

Command Reference, Cisco IOS XE Bengaluru 17.4.x (Catalyst 9300 Switches)

First Published: 2020-11-30

Americas Headquarters

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright ${ }^{\ominus}$ 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.
Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: $\mathrm{https}: / / \mathrm{www} . \mathrm{cisco.com} / \mathrm{c} / \mathrm{en} / \mathrm{us} /$ about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)
© 2020 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER

Using the Command-Line Interface
Using the Command-Line Interface 2
Understanding Command Modes 2
Understanding the Help System 3
Understanding Abbreviated Commands 4
Understanding no and default Forms of Commands 4
Understanding CLI Error Messages 4
Using Configuration Logging 5
Using Command History 5
Changing the Command History Buffer Size 5
Recalling Commands 6
Disabling the Command History Feature 6

Using Editing Features 6

Enabling and Disabling Editing Features 7
Editing Commands through Keystrokes 7
Editing Command Lines that Wrap 9
Searching and Filtering Output of show and more Commands $\mathbf{1 0}$
Accessing the CLI 10
Accessing the CLI through a Console Connection or through Telnet 11

Cisco SD-Access 1

Cisco SD-Access Commands 15

broadcast-underlay 17
database-mapping 18
dynamic-eid 20
eid-record-provider 21
eid-record-subscriber $\mathbf{2 2}$
eid-table $\mathbf{2 3}$
encapsulation $\mathbf{2 5}$
etr 26
etr map-server 27
extranet 28
first-packet-petr 29
instance-id 31
ip pim lisp core-group-range $\mathbf{3 2}$
ip pim lisp transport multicast 33
ip pim rp-address 34
ip pim sparse mode 35
ipv4 multicast multitopology $\mathbf{3 6}$
ip pim ssm 37
itr 38
itr map-resolver 39
locator default-set 40
locator-set 41
map-cache 42
map-cache extranet 43
prefix-list 44
route-import database 45
service 47
show lisp instance-id ipv4 database 48
show lisp instance-id ipv6 database $\mathbf{5 0}$
show lisp instance-id ipv4 map-cache $\mathbf{5 1}$
show lisp instance-id ipv6 map-cache 57
show lisp instance-id ipv4 server 59
show lisp instance-id ipv6 server $\mathbf{6 1}$
show lisp instance-id ipv4 statistics 62
show lisp instance-id ipv6 statistics 63
show lisp prefix-list 64
show lisp session 65

use-petr 66

PART II

CHAPTER 3

Cisco TrustSec

69

Cisco TrustSec Commands 71

address (CTS) 73
clear cts environment-data $\mathbf{7 4}$
clear cts policy-server statistics $\mathbf{7 5}$
content-type json 76
cts authorization list 77
cts change-password 78
cts credentials 79
cts environment-data enable $\mathbf{8 1}$
cts policy-server device-id $\mathbf{8 2}$
cts policy-server name $\mathbf{8 3}$
cts policy-server order random 84
cts policy-server username $\mathbf{8 5}$
cts refresh $\mathbf{8 6}$
cts rekey $\mathbf{8 8}$
cts role-based enforcement 89
cts role-based 12-vrf $\mathbf{9 0}$
cts role-based monitor 92
cts role-based permissions 93
cts role-based sgt-caching 95
cts role-based sgt-map 96
cts sxp connection peer 98
cts sxp default password $\mathbf{1 0 1}$
cts sxp default source-ip $\mathbf{1 0 3}$
cts sxp filter-enable $\mathbf{1 0 5}$
cts sxp filter-group 106
cts sxp filter-list 108
cts sxp log binding-changes $\mathbf{1 1 0}$
cts sxp reconciliation period 111
cts sxp retry period $\mathbf{1 1 2}$
debug cts environment-data $\mathbf{1 1 3}$
debug cts policy-server $\mathbf{1 1 5}$
port (CTS) 116
propagate sgt (cts manual) $\mathbf{1 1 7}$
retransmit (CTS) $\mathbf{1 1 9}$
sap mode-list (cts manual) $\mathbf{1 2 0}$
show cts credentials $\mathbf{1 2 2}$
show cts environment-data 123
show cts interface $\mathbf{1 2 4}$
show cts policy-server 126
show cts role-based counters 129
show cts role-based permissions $\mathbf{1 3 1}$
show cts server-list 133
show cts sxp 135
show platform hardware fed switch active fwd-asic resource tcam utilization $\mathbf{1 3 8}$
show platform hardware fed switch active sgacl resource usage 140
show platform software classification switch active F0 class-group-manager class-group client acl
all 141
show platform software cts forwarding-manager switch active F0 port $\mathbf{1 4 2}$
show platform software cts forwarding-manager switch active F0 146
show platform software cts forwarding-manager switch active F0 permissions $\mathbf{1 4 7}$
show platform software fed switch active acl counters hardware \| inc SGACL 149
show platform software fed switch active acl usage 150
show platform software fed switch active ifm mappings 151
show platform software fed switch active ip route 153
show platform software fed switch active sgacl detail 155
show platform software fed switch active sgacl port $\mathbf{1 5 6}$
show platform software fed switch active sgacl vlan 158
show platform software status control-processor brief 159
show monitor capture <name> buffer $\mathbf{1 6 0}$
timeout (CTS) $\mathbf{1 6 1}$
tls server-trustpoint $\mathbf{1 6 2}$
Interface and Hardware Commands 165
bluetooth pin 168
clear macro auto configuration 169
device classifier 170
debug ilpower 171
debug interface 172
debug lldp packets 173
debug platform poe 174
debug platform software fed switch active punt packet-capture start 175
duplex 176
errdisable detect cause 178
errdisable recovery cause 180
errdisable recovery cause 182
hw-module beacon 184
hw-module switch upoe-plus 185
interface 186
interface range 189
ip mtu 192
ipv6 mtu 193
lldp (interface configuration) 194
logging event power-inline-status 196
macro 197
macro auto 200
macro auto apply (Cisco IOS shell scripting capability) 203
macro auto config (Cisco IOS shell scripting capability) 205
macro auto control 206
macro auto execute 208
macro auto global control 215
macro auto global processing 217
macro auto mac-address-group 218
macro auto processing 220
macro auto sticky 221
macro auto trigger 222

macro description 223

macro global 224
macro global description 226
mdix auto 227
mode (power-stack configuration) 228
monitoring 230
network-policy 231
network-policy profile (global configuration) 232
power-priority 233
power inline 235
power inline police 238
power supply 240
power supply autoLC shutdown 242
shell trigger 243
show beacon all 244
show device classifier attached 245
show device classifier clients 247
show device classifier profile type $\mathbf{2 4 8}$
show environment 251
show errdisable detect $\mathbf{2 5 3}$
show errdisable recovery $\mathbf{2 5 5}$
show ip interface 256
show interfaces $\mathbf{2 6 1}$
show interfaces counters $\mathbf{2 6 7}$
show interfaces switchport 269
show interfaces transceiver 271
show inventory 275
show macro auto 278
show memory platform 281
show module 284
show mgmt-infra trace messages ilpower $\mathbf{2 8 5}$
show mgmt-infra trace messages ilpower-ha 287
show mgmt-infra trace messages platform-mgr-poe 288
show network-policy profile $\mathbf{2 8 9}$
show parser macro 290
show platform hardware bluetooth 293
show platform hardware fed switch forward 294
show platform hardware fed switch forward interface 297
show platform hardware fed switch forward last summary $\mathbf{3 0 0}$
show platform hardware fed switch fwd-asic counters tla $\mathbf{3 0 3}$
show platform hardware fed active fwd-asic resource tcam utilization $\mathbf{3 0 7}$
show platform resources 309
show platform software audit $\mathbf{3 1 0}$
show platform software fed switch punt cpuq rates $\mathbf{3 1 4}$
show platform software fed switch punt packet-capture display 316
show platform software fed switch punt rates interfaces $\mathbf{3 1 8}$
show platform software ilpower 321
show platform software memory $\mathbf{3 2 3}$
show platform software process list $\mathbf{3 2 8}$
show platform software process memory $\mathbf{3 3 2}$
show platform software process slot switch $\mathbf{3 3 5}$
show platform software status control-processor 337
show platform software thread list 340
show processes cpu platform $\mathbf{3 4 2}$
show processes cpu platform history $\mathbf{3 4 5}$
show processes cpu platform monitor 348
show processes memory 350
show processes memory platform 353
show processes platform 357
show power inline $\mathbf{3 6 0}$
show stack-power $\mathbf{3 6 6}$
show shell 368
show system mtu 371
show tech-support 372
show tech-support bgp 374
show tech-support diagnostic 377
show tech-support poe 382
speed 412
stack-power 414
switchport block 416
system mtu 417
voice-signaling vlan (network-policy configuration) 418
voice vlan (network-policy configuration) $\mathbf{4 2 0}$

PARTIV

CHAPTER 5

IP Addressing Services 423

IP Addressing Services Commands 425
clear ip nhrp 430
clear ipv6 access-list 431
clear ipv6 dhcp 432
clear ipv6 dhcp binding 433
clear ipv6 dhcp client 434
clear ipv6 dhcp conflict 435
clear ipv6 dhcp relay binding 436
clear ipv6 eigrp 437
clear ipv6 mfib counters 438
clear ipv6 mld counters 439
clear ipv6 mld traffic 440
clear ipv6 mtu 441
clear ipv6 multicast aaa authorization 442
clear ipv6 nd destination 443
clear ipv6 nd on-link prefix 444
clear ipv6 nd router 445
clear ipv6 neighbors 446
clear ipv6 nhrp 448
clear ipv6 ospf 449
clear ipv6 ospf counters 450
clear ipv6 ospf events 452
clear ipv6 pim reset 453
clear ipv6 pim topology 454
clear ipv6 pim traffic 455
clear ipv6 prefix-list 456
clear ipv6 rip 457
clear ipv6 route 458
clear ipv6 spd 459
debug nhrp 460
fhrp delay 462
fhrp version vrrp v3 463
ip address dhep 464
ip address pool (DHCP) 467
ip address 468
ip nat inside source 470
ip nat outside source 475
ip nat pool 478
ip nat translation (timeout) 480
ip nhrp map 482
ip nhrp map multicast 484
ip nhrp network-id 485
ip nhrp nhs 486
ip unnumbered 488
ip wccp 490
ipv6 access-list 495
ipv6 address-validate 498
ipv6 cef 499
ipv6 cef accounting 501
ipv6 cef distributed 503
ipv6 cef load-sharing algorithm 505
ipv6 cef optimize neighbor resolution 506
ipv6 destination-guard policy 507
ipv6 dhcp-relay bulk-lease 508
ipv6 dhcp-relay option vpn 509
ipv6 dhcp-relay source-interface 510
ipv6 dhcp binding track ppp 511
ipv6 dhcp database 512
ipv6 dhcp iana-route-add 514
ipv6 dhcp iapd-route-add 515
ipv6 dhcp-ldra 516
ipv6 dhcp ping packets 517
ipv6 dhcp pool 518
ipv6 dhcp server vrf enable 520
ipv6 flow monitor 521
ipv6 general-prefix 522
ipv6 local policy route-map 524
ipv6 local pool 526
ipv6 mld snooping (global) 528
ipv6 mld ssm-map enable 529
ipv6 mld state-limit 530
ipv6 multicast-routing 531
ipv6 multicast group-range 532
ipv6 multicast pim-passive-enable 534
ipv6 multicast rpf 535
ipv6 nd cache expire 536
ipv6 nd cache interface-limit (global) 537
ipv6 nd host mode strict 538
ipv6 nd na glean 539
ipv6 nd ns-interval 540
ipv6 nd nud retry 541
ipv6 nd reachable-time 543
ipv6 nd resolution data limit 544
ipv6 nd route-owner 545
ipv6 neighbor 546
ipv6 ospf name-lookup 548
ipv6 pim 549
ipv6 pim accept-register 550
ipv6 pim allow-rp 551
ipv6 pim neighbor-filter list 552
ipv6 pim rp-address 553
ipv6 pim rp embedded 556
ipv6 pim spt-threshold infinity 557
ipv6 prefix-list 558
ipv6 source-guard attach-policy 561
ipv6 source-route 562
ipv6 spd mode 563
ipv6 spd queue max-threshold 564
ipv6 traffic interface-statistics 565
ipv6 unicast-routing 566
key chain 567
key-string (authentication) 568
key 569
show ip nat translations 570
show ip nhrp nhs 573
show ip ports all 576
show ipv6 access-list 578
show ipv6 destination-guard policy 581
show ipv6 dhcp 582
show ipv6 dhcp binding 583
show ipv6 dhcp conflict 586
show ipv6 dhcp database 587
show ipv6 dhcp guard policy 589
show ipv6 dhcp interface 591
show ipv6 dhcp relay binding 593
show ipv6 eigrp events 595
show ipv6 eigrp interfaces 597
show ipv6 eigrp topology 599
show ipv6 eigrp traffic 601
show ipv6 general-prefix 603
show ipv6 interface 604
show ipv6 mfib 612
show ipv6 mld groups 618
show ipv6 mld interface 621
show ipv6 mld snooping 623
show ipv6 mld ssm-map 625
show ipv6 mld traffic 627
show ipv6 mrib client 629
show ipv6 mrib route 631
show ipv6 mroute 633
show ipv6 mtu 637
show ipv6 nd destination 639
show ipv6 nd on-link prefix $\mathbf{6 4 0}$
show ipv6 neighbors 641
show ipv6 nhrp $\mathbf{6 4 5}$
show ipv6 ospf 648
show ipv6 ospf border-routers 652
show ipv6 ospf event 654
show ipv6 ospf graceful-restart 657
show ipv6 ospf interface 659
show ipv6 ospf request-list $\mathbf{6 6 4}$
show ipv6 ospf retransmission-list $\mathbf{6 6 6}$
show ipv6 ospf statistics $\mathbf{6 6 8}$
show ipv6 ospf summary-prefix $\mathbf{6 7 0}$
show ipv6 ospf timers rate-limit $\mathbf{6 7 1}$
show ipv6 ospf traffic $\mathbf{6 7 2}$
show ipv6 ospf virtual-links 676
show ipv6 pim anycast-RP 678
show ipv6 pim bsr 679
show ipv6 pim df 681
show ipv6 pim group-map 683
show ipv6 pim interface $\mathbf{6 8 5}$
show ipv6 pim join-prune statistic 687
show ipv6 pim limit 688
show ipv6 pim neighbor $\mathbf{6 8 9}$
show ipv6 pim range-list 691
show ipv6 pim topology 693
show ipv6 pim traffic $\mathbf{6 9 5}$
show ipv6 pim tunnel 697
show ipv6 policy 699
show ipv6 prefix-list 700
show ipv6 protocols 703
show ipv6 rip 706
show ipv6 route 711
show ipv6 routers 715
show ipv6 rpf 718
show ipv6 source-guard policy $\mathbf{7 2 0}$
show ipv6 spd 721
show ipv6 static $\mathbf{7 2 2}$
show ipv6 traffic 726
show key chain 729
show track 730
track 732
vrrp 734
vrrp description 735
vrrp preempt 736
vrrp priority $\mathbf{7 3 7}$
vrrp timers advertise $\mathbf{7 3 8}$
vrrs leader 740

PARTV

CHAPTER 6
IP Multicast Routing Commands 743
clear ip mfib counters $\mathbf{7 4 5}$
clear ip mroute 746
debug condition vrf 747
debug ip pim 748
debug ipv6 pim 750
ip igmp filter 752
ip igmp max-groups 753
ip igmp profile 755
ip igmp snooping 756
ip igmp snooping last-member-query-count 757
ip igmp snooping querier 759
ip igmp snooping report-suppression 761
ip igmp snooping vlan mrouter 762
ip igmp snooping vlan static 763
ip multicast auto-enable 764
ip multicast-routing 765
ip pim accept-register 766
ip pim bidir-enable 767
ip pim bsr-candidate 768
ip pim rp-address 770
ip pim rp-candidate 772
ip pim send-rp-announce 773
ip pim spt-threshold 775
ipv6 deny echo reply 776
match message-type 777
match service-type 778
match service-instance 779
mrinfo 780
service-policy-query 782
service-policy 783
show ip igmp filter 784
show ip igmp profile 785
show ip igmp snooping 786
show ip igmp snooping groups 788
show ip igmp snooping mrouter 790
show ip igmp snooping querier 791
show ip pim autorp 793
show ip pim bsr-router 794
show ip pim bsr 795
show ip pim interface df 796
show ip pim rp 798
show ip pim tunnel 800
show platform software fed switch ip multicast groups 802
show platform software fed switch ip multicast 803
show platform software fed switch ip multicast df 806

CHAPTER 7
 Layer 2/3 Commands 809

avb 812
channel-group $\mathbf{8 1 4}$
channel-protocol 817
clear 12protocol-tunnel counters $\mathbf{8 1 8}$
clear lacp $\mathbf{8 1 9}$
clear pagp 820
clear spanning-tree counters $\mathbf{8 2 1}$
clear spanning-tree detected-protocols $\mathbf{8 2 2}$
debug etherchannel $\mathbf{8 2 3}$
debug lacp $\mathbf{8 2 4}$
debug pagp 825
debug platform pm 826
debug platform udld 827
debug spanning-tree $\mathbf{8 2 8}$
instance (VLAN) 830
interface port-channel 832
12protocol-tunnel 834
lacp fast-switchover $\mathbf{8 3 7}$
lacp max-bundle 839
lacp port-priority $\mathbf{8 4 0}$
lacp rate $\mathbf{8 4 1}$
lacp system-priority $\mathbf{8 4 2}$
loopdetect $\mathbf{8 4 3}$
mvrp vlan creation 845
mvrp registration $\mathbf{8 4 6}$
mvrp timer $\mathbf{8 4 8}$
name (MST) 850
no $p t p$ enable 851
pagp learn-method 852
pagp port-priority $\mathbf{8 5 4}$
policy-map 855
port-channel 857

port-channel auto $\mathbf{8 5 8}$

port-channel load-balance 859
port-channel load-balance extended $\mathbf{8 6 1}$
port-channel min-links $\mathbf{8 6 3}$
ptp priority 1 value $\mathbf{8 6 4}$
ptp priority 2 value $\mathbf{8 6 5}$
ptp profile dotlas $\mathbf{8 6 6}$
rep admin vlan $\mathbf{8 6 7}$
rep block port 868
rep lsl-age-timer $\mathbf{8 7 0}$
rep lsl-retries 871
rep preempt delay $\mathbf{8 7 2}$
rep preempt segment $\mathbf{8 7 3}$
rep segment 874
rep stcn 876
revision 877
show avb domain 878
show avb streams $\mathbf{8 8 0}$
show dot1q-tunnel $\mathbf{8 8 1}$
show etherchannel $\mathbf{8 8 2}$
show interfaces rep detail $\mathbf{8 8 7}$
show 12protocol-tunnel 888
show lacp 890
show loopdetect $\mathbf{8 9 4}$
show msrp port bandwidth 895
show msrp streams 897
show pagp 899
show platform etherchannel 901
show platform hardware fed active vlan ingress $\mathbf{9 0 2}$
show platform pm 903
show platform software fed switch ptp 904
show ptp brief $\mathbf{9 0 6}$
show ptp clock 907
show ptp parent 908
show ptp port 910
show rep topology 911
show spanning-tree 913
show spanning-tree mst 919
show udld 922
show vlan dot1q tag native 926
spanning-tree backbonefast 927
spanning-tree bpdufilter $\mathbf{9 2 8}$
spanning-tree bpduguard 930
spanning-tree bridge assurance 932
spanning-tree cost 933
spanning-tree etherchannel guard misconfig 935
spanning-tree extend system-id 937
spanning-tree guard 938
spanning-tree link-type 939
spanning-tree loopguard default 941
spanning-tree mode 942
spanning-tree mst 943
spanning-tree mst configuration 944
spanning-tree mst forward-time 946
spanning-tree mst hello-time 947
spanning-tree mst max-age 948
spanning-tree mst max-hops 949
spanning-tree mst pre-standard 950
spanning-tree mst priority 952
spanning-tree mst root 953
spanning-tree mst simulate pvst global 954
spanning-tree pathcost method 955
spanning-tree port-priority 956
spanning-tree portfast edge bpdufilter default 958
spanning-tree portfast edge bpduguard default 960
spanning-tree portfast default $\mathbf{9 6 1}$
spanning-tree transmit hold-count 963
spanning-tree uplinkfast $\mathbf{9 6 4}$
spanning-tree vlan 965
switchport 968
switchport access vlan 969
switchport mode 970
switchport nonegotiate 972
switchport trunk 973
switchport voice vlan 976
udld 979
udld port 981
udld reset 983
vlan dot1q tag native $\mathbf{9 8 4}$
vtp mode 985

PARTVII

CHAPTER 8

Multiprotocol Label Switching 987

MPLS Commands 989
autodiscovery 991
backup peer 993
encapsulation mpls 994
ip multicast mrinfo-filter 995
ip multicast-routing 996
12 vfi autodiscovery 997
12 vfi manual 998
12 vpn vfi context 1000
12vpn xconnect context $\mathbf{1 0 0 1}$
load-balance 1002
mdt log-reuse 1004
mdt default 1005
mdt data 1007
member (12vpn vfi) 1009
member pseudowire 1010
mpls label range 1012
mpls label protocol (interface configuration) 1015
mpls label protocol (global configuration) 1016
mpls ldp logging neighbor-changes $\mathbf{1 0 1 7}$
mpls ip (interface configuration) 1018
mpls ip (global configuration) 1019
mpls ip default-route 1020
neighbor (MPLS) 1021
show ip pim mdt send 1022
show ip pim mdt receive 1023
show ip pim mdt history 1025
show ip pim mdt bgp 1026
show mpls label range 1027
show mpls ldp bindings 1028
show mpls ldp discovery 1030
show mpls ldp neighbor 1031
show mpls forwarding-table 1032
show mpls static binding 1040
show mpls static crossconnect $\mathbf{1 0 4 2}$
mpls static binding ipv4 1043
show platform hardware fed (TCAM utilization) $\mathbf{1 0 4 5}$
show platform software fed switch 12 vpn 1048
show platform software fed switch mpls 1050
show platform software l2vpn switch 1052
source template type pseudowire 1054
tunnel destination 1055
tunnel source 1056
xconnect 1058

PARTVIII
Network Management 1061

CHAPTER 9
Network Management Commands 1063
cache 1067
clear flow exporter 1069
clear flow monitor 1070
clear snmp stats hosts $\mathbf{1 0 7 2}$
collect 1073

```
collect counter 1074
collect flow sampler 1075
collect interface }107
collect ipv4 destination }\mathbf{1077
collect ipv6 destination }\mathbf{1078
collect ipv4 source }\mathbf{1079
collect ipv6 source }\mathbf{1081
collect timestamp absolute }\mathbf{1083
collect transport tcp flags 1084
collect routing next-hop address 1085
datalink flow monitor 1086
debug flow exporter }108
debug flow monitor }108
debug flow record 1089
debug sampler 1090
description 1091
description (ERSPAN) }109
destination (ERSPAN) }109
destination }109
dscp 1099
et-analytics }110
et-analytics enable }110
event manager applet }110
export-protocol netflow-v9 1105
export-protocol netflow-v5 1106
exporter }110
fconfigure }110
filter (ERSPAN) }110
flow exporter }111
flow monitor }111
flow record 1113
header-type }111
inactive time 1115
ip flow-export destination }111
```

ip wecp 1117
ip flow monitor 1119
ipv6 flow monitor 1121
ipv6 deny echo reply 1123
match datalink ethertype 1124
match datalink mac 1125
match datalink vlan 1126
match flow cts 1127
match flow direction 1128
match interface 1129
match ipv4 1130
match ipv4 destination address $\mathbf{1 1 3 1}$
match ipv4 source address 1132
match ipv4 ttl 1133
match ipv6 1134
match ipv6 destination address $\mathbf{1 1 3 5}$
match ipv6 hop-limit 1136
match ipv6 source address 1137
map platform-type 1138
match transport 1139
match transport icmp ipv4 $\mathbf{1 1 4 0}$
match transport icmp ipv6 $\mathbf{1 1 4 1}$
match platform-type 1142
mode random 1 out-of $\mathbf{1 1 4 3}$
monitor capture (interface/control plane) $\mathbf{1 1 4 4}$
monitor capture buffer 1146
monitor capture clear 1147
monitor capture export 1148
monitor capture file 1149
monitor capture limit 1151
monitor capture match 1152
monitor capture pktlen-range 1153
monitor capture start 1154
monitor capture stop $\mathbf{1 1 5 5}$

monitor session
 1156

monitor session destination 1158
monitor session filter 1162
monitor session source 1164
monitor session type $\mathbf{1 1 6 6}$
option 1168
record 1170
show flow monitor etta-mon cache $\mathbf{1 1 7 1}$
show platform software et-analytics $\mathbf{1 1 7 2}$
show platform software fed switch active fnf et-analytics-flow-dump $\mathbf{1 1 7 3}$
sampler 1174
show capability feature monitor 1175
show class-map type control subscriber $\mathbf{1 1 7 6}$
show ip sla statistics 1177
show monitor 1179
show monitor capture 1181
show monitor session 1183
show parameter-map type subscriber attribute-to-service 1185
show platform software fed switch ip wecp $\mathbf{1 1 8 6}$
show platform software swspan 1188
show flow exporter 1190
show flow interface $\mathbf{1 1 9 2}$
show flow monitor 1194
show flow record 1196
show sampler 1197
show snmp stats 1199
shutdown (monitor session) 1201
snmp ifmib ifindex persist 1202
snmp-server community 1203
snmp-server enable traps $\mathbf{1 2 0 5}$
snmp-server enable traps bridge 1208
snmp-server enable traps bulkstat 1209
snmp-server enable traps call-home $\mathbf{1 2 1 0}$
snmp-server enable traps cef $\mathbf{1 2 1 1}$
snmp-server enable traps cpu $\mathbf{1 2 1 2}$
snmp-server enable traps envmon 1213
snmp-server enable traps errdisable $\mathbf{1 2 1 4}$
snmp-server enable traps flash $\mathbf{1 2 1 5}$
snmp-server enable traps isis $\mathbf{1 2 1 6}$
snmp-server enable traps license $\mathbf{1 2 1 7}$
snmp-server enable traps mac-notification 1218
snmp-server enable traps ospf 1219
snmp-server enable traps pim 1220
snmp-server enable traps port-security $\mathbf{1 2 2 1}$
snmp-server enable traps power-ethernet $\mathbf{1 2 2 2}$
snmp-server enable traps snmp $\mathbf{1 2 2 3}$
snmp-server enable traps stackwise $\mathbf{1 2 2 4}$
snmp-server enable traps storm-control 1226
snmp-server enable traps stpx 1227
snmp-server enable traps transceiver 1228
snmp-server enable traps vrfmib 1229
snmp-server enable traps vstack 1230
snmp-server engineID 1231
snmp-server group 1232
snmp-server host 1236
snmp-server manager 1241
snmp-server user 1242
snmp-server view $\mathbf{1 2 4 6}$
source 1248
source (ERSPAN) $\mathbf{1 2 5 0}$
socket 1251
switchport mode access 1252
switchport voice vlan 1253
ttl 1254
transport 1255
template data timeout $\mathbf{1 2 5 6}$
udp peek 1257

PART IX

CHAPTER 10
QoS Commands 1261
auto qos classify $\mathbf{1 2 6 2}$
auto qos trust 1264
auto qos video $\mathbf{1 2 7 1}$
auto qos voip $\mathbf{1 2 8 1}$
class 1295
class-map 1297
debug auto qos 1299
match (class-map configuration) $\mathbf{1 3 0 0}$
policy-map 1303
priority 1305
qos stack-buffer 1307
qos queue-softmax-multiplier 1308
queue-buffers ratio $\mathbf{1 3 0 9}$
queue-limit 1310
random-detect cos $\mathbf{1 3 1 2}$
random-detect cos-based 1313
random-detect dscp $\mathbf{1 3 1 4}$
random-detect dscp-based $\mathbf{1 3 1 6}$
random-detect precedence 1317
random-detect precedence-based $\mathbf{1 3 1 9}$
service-policy (Wired) 1320
set $\mathbf{1 3 2 2}$
show auto qos 1328
show class-map 1330
show platform hardware fed switch 1331
show platform software fed switch qos 1334
show platform software fed switch qos qsb $\mathbf{1 3 3 5}$
show policy-map 1338
show tech-support qos $\mathbf{1 3 4 0}$
trust device $\mathbf{1 3 4 2}$
PART X Routing 1345
CHAPTER 11 IP Routing Commands 1347
accept-lifetime 1349
address-family ipv6 (OSPF) 1352
address-family 12 vpn 1353
aggregate-address 1356
area nssa 1359
area virtual-link 1361
auto-summary (BGP) 1364
authentication (BFD) 1367
bfd 1368
bfd all-interfaces 1370
bfd check-ctrl-plane-failure 1371
bfd echo 1372
bfd slow-timers 1374
bfd template 1376
bfd-template single-hop 1377
bgp graceful-restart 1378
clear proximity ip bgp 1380
default-information originate (OSPF) 1384
default-metric (BGP) 1386
distance (OSPF) 1388
eigrp log-neighbor-changes 1391
eigrp log-neighbor-warnings 1393
ip authentication key-chain eigrp 1395
ip authentication mode eigrp 1396
ip bandwidth-percent eigrp 1397
ip cef load-sharing algorithm 1398
ip community-list 1399
ip prefix-list 1404
ip hello-interval eigrp 1407
ip hold-time eigrp 1408
ip load-sharing 1409
ip network-broadcast 1410
ip ospf database-filter all out 1411
ip ospf name-lookup 1412
ip split-horizon eigrp 1413
ip summary-address eigrp 1414
ip route static bfd 1416
ipv6 route static bfd 1418
metric weights (EIGRP) 1419
neighbor advertisement-interval 1421
neighbor default-originate 1423
neighbor description 1425
neighbor ebgp-multihop 1426
neighbor maximum-prefix (BGP) 1427
neighbor peer-group (assigning members) 1429
neighbor peer-group (creating) 1431
neighbor route-map 1434
neighbor update-source 1436
network (BGP and multiprotocol BGP) 1438
network (EIGRP) 1440
nsf (EIGRP) 1442
offset-list (EIGRP) 1444
redistribute (IP) 1446
redistribute (IPv6) 1454
redistribute maximum-prefix (OSPF) 1457
rewrite-evpn-rt-asn 1459
route-map 1460
router-id 1463
router bgp 1464
router eigrp 1467
router ospf 1468
router ospfv3 1469
send-lifetime 1470
set community 1473
set ip next-hop (BGP) 1475
show ip bgp 1477
show ip bgp neighbors 1489
show ip eigrp interfaces 1504
show ip eigrp neighbors 1507
show ip eigrp topology 1510
show ip eigrp traffic 1515
show ip ospf 1517
show ip ospf border-routers 1525
show ip ospf database 1526
show ip ospf interface 1535
show ip ospf neighbor 1538
show ip ospf virtual-links 1544
summary-address (OSPF) 1545
timers throttle spf $\mathbf{1 5 4 7}$

PARTXI
Security 1549

CHAPTER 12 Security 1551

aaa accounting 1555
aaa accounting dot $1 \mathrm{x} \quad 1558$
aaa accounting identity $\mathbf{1 5 6 0}$
aaa authentication dot1x 1562
aaa authorization 1563
aaa new-model 1567
access-session mac-move deny 1569
action 1571
authentication host-mode 1572
authentication logging verbose 1574
authentication mac-move permit 1575
authentication priority 1577
authentication violation 1579
automate-tester idle-time 1581
automate-tester probe-on 1582

cisp enable 1583

clear errdisable interface vlan 1584
clear mac address-table 1585
confidentiality-offset 1587
crypto pki trustpool import 1588
debug aaa dead-criteria transaction 1591
debug umbrella 1593
delay-protection 1594
deny (MAC access-list configuration) $\mathbf{1 5 9 5}$
device-role (IPv6 snooping) 1598
device-role (IPv6 nd inspection) 1599
dnscrypt (Parameter Map) 1600
dot1x critical (global configuration) $\mathbf{1 6 0 1}$
dot1x logging verbose 1602
dot1x max-start 1603
dot1x pae 1604
dotlx supplicant controlled transient 1605
dot 1 x supplicant force-multicast 1606
dot1x test eapol-capable $\mathbf{1 6 0 7}$
dot1x test timeout 1608
dot $1 x$ timeout 1609
dtls 1611
enable password 1613
enable secret $\mathbf{1 6 1 5}$
epm access-control open 1618
include-icv-indicator 1619
ip access-list 1620
ip access-list role-based 1623
ip admission 1624
ip admission name 1625
ip dhcp snooping database 1627
ip dhcp snooping information option format remote-id 1629
ip dhep snooping verify no-relay-agent-address $\mathbf{1 6 3 0}$
ip http access-class 1631
ip radius source-interface 1633
ip source binding 1635
ip ssh source-interface 1636
ip verify source 1637
ipv6 access-list 1638
ipv6 snooping policy 1640
key chain macsec 1641
key config-key password-encrypt 1642
key-server 1644
limit address-count 1645
local-domain (Parameter Map) 1646
mab logging verbose 1647
mab request format attribute 32 1648
macsec-cipher-suite 1650
macsec network-link 1652
match (access-map configuration) 1653
mka pre-shared-key 1655
mka suppress syslogs sak-rekey 1656
parameter-map type regex 1657
parameter-map type umbrella global 1660
password encryption aes 1661
pattern (Parameter Map) 1663
permit (MAC access-list configuration) 1665
protocol (IPv6 snooping) 1668
radius server 1669
radius-server dead-criteria 1671
radius-server deadtime 1673
radius-server directed-request 1675
radius-server domain-stripping 1677
sak-rekey 1681
security level (IPv6 snooping) 1682
security passthru 1683
send-secure-announcements 1684
server-private (RADIUS) 1685
server-private (TACACS+) $\mathbf{1 6 8 7}$
show aaa clients 1689
show aaa command handler $\mathbf{1 6 9 0}$
show aaa dead-criteria 1691
show aaa local 1693
show aaa servers 1695
show aaa sessions 1696
show authentication brief 1697
show authentication history $\mathbf{1 7 0 0}$
show authentication sessions 1701
show cisp 1704
show device-tracking capture-policy 1706
show device-tracking counters 1708
show device-tracking database 1710
show device-tracking events $\mathbf{1 7 1 5}$
show device-tracking features 1717
show device-tracking messages 1718
show device-tracking policies 1719
show device-tracking policy $\mathbf{1 7 2 0}$
show dot1x 1721
show eap pac peer $\mathbf{1 7 2 3}$
show ip access-lists $\mathbf{1 7 2 4}$
show ip dhep snooping statistics 1727
show platform software dns-umbrella statistics 1730
show platform software umbrella switch F0 1731
show radius server-group 1733
show storm-control $\mathbf{1 7 3 5}$
show tech-support acl 1737
show tech-support identity $\mathbf{1 7 4 1}$
show umbrella 1750
show vlan access-map 1752
show vlan filter 1753
show vlan group 1754
ssci-based-on-sci 1755
storm-control 1756
switchport port-security aging 1759
switchport port-security mac-address 1761
switchport port-security maximum 1764
switchport port-security violation $\mathbf{1 7 6 6}$
tacacs server $\mathbf{1 7 6 8}$
tls 1769
token (Parameter Map) 1771
tracking (IPv6 snooping) 1772
trusted-port 1774
umbrella 1775
use-updated-eth-header 1776
username 1777
vlan access-map $\mathbf{1 7 8 2}$
vlan dot1Q tag native 1784
vlan filter $\mathbf{1 7 8 5}$
vlan group 1786

Stack Manager and High Availability Commands 1789

debug platform stack-manager $\mathbf{1 7 9 0}$
maintenance-template 1791
main-cpu 1792
mode sso 1793
policy config-sync pre reload 1794
redundancy 1795
redundancy config-sync mismatched-commands 1796
redundancy force-switchover 1798
redundancy reload 1799
reload 1800
router routing protocol shutdown $12 \mathbf{1 8 0 2}$
session 1803
show redundancy 1804

PARTXIII

CHAPTER 14

System Management 1835

System Management Commands 1837
arp 1840
boot 1841
cat 1842
copy 1843
copy startup-config tftp: $\mathbf{1 8 4 4}$
copy tftp: startup-config $\mathbf{1 8 4 5}$
debug voice diagnostics mac-address 1846
debug platform condition feature multicast controlplane $\mathbf{1 8 4 7}$
debug platform condition mac 1849
debug platform rep 1850
debug ilpower powerman 1851
delete $\mathbf{1 8 5 4}$
dir 1855
emergency-install $\mathbf{1 8 5 7}$
exit 1859
factory-reset 1860
flash_init 1863
help 1864
hostname $\mathbf{1 8 6 5}$
install 1867
install add file activate reloadfast commit $\mathbf{1 8 8 1}$
ip http banner 1883
ip http banner-path 1884
ip ssh bulk-mode 1885
12 traceroute 1886
license air level 1887
license boot level 1889
license smart (global config) $\mathbf{1 8 9 2}$
license smart (privileged EXEC) 1901
line auto-consolidation 1906
location 1908
location plm calibrating 1911
mac address-table move update 1912
mgmt_init 1913
mkdir 1914
more 1915
no debug all 1916
reload fast 1917
rename 1919
request consent-token accept-response shell-access $\mathbf{1 9 2 0}$
request consent-token generate-challenge shell-access 1921
request consent-token terminate-auth 1922
request platform software console attach switch 1923
reset 1925
rmdir 1926
sdm prefer 1927
service private-config-encryption 1928

set 1929

show ave client 1932
show bootflash: 1933
show cable-diagnostics tdr 1936
show debug 1938
show env 1939
show env xps 1941
show flow monitor 1945
show install 1947
show license all 1949
show license authorization 1954
show license data conversion 1959
show license eventlog 1960
show license history message 1962
show license reservation 1963
show license status 1964
show license summary 1972
show license tech 1975
show license udi 1983
show license usage 1985
show location 1988
show logging onboard switch uptime 1990
show logging process ios module 1993
show mac address-table 1996
show mac address-table move update 2001
show parser encrypt file status 2002
show platform hardware fpga 2003
show platform integrity 2004
show platform software audit 2005
show platform software fed switch punt cause 2009
show platform software fed switch punt cpuq 2011
show platform software sl-infra 2014
show platform sudi certificate 2015
show romvar 2017
show running-config 2019
show sdm prefer 2025
show tech-support confidential 2027
show tech-support monitor 2028
show tech-support platform 2029
show tech-support platform evpn_vxlan 2033
show tech-support platform fabric 2035
show tech-support platform igmp_snooping 2039
show tech-support platform layer3 2042
show tech-support platform mld_snooping 2050
show tech-support port 2057
show tech-support pvlan 2060
show tech-support resource 2061
show version 2066
system env temperature threshold yellow 2073
test cable-diagnostics tdr 2075
tftp-server 2076
traceroute mac 2078
traceroute mac ip $\mathbf{2 0 8 1}$
type 2083
unset 2084
upgrade rom-monitor capsule 2086
version 2088

CHAPTER 15 Tracing 2089
Information About Tracing 2090
Tracing Overview 2090
Location of Tracelogs 2090
Tracelog Naming Convention 2090
Rotation and Throttling Policy 2091
Tracing Levels 2091
set platform software trace 2092
show platform software trace filter-binary 2096
show platform software trace message 2097

show platform software trace level 2101

request platform software trace archive 2104
request platform software trace rotate all 2105
request platform software trace filter-binary $\mathbf{2 1 0 6}$

PART XIV

CHAPTER 16

VLAN
 2107

VLAN Commands 2109

clear vtp counters $\mathbf{2 1 1 0}$
debug sw-vlan 2111
debug sw-vlan ifs 2113
debug sw-vlan notification 2114
debug sw-vlan vtp 2115
dot1q vlan native 2117
interface (VLAN) 2118
private-vlan 2119
private-vlan mapping 2121
show interfaces private-vlan mapping 2123
show vlan 2124
show vtp 2128
switchport mode private-vlan 2133
switchport priority extend 2135
switchport trunk 2136

vlan 2139

vlan dot 1q tag native $\mathbf{2 1 4 5}$
vtp (global configuration) 2146
vtp (interface configuration) 2151
vtp primary $\mathbf{2 1 5 2}$

Using the Command-Line Interface

This chapter contains the following topics:

- Using the Command-Line Interface, on page 2

Using the Command-Line Interface

This chapter describes the Cisco IOS command-line interface (CLI) and how to use it to configure your switch.

Understanding Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as show commands, which show the current configuration status, and clear commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.
Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.

This table describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the hostname Switch.

Table 1: Command Mode Summary
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Mode } & \text { Access Method } & \text { Prompt } & \text { Exit Method } & \text { About This Mode } \\ \hline \text { User EXEC } & \begin{array}{l}\text { Begin a session with } \\ \text { your switch. }\end{array} & \text { Switch> } & \text { Enter logout or quit. } & \begin{array}{l}\text { Use this mode to } \\ \bullet \\ \text { • Change terminal } \\ \text { settings. } \\ \cdot \text { Perform basic tests. }\end{array} \\ \cdot \text { Display system } \\ \text { information. }\end{array}\right]$
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Mode } & \text { Access Method } & \text { Prompt } & \text { Exit Method } & \text { About This Mode } \\ \hline \begin{array}{l}\text { VLAN } \\ \text { configuration }\end{array} & \begin{array}{l}\text { While in global } \\ \text { configuration mode, } \\ \text { enter the vlan vlan-id } \\ \text { command. }\end{array} & \text { (config-vlan) \#\# } & \begin{array}{l}\text { To exit to global } \\ \text { configuration mode, } \\ \text { enter the exit command. } \\ \text { To return to privileged } \\ \text { EXEC mode, press } \\ \text { Ctrl-Z or enter end. }\end{array} & \begin{array}{l}\text { Use this mode to configure } \\ \text { VLAN parameters. When } \\ \text { VTP mode is transparent, } \\ \text { you can create } \\ \text { extended-range VLANs } \\ \text { (VLAN IDs greater than } \\ \text { 1005) and save } \\ \text { configurations in the switch } \\ \text { startup configuration file. }\end{array} \\ \hline \begin{array}{l}\text { Interface } \\ \text { configuration }\end{array} & \begin{array}{l}\text { While in global } \\ \text { configuration mode, } \\ \text { enter the interface } \\ \text { command (with a } \\ \text { specific interface). }\end{array} & \text { (config-if) \# } & \begin{array}{l}\text { To exit to global } \\ \text { configuration mode, } \\ \text { enter exit. }\end{array} & \begin{array}{l}\text { Use this mode to configure } \\ \text { parameters for the Ethernet } \\ \text { ports. }\end{array} \\ \hline \begin{array}{l}\text { To return to privileged } \\ \text { EXEC mode, press } \\ \text { Ctrl-Z or enter end. }\end{array} & \begin{array}{l}\text { Line } \\ \text { configuration }\end{array} & \begin{array}{l}\text { While in global } \\ \text { configuration mode, } \\ \text { specify a line with the } \\ \text { line vty or line } \\ \text { console command. }\end{array} & \text { (config-line) \# } & \begin{array}{l}\text { To exit to global } \\ \text { configuration mode, } \\ \text { enter exit. } \\ \text { To return to privileged } \\ \text { EXEC mode, press } \\ \text { Ctrl-Z or enter end. }\end{array}\end{array} \begin{array}{l}\text { Use this mode to configure } \\ \text { parameters for the terminal } \\ \text { line. }\end{array}\right\}$

For more detailed information on the command modes, see the command reference guide for this release.

Understanding the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command.

Table 2: Help Summary

Command	Purpose
help	Obtains a brief description of the help system in any command mode.
abbreviated-command-entry?	Obtains a list of commands that begin with a particular character string.
dir disable disconnect	

Command	Purpose
Switch> ?	Lists all commands available for a particular command mode.
Sommand?	Lists the associated keywords for a command.
Somitch> show ? (config) \# cdp holdtime ? <10-255> Length of time (in sec) that receiver must keep this packet	Lists the associated arguments for a keyword.

Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.
This example shows how to enter the show configuration privileged EXEC command in an abbreviated form:
\# show conf

Understanding no and default Forms of Commands

Almost every configuration command also has a no form. In general, use the no form to disable a feature or function or reverse the action of a command. For example, the no shutdown interface configuration command reverses the shutdown of an interface. Use the command without the keyword no to re-enable a disabled feature or to enable a feature that is disabled by default.
Configuration commands can also have a default form. The default form of a command returns the command setting to its default. Most commands are disabled by default, so the default form is the same as the no form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the default command enables the command and sets variables to their default values.

Understanding CLI Error Messages

This table lists some error messages that you might encounter while using the CLI to configure your switch.

Table 3: Common CLI Error Messages

Error Message	Meaning	How to Get Help
\% Ambiguous command: "show con"	You did not enter enough characters for your switch to recognize the command.	Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.
\% Incomplete command.	You did not enter all the keywords or values required by this command.	Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.
\% Invalid input detected at `^' marker.	You entered the command incorrectly. The caret (^) marks the point of the error.	Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command appear.

Using Configuration Logging

You can log and view changes to the switch configuration. You can use the Configuration Change Logging and Notification feature to track changes on a per-session and per-user basis. The logger tracks each configuration command that is applied, the user who entered the command, the time that the command was entered, and the parser return code for the command. This feature includes a mechanism for asynchronous notification to registered applications whenever the configuration changes. You can choose to have the notifications sent to the syslog.

Note Only CLI or HTTP changes are logged.

Using Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs.

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. These procedures are optional.

Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:
\# terminal history [size number-of-lines]

The range is from 0 to 256 .
Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:
(config-line) \# history [size number-of-lines]

The range is from 0 to 256 .

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in this table. These actions are optional.

Note The arrow keys function only on ANSI-compatible terminals such as VT100s.

Table 4: Recalling Commands

Action	Result
Press Ctrl-P or the up arrow key.	Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.
Press Ctrl-N or the down arrow key.	Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.
show history	While in privileged EXEC mode, lists the last several commands that you just entered. The number of commands that appear is controlled by the setting of the terminal history global configuration command and the history line configuration command.

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. These procedures are optional.

To disable the feature during the current terminal session, enter the terminal no history privileged EXEC command.

To disable command history for the line, enter the no history line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line.

Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it, re-enable it, or configure a specific line to have enhanced editing. These procedures are optional.

To globally disable enhanced editing mode, enter this command in line configuration mode:

Switch (config-line) \# no editing

To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:
\# terminal editing

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:
(config-line) \# editing

Editing Commands through Keystrokes

This table shows the keystrokes that you need to edit command lines. These keystrokes are optional.

Note The arrow keys function only on ANSI-compatible terminals such as VT100s.

Table 5: Editing Commands through Keystrokes

Capability	Keystroke	Purpose
Move around the command line to make changes or corrections.	Press Ctrl-B, or press the left arrow key.	Moves the cursor back one character.
	Press Ctrl-F, or press the right arrow key.	Moves the cursor forward one character.
	Press Ctrl-A.	Press Ctrl-E. Moves the cursor to the beginning of the command line.
	Press Esc B.	Moves the cursor to the end of the command line.
	Press Esc F.	Moves the cursor back one word.
	Press Ctrl-T.	Moves the cursor forward one word. cursor with the character located at the cursor.

Capability	Keystroke	Purpose
Recall commands from the buffer and paste them in the command line. The switch provides a buffer with the last ten items that you deleted.	Press Ctrl-Y.	Recalls the most recent entry in the buffer.
	Press Esc Y.	Recalls the next buffer entry. The buffer contains only the last 10 items that you have deleted or cut. If you press Esc Y more than ten times, you cycle to the first buffer entry.
	Pelete entries if you make a mistake	
or change your mind.	Press the Delete or Backspace key.	Erases the character to the left of the cursor.
	Press Ctrl-D.	Deletes the character at the cursor.
	Press Ctrl-K.	Deletes all characters from the cursor to the end of the command line.
	Press Ctrl-U or Ctrl-X.	Deletes all characters from the cursor to the beginning of the command line.
	Press Ctrl-W.	Deletes the word to the left of the cursor.
	Press Esc D.	Deletes from the cursor to the end of the word.
Capitalize or lowercase words or capitalize a set of letters.	Press Esc C.	Capitalizes at the cursor.
	Press Esc L.	Changes the word at the cursor to lowercase.
Press Esc U.	Capitalizes letters from the cursor to the end of the word.	
Designate a particular keystroke as an executable command, perhaps as	Press Ctrl-V or Esc Q.	
a shortcut.		

Capability	Keystroke	Purpose
Scroll down a line or screen on displays that are longer than the terminal screen can display. NoteThe More prompt is used for any output that has more lines than can be displayed on the terminal screen, including show command output. You can use the Return and Space bar keystrokes whenever you see the More prompt. Press the Return key. Scrolls down one line.		
Redisplay the current command line	Press Ctrl-L or Ctrl-R.	Redisplays the current command line.
if the switch suddenly sends a message to your screen.	Press the Space bar.	Scrolls down one screen.

Editing Command Lines that Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note The arrow keys function only on ANSI-compatible terminals such as VT100s.
In this example, the access-list global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign (\$) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

```
(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.25
(config)# $t tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
(config)# $108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45
```

After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign (\$) appears at the end of the line to show that the line has been scrolled to the right:
(config) \# access-list 101 permit tcp 131.108 .2 .5 255.255.255.0 131.108.1\$
The software assumes that you have a terminal screen that is 80 columns wide. If you have a width other than that, use the terminal width privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries.

Searching and Filtering Output of show and more Commands

You can search and filter the output for show and more commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

To use this functionality, enter a show or more command followed by the pipe character (|), one of the keywords begin, include, or exclude, and an expression that you want to search for or filter out:
command \mid \{begin \mid include \mid exclude $\}$ regular-expression
Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output appear.

This example shows how to include in the output display only lines where the expression protocol appears:

```
# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet1/0/1 is up, line protocol is down
GigabitEthernet1/0/2 is up, line protocol is up
```


Accessing the CLI

You can access the CLI through a console connection, through Telnet, or by using the browser.
You manage the switch stack and the switch member interfaces through the active switch. You cannot manage switch stack members on an individual switch basis. You can connect to the active switch through the console port or the Ethernet management port of one or more switch members. Be careful with using multiple CLI sessions to the active switch. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

Note We recommend using one CLI session when managing the switch stack.
If you want to configure a specific switch member port, you must include the switch member number in the CLI command interface notation.

To debug a specific switch member, you can access it from the active switch by using the session stack-member-number privileged EXEC command. The switch member number is appended to the system prompt. For example, Switch-2\# is the prompt in privileged EXEC mode for switch member 2, and where the system prompt for the active switch is Switch. Only the show and debug commands are available in a CLI session to a specific switch member.

Accessing the CLI through a Console Connection or through Telnet

Before you can access the CLI, you must connect a terminal or a PC to the switch console or connect a PC to the Ethernet management port and then power on the switch, as described in the hardware installation guide that shipped with your switch.

CLI access is available before switch setup. After your switch is configured, you can access the CLI through a remote Telnet session or SSH client.

You can use one of these methods to establish a connection with the switch:

- Connect the switch console port to a management station or dial-up modem, or connect the Ethernet management port to a PC. For information about connecting to the console or Ethernet management port, see the switch hardware installation guide.
- Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.

The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

The switch supports up to five simultaneous secure SSH sessions.
After you connect through the console port, through the Ethernet management port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.

PART

Cisco SD-Access

- Cisco SD-Access Commands, on page 15

Cisco SD-Access Commands

- broadcast-underlay, on page 17
- database-mapping, on page 18
- dynamic-eid, on page 20
- eid-record-provider, on page 21
- eid-record-subscriber, on page 22
- eid-table, on page 23
- encapsulation, on page 25
- etr, on page 26
- etr map-server, on page 27
- extranet, on page 28
- first-packet-petr, on page 29
- instance-id, on page 31
- ip pim lisp core-group-range, on page 32
- ip pim lisp transport multicast, on page 33
- ip pim rp-address, on page 34
- ip pim sparse mode, on page 35
- ipv4 multicast multitopology, on page 36
- ip pim ssm, on page 37
- itr, on page 38
- itr map-resolver, on page 39
- locator default-set, on page 40
- locator-set, on page 41
- map-cache , on page 42
- map-cache extranet, on page 43
- prefix-list, on page 44
- route-import database, on page 45
- service, on page 47
- show lisp instance-id ipv4 database, on page 48
- show lisp instance-id ipv6 database, on page 50
- show lisp instance-id ipv4 map-cache, on page 51
- show lisp instance-id ipv6 map-cache, on page 57
- show lisp instance-id ipv4 server, on page 59
- show lisp instance-id ipv6 server, on page 61
- show lisp instance-id ipv4 statistics, on page 62
- show lisp instance-id ipv6 statistics, on page 63
- show lisp prefix-list, on page 64
- show lisp session, on page 65
- use-petr, on page 66

broadcast-underlay

To configure the underlay in a LISP network to use a mutlicast group to send encapsulated broadcast packets and link local multicast packets, use the broadcast-underlay command in the service submode.
[no] broadcast-underlay multicast-ip

Syntax Description
multicast-ip The IP address of the multicast group used to send the encapsulated broadcast packets

None.
LISP Service Ethernet (router-lisp-inst-serv-eth)
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines
Use this command to enable the broadcast functionality on the fabric edge node in a LISP network. Ensure that this command is used in the router-lisp-service-ethernet mode or router-lisp-instance-service-ethernet mode.

Use the no form of the command to remove the broadcast functionality.
The following example shows how to configure broadcast on a fabric edge node:

```
device(config)#router lisp
device(config-router-lisp)#instance-id 3
device(config-router-lisp-inst) #service ethernet
device(config-router-lisp-inst-serv-eth)#eid-table vlan 250
device(config-router-lisp-inst-serv-eth) #broadcast-underlay 225.1.1.1
device(config-router-lisp-inst-serv-eth)#database-mapping mac locator-set rloc2
device(config-router-lisp-inst-serv-eth) #exit-service-ethernet
```


database-mapping

To configure an IPv4 or IPv6 endpoint identifier-to-routing locator (EID-to-RLOC) mapping relationship and an associated traffic policy for Locator/ID Separation Protocol (LISP), use the database-mapping command in the LISP EID-table configuration mode. To remove the configured database mapping, use the no form of the command.
[no] database-mapping eid-prefix/prefix-length \{ locator-set RLOC-name [proxy] | ipv6-interface interface-name | ipv4-interface interface-name |auto-discover-rlocs | limit \}

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

In the LISP-instance-service configuration mode, the database-mapping command configures LISP database parameters a specified IPv4 or IPv6 EID-prefix block. The locator is the IPv4 or IPv6 address of any interface used as the RLOC address for the eid-prefix assigned to the site but can also be the loopback address of the interface.

When a LISP site has multiple locators associated with the same EID-prefix block, multiple database-mapping commands are used to configure all of the locators for a given EID-prefix block.

In a multi-site scenario, the LISP border node advertises the site EID that it's attached to on the transit map-server to attract site traffic. To do this, it has to obtain the route from the internal border and proxy register with the transit site map-server accordingly. The database-mapping eid-prefix locator-set RLOC-name proxy command enables the configuration of a static proxy database mapping.

The following example shows how to map the eid-prefix with the locator-set, RLOC, in the EID configuration mode on an external border:

Note Ensure that the locator-set RLOC is already configured.

```
device(config)# router lisp
device(config-router-lisp) # instance-id 3
device(config-router-lisp-inst) # service ipv4
device(config-router-lisp-inst-serv-ipv4)#eid-table vrf red
device(config-router-lisp-inst-serv-ipv4-eid-table)# database-mapping 172.168.0.0/16
locator-set RLOC proxy
device(config-router-lisp-inst-serv-ipv4-eid-table)# database-mapping 173.168.0.0/16
locator-set RLOC proxy
device(config-router-lisp-inst-serv-ipv4-eid-table)# map-cache 0.0.0.0/0 map-request
device(config-router-lisp-inst-serv-ipv4-eid-table) #exit
device(config-router-lisp-inst-serv-ipv4)#
```


Related Commands

Command	Description
eid-table vrf vrf-name	Associates the instance-service instantiation with a virtual routing and forwarding (VRF) table or default table through which the endpoint identifier address space is reachable.

dynamic-eid

To create a dynamic End Point Identifier (EID) policy and enter the dynamic-eid configuration mode on an xTR, use the dynamic-eid command.
dynamic-eid eid-name

Syntax Description

$\overline{\text { Command Default }}$	No LISP dynamic-eid policies are configured.	
$\overline{\text { Command Modes }}$	LISP EID-table (router-lisp-eid-table)	
Command History	Release	

Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines

 name eid-name is created and it enters the dynamic-eid configuration mode.eid-name If eid-name exists, it enters eid-name configuration mode. Else, a new dynamic-eid policy with

To configure LISP mobility, create a dynamic-EID roaming policy that can be referenced by the lisp mobility interface command. When the dynamic-eid command is entered, the referenced LISP dynamic-EID policy is created and you enter the dynamic-EID configuration mode. In this mode, all attributes associated with the referenced LISP dynamic-EID policy can be entered. When a dynamic-EID policy is configured, you must specify the dynamic-EID-to-RLOC mapping relationship and its associated traffic policy.

Related Commands

Command D	Description
lisp mobility	Configures an interface on an ITR to participate in LISP mobility (dynamic-EID roaming).

eid-record-provider

To define the extranet policy table for the provider instance use the eid-record-provider command in the lisp-extranet mode.
[no] eid-record-provider instance-id instance id \{ipv4 address prefix \mid ipv6 address prefix \} bidirectional

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines
instance-id instance id The instance-id of the LISP instance for which the extranet provider policy applies.
ipv4 address prefix Defines the IPv4 EID prefixes to be leaked, specified in a.b.c.d/nn form.
ipv6 address prefix Defines the IPv6 EID prefixes to be leaked, prefix specified in $\mathrm{X}: \mathrm{X}: \mathrm{X}: \mathrm{X}:: \mathrm{X} /<0-128>$ form.
bidirectional Specifies that the extranet communication between the provider and subscriber EID prefixes are bidirectional.

None.
router-lisp-extranet
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

Use the no form of the command to negate the eid-record-provider configuration.

```
device(config)#router lisp
device(config-router-lisp) #extranet ext1
device(config-router-lisp-extranet)#eid-record-provider instance-id 5000 10.0.0.0/8
bidirectional
device(config-router-lisp-extranet)#eid-record-subscriber instance-id 1000 3.0.0.0/24
bidirectional
```


eid-record-subscriber

To define the extranet policy table for the subscriber instance use the eid-record-subscriber command in the lisp-extranet mode.
[no] eid-record-subscriber instance-id instance id \{ipv4 address prefix |ipv6 address prefix\} bidirectional

Syntax Description

instance-id instance id The instance-id of the LISP instance for which the extranet provider policy applies.
ipv4 address prefix Defines the IPv4 EID prefixes to be leaked, specified in a.b.c.d/nn form.
ipv6 address prefix Defines the IPv6 EID prefixes to be leaked, prefix specified in $\mathrm{X}: \mathrm{X}: \mathrm{X}: \mathrm{X}:: \mathrm{X} /<0-128>$ form.
bidirectional Specifies that the extranet communication between the provider and subscriber EID prefixes are bidirectional.

