to spend a large amount of time in handling these packets and preventing the control plane from processing
genuine traffic.

Examples of DoS attacks are as follows:

• Internet Control Message Protocol (ICMP) echo requests

• IP fragments

• TCP SYN flooding

These attacks can impact the device performance and have the following negative effects:

• Reduced service quality (such as poor voice, video, or critical applications traffic)

• High route processor or switch processor CPU utilization

• Route flaps due to loss of routing protocol updates or keepalives

• Processor resource exhaustion, such as the memory and buffers

• Indiscriminate drops of incoming packets

Cisco ACI leaf and spine switches are by default protected by CoPP with default settings. This feature allows
for tuning the parameters on a group of nodes based on customer needs.

Note

Control Plane Protection

To protect the control plane, the Cisco NX-OS running on Cisco ACI leaf and spine switches segregates
different packets destined for the control plane into different classes. Once these classes are identified, the
Cisco NX-OS device polices the packets, which ensures that the supervisor module is not overwhelmed.

Control Plane Packet Types:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
480

Part 3: Setting Up APIC and the Fabric Using the REST API
About Control Plane Policing

Different types of packets can reach the control plane:

• Receive Packets—Packets that have the destination address of a router. The destination address can be
a Layer 2 address (such as a router MAC address) or a Layer 3 address (such as the IP address of a router
interface). These packets include router updates and keepalive messages. Multicast packets can also be
in this category where packets are sent to multicast addresses that are used by a router.

• Exception Packets—Packets that need special handling by the supervisor module. For example, if a
destination address is not present in the Forwarding Information Base (FIB) and results in a miss, the
supervisor module sends an ICMP unreachable packet back to the sender. IP packet with IP options are
dropped by the supervisor.

• Redirect Packets—Packets that are redirected to the supervisor module. Features such as Dynamic Host
Configuration Protocol (DHCP) snooping or dynamic Address Resolution Protocol (ARP) inspection
redirect some packets to the supervisor module.

• Glean Packets—If a Layer 2 MAC address for a destination IP address is not present in the FIB, the
supervisor module receives the packet and sends an ARP request to the host.

All of these different packets could be maliciously used to attack the control plane and overwhelm the Cisco
ACI fabric. CoPP classifies these packets to different classes and provides a mechanism to individually control
the rate at which the Cisco ACI leaf and spine switch supervisor module receives these packets.

Classification for CoPP:

For effective protection, the Cisco ACI leaf and spine switch NX-OS classifies the packets that reach the
supervisor modules to allow you to apply different rate controlling policies based on the type of the packet.
For example, you might want to be less strict with a protocol packet such as Hello messages but more strict
with a packet that is sent to the supervisor module because the IP option is set.

Available Protocols:

DescriptionProtocol

With this protocol, when the bridge domain is in proxy
mode, unknown unicast traffic received by the leaf
switch is sent to the hardware proxy (the spine switch).
The spine switch changes the eth-type of the packet
to a special eth-type (0xfff2). When these packets
reach the leaf switches through the fabric ports, the
packets are classified under glean. The packets are
sent to the leaf switch's CPU, and the leaf switch's
CPU generates an ARP request for the connected
external devices.

Glean

ToR glean activates when an endpoint moves or is
cleared because of link flap and does not update the
source leaf switch's remote IP address endpoint entry.
A packet egresses the source leaf switch with the
destination leaf switch's TEP address. On the
destination leaf switch, because of the missing local
IP address entry, the packet gets sent to the leaf switch
CPU to generate an ARP request for those IP
addresses. These packets are classified under ToR
glean.

ToR Glean

Cisco APIC REST API Configuration Guide, Release 4.1(x)
481

Part 3: Setting Up APIC and the Fabric Using the REST API
About Control Plane Policing

Rate Controlling Mechanisms:

Once the packets are classified, the Cisco ACI leaf and spine switch NX-OS has different mechanisms to
control the rate at which packets arrive at the supervisor module.

You can configure the following parameters for policing:

• Committed information rate (CIR)—Desired bandwidth, specified as a bit rate or a percentage of the
link rate.

• Committed burst (BC)—Size of a traffic burst that can exceed the CIR within a given unit of time and
not impact scheduling.

Default Policing Policies:

When the Cisco ACI leaf and spine switch is bootup, the platform setup pre-defined CoPP parameters for
different protocols are based on the tests done by Cisco.

Guidelines and Limitations for CoPP
CoPP has the following configuration guidelines and limitations:

• We recommend that you use the default CoPP policy initially and then later modify the CoPP policies
based on the data center and application requirements.

• Customizing CoPP is an ongoing process. CoPP must be configured according to the protocols and
features used in your specific environment as well as the supervisor features that are required by the
server environment. As these protocols and features change, CoPP must be modified.

• We recommend that you continuously monitor CoPP. If drops occur, determine if CoPP dropped traffic
unintentionally or in response to a malfunction or attack. In either event, analyze the situation and evaluate
the need to modify the CoPP policies.

• You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive
access to the device. Filtering this traffic could prevent remote access to the Cisco ACI Leaf/Spine and
require a console connection.

• Do not mis-configure CoPP pre-filter entries. CoPP pre-filter entries might impact connectivity to
multi-pod configurations, remote leaf switches, and Cisco ACI Multi-Site deployments.

• You can use the APIC UI to be able to tune the CoPP parameters.

• Per interface per protocol is only supported on Leaf switches.

• FEX ports are not supported on per interface per protocol.

• For per interface per protocol the supported protocols are; ARP, ICMP, CDP, LLDP, LACP, BGP, STP,
BFD, and OSPF.

• The TCAM entry maximum for per interface per protocol is 256. Once the threshold is exceeded a fault
will be raised.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
482

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations for CoPP

Configuring CoPP Using the REST API

Step 1 Configure a CoPP leaf profile:

Example:
<!-- api/node/mo/uni/.xml -->
<infraInfra>
<coppLeafProfile type="custom" name="mycustom"> <!-- define copp leaf profile -->

<coppLeafGen1CustomValues bgpBurst="150" bgpRate="300"/>
</coppLeafProfile>
<infraNodeP name="leafCopp">
<infraLeafS name="leafs" type="range">
<infraNodeBlk name="leaf1" from_="101" to_="101"/>
<infraNodeBlk name="leaf3" from_="103" to_="103"/>
<infraRsAccNodePGrp tDn="uni/infra/funcprof/accnodepgrp-myLeafCopp"/>

</infraLeafS>
</infraNodeP>
<infraFuncP>
<infraAccNodePGrp name="myLeafCopp">
<infraRsLeafCoppProfile tnCoppLeafProfileName="mycustom"/> <!-- bind copp leaf policy to leaf

</infraAccNodePGrp> profile -->
</infraFuncP>

</infraInfra>

Step 2 Configure a CoPP spine profile:

Example:
<!-- api/node/mo/uni/.xml -->
<infraInfra>
<coppSpineProfile type="custom" name="mycustomSpine"> <!-- define copp leaf profile

-->
<coppSpineGen1CustomValues bgpBurst="150" bgpRate="300"/>

</coppSpineProfile>
<infraSpineP name="spineCopp">
<infraSpineS name="spines" type="range">
<infraNodeBlk name="spine1" from_="104" to_="104"/>
<infraRsSpineAccNodePGrp tDn="uni/infra/funcprof/spaccnodepgrp-mySpineCopp"/>

