

Configuring Ethernet Interfaces

This section describes the configuration of the Ethernet interfaces on a Cisco Nexus 5000 Series switch. It includes the following sections:

- Information About Ethernet Interfaces, page 1-1
- Configuring Ethernet Interfaces, page 1-5
- Displaying Interface Information, page 1-10

Information About Ethernet Interfaces

The Ethernet ports can operate as standard Ethernet interfaces connected to servers or to a LAN.

The Ethernet interfaces also support Fibre Channel over Ethernet (FCoE). FCoE allows the physical Ethernet link to carry both Ethernet and Fibre Channel traffic. For additional information, see Chapter 1, "Configuring FCoE" and Chapter 1, "Configuring Virtual Interfaces."

On a Cisco Nexus 5000 Series switch, the Ethernet interfaces are enabled by default.

This section includes the following topics:

- About the Interface Command, page 1-1
- About the Unidirectional Link Detection Parameter, page 1-2
- About Interface Speed, page 1-4
- About the Cisco Discovery Protocol, page 1-4
- About the Debounce Timer Parameters, page 1-4
- About MTU Configuration, page 1-5

About the Interface Command

You can enable the various capabilities of the Ethernet interfaces on a per-interface basis using the **interface** command. When you enter the **interface** command, you specify the following information:

- Interface type—All physical Ethernet interfaces use the ethernet keyword.
- Slot number
 - Slot 1 includes all the fixed ports.
 - Slot 2 includes the ports on the upper expansion module (if populated).

- Slot 3 includes the ports on the lower expansion module (if populated).
- Port number
 - Port number within the group.

The interface numbering convention is extended to support use with a Cisco Nexus 2000 Series Fabric Extender as follows:

switch(config)# interface ethernet [chassis/]slot/port

• Chassis ID is an optional entry to address a connected Fabric Extender. The chassis ID is configured on a physical Ethernet or EtherChannel interface on the switch to identify the Fabric Extender discovered via the interface. The chassis ID ranges from 100 to 199.

About the Unidirectional Link Detection Parameter

This section includes the following topics:

- UDLD Overview, page 1-2
- Default UDLD Configuration, page 1-3
- UDLD Aggressive and Nonaggressive Modes, page 1-3

UDLD Overview

The Cisco-proprietary Unidirectional Link Detection (UDLD) protocol allows ports that are connected through fiber optics or copper (for example, Category 5 cabling) Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. When the switch detects a unidirectional link, UDLD shuts down the affected LAN port and alerts the user. Unidirectional links can cause a variety of problems, including spanning tree topology loops.

UDLD is a Layer 2 protocol that works with the Layer 1 protocols to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected LAN ports. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic transmitted by the local device over a link is received by the neighbor but traffic transmitted from the neighbor is not received by the local device. If one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally at Layer 1, then UDLD at Layer 2 determines whether those fibers are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation, because autonegotiation operates at Layer 1.

A Cisco Nexus 5000 Series switch periodically transmits UDLD frames to neighbor devices on LAN ports with UDLD enabled. If the frames are echoed back within a specific time frame and they lack a specific acknowledgment (echo), the link is flagged as unidirectional and the LAN port is shut down. Devices on both ends of the link must support UDLD in order for the protocol to successfully identify and disable unidirectional links.

By default, UDLD is locally disabled on copper LAN ports to avoid sending unnecessary control traffic on this type of media.

Figure 1-1 shows an example of a unidirectional link condition. Device B successfully receives traffic from device A on the port. However, device A does not receive traffic from device B on the same port. UDLD detects the problem and disables the port.

Default UDLD Configuration

Table 1-1 shows the default UDLD configuration.

Table 1-1 UDLD Default Configuration

Feature	Default Value
UDLD global enable state	Globally disabled
UDLD aggressive mode	Disabled
UDLD per-port enable state for fiber-optic media	Enabled on all Ethernet fiber-optic LAN ports
UDLD per-port enable state for twisted-pair (copper)	Disabled on all Ethernet 10/100 and
media	1000BASE-TX LAN ports

For information on configuring the UDLD for the device and its port, see the "Configuring the UDLD Mode" section on page 1-5.

