
Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
First Published: 2013-11-20

Last Modified: 2019-09-21

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1110R)

© 2014–2019 Cisco Systems, Inc. All rights reserved.

http://www.openssl.org/
http://www.cisco.com/go/trademarks

C O N T E N T S

Preface viiP R E F A C E

Audience vii

Document Conventions vii

Related Documentation for Cisco Nexus 9000 Series Switches viii

Documentation Feedback viii

Communications, Services, and Additional Information viii

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

Overview 3C H A P T E R 2

Programmability Overview 3

Standard Network Manageability Features 4

Advanced Automation Feature 4

PowerOn Auto Provisioning Support 4

OpenStack Integration 4

Programmability Support 5

NX-API Support 6

Python Scripting 6

Tcl Scripting 6

Broadcom Shell 6

Bash 6

Guest Shell 6

NX-API 9C H A P T E R 3

About NX-API 9

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
iii

Transport 9

Message Format 9

Security 10

Using NX-API 10

Sample NX-API Scripts 12

NX-API Sandbox 12

NX-API Management Commands 13

NX-API Request Elements 14

NX-API Response Elements 17

Python API 19C H A P T E R 4

About the Python API 19

Using Python 19

Cisco Python Package 19

Using the CLI Command APIs 20

Invoking the Python Interpreter from the CLI 22

Display Formats 22

Non-interactive Python 23

Running Scripts with Embedded Event Manager 25

Python Integration with Cisco NX-OS Network Interfaces 25

Cisco NX-OS Security with Python 26

Examples of Security and User Authority 26

Example of Running Script with Scheduler 27

Broadcom Shell 29C H A P T E R 5

About the Broadcom Shell 29

Guidelines and Limitations 29

Accessing the Broadcom Shell (bcm-shell) 29

Accessing bcm-shell with the CLI API 29

Accessing the Native bcm-shell on the Fabric Module 30

Accessing the bcm-shell on the Line Card 31

Bash 33C H A P T E R 6

About Bash 33

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
iv

Contents

Accessing Bash 33

Escalate Privileges to Root 34

Examples of Bash Commands 35

Displaying System Statistics 35

Running Bash from CLI 35

Running Python from Bash 36

Guest Shell 37C H A P T E R 7

About the Guest Shell 37

Accessing the Guest Shell 38

Capabilities in the Guest Shell 38

NX-OS CLI in the Guest Shell 38

Network Access in Guest Shell 39

Access to Bootflash in Guest Shell 40

Python in Guest Shell 40

Installing RPMs in the Guest Shell 41

Resources Used for the Guest Shell 42

Security Posture for Virtual Services 43

Digitally Signed Application Packages 43

Kernel Vulnerability Patches 43

ASLR and X-Space Support 43

Root-User Restrictions 43

Namespace Isolation 44

Guest File System Access Restrictions 44

Resource Management 44

Secure IPC 44

Guidelines and Limitations 45

Managing the Guest Shell 46

Disabling the Guest Shell 49

Destroying the Guest Shell 50

Enabling the Guest Shell 51

Verifying Virtual Service and Guest Shell Information 51

Scripting with Tcl 55C H A P T E R 8

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
v

Contents

About Tcl 55

Tclsh Command Help 55

Tclsh Command History 56

Tclsh Tab Completion 56

Tclsh CLI Command 56

Tclsh Command Separation 56

Tcl Variables 57

Tclquit 57

Tclsh Security 57

Running the tclsh Command 57

Navigating Cisco NX-OS Modes from the tclsh Command 58

Tcl References 60

NX-API Response Codes 61A P P E N D I X A

Table of NX-API Response Codes 61

Troubleshooting 63A P P E N D I X B

About Troubleshooting 63

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
vi

Contents

Preface

This preface includes the following sections:

• Audience, on page vii
• Document Conventions, on page vii
• Related Documentation for Cisco Nexus 9000 Series Switches, on page viii
• Documentation Feedback, on page viii
• Communications, Services, and Additional Information, on page viii

Audience
This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which you supply the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments that are separated by
a vertical bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments that are separated by a vertical
bar indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
vii

DescriptionConvention

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string includes the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information that you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

Related Documentation for Cisco Nexus 9000 Series Switches
The entire Cisco Nexus 9000 Series switch documentation set is available at the following URL:

http://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to nexus9k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
viii

Preface
Related Documentation for Cisco Nexus 9000 Series Switches

http://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html
https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
ix

Preface
Preface

https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
x

Preface
Preface

C H A P T E R 1
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 9000
Series NX-OS Programmability Guide, Release 6.x.

• New and Changed Information, on page 1

New and Changed Information
This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 9000
Series NX-OS Programmability Guide, Release 6.x.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
2

New and Changed Information
New and Changed Information

C H A P T E R 2
Overview

• Programmability Overview, on page 3
• Standard Network Manageability Features, on page 4
• Advanced Automation Feature, on page 4
• Programmability Support, on page 5

Programmability Overview
The Cisco NX-OS software running on the Cisco Nexus 9000 Series devices is as follows:

• Resilient

Provides critical business-class availability.

• Modular

Has extensions that accommodate business needs.

• Highly Programmatic

Allows for rapid automation and orchestration through Application Programming Interfaces (APIs).

• Secure

Protects and preserves data and operations.

• Flexible

Integrates and enables new technologies.

• Scalable

Accommodates and grows with the business and its requirements.

• Easy to use

Reduces the amount of learning required, simplifies deployment, and provides ease of manageability.

With the Cisco NX-OS operating system, the device functions in the unified fabric mode to provide network
connectivity with programmatic automation functions.

Cisco NX-OS contains Open Source Software (OSS) and commercial technologies that provide automation,
orchestration, programmability, monitoring and compliance support.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
3

Standard Network Manageability Features
• SNMP (V1, V2, V3)

• Syslog

• RMON

• NETCONF

• CLI and CLI scripting

Advanced Automation Feature
The enhanced Cisco NX-OS on the device supports automation. The platform includes support for PowerOn
Auto Provisioning (POAP).

PowerOn Auto Provisioning Support
PowerOn Auto Provisioning (POAP) automates the process of installing/upgrading software images and
installing configuration files on Cisco Nexus devices that are being deployed in the network for the first time.
It reduces the manual tasks required to scale the network capacity.

When a Cisco Nexus device with the POAP feature boots and does not find the startup configuration, the
device enters POAPmode. It locates a DHCP server and bootstraps itself with its interface IP address, gateway,
and DNS server IP addresses. The device obtains the IP address of a TFTP server or the URL of an HTTP
server and downloads a configuration script that enables the device to download and install the appropriate
software image and configuration file.

For more details about POAP, see the Cisco Nexus 9000 Series NX-OS Fundamentals Configuration Guide.

OpenStack Integration
The Cisco Nexus 9000 Series devices support the Cisco Nexus plugin for OpenStack Networking, also known
as Neutron (http://www.cisco.com/web/solutions/openstack/index.html). The plugin allows you to build an
infrastructure as a service (IaaS) network and to deploy a cloud network. With OpenStack, you can build an
on-demand, self-service, multitenant computing infrastructure. However, implementing OpenStack's VLAN
networking model across virtual and physical infrastructures can be difficult.

The OpenStack Networking extensible architecture supports plugins to configure networks directly. However,
when you choose a network plugin, only that plugin's target technology is configured. When you are running
OpenStack clusters across multiple hosts with VLANs, a typical plugin configures either the virtual network
infrastructure or the physical network, but not both.

The Cisco Nexus plugin solves this difficult problem by including support for configuring both the physical
and virtual networking infrastructure.

The CiscoNexus plugin accepts OpenStackNetworkingAPI calls and uses the Network Configuration Protocol
(NETCONF) to configure Cisco Nexus devices as well as Open vSwitch (OVS) that runs on the hypervisor.
The Cisco Nexus plugin configures VLANs on both the physical and virtual network. It also allocates scarce

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
4

Overview
Standard Network Manageability Features

VLAN IDs by deprovisioning them when they are no longer needed and reassigning them to new tenants
whenever possible. VLANs are configured so that virtual machines that run on different virtualization (compute)
hosts that belong to the same tenant network transparently communicate through the physical network. In
addition, connectivity from the compute hosts to the physical network is trunked to allow traffic only from
the VLANs that are configured on the host by the virtual switch.