$\overline{\text { Command Default }}$	None.	
$\overline{\text { Command Modes }}$		LISP Extranet (router-lisp-extranet)
Command History	Release	Modification

Usage Guidelines

Use the no form of the command to negate the eid-record-subscriber configuration.
device(config) \#router lisp
device(config-router-lisp) \#extranet ext1
device(config-router-lisp-extranet) \#eid-record-provider instance-id 5000 10.0.0.0/8
bidirectional
device(config-router-lisp-extranet) \#eid-record-subscriber instance-id 1000 3.0.0.0/24
bidirectional
device(config-router-lisp-extranet)\#eid-record-subscriber instance-id 2000 20.20.0.0/8 bidirectional

eid-table

| | [no] eid-table \{vrf-name \| default | vrf vrf-name \} |
| :---: | :---: |
| Syntax Description | default Selects the default (global) routing table for association with the configured instance-service. |
| | vrf vrf-name |
| Command Default | Default VRF is associated with instance-id 0. |
| Command Modes | router-lisp-instance-service |
| Command History | Release Modification |
| | Cisco IOS XE Everest 16.6.1 This command was introduced. |
| Usage Guidelines | This command is used only in the instance-service mode. |
| | For Layer 3 (service ipv4 / service ipv6), a VRF table is associated with the instance-service. For Layer 2 (service ethernet), a VLAN is associated with the instance-service. |

Note For Layer 2, ensure that you have defined a VLAN before configuring the eid-table.
For Layer 3, ensure that you have defined a VRF table before you configure the eid-table.

In the following example, an XTR is configured to segment traffic using VRF named vrf-table. The EID prefix associated with vrf-table is connected to instance ID 3.

```
device(config) #vrf definition vrf-table
device(config-vrf) #address-family ipv4
device(config-vrf-af) #exit
device(config-vrf) #exit
device(config) #router lisp
device(config-router-lisp) #instance-id 3
device(config-router-lisp-inst)#service ipv4
device(config-router-lisp-inst-serv-ipv4)#eid-table vrf vrf-table
```

In the following example, the EID prefix associated with a VLAN, named Vlan10, is connected to instance ID 101.

```
device(config)#interface Vlan10
device(config-if)#mac-address ba25.cdf4.ad38
device(config-if)#ip address 10.1.1.1 255.255.255.0
device(config-if) #end
device(config) #router lisp
device(config-router-lisp) #instance-id 101
device(config-router-lisp-inst)#service ethernet
```

```
device(config-router-lisp-inst-serv-ethernet) #eid-table Vlan10
device(config-router-lisp-inst-serv-ethernet)#database-mapping mac locator-set set
device(config-router-lisp-inst-serv-ethernet) #exit-service-etherne
device(config-router-lisp-inst) #exit-instance-id
```


encapsulation

To configure the type of encapsulation of the data packets in the LISP network, use the encapsulation command in the service mode.
[no] encapsulation \{vxlan | lisp \}

Syntax Description

encapsulation vxlan	Specifies VXLAN-based encapsulation.
encapsulation lisp	Specifies LISP-based encapsulation

Command Default
None.
Command Modes
LISP Service IPv4 (router-lisp-serv-ipv4)
LISP Service IPv6 (router-lisp-serv-ipv6)
Command History
Release Modification
Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines
Use the encapsulation vxlan command in the service ethernet mode to encapuslate Layer 2 packets. Use the encapsulation lisp command in the service ipv4 or service ipv6 mode to encapsulate the Layer 3 packets.

Use the no form of the command to remove encapsulation on the packets.

The following example shows how to configure an xTR for data encapsulation

```
device(config) #router lisp
device(config-router-lisp) #service ipv4
device(config-router-lisp-serv-ipv4) #encapuslation vxlan
device(config-router-lisp-serv-ipv4) #map-cache-limit 200
device(config-router-lisp-serv-ipv4) #exit-service-ipv4
```


Usage Guidelines

Use this command to enable a device to perform the ETR functionality.
Use the no form of the command to remove the ETR functionality.
A router configured as an ETR is also typically configured with database-mapping commands so that the ETR knows what endpoint identifier (EID)-prefix blocks and corresponding locators are used for the LISP site. In addition, the ETR should be configured to register with a map server with the etr map-server command, or to use static LISP EID-to-routing locator (EID-to-RLOC) mappings with the map-cache command to participate in LISP networking.

The following example shows how to configure a device as an ETR.

```
device(config) #router lisp
device(config-router-lisp)#instance-id 3
device(config-router-lisp-inst) #service ipv4
device(config-router-lisp-inst-serv-ipv4) #etr
```


etr map-server

To configure a map server to be used by the Egress Tunnel Router (ETR) when configuring the EIDs, use the etr map-server command in the instance mode or instance-service mode. To remove the configured locator address of the map-server, use the no form of this command.
etr map-server map-server-address $\{\mathbf{k e y}[\mathbf{0}|6| 7]$ authentication-key | proxy-reply \}

Syntax Description

Command Default
 Command Modes

map-server-address The locator address of the map server.

key	Specifies the key type.
$\mathbf{0}$	Indicates that password is entered as clear text.
$\mathbf{6}$	Indicates that password is in the AES encrypted form.
$\mathbf{7}$	Indicates that passowrd is a weak encrypted one.
authentication-key	The password used for computing the SHA-1 HMAC hash that is included in the header of the map-register message.
proxy-reply	Specifies that the map server answer the map-requests on behalf the ETR.

None.
LISP Instance Service (router-lisp-inst-serv)
LISP Service (router-lisp-serv)
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

Use the etr map-server command to configure the locator of the map server to which the ETR will register for its EIDs. The authentication key argument in the command syntax is a password that is used for a SHA-1 HMAC hash (included in the header of the map-register message). The password used for the SHA-1 HMAC may be entered in unencrypted (cleartext) form or encrypted form. To enter an unencrypted password, specify 0 . To enter an AES encrypted password, specify 6 .

Use the no form of the command to remove the map server functionality.
The following example shows how to configure a map server located at 2.1.1.6 to act as a proxy in order to answer the map-requests on the ETR .

```
device(config)#router lisp
device(config-router-lisp) #instance-id 3
device(config-router-lisp-inst)#service ipv4
device(config-router-lisp-inst-serv-ipv4)#etr map-server 2.1.1.6 key foo
device(config-router-lisp-inst-serv-ipv4)#etr map-server 2.1.1.6 proxy-reply
```


extranet

To enable the inter-VRF communication in a LISP network, use the extranet command in the LISP configuration mode on the MSMR.
extranet name-extranet

Syntax Description

Command Default
$\overline{\text { Command Modes }}$ LISP (router-lisp)

Command History	Release	Modification
	Cisco IOS XE Everest 16.6.1	This command was introduced.

```
device(config)#router lisp
device(config-router-lisp) #extranet ext1
device(config-router-lisp-extranet)#
```


first-packet-petr

To prevent the loss of the first packet (and subsequent packets until map-cache is resolved), use the first-packet-petr command on the Map Server, in the LISP-service or the LISP-instance-service configuration mode. To disable the configuration of this command, use its no form.

Configuring this command ensures that even the first packet that is sent out from the fabric edge device reaches its destination through a first-packet-handler border that is available.
[no] first-packet-petr remote-locator-set fpetr-RLOC

Syntax Description

remote-locator-set
fpetr-RLOC

Specifies a remote locator-set, which is a set of IP addresses of remote devices, that connect to an external network or to networks across sites or to Data Center through remote or local sites.

Command Default	None.	
Command Modes	LISP-instance-service	
	LISP-service	
Command History	Release	Modification
	Cisco IOS XE Amsterdam 17.3.1	The command was introduced.

Usage Guidelines The ITR or the fabric edge device drops the initial packets sent to it until it learns the destination EID reachability from the local MSMR. To prevent the drop of the first packet, configure the first-packet-petr command on the local MSMR.

Configure the first-packet-petr command on the local map server to ensure that when the fabric edges boots up and resolves the $0 / 0$ map-cache entry, it gets the first packet forwarding RLOCs.

When an MSMR receives a request to connect to an external network (like internet), it first checks for the availability of an external border. If the map server does not find the default-ETR border or the internet service providing border, it responds with the remote RLOCs that are configured with the first-packet-petr command.

Note You can configure the first-packet-petr command only on a control plane that is within a fabric site. You cannot configure this command on the control plane of a transit site.

Example

The following example first defines a remote locator set and associates the remote RLOCs with the first-packet-petr command:

```
Device(config)#router lisp
Device(config-router-lisp) #remote-locator-set fpetr
Device(config-router-lisp-remote-locator-set)#23.23.23.23 priority 1 weight 1
Device(config-router-lisp-remote-locator-set)#24.24.24.24 priority 1 weight 1
```

```
Device(config-router-lisp-remote-locator-set) #exit-remote-locator-set
Device(config-router-lisp)#service ipv4
Device(config-lisp-srv-ipv4) #first-packet-petr remote-locator-set fpetr
Device(config-lisp-srv-ipv4) #map-server
Device(config-lisp-srv-ipv4) #map-resolver
Device(config-lisp-srv-ipv4) #exit-service-ipv4
Device(config-router-lisp) #
```

The configured behavior is inherited by all instances under service ipv4.
To override the behavior for a particular instance, configure the first-packet-petr command for that instance. In the following example, instance 101 disables the first-packet-petr command.

```
Device(config-router-lisp) #instance-id 101
    Device(config-router-lisp-inst) #service ipv4
    Device(config-router-lisp-inst-service-ipv4) #no first-packet-petr remote-locator-set
    Device(config-router-lisp-inst-service-ipv4) #exit-service-ipv4
```


instance-id

To creae a LISP EID instance under the router-lisp configuration mode and enter the instance-id submode, use the instance-id command.
instance-id iid

Command Default

Command Modes
Command History
Release
Modification
Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines
None.

LISP (router-lisp)

Use the instance-id command to create a LISP eid instance to group multiple services.

Configuration under this instance-id will apply to all services underneath it.

```
device(config)#router lisp
device(config-router-lisp) #instance-id 3
device(config-router-lisp-inst) #
```


ip pim lisp core-group-range

To configure the core range of address of a Protocol Independent Multicast (PIM) Source Specific Multicast (SSM) on a LISP sub-interface, use the ip pim lisp core-group-range command in interface configuration mode. To remove SSM address range, use the no form of this command
[no] ip pim lisp core-group-range start-SSM-address range-size

Syntax Description

start-SSM-address Specifies the start of the SSM IP address range.
number-of-groups Specifies the size of group range.

Command Default

By default the group range 232.100.100.1 to 232.100 .100 .255 is assigned if a core range of addresses is not configured.

Command Modes	LISP Interface Configuration (config-if)
Command History	Release Modification

Cisco IOS XE 16.9.1 This command was introduced.

Usage Guidelines

Native multicast transport supports only PIM SSM in the underlay or the core. Multicast transport uses a grouping mechanism to map the end-point identifiers (EID) entries to the RLOC space SSM group entries. By default, the group range 232.100.100.1 to 232.100.100.255 is used as the SSM range of addresses on a LISP interface to transport multicast traffic. Use the ip pim lisp core-group-range command to manually change this SSM core group range of IP addresses on the LISP interfaces.
The following example defines a group of 1000 IP addresses starting from 232.0.0.1 as the SSM range of addresses on the core for multicast traffic.

```
Device(config)#interface LISP0.201
Device(config-if)#ip pim lisp core-group-range 232.0.0.1 1000
```


ip pim lisp transport multicast

To enable multicast as the transport mechanism on LISP interface and sub-interface, use the ip pim lisp transport multicast command in the LISP Interface Configuration mode. To disable multicast as the transport mechanism on the LISP interface, use the no form of this command
[no] ip pim lisp transport multicast

Syntax Description

This command has no keywords or arguments.

Command Default	If this command is not configured, head-end replication is used for multicast.	
Command Modes	LISP Interface Configuration (config-if)	
Command History	Release Modification	
	Cisco IOS XE 16.9.1 This command was introduced	
	Example	
	The following example configures multicast as the t Device(config)\#interface LISP0 Device(config-if)\#ip pim lisp transport mul	nsport mechanism on a LISP Interface: icast
Related Commands	Command	Description
	ip multicast routing	Enables ip multicast routing or multicast distributed switching.

ip pim rp-address

To configure the address of a Protocol Independent Multicast (PIM) rendezvous point (RP) for a particular group, use the ip pim rp-address command in global configuration mode. To remove an RP address, use the no form of this command
[no] ip pim [vrfvrf-name] rp-address rp-address [access-list]

Syntax Description

Command Default
Command Modes

Command History

Usage Guidelines

vrf Optional) Specifies the multicast Virtual Private Network (VPN) routing and forwarding (VRF) instance.
vrf-name (Optional) Name assigned to the VRF.
$r p$-address IP address of a router to be a PIM RP. This is a unicast IP address in four-part dotted-decimal notation.
access-list (Optional) Number or name of an access list that defines the multicast groups for which the RP should be used.

None.
Global Configuration (config)

Release	Modification
Cisco IOS XE 16.8.1s	This command was introduced.

Use the ip pim rp-address command to statically define the RP address for multicast groups that are to operate in sparse mode or bidirectional mode.
You can configure the Cisco IOS software to use a single RP for more than one group. The conditions specified by the access list determine for which groups the RP can be used. If no access list is configured, the RP is used for all groups. A PIM router can use multiple RPs, but only one per group.
The following example sets the PIM RP address to 185.1.1.1 for all multicast groups:

```
Device(config)#ip pim rp-address 185.1.1.1
```


ip pim sparse mode

To enable sparse mode of operation of Protocol Independent Multicast (PIM) on an interface, use the ip pim sparse-mode command in the Interface Configuration mode. To disable the sparse mode of operation use the no form of this command
[no] ip pim sparse mode $\{$

Syntax Description

This command has no keywords or arguments.

Command Default
Command Modes
Command History
Usage Guidelines

None.
Interface Configuration (config-if)

Release	Modification
Cisco IOS XE 16.8.1s	This command was introduced.

The NetFlow collect commands are used to configure nonkey fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in nonkey fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a nonkey field does not create a new flow.

The following example configures pim sparse mode of operation:

```
Device(config)#interface Loopback0
Device(config-if)#ip address 170.1.1.1 255.255.255.0
Device(config-if)#ip pim sparse-mode
```


Related Commands

Command	Description
ip multicast routing	Enables ip multicast routing or multicast distributed switching..

ipv4 multicast multitopology

To enable Multicast-Specific RPF topology support for IP Multicast routing, use the ipv4 multicast multitopology command in the VRF configuration mode. To disable the Multicast-Specific RPF Topology support, use the no form of this command.
[no] ipv4 multicast multitopology

Syntax Description

This command has no arguments or keywords.

$\overline{\text { Command Default }}$	None.	
$\overline{\text { Command Modes }}$		VRF Configuration (config-vrf)
Command History		Release
	Cisco IOS XE 16.8.1s	This command was introduced.

The following example shows how to configure Multicast-Specific RPF Topology:

```
Device(config)#vrf definition VRF1
Device(config-vrf)#ipv4 multicast multitopology
```


ip pim ssm

To define the Source Specific Multicast (SSM) range of IP multicast addresses, use the ip pim ssm command in global configuration mode. To disable the SSM range, use the no form of this command.

	[no] ip pim [vrfvrf-name] ssm \{default \| range access-list \}
Syntax Description	vrf Optional) Specifies the multicast Virtual Private Network (VPN) routing and forwarding (VRF) instance.
	vrf-name (Optional) Name assigned to the VRF.
	range access-list \quad Specifies the standard IP access list number or name defining the SSM range.
	default2 Defines the SSM range access list to 232/8.
Command Default	None.
Command Modes	Global Configuration (config)
Command History	Release Modification
	Cisco IOS XE 16.8.1s This command was introduced.
Usage Guidelines	When an SSM range of IP multicast addresses is defined by the ip pim ssm command, no Multicast Source Discovery Protocol (MSDP) Source-Active (SA) messages will be accepted or originated in the SSM range.

The following example sets the SSM range of IP multicast address to default
Device(config) \#ip pim ssm default

Related Commands

Command	Description
ip multicast routing	Enables ip multicast routing or multicast distributed switching..

To configure a device as an Ingress Tunnel Router (ITR) use the itr command in the service submode or instance-service mode.
[no] itr
The device is not configured as ITR by default.

LISP Instance Service (router-lisp-instance-service)
LISP Service (router-lisp-service)

Command History

Release

Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

Use this command to enable a device to perform the ITR functionality.
Use the no form of the command to remove theITR functionality.
A device configured as an ITR helps find the EID-to-RLOC mapping for all traffic destined to LISP-capable sites.

The following example shows how to configure a device as an ITR.

```
device(config)#router lisp
device(config-router-lisp) #instance-id 3
device(config-router-lisp-inst)#service ipv4
device(config-router-lisp-inst-serv-ipv4)#itr
```


itr map-resolver

To configure a device as a map resolver to be used by an Ingress Tunnel Router (ITR) when sending map-requests, use the itr map-resolver command in the service submode or instance-service mode.
[no]itr [map-resolver map-address] prefix-list prefix-list-name

Syntax Description

Command Default
 Command Modes
 Command History

Usage Guidelines

map-resolver map-address Configures map-resolver address for sending map requests, on the ITR.
prefix-list prefix-list-name Specifies the prefix list to be used.

None.
router-lisp-instance-service
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.
Cisco IOS XE Fuji 16.9.1 Introduced prefix-list as part of the command.

Use this command to enable a device to perform the ITR map-resolver functionality.
Use the no form of the command to remove the map-resolver functionality.
A device configured as a Map Resolver accepts encapsulated Map-Request messages from ITRs, decapsulates those messages, and then forwards the messages to the Map Server responsible for the egress tunnel routers (ETRs) that are authoritative for the requested EIDs. In a multi-site environment, the site border relies on Map Resolver prefix-list to determine whether to query the transit site MSMR or site MSMR.

The following example shows how to configure an ITR to use the map-resolver located at 2.1.1.6 when sending map request messages.

```
device(config)#router lisp
device(config-router-lisp)#prefix-list wired
device(config-router-lisp-prefix-list) #2001:193:168:1::/64
device(config-router-lisp-prefix-list)#192.168.0.0/16
device(config-router-lisp-prefix-list) #exit-prefix-list
device(config-router-lisp) #service ipv4
device(config-router-lisp-serv-ipv4) #encapsulation vxlan
device(config-router-lisp-serv-ipv4)#itr map-resolver 2.1.1.6 prefix-list wired
device(config-router-lisp-serv-ipv4)#
```


locator default-set

To mark a locator-set as default, use the locator default-set command at the router-lisp level.
[no] locator default-set rloc-set-name
Syntax Description
rloc-set-name The name of locator-set that is set as default.
$\overline{\text { Command Default }}$ None

Command Modes LISP (router-lisp)
$\overline{\text { Command History }}$\cline { }

Usage Guidelines The locator-set configured as default with the locator default-set command applies to all services and instances.

locator-set

To specify a locator-set and enter the locator-set configuration mode, use the locator-set command at the router-lisp level.
[no] locator-set loc-set-name

| Syntax Description | loc-set-nameThe name of
 locator-set. |
| :--- | :--- | :--- |

$\overline{\text { Command Default }}$	Name	
$\overline{\text { Command Modes }}$	LISP (router-lisp)	
Command History	Release	Modification
		Cisco IOS XE Everest 16.6.1

Usage Guidelines
You must first define the locator-set before referring to it.

map-cache

To configure a static endpoint identifier (EID) to routing locator (RLOC) (EID-to-RLOC) mapping relationship, use the map-cache command in the instance-service ipv4 or instance-service ipv6 mode.
[no] map-cache destination-eid-prefix/prefix-len \{ipv4-address \{ priority priority weight weight \} | ipv6-address | map-request | native-forward\}

Syntax Description

destination-eid-prefix/prefix-len Destination IPv4 or IPv6 EID-prefix/prefix-length. The slash is required in the syntax.
ipv4-address priority priority $\quad \mathrm{IPv} 4$ Address of loopback interface. Associated with this locator address weight weight is a priority and weight that are used to define traffic policies when multiple RLOCs are defined for the same EID-prefix block.

Note Lower priority locator takes preference.

ipv6-address	IPv6 Address of loopback interface.
map-request	Send map-request for LISP destination EID
native-forward	Natively forward packets that match this map-request.

Command Default
Command Modes
Command History
Usage Guidelines

None.

LISP Instance Service (router-lisp-instance-service)
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

The first use of this command is to configure an Ingress Tunnel Router (ITR) with a static IPv4 or IPv6 EID-to-RLOC mapping relationship and its associated traffic policy. For each entry, a destination EID-prefix block and its associated locator, priority, and weight are entered. The value in the EID-prefix/prefix-length argument is the LISP EID-prefix block at the destination site. The locator is an IPv4 or IPv6 address of the remote site where the IPv4 or IPv6 EID-prefix can be reached. Associated with the locator address is a priority and weight that are used to define traffic policies when multiple RLOCs are defined for the same EID-prefix block.

```
device(config)#router lisp
device(config-router-lisp) #instance-id 3
device(config-router-lisp-inst)#service ipv4
device(config-router-lisp-inst-serv-ipv4)#map-cache 1.1.1.1/24 map-request
```


map-cache extranet

To install all configured extranet prefixes into map-cache, use the map-cache extranet command in the instance-service ipv4 or instance-service ipv6 mode.

map-cache extranet-registration

Command Default
 Usage Guidelines

None.

LISP Instance Service (router-lisp-instance-service)

Release Modification
Cisco IOS XE Everest 16.6.1 This command was introduced.

To support inter-VRF communication, use the map-cache extranet command on the Map Server Map Resolver (MSMR). This command generates map requests for all fabric destinations. Use this command in the service ipv4 or service ipv6 mode under the extranet instance.

```
device(config)#router lisp
device(config-router-lisp) #instance-id 3
device(config-router-lisp-inst)#service ipv4
device(config-router-lisp-inst-serv-ipv4) #map-cache extranet-registration
```


prefix-list

Syntax Description

To define a named LISP prefix set and to enter the LISP prefix-list configuration mode, use the prefix-list command in the Router LISP configuration mode. Use the no form of the command to remove the prefix list.
[no] prefix-list prefix-list-name
prefix-list prefix-list-name Specifies the prefix list to be used and enters the prefix-list configuration mode.
Specifies IPv4 EID-prefixes or IPv6 EID-prefixes in the prefix-list mode.

Command Default		No prefix list is defined.	
$\overline{\text { Command Modes }}$	LISP (router-lisp)		
Command History	Release	Modification	
	Cisco IOS XE Fuji	This command was introduced.	

Usage Guidelines

Use the prefix-list command to configure an IPV4 or IPv6 prefix list. This command places the router in prefix-list configuration mode, in which you can define IPv4 prefix list, or IPv6 prefix list. Use the exit-prefix-list command to exit the prefix-list-configuration mode.

```
device(config)#router lisp
device(config-router-lisp) #prefix-list wired
device(config-router-prefix-list)#2001:193:168:1::/64
device(config-router-lisp-prefix-list)#192.168.0.0/16
device(config-router-lisp-prefix-list)#exit-prefix-list
```


route-import database

To configure the import of Routing Information Base (RIB) routes to define local endpoint identifier (EID) prefixes for database entries and associate them with a locator set, use the route-import database command in the instance service submode. To remove this configuration, use the no form of this command.

```
[no] route-import database
{bgp | connected | eigrp | isis | maximum-prefix | ospf | ospfv3| rip | static} {[route-map] locator-set
locator-set-name proxy }
```


Syntax Description

bgp	Border Gateway Protocol. Imports RIB routes into LISP using BGP protocol.
connected	Connected routing protocol
eigrp	Enhanced Interior Gateway Routing Protocol. Imports RIB routes into LISP using EIGRP protocol.
isis	ISO IS-IS. Imports RIB routes into LISP using IS-IS protocol.
ospf	Open Shortest Path First
ospfv3	Open Shortest Path First version 3
maximum-prefix	Configures the maximum number of prefixes to pick up from the RIB.
rip	Routing Information Protocol
static	Defines static routes.
locator-set	Specifies the Locator Set to be used with created database mapping entries.
locator-set-name	

proxy Enables the dynamic import of RIB route as proxy database mapping.

Command Default
Command Modes
Command History

None.
LISP Instance Service (router-lisp-instance-service)

Release Modification

Cisco IOS XE Fuji 16.9.1 This command was introduced.

Usage Guidelines
Use the route-import database command with the proxy option to enable the dynamic import of RIB route as proxy database mapping. When RIB import is in use, the corresponding RIB map-cache import, using route-import map-cache command must also be configured, else the inbound site traffic will not pass the LISP eligibility check due to the presence of RIB route.

The following example shows how to configure the dynamic import of RIB route as proxy database:

```
device(config)#router lisp
device(config-router-lisp)#instance-id 3
```

```
device(config-router-lisp-inst)#service ipv4
device(config-router-lisp-inst-serv-ipv4)#eid-table default
device(config-router-lisp-inst-serv-ipv4)#database-mapping 193.168.0.0/16 locator-set RLOC
    proxy
device(config-router-lisp-inst-serv-ipv4)#route-import map-cache bgp 65002 route-map
map-cache-database
device(config-router-lisp-inst-serv-ipv4) #route-import database bgp 65002 locator-set RLOC
    proxy
```


service

| | The service command creates a configuration template for all service.
 [no] service $\{\mathbf{i p v} 4$ \| ipv6 | ethernet \} |
| :---: | :---: |
| Syntax Description | service ipv4 Enables Layer 3 network services for the |
| | service ipv6 Enables Layer 3 network services for the |
| | service ethernet Enables Layer 2 network services. |
| Command Default | None. |
| Command Modes | LISP Instance (router-lisp-instance) |
| | LISP (router-lisp) |
| Command History | Release Modification |
| | Cisco IOS XE Everest 16.6.1 This command was introduced |
| Usage Guidelines | The service command creates a service instance under the i You cannot confgure service ethernet for the same instance |
| | Use the no form of the command to exit the service submod |
| | ```device(config)#router lisp device(config-router-lisp)#instance-id 3 device(config-router-lisp-inst)#service ipv4 device(config-router-lisp-inst-serv-ipv4)#``` |
| | device(config) \#router lisp
 device(config-router-lisp) \#instance-id 5
 device(config-router-lisp-inst)\#service ethernet
 device (config-router-lisp-inst-serv-ethernet) \# |

show lisp instance-id ipv4 database

To display the operational status of the IPv4 address family and the database mappings on the device, use the show lisp instance-id ipv4 database command in the privileged EXEC mode.
show lisp instance-id instance-id ipv4 database

Command Default
Command Modes
Command History
Usage Guidelines

Use the command show lisp instance-id $\boldsymbol{i d}$ ipv4 database to display the EID prefixes configured for a site. The following is a sample output:

```
device#show lisp instance-id 101 ipv4 database
LISP ETR IPv4 Mapping Database for EID-table vrf red (IID 101), LSBs: 0x1
Entries total 1, no-route 0, inactive 0
172.168.0.0/16, locator-set RLOC, proxy
    Locator Pri/Wgt Source State
    100.110.110.110 1/100 cfg-intf site-self, reachable
    device#
device#show lisp instance-id 101 ipv4
    Instance ID: 101
    Router-lisp ID: 0
    Locator table: default
    EID table: vrf red
    Ingress Tunnel Router (ITR): disabled
    Egress Tunnel Router (ETR): enabled
    Proxy-ITR Router (PITR): enabled RLOCs: 100.110.110.110
    Proxy-ETR Router (PETR): disabled
    NAT-traversal Router (NAT-RTR): disabled
    Mobility First-Hop Router: disabled
    Map Server (MS): enabled
    Map Resolver (MR): enabled
    Mr-use-petr: enabled
    Mr-use-petr locator set name: site2
    Delegated Database Tree (DDT): disabled
    Site Registration Limit: 0
    Map-Request source: derived from EID destination
    ITR Map-Resolver(s): 100.77.77.77
                                    100.78.78.78
                                    100.110.110.110 prefix-list site2
                                    100.77.77.77 (11:25:01)
                                    100.78.78.78 (11:25:01)
                                    0xB843200A-0x4566BFC9-0xDAA75B2D-0x8FBE69B0
                                    unspecified
                                    100.110.110.110
accept and process
8 more specifics
```

```
    Multiple SMR suppression time: 20 secs
ETR accept mapping data: disabled, verify disabled
ETR map-cache TTL: 1d00h
Locator Status Algorithms:
    RLOC-probe algorithm: disabled
    RLOC-probe on route change: N/A (periodic probing disabled)
    RLOC-probe on member change: disabled
    LSB reports:
    IPv4 RLOC minimum mask length:
    IPv6 RLOC minimum mask length:
Map-cache:
    Static mappings configured:
    Map-cache size/limit:
    Imported route count/limit:
    Map-cache activity check period:
    Map-cache FIB updates:
    Persistent map-cache:
Database:
    Total database mapping size:
    static database size/limit:
    dynamic database size/limit: 0/65535
    1/65535
    route-import database size/limit: 0/5000
    import-site-reg database size/limit0/65535
    proxy database size:
1
    Inactive (deconfig/away) size: 0
Encapsulation type: vxlan
```


show lisp instance-id ipv6 database

To display the operational status of the IPv6 address family and the database mappings on the device, use the show lisp instance-id ipv6 database command in the privileged EXEC mode.
show lisp instance-id instance-id ipv6 database

$\overline{\text { Command Default }}$	None.	
$\overline{\text { Command Modes }}$	Privileged Exec	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.
	Cisco IOS XE Fuji 16.9.1	Support for display of proxy database size.

Usage Guidelines
Use the command show lisp instance-id id ipv6 database to display the EID prefixes configured for a site. The following is a sample output:

```
device#show lisp instance-id 101 ipv6 database
LISP ETR IPv6 Mapping Database, LSBs: 0x1
EID-prefix: 2610:D0:1209::/48
    172.16.156.222, priority: 1, weight: 100, state: up, local
    device#
```


show lisp instance-id ipv4 map-cache

To display the IPv4 end point identifier (EID) to the Resource Locator (RLOC) cache mapping on an ITR, use the show lisp instance-id ipv4 map-cache command in the privileged Exec mode.
show lisp instance-id instance-id ipv4 map-cache [destination-EID | destination-EID-prefix |detail]
Syntax Description
destination-EID (Optional) Specifies the IPv4 destination end point identifier (EID) for which the EID-to-RLOC mapping is displayed.
destination-EID-prefix (Optional) Specifies the IPv4 destinationEID prefix (in the form of a.b.c.d/nn) for which to display the mapping.
detail (Optional) Displays detailed EID-to-RLOC cache mapping information.

Command Default	None.	
Command Modes	Privileged Exec	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	Introduced this command.

Usage Guidelines

This command is used to display the current dynamic and static IPv4 EID-to-RLOC map-cache entries. When no IPv4 EID or IPv4 EID prefix is specified, summary information is listed for all current dynamic and static IPv4 EID-to-RLOC map-cache entries. When an IPv4 EID or IPv4 EID prefix is included, information is listed for the longest-match lookup in the cache. When the detail option is used, detailed (rather than summary) information related to all current dynamic and static IPv4 EID-to-RLOC map-cache entries is displayed.

The following are sample outputs from the show lisp instance-id ipv4 map-cache commands:

```
device# show lisp instance-id 102 ipv4 map-cache
LISP IPv4 Mapping Cache for EID-table vrf blue (IID 102), 4008 entries
0.0.0.0/0, uptime: 2d14h, expires: never, via static-send-map-request
    Negative cache entry, action: send-map-request
128.0.0.0/3, uptime: 00:01:44, expires: 00:13:15, via map-reply, unknown-eid-forward
    PETR Uptime State Pri/Wgt Encap-IID
    55.55.55.1 13:32:40 up 1/100 103
    55.55.55.2 13:32:40 up 1/100 103
    55.55.55.3 13:32:40 up 1/100 103
    55.55.55.4 13:32:40 up 1/100 103
    55.55.55.5 13:32:40 up 5/100 103
    55.55.55.6 13:32:40 up 6/100 103
    55.55.55.7 13:32:40 up 7/100 103
    55.55.55.8 13:32:40 up 8/100 103
150.150.2.0/23, uptime: 11:47:25, expires: 00:06:30, via map-reply, unknown-eid-forward
    PETR Uptime State Pri/Wgt Encap-IID
    55.55.55.1 13:32:40 up 1/100 103
    55.55.55.2 13:32:40 up 1/100 103
    55.55.55.3 13:32:40 up 1/100 103
    55.55.55.4 13:32:40 up 1/100 103
    55.55.55.5 13:32:40 up 5/100 103
```



```
        Last route reachability change: 2d14h, state change count: 1
        Last priority / weight change:
        never/never
        RLOC-probing loc-status algorithm:
        Last RLOC-probe sent: 2d14h (rtt 92ms)
178.168.2.2/32, uptime: 2d14h, expires: 09:26:55, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 2d14h, map-source: 48.1.1.4
    Active, Packets out: 22513(12967488 bytes) (~ 00:00:45 ago)
    Locator Uptime State Pri/Wgt Encap-IID
    11.11.11.1 2d14h up 1/100 -
            Last up-down state change: 2d14h, state change count: 1
            Last route reachability change: 2d14h, state change count: 1
            Last priority / weight change: never/never
            RLOC-probing loc-status algorithm:
                Last RLOC-probe sent: 2d14h (rtt 91ms)
178.168.2.3/32, uptime: 2d14h, expires: 09:26:51, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 2d14h, map-source: 48.1.1.4
    Active, Packets out: 22513(12967488 bytes) (~ 00:00:45 ago)
    Locator Uptime State Pri/Wgt Encap-IID
    11.11.11.1 2d14h up 1/100 -
            Last up-down state change: 2d14h, state change count: 1
            Last route reachability change: 2d14h, state change count: 1
            Last priority / weight change: never/never
            RLOC-probing loc-status algorithm:
            Last RLOC-probe sent: 2d14h (rtt 91ms)
178.168.2.4/32, uptime: 2d14h, expires: 09:26:51, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 2d14h, map-source: 48.1.1.4
device#show lisp instance-id 102 ipv4 map-cache 178.168.2.3/32
LISP IPv4 Mapping Cache for EID-table vrf blue (IID 102), 4008 entries
178.168.2.3/32, uptime: 2d14h, expires: 09:26:25, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 2d14h, map-source: 48.1.1.4
    Active, Packets out: 22519(12970944 bytes) (~ 00:00:11 ago)
    Locator Uptime State Pri/Wgt Encap-IID
    11.11.11.1 2d14h up 1/100 -
        Last up-down state change: 2d14h, state change count: 1
        Last route reachability change: 2d14h, state change count: 1
        Last priority / weight change: never/never
        RLOC-probing loc-status algorithm:
            Last RLOC-probe sent: 2d14h (rtt 91ms)
device#show lisp instance-id 102 ipv4 map-cache 178.168.2.3
LISP IPv4 Mapping Cache for EID-table vrf blue (IID 102), 4008 entries
178.168.2.3/32, uptime: 2d14h, expires: 09:26:14, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 2d14h, map-source: 48.1.1.4
    Active, Packets out: 22519(12970944 bytes) (~ 00:00:22 ago)
    Locator Uptime State Pri/Wgt Encap-IID
    11.11.11.1 2d14h up 1/100 -
        Last up-down state change: 2d14h, state change count: 1
        Last route reachability change: 2d14h, state change count: 1
        Last priority / weight change:
            never/never
        RLOC-probing loc-status algorithm:
            Last RLOC-probe sent: 2d14h (rtt 91ms)
OTT-LISP-C3K-4-xTR2#show lisp instance-id 102 sta
OTT-LISP-C3K-4-xTR2#show lisp instance-id 102 stat
OTT-LISP-C3K-4-xTR2#show lisp instance-id 102 ipv4 stat
OTT-LISP-C3K-4-xTR2#show lisp instance-id 102 ipv4 statistics
LISP EID Statistics for instance ID 102 - last cleared: never
Control Packets:
```

```
Map-Requests in/out:
5911/66032
    Map-Request receive rate (5 sec/1 min/5 min): 0.00/ 0.00/ 0.00
    Encapsulated Map-Requests in/out: 0/60600
    RLOC-probe Map-Requests in/out: 5911/5432
    SMR-based Map-Requests in/out: 0/0
    Extranet SMR cross-IID Map-Requests in: 0
    Map-Requests expired on-queue/no-reply 0/0
    Map-Resolver Map-Requests forwarded: 0
    Map-Server Map-Requests forwarded: 0
Map-Reply records in/out:
    Authoritative records in/out:
    Non-authoritative records in/out:
    Negative records in/out:
    RLOC-probe records in/out:
    Map-Server Proxy-Reply records out:
WLC Map-Subscribe records in/out:
    Map-Subscribe failures in/out:
    WLC Map-Unsubscribe records in/out:
        Map-Unsubscribe failures in/out:
    Map-Register records in/out:
    Map-Register receive rate (5 sec/1 min/5 min): 0.00/ 0.00/ 0.00
    Map-Server AF disabled:
    Authentication failures:
WLC Map-Register records in/out:
    WLC AP Map-Register in/out:
    WLC Client Map-Register in/out:
        WLC Map-Register failures in/out:
Map-Notify records in/out:
    Authentication failures:
    WLC Map-Notify records in/out:
        WLC AP Map-Notify in/out:
        WLC Client Map-Notify in/out:
        WLC Map-Notify failures in/out:
    Publish-Subscribe in/out:
        Subscription Request records in/out: 0/6
        Subscription Request failures in/out: 0/0
        Subscription Status records in/out: 4/0
            End of Publication records in/out: 4/0
            Subscription rejected records in/out: 0/0
            Subscription removed records in/out: 0/0
        Subscription Status failures in/out: 0/0
        Solicit Subscription records in/out: 0/0
        Solicit Subscription failures in/out: 0/0
        Publication records in/out: 0/0
        Publication failures in/out: 0/0
Errors:
    Mapping record TTL alerts:
        0
    Map-Request invalid source rloc drops: 0
    Map-Register invalid source rloc drops: 0
    DDT Requests failed:
    DDT ITR Map-Requests dropped:
0
(nonce-collision: 0, bad-xTR-nonce:
0)
Cache Related:
    Cache entries created/deleted:
200103/196095
    NSF CEF replay entry count
    Number of EID-prefixes in map-cache:
    4008
    Number of rejected EID-prefixes due to limit : 0
    Number of negative entries in map-cache: 8
    Total number of RLOCs in map-cache: 4000
    Average RLOCs per EID-prefix: 1
Forwarding:
    Number of data signals processed: 199173 (+ dropped 5474)
    Number of reachability reports: 0 (+ dropped 0)
    Number of SMR signals dropped:
```


show lisp instance-id ipv6 map-cache

To display the IPv6 end point identifier (EID) to the Resource Locator (RLOC) cache mapping on an ITR, use the show lisp instance-id ipv6 map-cache command in the privileged EXEC mode.
show lisp instance-id instance-id ipv6 map-cache [destination-EID | destination-EID-prefix |detail]
Syntax Description
destination-EID (Optional) Specifies the IPv4 destination end point identifier (EID) for which the EID-to-RLOC mapping is displayed.
destination-EID-prefix (Optional) Specifies the IPv4 destination EID prefix (in the form of a.b.c.d/nn) for which to display the mapping.
detail (Optional) Displays detailed EID-to-RLOC cache mapping information.

Command Default
 Command Modes
 Command History

None.
Privileged Exec

Release	Modification
Cisco IOS XE Everest 16.5.1aIntroduced this command.	

Usage Guidelines

This command is used to display the current dynamic and static IPv6 EID-to-RLOC map-cache entries. When no IPv6 EID or IPv6 EID prefix is specified, summary information is listed for all current dynamic and static IPv4 EID-to-RLOC map-cache entries. When an IPv6 EID or IPv6 EID prefix is included, information is listed for the longest-match lookup in the cache. When the detail option is used, detailed (rather than summary) information related to all current dynamic and static IPv6 EID-to-RLOC map-cache entries is displayed.

The following is a sample output from the show lisp instance-id ipv6 map-cache command:

```
device# show lisp instance-id 101 ipv6 map-cache
LISP IPv6 Mapping Cache, 2 entries
::/0, uptime: 00:00:26, expires: never, via static
    Negative cache entry, action: send-map-request
2001:DB8:AB::/48, uptime: 00:00:04, expires: 23:59:53, via map-reply, complete
    Locator Uptime State Pri/Wgt
    10.0.0.6 00:00:04 up 1/100
```

The following sample output from the show lisp instance-id \mathbf{x} ipv6 map-cache detail command displays a detailed list of current dynamic and static IPv6 EID-to-RLOC map-cache entries:

```
device\#show lisp instance-id 101 ipv6 map-cache detail
LISP IPv6 Mapping Cache, 2 entries
::/0, uptime: 00:00:52, expires: never, via static
    State: send-map-request, last modified: 00:00:52, map-source: local
    Idle, Packets out: 0
    Negative cache entry, action: send-map-request
2001:DB8:AB::/48, uptime: 00:00:30, expires: 23:59:27, via map-reply, complete
    State: complete, last modified: 00:00:30, map-source: 10.0.0.6
    Active, Packets out: 0
    Locator Uptime State Pri/Wgt
```

```
10.0.0.6 00:00:30 up 1/100
    Last up-down state change: never, state change count: 0
    Last priority / weight change: never/never
    RLOC-probing loc-status algorithm:
        Last RLOC-probe sent: never
```

The following sample output from the show ipv6 lisp map-cache command with a specific IPv6 EID prefix displays detailed information associated with that IPv6 EID prefix entry.

```
device#show lisp instance-id 101 ipv6 map-cache 2001:DB8:AB::/48
LISP IPv6 Mapping Cache, 2 entries
2001:DB8:AB::/48, uptime: 00:01:02, expires: 23:58:54, via map-reply, complete
    State: complete, last modified: 00:01:02, map-source: 10.0.0.6
    Active, Packets out: 0
    Locator Uptime State Pri/Wgt
    10.0.0.6 00:01:02 up 1/100
        Last up-down state change: never, state change count: 0
        Last priority / weight change: never/never
        RLOC-probing loc-status algorithm:
                Last RLOC-probe sent: never
```


show lisp instance-id ipv4 server

To display the LISP site registration information, use the show lisp instance-id ipv4 server command in the privileged EXEC mode.
show lisp instance-id instance-idipv4 server [EID-address | EID-prefix | detail | name | rloc | summary]

Syntax Description

\section*{| Command Default |
| :--- |
| Command Modes |
| Command History |
| |
| Usage Guidelines |}

EID-address (Optional) Displays site registration information for this end point.

EID-prefix	(Optional) Displays site registration information for this IPv4 EID prefix.
detail	(Optional) Displays a detailed site information.
name	(Optional) Displays the site registration information for the named site.
rloc	(Optional) Displays the RLOC-EID instance membership details.
summary	(Optional) Displays summary information for each site.

None.
Privileged Exec
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

When a host is detected by the tunnel router (xTR), it registers the host with the map server (MS). Use the show lisp instance-id \mathbf{x} ipv 4 server command to see the site registration details. TCP registrations display the port number, whereas UDP registration do not display port number. The port number is 4342 by default fir UDP registration.
The following are sample outputs of the command :

```
device# show lisp instance-id 100 ipv4 server
LISP Site Registration Information
* = Some locators are down or unreachable
# = Some registrations are sourced by reliable transport
\begin{tabular}{llllll} 
Site Name & Last & Up & Who Last & Inst & EID Prefix \\
& Register & & Registered & ID & \\
XTR & \(00: 03: 22\) & yes*\# & \(172.16 .1 .4: 64200\) & 100 & \(101.1 .0 .0 / 16\) \\
& \(00: 03: 16\) & yes\# & \(172.16 .1 .3: 19881\) & 100 & \(101.1 .1 .1 / 32\)
\end{tabular}
```

device\# show lisp instance-id 100 ipv4 server 101.1.0.0/16
LISP Site Registration Information
Site name: XTR
Allowed configured locators: any
Requested EID-prefix:
EID-prefix: 101.1.0.0/16 instance-id 100
First registered: 00:04:24
Last registered: 00:04:20

```
Routing table tag: 0
Origin: Configuration, accepting more specifics
Merge active: No
Proxy reply: No
TTL: 1d00h
State: complete
Registration errors:
    Authentication failures: 0
    Allowed locators mismatch: 0
ETR 172.16.1.4:64200, last registered 00:04:20, no proxy-reply, map-notify
                                    TTL 1d00h, no merge, hash-function sha1, nonce 0xC1ED8EE1-0x553D05D4
    state complete, no security-capability
    xTR-ID 0x46B2F3A5-0x19B0A3C5-0x67055A44-0xF5BF3FBB
    site-ID unspecified
    sourced by reliable transport
    Locator Local State Pri/Wgt Scope
    172.16.1.4 yes admin-down 255/100 IPv4 none
```

The following is an ouput that shows an UDP registration (without port number):

```
device# show lisp instance-id 100 ipv4 server 101.1.1.1/32
LISP Site Registration Information
Site name: XTR
Allowed configured locators: any
Requested EID-prefix:
EID-prefix: 101.1.1.1/32 instance-id 100
    First registered: 00:00:08
    Last registered: 00:00:04
    Routing table tag: 0
    Origin: Dynamic, more specific of 101.1.0.0/16
    Merge active: No
    Proxy reply: No
    TTL: 1d00h
    State: complete
    Registration errors:
        Authentication failures: 0
        Allowed locators mismatch: 0
    ETR 172.16.1.3:46245, last registered 00:00:04, no proxy-reply, map-notify
        TTL 1d00h, no merge, hash-function sha1, nonce 0x1769BD91-0x06E10A06
    state complete, no security-capability
    xTR-ID 0x4F5F0056-0xAE270416-0x360B42D6-0x6FCD3F5B
    site-ID unspecified
    sourced by reliable transport
        Locator Local State Pri/Wgt Scope
        172.16.1.3 yes up 100/100 IPv4 none
    ETR 172.16.1.3, last registered 00:00:08, no proxy-reply, map-notify
        TTL 1d00h, no merge, hash-function sha1, nonce 0x1769BD91-0x06E10A06
                        state complete, no security-capability
                        xTR-ID 0x4F5F0056-0xAE270416-0x360B42D6-0x6FCD3F5B
                        site-ID unspecified
        Locator Local State Pri/Wgt Scope
        172.16.1.3 yes up 100/100 IPv4 none
```


show lisp instance-id ipv6 server

To display the LISP site registration information, use the show lisp instance-id ipv6 server command in the privileged EXEC mode.
show lisp instance-id instance-idipv6 server [EID-address | EID-prefix | detail | name | rloc | summary]

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines

EID-address (Optional) Displays site registration information for this end point.

EID-prefix	(Optional) Displays site registration information for this IPv6 EID prefix.
detail	(Optional) Displays a detailed site information.
name	(Optional) Displays the site registration information for the named site.
rloc	(Optional) Displays the RLOC-EID instance membership details.
summary	(Optional) Displays summary information for each site.

None.
Privileged Exec

Release	Modification
Cisco IOS XE Everest 16.6.1	This command was introduced.

When a host is detected by the tunnel router (xTR), it registers the host with the map server (MS). Use the show lisp instance-id ipv6 server command to see the site registration details.

show lisp instance-id ipv4 statistics

To display Locator/ID Separation Protocol (LISP) IPv4 address-family packet count statistics, use the show lisp instance-id ipv4 statistics command in the privileged EXEC mode.
show lisp instance-id instance-id ipv4 statistics

Command Default	None.	
$\overline{\text { Command Modes }}$	Privileged Exec	
Command History	Release	Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines This command is used to display IPv4 LISP statistics related to packet encapsulations, de-encapsulations, map requests, map replies, map registers, and other LISP-related packets.

The following are sample outputs of the command :
device\# show lisp instance-id 100 ipv4 statistics

show lisp instance-id ipv6 statistics

To display Locator/ID Separation Protocol (LISP) IPv6 address-family packet count statistics, use the show lisp instance-id ipv6 statistics command in the privileged EXEC mode.
show lisp instance-id instance-id ipv6 statistics

Command Default
Command Modes
Command History

None.
Privileged Exec

Release
Modification
Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines This command is used to display IPv4 LISP statistics related to packet encapsulations, de-encapsulations, map requests, map replies, map registers, and other LISP-related packets.

The following are sample outputs of the command :
device\# show lisp instance-id 100 ipv6 statistics

show lisp prefix-list

To display the LISP prefix-list information, use the show lisp prefix-list command in the privileged EXEC mode.
show lisp prefix-list [name-prefix-list]
$\overline{\text { Syntax Description }}$
name-prefix-list (Optional) Specifies the prefix-list whose information is displayed.

$\overline{\text { Command Default }}$	None.	
$\overline{\text { Command Modes }}$	Privileged Exec	
Command History	Release	Modification
	Cisco IOS XE Fuji	This command was introduced.

Usage Guidelines The following is a sample output from the show lisp prefix-list command:

```
device# show lisp prefix-list
Lisp Prefix List information for router lisp 0
Prefix List: set
        Number of entries: 1
        Entries:
    1.2.3.4/16
        Sources: static
```


show lisp session

To display the current list of reliable transport sessions in the fabric, use the show lisp session command in the privileged EXEC mode.
show lisp session [all | established]

Syntax Description
Command Default
Command Modes
Command History

Usage Guidelines
all (Optional) Displays transport session inforamtion for all the sessions.
established (Optional) Displays transport session information for established connections.

None.

Privileged Exec
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

The show lisp session command displays only those sessions that are in Up or Down state. Use the show lisp session all command to see all sessions in any state.

The following is a sample output of the command show lisp session on an MSMR:

```
device# show lisp session
Sessions for VRF default, total: 4, established: 2
Peer State Up/Down In/Out Users
172.16.1.3:22667 Up 00:00:52 4/8 2
172.16.1.4:18904 Up 00:22:15 5/13 1
device# show lisp session all
Sessions for VRF default, total: 4, established: 2
Peer State Up/Down In/Out Users
172.16.1.3 Listening never
172.16.1.3:22667
172.16.1.4
172.16.1.4:18904 Up 00:22:36 5/13 1
172.16.1.3 Listening never
172.16.1.3 Listening never
    Up 00:01:13
    0/0
        O
Listening never 0/0 2
```


use-petr

To configure a router to use an IPv4 or IPv6 Locator/ID Separation Protocol (LISP) Proxy Egress Tunnel Router (PETR), use the use-petr command in LISP Instance configuration mode or LISP Instance Service configuration mode. To remove the use of a LISP PETR, use the no form of this command.
[no] use-petr locator-address[priority priority weight weight]

Syntax Description

locator-address	The name of locator-set that is set as default.
priority priority	(Optional) Specifies the priority (value between 0 and 255) assigned to this PETR. A lower value indicates a higher priority.
weight weight	(Optional) Specifies the percentage of traffic to be load-shared (value between 0 and 100).

Command Default
Command Modes

Command History Command History

Usage Guidelines

The router does not use PETR services.

LISP Service (router-lisp-service)
LISP Instance-Service (router-lisp-instance-service)

Release	Modification
Cisco IOS XE Everest 16.6.1	This command was introduced.

Use the use-petr command to enable an Ingress Tunnel Router (ITR) or Proxy Ingress Tunnel Router (PITR)
to use IPv4 Proxy Egress Tunnel Router (PETR) services. When the use of PETR services is enabled, instead of natively forwarding LISP endpoint identifier (EID) (source) packets destined to non-LISP sites, these packets are LISP-encapsulated and forwarded to the PETR. Upon receiving these packets, the PETR decapsulates them and then forwards them natively toward the non-LISP destination.

Do not use use-petr command in Service-Ethernet configuration mode.
PETR services may be necessary in several cases:

1. By default when a LISP site forwards packets to a non-LISP site natively (not LISP encapsulated), the source IP address of the packet is that of an EID. When the provider side of the access network is configured with strict unicast reverse path forwarding (uRPF) or an anti-spoofing access list, it may consider these packets to be spoofed and drop them since EIDs are not advertised in the provider core network. In this case, instead of natively forwarding packets destined to non-LISP sites, the ITR encapsulates these packets using its site locator(s) as the source address and the PETR as the destination address.

The use of the use-petr command does not change LISP-to-LISP or non-LISP-to-non-LISP forwarding behavior. LISP EID packets destined for LISP sites will follow normal LISP forwarding processes and be sent directly to the destination ETR as normal. Non-LISP-to-non-LISP packets are never candidates for LISP encapsulation and are always forwarded natively according to normal processes.
2. When a LISP IPv6 (EID) site needs to connect to a non-LISP IPv6 site and the ITR locators or some portion of the intermediate network does not support IPv6 (it is IPv4 only), the PETR can be used to traverse (hop over) the address family incompatibility, assuming that the PETR has both IPv4 and IPv6 connectivity. The ITR in this case can LISP-encapsulate the IPv6 EIDs with IPv4 locators destined for the PETR, which de-encapsulates the packets and forwards them natively to the non-LISP IPv6 site over its IPv6 connection. In this case, the use of the PETR effectively allows the LISP site packets to traverse the IPv4 portion of network using the LISP mixed protocol encapsulation support.

Examples The following example shows how to configure an ITR to use the PETR with the IPv4 locator of

 10.1.1.1. In this case, LISP site IPv4 EIDs destined to non-LISP IPv4 sites are encapsulated in an IPv4 LISP header destined to the PETR located at 10.1.1.1:```
device(config)# router lisp
device(config-router-lisp) #service ipv4
device(config-router-lisp-serv-ipv4)# use-petr 10.1.1.1
```

The following example configures an ITR to use two PETRs: one has an IPv4 locator of 10.1.1.1 and is configured as the primary PETR (priority 1 weight 100), and the other has an IPv4 locator of 10.1.2.1 and is configured as the secondary PETR (priority 2 weight 100). In this case, LISP site IPv4 EIDs destined to non-LISP IPv4 sites will be encapsulated in an IPv4 LISP header to the primary PETR located at 10.1.1.1 unless it fails, in which case the secondary will be used.

[^0]

## рав II

## Cisco TrustSec

- Cisco TrustSec Commands, on page 71



## Cisco TrustSec Commands

- address (CTS), on page 73
- clear cts environment-data, on page 74
- clear cts policy-server statistics, on page 75
- content-type json, on page 76
- cts authorization list, on page 77
- cts change-password, on page 78
- cts credentials, on page 79
- cts environment-data enable, on page 81
- cts policy-server device-id, on page 82
- cts policy-server name, on page 83
- cts policy-server order random, on page 84
- cts policy-server username, on page 85
- cts refresh, on page 86
- cts rekey, on page 88
- cts role-based enforcement, on page 89
- cts role-based 12-vrf, on page 90
- cts role-based monitor, on page 92
- cts role-based permissions, on page 93
- cts role-based sgt-caching, on page 95
- cts role-based sgt-map, on page 96
- cts sxp connection peer, on page 98
- cts $\operatorname{sxp}$ default password, on page 101
- cts sxp default source-ip, on page 103
- cts $\operatorname{sxp}$ filter-enable, on page 105
- cts sxp filter-group, on page 106
- cts $\operatorname{sxp}$ filter-list, on page 108
- cts $\operatorname{sxp}$ log binding-changes, on page 110
- cts $\operatorname{sxp}$ reconciliation period, on page 111
- cts sxp retry period, on page 112
- debug cts environment-data, on page 113
- debug cts policy-server, on page 115
- port (CTS), on page 116
- propagate sgt (cts manual), on page 117
- retransmit (CTS), on page 119
- sap mode-list (cts manual), on page 120
- show cts credentials, on page 122
- show cts environment-data, on page 123
- show cts interface, on page 124
- show cts policy-server, on page 126
- show cts role-based counters, on page 129
- show cts role-based permissions, on page 131
- show cts server-list, on page 133
- show cts sxp, on page 135
- show platform hardware fed switch active fwd-asic resource tcam utilization, on page 138
- show platform hardware fed switch active sgacl resource usage, on page 140
- show platform software classification switch active F0 class-group-manager class-group client acl all, on page 141
- show platform software cts forwarding-manager switch active F0 port, on page 142
- show platform software cts forwarding-manager switch active F0, on page 146
- show platform software cts forwarding-manager switch active F0 permissions, on page 147
- show platform software fed switch active acl counters hardware | inc SGACL, on page 149
- show platform software fed switch active acl usage, on page 150
- show platform software fed switch active ifm mappings, on page 151
- show platform software fed switch active ip route, on page 153
- show platform software fed switch active sgacl detail, on page 155
- show platform software fed switch active sgacl port , on page 156
- show platform software fed switch active sgacl vlan, on page 158
- show platform software status control-processor brief, on page 159
- show monitor capture <name> buffer, on page 160
- timeout (CTS), on page 161
- tls server-trustpoint, on page 162


## address (CTS)

To configure the Cisco TrustSec policy-server address, use the address command in policy-server configuration mode. To remove the address of the policy server, use the no form of this command.
address \{domain-name name |ipv4 policy-server-address $\mid \mathbf{i p v} 6$ policy-server-address \} no address \{domain-name |ipv4 |ipv6\}

Syntax Description

| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines Configure the policy server name to enter the policy-server configuration mode.

## Examples

domain-name name Specifies the domain name of the policy server.
ipv4 policy-server-address

| ipv6 | Specifies the IPv6 address of the <br> policy server. |
| :--- | :--- |

Policy server address is not configured.
Policy-server configuration (config-policy-server)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

The following example shows how configure the domain name of the policy-server:

```
Device# enable
Device# configure terminal
Device(config) # policy-server name ise_server_2
Device(config-policy-server)# address domain-name ISE_domain
```

The following example shows how configure the IP address of the policy-server:

```
Device# enable
Device# configure terminal
Device(config) # cts policy-server name ise_server_2
Device(config-policy-server)# address ipv4 10.1.1.1
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures the name of a policy server and <br> enters policy-server configuration mode. |

## clear cts environment-data

To clear Cisco TrustSec environment data, use the clear cts environment-data command in privileged EXEC mode.

## clear cts environment-data

This command has no arguments or keywords.

## Command Modes

| Command History | Release | Modification |
| :--- | :--- | :--- | :--- |
|  | Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

## Examples

The following example shows how to clear environment data:

```
Device# enable
Device# clear cts environment-data
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts environment-data enable | Enables the download of environment data. |
| debug cts environment-data | Enables the debugging of Cisco TrustSec <br> environment data operations. |
| show cts environment-data | Displays Cisco TrustSec environment data <br> information. |

## clear cts policy-server statistics

To clear Cisco TrustSec policy-server statistics, use the clear cts policy-server statistics command in privileged EXEC mode.
clear cts policy-server statistics \{active |all\}

| Syntax Description | active | Clears statistics of all active policy servers. |  |
| :---: | :---: | :---: | :---: |
|  | all |  | Clears all policy server statistics. |
| Command Modes | Privileged EXEC (\#) |  |  |
| Command History | Release | Modification |  |
|  | Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |  |
| $\overline{\text { Examples }}$ | The following example shows how to clear all policy-server statistics:```Device# enable Device# clear cts policy-server statistics all``` |  |  |
| Related Commands | Command |  | Description |
|  | cts policy-server name |  | Configures a Cisco TrustSec policy server and enters policy-server configuration mode. |

## content-type json

To enable the JavaScript Object Notation (JSON) as the content type, use the content-type json command in policy-server configuration mode. To remove the content-type, use the no form of this command.
content-type json
no content-type json
This command has no arguments or keywords.

\section*{| Command Default |
| :--- |
| Command Modes |
| Command History |
| Usage Guidelines |}

## Examples

The following example shows how to enable the JSON content-type:

```
Device# enable
Device# configure terminal
Device(config)# policy-server name ise_server_2
Device(config-policy-server)# content-type json
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures the name of a policy server and <br> enters policy-server configuration mode. |

## cts authorization list

To specify a list of authentication, authorization, and accounting (AAA) servers to be used by the TrustSec seed device, use the cts authorization list command on the Cisco TrustSec seed device in global configuration mode. Use the no form of the command to stop using the list during authentication.
cts authorization list server_list
no cts authorization list server_list

## Syntax Description

## Command Default

$\overline{\text { Command Modes }}$ Global configuration (config)

## Supported User Roles

Administrator

## Command History

server_list Cisco TrustSec AAA server group.

None
Release Modification

Cisco IOS XE Fuji 16.9.1
This command was introduced.

This command is only for the seed device. Non-seed devices obtain the TrustSec AAA server list from their TrustSec authenticator peer as a component of their TrustSec environment data.