UDLD Aggressive and Nonaggressive Modes

UDLD aggressive mode is disabled by default. You can configure UDLD aggressive mode only on point-to-point links between network devices that support UDLD aggressive mode. If UDLD aggressive mode is enabled, when a port on a bidirectional link that has a UDLD neighbor relationship established stops receiving UDLD frames, UDLD tries to reestablish the connection with the neighbor. After eight failed retries, the port is disabled.

To prevent spanning tree loops, nonaggressive UDLD with the default interval of 15 seconds is fast enough to shut down a unidirectional link before a blocking port transitions to the forwarding state (with default spanning tree parameters).

When you enable the UDLD aggressive mode, the following occurs:

- One side of a link has a port stuck (both transmission and receive)
- One side of a link remains up while the other side of the link is down

In these cases, the UDLD aggressive mode disables one of the ports on the link, which prevents traffic from being discarded.

About Interface Speed

A Cisco Nexus 5000 Series switch has a number of fixed 10-Gigabit ports, each equipped with SFP+ interface adapters. The Cisco Nexus 5010 switch has 20 fixed ports, the first 8 of which are switchable 1-Gigabit and 10-Gigabit ports. The Cisco Nexus 5020 switch has 40 fixed ports, the first 16 of which are switchable 1-Gigabit and 10-Gigabit ports.

About the Cisco Discovery Protocol

CDP is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

The switch supports both CDP Version 1 and Version 2.

Default CDP Configuration

Table 1-2 shows the default CDP configuration.

Table 1-2 Default CDP Configuration

Feature	Default Setting
CDP interface state	Enabled
CDP timer (packet update frequency)	60 seconds
CDP holdtime (before discarding)	180 seconds
CDP Version-2 advertisements	Enabled

About the Debounce Timer Parameters

The port debounce time is the amount of time that an interface waits to notify the supervisor of a link going down. During this time, the interface waits to see if the link comes back up. The wait period is a time when traffic is stopped.

You can enable the debounce timer for each interface and specify the delay time in milliseconds.

When you enable the port debounce timer the link up and link down detections are delayed, resulting in a loss of traffic during the debounce period. This situation might affect the convergence and reconvergence of some protocols.

About MTU Configuration

A per-physical Ethernet interface maximum transmission unit (MTU) is not supported. Instead, MTU is set according to the QoS classes. You modify MTU by setting Policy and Class maps. See Chapter 1, "Configuring QoS" for more details.

When you show the interface settings, an MTU of 1500 is displayed for physical Ethernet interfaces and a receive data field size of 2112 is displayed for Fibre Channel interfaces.

Configuring Ethernet Interfaces

This section shows how to configure Ethernet interfaces. It includes the following topics:

- Configuring the UDLD Mode, page 1-5
- Configuring Interface Speed, page 1-6
- Configuring the Cisco Discovery Protocol, page 1-7
- Configuring the Debounce Timer, page 1-8
- Configuring the Description Parameter, page 1-9
- Disabling and Restarting Ethernet Interfaces, page 1-9

Configuring the UDLD Mode

You can configure normal or aggressive unidirectional link detection (UDLD) modes for Ethernet interfaces on devices configured to run UDLD. Before you can enable a UDLD mode for an interface, you must make sure that UDLD is already enabled on the device that includes the interface. UDLD must also be enabled on the other linked interface and its device.

To use the normal UDLD mode, you must configure one of the ports for normal mode and configure the other port for the normal or aggressive mode. To use the aggressive UDLD mode, you must configure both ports for the aggressive mode.

Before you begin, UDLD must be enabled for the other linked port and its device.

To configure the UDLD mode, perform this task:

	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# feature udld</pre>	Enables UDLD for the device.
	<pre>switch(config)# no feature udld</pre>	Disables UDLD for the device.