</infraSpineS>
</infraSpineP>
<infraFuncP>
<infraSpineAccNodePGrp name="mySpineCopp">
<infraRsSpineCoppProfile tnCoppSpineProfileName="mycustomSpine"/> <!-- bind copp spine policy

to
</infraSpineAccNodePGrp> spine profile -->

</infraFuncP>
</infraInfra>

Configuring CoPP Per Interface Per Protocol Using REST API

Configure a CoPP per interface per protocol:

Example:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
483

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring CoPP Using the REST API

<polUni>
<infraInfra>
<infraNodeP name="default">

<infraLeafS name="default" type="range">
<infraNodeBlk name="default" to_="101" from_="101"/>

</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-default"/>

</infraNodeP>
<infraAccPortP name="default">

<infraHPortS name="regularPorts" type="range">
<infraPortBlk name="blk1" toPort="7" fromPort="1" toCard="1" fromCard="1"/>

<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-copp"/>
</infraHPortS>

</infraAccPortP>

<infraFuncP>
<infraAccPortGrp name="copp">

<infraRsCoppIfPol tnCoppIfPolName="pc"/>
</infraAccPortGrp>

</infraFuncP>

<coppIfPol name = "pc" >
<coppProtoClassP name = "test" matchProto="lldp,arp" rate="505" burst = "201"/>
<coppProtoClassP name = "test1" matchProto="bgp" rate="500" burst = "200" />

</coppIfPol>
</infraInfra>
</polUni>

Configuring First Hop Security

About First Hop Security
First-Hop Security (FHS) features enable a better IPv4 and IPv6 link security and management over the layer
2 links. In a service provider environment, these features closely control address assignment and derived
operations, such as Duplicate Address Detection (DAD) and Address Resolution (AR).

The following supported FHS features secure the protocols and help build a secure endpoint database on the
fabric leaf switches, that are used to mitigate security threats such as MIM attacks and IP thefts:

• ARP Inspection—allows a network administrator to intercept, log, and discard ARP packets with invalid
MAC address to IP address bindings.

• ND Inspection—learns and secures bindings for stateless autoconfiguration addresses in Layer 2 neighbor
tables.

• DHCP Inspection—validates DHCP messages received from untrusted sources and filters out invalid
messages.

• RA Guard—allows the network administrator to block or reject unwanted or rogue router advertisement
(RA) guard messages.

• IPv4 and IPv6 Source Guard—blocks any data traffic from an unknown source.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
484

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring First Hop Security

• Trust Control—a trusted source is a device that is under your administrative control. These devices
include the switches, routers, and servers in the Fabric. Any device beyond the firewall or outside the
network is an untrusted source. Generally, host ports are treated as untrusted sources.

FHS features provide the following security measures:

• Role Enforcement—Prevents untrusted hosts from sending messages that are out the scope of their role.

• Binding Enforcement—Prevents address theft.

• DoS Attack Mitigations—Prevents malicious end-points to grow the end-point database to the point
where the database could stop providing operation services.

• Proxy Services—Provides some proxy-services to increase the efficiency of address resolution.

FHS features are enabled on a per tenant bridge domain (BD) basis. As the bridge domain, may be deployed
on a single or across multiple leaf switches, the FHS threat control andmitigationmechanisms cater to a single
switch and multiple switch scenarios.

ACI FHS Deployment
Most FHS features are configured in a two-step fashion: firstly you define a policy which describes the behavior
of the feature, secondly you apply this policy to a "domain" (being the Tenant Bridge Domain or the Tenant
Endpoint Group). Different policies that define different behaviors can be applied to different intersecting
domains. The decision to use a specific policy is taken by the most specific domain to which the policy is
applied.

The policy options can be defined from the Cisco APIC GUI found under the
Tenant_name>Networking>Protocol Policies>First Hop Security tab.

Guidelines and Limitations
Follow these guidelines and limitations:

• Starting with release 3.1(1), FHS is supported with virtual Endpoints (AVS only).

• FHS is supported with both VLAN and VXLAN encapsulation.

• Any secured endpoint entry in the FHS Binding Table Database in DOWN state will get cleared after
18 Hours of timeout. The entry moves to DOWN state when the front panel port where the entry is
learned is link down. During this window of 18 Hours, if the endpoint is moved to a different location
and is seen on a different port, the entry will be gracefully moved out of DOWN state to
REACHABLE/STALE as long as the endpoint is reachable from the other port it is moved from.

• When IP Source Guard is enabled, the IPv6 traffic that is sourced using IPv6 Link Local address as IP
source address is not subject to the IP Source Guard enforcement (i.e. Enforcement of Source Mac <=>
Source IP Bindings secured by IP Inspect Feature). This traffic is permitted by default irrespective of
binding check failures.

• FHS is not supported on L3Out interfaces.

• FHS is not supported N9K-M12PQ based TORs.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
485

Part 3: Setting Up APIC and the Fabric Using the REST API
ACI FHS Deployment

• FHS in ACI Multi-Site is a site local capability therefore it can only be enabled in a site from the APIC
cluster. Also, FHS in ACI Multi-Site only works when the BD and EPG is site local and not stretched
across sites. FHS security cannot be enabled for stretched BD or EPGs.

• FHS is not supported on a Layer 2 only bridge domain.

• Enabling FHS feature can disrupt traffic for 50 seconds because the EP in the BD are flushed and EP
Learning in the BD is disabled for 50 seconds.

Configuring FHS in APIC Using REST API

Before you begin

• The tenant and bridge domain must be configured.

Configure the FHS and Trust Control policies.

Example:
<polUni>

<fvTenant name="Coke">
<fhsBDPol name="bdpol5" ipInspectAdminSt="enabled-ipv6" srcGuardAdminSt="enabled-both"

raGuardAdminSt="enabled" status="">
<fhsRaGuardPol name="raguard5" managedConfigCheck="true" managedConfigFlag="true"

otherConfigCheck="true" otherConfigFlag="true" maxRouterPref="medium" minHopLimit="3" maxHopLimit="15"
status=""/>

</fhsBDPol>
<fvBD name="bd3">

<fvRsBDToFhs tnFhsBDPolName="bdpol5" status=""/>
</fvBD>

</fvTenant>
</polUni>

<polUni>
<fvTenant name="Coke">

<fhsTrustCtrlPol name="trustctrl5" hasDhcpv4Server="true" hasDhcpv6Server="true"
hasIpv6Router="true" trustRa="true" trustArp="true" trustNd="true" />

<fvAp name="wwwCokecom3">
<fvAEPg name="test966">
<fvRsTrustCtrl tnFhsTrustCtrlPolName="trustctrl5" status=""/>

</fvAEPg>
</fvAp>

</fvTenant>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
486

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring FHS in APIC Using REST API

Configuring 802.1x

802.1X Overview
802.1X defines a client-server based access control and authentication protocol that restricts unauthorized
clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates
each client connected to a Cisco NX-OS device port.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over
LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful,
normal traffic can pass through the port.

The RADIUS distributed client/server system allows you to secure networks against unauthorized access. In
the Cisco ACI implementation, RADIUS clients run on the ToRs and send authentication and accounting
requests to a central RADIUS server that contains all user authentication and network service access information.

Host Support
The 802.1X feature can restrict traffic on a port with the following modes:

• Single-host Mode—Allows traffic from only one endpoint device on the 802.1X port. Once the endpoint
device is authenticated, the APIC puts the port in the authorized state. When the endpoint device leaves
the port, the APIC put the port back into the unauthorized state. A security violation in 802.1X is defined
as a detection of frames sourced from any MAC address other than the single MAC address authorized
as a result of successful authentication. In this case, the interface on which this security association
violation is detected (EAPOL frame from the other MAC address) will be disabled. Single host mode is
applicable only for host-to-switch topology and when a single host is connected to the Layer 2 (Ethernet
access port) or Layer 3 port (routed port) of the APIC.