The following example displays an AAA configuration of a TrustSec seed device:

```
Device# cts credentials id Device1 password Cisco123
Device# configure terminal
Device(config) # aaa new-model
Device(config) # aaa authentication dotlx default group radius
Device(config)# aaa authorization network MLIST group radius
Device(config) # cts authorization list MLIST
Device(config) # aaa accounting dotlx default start-stop group radius
Device(config) # radius-server host 10.20.3.1 auth-port 1812 acct-port 1813 pac key
AbCe1234
Device(config) # radius-server vsa send authentication
Device(config) # dotlx system-auth-control
Device(config) # exit
```

Related Commands

| Command | Description |
| :--- | :--- |
| show cts <br> server-list | Displays RADIUS server configurations. |

## cts change-password

To change the password between the local device and the authentication server, use the cts change-password privileged EXEC command.
cts change-password server ipv__address udp_port \{a-id hex_string | key radius_key \}[\{source interface_list\}]

## Syntax Description

| server | Specifies the authentication server. |
| :--- | :--- |
| ipv__address | IP address of the authentication server. |
| udp_port | UPD port of the authentication server. |
| a-id hex_string | Specifies the identification string of the ACS server. |

key Specifies the RADIUS key to be used for provisioning.
source interface_list (Optional) Specifies the interface type and its identifying parameters as per the displayed list for source address in request packets.

| Command Default |
| :--- |
| Command Modes |

Command History
None.
Privileged EXEC (\#)

## Supported User Roles

Administrator

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |

## Usage Guidelines

The cts change-password command allows an administrator to change the password used between the local device and the Cisco Secure ACS authentication server, without having to reconfigure the authentication server.

The following example shows how to change the Cisco TrustSec password between a switch and a Cisco Secure ACS:

[^1]
## cts credentials

Use the cts credentials command in privileged EXEC mode to specify the TrustSec ID and password of the network device. Use the clear cts credentials command to delete the credentials.
cts credentials id cts_id password cts_pwd

Syntax Description
credentials id cts_id Specifies the Cisco TrustSec device ID for this device to use when authenticating with other Cisco TrustSec devices with EAP-FAST. The $c t s-i d$ variable has a maximum length of 32 characters and is case sensitive.
password cts_pwd Specifies the password for this device to use when authenticating with other Cisco TrustSec devices with EAP-FAST.

| $\overline{\text { Command Default }}$ | None |  |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Privileged EXEC (\#) |  |
|  | Supported User Roles |  |
| Command History | Administrator |  |
|  | Release | Modification |
|  |  | Cisco IOS XE Fuji 16.9.1 |

## Usage Guidelines

Important The cts credentialscommand must be configured only in privileged EXEC mode. Do not use global configuration (config) mode to configure the cts credentials command.

The cts credentials command specifies the Cisco TrustSec device ID and password for this device to use when authenticating with other Cisco TrustSec devices with EAP-FAST. The Cisco TrustSec credentials state retrieval is not performed by the nonvolatile generation process (NVGEN) because the Cisco TrustSec credential information is saved in the keystore, and not in the startup configuration. The device can be assigned a Cisco TrustSec identity by the Cisco Secure Access Control Server (ACS), or a new password auto-generated when prompted to do so by the ACS. These credentials are stored in the keystore, eliminating the need to save the running configuration. To display the Cisco TrustSec device ID, use the show cts credentials command. The stored password is never displayed.

To change the device ID or the password, reenter the command. To clear the keystore, use the clear cts credentials command.


Note When the Cisco TrustSec device ID is changed, all Protected Access Credentials (PACs) are flushed from the keystore because PACs are associated with the old device ID and are not valid for a new identity.

The following example shows how to configure the Cisco TrustSec device ID and password:

```
Device# cts credentials id cts1 password password1
CTS device ID and password have been inserted in the local keystore. Please make sure that
the same ID and password are configured in the server database.
```

The following example show how to change the Cisco TrustSec device ID and password to cts_new and password123, respectively:

```
Device# cts credentials id cts_new pacssword password123
A different device ID is being configured.
This may disrupt connectivity on your CTS links.
Are you sure you want to change the Device ID? [confirm] y
TS device ID and password have been inserted in the local keystore. Please make sure that
the same ID and password are configured in the server database.
```

The following sample output displays the Cisco TrustSec device ID and password state:
Device\# show cts credentials

CTS password is defined in keystore, device-id = cts_new

| Related Commands | Command <br> clear cts <br> credentials <br> show cts <br> credentials <br> show cts keystore | Displays contents of the hardware and software keystores. |
| :--- | :--- | :--- |

## cts environment-data enable

To enable the download of environment data through REST application programming interfaces (APIs), use the cts environment-data enable command in global configuration mode. To disable the download of environment data, use the no form of this command.
cts environment-data enable no cts environment-data enable

This command has no arguments or keywords.

| Command Default |
| :--- |
| Command Modes |
| Command History |

## Usage Guidelines

The cts environment-data enable command cannot co-exist with the cts authorization list command. The cts authorization list command enables the download of environment data through RADIUS.

If you try to configure RADIUS-based configuration by using the cts authorization list command, when the cts environment-data enable command is already configured, the following error message is displayed on the console:

```
Error: 'cts policy-server or cts environment-data' related configs are enabled.
Disable http-based configs, to enable 'cts authorization'
```


## Examples

The following example shows how to enable environment data download:

```
Device# enable
Device# configure terminal
Device(config)# cts environment-data enable
```


## Related Commands

| Command | Description |
| :--- | :--- |
| clear cts environment-data | Clears environment data. |
| debug cts environment-data | Enables the debugging of Cisco TrustSec <br> environment data operations. |
| show cts environment-data | Displays Cisco TrustSec environment data <br> information. |

## cts policy-server device-id

To configure the policy-server device ID, use the cts policy-server device-id command in global configuration mode. To remove the policy-server device ID, use the no form of this command.
cts policy-server device-id device-ID
no cts policy-server device-id device-ID

## Syntax Description

device-ID
Device ID of the Cisco TrustSec device.

| $\overline{\text { Command Default }}$ | Device ID is not configured. |
| :--- | :--- |
| $\overline{\text { Command Modes }}$ Global configuration (config) |  |

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

The device ID must be the same one that was used to add the network access device (NAD) on Cisco Identity Services Engine (ISE). This ID is used to send environment data requests to Cisco ISE.

Examples
The following example shows how to configure the policy-server device ID:

```
Device# enable
Device# configure terminal
Device(config)# cts policy-server device-id server1
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures a Cisco TrustSec policy server and <br> enters policy-server configuration mode. |

## cts policy-server name

To configure a Cisco TrustSec policy server and enter policy-server configuration mode, use the cts policy-server name command in global configuration mode. To remove the policy server, use the no form of this command.
cts policy-server name server-name no cts policy-server name server-name

Syntax Description

Command Default
Command Modes
Command History
server-name

Policy server is not configured.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

## Usage Guidelines

The policy server name will accept all characters. Once the policy-server name is configured, the configuration mode changes to policy-server configuration. You can configure other details of the policy-server in this mode.

## Examples

The following example shows how to configure policy server name:

```
Device# enable
Device# configure terminal
Device(config)# cts policy-server name ISE1
Device(config-policy-server)#
```


## Related Commands

| Command | Description |
| :--- | :--- |
| show cts policy-server | Displays policy server information. |

## cts policy-server order random

To change the server-selection logic to random, use the cts policy-server order random command in global configuration mode. To go back to the default, use the no form of this command.

## cts policy-server order random no cts policy-server order random

This command has no arguments or keywords.

| Command Default |
| :--- |
| Command Modes |
| Command History |

## Usage Guidelines

When multiple HTTP policy servers are configured on a device, a single Cisco Identity Services Engine (ISE) instance may get overloaded if the device always selects the first configured server. To avoid this situation, each device randomly selects a server. A random number is generated by the device and based on this number a server is selected. For different devices to generate random numbers, the unique board ID and the Cisco TrustSec process ID of the device is used to initialize the random number generator.

To change the server selection logic to random, use the cts policy-server order random command. If this command is not selected, the default in-order selection is retained.

In-order selection is when servers are picked in the order in which they are configured (from the public server list) or downloaded (from the private server list). Once a server is selected, the server is used till it is marked as dead, and then the next server in the list is selected.

## Examples

The following example shows how to change the server selection logic:

```
Device# enable
Device# configure terminal
Device(config)# cts policy-server order random
```



| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures a Cisco TrustSec policy server and <br> enters policy-server configuration mode. |

## cts policy-server username

To configure a policy-server username, use the cts policy-server username command in global configuration mode. To remove the policy server username, use the no form of this command.
cts policy-server username username password $\{\mathbf{0}|\mathbf{6}| \mathbf{7}$ password $\}$ password no cts policy-server username

## Syntax Description

| username | Username to access REST <br> application programming interfaces <br> (APIs). | | | |
|---|---|---|---|---|
| password | Specifies the password to <br> authenticate the user. |
| $\mathbf{0}$ | Specifies an unencrypted password. | | $\mathbf{6}$ | Specifies an encrypted password. |
| :--- | :--- |
| $\mathbf{7}$ | Specifies a hidden password. |
| password | Encrypted or unencrypted password. |

## Command Default <br> Command Modes <br> Command History <br> Usage Guidelines

User credentials are not configured.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

You must configure the username and password in Cisco Identity Services Engine (ISE) as the REST API access credentials, before configuring it on the device. See the Cisco TrustSec HTTP Servers section of the "Cisco TrustSec Policies Configuration" chapter for more information.

Examples
The following example shows how to configure the policy server credentials:

```
Device# enable
Device# configure terminal
Device(config)# policy-server username user1 password 0 ise-password
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures the name of a policy server and <br> enters policy-server configuration mode. |

## cts refresh

To refresh the TrustSec peer authorization policy of all or specific Cisco TrustSec peers, or to refresh the SGACL policies downloaded to the device by the authentication server, use the cts refresh command in privileged EXEC mode.
cts refresh $\{$ peer $[$ peer_id] | sgt $[\{$ sgt_number $\mid$ default $\mid$ unknown $\}]\}$

## Syntax Description

environment-data Refreshes environment data.
peer Peer-ID (Optional) If a peer-id is specified, only policies related to the specified peer connection are refreshed.
sgt sgt_number (Optional) Performs an immediate refresh of the SGACL policies from the authentication server.
If an SGT number is specified, only policies related to that SGT are refreshed.

| default | (Optional) Refreshes the default SGACL policy. |
| :--- | :--- |
| unknown | (Optional) Refreshes the unknown SGACL policy. |


| $\overline{\text { Command Default }}$ | None |  |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Privileged EXEC (\#) |  |
|  | Supported User Roles |  |
|  | Administrator |  |
| Command History | Release | Modification |
|  | Cisco IOS XE Fuji 16.9.1 | This command was introduced. |

## Usage Guidelines

To refresh the Peer Authorization Policy on all TrustSec peers, enter cts policy refresh without specifying a peer ID.

The peer authorization policy is initially downloaded from the Cisco ACS at the end of the EAP-FAST NDAC authentication success. The Cisco ACS is configured to refresh the peer authorization policy, but the cts policy refresh command can force immediate refresh of the policy before the Cisco ACS timer expires. This command is relevant only to TrustSec devices that can impose Security Group Tags (SGTs) and enforce Security Group Access Control Lists (SGACLs).

The following example shows how to refresh the TrustSec peer authorization policy of all peers:

```
Device# cts policy refresh
Policy refresh in progress
```

The following sample output displays the TrustSec peer authorization policy of all peers:

```
VSS-1# show cts policy peer
```

```
CTS Peer Policy
===============
device-id of the peer that this local device is connected to
Peer name: VSS-2T-1
Peer SGT: 1-02
Trusted Peer: TRUE
Peer Policy Lifetime = 120 secs
Peer Last update time = 12:19:09 UTC Wed Nov 18 2009
Policy expires in 0:00:01:51 (dd:hr:mm:sec)
Policy refreshes in 0:00:01:51 (dd:hr:mm:sec)
Cache data applied = NONE
```

Related Commands

| Command | Description |
| :--- | :--- |
| clear cts policy | Clears all Cisco TrustSec policies, or by the peer ID or SGT. |
| show cts policy <br> peer | Displays peer authorization policy for all or specific TrustSec peers. |

## cts rekey

To regenerate the Pairwise Master Key used by the Security Association Protocol (SAP), use the cts rekey privileged EXEC command.
cts rekey interface type slot/port

## Syntax Description

| Command Default |
| :--- |
| Command Modes |

> interface type slot/port Specifies the Cisco TrustSec interface on which to regenerate the SAP key.

None.
Privileged EXEC (\#)

## Supported User Roles

Administrator

## Command History

## Usage Guidelines

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |

SAP Pair-wise Master Key key (PMK) refresh ordinarily occurs automatically, triggered by combinations of network events and non-configurable internal timers related to dot 1 X authentication. The ability to manually refresh encryption keys is often part of network administration security requirements. To manually force a PMK refresh, use the cts rekey command.
TrustSec supports a manual configuration mode where dot 1 X authentication is not required to create link-to-link encryption between switches. In this case, the PMK is manually configured on devices on both ends of the link with the sap pmk Cisco TrustSec manual interface configuration command.

The following example shows how to regenerate the PMK on a specified interface:

```
Device# cts rekey interface gigabitEthernet 2/1
```


## Related Commands

| Command | Description |
| :--- | :--- |
| sap mode-list (cts manual) | Configures Cisco TrustSec SAP for manual mode. |

## cts role-based enforcement

To enable role-based access control globally and on specific Layer 3 interfaces using Cisco TrustSec, use the cts role-based enforcement command in global configuration mode and interface configuration mode respectively. To disable the enforcement of role-based access control at an interface level, use the no form of this command.
cts role-based enforcement no cts role-based enforcement

Syntax Description
Command Default
Command Modes

Command History

This command has no keywords or arguments.
Enforcement of role-based access control at an interface level is disabled globally.
Global configuration (config)
Interface configuration (config-if)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji | This command was introduced. |
| 16.9.1 |  |

Usage Guidelines

The cts role-based enforcement command in global configuration mode enables role-based access control globally. Once role-based access control is enabled globally, it is automatically enabled on every Layer 3 interface on the device. To disable role-based access control on specific Layer 3 interfaces, use the no form of the command in interface configuration mode. The cts role-based enforcement command in interface configuration mode enables enforcement of role-based access control on specific Layer 3 interfaces.

The attribute-based access control list organizes and manages the Cisco TrustSec access control on a network device. The security group access control list (SGACL) is a Layer 3-4 access control list to filter access based on the value of the security group tag (SGT). The filtering usually occurs at an egress port of the Cisco TrustSec domain. The terms role-based access control list (RBACL) and SGACL can be used interchangeably, and they refer to a topology-independent ACL used in an attribute-based access control (ABAC) policy model.

The following example shows how to enable role-based access control on a Gigabit Ethernet interface:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/3
Device(config-if)# cts role-based enforcement
Device(config-if)# end
```


## cts role-based l2-vrf

To select a virtual routing and forwarding (VRF) instance for Layer 2 VLANs, use the cts role-based 12-vrf command in global configuration mode. To remove the configuration, use the no form of this command.
cts role-based $\mathbf{1 2}$-vrf vrf-name vlan-list $\{$ all vlan-ID $\}[\{\}],[\{-\}]$
no cts role-based $\mathbf{1 2 - v r f}$ vrf-name vlan-list $\{$ all vlan-ID $\}[\{\}],[\{-\}]$

## Syntax Description

## Command Default <br> Command Modes <br> Command History

## Usage Guidelines

The vlan-list argument can be a single VLAN ID, a list of comma-separated VLAN IDs, or hyphen-separated VLAN ID ranges.
The all keyword is equivalent to the full range of VLANs supported by the network device. The all keyword is not preserved in the nonvolatile generation (NVGEN) process.
If the cts role-based $\mathbf{1 2 - v r f}$ command is issued more than once for the same VRF, each successive command entered adds the VLAN IDs to the specified VRF.
The VRF assignments configured by the cts role-based I2-vrf command are active as long as a VLAN remains a Layer 2 VLAN. The IP-SGT bindings learned while a VRF assignment is active are also added to the Forwarding Information Base (FIB) table associated with the VRF and the IP protocol version. If an Switched Virtual Interface (SVI) becomes active for a VLAN, the VRF-to-VLAN assignment becomes inactive and all bindings learned on the VLAN are moved to the FIB table associated with the VRF of the SVI.

Use the interface vlan command to configure an SVI interface, and the vrf forwarding command to associate a VRF instance to the interface.

The VRF-to-VLAN assignment is retained even when the assignment becomes inactive. It is reactivated when the SVI is removed or when the SVI IP address is changed. When reactivated, the IP-SGT bindings are moved back from the FIB table associated with the VRF of the SVI to the FIB table associated with the VRF assigned by the cts role-based 12 -vrf command.

The following example shows how to select a list of VLANS to be assigned to a VRF instance:

Device(config)\# cts role-based l2-vrf vrf1 vlan-list 20

The following example shows how to configure an SVI interface and associate a VRF instance:

Device(config) \# interface vlan 101
Device(config-if) \# vrf forwarding vrf1

| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | interface vlan | Configures a VLAN interface. |
|  | Associates a VRF instance or a virtual network with an interface or <br> subinterface. |  |
| show cts role-based permissions | Displays the SGACL permission list. |  |

## cts role-based monitor

To enable role-based (security-group) access list monitoring, use the cts role-based monitor command in global configuration mode. To remove role-based access list monitoring, use the no form of this command.
cts role-based monitor $\{$ all | permissions $\{$ default $[\{i p v 4 \mid \operatorname{ipv6}\}]$ | from $\{s g t \mid$ unknown $\}$ to $\{s g t$ | unknown $\}$ [\{ipv4 |ipv6 $\}]\}\}$
no cts role-based monitor $\{$ all | permissions $\{\operatorname{default}[\{\mathbf{i p v} 4 \mid \operatorname{ipv}\}\}] \mid$ from $\{s g t \mid$ unknown $\}$ to $\{s g t$ | unknown $\}$ [\{ipv4 |ipv6\}] $\}\}$
Syntax Description

| Command Default |
| :--- |
| Command Modes |

## Usage Guidelines

Use the cts role-based monitor all command to enable the global monitor mode. If the cts role-based monitor all command is configured, the output of the show cts role-based permissions command displays monitor mode for all configured policies as true.

The following examples shows how to configure SGACL monitor from a source tag to a destination tag:

Device(config)\# cts role-based monitor permissions from 10 to 11

Related Commands

| Command | Description |
| :--- | :--- |
| show cts role-based permissions | Displays the SGACL permission list. |

## cts role-based permissions

To enable permissions from a source group to a destination group, use the cts role-based permissions command in global configuration mode. To remove the permissions, use the no form of this command.

```
cts role-based permissions {default | from {sgt | unknown}to {sgt| unknown}}{rbacl-name | ipv4
| ipv6}
no cts role-based permissions {default | from {sgt| unknown}to {sgt| unknown }}{rbacl-name |
ipv4 | ipv6}
```

Syntax Description

## Command Default

Command Modes
Command History
default Specifies the default permissions list. Every cell (an SGT pair) for which, security group access control list (SGACL) permission is not configured statically or dynamically falls under the default category.

| from | Specifies the source group tag of the filtered traffic. |
| :--- | :--- |
| sgt | Security Group Tag (SGT). Valid values are from 2 to 65519. |
| unknown | Specifies an unknown source or destination group tag. |
| rbacl-name | Role-based access control list (RBACL) or SGACL name. Up to 16 SGACLs can be specified <br> in the configuration. |
| ipv4 | Specifies the IPv4 protocol. |
| ipv6 | Specifies the IPv6 protocol. |

Permissions from a source group to a destination group is not enabled.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji | This command was introduced. |
| 16.9.1 |  |

Use the cts role-based permissions command to define, replace, or delete the list of SGACLs for a given source group tag (SGT), destination group tag (DGT) pair. This policy is in effect as long as there is no dynamic policy for the same DGT or SGT.

The cts role-based permissions default command defines, replaces, or deletes the list of SGACLs of the default policy as long as there is no dynamic policy for the same DGT.

The following example shows how to enable permissions for a destination group:

Device(config) \# cts role-based permissions from 6 to 6 mon_2

| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | show cts role-based permissions | Displays the SGACL permission list. |

## cts role-based sgt-caching

To enable Security Group Tag (SGT) caching globally, use the cts role-based sgt-caching command in global configuration mode. To remove SGT caching, use the no form of this command.
cts role-based sgt-caching [vlan-list \{vlan-id | all\}] no cts role-based sgt-caching [vlan-list $\{$ vlan-id $\mid$ all $\}$ ]

Syntax Description

| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |

Command History
vlan-list vlan-id
all

SGT caching is not configured.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |

Usage Guidelines

To enable SGT caching on a VLAN, both cts role-based sgt-caching and cts role-based sgt-caching vlan-list commands must be configured.

## Example

The following example shows how to enable SGT caching on a VLAN:

```
Device# configure terminal
Device(config)# cts role-based sgt-caching
Device(config)# cts role-based sgt-caching vlan-list 4
```


## cts role-based sgt-map

To manually map a source IP address to a Security Group Tag (SGT) on either a host or a VRF, use the cts role-based sgt-map command in global configuration mode. Use the no form of the command to remove the mapping.
cts role-based sgt-map \{ipv4_netaddress $\mid$ ipv6_netaddress $\mid$ ipv4_netaddress/prefix $\mid$ ipv6_netaddress/prefix\} sgt sgt-number
cts role-based sgt-map host $\left\{i p v 4 \_h o s t a d d r e s s \mid i p v 6 \_h o s t a d d r e s s\right\}$ sgt sgt-number
cts role-based sgt-map vlan-list [\{vlan_ids|all\}] sgt sgt-number
cts role-based sgt-map vrf instance_name
\{ipv4_netaddress|ipv6_netaddress|ipv4_netaddress/prefix|ipv6_netaddress/prefix| host \{ipv4_hostaddress |ipv6_hostaddress\}\} sgt sgt-number
no cts role-based sgt-map

## Syntax Description

| ipv4_netaddress \| <br> ipv6_netaddress | Specifies the network to be associated with an SGT. Enter IPv4 address <br> in dot decimal notation; IPv6 in colon hexadecimal notation. |
| :--- | :--- |
| ipv4_netaddress/prefix । <br> ipv6_netaddress/prefix | Maps the SGT to all hosts of the specified subnet address (IPv4 or <br> IPv6). IPv4 is specified in dot decimal CIDR notation, IPv6 in colon <br> hexadecimal notation |
| host \{ipv4_hostaddress \| <br> ipv6_hostaddress $\}$ | Binds the specified host IP address with the SGT. Enter the IPv4 <br> address in dot decimal notation; IPv6 in colon hexadecimal notation. |
| vlan-list \{vlan_ids \| all\} | Specifies VLAN IDs. <br> • (Optional) vlan_ids: Individual VLAN IDs are separated by <br> commas, a range of IDs specified with a hyphen. <br> $\cdot$ (Optional) all: Specifies all VLAN IDs. |
| vrf instance_name | Specifies a VRF instance, previously created on the device. |

## Command Default None <br> Command Modes

Global configuration (config)
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

## Usage Guidelines

If you do not have a Cisco Identity Services Engine, Cisco Secure ACS, dynamic Address Resolution Protocol (ARP) inspection, Dynamic Host Control Protocol (DHCP) snooping, or Host Tracking available on your
device to automatically map SGTs to source IP addresses, you can manually map an SGT to the following with the cts role-based sgt-map command:

- A single host IPv4 or IPv6 address
- All hosts of an IPv4 or IPv6 network or subnetwork
- VRFs
- Single or multiple VLANs

The cts role-based sgt-map command binds the specified SGT with packets that fall within the specified network address.

SXP exports an exhaustive expansion of all possible individual IP-SGT bindings within the specified network or subnetwork. IPv6 bindings and subnet bindings are exported only to SXP listener peers of SXP version 2 or later. The expansion does not include host bindings which are known individually or are configured or learnt from SXP for any nested subnet bindings.

The cts role-based sgt-map host command binds the specified SGT with incoming packets when the IP source address is matched by the specified host address. This IP-SGT binding has the lowest priority and is ignored in the presence of any other dynamically discovered bindings from other sources (such as, SXP or locally authenticated hosts). The binding is used locally on the device for SGT imposition and SGACL enforcement. It is exported to SXP peers if it is the only binding known for the specified host IP address.

The vrf keyword specifies a virtual routing and forwarding table previously defined with the vrf definition global configuration command. The IP-SGT binding specified with the cts role-based sgt-map vrf global configuration command is entered into the IP-SGT table associated with the specified VRF and the IP protocol version which is implied by the type of IP address entered.
The cts role-based sgt-map vlan-list command binds an SGT with a specified VLAN or a set of VLANs. The keyword all is equivalent to the full range of VLANs supported by the device and is not preserved in the nonvolatile generation (NVGEN) process. The specified SGT is bound to incoming packets received in any of the specified VLANs. The system uses discovery methods such as DHCP and/or ARP snooping (a.k.a. IP device tracking) to discover active hosts in any of the VLANs mapped by this command. Alternatively, the system could map the subnet associated with the SVI of each VLAN to the specified SGT. SXP exports the resulting bindings as appropriate for the type of binding.

## Examples

The following example shows how to manually map a source IP address to an SGT:

Device(config)\# cts role-based sgt-map 10.10.1.1 sgt 77

In the following example, a device binds host IP address 10.1.2.1 to SGT 3 and 10.1.2.2 to SGT 4. These bindings are forwarded by SXP to an SGACL enforcement device.

```
Device(config)# cts role-based sgt-map host 10.1.2.1 sgt 3
```

Device(config)\# cts role-based sgt-map host 10.1.2.2 sgt 4

Related Commands

| Command | Description |
| :--- | :--- |
| show cts role-based sgt-map | Displays role-based access control information. |

## cts sxp connection peer

To enter the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) peer IP address, to specify if a password is used for the peer connection, to specify the global hold-time period for a listener or speaker device, and to specify if the connection is bidirectional, use the cts sxp connection peer command in global configuration mode. To remove these configurations for a peer connection, use the no form of this command.
cts sxp connection peer ipv4-address \{source | password\} \{default| none\} mode \{local| peer\} [\{[[\{listener | speaker\}] [\{hold-time minimum-time maximum-time | vrf vrf-name $\}]$ | both [vrf vrf-name]\}]
cts sxp connection peer ipv4-address \{source | password\} \{default|none\} mode \{local|peer\} [\{[[\{listener | speaker\}] [\{hold-time minimum-time maximum-time | vrf vrf-name $\}]]$ | both [vrf vrf-name]\}]

## Syntax Description

| ipv4-address | SXP peer IPv4 address. |
| :---: | :---: |
| source | Specifies the source IPv4 address. |
| password | Specifies that an SXP password is used for the peer connection. |
| default | Specifies that the default SXP password is used. |
| none | Specifies no password is used. |
| mode | Specifies either the local or peer SXP connection mode. |
| local | Specifies that the SXP connection mode refers to the local device. |
| peer | Specifies that the SXP connection mode refers to the peer device. |
| listener | (Optional) Specifies that the device is the listener in the connection. |
| speaker | (Optional) Specifies that the device is the speaker in the connection. |
| hold-time minimum-time maximum-time | (Optional) Specifies the hold-time period, in seconds, for the device. The range for minimum and maximum time is from 0 to 65535 . <br> A maximum-time value is required only when you use the following keywords: peer speaker and local listener. In other instances, only a minimum-time value is required. <br> Note <br> If both minimum and maximum times are required, the maximum-time value must be greater than or equal to the minimum-time value. |
| vrf $v r f$-name | (Optional) Specifies the virtual routing and forwarding (VRF) instance name to the peer. |
| both | (Optional) Specifies that the device is both the speaker and the listener in the bidirectional SXP connection. |

## Command Default

The CTS-SXP peer IP address is not configured and no CTS-SXP peer password is used for the peer connection. The default setting for a CTS-SXP connection password is none.

## Command Modes

Global configuration (config)

Command History

## Usage Guidelines

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

When a CTS-SXP connection to a peer is configured with the cts sxp connection peer command, only the connection mode can be changed. The vrf keyword is optional. If a VRF name is not provided or a VRF name is provided with the default keyword, then the connection is set up in the default routing or forwarding domain.

A hold-time maximum-period value is required only when you use the following keywords: peer speaker and local listener. In other instances, only a hold-time minimum-period value is required.

Note The maximum-period value must be greater than or equal to the minimum-period value.
Use the both keyword to configure a bidirectional SXP connection. With the support for bidirectional SXP configuration, a peer can act as both a speaker and a listener and propagate SXP bindings in both directions using a single connection.

## Examples

The following example shows how to enable CTS-SXP and configure the CTS-SXP peer connection on Device_A, a speaker, for connection to Device_B, a listener:

```
Device A> enable
Device_A# configure terminal
Device_A#(config) # cts sxp enable
Device_A#(config)# cts sxp default password Cisco123
Device_A#(config)# cts sxp default source-ip 10.10.1.1
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local speaker
```

The following example shows how to configure the CTS-SXP peer connection on Device_B, a listener, for connection to Device_A, a speaker:

```
Device_B> enable
Device_B# configure terminal
Device_B(config)# cts sxp enable
Device_B(config)# cts sxp default password Cisco123
Device_B(config)# cts sxp default source-ip 10.20.2.2
Device_B(config)# cts sxp connection peer 10.10.1.1 password default mode local listener
```

You can also configure both peer and source IP addresses for an SXP connection. The source IP address specified in the cts sxp connection command overwrites the default value.

```
Device_A(config)# cts sxp connection peer 51.51.51.1 source 51.51.51.2 password none mode
local speaker
```

Device_B(config)\# cts sxp connection peer 51.51 .51 .2 source 51.51 .51 .1 password none mode local listener

The following example shows how to enable bidirectional CTS-SXP and configure the SXP peer connection on Device_A to connect to Device_B:

```
Device_A> enable
Device_A# configure terminal
Device_A#(config)# cts sxp enable
Device_A#(config)# cts sxp default password Cisco123
Device_A#(config)# cts sxp default source-ip 10.10.1.1
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local both
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts sxp default password | Configures the Cisco TrustSec SXP default password. |
| cts sxp default source-ip | Configures the Cisco TrustSec SXP source IPv4 address. |
| cts sxp enable | Enables Cisco TrustSec SXP on a device. |
| cts sxp log | Enables logging for IP-to-SGT binding changes. |
| cts sxp reconciliation | Changes the Cisco TrustSec SXP reconciliation period. |
| cts sxp retry | Changes the Cisco TrustSec SXP retry period timer. |
| cts sxp speaker hold-time | Configures the global hold-time period of a speaker device in a Cisco TrustSec <br> SGT SXPv4 network. |
| cts sxp listener hold-time | Configures the global hold-time period of a listener device in a Cisco TrustSec <br> SGT SXPv4 network. |
| show cts sxp | Displays the status of all Cisco TrustSec SXP configurations. |

## cts sxp default password

To specify the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) default password, use the cts sxp default password command in global configuration mode. To remove the CTS-SXP default password, use the no form of this command.
cts sxp default password $\{0$ unencrypted-pwd $\mid \mathbf{6}$ encrypted-key $\mid \mathbf{7}$ encrypted-keycleartext-pwd $\}$ no cts sxp default password $\{0$ unencrypted-pwd $\mid \mathbf{6}$ encrypted-key $\mid \mathbf{7}$ encrypted-keycleartext-pwd $\}$

## Syntax Description

| $\mathbf{0}$ unencrypted-pwd | Specifies that an unencrypted CTS-SXP default password follows. The maximum <br> password length is 32 characters. |
| :--- | :--- |
| $\mathbf{6}$ encrypted-key | Specifies that a 6 encryption type password is used as the CTS-SXP default password. <br> The maximum password length is 32 characters. |
| $\mathbf{7}$ encrypted-key | Specifies that a 7 encryption type password is used as the CTS-SXP default password. <br> The maximum password length is 32 characters. |
| cleartext-pwd | Specifies a cleartext CTS-SXP default password. The maximum password length is 32 <br> characters. |

## Command Default

Type 0 (cleartext)

Command Modes
Global configuration (config)
Command History

## Usage Guidelines

The cts sxp default password command sets the CTS-SXP default password to be optionally used for all CTS-SXP connections configured on the device. The CTS-SXP password can be cleartext, or encrypted with the $\mathbf{0}, \mathbf{7}, \mathbf{6}$ encryption type keywords. If the encryption type is 0 , then an unencrypted cleartext password follows.

## Examples

The following example shows how to enable CTS-SXP and configure the CTS-SXP peer connection on Device_A, a speaker, for connection to Device_B, a listener:

```
Device_A# configure terminal
Device_A#(config)# cts sxp enable
Device_A#(config)# cts sxp default password Cisco123
Device_A#(config)# cts sxp default source-ip 10.10.1.1
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local speaker
```

The following example shows how to configure the CTS-SXP peer connection on Device_B, a listener, for connection to Device_A, a speaker:

```
Device_B# configure terminal
```

```
Device_B(config)# cts sxp enable
Device_B(config)# cts sxp default password Cisco123
Device_B(config)# cts sxp default source-ip 10.20.2.2
Device_B(config)# cts sxp connection peer 10.10.1.1 password default mode local listener
```

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| cts sxp connection peer | Enters the CTS-SXP peer IP address and specifies if a password is used for the <br> peer connection. |  |
| cts sxp default source-ip | Configures the CTS-SXP source IPv4 address. |  |
| cts sxp enable | Enables CTS-SXP on a device. |  |
| cts sxp log | Enables logging for IP-to-SGT binding changes. |  |
| cts sxp reconciliation | Changes the CTS-SXP reconciliation period. |  |
| cts sxp retry | Changes the CTS-SXP retry period timer. |  |
| show cts sxp | Displays the status of all SXP configurations. |  |

## cts sxp default source-ip

To configure the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) source IPv4 address, use the cts sxp default source-ip command in global configuration mode. To remove the CTS-SXP default source IP address, use the no form of this command.
cts $\operatorname{sxp}$ default source-ip ipv4-address
no cts $\operatorname{sxp}$ default source-ip ipv4-address
Syntax Description

Command Default
Command Modes

Command History

## Usage Guidelines



The CTS-SXP source IP address is not configured.

Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

The cts sxp default source-ip command sets the default source IP address that CTS-SXP uses for all new TCP connections where a source IP address is not specified. Preexisting TCP connections are not affected when this command is entered. CTS-SXP connections are governed by three timers:

- Retry timer
- Delete Hold Down timer
- Reconciliation timer

Examples

The following example shows how to enable CTS-SXP and configure the CTS-SXP peer connection on Device_A, a speaker, for connection to Device_B, a listener:

```
Device_A# configure terminal
Device_A#(config)# cts sxp enable
Device_A#(config)# cts sxp default password Cisco123
Device_A#(config)# cts sxp default source-ip 10.10.1.1
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local speaker
```

The following example shows how to configure the CTS-SXP peer connection on Device_B, a listener, for connection to Device_A, a speaker:

```
Device_B# configure terminal
Device_B(config)# cts sxp enable
Device_B(config)# cts sxp default password Cisco123
Device_B(config)# cts sxp default source-ip 10.20.2.2
Device_B(config)# cts sxp connection peer 10.10.1.1 password default mode local listener
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts sxp connectionpeer | Enters the CTS-SXP peer IP address and specifies if a password is used for the <br> peer connection. |
| cts sxp default password | Configures the CTS-SXP default password. |
| cts sxp enable | Enables CTS-SXP on a device. |
| cts sxp log | Enables logging for IP-to-SGT binding changes. |
| cts sxp reconciliation | Changes the CTS-SXP reconciliation period. |
| cts sxp retry | Changes the CTS-SXP retry period timer. |
| show cts sxp | Displays the status of all SXP configurations. |

## cts sxp filter-enable

To enable filtering after creating filter lists and filter groups, use the cts sxp filter-enable command in global configuration mode. To disable filtering, use the no form of the command.
cts $\operatorname{sxp}$ filter-enable
no cts sxp filter-enable

Syntax Description

## Command Modes

Command History

Usage Guidelines
This command can be used at any time to enable or disable filtering. Configured filter lists and filter groups can be used to implement filtering only after filtering is enabled. The filter action will only filter bindings that are exchanged after filtering is enabled; there won't be any effect on the bindings that were exchanged before filtering was enabled.

## Examples

## Related Commands

Device(config) \# cts sxp filter-enable

| Command | Description |
| :--- | :--- |
| cts sxp filter-list | Creates a SXP filter list to filter IP-SGT bindings based on IP prefixes, SGT or <br> a combination of both. |
| cts sxp filter-group | Creates a filter group for grouping a set of peers and applying a filter list to them. |
| show cts sxp filter-group | Displays information about the configured filter groups.. |
| show cts sxp filter-list | Displays information about the configured filter lists. |
| debug cts sxp filter <br> events | Logs events related to the creation, deletion and update of filter-lists and <br> filter-groups |

## cts sxp filter-group

To create a filter group for grouping a set of peers and applying a filter list to them, use the cts sxp filter-group command in global configuration mode. To delete a filter group, use the no form of this command.
cts $\operatorname{sxp}$ filter-group $\{$ listener | speaker $\}\{$ filter-group-name | global filter-list-name\} no cts $\operatorname{sxp}$ filter-group \{listener | speaker $\}\{$ filter-group-name | global filter-list-name $\}$

## Syntax Description

| listener | Creates a filter group for a set of listeners. |
| :--- | :--- |
| speaker | Creates a filter group for a set of speakers. |
| global | Groups all speakers or listeners on the device. |
| filter-group-name | Name of the filter group. |
| filter-list-name | Name of the filter list. |

## Command Modes

Global configuration (config)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

## Usage Guidelines

Issuing this command, places the device in the filter group configuration mode. From this mode, you can specify the devices to be grouped and apply a filter list to the filter group.
The command format to add devices or peers to the group is a follows:
peer ipv4 peer-IP
In a single command, you can add one peer. To add more peers, repeat the command as many times as required.
The command format to apply a filter list to the group is as follows:

## filter filter-list-name

You cannot specify a peer list for the global listener and global speaker filter-group options because in this case the filter is applied to all SXP connections.

When both the global filter group and peer-based filter groups are applied, the global filter takes priority. If only a global listener or global speaker filter group is configured, then the global filtering takes precendence only in that specific direction. For the other direction, the peer-based filter group is implemented.

## Examples

The following example shows how to create a listener group called group_1, and assign peers and a filter list to this group:

```
Device# configure terminal
Device(config)# cts sxp filter-group listener group_1
Device(config-filter-group)# filter filter_1
```

```
Device(config-filter-group)# peer ipv4 10.0.0.1
Device(config-filter-group)# peer ipv4 10.10.10.1
```

The following example shows how to create a global listener group called group_2:

```
Device# configure terminal
```

Device(config) \# cts sxp filter-group listener global group_2

| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | cts sxp filter-list | Creates a SXP filter list to filter IP-SGT bindings based on IP prefixes, SGT or <br> a combination of both. |
| cts sxp filter-enable | Enables filtering. |  |
| show cts sxp filter-group | Displays information about the configured filter groups. |  |
| show cts sxp filter-list | Displays information about the configured filter lists. |  |
| debug cts sxp filter <br> events | Logs events related to the creation, deletion and update of filter-lists and <br> filter-groups |  |

## cts sxp filter-list

To create a SXP filter list to hold a set of filter rules for filtering IP-SGT bindings, use the cts sxp filter-list command in global configuration mode. To delete a filter list, use the no form of the command.
cts $\operatorname{sxp}$ filter-list filter-list-name
no cts sxp filter-list filter-list-name

## Syntax Description

| filter-list-name | Name of the filter-list. |
| :--- | :--- |

## Command Modes

Global configuration (config)

## Command History

## Usage Guidelines

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

Issuing this command, places the device in the filter list configuration mode. From this mode, you can specify rules for the filter lists.

A filter rule can be based on SGT or IP Prefixes or a combination of both SGT and IP Prefixes.
The command format to add rules to the group is a follows:

## sequence-number action(permit/deny) filter-type(ipv4/ipv6/sgt) value/values

For example, to permit SGT-IP bindings whose SGT value is 20, the rule is as follows:

## 30 permit sgt 20

Note that the sequence number is optional. If you do not specify a sequence number, it is generated by the system. Sequence numbers are automatically incremented by a value of 10 from the last used/configured sequence number. A new rule can be inserted by specifying a sequence number in between two existing rules.

The range of valid SGT values is between 2 and 65519 . To provide multiple SGT values in a rule, seperate the values using a space. A maximum of 8 SGT values are allowed in a rule.

In a SGT and IP prefix combination rule, if there is a match for the binding in both the parts of the rule, then the action specified in the second part of the rule takes precedence. For example, in the following rule, if the SGT value of the IP prefix 10.0.0.1 is 20 , the corresponding binding will be denied even if the first part of the rule permits the binding.

Device(config-filter-list) \# 10 permit sgt 3020 deny 10.0.0.1/24
Similarly, in the rule below the binding with the sgt value 20 will be permitted even if the sgt of the IP prefix 10.0.0.1 is 20 , and the first action does not permit the binding.

Device(config-filter-list) \# 10 deny $10.0 .0 .1 / 24$ permit sgt 3020

## Examples

The following example shows how to create a filter list and add some rules to the list:

```
Device# configure terminal
Device(config)# cts sxp filter-list filter_1
Device (config-filter-list)# 10 deny ipv4 10.0.0.1/24 permit sgt 100
Device(config-filter-list) # 20 permit sgt 60 61 62 63
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts sxp filter-enable | Enable SXP IP-prefix and SGT-based filtering. |
| cts sxp filter-group | Creates a filter group for grouping a set of peers and applying a filter list to them. |
| show cts sxp filter-group | Displays information about the configured filter groups. |
| show cts sxp filter-list | Displays information about the configured filter lists. |
| debug cts sxp filter <br> events | Logs events related to the creation, deletion and update of filter-lists and <br> filter-groups. |

## cts $\operatorname{sxp} \log$ binding-changes

To enable logging for IP-to-Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) binding changes, use the cts sxp log binding-changes command in global configuration mode. To disable logging, use the no form of this command.
cts $\operatorname{sxp} \log$ binding-changes
no cts sxp log binding-changes

## Command Default

Logging is disabled.

## Command Modes

Global configuration (config)

## Command History

Usage Guidelines

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

The cts sxp log binding-changes command enables logging for IP-to-SGT binding changes. SXP syslogs (sev 5 syslogs) are generated whenever IP address-to-SGT binding occurs (add, delete, change). These changes are learned and propagated on the SXP connection.

Related Commands

| Command | Description |
| :--- | :--- |
| cts sxp connectionpeer | Enters the CTS-SXP peer IP address and specifies if a password is used for the <br> peer connection |
| cts sxp default password | Configures the CTS-SXP default password. |
| cts sxp default source-ip | Configures the CTS-SXP source IPv4 address. |
| cts sxp enable | Enables CTS-SXP on a device. |
| cts sxp reconciliation | Changes the CTS-SXP reconciliation period. |
| cts sxp retry | Changes the CTS-SXP retry period timer. |
| show cts sxp | Displays status of all SXP configurations. |

## cts $\operatorname{sxp}$ reconciliation period

To change the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) reconciliation period, use the cts sxp reconciliation period command in global configuration mode. To return the CTS-SXP reconciliation period to its default value, use the no form of this command.
cts sxp reconciliation period seconds
no cts sxp reconciliation period seconds

Syntax Description

| seconds | CTS-SXP reconciliation timer in seconds. The range is from 0 to 64000 . The default is 120. |
| :--- | :--- | :--- |



120 seconds ( 2 minutes)

Command Modes
Global configuration (config)

Command History

Usage Guidelines
After a peer terminates a CTS-SXP connection, an internal delete hold-down timer starts. If the peer reconnects before the delete hold-down timer expires, then the CTS-SXP reconciliation timer starts. While the CTS-SXP reconciliation period timer is active, the CTS-SXP software retains the SGT mapping entries learned from the previous connection and removes invalid entries. Setting the SXP reconciliation period to 0 seconds disables the timer and causes all entries from the previous connection to be removed.

| Command | Description |
| :--- | :--- |
| cts sxp connection peer | Enters the CTS-SXP peer IP address and specifies if a password is used for the <br> peer connection. |
| cts sxp default password | Configures the CTS-SXP default password. |
| cts sxp default source-ip | Configures the CTS-SXP source IPv4 address. |
| cts sxp enable | Enables CTS-SXP on a device. |
| cts sxp log | Turns on logging for IP to SGT binding changes. |
| cts sxp retry | Changes the CTS-SXP retry period timer. |
| show cts sxp | Displays status of all CTS-SXP configurations. |

## cts sxp retry period

To change the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) retry period timer, use the cts sxp retry period command in global configuration mode. To return the CTS-SXP retry period timer to its default value, use the no form of this command.
cts sxpretry period seconds
no cts sxpretry period seconds

Syntax Description

| seconds | CTS-SXP retry timer in seconds. The range is from 0 to 64000 . The default is 120. |
| :--- | :--- |


| Command Default |
| :--- |
| Command Modes |

120 seconds ( 2 minutes)

Global configuration (config)
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9 .1 | This command was <br> introduced. |

## Usage Guidelines

The retry timer is triggered if there is at least one CTS-SXP connection that is not up. A new CTS-SXP connection is attempted when this timer expires. A zero value results in no retry being attempted.

## Related Commands

| Command | Description |
| :--- | :--- |
| cts sxp connectionpeer | Enters the CTS-SXP peer IP address and specifies if a password is used for the <br> peer connection. |
| cts sxp default password | Configures the CTS-SXP default password. |
| cts sxp default source-ip | Configures the CTS-SXP source IPv4 address. |
| cts sxp enable | Enables CTS-SXP on a device. |
| cts sxp log | Enables logging for IP-to-SGT binding changes. |
| cts sxp reconciliation | Changes the CTS-SXP reconciliation period. |
| show cts sxp | Displays the status of all CTS-SXP configurations. |

## debug cts environment-data

To enable the debugging of Cisco TrustSec environment data operations, use the debug cts environment-data command in privileged EXEC mode. To stop the debugging of environment data operations, use the no form of this command.
debug cts environment-data [\{aaa |all|default-epg | default-sg|events |platform |sg-epg\}] no debug cts environment-data [\{aaa|all|default-epg|default-sg|events|platform|sg-epg\}]

Syntax Description

| aaa | (Optional) Specifies the debugging <br> of authentication, authorization, and <br> accounting (AAA) messages. |
| :--- | :--- |
| all | (Optional) Specifies the debugging <br> of all environment-data messages. |
| default-epg | (Optional) Specifies the debugging <br> of default end-point group (EPG) <br> messages. |
| default-sg | (Optional) Specifies the debugging <br> of default server group messages. |
| events | (Optional) Specifies the debugging <br> of environment data events. |
| platform | (Optional) Specifies the debugging <br> of Security Group Tag (SGT)-EPG <br> platform messages. |
| sg-epg | (Optional) Specifies the debugging <br> of SP-EPG mapping. |

## Command Modes

Command History
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

## Examples

The following example shows how to enable the debugging of environment data events:
Device\# enable
Device\# debug cts environment-data events

| Command | Description |
| :--- | :--- |
| cts environment-data enable | Enables the download of environment data. |
| clear cts environment-data | Clears environment data. |


| Command | Description |
| :--- | :--- |
| show cts environment-data | Displays Cisco TrustSec environment data <br> information. |

## debug cts policy-server

To enable Cisco TrustSec policy-server debugging, use the debug cts policy-server command in privileged EXEC mode.
debug cts policy-server $\{$ all $\mid\{\operatorname{http} \mid$ json $\}\{$ all $\mid$ error $\mid$ events $\}\}$
Syntax Description

| all | Enables all policy-server debugs. |
| :--- | :--- |
| http | Enables HTTP client debugs. |
| json | Enables JSON parser debugs. |
| error | Enables HTTP error debugs. |
| events | Enables HTTP event debugs. |

$\overline{\text { Command Modes }}$

Privileged EXEC (\#)

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

## Examples

The following example shows how to enable HTTP client error debugs:
Device\# enable
Device\# debug cts policy-server http error

## Related Commands

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures the name of a policy server and <br> enters policy-server configuration mode. |
| show cts policy-server | Displays Cisco TrustSec policy-server <br> information. |

## port (CTS)

## Syntax Description

## Command Default

## Command Modes

## Command History

## Usage Guidelines

## Examples

## Related Commands

To configure the policy server port, use the port command in policy-server configuration mode. To remove the policy server port, use the no form of this command.
port port-number
no port

| port-number | Policy server port number. Valid <br> values are from 1025 to 65535. |
| :--- | :--- |

Default port is 9063 .
Policy-server configuration (config-policy-server)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

Only 9063 is supported as the External RESTful Services (ERS) port.
The following example shows how to configure the policy-server port:

```
Device# enable
Device# configure terminal
Device(config)# policy-server name ise_server_2
Device(config-policy-server)# port 906\overline{3}
```

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures the name of a policy server and <br> enters policy-server configuration mode. |

## propagate sgt (cts manual)

To enable Security Group Tag (SGT) propagation at Layer 2 on Cisco TrustSec Security (CTS) interfaces, use the propagate sgt command in interface configuration mode. To disable SGT propagation, use the no form of this command.
propagate sgt
$\overline{\text { Syntax Description }}$
Command Default

Command Modes
Command History

This command has no arguments or keywords.
SGT processing propagation is enabled.

CTS manual interface configuration mode (config-if-cts-manual)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji | This command was introduced. |
| 16.9.1 |  |

SGT processing propagation allows a CTS-capable interface to accept and transmit a CTS Meta Data (CMD) based L2 SGT tag. The no propagate sgt command can be used to disable SGT propagation on an interface in situations where a peer device is not capable of receiving an SGT, and as a result, the SGT tag cannot be put in the L2 header.

## Examples

The following example shows how to disable SGT propagation on a manually-configured TrustSec-capable interface:

```
Device# configure terminal
Device(config)# interface gigabitethernet 0
Device(config-if)# cts manual
Device(config-if-cts-manual) # no propagate sgt
```

The following example shows that SGT propagation is disabled on Gigabit Ethernet interface 0 :

```
Device#show cts interface brief
Global Dot1x feature is Disabled
Interface GigabitEthernet0:
 CTS is enabled, mode: MANUAL
 IFC state: OPEN
 Authentication Status: NOT APPLICABLE
 Peer identity: "unknown"
 Peer's advertised capabilities: ""
 Authorization Status: NOT APPLICABLE
 SAP Status: NOT APPLICABLE
 Propagate SGT: Disabled
 Cache Info:
 Cache applied to link : NONE
```

| Command | Description |
| :--- | :--- |
| cts manual | Enables an interface for CTS. |


| Command | Description |
| :--- | :--- |
| show cts interface | Displays Cisco TrustSec states and statistics per interface. |

## retransmit (CTS)

To configure the maximum number of retries from the server, use the retransmit command in policy-server configuration mode. To go back to the default, use the no form of this command.
retransmit number-of-retries
no retransmit

Syntax Description

## Command Default

$\overline{\text { Command Modes }}$ Policy-server configuration (config-policy-server)

Command History
number-of-retries

The default is 4 .

Maximum number of retries. Valid values are from 0 to 5 .

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

The following example shows how to change the maximum number of retries:
Device\# enable
Device\# configure terminal
Device(config) \# policy-server name ise_server_2
Device(config-policy-server) \# retransmit 3

Related Commands

| Command | Description |
| :--- | :--- |
| cts policy-server name | Configures the name of a policy server and <br> enters policy-server configuration mode. |

## sap mode-list (cts manual)

To select the Security Association Protocol (SAP) authentication and encryption modes (prioritized from highest to lowest) used to negotiate link encryption between two interfaces, use the sap mode-list command in CTS dot1x interface configuration mode. To remove a mode-list and revert to the default, use the no form of this command.

Use the sap mode-list command to manually specify the Pairwise Master Key (PMK) and the Security Association Protocol (SAP) authentication and encryption modes to negotiate MACsec link encryption between two interfaces. Use the no form of the command to disable the configuration.
sap pmk mode-list $\{$ gem-encrypt | gmac | no-encap | null\} [gem-encrypt | gmac | no-encap | null]
no sap pmk mode-list \{gem-encrypt|gmac|no-encap|null\} [gem-encrypt|egmac| no-encap | null]

## Syntax Description

## Command Default

| pmk hex_value | Specifies the Hex-data PMK <br> (without leading 0x; enter even <br> number of hex characters, or else <br> the last character is prefixed with <br> 0. ). |
| :--- | :--- |
| mode-list | Specifies the list of advertised <br> modes (prioritized from highest to <br> lowest). |
| gcm-encrypt | Specifies GMAC authentication, <br> GCM encryption. |
| gmac | Specifies GMAC authentication <br> only, no encryption. |
| no-encap | Specifies no encapsulation. |
| null | Specifies encapsulation present, no <br> authentication, no encryption. |

The default encryption is sap pmk mode-list gem-encrypt null. When the peer interface does not support 802.1AE MACsec or 802.REV layer-2 link encryption, the default encryption is null.

## Command Modes

Command History

Usage Guidelines

CTS manual interface configuration (config-if-cts-manual)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

Use the sap pmk mode-list command to specify the authentication and encryption method.

The Security Association Protocol (SAP) is an encryption key derivation and exchange protocol based on a draft version of the 802.11 i IEEE protocol. SAP is used to establish and maintain the 802.1 AE link-to-link encryption (MACsec) between interfaces that support MACsec.

SAP and the Pairwise Master Key (PMK) can be manually configured between two interfaces with the sap pmk mode-list command. When using 802.1X authentication, both sides (supplicant and authenticator) receive the PMK and the MAC address of the peer's port from the Cisco Secure Access Control Server.

If a device is running CTS-aware software but the hardware is not CTS-capable, disallow encapsulation with the sap mode-list no-encap command.

## Examples

The following example shows how to configure SAP on a Gigabit Ethernet interface:

```
Device# configure terminal
Device(config)# interface gigabitethernet 2/1
DeviceD(config-if) # cts manual
Device(config-if-cts-manual)# sap pmk FFFEE mode-list gcm-encrypt
```

| Command | Description |
| :--- | :--- |
| cts manual | Enables an interface for CTS. |
| propagate sgt (cts manual) | Enables Security Group Tag (SGT) propagation at Layer 2 on Cisco TrustSec <br> Security (CTS) interfaces. |
| show cts interface | Displays Cisco TrustSec interface configuration statistics. |

## show cts credentials

To display the Cisco TrustSec (CTS) device ID, use the show cts credentials command in EXEC or privileged EXEC mode.
show cts credentials
$\overline{\text { Syntax Description }}$ This command has no commands or keywords.
Command Modes
Privileged EXEC (\#) User EXEC ( $>$ )

| Command History | Release |
| :--- | :--- |
|  | Cisco IOS XE Fuji 16.9.1 | This command was introduced. 

## Examples

The following example displays output:

Device\# show cts credentials
CTS password is defined in keystore, device-id $=r 4$

| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | cts credentials | Specifies the TrustSec ID and password. |

## show cts environment-data

To display Cisco TrustSec environment data information, use the show cts environment-data command in privileged EXEC mode.
show cts environment-data
This command has no arguments and keywords.

## Examples

Command Modes
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |

The following is sample output from the show cts environment-data command:

```
Device# enable
Device# show cts environment-data
TS Environment Data
====================
Current state = START
Last status = Failed
Environment data is empty
State Machine is running
Retry_timer (60 secs) is running
```

Output fields are self-explanatory.


| Command | Description |
| :--- | :--- |
| cts environment-data enable | Enables the download of environment data. |
| clear cts environment-data | Clears environment data. |
| debug cts environment-data | Enables the debugging of Cisco TrustSec <br> environment data operations. |

## show cts interface

To display Cisco TrustSec (CTS) configuration statistics for an interface(s), use the show cts interface command in EXEC or privileged EXEC mode.
show cts interface [\{GigabitEthernet port $\mid$ Vlan number $\mid$ brief | summary $\}$ ]

## Syntax Description

| port | (Optional) Gigabit Ethernet interface number. A verbose status output for this interface is <br> returned. |
| :--- | :--- |
| number | (Optional) VLAN interface number from 1 to 4095. |
| brief | (Optional) Displays abbreviated status for all CTS interfaces. |
| summary | (Optional) Displays a tabular summary of all CTS interfaces with 4 or 5 key status fields for <br> each interface. |

## Command Default

None

## Command Modes

EXEC ( $>$ )
Privileged EXEC (\#)
Command History

Usage Guidelines

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji <br> 16.9.1 | This command was introduced. |

## Examples

Use the show cts interface command without keywords to display verbose status for all CTS interfaces.