	Command	Purpose
p 3	<pre>switch(config)# show udld global</pre>	Displays the UDLD status for the device.
p 4	<pre>switch(config)# interface ethernet slot/port</pre>	Specifies an interface to configure, and enters interface configuration mode.
p 5	<pre>switch(config-if)# udld {enable disable aggressive}</pre>	Enables the normal UDLD mode, disables UDLD, or enables the aggressive UDLD mode.
p 6	<pre>switch(config-if)# show udld interface</pre>	Displays the UDLD status for the interface.

This example shows how to enable the UDLD for the switch:

```
switch# configure terminal
switch(config)# feature udld
```

This example shows how to enable the normal UDLD mode for an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld enable
```

This example shows how to enable the aggressive UDLD mode for an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld aggressive
```

This example shows how to disable UDLD for an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld disable
```

This example shows how to disable UDLD for the switch:

```
switch# configure terminal
switch(config)# no feature udld
```

Configuring Interface Speed

The first 8 ports of a Cisco Nexus 5010 switch and the first 16 ports of a Cisco Nexus 5020 switch are switchable 1-Gigabit and 10-Gigabit ports. The default interface speed is 10-Gigabit. To configure these ports for 1-Gigabit Ethernet, insert a 1-Gigabit Ethernet SFP transceiver into the applicable port and then set its speed with the **speed** command.

To configure a 1-Gigabit Ethernet port, perform this task:

	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# interface type slot/port</pre>	Enters interface configuration mode for the specified interface. This interface must have a 1-Gigabit Ethernet SFP transceiver inserted into it.
Step 3	<pre>switch(config-if)# speed speed</pre>	Sets the speed on the interface.

The following example shows how to set the speed for a 1-Gigabit Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# speed 1000
```

This command can only be applied to a physical Ethernet interface.

If the interface and transceiver speed is mismatched, the SFP validation failed message is displayed when you enter the **show interface ethernet** *slot/port* command. For example, if you insert a 1-Gigabit SFP transceiver into a port without configuring the **speed 1000** command, you will get this error. By default, all ports are 10 Gigabits.

Configuring the Cisco Discovery Protocol

This section shows how to configure the Cisco Discovery Protocol (CDP). It includes the following topics:

- Configuring the CDP Characteristics, page 1-7
- Enabling or Disabling CDP, page 1-8

Configuring the CDP Characteristics

You can configure the frequency of CDP updates, the amount of time to hold the information before discarding it, and whether or not to send Version-2 advertisements.

To configure CDP characteristics for an interface, perform this task:

		T
	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# cdp advertise {v1 v2 }</pre>	(Optional) Configures the version to use to send CDP advertisements. Version-2 is the default state.
Step 3	<pre>switch(config)# cdp format device-id {mac-address serial-number system-name}</pre>	(Optional) Configures the format of the CDP device ID. The default is the system name, which can be expressed as a fully qualified domain name.
Step 4	<pre>switch(config)# cdp holdtime seconds</pre>	(Optional) Specifies the amount of time a receiving device should hold the information sent by your device before discarding it. The range is 10 to 255 seconds; the default is 180 seconds.
Step 5	<pre>switch(config)# cdp timer seconds</pre>	(Optional) Sets the transmission frequency of CDP updates in seconds. The range is 5 to 254; the default is 60 seconds.

Use the no form of the CDP commands to return to the default settings.

This example shows how to configure CDP characteristics:

```
switch# configure terminal
switch(config)# cdp timer 50
switch(config)# cdp holdtime 120
switch(config)# cdp advertise v2
```

Enabling or Disabling CDP

You can enable or disable CDP for Ethernet interfaces. This protocol works only when you have it enabled on both interfaces on the same link.

To enable or disable CDP for an interface, perform this task:

	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# interface type slot/port</pre>	Enters interface configuration mode for the specified interface.
Step 3	<pre>switch(config-if)# cdp enable</pre>	Enables CDP for the interface. To work correctly, this parameter must be enabled for both interfaces on the same link.
	<pre>switch(config-if)# no cdp enable</pre>	Disables CDP for the interface.