The following table lists the features of the Cisco Nexus plugin for OpenStack Networking:

Table 1: Summary of Cisco Nexus Plugin features for OpenStack Networking (Neutron)

Cisco Nexus PluginDescriptionConsiderations

Accepts networking API calls and
configures both physical and virtual
switches.

VLANsmust be configured on both
physical and virtual networks.
OpenStack Networking supports
only a single plugin at a time. You
must choose which parts of the
networks to manually configure.

Extension of tenant VLANs across
virtualization hosts

Efficiently uses limited VLAN IDs
by provisioning and deprovisioning
VLANs across switches as tenant
networks are created and destroyed.

Static provisioning of VLAN IDs
on every switch rapidly consumes
all available VLAN IDs, which
limits scalability and makes the
network vulnerable to broadcast
storms.

Efficient use of scarce VLAN IDs

Dynamically provisions
tenant-network-specific VLANs on
switch ports connected to
virtualization hosts through the
Nexus plugin driver.

You must statically provision all
available VLANs on all physical
switches. This process is manual
and error prone.

Easy configuration of tenant
VLANs in a top-of-rack (ToR)
switch

Configures switch ports connected
to virtualization hosts only for the
VLANs that correspond to the
networks configured on the host.
This feature enables accurate port
and VLAN associations.

Switch ports connected to
virtualization hosts are configured
to handle all VLANs. Hardware
limits are reached quickly.

Intelligent assignment of VLAN
IDs

Supports Cisco Nexus 2000 Series
Fabric Extenders to enable large,
multirack deployments and
eliminates the need for an
aggregation switch VLAN
configuration.

When compute hosts run in several
racks, you must fully mesh
top-of-rack switches or manually
trunk aggregation switches.

Aggregation switch VLAN
configuration for large multirack
deployments.

Programmability Support
Cisco NX-OS on Cisco Nexus 9000 Series devices support the following capabilities to aid programmability:

• NX-API support

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
5

Overview
Programmability Support

• Python scripting

• Tcl scripting

• Broadcom Shell

• Bash

• Guest Shell

NX-API Support
Cisco NX-API allows for HTTP-based programmatic access to the Cisco Nexus 9000 Series platform. This
support is delivered byNX-API, an open sourcewebserver. NX-API provides the configuration andmanagement
capabilities of the Cisco NX-OS CLI with web-based APIs. The device can be set to publish the output of the
API calls in XML or JSON format. This API enables rapid development on the Cisco Nexus 9000 Series
platform.

Python Scripting
Cisco Nexus 9000 Series devices support Python v2.7.5 in both interactive and non-interactive (script) modes.

The Python scripting capability on the devices provide programmatic access to the switch CLI to perform
various tasks, and to Power-On Auto Provisioning (POAP) and Embedded Event Manager (EEM) actions.
Responses to Python calls that invoke the Cisco NX-OS CLI return text or JSON output.

The Python interpreter is included in the Cisco NX-OS software.

Tcl Scripting
Cisco Nexus 9000 Series devices support tcl (Tool Command Language). Tcl is a scripting language that
enables greater flexibility with CLI commands on the switch. You can use tcl to extract certain values in the
output of a show command, perform switch configurations, run Cisco NX-OS commands in a loop, or define
EEM policies in a script.

Broadcom Shell
The Cisco Nexus 9000 Series device front panel and fabric module line cards contain Broadcom Network
Forwarding Engine (NFE). You can access the Broadcom command line shell (bcm-shell) from these NFEs.

Bash
Cisco Nexus 9000 Series devices support direct Bourne-Again SHell (Bash) access.With Bash, you can access
the underlying Linux system on the device and manage the system.

Guest Shell
The Cisco Nexus 9000 Series devices support a guest shell that provides Bash access into a 64-bit Linux
execution space on the host system that is decoupled from the host Cisco Nexus 9000 NX-OS software. With

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
6

Overview
NX-API Support

the guest shell you can add software packages and update libraries as needed without impacting the host
system software.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
7

Overview
Guest Shell

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
8

Overview
Guest Shell

C H A P T E R 3
NX-API

• About NX-API, on page 9
• Using NX-API, on page 10

About NX-API
On Cisco Nexus devices, command-line interfaces (CLIs) are run only on the device. NX-API improves the
accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You can
use this extension to the existing Cisco Nexus CLI system on the Cisco Nexus 9000 Series devices. NX-API
supports show commands, configurations, and Linux Bash.

NX-API supports JSON-RPC.

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all of its children processes, are
under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage
exceeds the cgroup limitations, the Nginx process is restarted and restored.

Message Format
NX-API is an enhancement to the Cisco Nexus 9000 Series CLI system, which supports XML output. NX-API
also supports JSON output format for specific commands.

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
9

Security
NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API
The commands, command type, and output type for the Cisco Nexus 9000 Series devices are entered using
NX-API by encoding the CLIs into the body of a HTTP/HTTPs POST. The response to the request is returned
in XML or JSON output format.

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 61.Note

You must enable NX-API with the feature manager CLI command on the device. By default, NX-API is
disabled.

The following example shows how to configure and launch the NX-API Sandbox:

• Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 198.51.100.1/24
switch(config)# vrf context managment
switch(config)# ip route 203.0.113.1/0 1.2.3.1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
10

NX-API
Security

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:
{

"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
11

NX-API
Using NX-API

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

Sample NX-API Scripts
The sample scripts demonstrate how a script is used with NX-API. The scripts are available at
https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/check_cable.

• Cable Checker (check_cable.py)

• Cable Checker Blueprint (connectivity.json)

NX-API Sandbox
The NX-API Sandbox is the web-based user interface that you use to enter the commands, command type,
and output type for the Cisco Nexus 9000 Series device using HTTP/HTTPS. After posting the request, the
output response is displayed.

By default, NX-API is disabled. Begin enabling NX-API with the feature manager CLI command on the
switch. Then enable NX-API with the nxapi sandbox command.

Use a browser to access the NX-API Sandbox.

When using the NX-API Sandbox, Cisco recommends that you use the Firefox browser, release 24.0 or later.Note

The following example shows how to configure and launch the NX-API Sandbox:

• Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 198.51.100.1/24
switch(config)# vrf context managment
switch(config)# ip route 203.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi
switch(config)# nxapi sandbox

• Open a browser and enter http://mgmt-ip to launch the NX-API Sandbox. The following figure is an
example of a request and output response.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
12

NX-API
Sample NX-API Scripts

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/check_cable
https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/check_cable

Figure 1: NX-API Sandbox with Example Request and Output Response

In the NX-API Sandbox, you specify the commands, command type, and output type in the top pane. Click
the POST Request button above the left pane to post the request. Brief descriptions of the request elements
are displayed below the left pane.

After the request is posted, the output response is displayed in the right pane.

The following sections describe the commands to manage NX-API and descriptions of the elements of the
request and the output response.

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 2: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http|https} port port

Disables HTTP/HTTPS.no nxapi {http|https}

Displays port information.show nxapi

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
13

NX-API
NX-API Management Commands

DescriptionNX-API Management Command

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

nxapi certificate {httpscrt |httpskey}

Enables a certificate.nxapi certificate enable

NX-API Request Elements
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 3: NX-API Request Elements

DescriptionNX-API Request Element

Specifies the NX-API version.version

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
14

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the current
user's authority.

• The pipe operation is supported in the output when
the message type is ASCII. If the output is in XML
format, the pipe operation is not supported.

• A maximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
15

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Do not chunk output.0

Chunk output.1

Only show commands support chunking.When a series
of show commands are entered, only the first command
is chunked and returned.

The output message format is XML. (XML is the
default.) Special characters, such as < or >, are converted
to form a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked output.

Note

When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

Note

chunk

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated with
" ; ". (The ; must be surrounded with single blank
characters.)

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
16

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

The available output message formats are the following:

Specifies output in XML format.xml

Specifies output in JSON format.json

The CiscoNexus 9000 Series CLI supports XMLoutput,
which means that the JSON output is converted from
XML. The conversion is processed on the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML output
is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 4: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
17

NX-API
NX-API Response Elements

DescriptionNX-API Response Element

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
18

NX-API
NX-API Response Elements

C H A P T E R 4
Python API

• About the Python API , on page 19
• Using Python, on page 19

About the Python API
Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting and rapid application development
in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all
major platforms from the Python website:

http://www.python.org/

The same site also contains distributions of and pointers to many free third-party Python modules, programs
and tools, and additional documentation.