The following example displays output without using a keyword (verbose status for all CTS interfaces):

```
Device# show cts interface
Global Dot1x feature is Disabled
 Interface GigabitEthernet0/1/0:
 CTS is enabled, mode: MANUAL
 IFC state: OPEN
 Interface Active for 00:00:18.232
 Authentication Status: NOT APPLICABLE
 Peer identity: "unknown"
 Peer's advertised capabilities: ""
 Authorization Status: NOT APPLICABLE
 SAP Status: NOT APPLICABLE
 Configured pairwise ciphers:
 gcm-encrypt
 null
 Replay protection: enabled
 Replay protection mode: STRICT
 Selected cipher:
```

```
Propagate SGT: Enabled
Cache Info:
 Cache applied to link : NONE
Statistics:
 authc success: 0
 authc reject: 0
 authc failure: 0
 authc no response: 0
 authc logoff: 0
 sap success: 0
 sap fail: 0
 authz success: 0
 authz fail: 0
 port auth fail: 0
 Ingress:
 control frame bypassed: 0
 sap frame bypassed: 0
 esp packets: 0
 unknown sa: 0
 invalid sa: 0
 inverse binding failed: 0
 auth failed: 0
 replay error: 0
 Egress:
 control frame bypassed: 0
 esp packets: 0
 sgt filtered: 0
 sap frame bypassed: 0
 unknown sa dropped: 0
 unknown sa bypassed: 0
```

The following example displays output using the brief keyword:

```
Device# show cts interface brief
Global Dot1x feature is Disabled
 Interface GigabitEthernet0/1/0:
 CTS is enabled, mode: MANUAL
 IFC state: OPEN
 Interface Active for 00:00:40.386
 Authentication Status: NOT APPLICABLE
 Peer identity: "unknown"
 Peer's advertised capabilities: ""
 Authorization Status: NOT APPLICABLE
 SAP Status: NOT APPLICABLE
 Propagate SGT: Enabled
 Cache Info:
 Cache applied to link : NONE
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts manual | Enables an interface for CTS. |
| cts sxp enable | Configures SXP on a network device. |
| propagate sgt | Enables Security Group Tag (SGT) propagation at Layer 2 on Cisco TrustSec Security <br> (CTS) interfaces. |

## show cts policy-server

|  | To display Cisco TrustSec policy-server information, use the show cts policy-server command in privileged EXEC mode. <br> show cts policy-server $\{$ details $\mid$ statistics $\}\{$ active $\mid$ all name $\}$ |  |  |
| :---: | :---: | :---: | :---: |
| Syntax Description | details |  | Displays policy-server details. |
|  | statistics |  | Displays policy-server statistics. |
|  | active |  | Displays information about active policy servers. |
|  | all |  | Displays statistics information about all servers. |
|  | name |  | Policy-server name. |
| Command Modes | Privileged EXEC (\#) |  |  |
| Command History | Release | Modification |  |
|  | Cisco IOS XE Amsterdam 17.1.1 | This command was introduced. |  |

## Examples

The following is sample output from the show cts policy-server details all command:

```
Device# enable
Device# show cts policy-server details all
Server Name : ise_151
Server Status : Inactive
 IPv4 Address : 10.1.1.1
 IPv4 Address : 10.2.2.2
 IPv4 Address : 10.2.2.3
 IPv6 Address : 2001:db8::1
 IPv6 Address : 2001:db8::3
 Domain-name : www.cisco.ise.com
 Trustpoint : trust_ise_151
 Port-num : 9063
 Retransmit count : 3
 Timeout : 15
 App Content type : JSON
Server Name : ise_150
Server Status : Ina\overline{c}tive
 IPv4 Address : 10.64.69.151
 Trustpoint : trust_ise_151
 Port-num : 9063
 Retransmit count : 3
 Timeout : 15
 App Content type : JSON
```

The following is sample output from the show cts policy-server statistics all command:

```
Device# show cts policy-server statistics all
Server Name : ise server 1
Server State : ALIV
 Number of Request sent : 7
 Number of Request sent fail : 0
 Number of Response received : 4
 Number of Response recv fail : 3
 HTTP 200 OK : 4
 HTTP 400 BadReq : 0
 HTTP 401 UnAuthorized Req : 0
 HTTP 403 Req Forbidden : 0
 HTTP 404 NotFound : 0
 HTTP 408 ReqTimeout : 0
 HTTP 415 UnSupported Media : 0
 HTTP 500 ServerErr : 0
 HTTP 501 Req NoSupport : 0
 HTTP 503 Service Unavailable: 0
 TCP or TLS handshake error : 3
 HTTP Other Error : 0
```

The following is sample output from the show cts policy-server statistics name command:

```
Device# show cts policy-server statistics name ise_server_1
Server Name : ise_server_1
Server State : ALIV
 Number of Request sent : 7
 Number of Request sent fail : 0
 Number of Response received : 4
 Number of Response recv fail : 3
 HTTP 200 OK : 4
 HTTP 400 BadReq : 0
 HTTP 401 UnAuthorized Req : 0
 HTTP 403 Req Forbidden : 0
 HTTP 404 NotFound : 0
 HTTP 408 ReqTimeout : 0
 HTTP 415 UnSupported Media : 0
 HTTP 500 ServerErr : 0
 HTTP 501 Req NoSupport : 0
 HTTP 503 Service Unavailable: 0
 TCP or TLS handshake error : 3
 HTTP Other Error : 0
```

The following table explains the significant fields shown in the display:

## Table 6: show cts policy-server statistics Field Descriptions

| Field | Description |
| :--- | :--- |
| HTTP 200 OK | Client request was accepted successfully. |
| HTTP 400 BadReq | Malformed request, or the request had invalid <br> parameters. |
| HTTP 401 UnAuthorized Req | Proper credentials (username and password) to access <br> a resource was not provided. |
| HTTP 403 Req Forbidden | Server refused to honor the client request. |


| Field | Description |
| :--- | :--- |
| HTTP 404 NotFound | Invalid URL. |
| HTTP 408 ReqTimeout | Request timed out. |
| HTTP 415 UnSupported Media | Server unable to process the requested content-type. |
| HTTP 500 ServerErr | Internal server error or exception. |
| TCP or TLS handshake error | IP unreachable or the Transport Layer Security (TLS) <br> handshake failed due to invalid trust-point. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | cts policy-server name | Configures a Cisco TrustSec policy server and <br> enters policy-server configuration mode. |
|  | debug cts policy-server | Enables Cisco TrustSec policy-server <br> debugging. |

## show cts role-based counters

To display Security Group access control list (ACL) enforcement statistics, use the show cts role-based counters command in user EXEC or privileged EXEC mode.
show cts role-based counters [\{default [\{ipv4 | ipv6\}]\}] [\{from \{sgt-number | unknown\}[\{ipv4 | ipv6 |to | \{sgt-number | unknown $\} \mid[\{\mathbf{i p v 4} \mid \mathbf{i p v 6}\}]\}]\}][\{\mathbf{t o}\{s g t$-number $\mid$ unknown $\}[\{\mathbf{i p v 4} \mid \mathbf{i p v 6}\}]\}]$ [\{ipv4 | ipv6\}]

Syntax Description

| default | (Optional) Displays information <br> about the default policy counters. |
| :--- | :--- |
| from | (Optional) Displays information <br> about the source security group. |
| ipv4 | (Optional) Displays information <br> about security groups on IPv4 <br> networks. |
| ipv6 | (Optional) Displays information <br> about security groups on IPv6 <br> networks. |
| to | (Optional) Displays information <br> about the destination security group. |
| sgt-number | (Optional) Security Group Tag <br> number. Valid values are from 0 to <br> 65533. |
| unknown | (Optional) Displays information <br> about all source groups. |

## Command Modes

## Command History

Usage Guidelines
Use the clear cts role-based counterscommand to reset all or a range of statistics.
Specify the source SGT with the from keyword and the destination SGT with the to keyword. All statistics are displayed when both the from and to keywords are omitted.
The default keyword displays the statistics of the default unicast policy. When neither ipv4 nor ipv6 keywords are specified, this command displays only IPv4 counters.
In Cisco TrustSec monitor mode, permitted traffic counters are displayed under the SW-Permitt label and the denied traffic counters are displayed under SW-Monitor label.

## Example

The following is sample output from the show cts role-based counters


The table below lists the significant fields shown in the display.

## Table 7: show cts role-based counters Field Descriptions

| Field | Description |
| :--- | :--- |
| From | Source security group. |
| To | Destination security group. |
| SW-Permitt | Permitted traffic counters. |
| SW-Monitor | Denied traffic counters. |

## Related Commands

| Command | Description |
| :--- | :--- |
| clear role-basedcounters | Resets SGACL statistic counters. |
| cts role-based | Maps IP addresses, Layer 3 interfaces, and VRFs to <br> SGTs. Enables Cisco TrustSec caching and SGACL <br> enforcement. |

## show cts role-based permissions

To display the role-based (security group) access control permission list, use the show cts role-based permissions command in privileged EXEC mode.
show cts role-based permissions [\{default [\{details | ipv4 [details] | ipv6 [details]\}] | from \{\{sgt | unknown $\}[\{$ ipv4 | ipv6 | to $\{\{s g t \mid$ unknown $\}[\{$ details | ipv4 [details] |ipv6[details] $\}]\}\}\}]$ | ipv4 | ipv6 | platform | to $\{s g t \mid$ unknown $\}[\{$ ipv4 | ipv6 $\}]\}]$

Syntax Description

Command Modes
Command History

Usage Guidelines

| default | (Optional) Displays information about the default permission list. |
| :--- | :--- |
| details | (Optional) Displays attached access control list (ACL) details. |
| ipv4 | (Optional) Displays information about the IPv4 protocol. |
| ipv6 | (Optional) Displays information about the IPv6 protocol. |
| from | (Optional) Displays information about the source group. |
| sgt | (Optional) Security Group Tag. Valid values are from 2 to 65519. |
| to | (Optional) Displays information about the destination group. |
| unknown | (Optional) Displays information about unknown source and destination groups. |
| platform | (Optional) Displays information about the platform. |
| Privileged EXE (\#) |  |
| Release |  |
| Cisco IOS XE Fuji | This command was introduced. |
| 16.9.1 |  |

This command displays the content of the SGACL permission matrix. You can specify the source security group tag (SGT) by using the from keyword and the destination SGT by using the to keyword. When both these keywords are specified RBACLs of a single cell are displayed. An entire column is displayed when only the to keyword is used. An entire row is displayed when the from keyword is used. The entire permission matrix is displayed when both the from and to keywords are omitted.

The command output is sorted by destination SGT as a primary key and the source SGT as a secondary key. SGACLs for each cell is displayed in the same order they are defined in the configuration or acquired from Cisco Identity Services Engine (ISE).
The details keyword is provided when a single cell is selected by specifying both from and to keywords. When the details keyword is specified the access control entries of SGACLs of a single cell are displayed.

The following is sample output from the show role-based permissions command:

Device\# show cts role-based permissions

```
IPv4 Role-based permissions default (monitored):
default_sgacl-02
Permit IP-00
IPv4 Role-based permissions from group 305:sgt to group 306:dgt (monitored):
test reg tcp permit-02
RBAC\overline{L}}\mathrm{ Mōnitor All for Dynamic Policies : TRUE
RBACL Monitor All for Configured Policies : FALSE
IPv4 Role-based permissions from group 6:SGT_6 to group 6:SGT_6 (configured):
 mon_1
IPv4 Role-based permissions from group 10 to group 11 (configured):
 mon_2
RBACL Monitor All for Dynamic Policies : FALSE
RBACL Monitor All for Configured Policies : FALSE
```


## Related Commands

| Command | Description |
| :--- | :--- |
| cts role-based permissions | Enables permissions from a source group to a destination group. |
| cts role-based monitor | Enables role-based access list monitoring. |

## show cts server-list

To display the list of HTTP and RADIUS servers available to Cisco TrustSec seed and nonseed devices, use the show cts server-list command in user EXEC or privileged EXEC mode.
show cts server-list

Syntax Description
Command Modes
User EXEC ( $>$ )
Privileged EXEC (\#)

Command History

## Usage Guidelines

Examples

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| Cisco IOS XE Amsterdam 17.1.1 | The output of this command was modified to display the HTTP server <br> address and status information. |
| Cisco IOS XE Amsterdam 17.2.1 | The output of this command was modified to display the IPv6 address of <br> the HTTP servers. |

This command is useful for gathering Cisco TrustSec RADIUS server address and status information.
In Cisco IOS XE Gibraltar 17.1.1 and later releases, the output of this command displays HTTP server address and their status information.

In Cisco IOS XE Gibraltar 17.2.1 and later releases, the output of this command displays the IPv6 address along with the IPv4 address of HTTP servers.

## Cisco IOS XE Amsterdam 17.2.1 and later releases

The following sample output from the show cts server-list command displays IPv4 and IPv6 address of HTTP servers and their status information:

```
Device> show cts server-list
```

Device> show cts server-list
HTTP Server-list:
HTTP Server-list:
Server Name : cts_private_server_0
Server Name : cts_private_server_0
Server State : ALIVE
Server State : ALIVE
IPv4 Address : 10.64.69.151
IPv4 Address : 10.64.69.151
IPv6 Address : 2001:DB8:8086:6502::
IPv6 Address : 2001:DB8:8086:6502::
IPv6 Address : 2001:db8::2
IPv6 Address : 2001:db8::2
IPv6 Address : 2001:db8::402:99
IPv6 Address : 2001:db8::402:99
IPv6 Address : 2001:DB8::802:16
IPv6 Address : 2001:DB8::802:16
Domain-name : ise-267.cisco.com
Domain-name : ise-267.cisco.com
Trustpoint : cts_trustpoint_0
Trustpoint : cts_trustpoint_0
Server Name : cts_private_server_1
Server Name : cts_private_server_1
Server State : ALIVE
Server State : ALIVE
IPv4 Address : 10.10.10.3
IPv4 Address : 10.10.10.3
IPv4 Address : 10.10.10.2
IPv4 Address : 10.10.10.2
IPv6 Address : 2001:db8::20
IPv6 Address : 2001:db8::20
IPv6 Address : 2001:db8::21

```
 IPv6 Address : 2001:db8::21
```

```
Domain-name : www.ise.cisco.com
Trustpoint : cts_trustpoint_1
```


## Cisco IOS XE Amsterdam 17.1.1

The following sample output from the show cts server-list command displays HTTP servers and their status information:

```
Device> show cts server-list
HTTP Server-list:
Server Name: Http Server 1
Server Status: DEADD
 IPv4 Address: 10.78.105.148
 IPv6 Address: Not Supported
 Domain-name: http_server_1.ise.com
 Port: 9063
Server Name: Http_Server_2
Server Status: ALIVE
 IPv4 Address: 10.78.105.149
 IPv6 Address: Not Supported
 Domain-name: http_server_2.ise.com
 Status = ALIVE
```


## Prior to Cisco IOS XE Amsterdam 17.1.1

The following example displays the Cisco TrustSec RADIUS server list:

```
Device> show cts server-list
CTS Server Radius Load Balance = DISABLED
Server Group Deadtime = 20 secs (default)
Global Server Liveness Automated Test Deadtime = 20 secs
Global Server Liveness Automated Test Idle Time = 60 mins
Global Server Liveness Automated Test = ENABLED (default)
Preferred list, 1 server(s):
 *Server: 10.0.1.6, port 1812, A-ID 1100E046659D4275B644BF946EFA49CD
 Status = ALIVE
 auto-test = TRUE, idle-time = 60 mins, deadtime = 20 secs
Installed list: ACSServerList1-0001, 1 server(s):
 *Server: 101.0.2.61, port 1812, A-ID 1100E046659D4275B644BF946EFA49CD
 Status = ALIVE
 auto-test = TRUE, idle-time = 60 mins, deadtime = 20 secs
```


## Related Commands

| Command | Description |
| :--- | :--- |
| address ipv4 (config-radius-server) | Configures the RADIUS server accounting and authentication <br> parameters for PAC provisioning. |
| pac key | Specifies the PAC encryption key. |

## show cts sxp

To display Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) connection or source IP-to-SGT mapping information, use the show cts sxp command in user EXEC or privileged EXEC mode.
show cts sxp \{connections [\{brief | vrf instance-name $\}$ ] |filter-group [\{detailed | global|listener | speaker \}] | filter-list filter-list-name \| sgt-map [\{brief | vrf instance-name \}]\} [\{brief | vrf instance-name \}]

Syntax Description

| connections | Displays Cisco TrustSec SXP connections information. | |
|---|---|---|
| brief | (Optional) Displays an abbreviation of the SXP information. |
| vrf instance-name | (Optional) Displays the SXP information for the specified Virtual <br> Routing and Forwarding (VRF) instance name. |
| filter-group $\{$ detailed \| global | <br> listener \| speaker \} | (Optional) Displays filter group information. |
| filter-list filter-list-name | (Optional) Displays filter list information. |
| sgt-map | (Optional) Displays the IP-to-SGT mappings received through SXP. |


| Command Default | None |  |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ |  |  |
|  | User EXEC ( $>$ P) <br> Privileged EXEC (\#) |  |
| Command History | Release | Modification |
|  | Cisco IOS XE Fuji <br> 16.9 .1 | This command was introduced. |
|  |  |  |

$\overline{\text { Examples }} \quad$ The following example displays the SXP connections using the brief keyword:

```
Device# show cts sxp connection brief
 SXP : Enabled
 Default Password : Set
 Default Source IP: Not Set
Connection retry open period: 10 secs
Reconcile period: }120\mathrm{ secs
Retry open timer is not running
--
Peer_IP Source_IP Conn Status Duration
--
10.10.10.1 10.10.10.2 On 0:00:02:14 (dd:hr:mm:sec)
10.10.2.1 10.10.2.2 On 0:00:02:14 (dd:hr:mm:sec)
Total num of SXP Connections = 2
```

The following example displays the CTS-SXP connections:

```
Device# show cts sxp connections
 SXP : Enabled
 Default Password : Set
 Default Source IP: Not Set
Connection retry open period: 10 secs
Reconcile period: }120\mathrm{ secs
Retry open timer is not running
--
Peer IP : 10.10.10.1
Source IP : 10.10.10.2
Set up : Peer
Conn status : On
Connection mode : SXP Listener
Connection inst# : 1
TCP conn fd : 1
TCP conn password: not set (using default SXP password)
Duration since last state change: 0:00:01:25 (dd:hr:mm:sec)
--
Peer IP : 10.10.2.1
Source IP : 10.10.2.2
Set up : Peer
Conn status : On
Connection mode : SXP Listener
TCP conn fd : 2
TCP conn password: not set (using default SXP password)
Duration since last state change: 0:00:01:25 (dd:hr:mm:sec)
Total num of SXP Connections = 2
```

The following example displays the CTS-SXP connections for a bi-directional connection when the device is both the speaker and listener:

```
Device# show cts sxp connections
SXP : Enabled
Highest Version Supported: 4
Default Password : Set
Default Source IP: Not Set
Connection retry open period: }120\mathrm{ secs
Reconcile period: }120\mathrm{ secs
Retry open timer is running
--
Peer IP : 2.0.0.2
Source IP : 1.0.0.2
Conn status : On (Speaker) :: On (Listener)
Conn version : 4
Local mode : Both
Connection inst# : 1
TCP conn fd : 1(Speaker) 3(Listener)
TCP conn password: default SXP password
Duration since last state change: 1:03:38:03 (dd:hr:mm:sec) :: 0:00:00:46 (dd:hr:mm:sec)
```

The following example displays output from a CTS-SXP listener with a torn down connection to the SXP speaker. Source IP-to-SGT mappings are held for 120 seconds, the default value of the delete hold down timer.

[^2]```
SXP : Enabled
Default Password : Set
Default Source IP: Not Set
Connection retry open period: 10 secs
Reconcile period: }120\mathrm{ secs
Retry open timer is not running
----------------------------------------------------
Peer IP : 10.10.10.1
Source IP : 10.10.10.2
Set up : Peer
Conn status : Delete_Hold_Down
Connection mode : SXP Listener
Connection inst# : 1
TCP conn fd : -1
TCP conn password: not set (using default SXP password)
Delete hold down timer is running
Duration since last state change: 0:00:00:16 (dd:hr:mm:sec)
-------------------------------------------------
Peer IP : 10.10.2.1
Source IP : 10.10.2.2
Set up : Peer
Conn status : On
Connection inst# : 1
TCP conn fd : 2
TCP conn password: not set (using default SXP password)
Duration since last state change: 0:00:05:49 (dd:hr:mm:sec)
Total num of SXP Connections = 2
```

Related Commands

Command	Description
cts sxp connection peer	Enters the Cisco TrustSec SXP peer IP address and specifies if a password is used for the peer connection
cts sxp default password	Configures the Cisco TrustSec SXP default password.
cts sxp default source-ip	Configures the Cisco TrustSec SXP source IPv4 address.
cts sxp enable	Enables Cisco TrustSec SXP on a device.
cts sxp log	Enables logging for IP-to-SGT binding changes.
cts sxp reconciliation	Changes the Cisco TrustSec SXP reconciliation period.
cts sxp retry	Changes the Cisco TrustSec SXP retry period timer.

show platform hardware fed switch active fwd-asic resource tcam utilization

To display CAM utilization information for ASIC, use the show platform hardware fed switch active fwd-asic resource tcam utilization command in privileged EXEC mode.
show platform hardware fed switch active fwd-asic resource tcam utilization [asic-number] [slice-id]

Syntax Description

asic-number	Displays the ASIC number. Valid values are from 0 to 7.
slice-id	Displays per slice usage.

Command Modes

Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\overline{\text { Examples }}$
The following is sample output from the show platform hardware fed switch active fwd-asic resource tcam utilization command:

Security ACL	TCAM	IO	5120	131	2.56%	26	60
045							
	TCAM	I		88	1.72\%	12	36
$0 \quad 40$							
	TCAM	0		43	0.84%	14	24
Netflow ACL ${ }^{0}$							
	TCAM	I	256	6	2.34%	2	2
PBR ACL	TCAM	I	1024	36	3.52\%	30	6
$0 \quad 0$							
Netflow ACL	TCAM	0	768	6	0.78%	2	2
$0 \quad 2$							
$\begin{array}{rr} \text { Flow } & \text { SPAN ACL } \\ 0 & 4 \end{array}$	TCAM	IO	1024	13	1.27\%	3	6
	TCAM	I		5	0.49%	1	2
02							
	TCAM	0		8	0.78%	2	4
$0 \quad 2$							
Control Plane 0 46	TCAM	I	512	290	56.64\%	138	106
$\begin{array}{cc} \text { Tunnel } & \text { Termination } \\ 0 & 0 \end{array}$	TCAM	I	512	22	4.30%	9	13
$\begin{array}{rc}\text { Lisp } & \text { Inst Mapping } \\ 0 & 2\end{array}$	TCAM	I	2048	2	0.10%	0	0
$\begin{array}{cc} \text { Security Association } \\ 0 & 0 \end{array}$	TCAM	I	256	4	1.56%	2	2
CTS Cell Matrix/VPNLabel							
	EM	0	8192	0	0.00\%	0	0
$0 \quad 0$							
CTS Cell Matrix/VPNLabel							
	TCAM	0	512	1	0.20\%	0	0
Client Table ${ }^{1}$							
	EM	I	4096	0	0.00\%	0	0
Client Table 0 0							
Client Table	TCAM	I	256	0	0.00\%	0	0
$0 \quad 0$							
Input Group LE 0 0	TCAM	I	1024	0	0.00%	0	0
Output Group LE 0 0	TCAM	0	1024	0	0.00\%	0	0
Macsec SPD0	TCAM	I	256	2	0.78%	0	0

Output fields are self-explanatory.

Related Commands	Command	Description
show platform hardware fed switch active fwd-asic resource tcam table	Displays the current CAM table.	
show platform hardware fed switch active fwd-asic resource tcam usage	Displays the current CAM usage.	

show platform hardware fed switch active sgacl resource usage

To display Security Group access control list (SGACL) resource information for Application Specific Integrated Circuit (ASIC), use the show platform hardware fed switch active sgacl resource usage command in privileged EXEC mode.
show platform hardware fed switch active sgacl resource usage
Syntax Description
usage \quad Displays SGACL resource usage.

$\overline{\text { Command Modes }}$

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Examples

The following is a sample output from the show platform hardware fed switch active sgacl resource usage command:

```
Device# enable
Device# show platform hardware fed switch active sgacl resource usage
SGACL RESOURCE DETAILS ASIC :#O
==================================== Percent Thresholds
```



```
        Output PRE SGACL : 4 
        Output SGACL :
        Output SGACL DEFAULT : 0 0
.
.
Device#
```

Output fields are self-explanatory.

show platform software classification switch active FO class-group-manager class-group client acl all

To display ACL class group ID, which is used to view Ternary Content Addressable Memory(TCAM) entry, use the show platform software classification switch active F0 class-group-manager class-group client acl all command in privileged EXEC mode.
show platform software classification switch active F0 class-group-manager class-group client acl all
Syntax Description

class-group-manager	Displays the class group manager.
class-group	Displays the class group.
all	Displays the ACL class group ID for all class groups.

Command Modes

Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software classification switch active F0 class-group-manager class-group client acl all command:

```
Device#show platform software classification switch active F0 class-group-manager class-group
    client acl all
QFP classification class client all group
    class-group [ACL-GRP:273]
    class-group [ACL-GRP:529]
    class-group [ACL-GRP:801]
```

Output fields are self-explanatory.

Related Commands

Command	Description
show platform software classification switch active F0 class-group-manager class-group client acl name class-group name	Displays ACL class group information for the specified class group.
show platform software classification switch active F0 class-group-manager class-group client acl class-group id	Displays ACL class group information for the specified class group.

show platform software cts forwarding-manager switch active FO port

To display CTS information for forwarding manager interfaces, use the show platform software cts forwarding-manager switch active F0 port command in privileged EXEC mode.
show platform software cts forwarding-manager switch active $\mathbf{F 0}$ port
Syntax Description

F0 Embedded service processor slot
port Displays the port CTS status.

$\overline{\text { Command Modes }}$		
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software cts forwarding-manager switch active F0 port command:

Forwarding Manager Interfaces CTS Information					
Name	ID	CTS Enable	Trusted	Propagate	SGT value
GigabitEthernet1/0/1	77	0	0	0	0
GigabitEthernet1/0/3	79	0	0	0	0
GigabitEthernet1/0/4	80	0	0	0	0
GigabitEthernet1/0/5	81	0	0	0	0
GigabitEthernet1/0/6	82	0	0	0	0
GigabitEthernet1/0/7	83	0	0	0	0
GigabitEthernet1/0/8	84	0	0	0	0
GigabitEthernet1/0/9	85	0	0	0	0
GigabitEthernet1/0/10	86	0	0	0	0
GigabitEthernet1/0/11	87	0	0	0	0
GigabitEthernet1/0/12	88	0	0	0	0
GigabitEthernet1/0/13	89	0	0	0	0
GigabitEthernet1/0/14	90	0	0	0	0
GigabitEthernet1/0/15	91	0	0	0	0
GigabitEthernet1/0/16	92	0	0	0	0
GigabitEthernet1/0/17	93	0	0	0	0
GigabitEthernet1/0/18	94	0	0	0	0
GigabitEthernet1/0/19	95	0	0	0	0
GigabitEthernet1/0/20	96	0	0	0	0
GigabitEthernet1/0/21	97	0	0	0	0
GigabitEthernet1/0/22	98	0	0	0	0
GigabitEthernet1/0/23	99	0	0	0	0
GigabitEthernet1/0/24	100	0	0	0	0
GigabitEthernet1/0/25	101	0	0	0	0
GigabitEthernet1/0/26	102	0	0	0	0

GigabitEthernet1/0/27	103	0	0	0	0
GigabitEthernet1/0/28	104	0	0	0	0
GigabitEthernet1/0/29	105	0	0	0	0
GigabitEthernet1/0/30	106	0	0	0	0
GigabitEthernet1/0/31	107	0	0	0	0
GigabitEthernet1/0/32	108	0	0	0	0
GigabitEthernet1/0/33	109	0	0	0	0
GigabitEthernet1/0/34	110	0	0	0	0
GigabitEthernet1/0/35	111	0	0	0	0
GigabitEthernet1/0/36	112	113	0	0	0
GigabitEthernet1/0/37	114	0	0	0	0
GigabitEthernet1/0/38	115	0	0	0	0
GigabitEthernet1/0/39	116	117	0	0	0
GigabitEthernet1/0/40		0	0	0	0

Forwarding Manager Interfaces CTS Information

Nam	ID		S	a	
GigabitEthernet1/0/42	118	0	0	0	0
GigabitEthernet1/0/43	119	0	0	0	0
GigabitEthernet1/0/44	120	0	0	0	0
GigabitEthernet1/0/45	121	0	0	0	0
GigabitEthernet1/0/46	122	0	0	0	0
GigabitEthernet1/0/47	123	0	0	0	0
GigabitEthernet1/1/1	125	0	0	0	0
GigabitEthernet1/1/2	126	0	0	0	0
GigabitEthernet1/1/3	127	0	0	0	0
GigabitEthernet1/1/4	128	0	0	0	0
TenGigabitEthernet1/1/1	129	0	0	0	0
TenGigabitEthernet1/1/2	130	0	0	0	0
TenGigabitEthernet1/1/3	131	0	0	0	0
TenGigabitEthernet1/1/4	132	0	0	0	0
TenGigabitEthernet1/1/5	133	0	0	0	0
TenGigabitEthernet1/1/6	134	0	0	0	0
TenGigabitEthernet1/1/7	135	0	0	0	0
TenGigabitEthernet1/1/8	136	0	0	0	0
FortyGigabitEthernet1/1/1	137	0	0	0	0
FortyGigabitEthernet1/1/2	138	0	0	0	0
TwentyFiveGigE1/1/1	139	0	0	0	0
TwentyFiveGigE1/1/2	140	0	0	0	0
AppGigabitEthernet1/0/1	141	0	0	0	0
GigabitEthernet2/0/1	142	1	0	0	0
GigabitEthernet2/0/2	143	0	0	0	0
GigabitEthernet2/0/3	144	0	0	0	0
GigabitEthernet2/0/4	145	0	0	0	0
GigabitEthernet2/0/5	146	0	0	0	0
GigabitEthernet2/0/6	147	0	0	0	0
GigabitEthernet2/0/7	148	0	0	0	0
GigabitEthernet2/0/8	149	0	0	0	0
GigabitEthernet2/0/9	150	0	0	0	0
GigabitEthernet2/0/10	151	0	0	0	0
GigabitEthernet2/0/11	152	0	0	0	0
GigabitEthernet2/0/12	153	0	0	0	0
GigabitEthernet2/0/13	154	0	0	0	0
GigabitEthernet2/0/14	155	0	0	0	0
GigabitEthernet2/0/15	156	0	0	0	0
GigabitEthernet2/0/16	157	0	0	0	0
GigabitEthernet2/0/17	158	0	0	0	0

Name	ID	CTS Enable	Trusted	Propagate	SGT value
GigabitEthernet2/0/18	159	0	0	0	0
GigabitEthernet2/0/19	160	0	0	0	0
GigabitEthernet2/0/20	161	0	0	0	0
GigabitEthernet2/0/21	162	0	0	0	0
GigabitEthernet2/0/22	163	0	0	0	0
GigabitEthernet2/0/23	164	0	0	0	0
GigabitEthernet2/0/24	165	0	0	0	0
GigabitEthernet2/0/25	166	0	0	0	0
GigabitEthernet2/0/26	167	0	0	0	0
GigabitEthernet2/0/27	168	0	0	0	0
GigabitEthernet2/0/28	169	0	0	0	0
GigabitEthernet2/0/29	170	0	0	0	0
GigabitEthernet2/0/30	171	0	0	0	0
GigabitEthernet2/0/31	172	0	0	0	0
GigabitEthernet2/0/32	173	0	0	0	0
GigabitEthernet2/0/33	174	0	0	0	0
GigabitEthernet2/0/34	175	0	0	0	0
GigabitEthernet2/0/35	176	0	0	0	0
GigabitEthernet2/0/36	177	0	0	0	0
GigabitEthernet2/0/37	178	0	0	0	0
GigabitEthernet2/0/38	179	0	0	0	0
GigabitEthernet2/0/39	180	0	0	0	0
GigabitEthernet2/0/40	181	0	0	0	0
GigabitEthernet2/0/41	182	0	0	0	0
GigabitEthernet2/0/42	183	0	0	0	0
GigabitEthernet2/0/43	184	0	0	0	0
GigabitEthernet2/0/44	185	0	0	0	0
GigabitEthernet2/0/45	186	0	0	0	0
GigabitEthernet2/0/46	187	0	0	0	0
GigabitEthernet2/0/47	188	0	0	0	0
GigabitEthernet2/1/1	190	0	0	0	0
GigabitEthernet2/1/2	191	0	0	0	0
GigabitEthernet2/1/3	192	0	0	0	0
GigabitEthernet2/1/4	193	0	0	0	0
TenGigabitEthernet2/1/1	194	0	0	0	0
TenGigabitEthernet2/1/2	195	0	0	0	0
TenGigabitEthernet2/1/3	196	0	0	0	0
TenGigabitEthernet2/1/4	197	0	0	0	0
TenGigabitEthernet2/1/5	198	0	0	0	0
TenGigabitEthernet2/1/6	199	0	0	0	0

Forwarding Manager Interfaces CTS Information

The following table explains the significant fields shown in the output:

Table 8: show platform software cts forwarding-manager switch active FO port Field Descriptions

\section*{| Field | Description |
| :--- | :--- |}

Name	The name of the interface.
ID	The interface ID.
CTS Enable	The status of CTS.
Trusted	The trusted status of the interface.
Propagate	The propagation status of the interface.
SGT value	The value of SGT.

show platform software cts forwarding-manager switch active FO

To display Security Group Tag (SGT) binding table, use the show platform software cts forwarding-manager switch active F0 command in privileged EXEC mode.
show platform software cts forwarding-manager switch active $F 0$
Syntax Description

F0	Selects embedded service processor slot
	0.

Command Modes
Command History

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software cts forwarding-manager switch active F0 command:

```
Device#show platform software cts forwarding-manager switch active FO
SGT Binding Table
Number of bindings: 1
2.2.2.2/32
SGT Src: 2
SGT Dst: 2
SGT Binding Table
```

Output fields are self-explanatory.

Command	Description
show platform software cts forwarding-manager switch active F0 port	Displays the port CTS status.
show platform software cts forwarding-manager switch active F0 permissions	Displays the SGACL permissions.

show platform software cts forwarding-manager switch active FO permissions

To display Security group access control lists (SGACLs) permissions, use the show platform software cts forwarding-manager switch active F0 permissions command in privileged EXEC mode.
show platform software cts forwarding-manager switch active F0 permissions
Syntax Description

F0	Selects embedded service processor slot
	0.

permissions Displays SGACL permissions.

Privileged EXEC (\#)
Command Modes
Command History

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Example

The following is sample output from the show platform software cts forwarding-manager switch active F0 permissions command:

```
Device#show platform software cts forwarding-manager switch active FO permissions
Forwarding Manager CTS permissions Information
    sgt dgt ACL Group Name
```

\qquad

```
    4 2 V4SGACL7100
6 5 5 3 5 ~ 6 5 5 3 5 ~ V 4 S G A C L 8 1 0 0 ~
6 5 5 3 5 ~ 6 5 5 3 5 ~ V 6 S G A C L 9 1 0 0 ~
The following table explains the significant fields shown in the output:
Table 9: show plattorm software cts forwarding-manager switch active FO permissions Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline sgt & The source group tag. \\
\hline dgt & The destination group tag. \\
\hline
\end{tabular}
```

ACL Group Name	The name of the ACL group.

show platform software fed switch active acl counters hardware | inc SGACL

To display counters from the forwarding engine driver, use the show platform software fed switch active acl counters hardware \mid inc SGACL command in privileged EXEC mode.
show platform software fed switch active acl counters hardware |inc SGACL
Syntax Description

counters	Displays counter information.
hardware	Displays hardware counters.
include	Includes lines that match the specified string.

Command Modes		
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software fed switch active acl counters hardware | inc SGACL command:

```
Device# show platform software fed switch active acl counters hardware | inc SGACL
Egress IPv4 SGACL Drop (0x3f000061): 0 frames
Egress IPv6 SGACL Drop (0x13000062): 0 frames
Egress IPv4 SGACL Test Cell Drop (0xd2000063): 0 frames
Egress IPv6 SGACL Test Cell Drop (0x40000064): 0 frames
Egress IPv4 Pre SGACL Forward (0x2c000067): 0 frames
```


show platform software fed switch active acl usage

To display Security Group access control lists (SGACLs) usage, use the show platform software fed switch active acl usage command in privileged EXEC mode.
show platform software fed switch active acl usage
Syntax Description

usage	Displays ACL usage.

$\overline{\text { Command Modes }}$

Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is sample output from the show platform software fed switch active acl usage command:

Output fields are self-explanatory.

show platform software fed switch active ifm mappings

Example

The following is a sample output from the show platform software fed switch active ifm mappings command: Device\#show platform software fed switch active ifm mappings

GigabitEthernet3/0/36	0x2d	0	0	0	35	0	20	17	36	228	NIF
GigabitEthernet3/0/37	$0 \times 2 e$	0	0	0	36	0	23	18	37	229	NIF
GigabitEthernet3/0/38	0×2 f	0	0	0	37	0	22	19	38	230	NIF
GigabitEthernet3/0/39	0×30	0	0	0	38	0	25	20	39	231	NIF
GigabitEthernet3/0/40	0×31	0	0	0	39	0	24	21	40	232	NIF
GigabitEthernet3/0/41	0×32	0	0	0	40	0	12	22	41	233	NIF
GigabitEthernet3/0/42	0×33	0	0	0	41	0	4	23	42	234	NIF
GigabitEthernet3/0/43	0×34	0	0	0	42	0	14	24	43	235	NIF
GigabitEthernet3/0/44	0×35	0	0	0	43	0	13	25	44	236	NIF
GigabitEthernet3/0/45	0×36	0	0	0	44	0	16	26	45	237	NIF
GigabitEthernet3/0/46	0×37	0	0	0	45	0	15	27	46	238	NIF
GigabitEthernet3/0/47	0×38	0	0	0	46	0	18	28	47	239	NIF
GigabitEthernet3/0/48	$0 \mathrm{xd8}$	0	0	0	47	0	17	29	48	240	NIF
GigabitEthernet3/1/1	$0 \times 3 \mathrm{a}$	1	0	1	48	0	3	4	49	241	NIF
GigabitEthernet3/1/2	0x3b	1	0	1	49	0	2	5	50	242	NIF
GigabitEthernet3/1/3	0×3c	0	0	0	50	0	3	4	51	243	NIF
GigabitEthernet3/1/4	$0 \times 3 \mathrm{~d}$	0	0	0	51	0	2	5	52	244	NIF
TenGigabitEthernet3/1/1	$0 \times 3 \mathrm{e}$	1	0	1	52	0	3	3	53	245	NIF
TenGigabitEthernet3/1/2	0x3f	1	0	1	53	0	2	2	54	246	NIF
TenGigabitEthernet3/1/3	0x40	1	0	1	54	0	1	1	55	247	NIF
TenGigabitEthernet3/1/4	0×41	1	0	1	55	0	0	0	56	248	NIF
TenGigabitEthernet3/1/5	0×42	0	0	0	56	0	3	3	57	249	NIF
TenGigabitEthernet3/1/6	0×43	0	0	0	57	0	2	2	58	250	NIF
TenGigabitEthernet3/1/7	0x44	0	0	0	58	0	1	1	59	251	NIF
TenGigabitEthernet3/1/8	0x45	0	0	0	59	0	0	0	60	252	NIF
FortyGigabitEthernet3/1/1	0x46	1	0	1	60	0	0	0	61	253	NIF
FortyGigabitEthernet3/1/2	0x47	0	0	0	61	0	0	0	62	254	NIF
TwentyFiveGigE3/1/1	0x48	1	0	1	62	0	0	0	63	255	NIF
TwentyFiveGigE3/1/2	0x49	0	0	0	63	0	0	0	64	256	NIF
AppGigabitEthernet3/0/1	$0 \times 4 \mathrm{a}$	1	0	1	24	0	11	30	65	257	NIF

The following table explains the significant fields shown in the output:
Table 10: show platform software fed switch active ifm mappings Field Descriptions

Field	Description
Interface	The name of the interface.
IF_ID	The interface ID.
Inst	The instance ID.
Asic	The ASIC number.
Core	The core number.
Port	The port number of the interface.
SubPort	The number of subports.
MAC	The MAC address.
LPN	The local port number inside ASIC.
GPN	The global system number inside switch.
Type	The type of interface.
Active	The interface status (active/inactive).

show platform software fed switch active ip route

To display IP route information, use the show platform software fed switch active ip route command in privileged EXEC mode.
show platform software fed switch active ip route

Syntax Description

Command Modes

Command History
ip Accepts IP commands.
route Displays IPv4 Forwarding Information Base (FIB) details.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is sample output from the show platform software fed switch active ip route command:

2023/03/14 06:38:18.686	1				
$0 \quad 10.106 .26 .249 / 32$		0x78f2fd3399a8	0x0	0	0
2023/03/14 06:39:09.383	1				
0 0.0.0.0/32		0x78f2fd34a768	0x0	0	0
2023/03/14 06:38:18.685	1				
$0 \quad 9.24 .23 .30 / 32$		0x78f2fd1f2078	0x0	0	0
2023/03/14 06:38:38.930	24				
$0 \quad 9.24 .0 .0 / 16$		0x78f2fd33af48	0x0	0	0
2023/03/14 06:38:38.930	1				
0 0.0.0.0/8		0x78f2fd34fb48	0x0	0	0
2023/03/14 06:38:18.686	1				

The following table explains the significant fields shown in the output:
Table 11: show platform software fed switch active ip route Field Descriptions

Field	Description
vrf	The VRF ID.
dest	The destination address.
htm	The hash table manager object pointer for IP route.
SGT	The security group tag.
DGID	The destination tag ID.

show platform software fed switch active sgacl detail

To display global enforcement status along with policy and count information, use the show platform software fed switch active sgacl detail command in privileged EXEC mode.
show platform software fed switch active sgacl detail
Syntax Description

sgacl	Displays SGACL hardware information.
detail	Displays detailed SGACL information.
Privileged EXEC (\#)	

Command Modes
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software fed switch active sgacl detail command:

```
Device# show platform software fed switch active sgacl detail
Global Enforcement: Off
*Refcnt: for the non-SGACL feature
==================================== DGID Table =====================================
SGT/Refcnt DGT DGID test_cell monitor permitted denied
```


The following table explains the significant fields shown in the output:
Table 12: show platform software fed switch active sgacl detail Field Descriptions

Field	Description
SGT/Refcnt	The security group tag/reinforcement.
DGT	The destination tag.
DGID	The destination tag ID.

show platform software fed switch active sgacl port

To display Layer 2 interface configuration settings for all interfaces, use the show platform software fed switch active sgacl port command in privileged EXEC mode.
show platform software fed switch active sgacl port
Syntax Description

sgacl	Displays Security Group access control lists (SGACLs) hardware information.
port	Specifies port configuration.

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software fed switch active sgacl port command:
Device\# show platform software fed switch active sgacl port

Port	Status	Port-	Tru	Prop	Ingre	Egr
Gi3/0/1	Disabled	0	No	No	No	No
Gi3/0/2	Disabled	0	No	No	No	No
Gi3/0/3	Disabled	0	No	No	No	No
Gi3/0/4	Disabled	0	No	No	No	No
Gi3/0/5	Disabled	0	No	No	No	No
Gi3/0/6	Disabled	0	No	No	No	No
Gi3/0/7	Disabled	0	No	No	No	No
Gi3/0/8	Disabled	0	No	No	No	No
Gi3/0/9	Disabled	0	No	No	No	No
Gi3/0/10	Disabled	0	No	No	No	No
Gi3/0/11	Disabled	0	No	No	No	No
Gi3/0/12	Disabled	0	No	No	No	No
Gi3/0/13	Disabled	0	No	No	No	No
Gi3/0/14	Disabled	0	No	No	No	No
Gi3/0/15	Disabled	0	No	No	No	No
Gi3/0/16	Disabled	0	No	No	No	No
Gi3/0/17	Disabled	0	No	No	No	No
Gi3/0/18	Disabled	0	No	No	No	No
Gi3/0/19	Disabled	0	No	No	No	No
Gi3/0/20	Disabled	0	No	No	No	No
Gi3/0/21	Disabled	0	No	No	No	No
Gi3/0/22	Disabled	0	No	No	No	No
Gi3/0/23	Disabled	0	No	No	No	No
Gi3/0/24	Disabled	0	No	No	No	No
Gi3/0/25	Disabled	0	No	No	No	No
Gi3/0/26	Disabled	0	No	No	No	No
Gi3/0/27	Disabled	0	No	No	No	No
Gi3/0/28	Disabled	0	No	No	No	No
Gi3/0/29	Disabled	0	No	No	No	No
Gi3/0/30	Disabled	0	No	No	No	No
Gi3/0/31	Disabled	0	No	No	No	No
Gi3/0/32	Disabled	0	No	No	No	No
Gi3/0/33	Disabled	0	No	No	No	No
Gi3/0/34	Disabled	0	No	No	No	No

Gi3/0/35	Disabled	0	No	No	No	No
Gi3/0/36	Disabled	0	No	No	No	No
Gi3/0/37	Disabled	0	No	No	No	No
Gi3/0/38	Disabled	0	No	No	No	No
Gi3/0/39	Disabled	0	No	No	No	No
Gi3/0/40	Disabled	0	No	No	No	No
Gi3/0/41	Disabled	0	No	No	No	No
Gi3/0/42	Disabled	0	No	No	No	No
Gi3/0/43	Disabled	0	No	No	No	No
Gi3/0/44	Disabled	0	No	No	No	No
Gi3/0/45	Disabled	0	No	No	No	No
Gi3/0/46	Disabled	0	No	No	No	No
Gi3/0/47	Disabled	0	No	No	No	No
Gi3/0/48	Disabled	0	No	No	No	No
Gi3/1/1	Disabled	0	No	No	No	No
Gi3/1/2	Disabled	0	No	No	No	No
Gi3/1/3	Disabled	0	No	No	No	No
Gi3/1/4	Disabled	0	No	No	No	No
Te3/1/1	Disabled	0	No	No	No	No
Te3/1/2	Disabled	0	No	No	No	No
Te3/1/3	Disabled	0	No	No	No	No
Te3/1/4	Disabled	0	No	No	No	No
Te3/1/5	Disabled	0	No	No	No	No
Te3/1/6	Disabled	0	No	No	No	No
Te3/1/7	Disabled	0	No	No	No	No
Te3/1/8	Disabled	0	No	No	No	No
Fo3/1/1	Disabled	0	No	No	No	No
Fo3/1/2	Disabled	0	No	No	No	No
Tw3/1/1	Disabled	0	No	No	No	No
Tw3/1/2	Disabled	0	No	No	No	No
Ap3/0/1	Disabled	0	No	No	No	No

Output fields are self-explanatory.

show platform software fed switch active sgacl vlan

To display global enforcement status on VLANs, use the show platform software fed switch active sgacl vlan command in privileged EXEC mode.
show platform software fed switch active sgacl vlan
Syntax Description

Command Modes

Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software fed switch active sgacl vlan command:

```
Device# show platform software fed switch active sgacl vlan
Enforcement enabled:
vlan0
vlan1
vlan2
vlan10
vlan102
vlan192
vlan200
```


show platform software status control-processor brief

To display brief information about CPU and memory, use the show platform software status control-processor brief command in privileged EXEC mode.
show platform software status control-processor brief
Syntax Description

status	Displays system status.
control-processor	Displays control processor status.
brief	Displays brief status.

Command Modes

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

The following is a sample output from the show platform software status control-processor brief command:

Device\# show platform software status control-processor brief								
Load Average								
Slot Status	1-Min 5		-Min 15-Min					
3-RP0 Healthy	0.03		0.07	0.04				
Memory (kB)								
Slot Status		Total	Used	(Pct)	Free	(Pct)	Committed	(Pct)
3-RP0 Healthy		5656	4178292	(54\%)	3567364	(46\%)	4755060	(61\%)
CPU Utilization								
Slot CPU	User	System	Nice	Idle	IRQ	SIRQ	IOwait	
3-RP0 0	0.50	0.40	0.00	99.10	0.00	0.00	0.00	
1	0.90	0.50	0.00	98.59	0.00	0.00	0.00	
2	0.40	0.40	0.00	99.20	0.00	0.00	0.00	
3	0.80	0.30	0.00	98.90	0.00	0.00	0.00	
4	0.60	0.30	0.00	99.09	0.00	0.00	0.00	
5	0.70	0.30	0.00	99.00	0.00	0.00	0.00	
6	1.20	0.30	0.00	98.50	0.00	0.00	0.00	
7	0.59	0.39	0.00	99.00	0.00	0.00	0.00	

Output fields are self-explanatory.

show monitor capture <name> buffer

To display the contents of a monitor capture buffer or a capture point, use the show monitor capture buffer name buffer command in privileged EXEC mode.
show monitor capture name buffer

Output fields are self-explanatory.

timeout (CTS)

To configure the response timeout in seconds, use the timeout command in policy-server configuration mode. To go back to the default response timeout, use the no form of this command.
timeout seconds no timeout

Syntax Description

Command Default

Command Modes Policy-server configuration (config-policy-server)
Command History
seconds

The default is 5 .
\qquad

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

The following example shows how to change the policy-server timeout:
Device\# enable
Device\# configure terminal
Device (config) \# policy-server name ise_server_2
Device(config-policy-server) \# timeout $\overline{\mathbf{8}}$

Related Commands

Command	Description
cts policy-server name	Configures the name of a policy server and enters policy-server configuration mode.

tls server-trustpoint

Configures the Transport Layer Security (TLS) trustpoint, use the tls server-trustpoint command in policy-server configuration mode. To remove the TLS trustpoint, use the no form of this command.
tls server-trustpoint name no tls server-trustpoint

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines

name Trustpoint name.

TLS is configured.
Policy-server configuration (config-policy-server)

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

TLS is used by a network device to connect to the Cisco Identity Services Engine (ISE). The device uses a make or break approach to the TLS connection establishment, and there is no persistent TLS connection between the device and Cisco ISE. After the TLS connection is established, the device can use this connection to submit multiple REST API calls to specific uniform resource locators (URLs). After all the REST requests are processed, the server terminates the connection through a TCP-FIN message. For new REST API calls, a new connection must be established with the server.

If an invalid trustpoint is configured, the TLS handshake will fail and server is marked as dead.

Examples

Related Commands

The following example shows how to configure a TLS trustpoint:

```
Device# enable
```

Device\# configure terminal
Device(config) \# policy-server name ise_server_2
Device(config-policy-server) \# tls server-trustpoint ise_trust

Command	Description
cts policy-server name	Configures the name of a policy server and enters policy-server configuration mode.

ранा III

Interface and Hardware Components

- Interface and Hardware Commands, on page 165

Interface and Hardware Commands

- bluetooth pin, on page 168
- clear macro auto configuration, on page 169
- device classifier, on page 170
- debug ilpower, on page 171
- debug interface, on page 172
- debug lldp packets, on page 173
- debug platform poe, on page 174
- debug platform software fed switch active punt packet-capture start, on page 175
- duplex, on page 176
- errdisable detect cause, on page 178
- errdisable recovery cause, on page 180
- errdisable recovery cause, on page 182
- hw-module beacon, on page 184
- hw-module switch upoe-plus, on page 185
- interface, on page 186
- interface range, on page 189
- ip mtu, on page 192
- ipv6 mtu, on page 193
- lldp (interface configuration), on page 194
- logging event power-inline-status, on page 196
- macro, on page 197
- macro auto, on page 200
- macro auto apply (Cisco IOS shell scripting capability), on page 203
- macro auto config (Cisco IOS shell scripting capability), on page 205
- macro auto control, on page 206
- macro auto execute, on page 208
- macro auto global control, on page 215
- macro auto global processing, on page 217
- macro auto mac-address-group, on page 218
- macro auto processing, on page 220
- macro auto sticky, on page 221
- macro auto trigger, on page 222
- macro description, on page 223
- macro global, on page 224
- macro global description, on page 226
- mdix auto, on page 227
- mode (power-stack configuration), on page 228
- monitoring, on page 230
- network-policy, on page 231
- network-policy profile (global configuration), on page 232
- power-priority , on page 233
- power inline, on page 235
- power inline police, on page 238
- power supply, on page 240
- power supply autoLC shutdown, on page 242
- shell trigger, on page 243
- show beacon all, on page 244
- show device classifier attached, on page 245
- show device classifier clients, on page 247
- show device classifier profile type, on page 248
- show environment, on page 251
- show errdisable detect, on page 253
- show errdisable recovery, on page 255
- show ip interface, on page 256
- show interfaces, on page 261
- show interfaces counters, on page 267
- show interfaces switchport, on page 269
- show interfaces transceiver, on page 271
- show inventory, on page 275
- show macro auto, on page 278
- show memory platform, on page 281
- show module, on page 284
- show mgmt-infra trace messages ilpower, on page 285
- show mgmt-infra trace messages ilpower-ha, on page 287
- show mgmt-infra trace messages platform-mgr-poe, on page 288
- show network-policy profile, on page 289
- show parser macro, on page 290
- show platform hardware bluetooth, on page 293
- show platform hardware fed switch forward, on page 294
- show platform hardware fed switch forward interface, on page 297
- show platform hardware fed switch forward last summary, on page 300
- show platform hardware fed switch fwd-asic counters tla, on page 303
- show platform hardware fed active fwd-asic resource tcam utilization, on page 307
- show platform resources, on page 309
- show platform software audit, on page 310
- show platform software fed switch punt cpuq rates, on page 314
- show platform software fed switch punt packet-capture display, on page 316
- show platform software fed switch punt rates interfaces, on page 318
- show platform software ilpower, on page 321
- show platform software memory, on page 323
- show platform software process list, on page 328
- show platform software process memory, on page 332
- show platform software process slot switch, on page 335
- show platform software status control-processor, on page 337
- show platform software thread list, on page 340
- show processes cpu platform, on page 342
- show processes cpu platform history, on page 345
- show processes cpu platform monitor, on page 348
- show processes memory, on page 350
- show processes memory platform, on page 353
- show processes platform, on page 357
- show power inline, on page 360
- show stack-power, on page 366
- show shell, on page 368
- show system mtu, on page 371
- show tech-support , on page 372
- show tech-support bgp, on page 374
- show tech-support diagnostic, on page 377
- show tech-support poe, on page 382
- speed, on page 412
- stack-power, on page 414
- switchport block, on page 416
- system mtu, on page 417
- voice-signaling vlan (network-policy configuration), on page 418
- voice vlan (network-policy configuration), on page 420

bluetooth pin

| | To configure a new Bluetooth pin, use the bluetooth pin command in interface configuration or global
 configuration mode. |
| :--- | :--- | :--- |
| $\overline{\text { Syntax Description }}$bluetooth pin pin | Pin Pairing pin for the Bluetooth interface.
 The pin is a 4-digit number. |
| Command Modes | Interface configuration (config-if)
 Global configuration (config) |
| Command History
 Release Modification | This command was introduced. |

Usage Guidelines

The bluetooth pin command can be configured either in the interface configuration or global configuration mode. Cisco recommends using the global configuration mode to configure the Bluetooth pin.

Examples

This example shows how to configure a new Bluetooth pin using the bluetooth pin command.
Device> enable
Device\# configure terminal
Device(config) \# bluetooth pin 1111
Device (config) \#

Related Commands

Command	Description
show platform hardware bluetooth	Displays information about the Bluetooth interface

clear macro auto configuration

To remove the macro applied configuration from the interfaces, use the clear macro auto configuration command.

This example shows how to remove the configuration from all the switch interfaces:

Device(config) \# clear macro auto configuration all

device classifier

To enable the device classifier, use the device classifier command in global configuration mode. Use the no form of this command to disable the device classifier.
device classifier
no device classifier

| Command Default | | |
| :--- | :--- | :--- | :--- |
| $\overline{\text { Command Modes command is disabled by default. }}$ | Global configuration (config) | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.5.1a | This command was introduced. |

Usage Guidelines

Use the no device classifier command, in global configuration mode, to disable the device classifier. You cannot disable the device classifier while it is being used by features such as Auto SmartPorts (ASP).

Example

This example shows how to enable the ASP device classifier on a switch:

Device(config) \# device classifier
Device(config) \# end

debug ilpower

To enable debugging of the power controller and Power over Ethernet (PoE) system, use the debug ilpower command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug ilpower $\{\mathbf{c d p} \mid$ event \mid ha \mid ipc \mid police \mid port \mid powerman \mid registries \mid scp | sense $\}$ no debug ilpower $\{\mathbf{c d p} \mid$ event \mid ha \mid ipc \mid police \mid port \mid powerman \mid registries \mid scp | sense $\}$

Syntax Description

Command Modes

Command History

cdp	Displays PoE Cisco Discovery Protocol (CDP) debug messages.
event	Displays PoE event debug messages.
ha	Displays PoE high-availability messages.
ipc	Displays PoE Inter-Process Communication (IPC) debug messages.
police	Displays PoE police debug messages.
port	Displays PoE port manager debug messages.
powerman	Displays PoE power management debug messages.
registries	Displays PoE registries debug messages.
scp	Displays PoE SCP debug messages.
sense	Displays PoE sense debug messages.

Debugging is disabled.
Privileged EXEC

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
This command is supported only on PoE-capable switches.
When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the session switch-number EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE EXEC command on the active switc to enable debugging on a member switch without first starting a session.

debug interface

To enable debugging of interface-related activities, use the debug interface command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug interface $\{$ interface-id \mid counters $\{$ exceptions \mid protocol memory\} | null interface-number \mid port-channel port-channel-number \mid states \mid vlan vlan-id $\}$ no debug interface $\{$ interface-id \mid counters $\{$ exceptions \mid protocol memory $\}$ | null interface-number \mid port-channel port-channel-number \mid states \mid vlan vlan-id $\}$

Syntax Description

interface-id	ID of the physical interface. Displays debug messages for the specified physical port, identified by type switch number/module number/port, for example, gigabitethernet $1 / 0 / 2$.
null interface-number	Displays debug messages for null interfaces. The interface number is always 0.
port-channel port-channel-number	Displays debug messages for the specified EtherChannel port-channel interface. The port-channel-number range is 1 to 48.
vlan vlan-id	Displays debug messages for the specified VLAN. The vlan range is 1 to 4094.
counters	Displays counters debugging information.
exceptions	Displays debug messages when a recoverable exceptional condition occurs during the computation of the interface packet and data rate statistics.
protocol memory	Displays debug messages for memory operations of protocol counters.
states	Displays intermediary debug messages when an interface's state transitions.

\section*{| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |}

Debugging is disabled.

Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

If you do not specify a keyword, all debug messages appear.
The undebug interface command is the same as the no debug interface command.
When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the session switch-number EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE EXEC command on the active switch to enable debugging on a member switch without first starting a session.

debug IIdp packets

To enable debugging of Link Layer Discovery Protocol (LLDP) packets, use the debug lldp packets command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug lldp packets
no debug lldp packets

Syntax Description	This commnd has no arguments or keywords.	
Command Default	Debugging is disabled.	
Command Modes	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines The undebug lldp packets command is the same as the no debug lldp packets command.
When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the session switch-number EXEC command.

debug platform poe

To enable debugging of a Power over Ethernet (PoE) port, use the debug platform poe command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug platform poe [\{error |info\}] [switch switch-number] no debug platform poe [\{error |info\}] [switch switch-number]
Syntax Description

error	(Optional) Displays PoE-related error debug messages.
info	(Optional) Displays PoE-related information debug messages.

switch switch-number (Optional) Specifies the stack member. This keyword is supported only on stacking-capable switches.

Command Default	Debugging is disabled.	
$\overline{\text { Command Modes }}$	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines The undebug platform poe command is the same as the no debug platform poe command.

debug platform software fed switch active punt packet-capture start

To enable debugging of packets during high CPU utilization, for an active switch, use the debug platform software fed switch active punt packet-capture start command in privileged EXEC mode. To disable debugging of packets during high CPU utilization, for an active switch, use the debug platform software fed switch active punt packet-capture stop command in privileged EXEC mode.
debug platform software fed switch active punt packet-capture start debug platform software fed switch active punt packet-capture stop
Syntax Description

switch active	Displays information about the active switch.
punt	Specifies the punt information.
packet-capture	Specifies information about the captured packet.
start	Enables debugging of the active switch.
stop	Disables debugging of the active switch.

Command Modes

Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Usage Guidelines

Examples

The debug platform software fed switch active punt packet-capture start command starts the debugging of packets during high CPU utilization. The packet capture is stopped when the 4 k buffer size is exceeded.

The following is a sample output from the debug platform software fed switch active punt packet-capture start command:

Device\# debug platform software fed switch active packet-capture start
Punt packet capturing started.
The following is a sample output from the debug platform software fed switch active punt packet-capture stop command:

Device\# debug platform software fed switch active packet-capture stop Punt packet capturing stopped. Captured 101 packet(s)

To specify the duplex mode of operation for a port, use the duplex command in interface configuration mode. To return to the default value, use the no form of this command.
duplex $\{$ auto \mid full \mid half $\}$
no duplex $\{$ auto \mid full \mid half $\}$

Syntax Description

Command Default

Command Modes

Command History
auto Enables automatic duplex configuration. The port automatically detects whether it should run in fullor half-duplex mode, depending on the attached device mode.
full Enables full-duplex mode.
half Enables half-duplex mode (only for interfaces operating at 10 or $100 \mathrm{Mb} / \mathrm{s}$). You cannot configure half-duplex mode for interfaces operating at $1000 \mathrm{Mb} / \mathrm{s}, 10,000 \mathrm{Mb} / \mathrm{s}, 2.5 \mathrm{~Gb} / \mathrm{s}$, or $5 \mathrm{~Gb} / \mathrm{s}$.

The default is auto for Gigabit Ethernet ports.
Duplex options are not supported on the 1000BASE- x or 10GBASE- x (where $-x$ is -BX, -CWDM, -LX, -SX, or -ZX) small form-factor pluggable (SFP) modules.

Interface configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

For Gigabit Ethernet ports, setting the port to auto has the same effect as specifying full if the attached device does not autonegotiate the duplex parameter.

Note Half-duplex mode is supported on Gigabit Ethernet interfaces if the duplex mode is auto and the connected device is operating at half duplex. However, you cannot configure these interfaces to operate in half-duplex mode.

Certain ports can be configured to be either full duplex or half duplex. How this command is applied depends on the device to which the switch is attached.

If both ends of the line support autonegotiation, we highly recommend using the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces, and use the auto setting on the supported side.
If the speed is set to auto, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value. The duplex setting remains as configured on each end of the link, which could result in a duplex setting mismatch.

You can configure the duplex setting when the speed is set to auto.

\triangle

Caution Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

You can verify your setting by entering the show interfaces privileged EXEC command.