The following example shows how to enable CDP for an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# cdp enable
```

This command can only be applied to a physical Ethernet interface.

Configuring the Debounce Timer

You can enable the debounce timer for Ethernet ports by specifying a debounce time (in milliseconds) or disable the timer by specifying a debounce time of 0.

You can show the debounce times for all of the Ethernet ports by using the **show interface debounce** command.

To enable or disable the debounce timer, perform this task:

	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# interface type slot/port</pre>	Enters interface configuration mode for the specified interface.
Step 3	<pre>switch(config-if)# link debounce time milliseconds</pre>	Enables the debounce timer for the amount of time (1 to 5000 milliseconds) specified. Disables the debounce timer if you specify 0 milliseconds.

Send feedback to nx5000-docfeedback@cisco.com

This example shows how to enable the debounce timer and set the debounce time to 1000 milliseconds for an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# link debounce time 1000
```

This example shows how to disable the debounce timer for an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# link debounce time 0
```

This command can only be applied to a physical Ethernet interface.

Configuring the Description Parameter

To provide textual interface descriptions for the Ethernet ports, perform this task:

	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# interface type slot/port</pre>	Enters interface configuration mode for the specified interface.
Step 3	<pre>switch(config-if)# description test</pre>	Specifies the description for the interface.

This example shows how to set the interface description to "Server 3 Interface."

```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# description Server 3 Interface
```

Disabling and Restarting Ethernet Interfaces

You can shut down and restart an Ethernet interface. This action disables all of the interface functions and marks the interface as being down on all monitoring displays. This information is communicated to other network servers through all dynamic routing protocols. When shut down, the interface is not included in any routing updates.

To disable an interface, perform this task:

	Command	Purpose
Step 1	switch# configure terminal	Enters configuration mode.
Step 2	<pre>switch(config)# interface type slot/port</pre>	Enters interface configuration mode for the specified interface.
Step 3	switch(config-if)# shutdown	Disables the interface.

The following example shows how to disable an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# shutdown
```

To restart an interface, perform this task:

Command	Purpose
<pre>switch(config-if)# no shutdown</pre>	Restarts the interface.

The following example shows how to restart an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# no shutdown
```

Displaying Interface Information

To view configuration information about the defined interfaces, perform one of these tasks:

Command	Purpose
<pre>switch# show interface type slot/port</pre>	Displays the detailed configuration of the specified interface.
<pre>switch# show interface type slot/port capabilities</pre>	Displays detailed information about the capabilities of the specified interface. This option is only available for physical interfaces
<pre>switch# show interface type slot/port transceiver</pre>	Displays detailed information about the transceiver connected to the specified interface. This option is only available for physical interfaces.
switch# show interface brief	Displays the status of all interfaces.
switch# show interface debounce	Displays the debounce status of all interfaces.
switch# show interface flowcontrol	Displays the detailed listing of the flow control settings on all interfaces.

The **show interface** command is invoked from EXEC mode and displays the interface configurations. Without any arguments, this command displays the information for all the configured interfaces in the switch.

The following example shows how to display the physical Ethernet interface:

```
switch# show interface ethernet 1/1
Ethernet1/1 is up
Hardware is 1000/10000 Ethernet, address is 000d.eca3.5f08 (bia 000d.eca3.5f08)
MTU 1500 bytes, BW 10000000 Kbit, DLY 10 usec,
reliability 255/255, txload 190/255, rxload 192/255
Encapsulation ARPA
Port mode is trunk
full-duplex, 10 Gb/s, media type is 1/10g
Input flow-control is off, output flow-control is off
```

```
Auto-mdix is turned on
Rate mode is dedicated
Switchport monitor is off
Last clearing of "show interface" counters never
5 minute input rate 942201806 bytes/sec, 14721892 packets/sec
5 minute output rate 935840313 bytes/sec, 14622492 packets/sec
Rx
  129141483840 input packets 0 unicast packets 129141483847 multicast packets
  0 broadcast packets 0 jumbo packets 0 storm suppression packets
  8265054965824 bytes
 0 No buffer 0 runt 0 Overrun
  0 crc 0 Ignored 0 Bad etype drop
 0 Bad proto drop
Тx
  119038487241 output packets 119038487245 multicast packets
  0 broadcast packets 0 jumbo packets
 7618463256471 bytes
  0 output CRC 0 ecc
  0 underrun 0 if down drop
                              0 output error 0 collision 0 deferred
  0 late collision 0 lost carrier 0 no carrier
  0 babble
  0 Rx pause 8031547972 Tx pause 0 reset
```

The following example shows how to display the physical Ethernet capabilities:

switch# show interface ethernet 1/1 capabilities