The Cisco Nexus 9000 Series devices support Python v2.7.5 in both interactive and non-interactive (script)
modes.

The Python scripting capability gives programmatic access to the device's command-line interface (CLI) to
perform various tasks and PowerOn Auto Provisioning (POAP) or Embedded Event Manager (EEM) actions.
Python can also be accessed from the Bash shell.

The Python interpreter is available in the Cisco NX-OS software.

Using Python
This section describes how to write and execute Python scripts.

Cisco Python Package
Cisco NX-OS provides a Cisco Python package that enables access to many core network device modules,
such as interfaces, VLANs, VRFs, ACLs and routes. You can display the details of the Cisco Python package
by entering the help() command. To obtain additional information about the classes and methods in a module,

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
19

you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

FILE
/isan/python/scripts/cisco/__init__.py

PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf

CLASSES
__builtin__.object

cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You need to enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
20

Python API
Using the CLI Command APIs

Table 5: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control/special characters.

The interactive Python interpreter prints
control/special characters 'escaped'. A
carriage return is printed as '\n' and gives
results that might be difficult to read. The
clip() API gives results that are more
readable.

Note

cli()

Example:
string = cli (“cli-command”)

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

This API can be useful when searching the
output of show commands.

Note

clid()

Example:
json_string = clid (“cli-command”)

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

Note

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:
>>> cli("conf t ; interface eth4/1 ; shut")

Commands are separated with " ; " as shown in the example. (The ; must be surrounded with single blank
characters.)

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
21

Python API
Using the CLI Command APIs

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python from the CLI:

The Python interpreter is designated with the ">>>" or "…" prompt.Note

switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 5 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print intf['interface']
...
mgmt0
Ethernet2/7
Ethernet4/7
loopback0
loopback5
>>>

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:
username: admin
vdc: switch
routing-context vrf: default

Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>

Example 3:
>>> from cli import *
>>> cli("conf ; interface loopback 1")

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
22

Python API
Invoking the Python Interpreter from the CLI

''
>>> r = cli('where detail') ; print r
mode:
username: admin
vdc: EOR-1
routing-context vrf: default

>>>

Example 4:
>>> from cli import *
>>> import json
>>> out=json.loads(clid('show version'))
>>> for k in out.keys():
... print "%30s = %s" % (k, out[k])
...

kern_uptm_secs = 6
kick_file_name = bootflash:///n9000-dk9.6.1.2.I1.1.bin

rr_service = None
module_id = Supervisor Module

kick_tmstmp = 10/21/2013 00:06:10
bios_cmpl_time = 08/17/2013
bootflash_size = 20971520

kickstart_ver_str = 6.1(2)I1(2) [build 6.1(2)I1(2)] [gdb]
kick_cmpl_time = 10/20/2013 4:00:00

chassis_id = Nexus9000 C9508 (8 Slot) Chassis
proc_board_id = SAL171211LX

memory = 16077872
manufacturer = Cisco Systems, Inc.

kern_uptm_mins = 26
bios_ver_str = 06.14

cpu_name = Intel(R) Xeon(R) CPU E5-2403
kern_uptm_hrs = 2

rr_usecs = 816550
rr_sys_ver = None
rr_reason = Reset Requested by CLI command reload
rr_ctime = Mon Oct 21 00:10:24 2013

header_str = Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained herein are owned by
other third parties and are used and distributed under license.
Some parts of this software are covered under the GNU Public
License. A copy of the license is available at
http://www.gnu.org/licenses/gpl.html.

host_name = switch
mem_type = kB

kern_uptm_days = 0
>>>

Non-interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command line arguments for the Python script are allowed with the Python CLI command.

The Cisco Nexus 9000 Series device also supports the source CLI command for running Python scripts. The
bootflash:scripts directory is the default script directory for the source CLI command.

The following example shows a script and how to run it:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
23

Python API
Non-interactive Python

switch# show file bootflash:deltaCounters.py
#!/isan/bin/python

from cli import *
import sys, time

ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'

out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print 'row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast'
print '==='
print ' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc)
print '==='

i = 0
while (i < count):
time.sleep(delay)
out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print '%-3d %8d %8d %8d %8d %8d %8d' % \
(i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew - rxbc, txucNew - txuc, txmcNew - txmc,

txbcNew - txbc)

switch# python bootflash:deltaCounters.py Ethernet1/1 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===

0 791 1 0 212739 0
===
1 0 0 0 0 26 0
2 0 0 0 0 27 0
3 0 1 0 0 54 0
4 0 1 0 0 55 0
5 0 1 0 0 81 0
switch#

The following example shows how a source command specifies command-line arguments. In the example,
policy-map is an argument to the cgrep python script. The example also shows that a source command can
follow after the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map

policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo
policy-map type qos classify
policy-map type qos cos-based

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
24

Python API
Non-interactive Python

policy-map type qos no-drop-2
policy-map type qos pfc-tor-port

Running Scripts with Embedded Event Manager
On Cisco Nexus 9000 Series devices, embedded event manager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.
switch# show running-config eem

!Command: show running-config eem
!Time: Sun May 1 14:40:07 2011

version 6.1(2)I2(1)
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py
action 2 event-default

• You can search for the action triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Python Integration with Cisco NX-OS Network Interfaces
OnCiscoNexus 9000 Series devices, Python is integratedwith the underlying CiscoNX-OS network interfaces.
You can switch from one virtual routing context to another by setting up a context through the
cisco.vrf.set_global_vrf() API.

The following example shows how to retrieve an HTML document over themanagement interface of a device.
You can also establish a connection to an external entity over the inband interface by switching to a desired
virtual routing context.
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')
>>> print page.read()
Hello Cisco Nexus 9000

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
25

Python API
Running Scripts with Embedded Event Manager

>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:

set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other
python libraries).

Arguments:
vrf: VRF name (string) or the VRF ID (int).

Returns: Nothing

>>>

Cisco NX-OS Security with Python
CiscoNX-OS resources are protected by the CiscoNX-OS Sandbox layer of software and by the CLI role-based
access control (RBAC).

All users associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users who are
granted access to Python with a custom role are regarded as non-privileged users. Non-privileged users have
a limited access to Cisco NX-OS resources, such as file system, guest shell, and Bash commands. Privileged
users have greater access to all the resources of Cisco NX-OS.

Examples of Security and User Authority
The following example shows how a privileged user runs commands:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print r.read()
hello from python
>>> r.close()

The following example shows a non-privileged user being denied access:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','r')
Permission denied. Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
26

Python API
Cisco NX-OS Security with Python

IOError: [Errno 13] Permission denied: '/tmp/test'
>>>

RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that
is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is
invoked from Python.

The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'11:28:53.845 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')

!Command: show running-config l3vm
!Time: Sun May 8 11:29:40 2011

version 6.1(2)I2(1)

interface Ethernet1/48
vrf member blue

interface mgmt0
vrf member management

vrf context blue
vrf context management
vrf context myvrf

The following is an example for a non-privileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)

errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'

The following example shows an RBAC configuration:
switch# show user-account
user:admin

this user account has no expiry date
roles:network-admin

user:pyuser
this user account has no expiry date
roles:network-operator python-role

switch# show role name python-role

Example of Running Script with Scheduler
The following example shows a Python script that is running the script with the scheduler feature:
#!/bin/env python
from cli import *
from nxos import *
import os

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
27

Python API
Example of Running Script with Scheduler

switchname = cli("show switchname")
try:

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname
print msg
py_syslog(1, msg)
Save this script in bootflash:///scripts

switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature scheduler
switch(config)# scheduler job name testplan
switch(config-job)# python bootflash:///scripts/testplan.py
switch(config-job)# exit
switch(config)# scheduler schedule name testplan
switch(config-schedule)# job name testplan
switch(config-schedule)# time start now repeat 0:0:4
Schedule starts from Mon Mar 14 16:40:03 2011
switch(config-schedule)# end
switch# term mon
2011 Mar 14 16:38:03 switch %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured from vty by admin on
10.19.68.246@pts/2
switch# show scheduler schedule
Schedule Name : testplan

User Name : admin
Schedule Type : Run every 0 Days 0 Hrs 4 Mins
Start Time : Mon Mar 14 16:40:03 2011
Last Execution Time : Yet to be executed

Job Name Last Execution Status

testplan -NA-
==
switch#
switch# 2011 Mar 14 16:40:04 switch %USER-1-SYSTEM_MSG: No user ran
/bootflash/scripts/testplan.py on : switch - nxpython
2011 Mar 14 16:44:04 switch last message repeated 1 time
switch#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
28

Python API
Example of Running Script with Scheduler

C H A P T E R 5
Broadcom Shell

• About the Broadcom Shell, on page 29
• Accessing the Broadcom Shell (bcm-shell), on page 29

About the Broadcom Shell
The Cisco Nexus 9000 Series device front panel and fabric module line cards contain Broadcom Network
Forwarding Engines (NFE). The number of NFEs varies depending upon the specific model of the front panel
line card (LC) or the fabric module (FM).