Examples

This example shows how to configure an interface for full-duplex operation:

```
Device(config)# interface gigabitethernet1/0/1
Devic(config-if)# duplex full
```


errdisable detect cause

To enable error-disable detection for a specific cause or for all causes, use the errdisable detect cause command in global configuration mode. To disable the error-disable detection feature, use the no form of this command.
errdisable detect cause \{all|arp-inspection |bpduguard shutdown vlan |dhcp-rate-limit|dtp-flap | gbic-invalid | inline-power | link-flap | loopback | pagp-flap| pppoe-ia-rate-limit |psp shutdown vlan \mid security-violation shutdown vlan \mid sfp-config-mismatch $\}$ no errdisable detect cause \{all|arp-inspection |bpduguard shutdown vlan |dhcp-rate-limit|dtp-flap | gbic-invalid | inline-power | link-flap | loopback | pagp-flap | pppoe-ia-rate-limit | psp shutdown vlan \mid security-violation shutdown vlan \mid sfp-config-mismatch $\}$

all	Enables error detection for all error-disabled causes.
arp-inspection	Enables error detection for dynamic Address Resolution Protocol (ARP) inspection.
bpduguard shutdown vlan	Enables per-VLAN error-disable for BPDU guard.
dhep-rate-limit	Enables error detection for DHCP snooping.
dtp-flap	Enables error detection for the Dynamic Trunking Protocol (DTP) flapping.
gbic-invalid	Enables error detection for an invalid Gigabit Interface Converter (GBIC) module.
	Note This error refers to an invalid small form-factor pluggable (SFP) module.
inline-power	Enables error detection for the Power over Ethernet (PoE) error-disabled cause.
	Note This keyword is supported only on switches with PoE ports.
link-flap	Enables error detection for link-state flapping.
loopback	Enables error detection for detected loopbacks.
pagp-flap	Enables error detection for the Port Aggregation Protocol (PAgP) flap error-disabled cause.
pppoe-ia-rate-limit	Enables error detection for the PPPoE Intermediate Agent rate-limit error-disabled cause.
psp shutdown vlan	Enables error detection for protocol storm protection (PSP).
security-violation shutdown vlan	Enables voice aware 802.1x security.
sfp-config-mismatch	Enables error detection on an SFP configuration mismatch.

You can verify your setting by entering the show errdisable detect privileged EXEC command.

errdisable recovery cause

To enable the error-disabled mechanism to recover from a specific cause, use the errdisable recovery cause command in global configuration mode. To return to the default setting, use the no form of this command.
errdisable recovery cause \{all|arp-inspection |bpduguard |channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | $\mathbf{p s p} \mid$ security-violation \mid sfp-config-mismatch | storm-control | udld $\}$
no errdisable recovery cause \{all|arp-inspection | bpduguard | channel-misconfig |dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | $\mathbf{p s p} \mid$ security-violation | sfp-config-mismatch | storm-control | udld $\}$

Syntax Description

all	Enables the timer to recover from all error-disabled causes.
arp-inspection	Enables the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.
bpduguard	Enables the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.
channel-misconfig	Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.
dhcp-rate-limit	Enables the timer to recover from the DHCP snooping error-disabled state.
dtp-flap	Enables the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.
gbic-invalid	Enables the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.
Note	
inline-power	Enables the timer to recover from the Power over Ethernet (PoE) error-disabled state.
pagp-flap	This keyword is supported only on switches with PoE ports.

port-mode-failure	Enables the timer to recover from the port mode change failure error-disabled state.
pppoe-ia-rate-limit	Enables the timer to recover from the PPPoE IA rate limit error-disabled state.
psecure-violation	Enables the timer to recover from a port security violation disable state.
psp	Enables the timer to recover from the protocol storm protection (PSP) error-disabled state.
security-violation	Enables the timer to recover from an IEEE 802.1x-violation disabled state.
sfp-config-mismatch	Enables error detection on an SFP configuration mismatch.
storm-control	Enables the timer to recover from a storm control error.
udld	Enables the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.

Command Default	Recovery is disabled for all causes.
Command Modes	Global configuration (config)
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.
Usage Guidelines	A cause (such as all or BDPU guard) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state.
	When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.
	If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the shutdown and the no shutdown interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.
	Otherwise, you must enter the shutdown and then the no shutdown commands to manually recover an interface from the error-disabled state.
	You can verify your settings by entering the show errdisable recovery privileged EXEC command.
$\overline{\text { Examples }}$	This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:
	Device\# Device\#configure terminal Device(config)\# errdisable recovery cause bpduguard

errdisable recovery cause

To enable the error-disabled mechanism to recover from a specific cause, use the errdisable recovery cause command in global configuration mode. To return to the default setting, use the no form of this command.
errdisable recovery cause \{all|arp-inspection |bpduguard |channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | $\mathbf{p s p} \mid$ security-violation \mid sfp-config-mismatch | storm-control | udld $\}$
no errdisable recovery cause \{all|arp-inspection | bpduguard | channel-misconfig |dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | $\mathbf{p s p} \mid$ security-violation | sfp-config-mismatch | storm-control | udld $\}$

Syntax Description

all	Enables the timer to recover from all error-disabled causes.
arp-inspection	Enables the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.
bpduguard	Enables the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.
channel-misconfig	Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.
dhcp-rate-limit	Enables the timer to recover from the DHCP snooping error-disabled state.
dtp-flap	Enables the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.
gbic-invalid	Enables the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.
Note	
inline-power	Enables the timer to recover from the Power over Ethernet (PoE) error-disabled state.
pagp-flap	This keyword is supported only on switches with PoE ports.

port-mode-failure	Enables the timer to recover from the port mode change failure error-disabled state.
pppoe-ia-rate-limit	Enables the timer to recover from the PPPoE IA rate limit error-disabled state.
psecure-violation	Enables the timer to recover from a port security violation disable state.
psp	Enables the timer to recover from the protocol storm protection (PSP) error-disabled state.
security-violation	Enables the timer to recover from an IEEE 802.1x-violation disabled state.
sfp-config-mismatch	Enables error detection on an SFP configuration mismatch.
storm-control	Enables the timer to recover from a storm control error.
udld	Enables the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.

Command Default	Recovery is disabled for all causes.
Command Modes	Global configuration (config)
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.
Usage Guidelines	A cause (such as all or BDPU guard) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state.
	When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.
	If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the shutdown and the no shutdown interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.
	Otherwise, you must enter the shutdown and then the no shutdown commands to manually recover an interface from the error-disabled state.
	You can verify your settings by entering the show errdisable recovery privileged EXEC command.
$\overline{\text { Examples }}$	This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:
	Device\# Device\#configure terminal Device(config)\# errdisable recovery cause bpduguard

hw-module beacon

To control the beacon LED on a device, use the hw-module beacon command in the privileged EXEC mode or global configuration mode.

Cisco IOS XE Fuji 16.8.x and Earlier Releases

hw-module beacon \{off |on \} switch switch-number

Cisco IOS XE Fuji 16.9.1 and Later Releases

hw-module beacon slot $\{$ switch-number | active | standby \}\{off |on \}

Syntax Description

off	Turns the beacon off.
on	Turns the beacon on.
switch switch-number	Specifies the switch to be controlled. eswitch-number: Switch number. The range is 8.

slot $\{$ switch-number \mid active \mid standby $\}$
Specifies the switch to be controlled.

- switch-number: Switch number. The range is from 1 to 8 .
- active: Specifies the active switch.
- standby: Specifies the standby switch.

Command Default
 Command Modes

This command has no default settings.
Global configuration (config) (Cisco IOS XE Fuji 16.8.x and Earlier Releases)
Privileged EXEC (\#) (Cisco IOS XE Fuji 16.9.1 and Later Releases)

Command History

Usage Guidelines

Use this command to enable or disable the switch LED. Blue indicates the switch LED is on and black indicates that it is off.

The following example shows how to switch on the LED beacon of the active switch:
Device> enable
Device\# hw-module beacon slot active on

hw-module switch upoe-plus

To enable the 802.3bt mode on the device, use the hw-module switch upoe-plus comamnd in the Global Configuration mode. To unconfigure the 802.3 bt mode, use the no form of the command.
hw-module switch switch-number upoe-plus no hw-module switch switch-number upoe-plus

Command Default	The device is in 802.3at mode.	
Command Modes	Global Configuration (config)	Modification
Command History	Release	This command was introduced.
	Cisco IOS XE Gibraltar 16.12.1	

Usage Guidelines
When the device boots up, it is in 802.3at-compliant mode by default. Use the hw-module switchswitch-number upoe-plus command to enable 802.3 bt Type 3 mode ton the device. This command causes the device to be power-cycled to enable 802.3 bt compliance.

The following command enables 802.3 bt mode on the switch which is the second member of the stack.

```
Device> enable
Device# configure terminal
Device(config)# hw-module switch 2 upoe-plus
!!!WARNING!!!This configuration will power cycle the switch to make it effective. Would you
like to continue y/n?
```


interface

To configure an interface, use the interface command.
interface \{Auto-Template interface-number | FiveGigabitEthernet switch-number/slot-number/port-number \mid GigabitEthernet switch-number/slot-number/port-number \mid Loopback interface-number Null interface-number Port-channel interface-number TenGigabitEthernet switch-number/slot-number/port-number TwentyFiveGigE switch-number/slot-number/port-number TwoGigabitEthernet switch-number/slot-number/port-number Tunnel interface-number Vlan interface-number $\}$

Auto-Template interface-number	Enables you to configure a auto-template interface. The range is from 1 to 999 .
FiveGigabitEthernet switch-number/slot-number/port-number	Enables you to configure a 5-Gigabit Ethernet interface. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. Value is 0 . - port-number - Port number. The range is from 1 to 48.
FortyGigabitEthernet switch-number/slot-number/port-number	Enables you to configure a 40-Gigabit Ethernet interface. - switch-number - Switch ID. The range is from 1 to 8. - slot-number - Slot number. Value is 1. - port-number - Port number. The range is from 1 to 2 .
GigabitEthernet switch-number/slot-number/port-number	Enables you to configure a Gigabit Ethernet IEEE $802.3 z$ interface. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. The range is from 0 to 1 . - port-number - Port number. The range is from 1 to 48.
Loopback interface-number	Enables you to configure a loopback interface. The range is from 0 to 2147483647.
Null interface-number	Enables you to configure a null interface. The default value is 0 .

Port-channel interface-number	Enables you to configure a port-channel interface. The range is from 1 to 128 .
TenGigabitEthernet switch-number/slot-number/port-number	Enables you to configure a 10-Gigabit Ethernet interface. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. The range is from 0 to 1. - port-number - Port number. The range is from 1 to 24 and 37 to 48
TwentyFiveGigE switch-number/slot-number/port-number	Enables you to configure a 25-Gigabit Ethernet interface. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. Value is 1. - port-number - Port number. The range is from 1 to 2 .
TwoGigabitEthernet switch-number/slot-number/port-number	Enables you to configure a 2.5 -Gigabit Ethernet interface. Note $\quad 2.5 \mathrm{G}$ ports are available only on C9300-48UXM switch model. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. Value is 0 . - port-number - Port number. The range is from 1 to 36 .
Tunnel interface-number	Enables you to configure a tunnel interface. The range is from 0 to 2147483647.
Vlan interface-number	Enables you to configure a switch VLAN. The range is from 1 to 4094.
None	
Global configuration (config)	
Release Modification	
Cisco IOS XE Everest 16.5.1a This command was introduced.	

$\overline{\text { Usage Guidelines }}$ You can not use the "no" form of this command.

Examples

The following example shows how to configure a tunnel interface:

```
Device(config)# interface Tunnel 15
Device(config-if)#
```

The following example shows how to configure a 25 -Gigabit Ethernet interface

```
Device(config)# interface TwentyFiveGigE 1/1/1
Device(config-if)#
```

The following example shows how to configure a 40-Gigabit Ethernet interface

```
Device(config)# interface FortyGigabitEthernet 1/1/2
Device(config-if)#
```


interface range

To configure an interface range, use the interface range command.
interface range \{Auto-Template interface-number | FiveGigabitEthernet switch-number/slot-number/port-number | FortyGigabitEthernet switch-number/slot-number/port-number | GigabitEthernet switch-number/slot-number/port-number | Loopback interface-number Null interface-number Port-channel interface-number TenGigabitEthernet
switch-number/slot-number/port-number TwentyFiveGigE switch-number/slot-number/port-number TwoGigabitEthernet switch-number/slot-number/port-number Tunnel interface-number Vlan interface-number \}

Syntax Description

Auto-Template interface-number	Enables you to configure a auto-template interface. The range is from 1 to 999.

FiveGigabitEthernet
switch-number/slot-number/port-number

Enables you to configure a 5-Gigabit Ethernet interface.

- switch-number - Switch ID. The range is from 1 to 8 .
- slot-number - Slot number. Value is 0 .
- port-number - Port number. The range is from 1 to 48.

FortyGigabitEthernet

switch-number/slot-number/port-number
Enables you to configure a 40-Gigabit Ethernet interface.

- switch-number - Switch ID. The range is from 1 to 8 .
- slot-number - Slot number. Value is 1.
- port-number - Port number. The range is from 1 to 2 .

Enables you to configure a Gigabit Ethernet IEEE 802.3 z interface.

- switch-number - Switch ID. The range is from 1 to 8 .
- slot-number - Slot number. The range is from 0 to 1 .
- port-number - Port number. The range is from 1 to 48 .

Loopback interface-number

Enables you to configure a loopback interface. The range is from 0 to 2147483647 .

Null interface-number	Enables you to configure a null interface. The default value is 0 .
Port-channel interface-number	Enables you to configure a port-channel interface. The range is from 1 to 128 .
TenGigabitEthernet switch-number/slot-number/port-number	Enables you to configure a 10-Gigabit Ethernet interface. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. The range is from 0 to 1 . - port-number - Port number. The range is from 1 to 24 and 37 to 48
TwentyFiveGigE switch-number/slot-number/port-number	Enables you to configure a 25-Gigabit Ethernet interface. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. Value is 1. - port-number - Port number. The range is from 1 to 2 .
TwoGigabitEthernet switch-number/slot-number/port-number	Enables you to configure a 2.5-Gigabit Ethernet interface. Note $\quad 2.5 \mathrm{G}$ ports are available only on C9300-48UXM switch model. - switch-number - Switch ID. The range is from 1 to 8 . - slot-number - Slot number. Value is 0 . - port-number - Port number. The range is from 1 to 36 .
Tunnel interface-number	Enables you to configure a tunnel interface. The range is from 0 to 2147483647 .
Vlan interface-number	Enables you to configure a switch VLAN. The range is from 1 to 4094.

Command Default	None
$\overline{\text { Command Modes }}$ Global configuration (config)	

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Examples

This example shows how you can configure interface range:

```
Device(config)# interface range vlan 1-100
```

To set the IP maximum transmission unit (MTU) size of routed packets on all routed ports of the switch or switch stack, use the ip mtu command in interface configuration mode. To restore the default IP MTU size, use the no form of this command.
ip mtu bytes
no ip mtu bytes

Syntax Description

Command Default

Command Modes

Command History

bytes MTU size, in bytes. The range is from 68 up to the system MTU value (in bytes).

The default IP MTU size for frames received and sent on all switch interfaces is 1500 bytes.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The upper limit of the IP value is based on the switch or switch stack configuration and refers to the currently applied system MTU value. For more information about setting the MTU sizes, see the system mtu global configuration command.
To return to the default IP MTU setting, you can apply the default ip mtu command or the no ip mtu command on the interface.

You can verify your setting by entering the show ip interface interface-id or show interfaces interface-id privileged EXEC command.

The following example sets the maximum IP packet size for VLAN 200 to 1000 bytes:

```
Device(config)# interface vlan 200
Device(config-if)# ip mtu 1000
```

The following example sets the maximum IP packet size for VLAN 200 to the default setting of 1500 bytes:

```
Device(config)# interface vlan 200
Device(config-if) # default ip mtu
```

This is an example of partial output from the show ip interface interface-id command. It displays the current IP MTU setting for the interface.

```
Device# show ip interface gigabitethernet4/0/1
GigabitEthernet4/0/1 is up, line protocol is up
    Internet address is 18.0.0.1/24
    Broadcast address is 255.255.255.255
    Address determined by setup command
    MTU is 1500 bytes
    Helper address is not set
<output truncated>
```


ipv6 mtu

To set the IPv6 maximum transmission unit (MTU) size of routed packets on all routed ports of the switch or switch stack, use the ipv6 mtu command in interface configuration mode. To restore the default IPv6 MTU size, use the no form of this command.
ipv6 mtu bytes
no ipv6 mtu bytes

Syntax Description

Command Default
Command Modes
Command History
bytes MTU size, in bytes. The range is from 1280 up to the system MTU value (in bytes).

The default IPv6 MTU size for frames received and sent on all switch interfaces is 1500 bytes.
Interface configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The upper limit of the IPv6 MTU value is based on the switch or switch stack configuration and refers to the currently applied system MTU value. For more information about setting the MTU sizes, see the system mtu global configuration command.

To return to the default IPv6 MTU setting, you can apply the default ipv6 mtu command or the no ipv6 mtu command on the interface.

You can verify your setting by entering the show ipv6 interface interface-id or show interface interface-id privileged EXEC command.

The following example sets the maximum IPv6 packet size for an interface to 2000 bytes:

```
Device(config) # interface gigabitethernet4/0/1
Device(config-if)# ipv6 mtu 2000
```

The following example sets the maximum IPv6 packet size for an interface to the default setting of 1500 bytes:

```
Device(config)# interface gigabitethernet4/0/1
Device(config-if)# default ipv6 mtu
```

This is an example of partial output from the show ipv6 interface interface-id command. It displays the current IPv6 MTU setting for the interface.

```
Device# show ipv6 interface gigabitethernet4/0/1
GigabitEthernet4/0/1 is up, line protocol is up
    Internet address is 18.0.0.1/24
    Broadcast address is 255.255.255.255
    Address determined by setup command
    MTU is 1500 bytes
    Helper address is not set
<output truncated>
```


Ildp (interface configuration)

To enable Link Layer Discovery Protocol (LLDP) on an interface, use the lldp command in interface configuration mode. To disable LLDP on an interface, use the no form of this command.
lldp \{med-tlv-select $t l v \mid$ receive |tlv-select power-management | transmit\} no lldp \{med-tlv-select $t l v \mid$ receive |tlv-select power-management |ransmit\}

Syntax Description

med-tlv-select	Selects an LLDP Media Endpoint Discovery (MED) time-length-value (TLV) element to send.
$t v$	String that identifies the TLV element. Valid values are the following:
	- inventory-management - LLDP MED Inventory Management TLV.
	- location- LLDP MED Location TLV.
	- network-policy- LLDP MED Network Policy TLV.
	- power-management - LLDP MED Power Management TLV.

receive	Enables the interface to receive LLDP transmissions.
tlv-select	Selects the LLDP TLVs to send.
power-management	Sends the LLDP Power Management TLV.
transmit	Enables LLDP transmission on the interface.

Command Default
 Command Modes
 Command History

LLDP is disabled.

Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

This command is supported on 802.1 media types.
If the interface is configured as a tunnel port, LLDP is automatically disabled.
The following example shows how to disable LLDP transmission on an interface:

Device(config) \# interface gigabitethernet1/0/1
Device(config-if) \# no lldp transmit

The following example shows how to enable LLDP transmission on an interface:

Device(config)\# interface gigabitethernet1/0/1

logging event power-inline-status

To enable the logging of Power over Ethernet (PoE) events, use the logging event power-inline-status command in interface configuration mode. To disable the logging of PoE status events, use the no form of this command.
logging event power-inline-status no logging event power-inline-status

Syntax Description
$\overline{\text { Command Default }}$ Logging of PoE events is enabled.
Command Modes Interface configuration (config-if)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Examples
This example shows how to enable logging of PoE events on a port:

```
Device(config-if) # interface gigabitethernet1/0/1
Device(config-if)# logging event power-inline-status
Device(config-if)#
```


macro

To apply a macro to an interface or to apply and debug a macro on an interface, use the macro command in interface configuration mode.
macro \{apply | trace\}macro-name $[$ parameter $\{$ value $\}][$ parameter $\{$ value $\}][$ parameter $\{$ value $\}]$

Syntax Description

apply	Applies a macro to an interface.
trace	Applies a macro to an interface and then debugs it.
macro-name	Specifies the name of the macro.
parameter value	(Optional) Specifies unique parameter values that are specific to the interface. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive.
	All matching occurrences of the keyword are replaced with the corresponding value.

$\overline{\text { Command Default }}$
Command Modes

Command History

This command has no default setting.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines You can use the macro apply macro-name command to apply and show the macros running on an interface.
You can use the macro trace macro-name command to apply and then debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the interface.

When creating a macro that requires the assignment of unique values, use the parameter value keywords to designate values specific to the interface.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the macro apply macro-name ? command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default SmartPorts macros embedded in the switch software. You can display these macros and the commands that they contain by using the show parser macro command in user EXEC mode.

Follow these guidelines when you apply a Cisco-default SmartPorts macro on an interface:

- Display all macros on the switch by using the show parser macro command in user EXEC mode. Display the contents of a specific macro by using the show parser macro macro-name command in user EXEC mode.
- Keywords that begin with \$ mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the parameter value keywords.

The Cisco-default macros use the \$ character to identify required keywords. You can use the \$ character to define keywords when you create a macro.

When you apply a macro to an interface, the macro name is automatically added to the interface. You can display the applied commands and macro names by using the show running-config interface interface-id command in user EXEC mode.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When you use an interface range, the macro is applied sequentially to each interface within the range. If a macro command fails on one interface, it is still applied to the remaining interfaces.
You can delete a macro-applied configuration on an interface by entering the default interface interface-id command in interface configuration mode.

Example

After you use the macro name command, in interface configuration mode, you can apply it to an interface. This example shows how to apply a user-created macro called duplex to an interface:

```
Device(config-if) # macro apply duplex
```

To debug a macro, use the macro trace command, in interface configuration mode, to find any syntax or configuration errors in the macro as it is applied to an interface.

```
Device(config-if)# macro trace duplex
Applying command...'duplex auto'
%Error Unknown error.
Applying command...'speed nonegotiate'
```

This example shows how to display the Cisco-default cisco-desktop macro and how to apply the macro and set the access VLAN ID to 25 on an interface:

```
Device# show parser macro cisco-desktop
--------------------------
Macro type : default
# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access
# Enable port security limiting port to a single
# MAC address -- that of desktop
switchport port-security
switchport port-security maximum 1
# Ensure port-security age is greater than one minute
# and use inactivity timer
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
# Configure port as an edge network port
spanning-tree portfast
```

```
spanning-tree bpduguard enable
Device#
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# interface gigabitethernet1/0/4
Device(config-if)# macro apply cisco-desktop $AVID 25
```


macro auto

To configure and apply a global macro using the CLI, use the macro auto command in privileged EXEC mode.

Use the no form of this command to return to the default setting.
macro auto \{apply | config\} macro-name
Syntax Description

apply	Applies the macro.
config	Enters the macro parameters.
macro-name	Specifies the macro name.

Command Default
Command Modes
Command History

Usage Guidelines

No macros are applied to the switch.
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

To remove the macro from the switch, enter the no forms of the macro commands.
If you enter the macro auto config macro-name command, you are prompted to enter values for all the macro parameters.

Use the exact text string when entering the macro-name. The entries are case sensitive.
The user-defined values appear only in the show macro auto or show running-config command output.

Example

This example shows how to display global macros:

```
Device# macro auto apply ?
CISCO_SWITCH_AAA_ACCOUNTING
CISCO_SWITCH_AAA_AUTHENTICATION
CISCO_SWITCH_AAA_AUTHORIZATION
CISCO_SWITCH_AUTO_IP_CONFIG
CISCO_SWITCH_AUTO_-PCI_CONFIG
CISCO_SWITCH_DOMAIN_NAME_CONFIG
CISCO-SWITCH-ETHERCHA}ANNEL CONFIG
CISCO_SWITCH_HOSTNAME_CONFIG
CISCO_SWITCH_HTTP_SERVER_CONFIG
CISCO_SWITCH_LOGGING_SERV̄ER_CONFIG
CISCO_SWITCH_MGMT_VLAN_CONFIG
CISCO_SWITCH_NAME_SERVE-_R_CONFIG
CISCO_SWITCH_NTP_/ SERVER_\overline{CONFIG}
CISCO_SWITCH_RADIUS_SERV}ER_CONFIG
CISCO_SWITCH_SETUP_SNMP_TRAPS
CISCO_SWITCH_SETUP_USR_CONFIG
CISCO_SWITCH_SNMP_\overline{SOURC}E_CONFIG
```

```
Configure aaa accounting parameters
Configure aaa authentication parameters
Configure aaa authorization parameters
Configure the ip parameters
Configure PCI compliant parameters
Configure domain name
Configure the etherchannel parameters
Configure hostname
Configure http server
Configure logging server
Configure management vlan parameters
Configure name server parameters
Configure NTP server
Configure radius server
Configure SNMP trap parameters
Configure the user parameters
Configure snmp source interface
```

CISCO_SWITCH_TACACS_SERVER_CONFIG	Configure tacacs server
CISCO_SWITCH_USER_PASS_CONFIG	Configure username and password
Device\# macro auto config ?	
CISCO_SWITCH_AAA_ACCOUNTING	Configure aaa accounting parameters
CISCO_SWITCH_AAA_AUTHENTICATION	Configure aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION	Configure aaa authorization parameters
CISCO_SWITCH_AUTO_IP_CONFIG	Configure the ip parameters
CISCO_SWITCH_AUTO_PCI_CONFIG	Configure PCI compliant parameters
CISCO_SWITCH_DOMAIN_NAME_CONFIG	Configure domain name
CISCO_SWITCH_ETHERCEANNEL_CONFIG	Configure the etherchannel parameters
CISCO_SWITCH_HOSTNAME_CONFIG	Configure hostname
CISCO_SWITCH_HTTP_SERVER_CONFIG	Configure http server
CISCO_SWITCH_LOGGING_SERVER_CONFIG	Configure logging server
CISCO_SWITCH_MGMT_VLAN_CONFIG	Configure management vlan parameters
CISCO_SWITCH_NAME_SERVER_CONFIG	Configure name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG	Configure NTP server
CISCO_SWITCH_RADIUS_SERVER_CONFIG	Configure radius server
CISCO_SWITCH_SETUP_SNMP_TRAPS	Configure SNMP trap parameters
CISCO_SWITCH_SETUP_USR_CONFIG	Configure the user parameters
CISCO_SWITCH_SNMP_SOURCE_CONFIG	Configure snmp source interface
CISCO_SWITCH_TACACS_SERVER_CONFIG	Configure tacacs server
CISCO_SWITCH_USER_PASS_CONFIG	Configure username and password

This example shows how to display the parameters for a specific macro:

```
Device# macro auto config CISCO_SWITCH_AUTO_IP_CONFIG ?
CISCO_SWITCH_DOMAIN_NAME_CONFIG_
CISCO_SWITCH_LOGGING_SERVER_CONFIG logging host parameters
CISCO_SWITCH_NAME_SERVER_CONFIG name server parameters
CISCO_SWITCH_NTP_SERVER__CONFIG ntp server parameters
LINE
    Provide parameters of form [Parameters
    name=value]
<cr>
Device# macro auto config CISCO_SWITCH_AUTO_PCI_CONFIG ?
CISCO_SWITCH_AAA_ACCOUNTING - aa\overline{a}}\mathrm{ accōunti
CISCO_SWITCH_AAA_AUTHENTICATION aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION aaa authorization parameters
CISCO_SWITCH_HTTP_SERVER_CONFIG http server parameters
CISCO_SWITCH_RADIUSS_SERVER_CONFIG radius server parameters
CISCO_SWITCH_TACACS_SERVER_CONFIG tacaCs server parameters
LINE
Provide parameters of form [Parameters
name=value]
<cr>
```

Device\# macro auto config CISCO SWITCH SETUP SNMP TRAPS ?
CISCO_SWITCH_SNMP_SOURCE_CONFIG ${ }^{-}$snmp source pārameters
LINE Provide parameters of form [Parameters
name=value]
<cr>
Device\# macro auto config CISCO_SWITCH_SETUP_USR_CONFIG ?CISCO_AUTO_TIMEZONE_CONFIG timezone
parameters
CISCO_SWITCH_HOSTNAME_CONFIG hostname parameter
LINE Provide parameters of form [Parameters
name=value]
<cr>

This example shows how to set macro parameters and apply the macro using the CLI:

```
Device# macro auto config CISCO_SWITCH_ETHERCHANNEL_CONFIG
Enter the port channel id[1-48] for 3K & 2350,[1-6] for 2K: 2
Enter the port channel type, Layer:[2-3(L3 not supported on 2K)]: 2
Enter etherchannel mode for the interface[auto/desirable/on/active/passive]: active
Enter the channel protocol[lacp/none]: lacp
Enter the number of interfaces to join the etherchannel[8-PAGP/MODE:ON,16-LACP]: 7
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/1
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/2
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/3
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/4
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/5
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/6
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/7
Do you want to apply the parameters? [yes/no]: yes
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Device# macro auto apply CISCO_SWITCH_ETHERCHANNEL_CONFIG
Enter configuration commands, one per line. End with CNTL/Z.
Device#
```


macro auto apply (Cisco IOS shell scripting capability)

To configure and apply a global macro using the Cisco IOS shell scripting capability, use the macro auto apply command in privileged EXEC mode. Use the no form of this command to return to the default setting.
macro auto apply macro-name

Syntax Description

Command Default
Command Modes
Command History

apply	Applies the macro.
macro-name	Specifies the macro name.

No macros are applied to the switch.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

To remove the macro from the switch, enter the no forms of the macro commands.
Use the exact text string when entering the macro-name. The entries are case sensitive.
The user-defined values appear only in the show macro auto or show running-config command output.
You can also use the Cisco IOS shell scripting capability to set the parameters. For examples, see the
"Configuring and Applying Global Macros" section in the "Configuring Auto Smartports and Static Smartports Macros" chapter.

Example

This example shows how to display global macros:

```
Device# macro auto apply ?
CISCO_SWITCH_AAA_ACCOUNTING
CISCO_SWITCH_AAA_AUTHENTICATION
CISCO_SWITCH_AAA_AUTHORIZATION
CISCO_SWITCH_AUTO_IP_CONFIG
CISCO_SWITCH_AUTO_PCI__CONFIG
CISCO_SWITCH_DOMAIN_NAME_CONFIG
CISCO_SWITCH_ETHERCHANNEL_CONFIG
CISCO_SWITCH_HOSTNAME_CONFIG
CISCO_SWITCH HTTP SERVER CONFIG
CISCO_SWITCH_LOGGING_SERVER_CONFIG
CISCO_SWITCH_MGMT_VLAN_CONFIG
CISCO_SWITCH_NAME_SERVER_CONFIG
CISCO SWITCH NTP SERVER CONFIG
CISCO_SWITCH_RADİUS_SERV\overline{VR_CONFIG}
CISCO_SWITCH_SETUP_SNMP_TRAPS
CISCO_SWITCH_SETUP_USR_CONFIG
CISCO_SWITCH_SNMP_SOURCE_CONFIG
```

```
Configure aaa accounting parameters
```

Configure aaa accounting parameters
Configure aaa authentication parameters
Configure aaa authentication parameters
Configure aaa authorization parameters
Configure aaa authorization parameters
Configure the ip parameters
Configure the ip parameters
Configure PCI compliant parameters
Configure PCI compliant parameters
Configure domain name
Configure domain name
Configure the etherchannel parameters
Configure the etherchannel parameters
Configure hostname
Configure hostname
Configure http server
Configure http server
Configure logging server
Configure logging server
Configure management vlan parameters
Configure management vlan parameters
Configure name server parameters
Configure name server parameters
Configure NTP server
Configure NTP server
Configure radius server
Configure radius server
Configure SNMP trap parameters
Configure SNMP trap parameters
Configure the user parameters
Configure the user parameters
Configure snmp source interface

```
Configure snmp source interface
```

```
CISCO SWITCH TACACS SERVER CONFIG Configure tacacs server
CISCO_SWITCH_USER_PASS_CONFIG Configure username and password
```


macro auto config (Cisco IOS shell scripting capability)

To configure and apply a global macro, use the macro auto config command in privileged EXEC mode. Use the no form of this command to return to the default setting.
macro auto config macro-name [parameter=value [parameter=value]...]
Syntax Description

config	Enters the macro parameters.
macro-name	Specifies the macro name.
parameter=value [parameter $=$ value]	parameter $=$ value-Replaces values for global macro parameter values. Enter values in the form of name value pair separated by a space: $<$ name $1>=<$ value $1>[<$ name2 $>=<$ value2 $>\ldots]$

Command Default
Command Modes
Command History

No macros are applied to the switch.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
To remove the macro from the switch, enter the no forms of the macro commands.
If you enter the macro auto config macro-name command, you are prompted to enter values for all the macro parameters.

Use the exact text string when entering the macro-name and parameters. The entries are case sensitive.
The user-defined values appear only in the show macro auto or show running-config command output.
You can also use the Cisco IOS shell scripting capability to set the parameters. For examples, see the "Configuring and Applying Global Macros" section in the "Configuring Auto Smartports and Static Smartports Macros" chapter.

macro auto control

To specify when the switch applies an Auto Smartports macro based on the detection method, device type, or trigger (referred to as event trigger control), use the macro auto control command in interface configuration mode. Use the no form of this command to disable trigger-to-macro mapping. The switch then does not apply macros based on event triggers.
macro auto control \{detection [cdp] [lldp] [mac-address] | device [ip-camera] [media-player] [phone] [lightweight-ap] [access-point] [router] [switch]| trigger [last-resort]\} no macro auto control \{detection [cdp] [lldp] [mac-address]| device [ip-camera] [media-player] [phone] [lightweight-ap] [access-point] [router] [switch] | trigger [last-resort]\}

Syntax Description

detection-Sets one or more of these as an event trigger:

- (Optional) cdp-CDP messages
- (Optional) lldp—LLDP messages
-(Optional) mac-address-User-defined MAC address groups
device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]
device-Sets one or more of these devices as an event trigger:
- (Optional)
access-point-Autonomous access point
- (Optional) ip-camera-Cisco IP video surveillance camera
- (Optional) lightweight-ap-Lightweight access point
- (Optional) media-player-Digital media player
- (Optional) phone-Cisco IP phone
- (Optional) router-Cisco router
- (Optional) switch—Cisco switch
trigger [last-resort]
trigger-Sets a specific event trigger.
- (Optional) last-resort-Last-resort trigger.

Command Default		The switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses
MAC address groups, MAB messages, 802.1 x authentication messages, and LLDP messages in random order.		
Command Modes	Interface configuration (config-if)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

If you do not set event triggers, the switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1 x authentication messages, and LLDP messages in random order.

To verify that a macro is applied to an interface, use the show macro auto interface command in user EXEC mode.

Example

This example shows how to set LLDP messages and MAC address groups as event triggers:

```
Device(config)# interface gigabitethernet 5/0/2
Device(config-if) # macro auto control detection lldp mac-address
Device(config-if) # exit
Device(config)# end
```

This example shows how to set access points, video surveillance cameras, and digital media players as event triggers:

Note The switch applies a built-in macro only when it detects an access point, video surveillance camera, or digital media player.

```
Device(config)# interface gigabitethernet 5/0/1
Device(config-if)# macro auto control device access-point ip-camera media-player
Device(config-if) # exit
Device(config)# end
```


macro auto execute

To replace built-in macro default values and to configure mapping from an event trigger to a built-in or user-defined macro, use the macro auto execute command in global configuration mode.
macro auto execute event trigger $\{$ builtin built-in macro \mid remote url $\}\{$ parameter $=$ value $\}\{$ function contents $\}$ no macro auto execute event trigger \{builtin built-in macro | remote url\} \{parameter=value\} \{function contents $\}$

Syntax Description event trigger Defines mapping from an event trigger to a built-in macro.
Specifies an event trigger:

- CISCO_CUSTOM_EVENT
- CISCO_DMP_EVENT
- CISCO_IPVSC_EVENT
- CISCO_LAST_RESORT_EVENT
- CISCO_PHONE_EVENT
- CISCO_ROUTER_EVENT
- CISCO_SWITCH_EVENT
- CISCO_WIRELESS_AP_EVENT
- CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT
- WORD—Apply a user-defined event trigger such as a MAC address group

builtin built-in macro name	(Optional) Specifies a builtin built-in macro name: - CISCO_AP_AUTO_SMARTPORT Specify the parameter value: NATIVE_VLAN=1 - CISCO_DMP_AUTO_SMARTPORT Specify the parameter value: ACCESS_VLAN=1. - CISCO_IPVSC_AUTO_SMARTPORT Specify the parameter value: ACCESS_VLAN=1. - CISCO_LWAP_AUTO_SMARTPORT Specify the parameter value: ACCESS_VLAN=1. - CISCO_PHONE_AUTO_SMARTPORT Specify the parameter values: ACCESS_VLAN=1 and VOICE_VLAN=2. - CISCO_ROUTER_AUTO_SMARTPORT Specify the parameter value: NATIVE_VLAN=1. - CISCO_SWITCH_AUTO_SMARTPORT Specify the parameter value: NATIVE_VLAN=1.
parameter=value	(Optional) parameter = value-Replaces default values for parameter values shown for the bultin-macro name, for example, ACCESS_VLAN=1. Enter new values in the form of name value pair separated by a space: [<namel>=<<valuel> <name2>=<value2>...].
\{function contents\}	(Optional) \{function contents\}- Specifies a user-defined macro to associate with the trigger. Enter the macro contents within braces. Begin the Cisco IOS shell commands with the left brace and end the command grouping with the right brace.

Command Default
 Command Modes

Command History

Usage Guidelines

(Optional) Specifies a remote server location:

- The syntax for the local flash file system on the standalone switch or the stack's active switch: flash:

The syntax for the local flash file system on a stack member:
flash member number:
The syntax for the FTP:
ftp:[[//username[:password]@location]/directory]/filename
The syntax for an HTTP server:
http://[[username:password]@]\{hostname | host-ip\}[/directory]/filename
The syntax for a secure HTTP server:
https://[[username:password]@]\{hostname | host-ip\}[/directory]/filename
The syntax for the NVRAM:
nvram://[[username:password]@][/directory]/filename
The syntax for the Remote Copy Protocol (RCP):
rcp:[[//username@location]/directory]/filename
The syntax for the Secure Copy Protocol (SCP):
scp:[[//username@location]/directory]/filename
The syntax for the TFTP:
tftp:[[//location]/directory]/filename

None
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the macro auto execute command to replace the built-in macro default values with values that are specific to your switch.

The switch automatically maps from event triggers to built-in macros. The built-in macros are system-defined macros in the software image. You can also create user-defined macros by using the Cisco IOS shell scripting capability.
You can create new event triggers by using the shell trigger commands in global configuration mode. Use the show shell triggers command in privileged EXEC to display the contents of the user-defined triggers and macros.

You can use the macro auto mac-address-group command in global configuration mode to create event triggers for devices that do not support Cisco Discovery Protocol (CDP) or Link Layer Discovery Protocol (LLDP).

You can use the remote macro feature to store macros in a central location for designated network switches to use. You can then maintain and update the macro files for use by multiple switches. Use remote url to configure the remote server location and macro path information. There are no specific file extension requirements for saved macro files.

Auto Smartports macros and antimacros (the antimacro is the portion of the applied macro that removes it at link down) have these guidelines and limitations:

- You can delete or change the built-in macros. However, you can override a built-in macro by creating a user-defined macro with the same name. To restore the original built-in macro, delete the user-defined macro.
- If you enable both the macro auto device and the macro auto execute commands, the parameters specified in the command last executed are applied to the switch. Only one command is active on the switch.
- To avoid system conflicts when macros are applied, remove all port configurations except for 802.1 x authentication.
- Do not configure port security when enabling Auto SmartPorts on the switch.
- If the macro conflicts with the original configuration, either the macro does not apply some of the original configuration commands, or the antimacro does not remove them. (The antimacro is the portion of the applied macro that removes the macro at a link-down event.)
- For example, if 802.1x authentication is enabled, you cannot remove the switchport-mode access configuration. Remove the 802.1 x authentication before removing the switchport mode configuration.
- A port cannot be a member of an EtherChannel when you apply Auto SmartPorts macros.
- The built-in-macro default data VLAN is VLAN 1. The default voice VLAN is VLAN 2. If your switch uses different access, native, or voice VLANs, use the macro auto device or the macro auto execute commands to configure the values.
- For 802.1x authentication or MAC authentication bypass (MAB), to detect non-Cisco devices, configure the RADIUS server to support the Cisco attribute-value pair auto-smart-port=event trigger
- The switch supports Auto SmartPort macros only on directly connected devices. Multiple device connections, such as hubs, are not supported.
- If authentication is enabled on a port, the switch ignores a MAC address trigger if authentication fails.
- The order of CLI commands within the macro and the corresponding antimacro can be different.

Example

This example shows how to use two built-in macros for connecting Cisco switches and Cisco IP phones to the switch. This example modifies the default voice VLAN, access VLAN, and native VLAN for the trunk interface:

```
Device(config)# !!! the next command modifies the access and voice vlans
Device(config)# !!! for the built in Cisco IP phone auto smartport macro
Device(config)# macro auto execute CISCO_PHONE_EVENT builtin CISCO_PHONE_AUTO_SMARTPORT
ACCESS_VLAN=10 VOICE_VLAN=20
Device(config)# !!! the next command modifies the Native vlan used for inter switch trunks
```

```
Device(config)# macro auto execute CISCO SWITCH EVENT builtin CISCO SWITCH AUTO SMARTPORT
NATIVE VLAN=10
Device(config)# !!! the next command enables auto smart ports globally
Device(config)# macro auto global processing
Device(config)# exit
Device# !!! here is the running configuration of the interface connected
Device# !!! to another Cisco Switch after the Macro is applied
Device# show running-config interface gigabitethernet1/0/1
Building configuration...
Current configuration : 284 bytes
!
interface GigabitEthernet1/0/1
    switchport trunk encapsulation dotlq
    switchport trunk native vlan 10
    switchport mode trunk
    srr-queue bandwidth share 10 10 60 20
    queue-set 2
    priority-queue out
    mls qos trust cos
    auto qos voip trust
    macro description CISCO_SWITCH_EVENT
end
```

This example shows how to map a user-defined event trigger called media player to a user-defined macro

1. Connect the media player to an 802.1 x - or MAB-enabled switch port.
2. On the RADIUS server, set the attribute-value pair to auto-smart-port=DMP_EVENT
3. On the switch, create the event trigger DMP_EVENT, and enter the user-defined macro commands.
4. The switch recognizes the attribute-value pair=DMP_EVENT response from the RADIUS server and applies the macro associated with this event trigger.
```
Device(config)# shell trigger DMP EVENT mediaplayer
Device(config)# macro auto execute\overline{e DMP_EVENT {}
if [[ $LINKUP == YES ]]; then
conf t
    interface $INTERFACE
        macro description $TRIGGER
        switchport access vlan 1
        switchport mode access
        switchport port-security
        switchport port-security maximum 1
        switchport port-security violation restrict
        switchport port-security aging time 2
        switchport port-security aging type inactivity
        spanning-tree portfast
        spanning-tree bpduguard enable
        exit
fi
if [[ $LINKUP == NO ]]; then
conf t
interface $INTERFACE
            no macro description $TRIGGER
            no switchport access vlan 1
            if [[ $AUTH_ENABLED == NO ]]; then
                    no switchport mode access
            fi
```

```
switchport port-security
switchport port-security maximum 1
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
spanning-tree portfast
spanning-tree bpduguard enable
```

exit
fi

Table 13: Supported Cisco IOS Shell Keywords

Command	Description
$\{$	Begin the command grouping.
$\}$	End the command grouping.
[[Use as a conditional construct.
]]	Use as a conditional construct.
else	Use as a conditional construct.
$==$	Use as a conditional construct.
fi	Use as a conditional construct.
if	Use as a conditional construct.
then	Use as a conditional construct.
-z	Use as a conditional construct.
\$	Variables that begin with the \$ character are replaced with a parameter value.
\#	Use the \# character to enter comment text.

Table 14: Unsupported Cisco IOS Shell Reserved Keywords

Command	Description
l	Pipeline.
case	Conditional construct.
esac	Conditional construct.
for	Looping construct.
function	Shell function.
in	Conditional construct.
select	Conditional construct.

Command	Description
time	Pipeline.
until	Looping construct.
while	Looping construct.

macro auto global control

To specify when the switch applies an Auto Smartports macro based on the device type or trigger (referred to as event trigger control), use the macro auto global control command in global configuration mode. Use the no form of this command to disable trigger-to-macro mapping.
macro auto global control \{detection [cdp] [lldp][mac-address] | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | trigger [last-resort]\} no macro auto global control \{detection [cdp] [lldp] [mac-address] | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | trigger [last-resort]\}

Syntax Description
detection [cdp] [lldp] [mac-address]
detection-Sets one or more of these as an event trigger:

- (Optional) cdp-CDP messages
- (Optional) lldp—LLDP messages
-(Optional) mac-address-User-defined MAC address groups
device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]
device-Sets one or more of these devices as an event trigger:
-(Optional) access-point-Autonomous access point
- (Optional) ip-camera-Cisco IP video surveillance camera
- (Optional) lightweight-ap-Lightweight access point
- (Optional) media-player-Digital media player
- (Optional) phone - Cisco IP phone
- (Optional) router-Cisco router
- (Optional) switch—Cisco switch
trigger [last-resort]
trigger-Sets a specific event trigger.
- (Optional) last-resort - Last-resort trigger.

| Command Modes | | |
| :--- | :--- | :--- | :--- |
| | Release configuration (config) | Modification |
| | Cisco IOS XE Everest 16.5.1a | This command was introduced. |

Usage Guidelines
If you do not set event triggers, the switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1 x authentication messages, and LLDP messages in random order.
To verify that a macro is applied to a switch, use the show macro auto global command in user EXEC mode.

Example

This example shows how to set CDP messages, LLDP messages and MAC address groups as event triggers:

```
Device(config)# macro auto global control detection cdp lldp mac-address
Device(config)# end
```

This example shows how to set autonomous access points, lightweight access points, and IP phones:

```
Device(config)# macro auto global control device access-point lightweight-ap phone
Device(config)# end
```


macro auto global processing

To enable Auto SmartPorts macros on the switch, use the macro auto global processing command in global configuration mode. Use the no form of this command to disable the macros.
macro auto global processing
no macro auto global processing

Command Default
Command Modes
Command History

Usage Guidelines
Use the macro auto global processing command to globally enable macros on the switch. To disable macros on a specific port, use the no macro auto processing command in interface mode.

When using 802.1 x or MAB authentication, you need to configure the RADIUS server to support the Cisco attribute-value pair auto-smart-port=event trigger. If authentication fails, the macro is not applied. If the 802.1x or MAB authentication fails on the interface, the switch does not use the fallback CDP event trigger.

When CDP-identified devices advertise multiple capabilities, the switch chooses a capability first by switch and then by router.

To verify that a macro is applied to an interface, use the show macro auto interfacecommand in privileged EXEC mode.

Example

This example shows how to enable Auto SmartPorts on the switch and to disable the feature on a specific interface:

```
Device(config)# macro auto global processing
Device(config)# interface gigabitethernet 0/1
Device(config-if)# no macro auto processing
Device(config-if)# exit
Device(config)#
```


macro auto mac-address-group

To create an event trigger for devices that do not support Cisco Discovery Protocol (CDP) or Link Layer Discover Protocol (LLDP), use the macro auto mac-address-group command in global configuration mode. Use the no form of this command to delete the group.
macro auto mac-address-group name \{mac-address list list | oui \{list list | range start-value size number \} $\}$
no macro auto mac-address-group name \{mac-address list list | oui \{list list | range start-value size number\} \}

Syntax Description

Command Default
 Command Modes
 Command History

Usage Guidelines

name	Specifies the group name.
ui	(Optional) Specifies an operationally unique identifier (OUI) list or range. • list—Enter an OUI list in hexadecimal format separated by spaces. • range—Enter the starting OUI hexadecimal value (start-value). • size-Enter the length of the range (number) from 1 to 5 to create a list of sequential addresses.
mac-address list list	
(Optional) Configures a list of MAC addresses separated by a space.	

Use the macro auto mac-address-group command to create an event trigger for devices that do not support CDP or LLDP. Use the MAC address group as a trigger to map to a built-in or user-defined macro by using the macro auto execute command. At link-up the switch detects the device type and applies the specified macro.

The switch supports up to ten MAC address groups. Each group can have up to 32 OUI and 32 MAC configured addresses.

Example

This example shows how to create a MAC-address-group event trigger called address_trigger and how to verify your entries:

```
Device(config)# macro auto mac-address-group mac address_trigger
Device(config-addr-grp-mac)# mac-address list 2222.3333.3334 22.33.44 a.b.c
Device(config-addr-grp-mac)# oui list 455555 233244
```

```
Device(config-addr-grp-mac)# oui range 333333 size 2
Device(config-addr-grp-mac) # exit
Device(config)# end
Device# show running configuration
!
!macro auto mac-address-group address_trigger
    oui list 333334
    oui list 333333
    oui list 233244
    oui list 455555
    mac-address list 000A.000B.000C
    mac-address list 0022.0033.0044
    mac-address list 2222.3333.3334
!
<output truncated>
```


macro auto processing

To enable Auto SmartPorts macros on an interface, use the macro auto processing command in interface configuration mode. Use the no form of this command to disable the macros.
macro auto processing
no macro auto processing

Command Default	Auto SmartPorts is disabled.	
Command Modes	Interface configuration (config-if)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Use the macro auto processing command, in interface configuration mode, to enable macros on a specific interface. To disable macros on a specific interface, use the no macro auto processing command, in interface configuration mode.

A port cannot be a member of an EtherChannel when you apply Auto SmartPorts macros. If you use EtherChannels, disable Auto SmartPorts on the EtherChannel interface by using the no macro auto processing command. The EtherChannel interface applies the configuration to the member interfaces.

To verify that a macro is applied to an interface, use the show macro auto interface command in privileged EXEC mode.

Example

This example shows how to enable Auto SmartPorts on the switch and to disable the feature on a specific interface:

```
Device(config)# interface gigabitethernet 0/1
Device(config-if)# no macro auto processing
Device(config-if) # exit
Device(config) # macro auto global processing
```


macro auto sticky

To configure macros to remain active after a link-down event, referred to as macro persistence, use the macro auto sticky command in global configuration mode. Use the no form of this command to disable the macro persistence.
macro auto sticky no macro auto sticky

$\overline{\text { Command Default }}$	Macro persistence is disabled.
$\overline{\text { Command Modes }}$ Global configuration (config)	

Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines Use the macro auto sticky command so that macros remain active after a link-down event.

Example

This example shows how to enable macro persistence on an interface:

```
Device(config)# interface gigabitethernet 5/0/2
Device(config-if)# macro auto port sticky
Device(config-if) # exit
Device(config)# end
```


macro auto trigger

To enter the configure-macro-trigger mode and define a trigger for a device that has no built-in trigger and associate the trigger with a device or profile, use the macro auto trigger command in global configuration mode. To remove the user-defined trigger, use the no form of this command.
macro auto trigger trigger_name \{device | exit | no | profile\} no macro auto trigger trigger_name \{device | exit | no | profile\}

Syntax Description

trigger_name
Specifies a trigger to be associated with the device type or profile name.

device	Specifies a device name to map to the named trigger.
exit	Exits device group configuration mode.
no	Removes any configured device.
profile	Specifies a profile name to map to the named trigger.

Command Default
Command Modes
Command History

Usage Guidelines

No user-defined triggers are configured.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

If a device is classified by the Device Classifier, but does not have a built-in trigger defined, use the macro auto trigger command, in global configuration mode, to define a trigger based on a device name or a profile name. After you enter the command, the switch is in the configure-macro-trigger mode and the device, exit, no, and profile keywords are visible. In this mode, you can provide a device name or a profile name to map to the trigger. It is not necessary to map the trigger to both a device name and a profile name. If you map the trigger to both names, the trigger-to-profile name mapping has preference for macro application.
You must use this command to configure a trigger when you configure a user-defined macro. The trigger name is required for the custom macro configuration.
After the device is profiled, you must add the complete string to the device-group database.

Example

This example shows how to configure a user-defined trigger for a profile called DMP_EVENT mediaplayer for use with a media player that has no built-in trigger:

```
Device(config)# macro auto trigger DMP
Device(config-macro-trigger) # profile mediaplayer-DMP
Device(config-macro-trigger)# exit
```


macro description

To enter a description about which macros are applied to an interface, use the macro description command in interface configuration mode. Use the no form of this command to remove the description. This command is mandatory for Auto SmartPorts to work.
macro description text
no macro description text

$\overline{\text { Command Default }}$
Command Modes

Command History
description text

Enters a description about the macros that are applied to the specified interface.

This command has no default setting.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the description keyword to associate comment text or the macro name with an interface. When multiple macros are applied on a single interface, the description text is from the last applied macro.
You can verify your settings by entering the show parser macro description command in privileged EXEC mode.

Example

This example shows how to add a description to an interface:
(config-if) \# macro description duplex settings

macro global

To apply a macro to a switch or to apply and debug a macro on a switch, use the macro global command in global configuration mode.
macro global \{apply | trace\} macro-name $[$ parameter $\{$ value $\}][$ parameter $\{$ value $\}][$ parameter $\{$ value $\}]$ parameter

Syntax Description

apply	Applies a macro to the switch.
trace	Applies a macro to a switch and debugs the macro.
macro-name	Specifies the name of the macro.
parameter value	(Optional) Specifies unique parameter values that are specific to the switch. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Command Default
Command Modes
Command History

Usage Guidelines

This command has no default setting.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Note You can delete a global macro-applied configuration on a switch only by entering the no version of each command in the macro.

Use the macro global apply macro-name command to apply the macro to an interface.
Use the macro global trace macro-name command to apply and then debug the macro to find any syntax or configuration errors.

If a command fails when you apply a macro because of a syntax error or a configuration error, the macro continues to apply the remaining commands to the switch.

When creating a macro that requires the assignment of unique values, use the parameter value keywords to designate values specific to the switch.
Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.
Some macros might contain keywords that require a parameter value. You can use the macro global apply macro-name ? command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the show parser macro command in user EXEC mode.
Follow these guidelines when you apply a Cisco-default Smartports macro on a switch:

- Display all macros on the switch by using the show parser macro command. Display the contents of a specific macro by using the show parser macro name macro-name command.
- Keywords that begin with $\$$ mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the parameter value keywords.

The Cisco-default macros use the $\$$ character to help identify required keywords. There is no restriction on using the $\$$ character to define keywords when you create a macro.

When you apply a macro to a switch, the macro name is automatically added to the switch. You can display the applied commands and macro names by using the show running-config command.

Example

After you have created a new macro by using the macro auto execute command, you can apply it to a switch. This example shows how to view the snmp macro, how to apply the macro, set the hostname to test-server, and set the IP precedence value to 7:

```
Device# show parser macro name snmp
Macro name : snmp
Macro type : customizable
#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE
Device(config)# macro global apply snmp ADDRESS test-server VALUE 7
```

To debug a macro, use the macro global trace command to find any syntax or configuration errors in the macro when you apply it to a switch. In this example, the ADDRESS parameter value was not entered, the snmp-server host command failed, and the remainder of the macro is applied to the switch:

```
Device(config)# macro global trace snmp VALUE 7
Applying command...'snmp-server enable traps port-security'
Applying command...'snmp-server enable traps linkup'
Applying command...'snmp-server enable traps linkdown'
Applying command...'snmp-server host'
%Error Unknown error.
Applying command...'snmp-server ip precedence 7'
```


macro global description

To enter a description about the macros that are applied to a switch, use the macro global description command in global configuration mode. Use the no form of this command to remove the description.
macro global description text
no macro global description text

Syntax Description	description text	Enters a description about the macros that are applied to the switch.
Command Default	This command has no default setting.	
$\overline{\text { Command Modes }}$	Global configuration (config)	Modification
Command History	Release	This command was introduced.

Usage Guidelines

Use the description keyword to associate comment text or the macro name with a switch. When multiple macros are applied on a switch, the description text is from the last applied macro.
You can verify your settings by entering the show parser macro description command in privileged EXEC mode.

Example

This example shows how to add a description to a switch:

Device(config)\# macro global description udld aggressive mode enabled

mdix auto

To enable the automatic medium-dependent interface crossover (auto-MDIX) feature on the interface, use the mdix auto command in interface configuration mode. To disable auto-MDIX, use the no form of this command.
mdix auto
no mdix auto

Syntax Description
Command Default
Command Modes
Command History

This command has no arguments or keywords.
Auto-MDIX is enabled.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
When auto-MDIX is enabled, the interface automatically detects the required cable connection type (straight-through or crossover) and configures the connection appropriately.
When you enable auto-MDIX on an interface, you must also set the interface speed and duplex to auto so that the feature operates correctly.

When auto-MDIX (and autonegotiation of speed and duplex) is enabled on one or both of the connected interfaces, link up occurs, even if the cable type (straight-through or crossover) is incorrect.

Auto-MDIX is supported on all $10 / 100$ and $10 / 100 / 1000 \mathrm{Mb} /$ s interfaces and on $10 / 100 / 1000 \mathrm{BASE}-\mathrm{TX}$ small form-factor pluggable (SFP) module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.

You can verify the operational state of auto-MDIX on the interface by entering the show controllers ethernet-controller interface-id phy privileged EXEC command.

This example shows how to enable auto-MDIX on a port:

```
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto
Device(config-if) # duplex auto
Device(config-if) # mdix auto
Device(config-if)# end
```


mode (power-stack configuration)

To configure power stack mode for the power stack, use the mode command in power-stack configuration mode. To return to the default settings, use the no form of the command.
mode \{power-shared |redundant\} [strict] no mode

Syntax Description	power-shared	Sets the power stack to operate in power-shared mode. This is the default.
	redundant	Sets the power stack to operate in redundant mode. The largest power supply is removed from the power pool to be used as backup power in case one of the other power supplies fails.
	strict	(Optional) Configures the power stack mode to run a strict power budget. The stack power needs cannot exceed the available power.
Command Default	The default modes are power-shared and nonstrict.	
Command Modes	Power-stack configuration (config-stackpower)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

This command is available only on switch stacks running the IP Base or IP Services feature set.
To access power-stack configuration mode, enter the stack-power stack power stack name global configuration command.

Entering the no mode command sets the switch to the defaults of power-shared and non-strict mode.

For stack power, available power is the total power available for PoE from all power supplies in the power stack, available power is the power allocated to all powered devices connected to PoE ports in the stack, and consumed power is the actual power consumed by the powered devices.

In power-shared mode, all of the input power can be used for loads, and the total available power appears as one large power supply. The power budget includes all power from all supplies. No power is set aside for power supply failures. If a power supply fails, load shedding (shutting down of powered devices or switches) might occur.

In redundant mode, the largest power supply is removed from the power pool to use as backup power in case one of the other power supplies fails. The available power budget is the total power minus the largest power supply. This reduces the available power in the pool for switches and powered devices, but in case of a failure or an extreme power load, there is less chance of having to shut down switches or powered devices.

In strict mode, when a power supply fails and the available power drops below the budgeted power, the system balances the budget through load shedding of powered devices, even if the actual power is less than the available power. In nonstrict mode, the power stack can run in an over-allocated state and is stable as long as
the actual power does not exceed the available power. In this mode, a powered device drawing more than normal power could cause the power stack to start shedding loads. This is normally not a problem because most devices do not run at full power. The chances of multiple powered devices in the stack requiring maximum power at the same time is small.

In both strict and nonstrict modes, power is denied when there is no power available in the power budget.