```
Ethernet1/1
 Model:
                       734510033
 Type:
                       10Gbase-(unknown)
                       1000,10000
 Speed:
 Duplex:
                       full
 Trunk encap. type:
                       802.1Q
 Channel:
                       yes
 Broadcast suppression: percentage(0-100)
 Flowcontrol:
                       rx-(off/on),tx-(off/on)
 Rate mode:
                       none
                      rx-(6q1t),tx-(1p6q0t)
 QOS scheduling:
 CoS rewrite:
                       no
                       no
 ToS rewrite:
 SPAN:
                       yes
 UDLD:
                       yes
 Link Debounce:
                       yes
 Link Debounce Time:
                       yes
 MDIX:
                        no
 FEX Fabric:
                        yes
```

The following example shows how to display the physical Ethernet transceiver:

switch# show interface ethernet 1/1 transceiver

```
Ethernet1/1

sfp is present

name is CISCO-EXCELIGHT

part number is SPP5101SR-C1

revision is A

serial number is ECL120901AV

nominal bitrate is 10300 MBits/sec

Link length supported for 50/125mm fiber is 82 m(s)

Link length supported for 62.5/125mm fiber is 26 m(s)

cisco id is --

cisco extended id number is 4
```

The following example shows how to display a brief interface status (some of the output has been removed for brevity):

switch# show interface brief

Ethernet Interface	VLAN	Туре	Mode	Status	Reason	Speed	Port Ch #
Eth1/1	200	eth	trunk	up	none	10G(D)	
Eth1/2	1	eth	trunk	up	none	10G(D)	
Eth1/3	300	eth	access	down	SFP not inserted	10G(D)	
Eth1/4	300	eth	access	down	SFP not inserted	10G(D)	
Eth1/5	300	eth	access	down	Link not connected	1000(D)	
Eth1/6	20	eth	access	down	Link not connected	10G(D)	
Eth1/7	300	eth	access	down	SFP not inserted	10G(D)	

The following example shows how to display the link debounce status (some of the output has been removed for brevity):

```
switch# show interface debounce
```

Port	Debounce time	Value(ms)		
• • •				
Eth1/1	enable	100		
Eth1/2	enable	100		
Eth1/3	enable	100		

The following example shows how to display the CDP neighbors:

```
switch# show cdp neighbors
Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge
                 S - Switch, H - Host, I - IGMP, r - Repeater,
                 V - VoIP-Phone, D - Remotely-Managed-Device,
                 s - Supports-STP-Dispute
                     Local Intrfce Hldtme Capability Platform
Device ID
                                                                      Port ID
d13-dist-1
                       mgmt0
                                       148
                                              SI
                                                       WS-C2960-24TC Fas0/9
n5k(FLC12080012)
                       Eth1/5
                                       8
                                              SIS
                                                       N5K-C5020P-BA Eth1/5
```

```
Note
```

For Release 4.0(1a)N1(1), the default value of the device ID field for CDP advertisement has been changed from the chassis serial number to the hostname and serial number, as in the example above.

Default Physical Ethernet Settings

The following table lists the default settings for all physical Ethernet interfaces:

Parameter	Default Setting
Debounce	Enable, 100 milliseconds
Duplex	Auto (full-duplex)

Cisco Nexus 5000 Series Switch CLI Software Configuration Guide

Send feedback to nx5000-docfeedback@cisco.com

Parameter	Default Setting
Encapsulation	ARPA
MTU ¹	1500 bytes
Port Mode	Access
Speed	Auto (10000)

1. MTU cannot be changed per-physical Ethernet interface. You modify MTU by selecting maps of QoS classes. See Chapter 1, "Configuring QoS," for additional information.