The following sections describe how you can access the command-line shell (bcm-shell) and how to read
from these NFEs.

Guidelines and Limitations
Using the Broadcom Shell has the following guideline and limitation:

• You can access and read information from the T2 ASICs without any limitations. However, Cisco does
not recommend that you change the settings of the T2 configuration. Use caution when accessing the
Broadcom Shell.

Accessing the Broadcom Shell (bcm-shell)
The following sections describe approaches to access the Broadcom Shell (bcm-shell).

Accessing bcm-shell with the CLI API
The bcm-shell commands are passed directly from the Cisco Nexus 9000 Series CLI to the specific T2 ASIC
instance. The T2 ASIC instance can be on the fabric module or on the front panel line card.

The command syntax is as follows:

bcm-shell module module_number [instance_number:command]

where

Module number in the chassis.module_number

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
29

T2 instance number

• When not specified, the T2 instance number defaults to 0.

• When a wildcard ('*') is specified, all T2 instances are processed.

instance_number

Broadcom commandcommand

Cisco NX-OS command extensions such as ‘pipe include’ or ‘redirect output to file’ can be used to manage
command output.

Note

Entering commands with the CLI API are recorded in the system accounting log for auditing purposes.
Commands entered directly from the bcm-shell are not recorded in the accounting log.

Note

Accessing the Native bcm-shell on the Fabric Module
An eight-slot line card (LC) chassis can host a maximum of six fabric modules (FMs). These slots are numbered
21 through 26.You must specify the FM that you wish to access the bcm-shell on.

The following example shows how to access the bcm-shell on the FM in slot 24, access context help, and exit
the bcm-shell.

• Use the show module command to display the FMs.
n9k-spine1# show module
Mod Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
3 36 36p 40G Ethernet Module N9k-X9636PQ ok
4 36 36p 40G Ethernet Module N9k-X9636PQ ok
21 0 Fabric Module N9K-C9508-FM ok
22 0 Fabric Module N9K-C9508-FM ok
23 0 Fabric Module N9K-C9508-FM ok
24 0 Fabric Module N9K-C9508-FM ok
25 0 Fabric Module N9K-C9508-FM ok
26 0 Fabric Module N9K-C9508-FM ok
27 0 Supervisor Module N9K-SUP-A active *
29 0 System Controller N9K-SC-A active

• Attach to module 24 to gain access to the command line for the FM in slot 24.
n9k-spine1# attach module 24
Attaching to module 24 ...
To exit type 'exit', to abort type '$.'

• Enter the command to gain root access to the fabric module software.
module-24# test hardware internal bcm-usd bcm-diag-shell
Available Unit Numbers: 0 1
bcm-shell.0> 1

At this point, you are at the Broadcom shell for the fabric module in slot 24, T2 ASIC instance 1. Any
commands entered are specific to this specific ASIC instance.

• Use the exit command to exit the bcm-shell and to detach from the FM.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
30

Broadcom Shell
Accessing the Native bcm-shell on the Fabric Module

bcm-shell.1> exit
module-24# exit
rlogin: connection closed.

Accessing the bcm-shell on the Line Card
When connecting to the T2 ASIC on the line card (LC), you first attach to the module, enter root mode, run
the shell access exec, and select the ASIC instance that you want to attach to. The number of available ASICs
depends on the model of the line card you are attached to.

The following example shows how to access the bcm-shell of ASIC instance 1 on the LC in slot 2 and exit
the bcm-shell on a LC that contains three T2 instances.

• Attach to module 2 to gain access to the command line for the LC in slot 2.
n9k-spine1# attach module 2
Attaching to module 2 ...
To exit type 'exit', to abort type '$.'
Last login: Wed Aug 7 14:13:15 UTC 2013 from sup27 on ttyp0

• Enter the command to gain root access to the line card software.
module-2# test hardware internal bcm-usd bcm-diag-shell
Available Unit Numbers: 0 1 2
bcm-shell.0> 1
bcm-shell.1>

At this point you are at the Broadcom shell for the line card module in slot 2, T2 ASIC instance 1.

• Use the exit command to exit the bcm-shell and detach from the FM.
bcm-shell.1> exit
module-2# exit
rlogin: connection closed.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
31

Broadcom Shell
Accessing the bcm-shell on the Line Card

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
32

Broadcom Shell
Accessing the bcm-shell on the Line Card

C H A P T E R 6
Bash

• About Bash, on page 33
• Accessing Bash, on page 33
• Escalate Privileges to Root, on page 34
• Examples of Bash Commands, on page 35

About Bash
In addition to the NX-OS CLI, Cisco Nexus 9000 Series devices support access to the Bourne-Again SHell
(Bash). Bash interprets commands that you enter or commands that are read from a shell script. Using Bash
enables access to the underlying Linux system on the device and to manage the system.

Accessing Bash
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops
role or the Cisco NX-OS network-admin role.

The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops

Role: dev-ops
Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *

switch# show role name network-admin

Role: network-admin
Description: Predefined network admin role has access to all commands
on the switch

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
33

Rule Perm Type Scope Entity

1 permit read-write

switch#

Bash is enabled by running the feature bash-shell command.

The run bash command loads Bash and begins at the home directory for the user.

The following examples show how to enable the Bash shell feature and how to run Bash.
switch# config t
switch(config)# feature bash-shell

switch# run?
run Execute/run program
run-script Run shell scripts

switch# run bash?
bash Linux-bash

switch# run bash
bash-4.2$ whoami
admin
bash-4.2$ pwd
/bootflash/home/admin
bash-4.2$

You can also execute Bash commands with the run bash command command.

The following is an example of the run bash command command.
run bash whoami

Note

Escalate Privileges to Root
The privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• admin privilege user (network-admin / vdc-admin) is equivalent of Linux root privilege user in NX-OS

• Only an authenticated admin user can escalate privileges to root, and password is not required for and
authenticated admin privilege user.

• Bash must be enabled before escalating privileges.

The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
bash-4.2$ sudo su root

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
34

Bash
Escalate Privileges to Root

#3) With great power comes great responsibility.

Password:

bash-4.2# whoami
root
bash-4.2# exit
exit

Examples of Bash Commands
This section contains examples of Bash commands and output.