This is an example of setting the power stack mode for the stack named power1 to power-shared with strict power budgeting. All power in the stack is shared, but when the total available power is allotted, no more devices are allowed power.

```
Device(config)# stack-power stack power1
Device(config-stackpower) # mode power-shared strict
Device(config-stackpower)# exit
```

This is an example of setting the power stack mode for the stack named power2 to redundant. The largest power supply in the stack is removed from the power pool to provide redundancy in case one of the other supplies fails.

```
Device(config)# stack-power stack power2
Device(config-stackpower) # mode redundant
Device(config-stackpower)# exit
```


monitoring

To enable monitoring of all optical transceivers and to specify the time period for monitoring the transceivers, use the monitoring command in transceiver type configuration mode. To disable the monitoring, use the no form of this command.
monitoring [interval seconds] no monitoring [interval]

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines

interval seconds	(Optional) Specifies the time interval for monitoring optical transceivers. The range is from 300 to 3600 seconds, and the default interval time is 600 seconds.

The interval time is 600 seconds.
Transceiver type configuration (config-xcvr-type)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You need digital optical monitoring (DOM) feature and transceiver module compatibility information to configure the monitoring command. Refer to the compatibility matrix to get the lists of Cisco platforms and minimum required software versions to support Gigabit Ethernet transceiver modules.
Gigabit Ethernet Transceivers transmit and receive Ethernet frames at a rate of a gigabit per second, as defined by the IEEE 802.3-2008 standard. Cisco's Gigabit Ethernet Transceiver modules support Ethernet applications across all Cisco switching and routing platforms. These pluggable transceivers offer a convenient and cost effective solution for the adoption in data center, campus, metropolitan area access and ring networks, and storage area networks.

The interval keyword enables you to change the default polling interval. For example, if you set the interval as 1500 seconds, polling happens at every 1500 th second. During the polling period entSensorStatus of optical transceivers is set to Unavailable, and once the polling finishes entSensorStatus shows the actual status.

$\overline{\text { Examples }}$

This example shows how to enable monitoring of optical transceivers and set the interval time for monitoring to 1500 seconds:

Device\# configure terminal
Device(config) \# transceiver type all
Device(config-xcvr-type) \# monitoring interval 1500
This example shows how to disable monitoring for all transceiver types:
Device(config-xcvr-type) \# no monitoring

Related Commands

Command	Description
transceiver type all	Enables monitoring on all transceivers.

network-policy

To apply a network-policy profile to an interface, use the network-policy command in interface configuration mode. To remove the policy, use the no form of this command.
network-policy profile-number no network-policy

Syntax Description

Command Modes
Command History
profile-number The network-policy profile number to apply to the interface.

No network-policy profiles are applied.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines Use the network-policy profile number interface configuration command to apply a profile to an interface.
You cannot apply the switchport voice vlan command on an interface if you first configure a network-policy profile on it. However, if switchport voice vlan vlan-id is already configured on the interface, you can apply a network-policy profile on the interface. The interface then has the voice or voice-signaling VLAN network-policy profile applied.

This example shows how to apply network-policy profile 60 to an interface:

```
Device(config) # interface gigabitethernet1/0/1
```

Device(config-if) \# network-policy 60

network-policy profile (global configuration)

To create a network-policy profile and to enter network-policy configuration mode, use the network-policy profile command in global configuration mode. To delete the policy and to return to global configuration mode, use the no form of this command.
network-policy profile profile-number no network-policy profile profile-number

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

profile-number Network-policy profile number. The range is 1 to 4294967295.

No network-policy profiles are defined.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the network-policy profile global configuration command to create a profile and to enter network-policy profile configuration mode.

To return to privileged EXEC mode from the network-policy profile configuration mode, enter the exit command.

When you are in network-policy profile configuration mode, you can create the profile for voice and voice signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.
These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).

This example shows how to create network-policy profile 60:

power-priority

To configure Cisco StackPower power-priority values for a switch in a power stack and for its high-priority and low-priority PoE ports, use the power-priority command in switch stack-power configuration mode. To return to the default setting, use the no form of the command.

```
power-priority {high value|low value|switch value}
no power-priority {high | low | switch}
```

Syntax Description

Command Default
If no values are configured, the power stack randomly determines a default priority.
The default ranges are 1 to 9 for switches, 10 to 18 for high-priority ports, 19 to 27 for low-priority ports.
On non-PoE switches, the high and low values (for port priority) have no effect.
Command Modes

Command History
high value Sets the power priority for the ports configured as high-priority ports. The range is 1 to 27, with 1 as the highest priority. The high value must be lower than the value set for the low-priority ports and higher than the value set for the switch.
low value Sets the power priority for the ports configured as low-priority ports. The range is 1 to 27 . The low value must be higher than the value set for the high-priority ports and the value set for the switch.
switch Sets the power priority for the switch. The range is 1 to 27 . The switch value must be lower value than the values set for the low and high-priority ports.

Switch stack-power configuration (config-stack)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
To access switch stack-power configuration mode, enter the stack-power switch switch-number global configuration command.

Cisco StackPower power-priority values determine the order for shutting down switches and ports when power is lost and load shedding must occur. Priority values are from 1 to 27 ; the highest numbers are shut down first.

We recommend that you configure different priority values for each switch and for its high priority ports and low priority ports to limit the number of devices shut down at one time during a loss of power. If you try to configure the same priority value on different switches in a power stack, the configuration is allowed, but you receive a warning message.

Note This command is available only on switch stacks running the IP Base or IP Services feature set.

Examples

```
Device(config)# stack-power switch 1
Device(config-switch-stackpower)# stack-id power_stack_a
Device(config-switch-stackpower) # power-priority high 11
Device(config-switch-stackpower)# power-priority low 20
Device(config-switch-stackpower)# power-priority switch 7
Device(config-switch-stackpower) # exit
```


power inline

To configure the power management mode on Power over Ethernet (PoE) ports, use the power inline command in interface configuration mode. To return to the default settings, use the no form of this command.
power inline \{auto [max max-wattage]| never|port priority \{high |low\}|static [max max-wattage] $\}$
no power inline $\{$ auto \mid never \mid port priority $\{$ high \mid low $\} \mid$ static [max max-wattage] $\}$

Syntax Description

auto	Enables powered-device detection. If enough power is available, automatically allocates power to the PoE port after device detection. Allocation is first-come, first-serve.
max max-wattage	(Optional) Limits the power allowed on the port. The range is 4000 to 30000 mW. If no value is specified, the maximum is allowed.
never	Disables device detection, and disables power to the port.
port	Configures the power priority of the port. The default priority is low.
priority $\{$ high \mid low $\}$	Sets the power priority of the port. In case of a power supply failure, ports configured as low priority are turned off first and ports configured as high priority are turned off last. The default priority is low.

static

Enables powered-device detection. Pre-allocates (reserves) power for a port before the switch discovers the powered device. This action guarantees that the device connected to the interface receives enough power.

Command Default
The default is auto (enabled).
The maximum wattage is $30,000 \mathrm{~mW}$.
The default port priority is low.

Command Default Interface configuration (config-if)

Command History

sage Guidelines

Release
 Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

This command is supported only on PoE-capable ports. If you enter this command on a port that does not support PoE, this error message appears:

Device(config) \# interface gigabitethernet1/0/1
Device(config-if) \# power inline auto
\% Invalid input detected at '^' marker.

In a switch stack, this command is supported on all ports in the stack that support PoE.
Use the max max-wattage option to disallow higher-power powered devices. With this configuration, when the powered device sends Cisco Discovery Protocol (CDP) messages requesting more power than the maximum wattage, the switch removes power from the port. If the powered-device IEEE class maximum is greater than the maximum wattage, the switch does not power the device. The power is reclaimed into the global power budget.

The switch never powers any class 0 or class 3 device if the power inline max max-wattage command is configured for less than 30 W .

If the switch denies power to a powered device (the powered device requests more power through CDP messages or if the IEEE class maximum is greater than the maximum wattage), the PoE port is in a power-deny state. The switch generates a system message, and the Oper column in the show power inline privileged EXEC command output shows power-deny.

Use the power inline static max max-wattage command to give a port high priority. The switch allocates PoE to a port configured in static mode before allocating power to a port configured in auto mode. The switch reserves power for the static port when it is configured rather than upon device discovery. The switch reserves the power on a static port even when there is no connected device and whether or not the port is in a shutdown or in a no shutdown state. The switch allocates the configured maximum wattage to the port, and the amount is never adjusted through the IEEE class or by CDP messages from the powered device. Because power is pre-allocated, any powered device that uses less than or equal to the maximum wattage is guaranteed power when it is connected to a static port. However, if the powered device IEEE class is greater than the maximum wattage, the switch does not supply power to it. If the switch learns through CDP messages that the powered device needs more than the maximum wattage, the powered device is shut down.

If the switch cannot pre-allocate power when a port is in static mode (for example, because the entire power budget is already allocated to other auto or static ports), this message appears: Command rejected: power inline static: pwr not available. The port configuration remains unchanged.

When you configure a port by using the power inline auto or the power inline static interface configuration command, the port autonegotiates by using the configured speed and duplex settings. This is necessary to determine the power requirements of the connected device (whether or not it is a powered device). After the power requirements have been determined, the switch hardcodes the interface by using the configured speed and duplex settings without resetting the interface.
When you configure a port by using the power inline never command, the port reverts to the configured speed and duplex settings.

If a port has a Cisco powered device connected to it, you should not use the power inline never command to configure the port. A false link-up can occur, placing the port in an error-disabled state.
Use the power inline port priority $\{$ high | low $\}$ command to configure the power priority of a PoE port. Powered devices connected to ports with low port priority are shut down first in case of a power shortage.

You can verify your settings by entering the show power inline EXEC command.

Examples

This example shows how to enable detection of a powered device and to automatically power a PoE port on a switch:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline auto
```

This example shows how to configure a PoE port on a switch to allow a class 1 or a class 2 powered device:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if) # power inline auto max 7000
```

This example shows how to disable powered-device detection and to not power a PoE port on a switch:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline never
```

This example shows how to set the priority of a port to high, so that it would be one of the last ports to be shut down in case of power supply failure:

```
Device(config) # interface gigabitethernet1/0/2
Device(config-if)# power inline port priority high
```


power inline police

To enable policing of real-time power consumption on a powered device, use the power inline police command in interface configuration mode. To disable this feature, use the no form of this command
power inline police [action \{errdisable |log\}]
no power inline police

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

> | $\begin{array}{l}\text { action } \\ \text { errdisable }\end{array}$ | $\begin{array}{l}\text { (Optional) Configures the device to turn off power to the port if the real-time power } \\ \text { consumption exceeds the maximum power allocation on the port. This is the default action. }\end{array}$ |
| :--- | :--- |
| action log | $\begin{array}{l}\text { (Optional) Configures the device to generate a syslog message while still providing power } \\ \text { to a connected device if the real-time power consumption exceeds the maximum power } \\ \text { allocation on the port. }\end{array}$ |

Policing of the real-time power consumption of the powered device is disabled.

Interface configuration (config-if)

Release

Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

This command is supported only on Power over Ethernet (PoE)-capable ports. If you enter this command on a device or port that does not support PoE , an error message appears.

In a switch stack, this command is supported on all switches or ports in the stack that support PoE and real-time power-consumption monitoring.

When policing of the real-time power consumption is enabled, the device takes action when a powered device consumes more power than the allocated maximum amount.

When PoE is enabled, the device senses the real-time power consumption of the powered device. This feature is called power monitoring or power sensing. The device also polices the power usage with the power policing feature.

When power policing is enabled, the device uses one of the these values as the cutoff power on the PoE port in this order:

1. The user-defined power level that limits the power allowed on the port when you enter the power inline auto max max-wattage or the power inline static max max-wattage interface configuration command
2. The device automatically sets the power usage of the device by using CDP power negotiation or by the IEEE classification and LLPD power negotiation.

If you do not manually configure the cutoff-power value, the device automatically determines it by using CDP power negotiation or the device IEEE classification and LLDP power negotiation. If CDP or LLDP are not enabled, the default value of 30 W is applied. However without CDP or LLDP, the device does not allow devices to consume more than 15.4 W of power because values from 15400 to 30000 mW are only allocated based on CDP or LLDP requests. If a powered device consumes more than 15.4 W without CDP or LLDP negotiation, the device might be in violation of the maximum current Imax limitation and might experience
an Icut fault for drawing more current than the maximum. The port remains in the fault state for a time before attempting to power on again. If the port continuously draws more than 15.4 W , the cycle repeats.

When a powered device connected to a PoE + port restarts and sends a CDP or LLDP packet with a power TLV, the device locks to the power-negotiation protocol of that first packet and does not respond to power requests from the other protocol. For example, if the device is locked to CDP, it does not provide power to devices that send LLDP requests. If CDP is disabled after the device has locked on it, the device does not respond to LLDP power requests and can no longer power on any accessories. In this case, you should restart the powered device.

If power policing is enabled, the device polices power usage by comparing the real-time power consumption to the maximum power allocated on the PoE port. If the device uses more than the maximum power allocation (or cutoff power) on the port, the device either turns power off to the port, or the device generates a syslog message and updates the LEDs (the port LEDs are blinking amber) while still providing power to the device.

- To configure the device to turn off power to the port and put the port in the error-disabled state, use the power inline police interface configuration command.
- To configure the device to generate a syslog message while still providing power to the device, use the power inline police action log command.

If you do not enter the action log keywords, the default action is to shut down the port, turn off power to it, and put the port in the PoE error-disabled state. To configure the PoE port to automatically recover from the error-disabled state, use the errdisable detect cause inline-power global configuration command to enable error-disabled detection for the PoE cause and the errdisable recovery cause inline-power interval interval global configuration command to enable the recovery timer for the PoE error-disabled cause.

If policing is disabled, no action occurs when the powered device consumes more than the maximum power allocation on the port, which could adversely affect the device.

You can verify your settings by entering the show power inline police privileged EXEC command.

This example shows how to enable policing of the power consumption and configuring the device to generate a syslog message on the PoE port on a device:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline police action log
```


power supply

To configure and manage the internal power supplies on a switch, use the power supply command in privileged EXEC mode.
power supply stack-member-number slot $\{\mathbf{A} \mid \mathbf{B}\}\{$ off \mid on $\}$

Syntax Description

stack-member-number

Stack member number for which to configure the internal power supplies. The range is 1 to 9 , depending on the number of switches in the stack.

This parameter is available only on stacking-capable switches.

slot	Selects the switch power supply to set.
A	Selects the power supply in slot A.
B	Selects the power supply in slot B.
	Note \quadPower supply slot B is the closest slot to the outer edge of the switch.

off	Sets the switch power supply to off.
on	Sets the switch power supply to on.

Command Default
 Command Modes

Command History

The switch power supply is on.
Privileged EXEC

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

The power supply command applies to a switch or to a switch stack where all switches are the same platform.
In a switch stack with the same platform switches, you must specify the stack member before entering the slot $\{\mathbf{A} \mid \mathbf{B}\}$ off or on keywords.

To return to the default setting, use the power supply stack-member-number on command.
You can verify your settings by entering the show env power privileged EXEC command.

Examples

This example shows how to set the power supply in slot A to off:

```
Device> power supply 2 slot A off
Disabling Power supply A may result in a power loss to PoE devices and/or switches ...
Continue? (yes/[no]): yes
Device
Jun 10 04:52:54.389: %PLATFORM_ENV-6-FRU_PS_OIR: FRU Power Supply 1 powered off
Jun 10 04:52:56.717: %PLATFORM_ENV-1-FAN_NOT_PRESENT: Fan is not present
```

This example shows how to set the power supply in slot A to on:

```
Device> power supply 1 slot B on
Jun 10 04:54:39.600: %PLATFORM_ENV-6-FRU_PS_OIR: FRU Power Supply 1 powered on
```

This example shows the output of the show env power command:

power supply autoLC shutdown

To enable automatic shutdown control on linecards, use the power supply autoLC shutdown command in global configuration mode. This command is enabled by default and cannot be disabled. The AutoLC shutdown cannot be disabled message will be displayed if you try to disable it.
power supply autoLC shutdown no power supply auto $L C$ shutdown

Syntax Description

Command Default

Command Modes

This command has no arguments or keywords.
Automatic shutdown control on linecards is enabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Examples

This example shows how to enable automatic shutdown on linecards:

```
Device> enable
Device# configure terminal
Device(config)# power supply autoLC shutdown
```


shell trigger

To create an event trigger, use the shell trigger command in global configuration mode. Use the no form of this command to delete the trigger.
shell trigger identifier description
no shell trigger identifier description

Command Default

Command Modes
Command History
identifier
description

System-defined event triggers:

- CISCO_DMP_EVENT
- CISCO_IPVSC_AUTO_EVENT
- CISCO_PHONE_EVENT
- CISCO_SWITCH_EVENT
- CISCO_ROUTER_EVENT
- CISCO_WIRELESS_AP_EVENT
- CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
Specifies the event trigger identifier. The identifier should have no spaces or hyphens between words.

Specifies the event trigger description text.

Use this command to create user-defined event triggers for use with the macro auto device and the macro auto execute commands.

To support dynamic device discovery when using IEEE 802.1x authentication, you need to configure the RADIUS authentication server to support the Cisco attribute-value pair: auto-smart-port=event trigger.

Example

This example shows how to create a user-defined event trigger called RADIUS_MAB_EVENT:

```
Device(config)# shell trigger RADIUS_MAB_EVENT MAC_AuthBypass Event
Device(config)# end
```


show beacon all

To display the status of beacon LED on the device, use the show beacon all command in privileged EXEC mode.
show beacon $\{$ rp $\{$ active \mid standby $\} \mid$ slot slot-number $\} \quad \mid$ all $\}$

Syntax Description

rp $\{$ active \| standby \}	Specifies the active or the standby Switch whose beacon LED status is to be displayed.
slot slot-num	Specifies the slot whose beacon LED status is to be displayed.
all	Displays the status of all beacon LEDs.
Release	Modification
Cisco IOS XE Fuji 16.9.1	This command was introduced.

Command Default
Command Modes
Usage Guidelines

Sample output of show beacon all command.

```
Device#show beacon all
Switch# Beacon Status
-----------------------
*1 OFF
```


Sample output of show beacon rp command.

Device\#show beacon rp active
Switch\# Beacon Status

*1

```
Device#show beacon slot 1
Switch# Beacon Status
-----------------------
*1 OFF
```


show device classifier attached

To display the devices connected to a switch and their associated properties, use the show device classifier attached command in user EXEC mode.
show device classifier attached [\{detail | interface interface_id | mac-address mac_address $\}$]
Syntax Description

detail	Displays detailed device classifier information.
interface interface_id	Displays information about devices attached to the specified interface.
mac mac_address	Displays device information for the specified endpoint.

Command Modes

Command History

Usage Guidelines
User EXEC (>)
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use this command to display the devices connected to a switch. Use the show device classifier attached command in privileged EXEC mode to display the configurable parameters for a device.

Example

This example shows how to use the show device classifier attached command with no optional keywords to view the devices connected to the switch:

```
Device# show device classifier attached
MAC_Address Port_Id Profile Name
============== ======== ===============================
000a.b8c6.1e07 Gil/0/2 Cisco-Device
001f.9e90.1250 Gil/0/4 Cisco-AP-Aironet-1130
```

This example shows how to use the show device classifier attached command in privileged EXEC mode with the optional mac-address keyword to view summary information about the connected device with the specified MAC address:

```
Device# show device classifier attached mac-address 001f.9e90.1250
MAC_Address Port_Id Profile Name
=============== ======== ===============================
001f.9e90.1250 Gil/0/4 Cisco-AP-Aironet-1130
```

This example shows how to use the show device classifier attached command in privileged EXEC mode with the optional mac-address and detail keywords to view detailed information about the connected device with the specified MAC address:

```
Device# show device classifier attached mac-address 001f.9e90.1250 detail
    Device_Name }=================
    ============
001f.9e90.1250 Gil/0/4
    40 2
    Built-in
    Cisco-AP-Aironet-1130
    cisco AIR-LAP1131AG-E-K9
```

This example shows how to use the show device classifier attached command in privileged EXEC mode with the optional interface keyword to view summary information about the device connected to the specified interface:

```
Device# show device classifier attached interface gi 1/0/2
MAC Address Port Id Profile Name
=============== ======== ===============================
000a.b8c6.1e07 Gil/0/2 Cisco-Device
```

This example shows how to use the show device classifier attached command in privileged EXEC mode with the optional interface and detail keywords to view detailed information about the device connected to the specified interface:

```
Device# show device classifier attached interface gi 1/0/2 detail
\begin{tabular}{ccccc}
\begin{tabular}{c} 
MAC_Address \\
Device_Name \\
\(==============\) \\
\(===========\)
\end{tabular} & Port_Id & Certainty Parent & ProfileType & Profile Name \\
000 a.b8c6.1e07 & Gil/0/2 & 10 & 0 & ======================== \\
WS-C2960-48TT-L & & & Default & Cisco-Device
\end{tabular}
WS-C2960-48TT-L
```


show device classifier clients

To display the clients using the device classifier facility on the switch, use the show device classifier clients command in user EXEC mode.
show device classifier clients

Command Default This command has no arguments or keywords.

User EXEC ($>$)
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
Device classifier (DC) is enabled by default when you enable a client application (for example, Auto SmartPorts) that uses its functionality. Use the show device classifier clients command to display the clients that are using the DC feature on the switch.

As long as any clients are using the DC, you cannot disable it by using the no device classifier command. If you attempt to disable the DC while a client is using it, an error message appears.

Example

This example shows how to use the show device classifier clients command to view the clients using the DC on the switch:

```
Device# show device classifier clients
Client Name
=====================
Auto Smart Ports
This example shows the error message that appears when you attempt to disable DC while a
client is using it:
Switch(config)# no device classifier
These subsystems should be disabled before disabling Device classifier
Auto Smart Ports
% Error - device classifier is not disabled
```


show device classifier profile type

To display all the device types recognized by the device classifier, use the show device classifier profile type command in user EXEC mode.
show device classifier profile type [\{table [\{built-in default $\}$] \mid string filter_string $\}$]

Syntax Description	table	Displays device classification in a table.
	built-in Displays device classification information from the built-in device table. fefault Displays device classification information from the default device table. Command Modes User EXEC ($>$)	Displays information for devices that match the filter.
Command History	Privileged EXEC (\#)	
	Release	Cisco IOS XE Everest 16.5.1a

Usage Guidelines
This command displays all the device types recognized by the device classification engine. The number of available device types is the number of profiles stored on the switch. Because the number of profiles can be very large, you can use the filter keyword to limit the command output.

Example

This example shows how to use the show device classifier profile type command in privileged EXEC mode with no optional keywords to view the devices recognized by the device classifier:

Device\# show device classifier profile type table				
Valid	Type	Profile Name	min Conf	ID
Valid	Default	Apple-Device	10	0
Valid	Default	Aruba-Device	10	1
Valid	Default	Avaya-Device	10	2
Valid	Default	Avaya-IP-Phone	20	3
Valid	Default	BlackBerry	20	4
Valid	Default	Cisco-Device	10	5
Valid	Default	Cisco-IP-Phone	20	6
Valid	Default	Cisco-IP-Phone-7902	70	7
Valid	Default	Cisco-IP-Phone-7905	70	8
Valid	Default	Cisco-IP-Phone-7906	70	9
Valid	Default	Cisco-IP-Phone-7910	70	10
Valid	Default	Cisco-IP-Phone-7911	70	11
Valid	Default	Cisco-IP-Phone-7912	70	12
Valid	Default	Cisco-IP-Phone-7940	70	13
Valid	Default	Cisco-IP-Phone-7941	70	14
Valid	Default	Cisco-IP-Phone-7942	70	15

Valid	Default	Cisco-IP-Phone-7945	70	16
Valid	Default	Cisco-IP-Phone-7945G	70	17
Valid	Default	Cisco-IP-Phone-7960	70	18
Valid	Default	Cisco-IP-Phone-7961	70	19
Valid	Default	Cisco-IP-Phone-7962	70	20
Valid	Default	Cisco-IP-Phone-7965	70	21
Valid	Default	Cisco-IP-Phone-7970	70	22
Valid	Default	Cisco-IP-Phone-7971	70	23
Valid	Default	Cisco-IP-Phone-7975	70	24
Valid	Default	Cisco-IP-Phone-7985	70	25
Valid	Default	Cisco-IP-Phone-9971	70	26
Valid	Default	Cisco-WLC-2100-Series	40	27
Valid	Default	DLink-Device	10	28
Valid	Default	Enterasys-Device	10	29
Valid	Default	HP-Device	10	30
Valid	Default	HP-JetDirect-Printer	30	31
Valid	Default	Lexmark-Device	10	32
Valid	Default	Lexmark-Printer-E260dn	30	33
Valid	Default	Microsoft-Device	10	34
Valid	Default	Netgear-Device	10	35
Valid	Default	NintendoWII	10	36
Valid	Default	Nortel-Device	10	37
Valid	Default	Nortel-IP-Phone-2000-Series	20	38
Valid	Default	SonyPS3	10	39
Valid	Default	XBOX360	20	40
Valid	Default	Xerox-Device	10	41
Valid	Default	Xerox-Printer-Phaser3250	30	42
Valid	Default	Aruba-AP	20	43
Valid	Default	Cisco-Access-Point	10	44
Valid	Default	Cisco-IP-Conference-Station-7935	70	45
Valid	Default	Cisco-IP-Conference-Station-7936	70	46
Valid	Default	Cisco-IP-Conference-Station-7937	70	47
Valid	Default	DLink-DAP-1522	20	48
Valid	Default	Cisco-AP-Aironet-1130	30	49
Valid	Default	Cisco-AP-Aironet-1240	30	50
Valid	Default	Cisco-AP-Aironet-1250	30	51
Valid	Default	Cisco-AIR-LAP	25	52
Valid	Default	Cisco-AIR-LAP-1130	30	53
Valid	Default	Cisco-AIR-LAP-1240	50	54
Valid	Default	Cisco-AIR-LAP-1250	50	55
Valid	Default	Cisco-AIR-AP	25	56
Valid	Default	Cisco-AIR-AP-1130	30	57
Valid	Default	Cisco-AIR-AP-1240	50	58
Valid	Default	Cisco-AIR-AP-1250	50	59
Invalid	Default	Sun-Workstation	10	60
Valid	Default	Linksys-Device	20	61
Valid	Default	LinksysWAP54G-Device	30	62
Valid	Default	HTC-Device	10	63
Valid	Default	MotorolaMobile-Device	10	64
Valid	Default	VMWare-Device	10	65
Valid	Default	ISE-Appliance	10	66
Valid	Built-in	Cisco-Device	10	0
Valid	Built-in	Cisco-Router	10	1
Valid	Built-in	Router	10	2
Valid	Built-in	Cisco-IP-Camera	10	3
Valid	Built-in	Cisco-IP-Camera-2xxx	30	4
Valid	Built-in	Cisco-IP-Camera-2421	50	5
Valid	Built-in	Cisco-IP-Camera-2500	50	6
Valid	Built-in	Cisco-IP-Camera-2520	50	7
Valid	Built-in	Cisco-IP-Camera-2530	50	8
Valid	Built-in	Cisco-IP-Camera-4xxx	50	9
Valid	Built-in	Cisco-Transparent-Bridge	8	10
Valid	Built-in	Transparent-Bridge	8	11
Valid	Built-in	Cisco-Source-Bridge	10	12

Valid	Built-in	Cisco-Switch	10	13
Valid	Built-in	Cisco-IP-Phone	20	14
Valid	Built-in	IP-Phone	20	15
Valid	Built-in	Cisco-DMP	10	16
Valid	Built-in	Cisco-DMP-4305G	70	17
Valid	Built-in	Cisco-DMP-4310G	70	18
Valid	Built-in	Cisco-DMP-4400G	70	19
Valid	Built-in	Cisco-WLC-2100-Series	40	20
Valid	Built-in	Cisco-Access-Point	10	21
Valid	Built-in	Cisco-AIR-LAP	30	22
Valid	Built-in	Cisco-AIR-AP	30	23
Valid	Built-in	Linksys-Device	20	24

show environment

To display fan, temperature, and power information, use the show environment command in EXEC mode.

| | show environment \{ all \| fan | \| power | stack | temperature | xps \} |
| :---: | :---: | :---: |
| Syntax Description | all | Displays the fan and temperature environmental status and the status of the internal power supplies. |
| | fan | Displays the switch fan status. |
| | power | Displays the internal power status of the active switch. |
| | stack | Displays all environmental status for each switch in the stack or for the specified switch. |
| | | This keyword is available only on stacking-capable switches. |
| | temperature | Displays the switch temperature status. |
| | xps | Displays the status of the Cisco eXpandable Power System (XPS) 2200. |
| Command Default | None | |
| Command Modes | User EXEC ($>$) | |
| | Privileged EXEC (\#) | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.5.1a | This command was introduced. |

Usage Guidelines
Use the show environment EXEC command to display the information for the switch being accessed-a standalone switch or the active switch. Use this command with the stack keyword to display all information for the stack or for the specified stack member.

If you enter the show environment temperature status command, the command output shows the switch temperature state and the threshold level.

You can also use the show environment temperature command to display the switch temperature status. The command output shows the green and yellow states as $O K$ and the red state as FAULTY.

Examples

This example shows a sample output of the show environment all command:

```
Device> show environment all
```

Device> show environment all
Switch 1 FAN 1 is OK
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
FAN PS-2 is OK
Switch 1: SYSTEM TEMPERATURE is OK
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius

```
Inlet Temperature Value: 25 Degree Celsius
```

```
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius
Hotspot Temperature Value: 35 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SW & PID & Serial\# & Status & Sys Pwr & PoE Pwr & Watts \\
\hline 1A & Unknown & Unknown & No Input Power & Bad & Bad & 235 \\
\hline 1B & PWR-C1-350WAC & DCB2137H04P & OK & Good & Good & 350 \\
\hline
\end{tabular}
```

This example shows a sample output of the show environment power command:
Device> show environment power

SW PID
-- ------------------
1A Unknown
1B PWR-C1-350WAC

This example shows a sample output of the show environment stack command:

```
Device# show environment stack
System Temperature Value: 41 Degree Celsius
System Temperature State: GREEN
Yellow Threshold : 66 Degree Celsius
Red Threshold : 76 Degree Celsius
```

This example shows a sample output of the show environment temperature command:

```
Device> show environment temperature
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius
Hotspot Temperature Value: 35 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius
```

Table 15: States in the show environment temperature status Command Output

State	Description
Green	The switch temperature is in the normal operating range.
Yellow	The temperature is in the warning range. You should check the external temperature around the switch.
Red	The temperature is in the critical range. The switch might not run properly if the temperature is in this range.

show errdisable detect

To display error-disabled detection status, use the show errdisable detect command in EXEC mode.
show errdisable detect
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default
Command Modes
Command History

Usage Guidelines
A gbic-invalid error reason refers to an invalid small form-factor pluggable (SFP) module.
The error-disable reasons in the command output are listed in alphabetical order. The mode column shows how error-disable is configured for each feature.

You can configure error-disabled detection in these modes:

- port mode-The entire physical port is error-disabled if a violation occurs.
- vlan mode-The VLAN is error-disabled if a violation occurs.
- port/vlan mode-The entire physical port is error-disabled on some ports and is per-VLAN error-disabled on other ports.

This is an example of output from the show errdisable detect command:

```
Device> show errdisable detect
ErrDisable Reason Detection Mode
----------------- -------------
arp-inspection Enabled
bpduguard Enabled
channel-misconfig
community-limit
dhcp-rate-limit
dtp-flap
gbic-invali
inline-power
invalid-policy
l2ptguard
link-flap
loopback
lsgroup
pagp-flap
psecure-violation
security-violatio
sfp-config-mismat
storm-control Enabled port
```

udld	Enabled	port
vmps	Enabled	port

show errdisable recovery

To display the error-disabled recovery timer information, use the show errdisable recovery command in EXEC mode.
show errdisable recovery
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

$\overline{\text { Command Default }}$	None
$\overline{\text { Command Modes }}$	User EXEC (>)
	Privileged EXEC (\#)

Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
A gbic-invalid error-disable reason refers to an invalid small form-factor pluggable (SFP) module interface.

Note Though visible in the output, the unicast-flood field is not valid.

show ip interface

To display the usability status of interfaces configured for IP, use the show ip interface command in privileged EXEC mode.
show ip interface [type number] [brief]

Syntax Description

type (Optional) Interface type.
number (Optional) Interface number.
brief (Optional) Displays a summary of the usability status information for each interface.
Note The output of the show ip interface brief command displays information of all the available interfaces whether or not the corresponding network module for these interfaces are connected. These interfaces can be configured if the network module is connected. Run the show interface status command to see which network modules are connected.

Command Default

Command Modes

Command History

Usage Guidelines

The full usability status is displayed for all interfaces configured for IP.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The Cisco IOS software automatically enters a directly connected route in the routing table if the interface is usable (which means that it can send and receive packets). If an interface is not usable, the directly connected routing entry is removed from the routing table. Removing the entry lets the software use dynamic routing protocols to determine backup routes to the network, if any.
If the interface can provide two-way communication, the line protocol is marked "up." If the interface hardware is usable, the interface is marked "up."
If you specify an optional interface type, information for that specific interface is displayed. If you specify no optional arguments, information on all the interfaces is displayed.

When an asynchronous interface is encapsulated with PPP or Serial Line Internet Protocol (SLIP), IP fast switching is enabled. A show ip interface command on an asynchronous interface encapsulated with PPP or SLIP displays a message indicating that IP fast switching is enabled.

You can use the show ip interface brief command to display a summary of the device interfaces. This command displays the IP address, the interface status, and other information.
The show ip interface brief command does not display any information related to Unicast RPF.

Examples

The following example shows interface information on Gigabit Ethernet interface 1/0/1:

[^3]```
GigabitEthernet1/0/1 is up, line protocol is up
 Internet address is 10.1.1.1/16
 Broadcast address is 255.255.255.255
 Address determined by setup command
 MTU is 1500 bytes
 Helper address is not set
 Directed broadcast forwarding is disabled
 Outgoing access list is not set
 Inbound access list is not set
 Proxy ARP is enabled
 Local Proxy ARP is disabled
 Security level is default
 Split horizon is enabled
 ICMP redirects are always sent
 ICMP unreachables are always sent
 ICMP mask replies are never sent
 IP fast switching is enabled
 IP fast switching on the same interface is disabled
 IP Flow switching is disabled
 IP CEF switching is enabled
 IP Feature Fast switching turbo vector
 IP VPN Flow CEF switching turbo vector
 IP multicast fast switching is enabled
 IP multicast distributed fast switching is disabled
 IP route-cache flags are Fast, CEF
 Router Discovery is disabled
 IP output packet accounting is disabled
 IP access violation accounting is disabled
 TCP/IP header compression is disabled
 RTP/IP header compression is disabled
 Policy routing is enabled, using route map PBR
 Network address translation is disabled
 BGP Policy Mapping is disabled
 IP Multi-Processor Forwarding is enabled
 IP Input features, "PBR",
 are not supported by MPF and are IGNORED
 IP Output features, "NetFlow",
 are not supported by MPF and are IGNORED
```

The following example shows how to display the usability status for a specific VLAN:

```
Device# show ip interface vlan 1
Vlan1 is up, line protocol is up
 Internet address is 10.0.0.4/24
 Broadcast address is 255.255.255.255
Address determined by non-volatile memory
 MTU is }1500\mathrm{ bytes
 Helper address is not set
 Directed broadcast forwarding is disabled
 Outgoing access list is not set
 Inbound access list is not set
 Proxy ARP is enabled
 Local Proxy ARP is disabled
 Security level is default
 Split horizon is enabled
 ICMP redirects are always sent
 ICMP unreachables are always sent
 ICMP mask replies are never sent
 IP fast switching is enabled
 IP fast switching on the same interface is disabled
 IP Flow switching is disabled
 IP CEF switching is enabled
```

```
IP Fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect inbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled
Sampled Netflow is disabled
IP multicast multilayer switching is disabled
Netflow Data Export (hardware) is enabled
```

The table below describes the significant fields shown in the display.
Table 16: show ip interface Field Descriptions

| Field | Description |
| :--- | :--- |
| Broadcast address is | Broadcast address. |
| Peer address is | Peer address. |
| MTU is | MTU value set on the interface, in bytes. |
| Helper address | Helper address, if one is set. |
| Directed broadcast forwarding | Shows whether directed broadcast forwarding is enabled. |
| Outgoing access list | Shows whether the interface has an outgoing access list set. |
| Inbound access list | Shows whether the interface has an incoming access list set. |
| Proxy ARP | Shows whether Proxy Address Resolution Protocol (ARP) is enabled <br> for the interface. |
| Security level | IP Security Option (IPSO) security level set for this interface. |
| Split horizon | Shows whether split horizon is enabled. |
| ICMP redirects | Shows whether redirect messages will be sent on this interface. |
| ICMP unreachables | Shows whether unreachable messages will be sent on this interface. |
| ICMP mask replies | Shows whether mask replies will be sent on this interface. |
| IP fast switching | Shows whether fast switching is enabled for this interface. It is <br> generally enabled on serial interfaces, such as this one. |
| IP Flow switching | Shows whether Flow switching is enabled for this interface. |


| Field | Description |
| :--- | :--- |
| IP CEF switching | Shows whether Cisco Express Forwarding switching is enabled for <br> the interface. |
| IP multicast fast switching | Shows whether multicast fast switching is enabled for the interface. |
| IP route-cache flags are Fast | Shows whether NetFlow is enabled on an interface. Displays "Flow <br> init" to specify that NetFlow is enabled on the interface. Displays <br> "Ingress Flow" to specify that NetFlow is enabled on a subinterface <br> using the ip flow ingresscommand. Shows "Flow" to specify that <br> NetFlow is enabled on a main interface using the ip route-cache flow <br> command. |
| Router Discovery | Shows whether the discovery process is enabled for this interface. It <br> is generally disabled on serial interfaces. |
| IP output packet accounting | Shows whether IP accounting is enabled for this interface and what <br> the threshold (maximum number of entries) is. |
| TCP/IP header compression | Shows whether compression is enabled. |
| WCCP Redirect outbound is disabled | Shows the status of whether packets received on an interface are <br> redirected to a cache engine. Displays "enabled" or "disabled." |
| WCCP Redirect exclude is disabled | Shows the status of whether packets targeted for an interface will be <br> excluded from being redirected to a cache engine. Displays "enabled" <br> or "disabled." |
| Netflow Data Export (hardware) is <br> enabled | NetFlow Data Expert (NDE) hardware flow status on the interface. |

The following example shows how to display a summary of the usability status information for each interface:

| Device\# show ip interface brief |  |  |  |
| :--- | :--- | :--- | :--- |
| Interface | IP-Address | OK? Method Status | Protocol |
| Vlan1 | unassigned | YES NVRAM administratively down down |  |
| GigabitEthernet0/0 | unassigned | YES NVRAM down | down |
| GigabitEthernet1/0/1 | unassigned | YES NVRAM down | down |
| GigabitEthernet1/0/2 | unassigned | YES unset down | down |
| GigabitEthernet1/0/3 | unassigned | YES unset down | down |
| GigabitEthernet1/0/4 | unassigned | YES unset down | down |
| GigabitEthernet1/0/5 | unassigned | YES unset down | down |
| GigabitEthernet1/0/6 | unassigned | YES unset down | down |
| GigabitEthernet1/0/7 | unassigned | YES unset down | down |
| <output truncated> |  |  |  |

Table 17: show ip interface brief Field Descriptions

| Field | Description |
| :--- | :--- |
| Interface | Type of interface. |


| Field | Description |
| :---: | :---: |
| IP-Address | IP address assigned to the interface. |
| OK? | "Yes" means that the IP Address is valid. "No" means that the IP Address is not valid. |
| Method | The Method field has the following possible values: <br> - RARP or SLARP: Reverse Address Resolution Protocol (RARP) or Serial Line Address Resolution Protocol (SLARP) request. <br> - BOOTP: Bootstrap protocol. <br> - TFTP: Configuration file obtained from the TFTP server. <br> - manual: Manually changed by the command-line interface. <br> - NVRAM: Configuration file in NVRAM. <br> - IPCP: ip address negotiated command. <br> - DHCP: ip address dhcp command. <br> - unset: Unset. <br> - other: Unknown. |
| Status | Shows the status of the interface. Valid values and their meanings are: <br> - up: Interface is up. <br> - down: Interface is down. <br> - administratively down: Interface is administratively down. |
| Protocol | Shows the operational status of the routing protocol on this interface. |

## Related Commands

| Command | Description |
| :--- | :--- |
| ip interface | Configures a virtual gateway IP interface on a Secure Socket Layer Virtual Private <br> Network (SSL VPN) gateway |
| show interface status | Displays the status of the interface. |

## show interfaces

To display the administrative and operational status of all interfaces or for a specified interface, use the show interfaces command in the EXEC mode.
show interfaces [\{interface-id |vlan vlan-id $\}$ ] [\{accounting |capabilities [module number ] | description |etherchannel | flowcontrol | link [ module number] | private-vlan mapping | pruning | stats | status [\{err-disabled |inactive \}] | trunk \}]

Syntax Description

| interface-id | (Optional) ID of the interface. Valid interfaces include physical <br> ports (including type, stack member for stacking-capable switches, <br> module, and port number) and port channels. |
| :--- | :--- |
| The port channel range is 1 to 128. |  |


| capabilities | (Optional) Displays the capabilities of all interfaces or the specified <br> interface, including the features and options that you can configure <br> on the interface. Though visible in the command line help, this <br> option is not available for VLAN IDs. |
| :--- | :--- |
| module number | (Optional) Displays capabilities of all interfaces on the switch or <br> specified stack member. <br> The range is 1 to 9. |
| This option is not available if you entered a specific interface ID. |  |
| description | (Optional) Displays the administrative status and description set <br> for interfaces. |

Note The output of the show interfaces description command displays information of all the available interfaces whether or not the corresponding network module for these interfaces are connected. These interfaces can be configured if the network module is connected. Run the show interface status command to see which network modules are connected.

| etherchannel | (Optional) Displays interface EtherChannel information. |
| :--- | :--- |
| flowcontrol | (Optional) Displays interface flow control information. |
| link [modulenumber] | (Optional) Displays the up time and down time of the interface. |


| private-vlan mapping | (Optional) Displays private-VLAN mapping information for the <br> VLAN switch virtual interfaces (SVIs). This keyword is not <br> available if the switch is running the LAN base feature set. |
| :--- | :--- |
| pruning | (Optional) Displays trunk VTP pruning information for the <br> interface. |
| stats | (Optional) Displays the input and output packets by switching the <br> path for the interface. |
| status | (Optional) Displays the status of the interface. A status of <br> unsupported in the Type field means that a non-Cisco small <br> form-factor pluggable (SFP) module is inserted in the module slot. |
| err-disabled | (Optional) Displays interfaces in an error-disabled state. |

Note Though visible in the command-line help strings, the crb, fair-queue, irb, mac-accounting, precedence, random-detect, rate-limit, and shape keywords are not supported.

| $\overline{\text { Command Default }}$ | None |  |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Privileged EXEC (\#) |  |
| Command History | Release | Modification |
|  | Cisco IOS XE Everest 16.5.1a | This command was introduced. |
|  | Cisco IOS XE Gibraltar 16.12.1 | The link keyword was introduced. |

## Usage Guidelines

The show interfaces capabilities command with different keywords has these results:

- Use the show interface capabilities module number command to display the capabilities of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.
- Use the show interfaces interface-id capabilities to display the capabilities of the specified interface.
- Use the show interfaces capabilities (with no module number or interface ID) to display the capabilities of all interfaces in the stack.

Note The field Last Input displayed in the command output indicates the number of hours, minutes, and seconds since the last packet was successfully received by an interface and processed by the CPU on the device. This information can be used to know when a dead interface failed.

Last Input is not updated by fast-switched traffic.
The field output displayed in the command output indicates the number of hours, minutes, and seconds since the last packet was successfully transmitted by the interface. The information provided by this field can useful for knowing when a dead interface failed.

The show interfaces link command with different keywords has these results:

- Use the show interface link module number command to display the up time and down time of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.

Note On a standalone switch, the module number refers to the slot number.

- Use the show interfaces interface-id link to display the up time and down time of the specified interface.
- Use the show interfaces link (with no module number or interface ID) to display the up time and down time of all interfaces in the stack.
- If the interface is up, the up time displays the time (hours, minutes, and seconds) and the down time displays 00:00:00.
- If the interface is down, only the down time displays the time (hours, minutes, and seconds).


## Examples

This is an example of output from the show interfaces command for an interface on stack member 3:

```
Device# show interfaces gigabitethernet3/0/2
GigabitEthernet3/0/2 is down, line protocol is down (notconnect)
 Hardware is Gigabit Ethernet, address is 2037.064d.4381 (bia 2037.064d.4381)
 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Auto-duplex, Auto-speed, media type is 10/100/1000BaseTX
 input flow-control is off, output flow-control is unsupported
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input never, output never, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 \text { minute input rate 0 bits/sec, 0 packets/sec}
 5 minute output rate 0 bits/sec, 0 packets/sec
 0 packets input, 0 bytes, 0 no buffer
 Received O broadcasts (0 multicasts)
 0 runts, O giants, 0 throttles
 O input errors, O CRC, O frame, O overrun, O ignored
 O watchdog, 0 multicast, 0 pause input
```



This is an example of output from the show interfaces interface description command when the interface has been described as Connects to Marketing by using the description interface configuration command:

```
Device# show interfaces gigabitethernet1/0/2 description
Interface Status Protocol Description
Gi1/0/2
up
down Connects to Marketing
Device# show interfaces etherchannel

Port-channel34:
Age of the Port-channel = 28d:18h:51m:46s
Logical slot/port = 12/34 Number of ports = 0
GC = 0x00000000 HotStandBy port = null
Passive port list =
Port state = Port-channel L3-Ag Ag-Not-Inuse
Protocol = -
Port security = Disabled
```

This is an example of output from the show interfaces interface-id pruning command when pruning is enabled in the VTP domain:

```
Device# show interfaces gigabitethernet1/0/2 pruning
Port Vlans pruned for lack of request by neighbor
Gil/0/2 3,4
Port Vlans traffic requested of neighbor
```

```
Gi1/0/2 1-3
```

This is an example of output from the show interfaces stats command for a specified VLAN interface:

| Switching path | Pkts In | Chars In | Pkts Out | Chars Out |
| :---: | :---: | :---: | :---: | :---: |
| Processor | 1165354 | 136205310 | 570800 | 91731594 |
| Route cache | 0 | 0 | 0 | 0 |
| Total | 1165354 | 136205310 | 570800 | 91731594 |

This is an example of output from the show interfaces status err-disabled command. It displays the status of interfaces in the error-disabled state:

| Device\# show interfaces status err-disabled |  |  |
| :--- | :---: | :--- |
|  |  |  |
| Port | Name | Status |

This is an example of output from the show interfaces interface-id pruning command:

```
Device# show interfaces gigabitethernet1/0/2 pruning
Port Vlans pruned for lack of request by neighbor
Device# show interfaces gigabitethernet1/0/1 trunk
Port Mode Encapsulation Status Native vlan
Gi1/0/1 on 802.1q other 10
Port Vlans allowed on trunk
Gi1/0/1 none
Port Vlans allowed and active in management domain
Gi1/0/1 none
Port Vlans in spanning tree forwarding state and not pruned
Gil/0/1 none
```

This is an example of output from the show interfaces description command:

| Device\# show interfaces description |  |  |
| :--- | :--- | :--- |
| Interface | Status | Protocol Description |
| Vll | admin down | down |
| GiO/0 | down | down |
| Gi1/0/1 | down | down |
| Gi1/0/2 | down | down |
| Gil/0/3 | down | down |
| Gi1/0/4 | down | down |
| Gil/0/5 | down | down |
| Gil/0/7 | down | down |
| <output truncated> |  |  |

The following is a sample output of the show interfaces link command:

| Device> enable |  |  |  |
| :---: | :---: | :---: | :---: |
| Device\# show interfaces link |  |  |  |
| Port | Name | Down Time | Up Time |
| Gi1/0/1 |  | 6w0d |  |
| Gil/0/2 |  | 6w0d |  |
| Gi1/0/3 |  | 00:00:00 | 5w3d |
| Gi1/0/4 |  | 6w0d |  |
| Gi1/0/5 |  | 6w0d |  |
| Gi1/0/6 |  | 6w0d |  |
| Gil/0/7 |  | 6w0d |  |
| Gil/0/8 |  | 6w0d |  |
| Gil/0/9 |  | 6w0d |  |
| Gi1/0/10 |  | 6w0d |  |
| Gi1/0/11 |  | 2d17h |  |
| Gi1/0/12 |  | 6w0d |  |
| Gi1/0/13 |  | 6w0d |  |
| Gi1/0/14 |  | 6w0d |  |
| Gi1/0/15 |  | 6w0d |  |
| Gi1/0/16 |  | 6w0d |  |
| Gi1/0/17 |  | 6w0d |  |
| Gi1/0/18 |  | 6w0d |  |
| Gi1/0/19 |  | 6w0d |  |
| Gi1/0/20 |  | 6w0d |  |
| Gi1/0/21 |  | 6w0d |  |

## show interfaces counters

To display various counters for the switch or for a specific interface, use the show interfaces counters command in privileged EXEC mode.
show interfaces [interface-id] counters [\{errors |etherchannel |module member-number |protocol status | trunk $\}$ ]

| Syntax Description | interface-id | (Optional) ID of the physical interface, including type, stack member (stacking-capable switches only) module, and port number. |
| :---: | :---: | :---: |
|  | errors | (Optional) Displays error counters. |
|  | etherchannel | (Optional) Displays EtherChannel counters, including octets, broadcast packets, multicast packets, and unicast packets received and sent. |
|  | module member-number | (Optional) Displays counters for the specified member. |
|  |  | The range is 1 to 9 . |
|  |  | Note In this command, the module keyword refers to the stack member number. The module number that is part of the interface ID is always zero. |

protocol status (Optional) Displays the status of protocols enabled on interfaces.
trunk (Optional) Displays trunk counters.

Note Though visible in the command-line help string, the vlan vlan-id keyword is not supported.

| Command Default | None |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Command Modes | Privileged EXEC (\#) |  |  |  |
| Command History | Release |  |  | Modification |
|  | Cisco IOS XE Everest 16.5.1a |  |  | This comma |
| Usage Guidelines | If you do not enter any keywords, all counters for all interfaces are included. |  |  |  |
|  | This is an example of partial output from the show interfaces counters command. It counters for the switch. |  |  |  |
|  | Device\# show interfaces counters |  |  |  |
|  | Gil/0/1 0 | 0 | 0 | 0 |
|  | Gil/0/2 0 | 0 | 0 | 0 |
|  | Gil/0/3 95285341 | 43115 | 1178430 | 1950 |
|  | Gil/0/4 0 | 0 | 0 | 0 |

<output truncated>

This is an example of partial output from the show interfaces counters module command for module 2. It displays all counters for the specified switch in the module.

| Device\# show interfaces counters module 2 |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Port | InOctets | InUcastPkts | InMcastPkts | InBcastPkts |
| Gil/0/1 | 520 | 2 | 0 | 0 |
| Gil/0/2 | 520 | 2 | 0 | 0 |
| Gil/0/3 | 520 | 2 | 0 | 0 |
| Gil/0/4 | 520 | 2 | 0 | 0 |
|  |  |  |  |  |

This is an example of partial output from the show interfaces counters protocol status command for all interfaces:

```
Device# show interfaces counters protocol status
Protocols allocated:
Vlan1: Other, IP
Vlan20: Other, IP, ARP
Vlan30: Other, IP, ARP
Vlan40: Other, IP, ARP
Vlan50: Other, IP, ARP
Vlan60: Other, IP, ARP
Vlan70: Other, IP, ARP
Vlan80: Other, IP, ARP
Vlan90: Other, IP, ARP
Vlan900: Other, IP, ARP
Vlan3000: Other, IP
Vlan3500: Other, IP
GigabitEthernet1/0/1: Other, IP, ARP, CDP
GigabitEthernet1/0/2: Other, IP
GigabitEthernet1/0/3: Other, IP
GigabitEthernet1/0/4: Other, IP
GigabitEthernet1/0/5: Other, IP
GigabitEthernet1/0/6: Other, IP
GigabitEthernet1/0/7: Other, IP
GigabitEthernet1/0/8: Other, IP
GigabitEthernet1/0/9: Other, IP
GigabitEthernet1/0/10: Other, IP, CDP
<output truncated>
```

This is an example of output from the show interfaces counters trunk command. It displays trunk counters for all interfaces.

| Device\# show interfaces counters trunk |  |  |  |
| :--- | ---: | ---: | ---: |
| Port | TrunkFramesTx | TrunkFramesRx | WrongEncap |
| Gi1/0/1 | 0 | 0 | 0 |
| Gi1/0/2 | 0 | 0 | 0 |
| Gil/0/3 | 80678 | 0 | 0 |
| Gi1/0/4 | 82320 | 0 | 0 |
| Gi1/0/5 | 0 | 0 | 0 |
|  |  |  |  |
| <output truncated> |  |  |  |

## show interfaces switchport

To display the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings, use the show interfaces switchport command in privileged EXEC mode.
show interfaces [interface-id] switchport [\{module number\}]

Syntax Description
(Optional) ID of the interface. Valid interfaces include physical ports (including type, stack member for stacking-capable switches, module, and port number) and port channels. The port channel range is 1 to 48 .
module number (Optional) Displays switchport configuration of all interfaces on the switch or specified stack member.

The range is 1 to 9 .
This option is not available if you entered a specific interface ID.
$\overline{\text { Command Default }} \overline{\text { Command Modes }}$

## Command History

## Usage Guidelines

None

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

Use the show interface switchport module number command to display the switch port characteristics of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.

This is an example of output from the show interfaces switchport command for a port. The table that follows describes the fields in the display.

```
Device# show interfaces gigabitethernet1/0/1 switchport
Name: Gi1/0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 10 (VLANO010)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: 11-20
```

```
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
```

| Field | Description | | | |
|---|---|---|---|---|
| Name | Displays the port name. |
| Switchport | Displays the administrative and operational status of <br> the port. In this display, the port is in switchport mode. |
| Administrative Mode <br> Operational Mode | Displays the administrative and operational modes. <br> Operational Trunking Encapsulation <br> Negotapsulation method and whether trunking <br> negotiation is enabled. |
| Administrative Trunking Encapsulation | Displays the VLAN ID to which the port is <br> configured. |
| Access Mode VLAN | Lists the VLAN ID of the trunk that is in native mode. <br> Lists the allowed VLANs on the trunk. Lists the active <br> VLANs on the trunk. |
| Trunking Native Mode VLAN <br> Trunking VLANs Enabled | Lists the VLANs that are pruning-eligible. |
| Pruning VLANs Enabled | Displays whether or not protected port is enabled <br> (True) or disabled (False) on the interface. |
| Protected | Displays whether or not unknown multicast and <br> unknown unicast traffic is blocked on the interface. |
| Unknown unicast blocked <br> Unknown multicast blocked | Displays the VLAN ID on which voice VLAN is <br> enabled. |
| Displays the class of service (CoS) setting of the data |  |
| packets of the IP phone. |  |$|$| Apance trust |
| :--- |

## show interfaces transceiver

To display the physical properties of a small form-factor pluggable (SFP) module interface, use the show interfaces transceiver command in EXEC mode.
show interfaces [interface-id] transceiver [\{detail|module number | properties | supported-list | threshold-table\}]

## Syntax Description

| interface-id | (Optional) ID of the physical interface, including type, stack member (stacking-capable <br> switches only) module, and port number. |
| :--- | :--- |
| detail | (Optional) Displays calibration properties, including high and low numbers and any alarm <br> information for any Digital Optical Monitoring (DoM)-capable transceiver if one is <br> installed in the switch. |
| module number | (Optional) Limits display to interfaces on module on the switch. <br> This option is not available if you entered a specific interface ID. |
| properties | (Optional) Displays speed, duplex, and inline power settings on an interface. |
| supported-list | (Optional) Lists all supported transceivers. |
| threshold-table | (Optional) Displays alarm and warning threshold table. |

## Command Modes

## Command History

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

## Examples

This is an example of output from the show interfaces interface-id transceiver properties command:

```
Device# show interfaces transceiver
If device is externally calibrated, only calibrated values are printed.
++ : high alarm, + : high warning, - : low warning, -- : low alarm.
NA or N/A: not applicable, Tx: transmit, Rx: receive.
mA: milliamperes, dBm: decibels (milliwatts).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Port & Temperature (Celsius) & Voltage (Volts) & Current
(mA) & Optical Tx Power (dBm) & \begin{tabular}{l}
Optical \\
Rx Power \\
(dBm)
\end{tabular} \\
\hline Gi5/1/2 & 42.9 & 3.28 & 22.1 & -5.4 & -8.1 \\
\hline Te5/1/3 & 32.0 & 3.28 & 19.8 & 2.4 & -4.2 \\
\hline
\end{tabular}
```

[^4]```
Operational Speed: auto
Administrative Duplex: auto
Administrative Power Inline: enable
Operational Duplex: auto
Administrative Auto-MDIX: off
Operational Auto-MDIX: off
```

This is an example of output from the show interfaces interface-id transceiver detail command:

Transceiver Type	Cisco p/n min version supporting DOM
DWDM GBIC	ALL
DWDM SFP	ALL
RX only WDM GBIC	ALL
DWDM XENPAK	ALL
DWDM X2	ALL
DWDM XFP	ALL
CWDM GBIC	NONE
CWDM X2	ALL
CWDM XFP	ALL
XENPAK ZR	ALL
X 2 ZR	ALL
XFP ZR	ALL
Rx_only_WDM_XENPAK	ALL
XENPAK_ER	10-1888-04
X2_ER	ALL
XFP_ER	ALL
XENPAK_LR	10-1838-04

X2_LR	ALL
XFP_LR	ALL
XENPAK_LW	ALL
X2_LW	ALL
XFP_LW	NONE
XENPAK SR	NONE
X2 SR	ALL
XFP SR	ALL
XENPAK LX4	NONE
X2 LX4	NONE
XFP LX4	NONE
XENPAK CX4	NONE
X2 CX4	NONE
XFP CX4	NONE
SX GBIC	NONE
LX GBIC	NONE
ZX GBIC	NONE
CWDM_SFP	ALL
Rx_only_WDM_SFP	NONE
SX_SFP	ALL
LX_SFP	ALL
ZX_SFP	ALL
EX_SFP	ALL
SX SFP	NONE
LX SFP	NONE
ZX SFP	NONE
GIgE BX U SFP	NONE
GigE BX D SFP	ALL
X2 LRM	ALL
SR_SFPP	ALL
LR_SFPP	ALL
LRM_SFPP	ALL
ER_SFPP	ALL
ZR_SFPP	ALL
DWDM_SFPP	ALL
GIgE BX 40U SFP	ALL
GigE BX 40D SFP	ALL
GigE BX 40DA SFP	ALL
GIgE BX 80U SFP	ALL
GigE BX 80D SFP	ALL
GIG BXU_SFPP	ALL
GIG BXD_SFPP	ALL
GIG BX40U_SFPP	ALL
GIG BX40D_SFPP	ALL
GigE Dual Rate LX SFP	ALL
CWDM SFPP	ALL
CPAK_SR10	ALL
CPAK_LR4	ALL
QSFP_LR	ALL
QSFP_SR	ALL

This is an example of output from the show interfaces transceiver threshold-table command:

Device\# show interfaces transceiver threshold-table					
Optical Tx	Optical Rx				
			Temp	Laser Bias current	Voltage

Min1	-4.00	-32.00	-4	N/A	3.00
Min2	0.00	-28.00	0	N/A	3.10
Max 2	4.00	-9.00	70	N/A	3.50
Max1	8.00	-5.00	74	N/A	3.60
RX only WDM GBIC					
Min1	N/A	-32.00	-4	N/A	4.65
Min2	N/A	-28.30	0	N/A	4.75
Max 2	N/A	-9.00	70	N/A	5.25
Max1	N/A	-5.00	74	N/A	5.40
DWDM XENPAK					
Min1	-5.00	-28.00	-4	N/A	N/A
Min2	-1.00	-24.00	0	N/A	N/A
Max 2	3.00	-7.00	70	N/A	N/A
Max1	7.00	-3.00	74	N/A	N/A
DWDM X2					
Min1	-5.00	-28.00	-4	N/A	N/A
Min2	-1.00	-24.00	0	N/A	N/A
Max2	3.00	-7.00	70	N/A	N/A
Max1	7.00	-3.00	74	N/A	N/A
DWDM XFP					
Min1	-5.00	-28.00	-4	N/A	N/A
Min2	-1.00	-24.00	0	N/A	N/A
Max2	3.00	-7.00	70	N/A	N/A
Max1	7.00	-3.00	74	N/A	N/A
CWDM X2					
Min1	N/A	N/A	0	N/A	N/A
Min2	N/A	N/A	0	N/A	N/A
Max2	N/A	N/A	0	N/A	N/A
Max1	N/A	N/A	0	N/A	N/A

<output truncated>

Related Commands	Command	Description
	transceiver type all	Enters the transceiver type configuration mode.
	monitoring	Enables digital optical monitoring.

show inventory

To display the product inventory listing of all Cisco products installed in the networking device, use the show inventory command in user EXEC or privileged EXEC mode.
show inventory $\{\mathbf{f r u} \mid$ oid \mid raw $\}$ [entity]

fru	(Optional) Retrieves information about all Field Replaceable Units (FRUs) installed in the Cisco networking device.
oid	(Optional) Retrieves information about the vendor specific hardware registration identifier referred to as object identifier (OID). The OID identifies the MIB object's location in the MIB hierarchy, and provides a means of accessing the MIB object in a network of managed devices
raw	(Optional) Retrieves information about all Cisco products referred to as entities installed in the Cisco networking device, even if the entities do not have a product ID (PID) value, a unique device identifier (UDI), or other physical identification.
entity	(Optional) Name of a Cisco entity (for example, chassis, backplane, module, or slot). A quoted string may be used to display very specific UDI information; for example "sfslot 1" will display the UDI information for slot 1 of an entity named sfslot.