• Multi-host Mode—Allows multiple hosts per port but only the first one gets authenticated. The port is
moved to the authorized state after the successful authorization of the first host. Subsequent hosts are
not required to be authorized to gain network access once the port is in the authorized state. If the port
becomes unauthorized when reauthentication fails or an EAPOL logoff message is received, all attached
hosts are denied access to the network. The capability of the interface to shut down upon security
association violation is disabled in multiple host mode. This mode is applicable for both switch-to-switch
and host-to-switch topologies

• Multi-Auth Mode—Allows multiple hosts and all hosts are authenticated separately.

Each host must have the same EPG/VLAN information.Note

• Multi-Domain Mode—For separate data and voice domain. For use with IP-Phones.

Authentication Modes
ACI 802.1X supports the following authentication modes:

Cisco APIC REST API Configuration Guide, Release 4.1(x)
487

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1x

• EAP—The authenticator then sends an EAP-request/identity frame to the supplicant to request its identity
(typically, the authenticator sends an initial identity/request frame followed by one or more requests for
authentication information). When the supplicant receives the frame, it responds with an
EAP-response/identity frame.

• MAB—MAC Authentication Bypass (MAB) is supported as the fallback authentication mode. MAB
enables port-based access control using the MAC address of the endpoint. A MAB-enabled port can be
dynamically enabled or disabled based on the MAC address of the device that connects to it. Prior to
MAB, the endpoint's identity is unknown and all traffic is blocked. The switch examines a single packet
to learn and authenticate the sourceMAC address. After MAB succeeds, the endpoint's identity is known
and all traffic from that endpoint is allowed. The switch performs source MAC address filtering to help
ensure that only the MAB-authenticated endpoint is allowed to send traffic.

Guidelines and Limitations
802.1X port-based authentication has the following configuration guidelines and limitations:

• The Cisco ACI supports 802.1X authentication only on physical ports.

• The Cisco ACI does not support 802.1X authentication on port channels or subinterfaces.

• The Cisco ACI supports 802.1X authentication on member ports of a port channel but not on the port
channel itself.

• Member ports with and without 802.1X configuration can coexist in a port channel. However, you must
ensure the identical 802.1X configuration on all the member ports in order for channeling to operate with
802.1X

• When you enable 802.1X authentication, supplicants are authenticated before any other Layer 2 or Layer
3 features are enabled on an Ethernet interface.

• 802.1X is supported only on a leaf chassis that is EX or FX type.

• 802.1X is only supported Fabric Access Ports. 802.1X is not supported on Port-Channels, or
Virtual-Port-Channels.

• IPv6 is not supported for dot1x clients in the 3.2(1) release.

• While downgrading to earlier releases especially in cases where certain interface config (host mode and
auth type) is unsupported in that release, dot1x authentication type defaults to none. Host-mode would
need to be manually re-configured to either single host/multi host depending on whatever is desired. This
is to ensure that the user configures only the supported modes/auth-types in that release and doesn’t run
into unsupported scenarios.

• Multi-Auth supports 1 voice client and multiple data clients (all belonging to same data vlan/epg).

• Fail-epg/vlan under 802.1X node authentication policy is a mandatory configuration.

• Multi-domain more than 1 voice and 1 data client puts the port in security disabled state.

• The following platforms are not supported for 802.1X:

• N9K-C9396PX

• N9K-M12PQ

• N9K-C93128TX

Cisco APIC REST API Configuration Guide, Release 4.1(x)
488

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations

• N9K-M12PQ

Configuration Overview
The 802.1X and RADIUS processes are started only when enabled by APIC. Internally, this means dot1x
process is started when 802.1X Inst MO is created and radius process is created when radius entity is created.
Dot1x based authentication must be enabled on each interface for authenticating users connected on that
interface otherwise the behavior is unchanged.

RADIUS server configuration is done separately from dot1x configuration. RADIUS configuration defines
a list of RADIUS servers and a way to reach them. Dot1x configuration contains a reference to RADIUS
group (or default group) to use for authentication.

Both 802.1X and RADIUS configuration must be done for successful authentication. Order of configuration
is not important but if there is no RADIUS configuration then 802.1X authentication cannot be successful.

Configuring 802.1X Node Authentication Using the REST API

Configure a 802.1X node authentication policy:

Example:
<polUni>
<infraInfra>
<l2NodeAuthPol annotation="" descr="" dn="uni/infra/nodeauthpol-802-node-2"

failAuthEpg="tn-t2,ap-ap,epg-epg1" failAuthVlan="vlan-2078" name="802-node-2" nameAlias="" ownerKey=""
ownerTag="">
<l2RsAaaRadiusProviderGroup annotation="" tDn="uni/userext/radiusext/radiusprovidergroup-radius-grp"/>
</l2NodeAuthPol>
</infraInfra>
</polUni>

Modify:
<polUni>
<infraInfra>
<l2NodeAuthPol annotation="" descr="" dn="uni/infra/nodeauthpol-802-node-2"

failAuthEpg="tn-t2,ap-ap,epg-epg1" failAuthVlan="vlan-2066" name="802-node-2" nameAlias="" ownerKey=""
ownerTag="" status="deleted">
<l2RsAaaRadiusProviderGroup annotation="" tDn="uni/userext/radiusext/radiusprovidergroup-radius-grp"/>
</l2NodeAuthPol>
</infraInfra>
</polUni>

Delete:
<polUni>
<infraInfra>
<l2NodeAuthPol annotation="" descr="" dn="uni/infra/nodeauthpol-802-node-2"

failAuthEpg="tn-t2,ap-ap,epg-epg1" failAuthVlan="vlan-2078" name="802-node-2" nameAlias="" ownerKey=""
ownerTag="" status="deleted">
<l2RsAaaRadiusProviderGroup annotation="" tDn="uni/userext/radiusext/radiusprovidergroup-radius-grp"
status="deleted"/>
</l2NodeAuthPol>
</infraInfra>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
489

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuration Overview

Configuring 802.1X Port Authentication Using the REST API

Create a 802.1X port authentication policy:

Example:
<polUni>
<infraInfra>
<l2PortAuthPol adminSt="enabled" annotation="" descr="" dn="uni/infra/portauthpol-test21"

hostMode="multi-auth" name="test21" nameAlias="" ownerKey="" ownerTag="">
<l2PortAuthCfgPol annotation="" macAuth="bypass" maxReauthReq="2" maxReq="2" reAuthPeriod="3600"

serverTimeout="30" suppTimeout="30" txPeriod="30"/>
</l2PortAuthPol>

</infraInfra>
</polUni>

Modify:
<polUni>
<infraInfra>
<l2PortAuthPol adminSt="enabled" annotation="" descr="" dn="uni/infra/portauthpol-test21"

hostMode="multi-domain" name="test21" nameAlias="" ownerKey="" ownerTag="" >
<l2PortAuthCfgPol annotation="" macAuth="eap" maxReauthReq="2" maxReq="2" reAuthPeriod="3600"

serverTimeout="30" suppTimeout="30" txPeriod="30"/>
</l2PortAuthPol>

</infraInfra>
</polUni>

Delete:
<polUni>
<infraInfra>
<l2PortAuthPol adminSt="enabled" annotation="" descr="" dn="uni/infra/portauthpol-test21"

hostMode="multi-host" name="test21" nameAlias="" ownerKey="" ownerTag="" status="deleted">
<l2PortAuthCfgPol annotation="" macAuth="bypass" maxReauthReq="2" maxReq="2" reAuthPeriod="3600"

serverTimeout="30" suppTimeout="30" txPeriod="30" status="deleted"/>
</l2PortAuthPol>

</infraInfra>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
490

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring 802.1X Port Authentication Using the REST API

C H A P T E R 19
Creating Quota Management

• About APIC Quota Management Configuration, on page 491
• Creating a Quota Management Configuration Using the REST API, on page 491

About APIC Quota Management Configuration
Starting in the Cisco Application Policy Infrastructure Controller (APIC) Release 2.3(1), there are limits on
number of objects a tenant admin can configure. This enables the admin to limit what managed objects that
can be added under a given tenant or globally across tenants.