Displaying System Statistics
The following example shows how to display system statistics:
switch# run bash
bash-4.2$ cat /proc/meminfo
<snip>
MemTotal: 16402560 kB
MemFree: 14098136 kB
Buffers: 11492 kB
Cached: 1287880 kB
SwapCached: 0 kB
Active: 1109448 kB
Inactive: 717036 kB
Active(anon): 817856 kB
Inactive(anon): 702880 kB
Active(file): 291592 kB
Inactive(file): 14156 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 527088 kB
Mapped: 97832 kB
<\snip>

Running Bash from CLI
The following example shows how to run a bash command from the CLIwith the run bash command command:
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 528 poll_s ? 00:00:03 init
1 S 0 2 0 0 80 0 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 80 0 - 0 run_ks ? 00:00:56 ksoftirqd/0
1 S 0 6 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/0
1 S 0 7 2 0 -40 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 8 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/1
1 S 0 9 2 0 80 0 - 0 worker ? 00:00:00 kworker/1:0
1 S 0 10 2 0 80 0 - 0 run_ks ? 00:00:00 ksoftirqd/1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
35

Bash
Examples of Bash Commands

Running Python from Bash
The following example shows how to load Python and configure a switch using Python objects:
switch# run bash
bash-4.2$ python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from cisco import *
>>> from cisco.vrf import *
>>> from cisco.interface import *
>>> vrfobj=VRF('myvrf')
>>> vrfobj.get_name()
'myvrf'
>>> vrfobj.add_interface('Ethernet1/3')
True
>>> intf=Interface('Ethernet1/3')
>>> print intf.config()

!Command: show running-config interface Ethernet1/3
!Time: Mon Nov 4 13:17:56 2013

version 6.1(2)I2(1)

interface Ethernet1/3
vrf member myvrf

>>>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
36

Bash
Running Python from Bash

C H A P T E R 7
Guest Shell

• About the Guest Shell, on page 37
• Accessing the Guest Shell, on page 38
• Capabilities in the Guest Shell, on page 38
• Resources Used for the Guest Shell, on page 42
• Security Posture for Virtual Services , on page 43
• Guest File System Access Restrictions , on page 44
• Guidelines and Limitations, on page 45
• Managing the Guest Shell, on page 46
• Verifying Virtual Service and Guest Shell Information, on page 51

About the Guest Shell
In addition to the NX-OS CLI and Bash access on the underlying Linux environment, the Cisco Nexus 9000
Series devices support access to a decoupled execution space running within a Linux Container (LXC) called
the “guest shell”.

From within the guest shell the network-admin has the following capabilities:

• Access to the network.

• Access to Cisco Nexus 9000 bootflash.

• Access to Cisco Nexus 9000 CLI.

• Access to Cisco onePK APIs.

• The ability to install and run python scripts.

• The ability to install and run 64-bit Linux applications.

Decoupling the execution space from the native host system allows customization of the Linux environment
to suit the needs of the applications without impacting the host system or applications running in other Linux
Containers.

On NX-OS devices, Linux Containers are installed and managed with the virtual-service commands. The
guest shell will appear in the virtual-service show command output.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
37

By default the guest shell occupies approximately 5 MB of RAM and 200 MB of bootflash when enabled.
Use the guestshell destroy command to reclaim resources if the guest shell is not used.

Note

Accessing the Guest Shell
In Cisco NX-OS, the guest shell is accessible to the network-admin. It is automatically enabled in the system
and can be accessed using the run guestshell command. Consistent with the run bash command, these
commands can be issued within the guest shell with the run guestshell command form of the NX-OS CLI
command.

switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 117616640 Aug 21 18:04 /bootflash/chef.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova

When running in the guest shell, you have network-admin level privileges.Note

Capabilities in the Guest Shell
The guest shell has a number of utilities and capabilities available by default.

NX-OS CLI in the Guest Shell
The guest shell provides an application to allow the user to issue NX-OS commands from the guest shell
environment to the host network element. The dohost application accepts any valid NX-OS configuration or
exec commands and issues them to the host network element.

When invoking the dohost command each NX-OS command must be in double quotes:

dohost "<NXOS CLI>"

The NX-OS CLI can be chained together:

guestshell:~$ dohost "conf t ; cdp timer 20"
{0}{}
{0}{}
guestshell:~$ dohost "show run | inc cdp"
{0}{cdp timer 20}

The value between the first set of brackets is the result code from the NXOS parser. The value between the
second set of brackets is the output result from the command issued.

The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding
a semicolon between each command. (A space on either side of the semicolon is required.):

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
38

Guest Shell
Accessing the Guest Shell

guestshell:~$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
{0}{cdp timer 13}

In this example, the dohost command received only one quoted command string. It returns one result string
back from the NX-OS parser.

Commands issued on the host through the dohost command are run with network-admin level privileges.Note

Network Access in Guest Shell
The guest shell has a number of typical network utilities included by default and they can be used on different
VRFs using the chvrf vrf command command.

Commands that are run without the chvrf command are run within the context of the default VRF.Note

For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management
ping 10.0.0.1”. Other utilities such as scp or ssh would be similar.

Example:

switch# guestshell
guestshell:~$ cd /bootflash
guestshell:/bootflash$ chvrf management scp foo@10.28.38.48:/foo/index.html index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
guestshell:/bootflash$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
guestshell:/bootflash$
guestshell:/bootflash$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
guestshell:/bootflash$

To obtain a list of VRFs on the system, use the show vrf command. The command can be run natively from
the NX-OS CLI or by with the dohost show vrf command in the guest shell.

Example:

guestshell:/bootflash$ dohost "show vrf"
{0}{VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --}

To resolve domain names from within the guest shell, the resolver needs to be configured. Edit the
/etc/resolv.conf file in the guest shell to include a DNS nameserver and domain as appropriate for the network.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
39

Guest Shell
Network Access in Guest Shell

Example:

nameserver 10.1.1.1
domain cisco.com

The nameserver and domain information should match what is configured through the NX-OS configuration.

Example:

switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1

If the Cisco Nexus 9000 device is in a network that uses an HTTP proxy server, the http_proxy and
https_proxy environment variables must be set up within the guest shell also.

Example:

export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they
are persistent.

Access to Bootflash in Guest Shell
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI
commands. Bymounting the system bootflash at /bootflash in the guest shell environment, the network-admin
can operate on these files with Linux commands.

Example:

find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”

Python in Guest Shell
Python can be used interactively or python scripts can be run in the guest shell.

Example:

guestshell:~$ python
Python 2.7.3 (default, Aug 22 2014, 12:09:58)
[GCC 4.8.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> quit()
guestshell:~$

The pip python package manager is included in the guest shell to allow the network-admin to install new
python packages.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
40

Guest Shell
Access to Bootflash in Guest Shell

Example:

guestshell:~$ pip list
argparse (1.2.1)
async (0.6.1)
iniparse (0.3.2)
ipaddress (branches-3144)
pexpect (2.3)
pip (1.5.6)
pycurl (7.19.0)
setuptools (0.6c11)
smart (1.4.1)
urlgrabber (3.9.1)
yum-metadata-parser (1.1.4)

Installing RPMs in the Guest Shell
By default, the Yum RPM package manager is included in the guest shell for the installation of software
packages. Yum is pointed to the yocto repository.

guestshell:~$ cat /etc/yum/repos.d/yumrepo_x86_64.repo
[poky_1_5_1_x86_64]
baseurl=http://downloads.yoctoproject.org/releases/yocto/yocto-1.5.1/rpm/x86_64/
name=Poky 1.5.1 repository (x86_64)
enabled=1

Yum can be pointed to one or more repositories at any time by modifying the yumrepo_x86_64.repo
file or by adding a new .repo file in the repos.d directory.

Yum resolves the dependancies and installs all the required packages.

guestshell:~$ sudo chvrf management yum install perl
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package perl.x86_64 0:5.14.3-r1 set to be updated
--> Processing Dependency: libperl5 >= 5.14.3 for package: perl-5.14.3-r1.x86_64
--> Processing Dependency: libperl.so.5()(64bit) for package: perl-5.14.3-r1.x86_64
--> Running transaction check
---> Package libperl5.x86_64 0:5.14.3-r1 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:
perl x86_64 5.14.3-r1 poky_1_5_1_x86_64 16 k
Installing for dependencies:
libperl5 x86_64 5.14.3-r1 poky_1_5_1_x86_64 712 k

Transaction Summary
==
Install 2 Package(s)
Upgrade 0 Package(s)

Total size: 728 k
Installed size: 1.6 M

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
41

Guest Shell
Installing RPMs in the Guest Shell

Is this ok [y/N]: y
Downloading Packages:
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : libperl5-5.14.3-r1.x86_64 1/2
Installing : perl-5.14.3-r1.x86_64 2/2

Installed:
perl.x86_64 0:5.14.3-r1

Dependency Installed:
libperl5.x86_64 0:5.14.3-r1

Complete!
guestshell:~$

Whenmore space is needed in the guest shell root file system for installing or running packages, the guestshell
resize roofs size-in-MB command is used to increase the size of the file system.

Note

Some open source software packages from the repository might not install or run as expected in the guest
shell as a result of restrictions that have been put into place to protect the integrity of the host system.

Note

Resources Used for the Guest Shell
By default, the resources for the guest shell have a small impact on resources available for normal switch
operations. If the network-admin requires additional resources for the guest shell, the guestshell resize {cpu
| memory | rootfs} command changes these limits.