Command Modes

Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.6.1	This command was introduced.
Cisco IOS XE Everest 16.6.3	This command was enhanced to display the serial number for the chassis.

Usage Guidelines
The show inventory command retrieves and displays inventory information about each Cisco product in the form of a UDI. The UDI is a combination of three separate data elements: a product identifier (PID), a version identifier (VID), and the serial number (SN).

The PID is the name by which the product can be ordered; it has been historically called the "Product Name" or "Part Number." This is the identifier that one would use to order an exact replacement part.
The VID is the version of the product. Whenever a product has been revised, the VID will be incremented. The VID is incremented according to a rigorous process derived from Telcordia GR-209-CORE, an industry guideline that governs product change notices.

The SN is the vendor-unique serialization of the product. Each manufactured product will carry a unique serial number assigned at the factory, which cannot be changed in the field. This is the means by which to identify an individual, specific instance of a product.

The UDI refers to each product as an entity. Some entities, such as a chassis, will have subentities like slots. Each entity will display on a separate line in a logically ordered presentation that is arranged hierarchically by Cisco entities.

Use the show inventory command without options to display a list of Cisco entities installed in the networking device that are assigned a PID.

The following is sample output from the show inventory command:

```
Device#show inventory
NAME: "c93xx Stack", DESCR: "c93xx Stack"
PID: C9300-48UXM , VID: P2B , SN: FCW2117G00C
NAME: "Switch 2", DESCR: "C9300-48UXM"
PID: C9300-48UXM , VID: P2B , SN: FCW2117G00C
NAME: "Switch 2 - Power Supply A", DESCR: "Switch 2 - Power Supply A"
PID: PWR-C1-1100WAC , VID: V02 , SN: LIT211227NZ
NAME: "Switch 2 FRU Uplink Module 1", DESCR: "8x10G Uplink Module"
PID: C3850-NM-8-10G , VID: V01 , SN: FOC20153M58
NAME: "Te2/1/1", DESCR: "SFP-10GBase-CX1"
PID: SFP-H10GB-CU2M , VID: V02 , SN: TED2132H0SU
NAME: "Te2/1/3", DESCR: "SFP-10GBase-CX1"
PID: SFP-H10GB-CU2M , VID: V02 , SN: TED2132H0A8
NAME: "Te2/1/5", DESCR: "SFP-10GBase-CX1"
PID: SFP-H10GB-CU2M , VID: V02 , SN: TED2132H1G8
NAME: "usbflash1", DESCR: "usbflash1"
PID: SSD-120G , VID: STP21460FNA, SN: V01
```

Table 18: show inventory Field Descriptions

Field	Description
NAME	Physical name (text string) assigned to the Cisco entity. For example, console or a simple component number (port or module number), such as "1," depending on the physical component naming syntax of the device.
DESCR	Physical description of the Cisco entity that characterizes the object. The physical description includes the hardware serial number and the hardware revision.
PID	Entity product identifier. Equivalent to the entPhysicalModelName MIB variable in RFC 2737.
VID	Entity version identifier. Equivalent to the entPhysicalHardwareRev MIB variable in RFC 2737.
SN	Entity serial number. Equivalent to the entPhysicalSerialNum MIB variable in RFC 2737.

For diagnostic purposes, the show inventorycommand can be used with the raw keyword to display every RFC 2737 entity including those without a PID, UDI, or other physical identification.

Note The raw keyword option is primarily intended for troubleshooting problems with the show inventory command itself.

Enter the show inventory command with an entity argument value to display the UDI information for a specific type of Cisco entity installed in the networking device. In this example, a list of Cisco entities that match the sfslot argument string is displayed.

```
Device#show inventory "c93xx Stack"
NAME: "c93xx Stack", DESCR: "c93xx Stack"
PID: C9300-48UXM , VID: P2B , SN: FCW2117G00C
NAME: "Switch 2", DESCR: "C9300-48UXM"
PID: C9300-48UXM , VID: P2B , SN: FCW2117G00C
NAME: "Switch 2 - Power Supply A", DESCR: "Switch 2 - Power Supply A"
PID: PWR-C1-1100WAC , VID: V02 , SN: LIT211227NZ
NAME: "Switch 2 FRU Uplink Module 1", DESCR: "8x10G Uplink Module"
PID: C3850-NM-8-10G , VID: V01 , SN: FOC20153M58
NAME: "Te2/1/1", DESCR: "SFP-10GBase-CX1"
PID: SFP-H10GB-CU2M , VID: V02 , SN: TED2132H0SU
NAME: "Te2/1/3", DESCR: "SFP-10GBase-CX1"
PID: SFP-H10GB-CU2M , VID: V02 , SN: TED2132H0A8
NAME: "Te2/1/5", DESCR: "SFP-10GBase-CX1"
PID: SFP-H10GB-CU2M , VID: V02 , SN: TED2132H1G8
NAME: "usbflash1", DESCR: "usbflash1"
PID: SSD-120G , VID: STP21460FNA, SN: V01
```

You can request even more specific UDI information with the entity argument value enclosed in quotation marks.

show macro auto

To display Auto Smartports macro information, use the show macro auto command in user EXEC mode.
show macro auto \{address-group address-group-name | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | global [event_trigger] | interface [interface_id]\}

Syntax Description

address-group [address-group-name]

device [access-point] [ip-camera] [lightweight-ap]
[media-player] [phone] [router] [switch]

Displays address-group information.
(Optional) address-group-name-Displays information for the specified address group.
[media-player] [phone] [router] [switch]
global [event_trigger]
Displays Auto Smartports information about the switch.
(Optional) event_trigger-Displays information about the specified event trigger.
interface [interface_id]
Displays interface status.
(Optional) interface_id-isplays information about the specified interface.

Command Modes

Command History

User EXEC ($>$)
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Use this command to display the Auto SmartPorts information for the switch. Use the show macro auto device command to display the configurable parameters for a device.

Example

This example shows how to use the show macro auto device to view the configuration on the switch:

```
Device# show macro auto device
Device:lightweight-ap
Default Macro:CISCO_LWAP_AUTO_SMARTPORT
Current Macro:CISCO LWAP AUTO SMARTPORT
Configurable Parameters:ACCESS VLAN
Defaults Parameters:ACCESS VLAN=1
Current Parameters:ACCESS_V/LAN=1
Device:access-point
Default Macro:CISCO_AP_AUTO_SMARTPORT
Current Macro:CISCO_AP AUTO SMARTPORT
Configurable Parameters:NATIVE_VLAN
Defaults Parameters:NATIVE VLAN=1
Current Parameters:NATIVE_VLAN=1
Device:phone
Default Macro:CISCO PHONE AUTO SMARTPORT
Current Macro:CISCO_PHONE-AUTO_SMARTPORT
Configurable Parameters:ACCESS VLAN VOICE VLAN
Defaults Parameters:ACCESS VLAN}=1 VOICE VL'AN=
Current Parameters:ACCESS_VLAN=1 VOICE_VLAN=2
Device:router
Default Macro:CISCO ROUTER AUTO SMARTPORT
Current Macro:CISCO_ROUTER_AUTO_SMARTPORT
Configurable Parameters:NATIVE VLAN
Defaults Parameters:NATIVE_VLAN}=
Current Parameters:NATIVE_VLAN=1
Device:switch
Default Macro:CISCO_SWITCH_AUTO_SMARTPORT
Current Macro:CISCO SWITCH AUTO SMARTPORT
Configurable Parameters:NATIVE VLAN
Defaults Parameters:NATIVE VLAN=1
Current Parameters:NATIVE VLAN=1
Device:ip-camera
Default Macro:CISCO_IP_CAMERA_AUTO_SMARTPORT
Current Macro:CISCO IP CAMERA AUTO SMARTPORT
Configurable Parameters:ACCESS_VLAN
Defaults Parameters:ACCESS VLAN=1
Current Parameters:ACCESS V}LAN=
Device:media-player
Default Macro:CISCO DMP AUTO SMARTPORT
Current Macro:CISCO-}\mp@subsup{\mp@code{DMP -}}{}{-}\mp@subsup{A}{UTO-}{+SMARTPORT
Configurable Parameters:ACCESS VLAN
Defaults Parameters:ACCESS VLAN}=
Current Parameters:ACCESS_VLAN=1
```

This example shows how to use the show macro auto address-group name command to view the TEST3 address group configuration on the switch:

```
Group Name OUI MAC ADDRESS
TEST3 2233.33 0022.0022.0022
2233.34
```


show memory platform

To display memory statistics of a platform, use the show memory platform command in privileged EXEC mode.
show memory platform [\{compressed-swap | information | page-merging\}]
Syntax Description

compressed-swap	(Optional) Displays platform memory compressed-swap information.
information	(Optional) Displays general information about the platform.
page-merging	(Optional) Displays platform memory page-merging information.

Command Modes	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Free memory is accurately computed and displayed in the Free Memory field of the command output.

Examples
The following is sample output from the show memory platform command:

```
Switch# show memory platform
Virtual memory : 12874653696
    Pages resident : 627041
    Major page faults: 2220
    Minor page faults: 2348631
    Architecture : mips64
    Memory (kB)
        Physical : 3976852
        Total : 3976852
        Used : 2761276
        Free : 1215576
        Active : 2128196
        Inactive : 1581856
        Inact-dirty : 0
        Inact-clean : 0
        Dirty : 0
        AnonPages: 1294984
        Bounce : 0
        Cached : 1978168
        Commit Limit : 1988424
        Committed As : 3343324
        High Total : 0
        High Free : 0
        Low Total : 3976852
        Low Free : }121557
        Mapped : 516316
        NFS Unstable : 0
        Page Tables : 17124
        Slab : 0
```

```
VMmalloc Chunk : 1069542588
VMmalloc Total : 1069547512
VMmalloc Used : 2588
Writeback : 0
HugePages Total: 0
HugePages Free : 0
HugePages Rsvd : 0
HugePage Size : 2048
Swap (kB)
    Total : 0
    Used : 0
    Free : 0
    Cached : 0
Buffers (kB) : 437136
Load Average
1-Min \(\quad: 1.04\)
    -Min : 1.16
    15-Min : 0.94
```

The following is sample output from the show memory platform information command:

Swap (kB)	
Total	$: 0$
Used	$: 0$
Free	$: 0$
Cached	$: 438228$
Buffers (kB)	
Load Average	$: 1.54$
1-Min	$: 1.27$
5-Min	$: 0.99$
15-Min	

show module

To display module information such as switch number, model number, serial number, hardware revision number, software version, MAC address and so on, use this command in user EXEC or privileged EXEC mode.
show module [\{switch-num $\}$]
Syntax Description
switch-num
(Optional) Number of the switch.

$\overline{\text { Command Default }}$	None	
$\overline{\text { Command Modes }}$	User EXEC ($>$)	
	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines Entering the show module command without the switch-num argument is the same as entering the show module all command.

The following example displays information for all modules on a Cisco Catalyst 9300 Series Switch:

```
Device# show module
Switch Ports Model
------ ----- ---------
    1 40 C9300-24T
```

Serial No.	MAC address	Hw Ver.	Sw Ver.
FOC2147Q02D	b4a8.b9c1.4100	V01	16.10 .1

show mgmt-infra trace messages ilpower

To display inline power messages within a trace buffer, use the show mgmt-infra trace messages ilpower command in privileged EXEC mode.
show mgmt-infra trace messages ilpower [switch stack-member-number]

Syntax Description
$\overline{\text { Command Default }}$

Command History
switch stack-member-number (Optional) Specifies the stack member number for which to display inline power messages within a trace buffer.

None

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

This is an output example from the show mgmt-infra trace messages ilpower command:

```
Device# show mgmt-infra trace messages ilpower
```

Device\# show mgmt-infra trace messages ilpower
[10/23/12 14:05:10.984 UTC 1 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 1 3] Initialized inline power system configuration fo
r slot 1.
r slot 1.
[10/23/12 14:05:10.984 UTC 2 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 2 3] Initialized inline power system configuration fo
r slot 2.
r slot 2.
[10/23/12 14:05:10.984 UTC 3 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 3 3] Initialized inline power system configuration fo
r slot 3.
r slot 3.
[10/23/12 14:05:10.984 UTC 4 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 4 3] Initialized inline power system configuration fo
r slot 4.
r slot 4.
[10/23/12 14:05:10.984 UTC 5 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 5 3] Initialized inline power system configuration fo
r slot 5.
r slot 5.
[10/23/12 14:05:10.984 UTC 6 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 6 3] Initialized inline power system configuration fo
r slot 6.
r slot 6.
[10/23/12 14:05:10.984 UTC 7 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 7 3] Initialized inline power system configuration fo
r slot 7.
r slot 7.
[10/23/12 14:05:10.984 UTC 8 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 8 3] Initialized inline power system configuration fo
r slot 8.
r slot 8.
[10/23/12 14:05:10.984 UTC 9 3] Initialized inline power system configuration fo
[10/23/12 14:05:10.984 UTC 9 3] Initialized inline power system configuration fo
r slot 9.
r slot 9.
[10/23/12 14:05:10.984 UTC a 3] Inline power subsystem initialized.
[10/23/12 14:05:10.984 UTC a 3] Inline power subsystem initialized.
[10/23/12 14:05:18.908 UTC b 264] Create new power pool for slot 1
[10/23/12 14:05:18.908 UTC b 264] Create new power pool for slot 1
[10/23/12 14:05:18.909 UTC c 264] Set total inline power to 450 for slot 1
[10/23/12 14:05:18.909 UTC c 264] Set total inline power to 450 for slot 1
[10/23/12 14:05:20.273 UTC d 3] PoE is not supported on .
[10/23/12 14:05:20.273 UTC d 3] PoE is not supported on .
[10/23/12 14:05:20.288 UTC e 3] PoE is not supported on .
[10/23/12 14:05:20.288 UTC e 3] PoE is not supported on .
[10/23/12 14:05:20.299 UTC f 3] PoE is not supported on .
[10/23/12 14:05:20.299 UTC f 3] PoE is not supported on .
[10/23/12 14:05:20.311 UTC 10 3] PoE is not supported on .
[10/23/12 14:05:20.311 UTC 10 3] PoE is not supported on .
[10/23/12 14:05:20.373 UTC 11 98] Inline power process post for switch 1
[10/23/12 14:05:20.373 UTC 11 98] Inline power process post for switch 1
[10/23/12 14:05:20.373 UTC 12 98] PoE post passed on switch 1
[10/23/12 14:05:20.373 UTC 12 98] PoE post passed on switch 1
[10/23/12 14:05:20.379 UTC 13 3] Slot \#1: PoE initialization for board id 16387
[10/23/12 14:05:20.379 UTC 13 3] Slot \#1: PoE initialization for board id 16387
[10/23/12 14:05:20.379 UTC 14 3] Set total inline power to 450 for slot 1
[10/23/12 14:05:20.379 UTC 14 3] Set total inline power to 450 for slot 1
[10/23/12 14:05:20.379 UTC 15 3] Gil/0/1 port config Initialized
[10/23/12 14:05:20.379 UTC 15 3] Gil/0/1 port config Initialized
[10/23/12 14:05:20.379 UTC 16 3] Interface Gil/0/1 initialization done.
[10/23/12 14:05:20.379 UTC 16 3] Interface Gil/0/1 initialization done.
[10/23/12 14:05:20.380 UTC 17 3] Gi1/0/24 port config Initialized
[10/23/12 14:05:20.380 UTC 17 3] Gi1/0/24 port config Initialized
[10/23/12 14:05:20.380 UTC 18 3] Interface Gil/0/24 initialization done.
[10/23/12 14:05:20.380 UTC 18 3] Interface Gil/0/24 initialization done.
[10/23/12 14:05:20.380 UTC 19 3] Slot \#1: initialization done.

```
[10/23/12 14:05:20.380 UTC 19 3] Slot #1: initialization done.
```

```
[10/23/12 14:05:50.440 UTC 1a 3] Slot #1: PoE initialization for board id 16387
[10/23/12 14:05:50.440 UTC 1b 3] Duplicate init event
```


show mgmt-infra trace messages ilpower-ha

To display inline power high availability messages within a trace buffer, use the show mgmt-infra trace messages ilpower-ha command in privileged EXEC mode.
show mgmt-infra trace messages ilpower-ha [switch stack-member-number]

Syntax Description

$\overline{\text { Command Default }}$
Command Modes
Command History

None
Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This is an output example from the show mgmt-infra trace messages ilpower-ha command:

```
Device# show mgmt-infra trace messages ilpower-ha
[10/23/12 14:04:48.087 UTC 1 3] NG3K_ILPOWER_HA: Created NGWC ILP CF client succ
essfully.
```


show mgmt-infra trace messages platform-mgr-poe

To display platform manager Power over Ethernet (PoE) messages within a trace buffer, use the show mgmt-infra trace messages platform-mgr-poe privileged EXEC command.
show mgmt-infra trace messages platform-mgr-poe [switch stack-member-number]

Syntax Description

Command Default
Command Modes

Command History
switch stack-member-number (Optional) Specifies the stack member number for which to display messages within a trace buffer.

None
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This is an example of partial output from the show mgmt-infra trace messages platform-mgr-poe command:

```
Device# show mgmt-infra trace messages platform-mgr-poe
[10/23/12 14:04:06.431 UTC 1 5495] PoE Info: get power controller param sent:
[10/23/12 14:04:06.431 UTC 2 5495] PoE Info: POE_SHUT sent for port 1 (0:0)
[10/23/12 14:04:06.431 UTC 3 5495] PoE Info: POE_SHUT sent for port 2 (0:1)
[10/23/12 14:04:06.431 UTC 4 5495] PoE Info: POE_SHUT sent for port 3 (0:2)
[10/23/12 14:04:06.431 UTC 5 5495] PoE Info: POE SHUT sent for port 4 (0:3)
[10/23/12 14:04:06.431 UTC 6 5495] PoE Info: POE_SHUT sent for port 5 (0:4)
[10/23/12 14:04:06.431 UTC 7 5495] PoE Info: POE_SHUT sent for port 6 (0:5)
[10/23/12 14:04:06.431 UTC 8 5495] PoE Info: POE_SHUT sent for port 7 (0:6)
[10/23/12 14:04:06.431 UTC 9 5495] PoE Info: POE_SHUT sent for port 8 (0:7)
[10/23/12 14:04:06.431 UTC a 5495] PoE Info: POE_SHUT sent for port 9 (0:8)
[10/23/12 14:04:06.431 UTC b 5495] PoE Info: POE_SHUT sent for port 10 (0:9)
[10/23/12 14:04:06.431 UTC c 5495] PoE Info: POE_SHUT sent for port 11 (0:10)
[10/23/12 14:04:06.431 UTC d 5495] PoE Info: POE_SHUT sent for port 12 (0:11)
[10/23/12 14:04:06.431 UTC e 5495] PoE Info: POE_SHUT sent for port 13 (e:0)
[10/23/12 14:04:06.431 UTC f 5495] PoE Info: POE_SHUT sent for port 14 (e:1)
[10/23/12 14:04:06.431 UTC 10 5495] PoE Info: POE_SHUT sent for port 15 (e:2)
[10/23/12 14:04:06.431 UTC 11 5495] PoE Info: POE_SHUT sent for port 16 (e:3)
[10/23/12 14:04:06.431 UTC 12 5495] PoE Info: POE_SHUT sent for port 17 (e:4)
[10/23/12 14:04:06.431 UTC 13 5495] PoE Info: POE_SHUT sent for port 18 (e:5)
[10/23/12 14:04:06.431 UTC 14 5495] PoE Info: POE_SHUT sent for port 19 (e:6)
[10/23/12 14:04:06.431 UTC 15 5495] PoE Info: POE_SHUT sent for port 20 (e:7)
[10/23/12 14:04:06.431 UTC 16 5495] PoE Info: POE_SHUT sent for port 21 (e:8)
[10/23/12 14:04:06.431 UTC 17 5495] PoE Info: POE_SHUT sent for port 22 (e:9)
[10/23/12 14:04:06.431 UTC 18 5495] PoE Info: POE_SHUT sent for port 23 (e:10)
```


show network-policy profile

To display the network-policy profiles, use the show network policy profile command in privileged EXEC mode.
show network-policy profile [profile-number] [detail]
Syntax Description
profile-number (Optional) Displays the network-policy profile number. If no profile is entered, all network-policy profiles appear.
detail (Optional) Displays detailed status and statistics information.

Command Default
Command Modes
Command History

None
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This is an example of output from the show network-policy profile command:

```
Device# show network-policy profile
Network Policy Profile 10
    voice vlan 17 cos 4
    Interface:
    none
Network Policy Profile 30
    voice vlan 30 cos 5
    Interface:
        none
Network Policy Profile 36
    voice vlan 4 cos 3
    Interface:
    Interface_id
```


show parser macro

To display the parameters for all configured macros or for one macro on the switch, use the show parser macro command in user EXEC mode.
show parser macro \{brief | description [interface interface-id]| name macro-name\}

Syntax Description	brief	(Optional) Displays the name of each macro.
	description [interface interface-id]	(Optional) Displays all macro descriptions or the description of a specific interface.
	name macro-name	(Optional) Displays information about a single macro identified by the macro name.
Command Modes	User EXEC ($>$)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Example

This is a partial output example from the show parser macro command. The output for the Cisco-default macros varies depending on the switch platform and the software image running on the switch:

```
Device# show parser macro
Total number of macros = 6
---------------------------------------
Macro name : cisco-global
Macro type : default global
# Enable dynamic port error recovery for link state
# failures
errdisable recovery cause link-flap
errdisable recovery interval 60
<output truncated>
Macro name : cisco-desktop
Macro type : default interface
# macro keywords $AVID
# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access
<output truncated>
Macro name : cisco-phone
```

```
Macro type : default interface
# Cisco IP phone + desktop template
# macro keywords $AVID $VVID
# VoIP enabled interface - Enable data VLAN
# and voice VLAN (VVID)
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access
<output truncated>
Macro name : cisco-switch
Macro type : default interface
# macro keywords $NVID
# Access Uplink to Distribution
# Do not apply to EtherChannel/Port Group
# Define unique Native VLAN on trunk ports
# Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID
<output truncated>
*)
Macro name : cisco-router
Macro type : default interface
# macro keywords $NVID
# Access Uplink to Distribution
# Define unique Native VLAN on trunk ports
# Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID
<output truncated>
Macro name : snmp
Macro type : customizable
#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE
```

This example shows the output from the show parser macro name command:

```
Device# show parser macro name standard-switch10
Macro name : standard-switch10
Macro type : customizable
macro description standard-switch10
# Trust QoS settings on VOIP packets
auto qos voip trust
# Allow port channels to be automatically formed
channel-protocol pagp
```

This example shows the output from the show parser macro brief command:

```
Device# show parser macro brief
    default global : cisco-global
    default interface: cisco-desktop
    default interface: cisco-phone
    default interface: cisco-switch
    default interface: cisco-router
    customizable : snmp
```

This exampe shows the output from the show parser macro description command:

```
Device# show parser macro description
Global Macro(s): cisco-global
Interface Macro Description(s)
*----------------------------------------------------------
Gi1/0/1 standard-switch10
Gil/0/2 this is test macro
```

This example shows the output from the show parser macro description interface command:

```
Device# show parser macro description interface gigabitethernet1/0/2
Interface Macro Description
---------------------------------------------------------------------
Gil/0/2 this is test macro
```


show platform hardware bluetooth

To display information about Bluetooth interface, use the show platform hardware bluetooth command in privileged EXEC mode.
show platform hardware bluetooth

Command Default	None
Command Modes	Privileged EXEC (\#)
Command History	Release
	Cisco IOS XE Gibraltar 16.12.1
Usage Guidelines	The show platform hardware bluetooth comma connected on the device.
Examples	This example shows how to display the informatio platform hardware bluetooth command. ```Device> enable Device# show platform hardware bluetooth Controller: 0:1a:7d:da:71:13 Type: Primary Bus: USB State: DOWN Name: HCI Version:```

show platform hardware fed switch forward

To display device-specific hardware information, use the show platform hardware fed switch switch_number command.

This topic elaborates only the forwarding-specific options, that is, the options available with the show platform hardware fed switch \{switch_num | active | standby \} forward summary command.

The output of the show platform hardware fed switch switch_number forward summary displays all the details about the forwarding decision taken for the packet.
show platform hardware fed switch $\{$ switch_num \mid active \mid standby $\}$ forward summary

Syntax Description

switch \{switch_num | The switch for which you want to display information. You have the following active | standby \} options:

- switch_num-ID of the switch.
- active-Displays information relating to the active switch.
- standby-Displays information relating to the standby switch, if available.

forward summary	Displays packet forwarding information. NoteSupport for the keyword summary has been discontinued in the Cisco IOS XE Everest 16.6.1 release and later releases.

Command Modes

Command History

Usage Guidelines

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Everest 16.6.1 and later releases	Supprort for the keyword summary was discontinued.

Do not use this command unless a technical support representative asks you to. Use this command only when you are working directly with a technical support representative while troubleshooting a problem.

Fields displayed in the command output are explained below.

- Station Index : The Station Index is the result of the layer 2 lookup and points to a station descriptor which provides the following:
- Destination Index : Determines the egress port(s) to which the packets should be sent to. Global Port Number(GPN) can be used as the destination index. A destination index with 15 down to 12 bits set indicates the GPN to be used. For example, destination index - 0xF04E corresponds to GPN - 78 (0x4e).
- Rewrite Index : Determines what needs to be done with the packets. For layer 2 switching, this is typically a bridging action
- Flexible Lookup Pipeline Stages(FPS) : Indicates the forwarding decision that was taken for the packet - routing or bridging
- Replication Bit Map : Determines if the packets should be sent to CPU or stack
- Local Data Copy = 1
- Remote Data copy $=0$
- Local CPU Copy $=0$
- Remote CPU Copy $=0$

Example

This is an example of output from the show platform hardware fed switch \{switch_num | active | standby \} forward summary command.

```
Device#show platform hardware fed switch 1 forward summary
Time: Fri Sep 16 08:25:00 PDT 2016
Incomming Packet Details:
###[ Ethernet ]###
    dst = 00:51:0f:f2:0e:11
    src = 00:1d:01:85:ba:22
    type = ARP
###[ ARP ]###
        hwtype = 0x1
        ptype = IPv4
        hwlen = 6
        plen = 4
        op = is-at
        hwsrc = 00:1d:01:85:ba:22
        psrc = 10.10.1.33
        hwdst = 00:51:0f:f2:0e:11
        pdst = 10.10.1.1
```

```
Ingress:
Switch : 1
Port : GigabitEthernet1/0/1
Global Port Number : 1
Local Port Number : 1
Asic Port Number : 21
ASIC Number : 0
STP state :
    blkLrn31to0: 0xffdfffdf
    blkFwd31to0: 0xffdfffdf
Vlan : 1
Station Descriptor : 170
DestIndex : 0xF009
DestModIndex : 2
RewriteIndex : 2
Forwarding Decision: FPS 2A L2 Destination
Replication Bitmap:
Local CPU copy : 0
Local Data copy : 1
Remote CPU copy : 0
Remote Data copy : 0
```

```
Egress:
Switch : 1
Outgoing Port : GigabitEthernet1/0/9
Global Port Number : 9
ASIC Number : 0
Vlan : 1
```


show platform hardware fed switch forward interface

To debug forwarding information and to trace the packet path in the hardware forwarding plane, use the show platform hardware fed switch switch_number forward interface command. This command simulates a user-defined packet and retrieves the forwarding information from the hardware forwarding plane. A packet is generated on the ingress port based on the packet parameters that you have specified in this command. You can also provide a complete packet from the captured packets stored in a PCAP file.
This topic elaborates only the interface forwarding-specific options, that is, the options available with the show platform hardware fed switch \{switch_num | active | standby \} forward interface command.
show platform hardware fed switch \{switch_num |active | standby\} forward interface interface-type interface-number source-mac-address destination-mac-address\{protocol-number $|\operatorname{arp}| \mathbf{c o s}|\mathbf{i p v} 4| \mathbf{i p v 6}$ | mpls \}
show platform hardware fed switch \{switch_num |active | standby\} forward interface interface-type interface-number pcap pcap-file-name number packet-number data
show platform hardware fed switch \{switch_num |active | standby\} forward interface interface-type interface-number vlan vlan-id source-mac-address destination-mac-address\{protocol-number $|\operatorname{arp}|$ cos $|\mathbf{i p v 4}| \mathbf{i p v 6} \mid \mathbf{m p l s}\}$

Syntax Description switch \{switch_num | active The switch on which packet tracing has to be scheduled. The input port | standby \} should be available on this switch. You have the following options :

- switch_num-ID of the switch on which the ingress port is present.
- active-indicates the active switch on which the the ingress port is present.
- standby-indicates the standby switch on which the ingress port is present.

Note This keyword is not supported.

interface interface-type interface-number	The input interface on which packet trace is simulated.
source-mac-address	The source MAC address of the packet you want to simulate.
destination-mac-address	The MAC address of the destination interface in hexadecimal format.
protocol-number	The number assigned to any L3 protocol.
arp	The Address Resolution Protocol (ARP) parameters.
ipv4	The IPv4 packet parameters.
$\mathbf{i p v 6}$	The IPv6 packet parameters.
mpls	The Multiprotocol Label Switching (MPLS) label parameters.

Command Modes

Command History

Usage Guidelines

The class of service (CoS) number from 0 to 7 to set priority.
Name of the pcap file in internal flash (flash:).
Ensure that the file already exists in flash:.

number packet-number	Specifies the packet number in the pcap file.
vlan vlan-id	VLAN id of the dot1q header in the simulated packet. The range is 1 to
	4096.

Privileged EXEC

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Fuji 16.9.1	The command was enhanced to support MPLS/ARP/VxLAN packet parameters and trace packets captured in a PCAP file.
Cisco IOS XE Gibraltar 16.10.1	The command was enhanced to support data capture across a stack.

Do not use this command unless a technical support representative asks you to. Use this command only when you are working directly with a technical support representative while troubleshooting a problem.

This command supports the following packet types:

- Non-IP packets with any L3 protocol
- ARP packets
- IPv4 packets with any L4 protocol
- IPv4 packets with TCP/UDP/IGMP/ICMP/SCTP payload
- VxLAN packets
- MPLS packets with up to 3 Labels and meta data
- MPLS packets with IPv4/IPv6 payload
- IPv6 packets with TCP/UDP/IGMP/ICMP/SCTP payload

In a stack environment, you can trace packets across the stack irrespective of the number of stack members and topology. The show platform hardware fed switch switch-number forward interface interface-type interface-number command consolidates packet-forwarding information of all the stack members on the ingress switch. To achieve this, ensure that the switch number specified in the switch_num and interface-number arguments are of the input switch and that the number matches.

To trace any particular packet from the captured packets stored in a PCAP file, use the show platform hardware fed switch forward interface interface-type interface-number pcap pcap-file-name number packet-number data command.

Example

This is an example of output from the show platform hardware fed switch \{switch_num | active | standby \} forward interface command.

```
Device#show platform hardware fed switch active forward interface gigabitEthernet 1/0/35
0000.0022.0055 0000.0055.0066 ipv4 44.44.0.2 55.55.0.2 udp 1222 3333
Show forward is running in the background. After completion, syslog will be generated.
*Sep 24 05:57:36.614: %SHFWD-6-PACKET TRACE DONE: Switch 1 R0/0: fed: Packet Trace Complete:
    Execute (show platform hardware fed switch <> forward last summary|detail)
*Sep 24 05:57:36.614: %SHFWD-6-PACKET_TRACE_FLOW_ID: Switch 1 R0/0: fed: Packet Trace Flow
    id is 150323855361
```

Related Commands

Command	Description
monitor capture interface	Configures monitor capture points specifying an attachment point and the packet flow direction.
monitor capture start	Starts the capture of packet data at a traffic trace point into a buffer.
monitor capture stop	Stops the capture of packet data at a traffic trace point.
monitor capture export	Saves the captured packets in the buffer. Use this command to export the monitor capture buffer to a pcap file in flash: that you can use as an input in the show forward with pcap.

show platform hardware fed switch forward last summary

To display a summary of packet tracing data from a switch or switches in a stack, use the show platform hardware fed switch switch_number forward last summary command.

The output of the show platform hardware fed switch switch_number forward last summary command displays all the details about the forwarding decision taken for the packet from the last time the show forward command was run.
show platform hardware fed switch \{switch_number |active | standby forward last summary

Syntax Description

Command Modes

Command History

Usage Guidelines

| switch \{switch_number \| active | standby \} | The switch on which you want to schedule a packet capture for a port. You have the following options : |
| :---: | :---: |
| | - switch_num - ID of the switch on which the ingress port is present. |
| | - active - indicates the active switch on which the the ingress port is present. |
| | - standby-indicates the standby switch on which the ingress port is present. |
| | Note This keyword is not supported. |

forward last summary Displays packet forwarding information.

Privileged EXEC

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Everest 16.6.1 and later releases	Support for the keyword summary was discontinued.
Cisco IOS XE Fuji 16.9.1	Support for keywords last and summary is introduced.
Cisco IOS XE Gibraltar 16.10.1	The output of the command was enhanced to display the details about all the copies of the packets and the corresponding outgoing ports.

Do not use this command unless a technical support representative asks you to. Use this command only when you are working directly with a technical support representative while troubleshooting a problem.
With Cisco IOS XE Gibraltar 16.10.1, show platform hardware fed switch forward last summary command is enhanced to:

- Inject the debug packets from the CPU to simulate the incoming port and packets
- Use the debug packets to trace the packet in hardware data-path to provide forwarding details such as lookup, adjacency, rewrite information, drop decision, outgoing port and so on
- Drop the original packets at egress so as not to transmit the packet to the outgoing port
- Send a copy of all the packets to the CPU and display the details in the packet tracing output

Example

This is an example of output from the show platform hardware fed switch \{switch_number | active | standby \} forward last summary command.

```
Device#show platform hardware fed switch active forward last summary
Input Packet Details:
###[ Ethernet ]###
    dst = 01:00:5e:01:01:02
    src = 00:00:00:03:00:05
    type = 0x0
###[ Raw ]###
            load = '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'
Ingress:
    Port : GigabitEthernet1/0/11
    Global Port Number : 11
    Local Port Number : 11
    Asic Port Number : 10
    Asic Instance : 1
    Vlan : 20
    Mapped Vlan ID : 6
    STP Instance : 4
    BlockForward : 0
    BlockLearn : 0
    L3 Interface : 39
        IPv4 Routing : enabled
        IPv6 Routing : enabled
        Vrf Id : 0
    Adjacency:
                Station Index : 3 [SI_DIET_L2]
                Destination Index : 18
                Rewrite Index : 2
                Replication Bit Map : 0x15 ['localData', 'remoteData', 'coreData']
        Decision:
            Destination Index : 24 [DI_DIET_L2]
            Rewrite Index : 2 [RI_L2]
            Dest Mod Index : 9 [DMI_IGMP_CTRL_Q]
            CPU Map Index : 0 [CMI_NULL]
            Forwarding Mode : 0 [Bri\overline{dging]}
            Replication Bit Map : ['localData', 'remoteData', 'coreData']
            Winner : L2DESTMACVLAN LOOKUP
            Qos Label : 65
            SGT : 0
            DGTID : 0
Egress:
    Possible Replication :
            Port : GigabitEthernet1/0/11
            Port : GigabitEthernet1/0/22
            Port : GigabitEthernet2/0/1
        Output Port Data :
            Port : GigabitEthernet1/0/22
                Global Port Number : 22
```

```
        Local Port Number : 22
        Asic Port Number : 21
        Asic Instance : 0
        Unique RI : 2
        Rewrite Type : 1 [L2_BRIDGE]
        Mapped Rewrite Type : 1 [L2_BRIDGE]
        Vlan : 20
        Mapped Vlan ID : 6
        Port
        GigabitEthernet2/0/1
            Global Port Number : 97
            Local Port Number : 1
            Asic Port Number : 0
            Asic Instance : 1
            Unique RI : 2
            Rewrite Type : 1 [L2_BRIDGE]
            Mapped Rewrite Type : 1 [L2 BRIDGE]
            Vlan : 20
            Mapped Vlan ID : 6
Output Packet Details:
    Port : GigabitEthernet1/0/22
###[ Ethernet ]###
    dst = 01:00:5e:01:01:02
    src = 00:00:00:03:00:05
    type = 0x0
###[ Raw ]###
            load = '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'
    Port
                            : GigabitEthernet2/0/1
###[ Ethernet ]###
    dst = 01:00:5e:01:01:02
    src = 00:00:00:03:00:05
    type = 0x0
###[ Raw ]###
    load = '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
        00}0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
        00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
        00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'
********************************************************************************************
```


show platform hardware fed switch fwd-asic counters tla

To display the register information of a counter from the forwarding ASIC, use the show platform hardware fed switch fwd-asic counters tla command in the Privileged EXEC mode.
show platform hardware fed switch $\{$ switch_num \mid active \mid standby $\}$ fwd-asic counters tla tla_counter $\{$ detail | drop | statistics $\}$ [asic asic_num] output location:filename

Syntax Description
switch \{switch_num The switch for which you want to display information. You have the following | active | standby options:
\}

- switch_num: ID of the switch.
- active: Displays information relating to the active switch.
- standby: Displays information relating to the standby switch, if available.

tlatla_counter	tla_counter can be any of the following Three Letter Acronym (TLA) counters: - AQM Active Queue Management - ASE ACL Search Engine - DPP DopplerE Point to Point - EGR Egress Global Resolution - EPF Egress Port FIFO - ESM Egress Scheduler Module - EQC Egress Queue Controller - FPE Flexible Parser - FPS Flexible Pipe Stage - FSE Fib Search Engine - IGR Ingress Global Resolution - IPF Ingress Port FIFO - IQS Ingress Queues and Scheduler - MSC Macsec Engine - NFL Netflow - NIF Network Interface - PBC Packet Buffer Complex - PIM Protocol Independent Multicast - PLC Policer - RMU Recirculation Multiplexer Unit - RRE Reassembly Engine - RWE Rewrite Engine - SEC Security Engine - SIF Stack Interface - SPQ Supervisor Packet Queuing Engine - SQS Stack Queues And Scheduler - SUP Supervisor Interface
detail	Displays the contents of the registers of all non-zero counters.
drop	Displays the contents of the registers of all non-zero drop counters.
statistics	Displays the contents of the registers of all non-zero statistical counters.

asci asic_num	(Optional) Specifies the ASIC.
output location:filename	Specifies an output file to which the contents of the counters registers are to be dumped.

$\begin{array}{lll}\hline \text { Command Modes } & \text { Privileged EXEC (\#) } & \\$\cline { 1 - 2 } \cline { 3 - 3 } Command History \& Release \& Modification

\cline { 2 - 3 } \& Cisco IOS XE Everest 16.5.1a \& This command was introduced.

\cline { 2 - 3 } \& Cisco IOS XE Amsterdam 17.3.1 \& \(\left.$$
\begin{array}{l}\text { The command output was modified } \\
\text { to be presented in a readable tabular } \\
\text { format. The size of the output file }\end{array}
$$

was also reduced by not printing\end{array}\right\}\)| fields that had zero values. |
| :--- |
| The change keyword was |
| deprecated. |

Usage Guidelines
 Do not use this command unless a technical support representative asks you to. Use this command only when

 you are working directly with a technical support representative while troubleshooting a problem.Note Some TLAs may not have any registers to display as part of drop or statistics options because of the lack of these drop or statistics registers for them. In such a case, a message, No <detail|droplstatistics> counters to display for tla <TLA_NAME> is displayed and no output file is generated.

Example

This is an example output from the show platform hardware fed active fwd-asic counters tla aqm command.

```
Device#show platform hardware fed active fwd-asic counters tla aqm detail output flash:aqm
command to get counters for tla AQM succeeded
Device#
Device# more flash:aqm
========================================================================================================== 
asic | core | Register Name | Fields | value
====================================================================================================
    0 0 AqmRepTransitUsageCnt[0][0]
    totalCntHighMark : 0x4
    transitWait4DoneHighMark : 0x2
    0 1 AqmRepTransitUsageCnt[0][0]
                            totalCntHighMark : 0x2
                            transitWait4DoneHighMark : 0x2
asic | core | Register Name | Fields | value
===================================================================================================
    0 0 AqmGlobalHardBufCnt[0][0]
```

highWaterMark : 0x3

asi		Register Name	Fields		value
0	0	AqmRedQueueStats [0][673]			
			acceptByteCnt2 acceptFrameCnt2		$\begin{aligned} & 0 \times 4 e 44 e \\ & 0 \times 5 e 1 \end{aligned}$
0	0	AqmRedQueueSta			
			acceptByteCnt1	:	0x88
			acceptByteCnt2		0xa7c
			acceptFrameCnt1		0×2
			acceptFrameCnt2		0×16
0	0	AqmRedQueueSta			
			acceptByteCnt2		$0 x f b f 06$
			acceptFrameCnt2		0x2440
0	0	AqmRedQueueSt			
			acceptByteCnt2	:	0xcc
			acceptFrameCnt2		0×3
0	0	AqmRedQueueSt			
			acceptByteCnt2	:	0x2caea0
			acceptFrameCnt2		$0 \times a 836$
0	0	AqmRedQueueSt			
			acceptByteCnt2		$0 \times 2 \mathrm{dc}$
			acceptFrameCnt2		0x6
0	0	AqmRedQueueSta			
			acceptByteCnt2		0 xc 518
			acceptFrameCnt2		$0 \times 2 \mathrm{e} 6$

show platform hardware fed active fwd-asic resource tcam utilization

To display hardware information about the Ternary Content Addressable Memory (TCAM) usage, use the show platform hardware fed active fwd-asic resource tcam utilization command in privileged EXEC mode.
show platform hardware fed active fwd-asic resource tcam utilization[\{asic-number \}]

Syntax Description

Command Modes
Command History
asic-number
ASIC number. Valid values are from 0 to 7 .

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Amsterdam 17.2.1	This command was introduced in a release prior to Cisco
	IOS XE Amsterdam 17.2.1 .

Usage Guidelines

On stackable switches, this command has the switch keyword, show platform hardware fed switch active fwd-asic resource tcam utilization. On non-stackable switches, the switch keyword is not available.

Example

The following is sample output from the show platform hardware fed active fwd-asic resource tcam utilization command:

OPENFLOW Table5 Ext. 0	EM	I	8192	0	0%	0	0
OPENFLOW Table6 Ext. 0	EM	I	8192	0	0%	0	0
OPENFLOW Table7 Ext. 0	EM	I	8192	0	0%	0	0

The table below lists the significant fields shown in the display.
Table 19: show platform hardware fed active fwd-asic resource tcam utilization Field Descriptions

Field	Description
Table	OpenFlow table numbers.
Subtype	What are the different subtypes available?
Dir	
Max	
Used	
\%Used	
V4	
V6	
MPLS	
Other	

show platform resources

To display platform resource information, use the show platform reources command in privileged EXEC mode.
show platform resources
This command has no arguments or keywords.

Command Modes
Command History
Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines The output of this command displays the used memory, which is total memory minus the accurate free memory.

Example

The following is sample output from the show platform resources command:

Switch\# show platform resources				
**State Acronym: H - Healthy, W - Warning, C - Critical				
Resource State	Usage	Max	Warning	Critical
Control Processor H	7.20\%	100\%	90\%	95\%
DRAM H	2701MB (69\%)	3883 MB	90\%	95\%

show platform software audit

To display the SE Linux Audit logs, use the show platform software audit command in privileged EXEC mode.
show platform software audit $\{$ all | summary \mid [switch $\{$ switch-number \mid active | standby $\}]$
$\{0|\mathbf{F 0}| \mathbf{R 0} \mid\{\mathbf{F P} \mid \mathbf{R P}\}$
Syntax Description

all	Shows the audit log from all the slots.
summary	Shows the audit log summary count from all the slots.
switch	Shows the audit logs for a slot on a specific switch.
switch-number	Selects the switch with the specified switch number.
switch active	Selects the active instance of the switch.
standby	Selects the standby instance of the switch.
$\mathbf{0}$	Shows the audit log for the SPA-Inter-Processor slot 0.
F0	Shows the audit log for the Embedded-Service-Processor slot 0.
R0	Shows the audit log for the Route-Processor slot 0.
FP active	Shows the audit log for the active
Embedded-Service-Processor slot.	

Command Modes

Command History

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Usage Guidelines

This command was introduced in the Cisco IOS XE Gibraltar 16.10.1 as a part of the SELinux Permissive Mode feature. The show platform software audit command displays the system logs containing the access violation events.

In Cisco IOS XE Gibraltar 16.10.1, operation in a permissive mode is available - with the intent of confining specific components (process or application) of the IOS-XE platform. In the permissive mode, access violation events are detected and system logs are generated, but the event or operation itself is not blocked. The solution operates mainly in an access violation detection mode.

The following is a sample output of the show software platform software audit summary command:

Device\# show platform software audit summary

The following is a sample output of the show software platform software audit all command:

```
Device# show platform software audit all
```



```
AUDIT LOG ON switch 1
========== START =============
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
comm="mcp_trace_filte" name="crashinfo" dev="rootfs" ino=13667
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_\overline{crrashinfo_t:s0 tclass=lnk_file permissive=1}
type=AVC msg=audit(1539222292.584:100): avc: denied { getattr } for pid=14017
comm="mcp_trace_filte" path="/mnt/sd1" dev="sda1" ino=2
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r_polaris_disk_\overline{crashinfo_t:s0 tclass=dir permissive=1}
type=AVC msg=audit(1539222292.586:101): avc: denied { getattr } for pid=14028 comm="ls"
    path="/tmp/ufs/crashinfo" dev="tmpfs" ino=58407
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:102): avc: denied { read } for pid=14028 comm="ls"
name="crashinfo" dev="tmpfs" ino=58407 scontext=system_u:system_r:polaris_trace_filter_t:s0
    tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir pe\overline{rmissive=1}
type=AVC msg=audit(153943各00.896:1\overline{19) : avc: denied { execute } for pid=8300 comm="sh"}
name="id" dev="loop0" ino=6982 scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
    tcontext=system_u:object_r:bin_t:s0 tclass=file permissive=1
type=AVC msg=audit(153943\overline{8}600.8\overline{97:120): avc: denied { execute_no_trans } for pid=8300}
comm="sh"
path="/tmp/sw/mount/cat9k-rpbase.2018-10-02_00.13_mhungund.SSA.pkg/nyquist/usr/bin/id"
dev="loop0" ino=6982 scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:bin_t:s0 t_class=file permissi
type=AVC msg=audit(1539438615.535:121): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginnx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=au\overline{dit(15394}\overline{3}8624.916:\overline{122)}: \ avc: denied { execute_no_trans } for pid=8600
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t"_s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8648.93\overline{6}:123)}\mathrm{ : avc: denied { execute no trans } for pid=9307}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_e\overline{exec_t\s0 tclass=file permissive=1}
type=AVC msg=audit(1539438678.649:124): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_ngin
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=au\overline{dit(153943}8696.969:\overline{125)}\mathrm{ : avc:: denied { execute_no_trans } for pid=10057}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:\overline{system_r:polaris_auto_upgrade_server_rp_t:s0}
tcontext=system_u:object_r:shell_evec__t:s0 tclass=file pe\overline{rmissive=1}
type=AVC msg=audit(1539438732.97\overline{3:126)}: avc: denied { execute_no_trans } for pid=10858
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
```



```
type=AVC msg=au\overline{dit(153943}8778.00\overline{8}:127)}\mathrm{ : avc: denied { execute_no_trans } for pid=11579
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
```

```
type=AVC msg=audit(1539438800.156:128): avc: denied { name connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_ngin}nx_t:s
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=audit(1539438834.099:129): avc: denied { execute_no_trans } for pid=12451
comm="auto upgrade se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394}\overline{4}0246.69\overline{7}:149)}\mathrm{ : avc: denied { name connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=audit(1539440299.119:150): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
========== END ============
```

The following is a sample output of the show software platform software audit switch command:

```
Device# show platform software audit switch active RO
```

```
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
comm="mcp_trace_filte" name="crashinfo" dev="rootfs" ino=13667
scontext=\`system_u:system_r:polaris_trace_filter_t:s0
tcontext=system u:object r:polaris disk crashinfo t:s0 tclass=lnk file permissive=1
```



```
comm="mcp_trace_filte" path="/mnt/sd1" dev="sda1" ino=2
scontext=system u:system_r:polaris trace filter t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=dir permissive=1
```



```
    path="/tmp/ufs/crashinfo" dev="tmpfs" ino=58407
scontext=system u:system_r:polaris trace filter t:s0
tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:102): avc: denied { read } for pid=14028 comm="ls"
name="crashinfo" dev="tmpfs" ino=58407 scontext=system_u:system_r:polaris_trace_filter_t:s0
    tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(153943\overline{8}624.916:1\overline{22) : avc: denied { execute_no_trans } for pid=8600}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:\overline{system_r:polaris_auto_upgrade_server_rp_t:s0}
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{d}it(15394\overline{3}8648.93\overline{6}:123)}\mathrm{ : avc: denied { execute no trans } for pid=9307
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8678.64\overline{9}:124)}\mathrm{ : avc: denied { name connect } for pid=26421}
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_ngínx_t:s0
tcontext=system u:object r:polaris caf api port t:s0 tclass=tcp socket permissive=1
type=AVC msg=au\overline{dit(153943}8696.969:\overline{125)}\mathrm{ : avc: denied { execute_no_trans } for pid=10057}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:S\system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=audit(15394\overline{3}732.973:126): avc: denied { execute_no_trans } for pid=10858
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:\overline{system_r:polaris_auto_upgrade_server_rp_t:s0}
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8778.00\overline{8}:127)}: avc: denied { execute_no_trans } for pid=11579
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t"_s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(1539438800.15\overline{6}:128): avc: denied { name_connect } for pid=26421}
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=au\overline{dit(1539438834.099:\overline{129)}}\mathrm{ : avc: denied { execute_no_trans } for pid=12451}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:system_r:polaris_auto_upgrade_server_rp_t:s0
```

```
tcontext=system u:object r:shell exec t:s0 tclass=file permissive=1
type=AVC msg=audit(1539438860.907:130): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
========== END =============
```


show platform software fed switch punt cpuq rates

To display the rate at which packets are punted, including the drops in the punted path, use the show platform software fed switch punt cpuq rates command in privileged EXEC mode.
show platform software fed switch $\{$ switch-number \mid active \mid standby $\}$ punt cpuq rates

Syntax Description switch $\{$ switch-number | active | standby $\}$

Displays information about the switch. You have the following options:

- switch-number.
- active-Displays information relating to the active switch.
- standby-Displays information relating to the standby switch, if available.
Note This keyword is not supported.

Command Modes

Command History

Usage Guidelines

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

The output of this command displays the rate in packets per second at intervals of 10 seconds, 1 minute and 5 minutes.

Example

The following is sample output from the show platform software fed switch active punt cpuq rates command.


```
CPU Q ICMP GEN 0
CPU_Q_ROUTING_CONTROL 0
CPU_Q_FORUS_ADDR_RESOLUTION
CPU_Q_ICMP_REDIRECT
CPU_Q_INTER_FED_TRAFFIC
CPU_Q_L2LVX_CONT-ROL_PKT
CPU_Q_EWLC CONTROL
CPU_Q_EWLC_DATA
CPU_Q_L2LVX_DATA_PKT
CPU_Q_BROADCAST
CPU_Q_LEARNING_CACHE_OVFL
CPU_Q_SW_FORWARDING
CPU_Q_TOPOLOGY_CONTROL
CPU_Q_PROTO_SNOOPING
CPU_Q_DHCP_SNOOPING
CPU Q TRANSIT TRAFFIC
CPU_Q_RPF_FAILED
CPU Q MCAST END STATION SERVICE 0
CPU_Q_LOGGINNG
CPU Q PUNT WEBAUTH
CPU-Q HIGH_RATE APP
CPU_Q_EXCEPTION
CPU_Q_SYSTEM CRITICAL
CPU_Q_NFL_SAMPLED_DATA
CPU-Q LOW LATENCY
CPU_Q_EGR_EXCEPTION
CPU_Q_FSS
CPU_Q_MCAST_DATA
CPU Q GOLD PKT
```

The table below describes the significant fields shown in the display.

Table 20: show platform software fed switch active punt cpuq rates Field Descriptions

Field	Description
Queue Name	Name of the queue.
Rx	The rate at which the packets are received per second in 10s, 1 minute and 5 minutes.
Drop	The rate at which the packets are dropped per second in 10s, 1 minute and 5 minutes.

show platform software fed switch punt packet-capture display

To display packet capture information during high CPU utilization, use the show platform software fed switch active punt packet-capture display command in privileged EXEC mode.
show platform software fed switch active punt packet-capture display \{ detailed | hexdump\}

Syntax Description

switch $\{$ switch-number \mid active | standby $\}$

punt	Specifies punt information.
packet-capture display	Specifies information about the captured packet.
detailed	Specifies detailed information about the captured packet.
hex-dump	Specifies information about the captured packet, in hex format.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

The output of this command displays the periodic and persistent logs of CPU-bound packets, inband CPU traffic rates, and running CPU processes when the CPU passes a high CPU utilization threshold.

Examples

The following is a sample output from the show platform software fed switch active punt packet-capture display detailed command:

```
Device# show platform software fed switch active punt packet-capture display detailed
Punt packet capturing: disabled. Buffer wrapping: disabled
Total captured so far: 101 packets. Capture capacity : 4096 packets
------ Packet Number: 1, Timestamp: 2018/09/04 23:22:10.179 -------
    interface : GigabitEthernet2/0/2 [if-id: 0x00000032] (physical)
    ether hdr : dest mac: 0100.0ccc.cccd, src mac: 2c36.f8fc.4884
ether hdr : ethertype: 0x0032
    Doppler Frame Descriptor :
```

```
    0000000044004E04 C00F402D94510000 0000000000000100 0000400401000000
    0000000001000050 000000006D000100 0000000025836200 0000000000000000
Packet Data Dump (length: 68 bytes) :
    01000CCCCCCD2C36 F8FC48840032AAAA 0300000C010B0000 00000080012C36F8
    FC48800000000080 012C36F8FC488080 040000140002000F 0071000000020001
    244E733E
------ Packet Number: 2, Timestamp: 2018/09/04 23:22:10.179 -------
interface : GigabitEthernet2/0/2 [if-id: 0x00000032] (physical)
ether hdr : dest mac: 0180.c200.0000, src mac: 2c36.f8fc.4884
ether hdr : ethertype: 0x0026
!
!
!
```


show platform software fed switch punt rates interfaces

To display the overall statistics of punt rate for all the interfaces, use the show platform software fed switch punt rates interfaces command in privileged EXEC mode.
show platform software fed switch $\{$ switch-number \mid active \mid standby $\}$ punt rates interfaces[interface-id]

Syntax Description switch $\{$ switch-number \mid active \mid standby $\}$

Displays information about the switch. You have the following options:

- switch-number.
- active -Displays information relating to the active switch.
- standby-Displays information relating to the standby switch, if available.
Note This keyword is not supported.

punt	Specifies the punt informtion.
rates	Specifies the rate at which the packets are punted.
interfaces[interface-id]	(Optional) Displays the overall statistics for an interface and also the per-queue configuration for the interface at an interval of 10 seconds.

\section*{| Command Modes |
| :--- |
| Command History |}

Usage Guidelines

Privileged EXEC (\#)

Release	Modification

Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

The output displays the punt rates in packets per second at intervals of 10 seconds, 1 minute and 5 minutes.

Example

The following is sample output from the show platform software fed switch active punt rates interfaces command for all the interfaces.

```
Device#show plataform software fed switch active punt rates interfaces
Punt Rate on Interfaces Statistics
Packets per second averaged over 10 seconds, 1 min and 5 mins
```

\qquad

```
    Interface Name | IF_ID | 10s | 1min | 5min | 10s | 1min | 5min
```

Vlan3	0×00000034	1000	1000	520	0	0	0

The table below describes the significant fields shown in the display.
Table 21: show platform software fed switch active punt rates interfaces Field Descriptions

Field	Description
Interface Name	Name of the physical interface.
IF_ID	ID of the physical interface.
Rx	The per second rate at which the packets are received in $10 \mathrm{~s}, 1$ minute and 5 minutes.
Drop	The per second rate at which the packets are dropped in 10s, 1 minute and 5 minutes.

The following is sample output from the show platform software fed switch active punt rates interfaces interface-id command for a specific interface.

20	CPU_Q_MCAST_END_STATION_SERVICE	0	0	0	0
21	CPU_Q_LOGGING	0	0	0	0
22	CPU_Q_PUNT_WEBAUTH	0	0	0	0
23	CPU_Q_HIGH_RATE_APP	0	0	0	0
24	CPU_Q_EXCEPTION	0	0	0	0
25	CPU_Q_SYSTEM_CRITICAL	0	0	0	0
26	CPU_Q_NFL_SAMPLED_DATA	0	0	0	0
27	CPU_Q_LOW_LATENCY	0	0	0	0
28	CPU_Q_EGR_EXCEPTION	0	0	0	0
29	CPU_Q_FSS	0	0	0	0
30	CPU_Q_MCAST_DATA	0	0	0	0
31	CPU_Q_GOLD_PKT	0	0	0	0

The table below describes the significant fields shown in the display.
Table 22: show platform software fed switch punt rates interfaces interface-id Field Descriptions

Field	Description
Queue Name	Name of the queue.
Recv Total	Total number of packets received.
Recv Rate	Per second rate at which the packets are received.
Drop Total	Total number of packets dropped.
Drop Rate	Per second rate at which the packets are dropped.

show platform software ilpower

To display the inline power details of all the PoE ports on the device, use the show platform software ilpower command in privileged EXEC mode.
show platform software ilpower \{details | port \{Gigabitethernet interface-number \} | system slot-number \}
Syntax Description

details	Displays inline power details for all the interfaces.
port	Displays inline power port configuration.
GigabitEthernet interface-number	The GigabitEthernet interface number. Values range from 0 to 9.
system slot-number	Displays inline power system configuration.