This feature is useful when you want to limit any tenant or group of tenants from exceeding ACI maximums
per leaf or per fabric or unfairly consuming a majority of available resources, potentially affecting other tenants
on the same fabric.

Creating a Quota Management Configuration Using the REST
API

This procedure explains how to create a quota management configuration using the REST API.

SUMMARY STEPS

1. Create a quota management configuration using the REST API:

DETAILED STEPS

Create a quota management configuration using the REST API:

Example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/node/mo/.xml -->
<polUni>

<quotaCont>

<quotaConf class="fvBD" containerDn=”uni/tn-green” maxNum=”10” exceedAction=”fault”/>
<quotaConf class="fvBD" containerDn=”uni/tn-baz” maxNum=”100” exceedAction=”fail”/>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
491

</quotaCont>
</polUni>

Cisco APIC REST API Configuration Guide, Release 4.1(x)
492

Part 3: Setting Up APIC and the Fabric Using the REST API
Creating a Quota Management Configuration Using the REST API

C H A P T E R 20
Configuring a Forwarding Scale Profile Policy

• Forwarding Scale Profile Policy Overview, on page 493
• Supported Platforms, on page 495
• Guidelines and Limitations, on page 496
• Configuring the Forwarding Scale Profile Policy Using the REST API, on page 497

Forwarding Scale Profile Policy Overview
The Forwarding Scale Profile policy provides different scalability options. For example:

• Dual Stack—provides scalability of up to 12,000 endpoints for IPv6 configurations and up to 24,000
endpoints for IPv4 configurations.

• High LPM—provides scalability similar to the dual-stack profile, except that the longest prefix match
(LPM) scale is 128,000 and the policy scale is 8,000.

• IPv4 Scale—enables systemswith no IPv6 configurations to increase scalability to 48,000 IPv4 endpoints.

• High Dual Stack—provides scalability of up to 64,000 MAC endpoints and 64,000 IPv4 endpoints.
IPv6 endpoint scale can be 24,000/48,000, depending on the switch hardware model.

With Cisco Application Policy Infrastructure Controller (APIC) release 3.2(1),
depending on your leaf switch hardware, a Forwarding Scale Profile with the
High Dual Stack option has different scales; for example:

• For Cisco Nexus 9000 Series leaf switches with FX in the switch name, the
high dual-stack option has scalability of 48,000 IPv6 endpoints instead of
24,000 and 128,000 policies instead of 8,000.

• For Cisco Nexus 9000 Series leaf switches with EX in the switch name, the
high dual-stack option has the same scale values as with earlier Cisco APIC
releases.

See the following table for more details.

Note

Cisco APIC REST API Configuration Guide, Release 4.1(x)
493

Table 13: Forwarding Scale Profile Policy Scalability

Leaf Switches with FX NamesLeaf Switches with EX and FX2
Names

Forwarding Scale Profile Policy
Options

Has the same scalability numbers
as Dual Stack scale on earlier
switches.

• EP MAC: 24,000

• EP IPv4: 24,000

• EP IPv6: 12,000

• LPM: 20,000

• Policy: 64,000

• Multicast: 8,000

Dual Stack

• EP MAC: 64,000

• EP IPv4: 64,000

• EP IPv6: 48,000

• LPM: 38,000

• Policy: 128,000

• Multicast: 32,000

• EP MAC: 64,000

• EP IPv4: 64,000

• EP IPv6: 24,000

• LPM: 38,000

• Policy: 8,000

• Multicast: 512

High Dual Stack

Has the same scalability numbers
as on earlier switches.

Provides scalability similar to the
dual-stack profile, except that the
longest prefix match (LPM) scale
is 128,000 and the policy scale is
8,000.

High LPM

Has the same scalability numbers
as IPv4 scale on earlier switches.

• EP MAC: 48,000

• EP IPv4: 48,000

• EP IPv6: 0

• LPM: 38,000

• Policy: 64,000

• Multicast: 8,000

IPv4 Scale

Cisco APIC REST API Configuration Guide, Release 4.1(x)
494

Part 3: Setting Up APIC and the Fabric Using the REST API
Forwarding Scale Profile Policy Overview

• For Cisco Nexus 9000 Series leaf switches with FX2 in the switch name, the scale values are same as
those of EX series switches.

• Because the IPv4 forwarding scale profile policy does not support IPv6 configurations, all IPv6
configurations must be removed from switches configured with the IPv4 forwarding scale profile policy.

• For leaf switch models with EX at the end of the switch name, because the high dual stack profile has
reduced-scale support for contract policies (8,000), the contracts scale must be reduced accordingly prior
to deploying that profile.

• Before migrating to minimal tenant multicast scale leaf profiles, such as high dual stack, we recommend
that you first disable Layer 2 IGMP snooping-, Layer 3 IGMP-, and PIM-related configurations to prevent
having a stale multicast state in your hardware.

• Applying a scale profile to a node requires a manual reload of that node. Any unsupported switches are
ignored. The following switches are supported:

• Cisco Nexus 9300-EX series switches

• Cisco Nexus 9300-FX series switches

• Cisco Nexus 9300-FX2 series switches

• vPCs associated with different scale profile settings are not supported. The vPC members must be
configured with the same scale profile settings.

Note

Supported Platforms
This section provides forwarding scale profiles hardware support information for Release 4.1(1).

The following table summarizes platform support for each forwarding scale profile.

Table 14: Supported Switches

Supported on FX SwitchesSupported on EX and FX2 SwitchesScale Profile

YesYesDual Stack

Yes

Different scale numbers than
EX/FX2.

YesHigh Dual Stack

YesYesHigh LPM

YesYesIPv4 Scale

• Forwarding scale profiles are supported on the following switches:

• Cisco Nexus 9300-EX series switches

• Cisco Nexus 9300-FX series switches

Cisco APIC REST API Configuration Guide, Release 4.1(x)
495

Part 3: Setting Up APIC and the Fabric Using the REST API
Supported Platforms

• Cisco Nexus 9300-FX2 series switches

• Switches not listed here do not support forwarding scale profiles in this release.

Guidelines and Limitations
• When downgrading to a release that does not support one or more switches in your current fabric, keep
the following in mind:

• If you downgrade your fabric to a release where one or more of your current switches are not
supported, those switches will become inactive in the fabric.

• If you later upgrade the fabric to a release where the switch is supported again, the APIC will not
regain complete details about the switch. In this case, you will need to explicitly remove the switch
from the APIC and then re-add it to the fabric.

• When downgrading to a release that does not support one or more of your current forwarding scale
profiles, the default forwarding scale profile will be configured on the switch. You must reduce the
configurations on the switch to fit the default profile before the upgrade.

• Because the IPv4 Scale forwarding scale profile does not support IPv6 configurations, you must remove
all IPv6 configurations from the switches that need to be configured with the IPv4 Scale profile.

• Before switching between forwarding scale profiles, the configurations on the switch must be reduced
appropriately and thoroughly verified so that scale parameters of the target profile are not exceeded.