Minimum/MaximumDefaultResource

1/20%1%CPU

256/3840MB256MBMemory

204/1024MB204MBStorage

The CPU limit is the percentage of the system compute capacity that tasks running within the guest shell are
given when there is contention with other compute loads in the system. When there is no contention for CPU
resources, the tasks within the guest shell are not limited.

A guest shell reboot is required after changing the resource allocations. This can be accomplished with the
guestshell reboot command.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
42

Guest Shell
Resources Used for the Guest Shell

Security Posture for Virtual Services
Use of the guest shell and virtual services in Cisco Nexus 9000 series devices are only two of the many ways
that the network-admin canmanage or extend the functionality of the system. These options are geared towards
providing an execution environment that is decoupled from the native host context. This separation allows
the introduction of software into the system that may not be compatible with the native execution environment.
It also allows the software to run in an environment that does not interfere with the behavior, performance,
or scale of the system.

Digitally Signed Application Packages
By default, Cisco network elements require applications to provide a valid Cisco digital signature at runtime.
The Cisco digital signature ensures the integrity of Cisco-developed packages and applications.

The Cisco Nexus 9000 Series switches support the configuration of a signing level policy to allow for unsigned
OVA software packages. To allow unsigned and Cisco-signed packages for creating virtual-services, the
network-admin can configure the following:

virtual-service
signing level unsigned

The guest shell software package has a Cisco signature and does not require this configuration.Note

Kernel Vulnerability Patches
Cisco responds to pertinent CommonVulnerabilities and Exposures (CVEs) with platform updates that address
known vulnerabilities.

ASLR and X-Space Support
Cisco Nexus 9000 NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable
Space Protection (X-Space) for runtime defense. The software in Cisco-signed packages make use of this
capability. If other software is installed on the system, it is recommended that it be built using a host OS and
development toolchain that supports these technologies. Doing so reduces the potential attack surface that the
software presents to potential intruders.

Root-User Restrictions
As a best practice for developing secure code, it is recommend running applications with the least privilege
needed to accomplish the assigned task. To help prevent unintended accesses, software added into the guest
shell should follow this best practice.

All processes within a virtual service are subject to restrictions imposed by reduced Linux capabilities. If your
application must perform operations that require root privileges, restrict the use of the root account to the
smallest set of operations that absolutely requires root access, and impose other controls such as a hard limit
on the amount of time that the application can run in that mode.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
43

Guest Shell
Security Posture for Virtual Services

The set of Linux capabilities that are dropped for root within virtual services follow:

CAP_SYS_PACCTCAP_MKNODCAP_SYS_BOOT

CAP_SYS_RESOURCECAP_MAC_OVERRIDECAP_SYS_MODULE

CAP_AUDIT_WRITECAP_SYS_RAWIOCAP_SYS_TIME

CAP_SETFCAPCAP_SYS_NICECAP_AUDIT_CONTROL

CAP_SETPCAPCAP_SYS_PTRACECAP_MAC_ADMIN

As root within a virtual-service, bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts
are prevented.

Namespace Isolation
The host and virtual service are separated into separate namespaces. This provides the basis of separating the
execution spaces of the virtual services from the host. Namespace isolation helps to protect against data loss
and data corruption due to accidental or intentional data overwrites between trust boundaries. It also helps to
ensure the integrity of confidential data by preventing data leakage between trust boundaries: an application
in one virtual service cannot access data in another virtual service

Guest File System Access Restrictions
To preserve the integrity of the files within the virtual services, the file systems of the virtual services are not
accessible from the NX-OS CLI. If a given virtual-service allows files to be modified, it needs to provide an
alternate means by which this can be done (i.e. yum install, scp, ftp, etc).

The guest shell mounts the bootflash of the host system at /bootflash. The network-admin can access
the file using an NX-OS CLI or Linux command from within the guest shell.

Resource Management
ADenial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended
users.Misbehaving ormalicious application code can causeDoS as the result of over-consumption of connection
bandwidth, disk space, memory, and other resources. The host provides resource-management features that
ensure fair allocation of resources among all virtual services on the host.

Secure IPC
Applications in a guest shell or virtual service can be made more integrated with the host by using Cisco
onePK services. The applications communicate with the host network element over TIPC. Applications within
various containers are not allowed to communicate with each other over TIPC, they are only allowed to talk
to the host. This prevents issues of one container from spoofing that it is where the Cisco onePK services are
running. Applications in containers are also not allowed to listen on TIPC ports.

To ensure that only know virtual services can communicate with the host, a unique identifier for each virtual
service is created when it is enabled and verified at the time when the onePK communication channel is
established.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
44

Guest Shell
Namespace Isolation

The system also limits the rate at which an application in an individual virtual service can send messages to
the host. This behavior prevents a misbehaving application from sending messages frequently enough to
prevent normal operation of the host or to block other virtual services on the same host from communicating
with the host.

Guidelines and Limitations
The guest shell has the following guidelines and limitations:

• By default, the guest shell starts an Open-SSH v6.2p2 server upon boot up. The server listens on port
4022 on the localhost ip address interface 127.0.0.1 only. This provides the password-less connectivity
into the guest shell from the NX-OS vegas-shell when the guestshell keyword is entered. If this server
is killed or its configuration (residing in /etc/ssh/sshd_config) is altered, access to the guest
shell from the NX-OS CLI may not work. When this happens, you should navigate back into the guest
shell with the virtual-service connect name guestshell+ console command. The username/password
for this access is guestshell/guestshell.

To instantiate your own Open-SSH server within the guest shell use the following steps as root:

• Determine which VRF you want to establish your ssh connections through.

• Determine which port you want your Open-SSH server to listen for connections. Use the NX-OS
CLI show socket connection command to view which ports that are already in use.

Do not select port 4022.Note

• Start your Open-SSH server with the following command:

chvrf vrf_name /usr/sbin/sshd -p port_number

• The time zone within the guest shell is not updated when the clock timezone command is configured.

Use the Linux TZ environment variable to change the timezone within the guest shell.

The following is an example that configures the time zone in the guest shell:

switch(config)# clock timezone PDT -7 0
switch(config)# clock set 11:01:15 12 Sep 2014
Fri Sep 12 11:01:15 PDT 2014
switch(config)# show clock
11:01:26.421 PDT Fri Sep 12 2014
switch(config)# run guestshell
guestshell:~$ export TZ='PDT7'
guestshell:~$ date
Fri Sep 12 11:01:59 PDT 2014

• Cisco Nexus 9000 NX-OS automatically installs and enables the guest shell by default. However, if the
device is reloaded with a Cisco NX-OS image that does not provide guest shell support, the existing
guest shell is automatically removed and a%VMAN-2-INVALID_PACKAGE message is issued.

As a best practice, remove the guest shell with the guestshell destroy command before reloading the
older Cisco NX-OS image.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
45

Guest Shell
Guidelines and Limitations

Use the install all command to validate the compatibility between the current Cisco NX-OS image and
the target Cisco NX-OS image.

The following is an example of incompatible images:

switch# install all nxos n9kpregs.bin
Installer will perform compatibility check first. Please wait.
uri is: /n9kpregs.bin
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "lcn9k" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
Preparing "lcn9k" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
Preparing "lcn9k" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
Preparing "lcn9k" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
Preparing "lcn9k" version info using image bootflash:/n9kpregs.bin.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guest shell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#

Managing the Guest Shell
The following are commands to manage the guest shell:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
46

Guest Shell
Managing the Guest Shell

Table 6: Guest Shell CLI Commands

DescriptionCommands

Installs and activates the guest shell using the OVA
that is embedded in the system image.

Installs and activates the guest shell using the specified
software package (OVA file) or the embedded
package from the system image (when no package is
specified). Initially, guest shell packages are only
available by being embedded in the system image.

When the guest shell is already installed, this
command enables the installed guest shell. Typically
this is used after a guestshell disable command.

guestshell enable [package guest shell OVA file]

Shuts down and disables the guest shell.guestshell disable

Deactivates and upgrades the guest shell using the
specified software package (OVA file) or the
embedded package from the system image (if no
package is specified). Initially guest shell packages
are only available by being embedded in the system
image.

The current rootfs for the guest shell is replaced with
the rootfs in the software package. The guest shell
does not make use of secondary filesystems that
persist across an upgrade. Without persistent
secondary filesystems, a guestshell destroy command
followed by a guestshell enable command could also
be used to replace the rootfs. When an upgrade is
successful, the guest shell is activated.