For example, for switch models with EX at the end of the switch name, because the High Dual Stack
profile has reduced scale support for contract policies, you must reduce the contracts scale accordingly
before deploying that profile.

• Before migrating to minimal tenant multicast scale leaf profiles, such as High Dual Stack, we recommend
that you first disable Layer 2 IGMP snooping, Layer 3 IGMP, and PIM-related configurations to prevent
having a stale multicast state in your hardware.

• Applying a forwarding scale profile to a node requires a manual reload of that node. Any unsupported
switches are ignored.

• vPCs associated with different forwarding scale profile settings are not supported. You must configure
the vPC members with the same profile settings.

• With the default denymodel in Cisco ACI, the configured tenant or VRFs have implicit rules that consume
several TCAM entries for each VRF. With an increase in the number of VRFs configured on a single
switch, these TCAM entries that are used per VRF also count toward the overall policy TCAM usage.

• Beginning with Release 4.1(1), the policy count updates that are reported by the leaf switches to the
Cisco APIC through theMO actrlRuleHit5min is set to 0 for the HighDual Stack profile for all platforms.

• Beginning with Release 4.2(1), the policy count updates that are reported by the leaf switches to the
Cisco APIC through theMO actrlRuleHit5min is set to 0 for the High Policy profile on the Cisco Nexus
93180YC-FX switch.

• Beginning with Release 4.2(2), the policy count updates that are reported by the leaf switches to the
Cisco APIC through theMO actrlRuleHit5min is set to 0 for the High Policy profile on the Cisco Nexus
93600CD-GX switch.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
496

Part 3: Setting Up APIC and the Fabric Using the REST API
Guidelines and Limitations

• Beginning with Release 4.2(3l), the policy count updates that are reported by the leaf switches to the
Cisco APIC through theMO actrlRuleHit5min is set to 0 for the High Policy profile on the Cisco Nexus
9364C-GX switch.

• If you need to clear the configurations on the switch, we recommend using the setup-clean-config.sh
-k command. The command will clear all configurations on the switch, except the forwarding scale
profile and port profile configurations.

Configuring the Forwarding Scale Profile Policy Using the REST
API

The forwarding scale profile policy requires supported switches. For a list of supported switches, see the
supported platforms section. The switches that support the forwarding scale profile policy must be manually
reloaded after the forwarding scale profile policy is applied.

The Forwarding Scale Profile policy provides different scalability options. For more information on the
scalability options, see Forwarding Scale Profile Policy Overview, on page 493.

This section explains how to create a forwarding scale profile policy and apply it to a leaf profile using the
REST API.

To apply a forwarding scale profile policy with IPv4 scaling, send a post with XML similar to the following example:

Example:
<polUni>

<infraInfra>
<topoctrlFwdScaleProfilePol name=“sampleFwdScaleProf" profType="ipv4"/>
<infraAccNodePGrp name=“sampleNodePolGrp">

<infraRsTopoctrlFwdScaleProfPol tnTopoctrlFwdScaleProfilePolName=“sampleFwdScaleProf"/>
</infraAccNodePGrp>
<infraNodeP name=“nodeProf_101">

<infraLeafS name=“leafS_101" type="range">
<infraNodeBlk name="test" from_="101" to_="101"/>
<infraRsAccNodePGrp tDn="uni/infra/funcprof/accnodepgrp-sampleNodePolGrp "/>

</infraLeafS>
</infraNodeP>

</infraInfra>
</polUni>

To take effect, the switches that support the forwarding scale profile policy must be manually reloaded after
the forwarding scale profile policy is applied.

Cisco APIC REST API Configuration Guide, Release 4.1(x)
497

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring the Forwarding Scale Profile Policy Using the REST API

Cisco APIC REST API Configuration Guide, Release 4.1(x)
498

Part 3: Setting Up APIC and the Fabric Using the REST API
Configuring the Forwarding Scale Profile Policy Using the REST API

	Cisco APIC REST API Configuration Guide, Release 4.1(x)
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation
	Documentation Feedback

	New and Changed Information
	New and Changed Information

	Part 1: Cisco APIC REST API Usage Guidelines
	Using the REST API
	About the REST API
	Management Information Model
	Object Naming
	Guidelines and Limitations for Using the REST API

	Composing REST API Requests
	Read and Write Operations and Filters
	Using Classes in REST API Commands
	Using Managed Objects in REST API Commands
	Creating the API Command
	Composing the API Command Body
	Composing the API Command Body to Call a Method
	Composing the API Command Body for an API Operation on an MO
	Using Tags and Alias

	Composing REST API Queries
	Composing Query Filter Expressions
	Applying Query Scoping Filters
	Filtering API Query Results
	Filter Conditional Operators
	Sorting and Paginating Query Results
	Subscribing to Query Results

	REST API Examples
	Information About the API Examples
	Example: Using the JSON API to Add a Leaf Port Selector Profile
	Example: Using the JSON API to Get Information About a Node
	Example: Using the JSON API to Get Running Firmware
	Example: Using the JSON API to Get Top Level System Elements
	Example: Using the XML API and OwnerTag to Add Audit Log Information to Actions
	Example: XML Get Endpoints (Devices) with IP and MAC Addresses
	Example: Monitoring Using the REST API

	Accessing the REST API
	Accessing the REST API
	Invoking the API
	Configuring the HTTP Request Method and Content Type
	Configuring HTTP and HTTPS Using the GUI
	Configuring HTTP and HTTPS Throttling Using the CLI
	Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI
	Authenticating and Maintaining an API Session
	Requiring a Challenge Token for an API Session
	Logging In
	Changing Your Own User Credentials

	REST API Tools
	Management Information Model Reference
	Viewing an API Interchange in the GUI
	Testing the API Using Browser Add-Ons
	Testing the API with cURL
	Cisco APIC Python SDK
	Using the Managed Object Browser (Visore)
	Visore Browser Page
	Accessing Visore
	Running a Query in Visore

	Part 2: Common APIC Tasks Using the REST API
	Managing APIC Using the REST API
	Adding Management Access
	In-Band and Out-of-Band Management Access
	About Static Management Access
	Configuring In-Band Management Access Using the REST API
	Configuring Static In-Band Management Access Using the REST API
	Configuring Out-of-Band Management Access Using the REST API
	Configuring Static Out-of-Band Management Access Using the REST API

	Managing Configuration Files
	Overview
	Backing Up, Restoring, and Rolling Back Configuration Files Workflow
	About Configuration Export to Controllers
	About Configuration Import to Controller
	Configuration File Encryption
	About the fileRemotePath Object
	Configuring a Remote Location Using the REST API
	Configuring Configuration File Export to Controller Using the REST API
	Configuring a Configuration File Import Policy Using the REST API
	Encrypting Configuration Files Using the REST API

	Snapshots and Rollbacks
	Snapshots
	About Rollbacks
	Uploading and Downloading Snapshots Using the REST API
	Configuring and Executing a Configuration Rollback Using the REST API

	Using Configuration Zones
	Configuration Zones
	Configuration Zone Supported Policies

	Creating Configuration Zones Using the REST API

	Managing Roles, Users, and Signature-Based Transactions
	Managing APIC Roles and Users
	User Access, Authorization, and Accounting
	Accounting
	Multiple Tenant Support
	User Access: Roles, Privileges, and Security Domains
	Configuring a Custom Role Using the REST API
	Configuring a Local User
	Configuring a Local User Using the REST API
	Configuring a Remote User
	Configuring a Remote User Using the REST API

	APIC Signature-Based Transactions
	About Signature-Based Transactions
	Using a Private Key to Calculate a Signature
	Guidelines and Limitations
	Creating a Local User and Adding a User Certificate Using the REST API