You are prompted for a confirmation prior to carrying
out the upgrade command.

guestshell upgrade [package guest shell OVA file]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
47

Guest Shell
Managing the Guest Shell

DescriptionCommands

Deactivates the guest shell and then reactivates it.

You are prompted for a confirmation prior to carrying
out the reboot command.

This is the equivalent of a guestshell
disable command followed by a guestshell
enable command in exec mode.

This is useful when processes inside the
guest shell have been stopped and need to
be restarted. The run guestshell command
relies on sshd running in the guest shell.

If the command does not work, the sshd
process may have been inadvertently
stopped. Performing a reboot of the guest
shell from the NX-OS CLI allows it to
restart and restore the command.

Note

guestshell reboot

Deactivates and uninstalls the guest shell. All
resources associated with the guest shell are returned
to the system. The show virtual-service global
command indicates when these resources become
available.

Issuing this command results in a prompt for a
confirmation prior to carrying out the destroy
command.

guestshell destroy

Connects to the guest shell that is already running
with a shell prompt. No username/password is
required.

guestshell

run guestshell

Executes a Linux/UNIX commandwithin the context
of the guest shell environment.

After execution of the command you are returned to
the switch prompt.

guestshell run command

run guestshell command

Changes the allotted resources available for the guest
shell. The changes take effect the next time the guest
shell is enabled or rebooted.

guestshell resize [cpu |memory | rootfs]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
48

Guest Shell
Managing the Guest Shell

DescriptionCommands

On systems that have active and standby supervisors,
this command synchronizes the guest shell contents
from the active supervisor to the standby supervisor.
The network-admin issues this command when the
guest shell rootfs has been set up to a point that they
would want the same rootfs used on the standby
supervisor when it becomes the active supervisor. If
this command is not used, the guest shell is freshly
installed when the standby supervisor transitions to
an active role using the guest shell package available
on that supervisor.

guestshell sync

In the event that the guestshell or virtual-services
cannot be managed, even after a system reload, the
reset command is used to force the removal of the
guest shell and all virtual-services. The system needs
to be reloaded for the cleanup to happen. No guest
shell or additional virtual-services can be installed or
enabled after issuing this command until after the
system has been reloaded.

You are prompted for a confirmation prior to initiating
the reset.

virtual-service reset force

Administrative privileges are necessary to enable/disable and to gain access to the guest shell environment.Note

The guest shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs
are installed and managed with the virtual-service commands. The guest shell appears in the virtual-service
commands as a virtual service named guestshell+.

Note

Disabling the Guest Shell
The guestshell disable command shuts down and disables the guest shell.

When the guest shell is disabled and the system is reloaded, the guest shell remains disabled.

Example:

switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n) y

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
49

Guest Shell
Disabling the Guest Shell

2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual
service 'guestshell+'
2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'
switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova

The guest shell is reactivated with the guestshell enable command.Note

Destroying the Guest Shell
The guestshell destroy command uninstalls the guest shell and its artifacts. The command does not remove
the guest shell OVA.

When the guest shell is destroyed and the system is reloaded, the guest shell remains destroyed.

switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova

switch# guestshell destroy

You are about to destroy the guest shell and all of its contents. Be sure to save your work.
Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'

switch# show virtual-service list
Virtual Service List:

The guest shell can be re-enabled with the guestshell enable command.Note

In the Cisco NX-OS software, the oneP feature is automatically enabled for local access when a container is
installed. Since the guest shell is a container, the oneP feature is automatically started.

If you do not want to use the guest shell, you can remove it with the guestshell destroy command. Once the
guest shell has been removed, it remains removed for subsequent reloads. This means that when the guest
shell container has been removed and the switch is reloaded, the guest shell container and the oneP feature
are not automatically started.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
50

Guest Shell
Destroying the Guest Shell

Enabling the Guest Shell
The guestshell enable command installs the guest shell from a guest shell software package. By default, the
package embedded in the system image is used for the installation. The command is also used to reactivate
the guest shell if it has been disabled.

When the guest shell is enabled and the system is reloaded, the guest shell remains enabled.

Example:

switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating

2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova

Verifying Virtual Service and Guest Shell Information
You can verify virtual service and guest shell information with the following commands:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
51

Guest Shell
Enabling the Guest Shell

DescriptionCommand

Displays the global state and
limits for virtual services.

show virtual-service global

switch# show virtual-service global

Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.8
Total virtual services installed : 1
Total virtual services activated : 1

Machine types supported : LXC
Machine types disabled : KVM

Maximum VCPUs per virtual service : 1

Resource virtualization limits:

Name Quota Committed Available
--
system CPU (%) 6 1 5
memory (MB) 2304 256 2048
bootflash (MB) 8192 248
3710

Displays a summary of the
virtual services, the status of
the virtual services, and
installed software packages.

show virtual-service list

switch# show virtual-service list *

Virtual Service List:

Name Status Package Name
--
guestshell+ Activated guestshell.ova
chef Installed chef-0.8.1-n9000-spa-k9.ova

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
52

Guest Shell
Verifying Virtual Service and Guest Shell Information

DescriptionCommand

Displays details about the
guestshell package (such as
version, signing resources, and
devices).

show guestshell detail

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isan/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 1.0(0.1)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation
Disk : 204 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
53

Guest Shell
Verifying Virtual Service and Guest Shell Information

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
54

Guest Shell
Verifying Virtual Service and Guest Shell Information

C H A P T E R 8
Scripting with Tcl

• About Tcl, on page 55
• Running the tclsh Command, on page 57
• Navigating Cisco NX-OS Modes from the tclsh Command, on page 58
• Tcl References, on page 60

About Tcl
Tcl (Tool Command Language) is a scripting language. With tcl, you gain more flexibility in your use of the
CLI commands on the device. You can use tcl to extract certain values in the output of a show command,
perform switch configurations, run Cisco NX-OS commands in a loop, or define Embedded Event Manager
(EEM) policies in a script.

This section describes how to run tcl scripts or run tcl interactively on Cisco NX-OS devices.

Tclsh Command Help
Command help is not available for tcl commands. You can still access the help functions of Cisco NX-OS
commands from within an interactive tcl shell.

This example shows the lack of tcl command help in an interactive tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# puts ?

^
% Invalid command at '^' marker.
switch-tcl# configure ?
<CR>
session Configure the system in a session
terminal Configure the system from terminal input

switch-tcl#

In the above example, the Cisco NX-OS command help function is still available but the tcl puts command
returns an error from the help function.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
55

Tclsh Command History
You can use the arrow keys on your terminal to access commands you previously entered in the interactive
tcl shell.

The tclsh command history is not saved when you exit the interactive tcl shell.Note

Tclsh Tab Completion
You can use tab completion for Cisco NX-OS commands when you are running an interactive tcl shell. Tab
completion is not available for tcl commands.

Tclsh CLI Command
Although you can directly access Cisco NX-OS commands from within an interactive tcl shell, you can only
execute Cisco NX-OS commands in a tcl script if they are prepended with the tcl cli command.

In an interactive tcl shell, the following commands are identical and will execute properly:
switch-tcl# cli show module 1 | incl Mod
switch-tcl# cli "show module 1 | incl Mod"
switch-tcl# show module 1 | incl Mod

In a tcl script, you must prepend Cisco NX-OS commands with the tcl cli command as shown in the following
example:
set x 1
cli show module $x | incl Mod
cli "show module $x | incl Mod"

If you use the following commands in your script, the script will fail and the tcl shell will display an error:
show module $x | incl Mod
"show module $x | incl Mod"

Tclsh Command Separation
The semicolon (;) is the command separator in both Cisco NX-OS and tcl. To execute multiple Cisco NX-OS
commands in a tcl command, you must enclose the Cisco NX-OS commands in quotes ("").

In an interactive tcl shell, the following commands are identical and will execute properly:
switch-tcl# cli "configure terminal ; interface loopback 10 ; description loop10"
switch-tcl# cli configure terminal ; cli interface loopback 10 ; cli description loop10
switch-tcl# cli configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# cli interface loopback 10
switch(config-if-tcl)# cli description loop10
switch(config-if-tcl)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
56

Scripting with Tcl
Tclsh Command History

In an interactive tcl shell, you can also execute Cisco NX-OS commands directly without prepending the tcl
cli command:
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# description loop10
switch(config-if-tcl)#

Tcl Variables
You can use tcl variables as arguments to the Cisco NX-OS commands. You can also pass arguments into tcl
scripts. Tcl variables are not persistent.