	Common Tenant Tasks
	Common Tenant Tasks
	Tenants Overview
	Tenant Creation
	Adding a Tenant
	Example: Using the JSON API to Add a Tenant
	Example: Using the XML API to Add a Tenant

	Managing Layer 2 Networking
	Tenant External Bridged Networks
	Bridged Interface to an External Router
	VRF and Bridge Domains
	Creating a Tenant, VRF, and Bridge Domain Using the REST API

	Ports
	Statically Deploying an EPG on a Specific Port
	Deploying an EPG on a Specific Port with APIC Using the REST API
	Creating Domains, Attach Entity Profiles, and VLANs to Deploy an EPG on a Specific Port
	Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API

	Creating a Port Channel Policy Using the REST API

	Managing Layer 3 Networking
	Configuring External Connectivity Using a Layer 3 Out
	Configuring a Tenant Layer 3 Outside Network Connection Overview
	Configuring Layer 3 Outside for Tenant Networks Using the REST API
	Configuring BGP Max Path
	Configuring BGP Max Path Using the REST API

	Configuring AS Path Prepend
	Configuring AS Path Prepend Using the REST API

	Configuring BFD
	Configuring BFD Globally Using the REST API
	Configuring BFD Interface Override Using the REST API
	Configuring BFD Consumer Protocols Using the REST API

	Monitoring Using the REST API
	About Monitoring Using the REST API
	Monitoring APIC Using the REST API

	APIC
	Monitoring APIC CPU and Memory Usage Using the REST API
	Monitoring APIC Disk Utilization Using the REST API
	Monitoring Physical Interface Statistics and Link State Using the REST API

	Fabric
	Monitoring LLDP and CDP Neighbor Status Using the REST API
	Monitoring Physical and Bond Interfaces Using the REST API
	Monitoring EPG-Level Statistics Using the REST API

	Switches
	Monitoring Switch CPU Utilization Using the REST API
	Monitoring Switch Fan Status Using the REST API
	Monitoring Switch Memory Utilization Using the REST API
	Monitoring Switch Module Status Using the REST API
	Monitoring Switch Power Supply Status Using the REST API
	Monitoring Switch Inventory Using the REST API

	External Monitoring
	Smart Callhome
	About Smart Callhome
	Creating a Smart Callhome Destination Group Using the REST API

	TACACS External Logging
	About TACACS External Logging
	Creating a TACACS External Logging Destination Group Using the REST API
	Creating a TACACS External Logging Source Using the REST API

	Troubleshooting Using the REST API
	Collecting and Exporting Technical Support Information
	About Exporting Files
	Sending an On-Demand Tech Support File Using the REST API

	Troubleshooting Using Atomic Counters
	Atomic Counters
	Enabling Atomic Counters
	About Fabric Latency
	About PTP
	Troubleshooting Using Atomic Counters with the REST API
	Configuring Latency and PTP Using the REST API

	Troubleshooting Using Faults
	Understanding APIC Faults
	Troubleshooting Using Faults with the REST API

	Statistics
	Configuring a Stats Monitoring Policy Using the REST API

	Recovering a Disconnected Leaf
	Recovering a Disconnected Leaf
	Recovering a Disconnected Leaf Using the REST API

	Troubleshooting Contracts and Taboo Contracts with Permit and Deny Logging
	Verifying Contracts, Taboo Contracts, and Filters Using the REST API
	Viewing ACL Permit and Deny Logs Using the REST API

	Troubleshooting Using Digital Optical Monitoring Statistics
	Troubleshooting Using Digital Optical Monitoring With the REST API

	Troubleshooting Using Port Tracking
	Port Tracking Policy for Fabric Port Failure Detection
	Port Tracking Using the REST API

	Removing Unwanted _ui_ Objects
	Removing Unwanted _ui_ Objects Using the REST API

	Troubleshooting Using Contract Permit and Deny Logs
	About ACL Contract Permit and Deny Logs
	Enabling ACL Contract Permit Logging Using the REST API
	Enabling Taboo Contract Deny Logging Using the REST API
	Viewing ACL Permit and Deny Logs Using the REST API

	Part 3: Setting Up APIC and the Fabric Using the REST API
	Managing APIC Clusters
	Cluster Management Guidelines
	Cluster Management Guidelines

	Expanding and Contracting Clusters
	Expanding the APIC Cluster Size
	Expanding the Cisco APIC Cluster
	Expanding the APIC Cluster Using the REST API
	Contracting the Cisco APIC Cluster
	Contracting the APIC Cluster Using the REST API

	Managing Cluster High Availability
	About Cold Standby for a Cisco APIC Cluster
	Switching Over Active APIC with Standby APIC Using REST API

	Managing Fabrics
	Maintenance Mode
	Removing a Switch to Maintenance Mode Using the REST API
	Inserting a Switch to Operation Mode Using the CLI

	Configuring Tenant Policies
	Basic Tenant Configuration
	Creating a Tenant, VRF, and Bridge Domain Using the REST API

	Tenants in Multiple Private Networks
	About Multiple Private Networks with Inter-Tenant Communication
	Configuring Multiple Private Networks with Inter-Tenant Communication Using the REST API
	About Multiple Private Networks with Intra-Tenant Communication
	Configuring Multiple Tenants with Intra-Tenant Communication Using the REST API

	Tenant Policy Example
	Tenant Policy Example Overview
	Tenant Policy Example XML Code
	Tenant Policy Example Explanation
	Policy Universe
	Tenant Policy Example
	Filters
	Contracts
	Subjects
	Labels
	VRF
	Bridge Domains
	Application Profiles
	Endpoints and Endpoint Groups (EPGs)
	Closing

	What the Example Tenant Policy Does

	EPGs
	Deploying an Application EPG through an AEP or Interface Policy Group to Multiple Ports
	Deploying an EPG on a Specific Port with APIC Using the REST API
	Deploying an EPG through an AEP to Multiple Interfaces Using the REST API
	Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API

	Intra-EPG Isolation
	Intra-EPG Isolation for Bare Metal Servers
	Configuring Intra-EPG Isolation for Bare Metal Servers Using the REST API
	Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch
	Configuring Intra-EPG Isolation for VMware VDS or Microsoft Hyper-V Virtual Switch using the REST API
	Intra-EPG Isolation Enforcement for Cisco AVS
	Configuring Intra-EPG Isolation for Cisco AVS Using the REST API

	Microsegmentation
	Using Microsegmentation with Network-based Attributes on Bare Metal
	Configuring an IP-based Microsegmented EPG as a Shared Resource Using the REST API
	Configuring a Network-Based Microsegmented EPG in a Bare-Metal Environment Using the REST API
	Configuring Microsegmentation on Virtual Switches
	Configuring Microsegmentation with Cisco ACI Using the REST API

	Application Profiles
	Three-Tier Application Deployment
	Parameters to Create a Filter for http
	Parameters to Create Filters for rmi and sql
	Deploying an Application Profile Using the REST API

	Contracts, Taboo Contracts, and Preferred Groups
	Security Policy Enforcement
	Contracts and Taboo Contracts
	Contracts Contain Security Policy Specifications
	Contracts
	Configuring a Contract Using the REST API
	Configuring a Taboo Contract Using the REST API

	Contract and Subject Exceptions
	Configuring Contract or Subject Exceptions for Contracts
	Configure a Contract or Subject Exception Using the REST API