The following example shows how to use a tcl variable as an argument to a Cisco NX-OS command:
switch# tclsh
switch-tcl# set x loop10
switch-tcl# cli "configure terminal ; interface loopback 10 ; description $x"
switch(config-if-tcl)#

Tclquit
The tclquit command exits the tcl shell regardless of which Cisco NX-OS command mode is currently active.
You can also press Ctrl-C to exit the tcl shell. The exit and end commands change Cisco NX-OS command
modes. The exit command will terminate the tcl shell only from the EXEC command mode.

Tclsh Security
The tcl shell is executed in a sandbox to prevent unauthorized access to certain parts of the Cisco NX-OS
system. The system monitors CPU, memory, and file system resources being used by the tcl shell to detect
events such as infinite loops, excessive memory utilization, and so on.

You configure the intial tcl environment with the scripting tcl init init-file command.

You can define the looping limits for the tcl environment with the scripting tcl recursion-limit iterations
command. The default recursion limit is 1000 interations.

Running the tclsh Command
You can run tcl commands from either a script or on the command line using the tclsh command.

You cannot create a tcl script file at the CLI prompt. You can create the script file on a remote device and
copy it to the bootflash: directory on the Cisco NX-OS device.

Note

SUMMARY STEPS

1. tclsh [bootflash:filename [argument ...]]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
57

Scripting with Tcl
Tcl Variables

DETAILED STEPS

PurposeCommand or Action

Starts a tcl shell.tclsh [bootflash:filename [argument ...]]Step 1

Example: If you run the tclsh command with no arguments, the shell
runs interactively, reading tcl commands from standardswitch# tclsh ?

<CR>
bootflash: The file to run

input and printing command results and error messages to
the standard output. You exit from the interactive tcl shell
by typing tclquit or Ctrl-C.

If you run the tclsh command with arguments, the first
argument is the name of a script file containing tcl
commands and any additional arguments are made available
to the script as variables.

Example

The following example shows an interactive tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# cli show module $x | incl Mod
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch-tcl# exit
switch#

The following example shows how to run a tcl script:
switch# show file bootflash:showmodule.tcl
set x 1
while {$x < 19} {
cli show module $x | incl Mod
set x [expr {$x + 1}]
}

switch# tclsh bootflash:showmodule.tcl
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch#

Navigating Cisco NX-OS Modes from the tclsh Command
You can change modes in Cisco NX-OS while you are running an interactive tcl shell.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
58

Scripting with Tcl
Navigating Cisco NX-OS Modes from the tclsh Command

SUMMARY STEPS

1. tclsh
2. configure terminal
3. tclquit

DETAILED STEPS

PurposeCommand or Action

Starts an interactive tcl shell.tclsh

Example:

Step 1

switch# tclsh
switch-tcl#

Runs a Cisco NX-OS command in the tcl shell, changing
modes.

configure terminal

Example:

Step 2

The tcl prompt changes to indicate the Cisco
NX-OS command mode.

Noteswitch-tcl# configure terminal
switch(config-tcl)#

Terminates the tcl shell, returning to the starting mode.tclquit

Example:

Step 3

switch-tcl# tclquit
switch#

Example

The following example shows how to change Cisco NX-OS modes from an interactive tcl shell:
switch# tclsh
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# ?
description Enter description of maximum 80 characters
inherit Inherit a port-profile
ip Configure IP features
ipv6 Configure IPv6 features
logging Configure logging for interface
no Negate a command or set its defaults
rate-limit Set packet per second rate limit
shutdown Enable/disable an interface
this Shows info about current object (mode's instance)
vrf Configure VRF parameters
end Go to exec mode
exit Exit from command interpreter
pop Pop mode from stack or restore from name
push Push current mode to stack or save it under name
where Shows the cli context you are in

switch(config-if-tcl)# description loop10
switch(config-if-tcl)# tclquit

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
59

Scripting with Tcl
Navigating Cisco NX-OS Modes from the tclsh Command

Exiting Tcl
switch#

Tcl References
The following titles are provided for your reference:

• Mark Harrison (ed), Tcl/Tk Tools, O'Reilly Media, ISBN 1-56592-218-2, 1997

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming, Addison-Wesley, Reading, MA,
USA, ISBN 0-201-63474-0, 1998

• John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, USA, ISBN 0-201-63337-X,
1994.

• Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, Upper Saddle River, NJ, USA,
ISBN 0-13-038560-3, 2003.

• J Adrian Zimmer, Tcl/Tk for Programmers, IEEE Computer Society, distributed by JohnWiley and Sons,
ISBN 0-8186-8515-8, 1998.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
60

Scripting with Tcl
Tcl References

A P P E N D I X A
NX-API Response Codes

• Table of NX-API Response Codes, on page 61

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 7: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Input Bash command error.400BASH_CMD_ERR

Chunking only allowed to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

Request message is invalid.400IN_MSG_ERR

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
61

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Backend processing error.500BACKEND_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
62

NX-API Response Codes
NX-API Response Codes

A P P E N D I X B
Troubleshooting

• About Troubleshooting, on page 63

About Troubleshooting
Troubleshooting information for Cisco NX-OS programmability is documented in the Cisco Nexus 9000
Series NX-OS Troubleshooting Guide.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
63

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
64

Troubleshooting
Troubleshooting

	Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 6.x
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation for Cisco Nexus 9000 Series Switches
	Documentation Feedback
	Communications, Services, and Additional Information

	New and Changed Information
	New and Changed Information

	Overview
	Programmability Overview
	Standard Network Manageability Features
	Advanced Automation Feature
	PowerOn Auto Provisioning Support
	OpenStack Integration

	Programmability Support
	NX-API Support
	Python Scripting
	Tcl Scripting
	Broadcom Shell
	Bash
	Guest Shell

	NX-API
	About NX-API
	Transport
	Message Format
	Security

	Using NX-API
	Sample NX-API Scripts
	NX-API Sandbox
	NX-API Management Commands
	NX-API Request Elements
	NX-API Response Elements

	Python API
	About the Python API
	Using Python
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-interactive Python
	Running Scripts with Embedded Event Manager
	Python Integration with Cisco NX-OS Network Interfaces
	Cisco NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Scheduler

	Broadcom Shell
	About the Broadcom Shell
	Guidelines and Limitations

	Accessing the Broadcom Shell (bcm-shell)
	Accessing bcm-shell with the CLI API
	Accessing the Native bcm-shell on the Fabric Module
	Accessing the bcm-shell on the Line Card

	Bash
	About Bash
	Accessing Bash
	Escalate Privileges to Root
	Examples of Bash Commands
	Displaying System Statistics
	Running Bash from CLI
	Running Python from Bash

	Guest Shell
	About the Guest Shell
	Accessing the Guest Shell
	Capabilities in the Guest Shell
	NX-OS CLI in the Guest Shell
	Network Access in Guest Shell
	Access to Bootflash in Guest Shell
	Python in Guest Shell
	Installing RPMs in the Guest Shell

	Resources Used for the Guest Shell
	Security Posture for Virtual Services
	Digitally Signed Application Packages
	Kernel Vulnerability Patches
	ASLR and X-Space Support
	Root-User Restrictions
	Namespace Isolation

	Guest File System Access Restrictions
	Resource Management
	Secure IPC

	Guidelines and Limitations
	Managing the Guest Shell
	Disabling the Guest Shell
	Destroying the Guest Shell
	Enabling the Guest Shell

	Verifying Virtual Service and Guest Shell Information

	Scripting with Tcl
	About Tcl
	Tclsh Command Help
	Tclsh Command History
	Tclsh Tab Completion
	Tclsh CLI Command
	Tclsh Command Separation
	Tcl Variables
	Tclquit
	Tclsh Security

	Running the tclsh Command
	Navigating Cisco NX-OS Modes from the tclsh Command
	Tcl References

	NX-API Response Codes
	Table of NX-API Response Codes

	Troubleshooting
	About Troubleshooting