	Configuring EPG Contract Inheritance Using the REST API
	About Contract Inheritance
	Configuring Application EPG Contract Inheritance Using the REST API
	Configuring uSeg EPG Contract Inheritance Using the REST API
	Configuring L2Out EPG Contract Inheritance Using the REST API
	Configuring L3Out EPG Contract Inheritance Using the REST API

	Contract Preferred Groups
	About Contract Preferred Groups
	Configuring Contract Preferred Groups Using the REST API

	Configuring an Enforced Bridge Domain
	Configuring an Enforced Bridge Domain Using the REST API

	Provisioning Core Services
	DHCP
	Configuring a DHCP Relay Policy
	Configuring a DHCP Server Policy for the APIC Infrastructure Using the REST API
	Layer 2 and Layer 3 DHCP Relay Sample Policies

	DNS
	DNS
	Configuring a DNS Service Policy to Connect with DNS Providers Using the REST API
	DNS Policy Example

	NTP
	Time Synchronization and NTP
	Configuring NTP Using the REST API

	Tetration
	Overview
	Configuring Cisco Tetration Analytics Using the REST API

	NetFlow
	About NetFlow
	NetFlow on EX Platform Switches

	Configuring a NetFlow Exporter Policy for VM Networking Using the REST API
	Configuring NetFlow Infra Selectors Using REST API
	Configuring NetFlow Tenant Hierarchy Using REST API
	Consuming a NetFlow Exporter Policy Under a VMM Domain Using the REST API for VMware VDS
	Configuring NetFlow or Tetration Analytics Priority Using REST API

	DOM Statistics
	About Digital Optical Monitoring
	Enabling Digital Optical Monitoring Using the REST API

	Syslog
	About Syslog
	Configuring a Syslog Group and Destination Using the REST API
	Creating a Syslog Source Using the REST API
	Enabling Syslog to Display in NX-OS CLI Format, Using the REST API

	Data Plane Policing
	Overview of Data Plane Policing
	Configuring Data Plane Policing Using the REST API

	Traffic Storm Control
	About Traffic Storm Control
	Configuring a Traffic Storm Control Policy Using the REST API

	Rogue Endpoint Control
	About the Rogue Endpoint Control Policy
	Configure the Rogue Endpoint Control Policy Using the REST API

	Provisioning Layer 2 Networks
	Networking Domains, VLANs, and AEPs
	Networking Domains
	Configuring a Physical Domain Using the REST API
	Creating VLAN Pools
	Creating a VLAN Pool Using the REST API
	Configuring Q-in-Q Encapsulation Mapping for EPGs
	Q-in-Q Encapsulation Mapping for EPGs
	Mapping EPGs to Q-in-Q Encapsulation Enabled Interfaces Using the REST API

	Attachable Entity Profile
	Creating an Attachable Access Entity Profile Using the REST API

	Interfaces
	Ports, PCs, and VPCs
	Configuring a Single Port Channel Applied to Multiple Switches
	Configuring a Single Virtual Port Channel Across Two Switches Using the REST API
	Configuring Two Port Channels Applied to Multiple Switches Using the REST API
	Configuring a Virtual Port Channel on Selected Port Blocks of Two Switches Using the REST API
	Configuring a Virtual Port Channel and Applying it to a Static Port Using the REST API

	Reflective Relay (802.1Qbg)
	Enabling Reflective Relay Using the REST API

	Interface Speed
	Interface Configuration Guidelines
	Changing Interface Speed

	FEXs
	ACI FEX Guidelines
	Configuring an FEX VPC Policy Using the REST API

	FCoE
	Supporting Fibre Channel over Ethernet Traffic on the ACI Fabric
	Configuring FCoE Connectivity Using the REST API
	Configuring FCoE Over FEX Using REST API
	Undeploying FCoE Connectivity through the REST API or SDK

	Fibre Channel NPV
	Fibre Channel Connectivity Overview
	Fibre Channel N-Port Virtualization Guidelines and Limitations
	Configuring FC Connectivity Using the REST API

	802.1Q Tunnels
	About ACI 802.1Q Tunnels
	Configuring 802.1Q Tunnels With Ports Using the REST API
	Configuring 802.1Q Tunnels With PCs Using the REST API
	Configuring 802.1 Q Tunnels With vPCs Using the REST API

	Breakout Ports
	Configuration of Dynamic Breakout Ports
	Configuring Dynamic Breakout Ports Using the REST API

	Port Profiles to Change Uplinks to Downlinks and Downlinks to Uplinks
	Configuring Port Profiles
	Port Profile Configuration Summary
	Configuring a Port Profile Using the REST API

	IGMP Snooping
	About Cisco APIC and IGMP Snooping
	How IGMP Snooping is Implemented in the ACI Fabric
	Virtualization Support
	Configuring and Assigning an IGMP Snooping Policy to a Bridge Domain using the REST API
	Enabling Group Access to IGMP Snooping and Multicast using the REST API
	Enabling IGMP Snooping and Multicast on Static Ports Using the REST API

	Proxy ARP
	About Proxy ARP
	Guidelines and Limitations
	Configuring Proxy ARP Using the REST API

	Flood on Encapsulation
	Configuring Flood in Encapsulation for All Protocols and Proxy ARP Across Encapsulations
	Configuring Flood on Encapsulation Using the REST API

	MACsec
	About MACsec
	Guidelines and Limitations for MACsec
	Configuring MACsec Using the REST API

	Provisioning Layer 3 Outside Connections
	Layer 3 Outside Connections
	Configuring a Tenant Layer 3 Outside Network Connection Overview
	Configuring Layer 3 Outside for Tenant Networks Using the REST API
	Configuring Layer 3 Outside for Tenant Networks Using the REST API
	REST API Example: L3Out Prerequisites
	REST API Example: L3Out
	REST API Example: Tenant External Network Policy

	Layer 3 Routed and Sub-Interface Port Channels
	About Layer 3 Port Channels
	Configuring Port Channels Using the REST API
	Configuring a Layer 3 Routed Port Channel Using the REST API
	Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

	Cisco ACI GOLF
	Cisco ACI GOLF
	Configuring GOLF Using the REST API
	Distributing BGP EVPN Type-2 Host Routes to a DCIG
	Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API

	Multipod
	Multipod
	Setting Up Multi-Pod Fabric Using the REST API

	Anycast Services
	About Anycast Services
	Configuring Anycast Services Using the REST API

	Remote Leaf Switches
	About Remote Leaf Switches in the ACI Fabric
	Remote Leaf Switch Hardware Requirements
	Remote Leaf Switch Restrictions and Limitations
	WAN Router and Remote Leaf Switch Configuration Guidelines
	Configure Remote Leaf Switches Using the REST API
	Prerequisites Required Prior to Downgrading Remote Leaf Switches

	HSRP
	About HSRP
	Guidelines and Limitations
	Configuring HSRP in APIC Using REST API

	IP Multicast
	Tenant Routed Multicast
	Guidelines and Restrictions for Configuring Layer 3 Multicast
	Configuring Layer 3 Multicast Using REST API

	Pervasive Gateway
	Common Pervasive Gateway
	Configuring Common Pervasive Gateway Using the REST API

	Explicit Prefix Lists
	About Explicit Prefix List Support for Route Maps/Profile
	Guidelines and Limitations
	About Route Map/Profile
	Aggregation Support for Explicit Prefix List
	Configuring Route Map/Profile with Explicit Prefix List Using REST API

	IP Address Aging Tracking
	Overview
	Configuring IP Aging Using the REST API

	Route Summarization
	Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API
	Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API

	Route Controls
	About Configuring a Routing Control Protocol Using Import and Export Controls
	Configuring a Route Control Protocol to Use Import and Export Controls, With the REST API

	Layer 3 to Layer 3 Out Inter-VRF Leaking
	Layer 3 Out to Layer 3 Out Inter-VRF Leaking
	Configuring Two Shared Layer 3 Outs in Two VRFs Using REST API

	Overview Interleak Redistribution for MP-BGP
	Configuring Interleak of External Routes Using the REST API
	SVI External Encapsulation Scope
	About SVI External Encapsulation Scope
	Encapsulation Scope Syntax
	Configuring SVI Interface Encapsulation Scope Using the REST API

	SVI Auto State
	About SVI Auto State
	Guidelines and Limitations for SVI Auto State Behavior
	Configuring SVI Auto State Using the REST API

	Routing Protocols
	BGP and BFD
	Guidelines for Configuring a BGP Layer 3 Outside Network Connection
	BGP Connection Types and Loopback Guidelines
	Per VRF Per Node BGP Timer Values
	Configuring an MP-BGP Route Reflector Using the REST API
	Configuring BGP External Routed Network Using the REST API
	Configuring BFD Consumer Protocols Using the REST API
	Configuring BFD Globally Using the REST API
	Configuring BFD Interface Override Using the REST API
	Configuring a Per VRF Per Node BGP Timer Using the REST API
	Deleting a Per VRF Per Node BGP Timer Using the REST API
	Configuring BGP Max Path
	Configuring BGP Max Path Using the REST API

	Configuring AS Path Prepend
	Configuring AS Path Prepend Using the REST API

	About BGP Autonomous System Override
	Configuring BGP External Routed Network with Autonomous System Override Enabled Using the REST API

	OSPF
	OSPF Layer 3 Outside Connections
	Creating OSPF External Routed Network for Management Tenant Using REST API

	EIGRP
	Overview
	Configuring EIGRP Using the REST API

	Neighbor Discovery
	Neighbor Discovery
	Creating the Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery on the Bridge Domain Using the REST API
	Guidelines and Limitations
	Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer 3 Interface Using the REST API

	Microsoft NLB
	Configuring Microsoft NLB in Unicast Mode Using the REST API
	Configuring Microsoft NLB in Multicast Mode Using the REST API
	Configuring Microsoft NLB in IGMP Mode Using the REST API

	MLD Snooping
	Configuring and Assigning an MLD Snooping Policy to a Bridge Domain using the REST API

	Configuring QoS
	QoS for L3Outs
	L3Outs QoS
	Configuring QoS Directly on L3Out Using REST API
	Configuring QoS Contract for L3Out Using REST API

	CoS Preservation
	Class of Service (CoS) Preservation for Ingress and Egress Traffic
	Enable Class Of Service (CoS) Preservation Using REST API

	Multipod QoS
	Multipod QoS and DSCP Translation Policy
	Creating DSCP Translation Policy Using REST API

	Translating QoS Ingress Markings to Egress Markings
	Translating Ingress to Egress QoS Markings
	Creating Custom QoS Policy Using REST API
	Troubleshooting Cisco APIC QoS Policies

	Managing Layer 4 to Layer 7 Services
	About Layer 4 to Layer 7 Services
	About Application-Centric Infrastructure Layer 4 to Layer 7 Services

	Access for Managing Layer 4 to Layer 7 Services
	Configure In-Band Connectivity to Devices Using Tenant's VRF Using the REST API
	Configuring In-Band Connectivity to Devices Using Management Tenant VRF Using the REST API

	Device Packages
	About the Device Package
	Notes for Installing a Device Package with the REST APIs
	Uploading a Device Package File Using the API
	Installing a Device Package Using the REST API
	Using an Imported Device with the REST APIs

	Trunking
	About Trunking
	Enabling Trunking on a Layer 4 to Layer 7 Virtual ASA device Using the REST APIs

	Device Selection Policies
	About Device Selection Policies
	Creating a Device Selection Policy Using the REST API
	Adding a Logical Interface in a Device Using the REST APIs

	Policy Based Redirect and Service Nodes Tracking
	Policy-Based Redirect and Tracking Service Nodes
	Policy-Based Redirect and Threshold Settings for Tracking Service Nodes
	Guidelines and Limitations for Policy-Based Redirect With Tracking Service Nodes
	Configuring PBR to Support Tracking Service Nodes Using the REST API
	About Location-Aware Policy Based Redirect
	Guidelines for Location-Aware PBR
	Configuring Location-Aware PBR Using the REST API
	About Layer 1/Layer 2 Policy-Based Redirect
	Guidelines and Limitations for Layer 1/Layer 2 Policy-Based Redirect
	Configuring Layer 1/ Layer 2 PBR Using the REST API

	Service Graph Templates
	About Service Graph Templates
	Configuring a Service Graph Template Using the REST APIs
	Creating a Security Policy Using the REST APIs

	Layer 4 to Layer 7 Parameters
	About Modifying the Configuration Parameters of a Deployed Service Graph
	Example XML POST for an Application EPG With Configuration Parameters
	Example XML of Configuration Parameters Inside the Device Package
	Example XML POST for an Abstract Function Node With Configuration Parameters
	Example XML POST for an Abstract Function Profile With Configuration Parameters

	Copy Services
	About Copy Services
	Configuring Copy Services Using the REST API

	Developing Automation
	About the REST APIs
	Examples of Automating Using the REST APIs

	Example: Configuring Layer 4 to Layer 7 Services (Firewall)
	Example: Configuring Layer 4 to Layer 7 Services Using the REST API

	Example: Configuring Layer 4 to Layer 7 Route Peering
	Configuring Layer 4 to Layer 7 Route Peering With the REST API
	Specifying an l3extOut Policy for Layer 4 to L7 Route Peering

	Configuring Security
	Enabling TACACS+, RADIUS, and LDAP
	Overview
	Configuring APIC for TACACS+ Using the REST API
	Configuring APIC for RADIUS Using the REST API
	Configuring APIC for LDAP Using the REST API

	Configuring FIPS
	About Federal Information Processing Standards (FIPS)
	Guidelines and Limitations for FIPS
	Configuring FIPS for Cisco APIC Using REST API

	Configuring Fabric Secure Mode
	Fabric Secure Mode
	Configuring Fabric Secure Mode Using the REST API

	Enabling RBAC
	Access Rights Workflow Dependencies
	AAA RBAC Roles and Privileges
	Custom Roles
	Sample RBAC Rules

	Enabling Port Security
	About Port Security and ACI
	Port Security Guidelines and Restrictions
	Port Security and Learning Behavior
	Port Security at Port Level
	Protect Mode
	Configuring Port Security Using REST API

	Enabling COOP Authentication
	Overview
	Using COOP with Cisco APIC
	Guidelines and Limitations
	Configuring COOP Authentication Using the REST API

	Enabling Control Plane Policing
	About Control Plane Policing
	Guidelines and Limitations for CoPP
	Configuring CoPP Using the REST API
	Configuring CoPP Per Interface Per Protocol Using REST API

	Configuring First Hop Security
	About First Hop Security
	ACI FHS Deployment
	Guidelines and Limitations
	Configuring FHS in APIC Using REST API

	Configuring 802.1x
	802.1X Overview
	Host Support
	Authentication Modes
	Guidelines and Limitations
	Configuration Overview
	Configuring 802.1X Node Authentication Using the REST API

	Configuring 802.1X Port Authentication Using the REST API

	Creating Quota Management
	About APIC Quota Management Configuration
	Creating a Quota Management Configuration Using the REST API

	Configuring a Forwarding Scale Profile Policy
	Forwarding Scale Profile Policy Overview
	Supported Platforms
	Guidelines and Limitations
	Configuring the Forwarding Scale Profile Policy Using the REST API