Command Modes

Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	The command was introduced.

Examples
The following is sample output from the show platform software ilpower details command:

```
Device# show platform software ilpower details
ILP Port Configuration for interface Gil/0/1
    Initialization Done: Yes
    ILP Supported: Yes
    ILP Enabled: Yes
    POST: Yes
    Detect On: No
    Powered Device Detected No
    Powered Device Class Done No
    Cisco Powered Device: No
    Power is On: No
    Power Denied: No
    Powered Device Type: Null
    Powerd Device Class: Null
    Power State: NULL
    Current State: NGWC_ILP_DETECTING_S
    Previous State: NGWC_ILP_SHUT_OFF_S
    Requested Power in milli watts:- - 0
    Short Circuit Detected: 0
    Short Circuit Count: 0
    Cisco Powerd Device Detect Count: 0
    Spare Pair mode: 0
        IEEE Detect: Stopped
            IEEE Short: Stopped
            Link Down: Stopped
            Voltage sense: Stopped
    Spare Pair Architecture: 1
    Signal Pair Power allocation in milli watts: 0
    Spare Pair Power On: 0
    Powered Device power state: 0
    Timer:
```

```
Power Good: Stopped
Power Denied: Stopped
Cisco Powered Device Detect: Stopped
```


show platform software memory

To display memory information for a specified switch, use the show platform software memory command in privileged EXEC mode.
show platform software memory [\{chunk|database|messaging\}] process slot
Syntax Description
Syntax Description

chunk	(Optional) Displays chunk memory information for the specified process.
database	(Optional) Displays database memory information for the specified process.
messaging	(Optional) Displays messaging memory information for the specified process.
	The information displayed is for internal debugging purposes only.

Level that is being set. Options include:

- bt-logger-The Binary-Tracing Logger process.
- btrace-manager-The Btrace Manager process.
- chassis-manager-The Chassis Manager process.
- cli-agent-The CLI Agent process.
- cmm-The CMM process.
- dbm-The Database Manager process.
- dmiauthd-The DMI Authentication Daemon process.
- emd-The Environmental Monitoring process.
- fed-The Forwarding Engine Driver process.
- forwarding-manager-The Forwarding Manager process.
- geo-The Geo Manager process.
- gnmi-The GNMI process.
- host-manager-The Host Manager process.
- interface-manager-The Interface Manager process.
- iomd-The Input/Output Module daemon (IOMd) process.
- ios-The IOS process.
- iox-manager-The IOx Manager process.
- license-manager-The License Manager process.
- logger-The Logging Manager process.
- mdt-pubd—The Model Defined Telemetry Publisher process.
- ndbman-The Netconf DataBase Manager process.
- nesd-The Network Element Synchronizer Daemon process.
- nginx-The Nginx Webserver process.
- nif_mgr-The NIF Manager process.
- platform-mgr-The Platform Manager process.
- pluggable-services-The Pluggable Services process.
- replication-mgr-The Replication Manager process.
- shell-manager-The Shell Manager process.
- sif—The Stack Interface (SIF) Manager process.
- smd-The Session Manager process.
- stack-mgr-The Stack Manager process.
- syncfd-The SyncmDaemon process.
- table-manager-The Table Manager Server.
- thread-test-The Multithread Manager process.
- virt-manager-The Virtualization Manager process.
slot Hardware slot where the process for which the level is set, is running. Options include:
- number - Number of the SIP slot of the hardware module where the level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
- SIP-slot / SPA-bay-Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.
- F0-The Embedded Service Processor slot 0 .
- FP active-The active Embedded Service Processor.
- R0-The route processor in slot 0 .
- RP active-The active route processor.
- RP standby-The standby route processor.
- switch <number> -The switch, with its number specified.

Command Default
Command Modes

Command History
Command History

No default behavior or values.
Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a

The following is a sample output displaying the abbreviated (brief keyword) memory information for the Forwarding Manager process for Cisco Catalyst 9000 Series ESP slot 0 :

AOM asynchronous conte	128388	128324	4	0
AOM basic data	124824	124760	5	1
eventutil	118939	118299	50	10
AOM tree node	96465	96385	5	0
AOM tree root	72377	72313	4	0
acl	36090	31914	504	243
fman-infra-ipc	35326	24366	115097	114412
AOM uplink update node	32386	32322	4	0
unknown	30528	23808	424	4
uipeer	27232	27152	5	0
fman-infra-qos	26872	24712	164	29
cce-class	19427	15411	251	0
12 control protocol	15472	12896	325	164
fman-infra-cce	15272	13576	106	0
smc_channel	15223	15159	4	0
unknown	14208	8736	447	105
chunk	12513	12033	33	3
cce-bind	8496	7552	82	23
MATM mac entry	8040	5928	544	412
adj	7064	6312	157	110
route-pfx	6116	5412	157	113
Filter_rules	4912	4896	1	0
fman-infra-dpidb	4130	2338	112	0
SMC Buffer	3794	3202	43	6
urpf-list	3028	2100	85	27
lookup	2480	2160	30	10
MATM mac table	2432	1600	148	96
cdllib	1688	1672	1	0
route-tbl	1600	1264	21	0
FNF Flowdef	1492	1460	3	1
acl-ref	1120	1024	8	2
cgm-lib	1120	880	410	395
pbr_if_cfg	1088	976	205	198
FNF Monitor	1048	1032	1	0
pbr_routemap	960	864	18	12

The following table describes the significant fields shown in the display.

Table 23: show platform software memory brief Field Descriptions

Field	Description
module	Name of submodule.
allocated	Memory, allocated in bytes.
requested	Number of bytes requested by application.
allocs	Number of discrete allocation event attempts.
frees	Number of free events.

show platform software process list

| | To display the list of running processes on a platform, use the show platform software process list command in privileged EXEC mode.
 show platform software process list switch $\{$ switch-number \mid active \mid standby $\}\{\mathbf{0}\|\mathbf{F} 0\| \mathbf{R 0}\}$ [\{name process-name \| process-id process-ID | sort memory | summary\}] | |
| :---: | :---: | :---: |
| Syntax Description | switch switch-number | Displays information about the switch. Valid values for switch-number argument are from 0 to 9 . |
| | active | Displays information about the active instance of the switch. |
| | standby | Displays information about the standby instance of the switch. |
| | 0 | Displays information about the shared port adapters (SPA) Interface Processor slot 0 . |
| | F0 | Displays information about the Embedded Service Processor (ESP) slot 0. |
| | R0 | Displays information about the Route Processor (RP) slot 0. |
| | name process-name | (Optional) Displays information about the specified process. Enter the process name. |
| | process-id process-ID | (Optional) Displays information about the specified process ID. Enter the process ID. |
| | sort | (Optional) Displays information sorted according to processes. |
| | memory | (Optional) Displays information sorted according to memory. |
| | summary | (Optional) Displays a summary of the process memory of the host device. |
| Command Modes | Privileged EXE (\#) | |
| Command History | Release | Modification |
| | Cisco IOS XE Gibraltar | 16.10.1 The Size column in the output was modified to display Resident Set Size (RSS) in KB. |

Cisco IOS XE Everest 16.5.1a The command was introduced.

Examples

The following is sample output from the show platform software process list switch active $\mathbf{R 0}$ command:

```
Switch# show platform software process list switch active RO summary
Total number of processes: 278
    Running : 2
    Sleeping : 276
    Disk sleeping : 0
    Zombies : 0
```

Stopped	: 0
Paging	0
Up time	: 8318
Idle time	: 0
User time	: 216809
Kernel time	: 78931
Virtual memory	: 12933324800
Pages resident	: 634061
Major page faults	2228
Minor page faults	3491744
Architecture	: mips64
Memory (kB)	
Physical	: 3976852
Total	: 3976852
Used	: 2766952
Free	: 1209900
Active	: 2141344
Inactive	: 1589672
Inact-dirty	: 0
Inact-clean	: 0
Dirty	4
AnonPages	: 1306800
Bounce	: 0
Cached	: 1984688
Commit Limit	: 1988424
Committed As	: 3358528
High Total	: 0
High Free	: 0
Low Total	: 3976852
Low Free	: 1209900
Mapped	: 520528
NFS Unstable	: 0
Page Tables	: 17328
Slab	: 0
VMmalloc Chunk	: 1069542588
VMmalloc Total	: 1069547512
VMmalloc Used	: 2588
Writeback	: 0
HugePages Total	0
HugePages Free	0
HugePages Rsvd	0
HugePage Size	: 2048
Swap (kB)	
Total	: 0
Used	: 0
Free	: 0
Cached	: 0
Buffers (kB)	: 439528
Load Average	
1-Min	: 1.13
5-Min	: 1.18
15-Min	: 0.92

The following is sample output from the show platform software process list switch active R0 command:

Name	Pid	PPid	Group Id	Status	Priority	Size
systemd	1	0	1	S	20	7892
kthreadd	2	0	0	S	20	0
ksoftirqd/0	3	2	0	S	20	0
kworker/0:0H	5	2	0	S	0	0
rcu_sched	7	2	0	S	20	0
rcu_bh	8	2	0	S	20	0
migration/0	9	2	0	S	4294967196	0
migration/1	10	2	0	S	4294967196	0
ksoftirqd/1	11	2	0	S	20	0
kworker/1:0H	13	2	0	S	0	0
migration/2	14	2	0	S	4294967196	0
ksoftirqd/2	15	2	0	S	20	0
kworker/2:0H	17	2	0	S	0	0
systemd-journal	221	1	221	S	20	4460
kworker/1:3	246	2	0	S	20	0
systemd-udevd	253	1	253	S	20	5648
kvm-irqfd-clean	617	2	0	S	0	0
scsi_eh_6	620	2	0	S	20	0
scsi_tmf_6	621	2	0	S	0	0
usb-storage	622	2	0	S	20	0
scsi_eh_7	625	2	0	S	20	0
scsi_tmf_7	626	2	0	S	0	0
usb-storage	627	2	0	S	20	0
kworker/7:1	630	2	0	S	20	0
bioset	631	2	0	S	0	0
kworker/3:1H	648	2	0	S	0	0
kworker/0:1H	667	2	0	S	0	0
kworker/1:1H	668	2	0	S	0	0
bioset	669	2	0	S	0	0
kworker/6:2	698	2	0	S	20	0
kworker/2:2	699	2	0	S	20	0
kworker/2:1H	703	2	0	S	0	0
kworker/7:1H	748	2	0	S	0	0
kworker/5:1H	749	2	0	S	0	0
kworker/6:1H	754	2	0	S	0	0
kworker/7:2	779	2	0	S	20	0
auditd	838	1	838	S	16	2564

The table below describes the significant fields shown in the displays.

Table 24: show platform software process list Field Descriptions

Field	Description
Name	Displays the command name associated with the process. Different threads in the same process may have different command values.
Pid	Displays the process ID that is used by the operating system to identify and keep track of the processes.
PPid	Displays process ID of the parent process.
Group Id	Displays the group ID

Field	Description
Status	Displays the process status in human readable form.
Priority	Displays the negated scheduling priority.
Size	Prior to Cisco IOS XE Gibraltar 16.10.1: Displays Virtual Memory size. From Cisco IOS XE Gibraltar 16.10.1 onwards: Displays the Resident Set Size (RSS) that shows how much memory is allocated to that process in the RAM.

show platform software process memory

To display the amount of memory used by each system process, use the show platform software process memory command in privileged EXEC mode.
show platform process memory
switch $\{$ switch-number \mid active \mid standby $\}\{\mathbf{0}|\mathbf{F 0}| \mathbf{F P} \mid \mathbf{R 0}\}\{$ all [sorted \mid virtual [sorted]] | name process-name \{ maps | smaps [summary] \}| process-id process-id $\{$ maps \mid smaps [summary] \} \}

Syntax Description

switch switch-number	Displays information about the switch. Enter the switch number.
active	Specifies the active instance of the device.
standby	Specifies the standby instance of the device.
$\mathbf{0}$	Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.
F0	Specifies the Embedded Service Processor (ESP) slot 0.
FP	Specifies the Embedded Service Processor (ESP).
R0	Specifies the Route Processor (RP) slot 0.
all	Lists all processes.
sorted	(Optional) Sorts the output based on Resident Set Size
	(RSS).

virtual	(Optional) Specifies virtual memory.
name process-name	Specifies a process name.
maps	Specifies the memory maps of a process.
smaps summary	Specifies the smaps summary of a process.
process-id process-id	Specifies a process identifier.

Command History

Command Modes

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Privileged EXEC(\#)

Examples:

The following is a sample output from the show platform software process memory active $\mathbf{R 0} \mathbf{a l l}$ command:

Pid	RSS	PSS	Heap	Shared	Private	Name
1	4876	3229	1064	1808	3068	systemd
118	3184	1327	132	2352	832	systemd-journal
159	3008	1191	396	1996	1012	systemd-udevd
407	3192	1262	132	2196	996	dbus-daemon
3406	4772	3064	264	1940	2832	virtlogd
3411	5712	3474	2964	2344	3368	droputil.sh
3416	2588	358	132	2336	252	libvirtd.sh
3420	5708	3484	2976	2308	3400	reflector.sh
3424	1804	263	132	1632	172	xinetd
3425	964	118	132	872	92	sleep
3434	3060	844	528	2304	756	oom.sh
3442	2068	606	132	1604	464	rpcbind
3485	2380	845	132	1636	744	rpc.statd
3486	1632	338	132	1348	284	boothelper_evt.
3493	1136	156	132	1004	132	inotifywait
3504	2048	753	132	1372	676	rpc.mountd
3584	2868	620	36	2384	484	rotee
3649	1032	116	132	944	88	sleep
3705	2784	613	36	2296	488	rotee
3718	2856	610	36	2376	480	rotee
3759	1292	184	132	1136	156	inotifywait
3787	4256	2040	1640	2300	1956	iptbl.sh
3894	2948	637	36	2460	488	rotee
4017	1380	175	132	1236	144	inotifywait
4866	1820	287	132	1624	196	xinetd
5887	1692	257	132	1508	184	xinetd
5891	7248	4984	4584	2348	4900	rollback_timer.
5893	1764	257	132	1588	176	xinetd
6031	2804	601	36	2332	472	rotee
6037	1228	163	132	1092	136	inotifywait
6077	4736	3389	2992	1368	3368	psvp.sh
6115	1620	476	36	1152	468	rotee
6122	624	149	132	480	144	inotifywait
6127	5440	4077	3680	1384	4056	pvp.sh
6165	1736	592	36	1152	584	rotee
6245	624	149	132	480	144	inotifywait
6353	2592	1260	924	1352	1240	pman.sh
6470	1632	488	36	1152	480	rotee
6499	2588	1262	924	1348	1240	pman.sh
6666	1640	496	36	1152	488	rotee
6718	2584	1258	800	1348	1236	pman.sh
6736	8360	7020	6640	1360	7000	auto_upgrade_cl
6909	1636	492	36	1152	484	rotee
6955	2588	1262	928	1348	1240	pman.sh
7029	2196	679	40	1552	644	auto_upgrade_se
7149	1636	492	36	1152	484	rotee
7224	13200	4595	48	9368	3832	bt_logger
7295	2588	1262	800	1348	1240	pman.sh

The table below describes the significant fields shown in the displays.

Table 25: show platform software process memory Field Descriptions

Field	Description
PID	Displays the process ID that is used by the operating system to identify and keep track of the processes.
RSS	Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.
PSS	Displays the Proportional Set Size of a process. This is the count of pages it has in memory, where each page is divided by the number of processes sharing it.
Heap	Displays where all user-allocated memory is located.
Shared	Shared clean + Shared dirty
Private	Private clean + Private dirty
Name	Displays the command name associated with the process. Different threads in the same process may have different command values.

show platform software process slot switch

To display platform software process switch information, use the show platform software process slot switch command in privileged EXEC mode.
show platform software process slot switch $\{$ switch-number |active |standby $\{0 \mid$ F0 \mid R0 $\}$ monitor [\{cycles no-of-times [\{interval delay [\{lines number $\}]\}]\}]$

Syntax Description

switch-number	Switch number.
active	Specifies the active instance.
standby	Specifies the standby instance.
$\mathbf{0}$	Specifies the shared port adapter (SPA) interface processor slot 0.
F0	Specifies the Embedded Service Processor (ESP) slot 0.
R0	Specifies the Route Processor (RP) slot 0.
monitor	Monitors the running processes.
cycles no-of-tmes	(Optional) Sets the number of times to run monitor command. Valid values are from 1 to 4294967295. The default is 5.
interval delay	(Optional) Sets a delay after each. Valid values are from 0 to 300. The default is 3.
lines number	(Optional) Sets the number of lines of output displayed. Valid values are from 0 to 512. The default is 0.

Command Modes
Command History

Usage Guidelines
The output of the show platform software process slot switch and show processes cpu platform monitor location commands display the output of the Linux top command. The output of these commands display Free memory and Used memory as displayed by the Linux top command. The values displayed for the Free memory and Used memory by these commands do not match the values displayed by the output of other platform-memory related CLIs.

Examples

The following is sample output from the show platform software process slot monitor command:

Switch\# show platform software process slot switch active R0 monitor

Related Commands	Command	Description
	show processes cpu platform monitor location	Displays information about the CPU utilization of the IOS-XE processes.

show platform software status control-processor

To display platform software control-processor status, use the show platform software status control-processor command in privileged EXEC mode.
show platform software status control-processor [\{brief $\}$]
Syntax Description
brief (Optional) Displays a summary of the platform control-processor status.

Privileged EXEC (\#)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Examples

The following is sample output from the show platform memory software status control-processor command:

```
Switch# show platform software status control-processor
2-RPO: online, statistics updated 7 seconds ago
Load Average: healthy
    1-Min: 1.00, status: healthy, under 5.00
    5-Min: 1.21, status: healthy, under 5.00
    15-Min: 0.90, status: healthy, under 5.00
Memory (kb): healthy
    Total: 3976852
    Used: 2766284 (70%), status: healthy
    Free: 1210568 (30%)
    Committed: 3358008 (84%), under 95%
Per-core Statistics
CPUO: CPU Utilization (percentage of time spent)
    User: 4.40, System: 1.70, Nice: 0.00, Idle: 93.80
    IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
    User: 3.80, System: 1.20, Nice: 0.00, Idle: 94.90
    IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
    User: 7.00, System: 1.10, Nice: 0.00, Idle: 91.89
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
    User: 4.49, System: 0.69, Nice: 0.00, Idle: 94.80
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
3-RPO: unknown, statistics updated 2 seconds ago
Load Average: healthy
    1-Min: 0.24, status: healthy, under 5.00
    5-Min: 0.27, status: healthy, under 5.00
    15-Min: 0.32, status: healthy, under 5.00
Memory (kb): healthy
    Total: 3976852
    Used: 2706768 (68%), status: healthy
    Free: 1270084 (32%)
    Committed: 3299332 (83%), under 95%
Per-core Statistics
CPUO: CPU Utilization (percentage of time spent)
```

```
    User: 4.50, System: 1.20, Nice: 0.00, Idle: 94.20
    IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
    User: 5.20, System: 0.50, Nice: 0.00, Idle: 94.29
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
    User: 3.60, System: 0.70, Nice: 0.00, Idle: 95.69
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
    User: 3.00, System: 0.60, Nice: 0.00, Idle: 96.39
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
4-RP0: unknown, statistics updated 2 seconds ago
Load Average: healthy
    1-Min: 0.21, status: healthy, under 5.00
    5-Min: 0.24, status: healthy, under 5.00
    15-Min: 0.24, status: healthy, under 5.00
Memory (kb): healthy
    Total: 3976852
    Used: 1452404 (37%), status: healthy
    Free: 2524448 (63%)
    Committed: 1675120 (42%), under 95%
Per-core Statistics
CPUO: CPU Utilization (percentage of time spent)
    User: 2.30, System: 0.40, Nice: 0.00, Idle: 97.30
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
    User: 4.19, System: 0.69, Nice: 0.00, Idle: 95.10
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
    User: 4.79, System: 0.79, Nice: 0.00, Idle: 94.40
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
    User: 2.10, System: 0.40, Nice: 0.00, Idle: 97.50
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
9-RP0: unknown, statistics updated 4 seconds ago
Load Average: healthy
    1-Min: 0.20, status: healthy, under 5.00
    5-Min: 0.35, status: healthy, under 5.00
    15-Min: 0.35, status: healthy, under 5.00
Memory (kb): healthy
    Total: 3976852
    Used: 1451328 (36%), status: healthy
    Free: 2525524 (64%)
    Committed: 1675932 (42%), under 95%
Per-core Statistics
CPUO: CPU Utilization (percentage of time spent)
    User: 1.90, System: 0.50, Nice: 0.00, Idle: 97.60
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
    User: 4.39, System: 0.19, Nice: 0.00, Idle: 95.40
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
    User: 5.70, System: 1.00, Nice: 0.00, Idle: 93.30
    IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
    User: 1.30, System: 0.60, Nice: 0.00, Idle: 98.00
    IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00
```

The following is sample output from the show platform memory software status control-processor brief command:

show platform software thread list

To display the list of threads on a platform, use the show platform software thread list command in privileged EXEC mode.
show platform software thread list switch $\{$ switch-number \mid active | standby $\}\{\mathbf{0}|\mathbf{F 0}| \mathbf{F P}$ active $\mid \mathbf{R 0}\}$ pname $\{$ cdman \mid vidman \mid all $\}$ tname $\{$ main \mid pktio \mid rt \mid all $\}$

Syntax Description	switch switch-number	Displays information about the switch. Enter the switch number.
	active	Specifies the active instance of the device.
	standby	Specifies standby instance of the device.
	0	Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.
	F0	Specifies the Embedded Service Processor (ESP) slot 0 .
	FP active	Specifies the active instance of Embedded Service Processor (ESP).
	R0	Specifies the Route Processor (RP) slot 0 .
	pname	Specifies a process name. The possible values are cdman, vidman, and all.
	tname	Specifies a thread name. The possible values are main, pktio, rt, and all.
Command History	Release	Modification
	Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Command Modes

Privileged EXEC(\#)

Examples:

The following is sample output from the show platform software thread list switch active $\mathbf{R 0}$ pname cdman tname all command:

The table below describes the significant fields shown in the displays.

Table 26: show platform software thread list Field Descriptions

Field	Description
Name	Displays the command name associated with the process. Different threads in the same process may have different command values.
Tid	Displays the process ID.
PPid	Displays the process ID of the parent process.
Group Id	Displays the group ID.
Core	Displays processor information.
Vcswch	Displays the number of voluntary context switches. switches.
Nvcswch	Displays the process status in human readable form.
Status	Displays the negated scheduling priority.
Priority	Displays the time since the start of the process.
TIME+	Displays the Resident Set Size (in kilobytes (KB) that shows how much memory is allocated to that process in the RAM.
Size	

show processes cpu platform

To display information about the CPU utilization of the IOS-XE processes, use the show processes cpu platform command in privileged EXEC mode.
show processes cpu platform [[sorted [1min |5min | 5sec]] location switch $\{$ switch-number \mid active \mid standby $\}\{\mathbf{F 0} \mid \mathbf{F P}$ active $|\mathbf{R 0}|$ RP active $\}]$

Syntax Description	sorted	(Optional) Displays output sorted based on percentage of CPU usage on a platform.
	1min	(Optional) Sorts based on 1 minute intervals.
	5min	(Optional) Sorts based on 5 minute intervals.
	5sec	(Optional) Sorts based on 5 second intervals.
	location	Specifies the Field Replaceable Unit (FRU) location.
	switch switch-number	Displays information about the switch. Enter the switch number.
	active	Specifies the active instance of the device.
	standby	Specifies the standby instance of the device.
	F0	Specifies the Embedded Service Processor (ESP) slot 0 .
	FP active	Specifies active instances on the Embedded Service Processor (ESP).
	R0	Specifies the Route Processor (RP) slot 0 .
	RP active	Specifies active instances on the Route Processor (RP).

Command History

Command Modes

Privileged EXEC (\#)

Examples:

The following is sample output from the show processes cpu platform command:

```
Device# show processes cpu platform
CPU utilization for five seconds: 1%, one minute: 3%, five minutes: 2%
Core 0: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 1: CPU utilization for five seconds: 2%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 3%, one minute: 1%, five minutes:}1
Core 3: CPU utilization for five seconds: 2%, one minute: 5%, five minutes: 2%
    Pid PPid 5Sec 1Min 5Min Status Size Name
-----------------------------------------------------------------------------------------
    1 0 0% 0% S 4876 systemd
```

2	0	0\%	0\%	0\%	S	0	kthreadd
3	2	0\%	0\%	0\%	S	0	ksoftirqd/0
5	2	0\%	0\%	0\%	S	0	kworker/0:0H
7	2	0\%	0\%	0\%	S	0	rcu_sched
8	2	0\%	0\%	0\%	S	0	rcu_bh
9	2	0\%	0\%	0\%	S	0	migration/0
10	2	0\%	0\%	0\%	S	0	watchdog/0
11	2	0\%	0\%	0\%	S	0	watchdog/1
12	2	0\%	0\%	0\%	S	0	migration/1
13	2	0\%	0\%	0\%	S	0	ksoftirqd/1
15	2	0\%	0\%	0\%	S	0	kworker/1:0H
16	2	0\%	0\%	0\%	S	0	watchdog/2
17	2	0\%	0\%	0\%	S	0	migration/2
18	2	0\%	0\%	0\%	S	0	ksoftirqd/2
20	2	0\%	0\%	0\%	S	0	kworker/2:0H
21	2	0\%	0\%	0\%	S	0	watchdog/3
22	2	0\%	0\%	0\%	S	0	migration/3
23	2	0\%	0\%	0\%	S	0	ksoftirqd/3
24	2	0\%	0\%	0\%	S	0	kworker/3:0
25	2	0\%	0\%	0\%	S	0	kworker/3:0H
26	2	0\%	0\%	0\%	S	0	kdevtmpfs
27	2	0\%	0\%	0\%	S	0	netns
28	2	0\%	0\%	0\%	S	0	perf
29	2	0\%	0\%	0\%	S	0	khungtaskd
30	2	0\%	0\%	0\%	S	0	writeback
31	2	7\%	8\%	8\%	S	0	ksmd
32	2	0\%	0\%	0\%	S	0	khugepaged
33	2	0\%	0\%	0\%	S	0	crypto
34	2	0\%	0\%	0\%	S	0	bioset
35	2	0\%	0\%	0\%	S	0	kblockd
36	2	0\%	0\%	0\%	S	0	ata_sff
37	2	0\%	0\%	0\%	S	0	rpciod
63	2	0\%	0\%	0\%	S	0	kswapd0
64	2	0\%	0\%	0\%	S	0	vmstat
65	2	0\%	0\%	0\%	S	0	fsnotify_mark

The following is sample output from the show processes cpu platform sorted 5 min location switch 5 R0

The following is sample output from the show processes cpu platform location switch $\mathbf{7} \mathbf{R 0}$ command:

show processes cpu platform history

To display information about the CPU usage history of a system, use the show processes cpu platform history command.
show processes cpu platform history [1min $|5 \mathrm{~min}| 5 \mathrm{sec} \mid 60 \mathrm{~min}]$ location switch $\{$ switch-number \mid active \mid standby $\}\{0 \mid$ F0 \mid FP active \mid R0 $\}$

1min	(Optional) Displays CPU utilization history with 1 minute intervals.
5min	(Optional) Displays CPU utilization history with 5 minute intervals.
5sec	(Optional) Displays CPU utilization history with 5 second intervals.
60min	(Optional) Displays CPU utilization history with 60 minute intervals.
location	Specifies the Field Replaceable Unit (FRU) location.
switch switch-number	Displays information about the switch. Enter the switch number.
active	Specifies the active instance of the device.
standby	Specifies the standby instance of the device.
0	Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.
F0	Specifies the Embedded Service Processor (ESP) slot 0.
RP active	Specifies active instances on the Embedded Service Processor (ESP).
	Specifies the Route Processor (RP) slot 0.

Command History

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Command Modes

Privileged EXEC (\#)

Examples:

The following is sample output from the show processes cpu platform command:
Device\# show processes cpu platform

The following is sample output from the show processes cpu platform history 5sec command:

```
Device# show processes cpu platform history 5sec
5 seconds ago, CPU utilization: 0%
10 seconds ago, CPU utilization: 0%
15 seconds ago, CPU utilization: 0%
2 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
2 5 \text { seconds ago, CPU utilization: 0\%}
3 0 \text { seconds ago, CPU utilization: 0\%}
3 5 \text { seconds ago, CPU utilization: 0\%}
4 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
4 5 \text { seconds ago, CPU utilization: 0\%}
5 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
5 5 \text { seconds ago, CPU utilization: 0\%}
6 0 \text { seconds ago, CPU utilization: 0\%}
6 5 \text { seconds ago, CPU utilization: 0\%}
70 seconds ago, CPU utilization: 0%
```

```
7 5 \text { seconds ago, CPU utilization: 0\%}
80 seconds ago, CPU utilization: 0%
85 seconds ago, CPU utilization: 0%
90 seconds ago, CPU utilization: 0%
9 5 \text { seconds ago, CPU utilization: 0\%}
100 seconds ago, CPU utilization: 0%
1 0 5 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
1 1 0 \text { seconds ago, CPU utilization: 0\%}
1 1 5 \text { seconds ago, CPU utilization: 0\%}
1 2 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
1 2 5 \text { seconds ago, CPU utilization: 0\%}
1 3 0 \text { seconds ago, CPU utilization: 0\%}
1 3 5 \text { seconds ago, CPU utilization: 0\%}
1 4 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
1 4 5 \text { seconds ago, CPU utilization: 1\%}
1 5 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
155 seconds ago, CPU utilization: 0%
1 6 0 \text { seconds ago, CPU utilization: 0\%}
1 6 5 \text { seconds ago, CPU utilization: 0\%}
1 7 0 \text { seconds ago, CPU utilization: 0\%}
1 7 5 \text { seconds ago, CPU utilization: 0\%}
1 8 0 \text { seconds ago, CPU utilization: 0\%}
1 8 5 \text { seconds ago, CPU utilization: 0\%}
190 seconds ago, CPU utilization: 0%
1 9 5 \text { seconds ago, CPU utilization: 0\%}
2 0 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
2 0 5 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
2 1 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
2 1 5 \text { seconds ago, CPU utilization: 0\%}
2 2 0 ~ s e c o n d s ~ a g o , ~ C P U ~ u t i l i z a t i o n : ~ 0 \% ~
2 2 5 \text { seconds ago, CPU utilization: 0\%}
2 3 0 \text { seconds ago, CPU utilization: 0\%}
2 3 5 \text { seconds ago, CPU utilization: 0\%}
2 4 0 \text { seconds ago, CPU utilization: 0\%}
2 4 5 \text { seconds ago, CPU utilization: 0\%}
2 5 0 \text { seconds ago, CPU utilization: 0\%}
```


show processes cpu platform monitor

To displays information about the CPU utilization of the IOS-XE processes, use the show processes cpu platform monitor command in privileged EXEC mode.
show processes cpu platform monitor location switch $\{$ switch-number \mid active \mid standby $\}\{0 \mid$ F0 R0\}

Syntax Description

location	Displays information about the Field Replaceable Unit (FRU) location.
switch	Specifies the switch.
switch-number	Switch number.
active	Specifies the active instance.
standby	Specifies the standby instance.
$\mathbf{0}$	Specifies the shared port adapter (SPA) interface processor slot 0.
F0	Specifies the Embedded Service Processor (ESP) slot 0.
R0	Specifies the Route Processor (RP) slot 0.

Command Modes

Command History

Usage Guidelines

The output of the show platform software process slot switch and show processes cpu platform monitor location commands display the output of the Linux top command. The output of these commands display Free memory and Used memory as displayed by the Linux top command. The values displayed for the Free memory and Used memory by these commands do not match the values displayed by the output of other platform-memory related CLIs.

The following is sample output from the show processes cpu monitor location switch active R0 command:

```
Switch# show processes cpu platform monitor location switch active R0
top - 00:04:21 up 1 day, 11:22, 0 users, load average: 0.42, 0.60, 0.78
Tasks: 312 total, 4 running, 308 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.4%us, 3.3%sy, 0.0%ni, 89.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 3976844k total, 3956928k used, 19916k free, 419312k buffers
Swap: 0k total, Ok used, 0k free, 1947036k cached
\begin{tabular}{rlrrrrrrrrll} 
PID USER & PR & NI & VIRT & RES & SHR & S & \(\circ\) CPU & \(\circ\) MEM & TIME+ & COMMAND \\
6294 & root & 20 & 0 & 3448 & 1368 & 912 & R & 9 & 0.0 & \(0: 00.07\) top \\
17546 root & 20 & 0 & 2044 m & 244 m & 79 m & S & 7 & 6.3 & \(187: 02.07\) & fed main event \\
30276 root & 20 & 0 & 171 m & 42 m & 33 m & S & 7 & 1.1 & \(125: 15.54\) repm \\
16 root & 20 & 0 & 0 & 0 & 0 & S & 5 & 0.0 & \(22: 07.92\) rcuc \(/ 2\) \\
21 root & 20 & 0 & 0 & 0 & 0 & R & 5 & 0.0 & \(22: 13.24\) & rcuc \(/ 3\)
\end{tabular}
```

```
18662 root
    1 1 \text { root}
10333 root
    1 0 \text { root}
    6 3 0 4 ~ r o o t
17835 root
    1 root
    2 \text { root}
    3 root
    5 root
    root
\begin{tabular}{rrrlrrrl}
1806 m & 678 m & 263 m & R & 5 & 17.5 & \(215: 47.59\) & linux_iosd-imag \\
0 & 0 & 0 & S & 4 & 0.0 & \(21: 37.41\) & rcuc/1 \\
6420 & 3916 & 1492 & S & 4 & 0.1 & \(4: 47.03\) & btrace_rotate.s \\
0 & 0 & 0 & S & 2 & 0.0 & \(0: 58.13\) & rcuc/0 \\
776 & 12 & 0 & R & 2 & 0.0 & \(0: 00.01\) & ls \\
935 m & 74 m & 63 m & S & 2 & 1.9 & \(82: 34.07\) & sif_mgr \\
8440 & 4740 & 2184 & S & 0 & 0.1 & \(0: 09.52\) & systemd \\
0 & 0 & 0 & S & 0 & 0.0 & \(0: 00.00\) & kthreadd \\
0 & 0 & 0 & S & 0 & 0.0 & \(0: 02.86\) ksoftirqd/0 \\
0 & 0 & 0 & S & 0 & 0.0 & \(0: 00.00\) kworker/0:0H \\
0 & 0 & 0 & S & 0 & 0.0 & \(0: 01.44\) migration/0
\end{tabular}
```


Related Commands

Command	Description
show platform software process slot switch	Displays platform software process switch information.

show processes memory

To display the amount of memory used by each system process, use the show processes memory command in privileged EXEC mode.
show processes memory [\{process-id |sorted [\{allocated |getbufs |holding \}] \}]

Syntax Description

process-id (Optional) Process ID (PID) of a specific process. When you specify a process ID, only details for the specified process will be shown.
sorted (Optional) Displays memory data sorted by the Allocated, Get Buffers, or Holding column. If the sorted keyword is used by itself, data is sorted by the Holding column by default.

allocated	(Optional) Displays memory data sorted by the Allocated column.
getbufs	(Optional) Displays memory data sorted by the Getbufs (Get Buffers) column.
holding	(Optional) Displays memory data sorted by the Holding column. This keyword is the default.

Command Modes	Privileged EXEC (\#)	
Command History	Release	Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines

The show processes memory command and the show processes memory sorted command displays a summary of total, used, and free memory, followed by a list of processes and their memory impact.

If the standard show processes memory process-id command is used, processes are sorted by their PID. If the show processes memory sorted command is used, the default sorting is by the Holding value.

Holding memory of a particular process can be allocated by other processes also, and so it can be greater than the allocated memory.

The following is sample output from the show processes memory command:

The table below describes the significant fields shown in the display.
Table 27: show processes memory Field Descriptions

Field	Description
Processor Pool Total	Total amount of memory, in kilobytes (KB), held for the Processor memory pool.
Used	Total amount of used memory, in KB, in the Processor memory pool.
Free	Total amount of free memory, in KB, in the Processor memory pool.
PID	Process ID.
TTY	Terminal that controls the process.
Allocated	Bytes of memory allocated by the process.
Freed	Bytes of memory freed by the process, regardless of who originally allocated it.
Holding	allocated by the process and assigned to the process.
Getbufs	Number of times the process has requested a packet buffer.
Retbufs	Process name.
Process	System initialization process.
Init	The scheduler process.
Sched	Processes as a group that are now dead.
Dead	Total amount of memory, in KB, held by all processes (sum of the "Holding" column).
$<$ value> Total	

The following is sample output from the show processes memory command when the sorted keyword is used. In this case, the output is sorted by the Holding column, from largest to smallest.

```
Device# show processes memory sorted
\begin{tabular}{ccccccc} 
Processor Pool Total: & 25954228 & Used: & 8371280 Free: & 17582948 \\
PID TTY & Allocated & Freed & Holding & Getbufs & Retbufs Process \\
0 & 0 & 8629528 & 689900 & 6751716 & 0 & 0 *Init*
\end{tabular}
```

3	0	217304	304	229928	0	0 Exec
53	0	109248	192	96064	0	0 DHCPD Receive
56	0	0	0	32928	0	0 COPS
19	0	39048	0	25192	0	0 Net Background
42	0	0	0	24960	0	0 L2X Data Daemon
58	0	192	192	24928	0	0 X. 25 Background
43	0	192	192	24928	0	0 PPP IP Route
49	0	0	0	24928	0	0 TCP Protocols
48	0	0	0	24928	0	0 TCP Timer
17	0	192	192	24928	0	0 XML Proxy Client
9	0	0	0	24928	0	0 Policy Manager
40	0	0	0	24928	0	0 L2X SSS manager
29	0	0	0	24928	0	0 IP Input
44	0	192	192	24928	0	0 PPP IPCP
32	0	192	192	24928	0	0 PPP Hooks
34	0	0	0	24928	0	0 SSS Manager
41	0	192	192	24928	0	0 L2TP mgmt daemon
16	0	192	192	24928	0	0 Dialer event
35	0	0	0	24928	0	0 SSS Test Client

The following is sample output from the show processes memory command when a process ID (process-id) is specified:

```
Device# show processes memory 1
Process ID: 1
Process Name: Chunk Manager
Total Memory Held: }8428\mathrm{ bytes
Processor memory holding = 8428 bytes
pc = 0x60790654, size = 6044, count = 1
pc = 0x607A5084, size = 1544, count = 1
pc = 0x6076DBC4, size = 652, count = 1
pc = 0x6076FF18, size = 188, count = 1
I/O memory holding = 0 bytes
Device# show processes memory 2
Process ID: 2
Process Name: Load Meter
Total Memory Held: 3884 bytes
Processor memory holding = 3884 bytes
pc = 0x60790654, size = 3044, count = 1
pc = 0x6076DBC4, size = 652, count = 1
pc = 0x6076FF18, size = 188, count = 1
I/O memory holding = 0 bytes
```

Related Commands	Command	Description
	show memory	Displays statistics about memory, including memory-free pool statistics.
show processes	Displays information about the active processes.	

show processes memory platform

To display memory usage for each Cisco IOS XE process, use the show processes memory platform command in privileged EXEC mode.
show processes memory platform [[detailed \{ name process-name | process-id process-ID \} [location | maps [location] | smaps [location]] | location | sorted [location]] switch \{ switch-number | active | standby \} $\{\mathbf{0} \mid \mathbf{F 0 |} \mathbf{R 0}\} \mid$ accounting]

Syntax Description

accounting	(Optional) Displays the top memory allocators for each Cisco IOS XE process.
detailed	(Optional) Displays detailed memory information for a specified Cisco IOS XE process.
name process-name	(Optional) Displays the Cisco IOS XE process name. Enter the process name.
process-id process-ID	(Optional) Displayss the Cisco IOS XE process ID. Enter the process ID.
location	(Optional) Displays information about the Field Replaceable Unit (FRU) location.
maps	(Optional) Displays memory maps of a process.
smaps	(Optional) Displays static memory maps of a process.
sorted	(Optional) Displays the sorted output based on the Resident Set Size (RSS) memory used by Cisco IOS XE process.
switch switch-number	Displays information about the device.
active	Displays information about the active instance of the device.
standby	Displays information about the standby instance of the device.
0	Displays information about Shared Port Adapter (SPA)-Inter-Processor slot 0.
F0	Displays information about Embedded Service Processor (ESP) slot 0 .
R0	Displays information about Route Processor (RP) slot 0 .

[^5]Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Gibraltar 16.10.1	This command was modified. The keyword accounting was added.
	The Total column was deleted from the output.

Examples
The following is a sample output from the show processes memory platform command:

System memory: 3976852 K total, 2761580 K used, 1215272 K free,Lowest: 1215272 K						
Pid	Text	Data	Stack	Dynamic	RSS	Name
1	1246	4400	132	1308	4400	systemd
96	233	2796	132	132	2796	systemd-journal
105	284	1796	132	176	1796	systemd-udevd
707	52	2660	132	172	2660	in.telnetd
744	968	3264	132	1700	3264	brelay.sh
835	52	2660	132	172	2660	in.telnetd
863	968	3264	132	1700	3264	brelay.sh
928	968	3996	132	2312	3996	reflector.sh
933	968	3976	132	2312	3976	droputil.sh
934	968	2140	132	528	2140	oom.sh
936	173	936	132	132	936	xinetd
945	968	1472	132	132	1472	libvirtd.sh
947	592	43164	132	3096	43164	repm
954	45	932	132	132	932	rpcbind
986	482	3476	132	132	3476	libvirtd
988	66	940	132	132	940	rpc.statd
993	968	928	132	132	928	boothelper_evt.
1017	21	640	132	132	640	inotifywait
1089	102	1200	132	132	1200	rpc.mountd
1328	9	2940	132	148	2940	rotee
1353	39	532	132	132	532	sleep
!						
$!$						
!						

The following is a sample output from the show processes memory platform accounting command:

```
device# show processes memory platform accounting
Hourly Stats
process
max_diff_calls tracekey
```

smand_rp_0 3624155137	172389		3624155138	50
$1 \# a 3 e 0 e 4361082 c 702 e 5 b f 1 a f b d 90 e 6313$		2018-09-04	14:23	
linux_iosd-imag_rp_0 3626295305	49188		3624155138	12
1\#545420bd869d25eb5ab826182ee5d9ce		2018-09-04	12:03	
btman_rp_0 3624737792	17080		2953915394	64
1\#d6888bd9564a3c4fcf049c31ba07a036		2018-09-04	22:29	

$f m a n _f p _i m a g e _f p _0$ $1 \# 921 \bar{b} a 4 \bar{d} 9 d f 5 b 0 a 6 e 946 a 3 b 270 b d 6592 d$	16960	2018-09-04	$\begin{aligned} & 4027402242 \\ & 22: 55 \end{aligned}$	298
fed_main_event_fp_0 3626295305	16396	2018-09-04	$\begin{aligned} & 4027402242 \\ & 12: 03 \end{aligned}$	32
$\begin{array}{cc} \text { dbm_rp_0 } & 3626295305 \\ \text { 1\#2b878f802bd7703c5298d37e7a4e8ac3 } \end{array}$	16396	2018-09-04	$\begin{aligned} & 4027402242 \\ & 12: 02 \end{aligned}$	3
tamd_proc_rp_0 3895208962 $1 \# 5 b 0 e d 8 f 88 e f 5 f 873 a b c a f 8 a 744037 a 44$	12632	2018-09-04	$\begin{aligned} & 3624667171 \\ & 18: 47 \end{aligned}$	7
btman_fp_0 3624233985 $1 \# d 6888 b d 9564 a 3 c 4 f c f 049 c 31 b a 07 a 036$	12288	2018-09-04	$\begin{aligned} & 3624737792 \\ & 15: 23 \end{aligned}$	9
	8216	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
python2.7_fp_0 2954560513	8000	2018-09-04	$\begin{aligned} & 2954560513 \\ & 12: 16 \end{aligned}$	1
nginx_rp_0 $\begin{gathered}3357041665 \\ 1 \# \# 32 e 56 b b 09 e 0509 c 5 f a 5 a c 32093631206\end{gathered}$	4608	2018-09-04	$\begin{aligned} & 4027402242 \\ & 16: 18 \end{aligned}$	4
rotee_FRU_SLOT_NUM 3624667169 1\#ff68e5150a698cd59fa259828614995b	4097	2018-09-04	$\begin{aligned} & 3624667169 \\ & 10: 43 \end{aligned}$	1
	1488	2018-09-04	$\begin{aligned} & 3893617664 \\ & 10: 42 \end{aligned}$	1
	1024	2018-09-04	$\begin{aligned} & 3895096320 \\ & 10: 42 \end{aligned}$	1
	904	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
sessmgrd_rp_0 3491618816 $1 \# 720239$ fc8bddcabc059768c55a1640ed	848	2018-09-04	$\begin{aligned} & 3624155138 \\ & 14: 32 \end{aligned}$	8
$\text { psd_rp_0 }_{1 \# 98 c f 04 e 0 d d d 78 c 2400 b 3 c a 3 b 5 f 298594}^{4027402242}$	696	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
$\text { lman_rp_0 } \quad 4027402242$	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
bt_logger_rp_0 4027402242 1\#ba882beled783e72575e97cc0908e0e8	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
repm_rp_04027402242 1\#ae461a05430efa767427f2ab40aba372	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
$f m a n _r p _r p _0$ 4027402242 $1 \# 09 d e f 9 c c 1390911 b e 9 e 3 a 7 a 9 c 89 f 4 c f 7$	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 12: 16 \end{aligned}$	3
epc_ws_liaison_fp_0 $1 \# 41451626$ dcce9d1478b22e2ebbbdcf54	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
$c l i _a g e n t _r p<0$ 4027402242 1\#92d3882919daf3a9e210807c61de0552	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
${ }_{c m m _r p _0}^{4027402242} \begin{gathered} 4 \# 15 e d 1 d 79 e 96874 b 1 e 0621 c 42 c 3 d e 6166 \end{gathered}$	592	2018-09-04	$\begin{aligned} & 4027402242 \\ & 14: 21 \end{aligned}$	4
$\text { tms_rp_0 }{ }_{1 \# 5 c 6 e f e 2 e 21 f 15 a a 16318576 d 3 e c 9153 c}$	352	2018-09-04	$\begin{aligned} & 4027402242 \\ & 12: 03 \end{aligned}$	4
plogd_rp_0 4027402242	48	2018-09-04	$\begin{aligned} & 4027402242 \\ & 10: 43 \end{aligned}$	1
	17	2018-09-04	$\begin{aligned} & 3624155137 \\ & 10: 42 \end{aligned}$	1

The following is a sample output from the show processes memory platform sorted command:

17261	324	248588	132	103908	248588	fed main event
4268	391	102084	136	5596	102084	cli_agent
4856	357	93388	132	3680	93388	dbm
17067	1087	77912	136	1796	77912	platform_mgr
$!$						
$!$						

The following is sample output from the show processes memory platform sorted location switch active $\mathbf{R 0}$ command:

Pid	Text	Data	Stack	Dynamic	RSS	Name
7885	149848	684864	136	80	684864	linux_iosd-imag
9655	3787	264964	136	18004	264964	wcm
17261	324	248588	132	103908	248588	fed main event
4268	391	102084	136	5596	102084	cli_agent
4856	357	93388	132	3680	93388	dbm
17067	1087	77912	136	1796	77912	platform_mgr

show processes platform

To display information about the IOS-XE processes running on a platform, use the show processes platform command in privileged EXEC mode.
show processes platform [detailed name process-name] [location switch $\{$ switch-number \mid active \mid standby $\}\{0 \mid$ F0 \mid FP active \mid R0 $\}]$

detailed	(Optional) Displays detailed information of the specified IOS-XE process.
name process-name	(Optional) Specifies the process name.
location	(Optional) Specifies the Field Replaceable Unit (FRU) location.
switch switch-number	(Optional) Displays information about the switch.
active	(Optional) Specifies the active instance of the device.
standby	(Optional) Specifies standby instance of the device.
$\mathbf{0}$	Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.
F0	Specifies the active instance in the Embedded Service Processor (ESP).
FP active	Specifies the Route Processor (RP) slot 0.
R0	

Command History

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Command Modes Privileged EXEC(\#)

Examples:

The following is sample output from the show processes platform command:

```
Device# show processes platform
CPU utilization for five seconds: 1%, one minute: 2%, five minutes: 1%
    Pid PPid Status Size Name
------------------------------------------------------------------
\begin{tabular}{ccccl}
1 & 0 & \(S\) & 4876 & systemd \\
2 & 0 & \(S\) & 0 & kthreadd \\
3 & 2 & \(S\) & 0 & ksoftirqd/0 \\
5 & 2 & \(S\) & 0 & kworker/0:0H \\
7 & 2 & \(S\) & 0 & rcu_sched \\
8 & 2 & \(S\) & 0 & rcu_bh \\
9 & 2 & \(S\) & 0 & migration/0 \\
10 & 2 & \(S\) & 0 & watchdog/0 \\
11 & 2 & \(S\) & 0 & watchdog/1 \\
12 & 2 & \(S\) & 0 & migration/1
\end{tabular}
```

13	2	S	0	ksoftirqd/1
15	2	S	0	kworker/1:0H
16	2	S	0	watchdog/2
17	2	S	0	migration/2
18	2	S	0	ksoftirqd/2
20	2	S	0	kworker/2:0H
21	2	S	0	watchdog/3
22	2	S	0	migration/3
23	2	S	0	ksoftirqd/3
24	2	S	0	kworker/3:0
25	2	S	0	kworker/3:0H
26	2	S	0	kdevtmpfs
27	2	S	0	netns
28	2	S	0	perf
29	2	S	0	khungtaskd
30	2	S	0	writeback
31	2	S	0	ksmd
32	2	S	0	khugepaged
33	2	S	0	crypto
34	2	S	0	bioset
35	2	S	0	kblockd
36	2	S	0	ata_sff
37	2	S	0	rpciod
63	2	S	0	kswapd0
64	2	S	0	vmstat
65	2	S	0	fsnotify_mark
66	2	S	0	nfsiod
74	2	S	0	bioset
75	2	S	0	bioset
76	2	S	0	bioset
77	2	S	0	bioset
78	2	S	0	bioset
79	2	S	0	bioset
80	2	S	0	bioset
81	2	S	0	bioset
82	2	S	0	bioset
83	2	S	0	bioset
84	2	S	0	bioset
85	2	S	0	bioset
86	2	S	0	bioset
87	2	S	0	bioset
88	2	S	0	bioset
89	2	S	0	bioset
90	2	S	0	bioset
91	2	S	0	bioset
92	2	S	0	bioset
93	2	S	0	bioset
94	2	S	0	bioset
95	2	S	0	bioset
96	2	S	0	bioset
97	2	S	0	bioset
100	2	S	0	ipv6_addrconf
102	2	S	0	deferwq

The table below describes the significant fields shown in the displays.
Table 28: show processes platform Field Descriptions

Field	Description
Pid	Displays the process ID.

Field	Description
PPid	Displays the process ID of the parent process.
Status	Displays the process status in human readable form.
Size	Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.
Name	Displays the command name associated with the process. Different threads in the same process may have different command values.

show power inline

To display the Power over Ethernet (PoE) status for the specified PoE port, the specified stack member, or for all PoE ports in the switch stack, use the show power inline command in EXEC mode.
show power inline [\{police |priority\}] [\{interface-id |module stack-member-number\}] [detail]

Syntax Description

police
(Optional) Displays the power policing information about real-time power consumption.

priority	(Optional) Displays the power inline port priority for each port.
interface-id	(Optional) ID of the physical interface.
module stack-member-number	(Optional) Limits the display to ports on the specified stack
	member.
	The range is 1 to 9.
	This keyword is supported only on stacking-capable switches.
detail	(Optional) Displays detailed output of the interface or module.

Command Modes

User EXEC (>)
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Examples

This is an example of output from the show power inline command. The table that follows describes the output fields.

Device> show power inline							
Module	Available (Watts)		Used (Watts)	Remaining (Watts)			
1			n / a		n / a		
2			n/a		n/a		
3	1440		15.4		424.6		
4	720		6.3		713.7		
Interface	Admin	Oper		Power (Watts)	Device	Class	Max
Gi3/0/1	auto	off		0.0	n / a	n / a	30.0
Gi3/0/2	auto	off		0.0	n / a	n / a	30.0
Gi3/0/3	auto	off		0.0	n/a	n / a	30.0
Gi3/0/4	auto	off		0.0	n / a	n / a	30.0
Gi3/0/5	auto	off		0.0	n / a	n / a	30.0
Gi3/0/6	auto	off		0.0	n/a	n / a	30.0
Gi3/0/7	auto	off		0.0	n / a	n / a	30.0
Gi3/0/8	auto	off		0.0	n/a	n / a	30.0

Gi3/0/9	auto	off	0.0	n / a	n / a	30.0
Gi3/0/10	auto	off	0.0	n / a	n / a	30.0
$\mathrm{Gi} 3 / 0 / 11$	auto	off	0.0	n / a	n / a	30.0
Gi3/0/12	auto	off	0.0	n / a	n / a	30.0

This is an example of output from the show power inline interface-id command on a switch port:

Device> show power inline gigabitethernet1/0/1				
Interface Admin Oper	Power Device (Watts)	Class Max		
Hil/0/1		auto off	0.0	n/a

This is an example of output from the show power inline module switch-number command on stack member 3. The table that follows describes the output fields.

Module	Available (Watts)		Used Re (Watts)		aining atts)		
3	865.0		864.0		1.0		
Interface	Admin	Ope		Power (Watts)	Device	Class	Max
Gi3/0/1	auto	power-deny		4.0	n / a	n / a	15.4
Gi3/0/2	auto	off		0.0	n / a	n / a	15.4
Gi3/0/3	auto	off		0.0	n/a	n / a	15.4
Gi3/0/4	auto	off		0.0	n/a	n / a	15.4
Gi3/0/5	auto	off		0.0	n / a	n / a	15.4
Gi3/0/6	auto	off		0.0	n / a	n / a	15.4
Gi3/0/7	auto	off		0.0	n / a	n / a	15.4
Gi3/0/8	auto	off		0.0	n / a	n / a	15.4
Gi3/0/9	auto	off		0.0	n / a	n / a	15.4
Gi3/0/10	auto	off		0.0	n / a	n / a	15.4
<output truncated>							

Table 29: show power inline Field Descriptions

Field	Description
Available	The total amount of configured power ${ }^{1}$ on the PoE switch in watts (W).
Used	The amount of configured power that is allocated to PoE ports in watts.
Remaining	The amount of configured power in watts that is not allocated to ports in the system. (Available - Used = Remaining)
Admin	Administration mode: auto, off, static.

Field	Description
Oper	Operating mode: - on-The powered device is detected, and power is applied. - off-No PoE is applied. - faulty-Device detection or a powered device is in a faulty state. - power-deny-A powered device is detected, but no PoE is available, or the maximum wattage exceeds the detected powered-device maximum.
Power	The maximum amount of power that is allocated to the powered device in watts. This value is the same as the value in the Cutoff Power field in the show power inline police command output.
Device	The device type detected: n / a, unknown, Cisco powered-device, IEEE powered-device, or the name from CDP.
Class	The IEEE classification: n / a or a value from 0 to 4.
Max	The maximum amount of power allocated to the powered device in watts.
AdminPowerMax	The maximum amount power allocated to the powered device in watts when the switch polices the real-time power consumption. This value is the same as the Max field value.
AdminConsumption	The power consumption of the powered device in watts when the switch polices the real-time power consumption. If policing is disabled, this value is the same as the AdminPowerMax field value.

1 The configured power is the power that you manually specify or that the switch specifies by using CDP power negotiation or the IEEE classification, which is different than the real-time power that is monitored with the power sensing feature.

This is an example of output from the show power inline police command on a stacking-capable switch:

Device> show power inline police							
Module	Available (Watts)		Used (Watts)	Remaining (Watts)			
1	370.0		0.0	370.0			
3	865.0		864.0	1.0			
	Admin	Oper		Admin	Oper	Cutoff	Oper
Interface	State	State		Police	Police	Power	Power
Gi1/0/1	auto	off		none	n / a	n / a	0.0
Gil/0/2	auto	off		log	n / a	5.4	0.0
Gil/0/3	auto	off		errdisable	n / a	5.4	0.0
Gil/0/4	off	off		none	n / a	n / a	0.0
Gi1/0/5	off	off		log	n / a	5.4	0.0
Gi1/0/6	off	off		errdisable	n / a	5.4	0.0
Gil/0/7	auto	off		none	n / a	n / a	0.0
Gil/0/8	auto	off		log	n / a	5.4	0.0
Gil/0/9	auto	on		none	n / a	n / a	5.1
Gi1/0/10	auto	on		log	ok	5.4	4.2
Gi1/0/11	auto	on		log	log	5.4	5.9
Gi1/0/12	auto	on		errdisable	ok	5.4	4.2

```
Gil/0/13 auto errdisable errdisable n/a 5.4 0.0
<output truncated>
```

In the previous example:

- The Gi1/0/1 port is shut down, and policing is not configured.
- The Gi1/0/2 port is shut down, but policing is enabled with a policing action to generate a syslog message.
- The Gi1/0/3 port is shut down, but policing is enabled with a policing action is to shut down the port.
- Device detection is disabled on the Gi1/0/4 port, power is not applied to the port, and policing is disabled.
- Device detection is disabled on the Gi1/0/5 port, and power is not applied to the port, but policing is enabled with a policing action to generate a syslog message.
- Device detection is disabled on the Gi1/0/6 port, and power is not applied to the port, but policing is enabled with a policing action to shut down the port.
- The Gi1/0/7 port is up, and policing is disabled, but the switch does not apply power to the connected device.
- The Gi1/0/8 port is up, and policing is enabled with a policing action to generate a syslog message, but the switch does not apply power to the powered device.
- The Gi1/0/9 port is up and connected to a powered device, and policing is disabled.
- The Gil/0/10 port is up and connected to a powered device, and policing is enabled with a policing action to generate a syslog message. The policing action does not take effect because the real-time power consumption is less than the cutoff value.
- The Gil/0/11 port is up and connected to a powered device, and policing is enabled with a policing action to generate a syslog message.
- The Gil/0/12 port is up and connected to a powered device, and policing is enabled with a policing action to shut down the port. The policing action does not take effect because the real-time power consumption is less than the cutoff value.
- The Gi1/0/13 port is up and connected to a powered device, and policing is enabled with a policing action to shut down the port.

This is an example of output from the show power inline police interface-id command on a standalone switch. The table that follows describes the output fields.

Table 30: show power inline police Field Descriptions

Field	Description				
Available	The total amount of configured power² on the switch in watts (W).	$	$	Used	The amount of configured power allocated to PoE ports in watts.
:---	:---				

Field	Description
Oper Power	The real-time power consumption of the powered device.
${ }^{2}$ The configured power is the power that you manually specify or that the switch specifies by	
using CDP power negotiation or the IEEE classification, which is different than the real-time	
power that is monitored with the power sensing feature.	

This is an example of output from the show power inline priority command on a standalone switch.

Device> show power inline priority			
Interface	Admin	Oper	Priority
	State	State	

show stack-power

To display information about StackPower stacks or switches in a power stack, use the show stack-power command in EXEC mode.

Examples

This is an example of output from the show stack-power command:

Power Stack	Stack	Stack	Total	Rsvd	Alloc	Unused	Num	Num
Name	Mode	Topolgy	Pwr (W)	Pwr (W)	Pwr (W)	Pwr (W)	SW	PS
Powerstack-1	SP-PS	Stndaln	350	150	200	0	1	1

This is an example of output from the show stack-power budgeting command:

Power Stack Name	Stack Mode	Stack Topolgy	Total Pwr (W)	Rsvd Pwr (W)	Alloc Pwr (W)	Unused Pwr (W)	Num SW	Num PS
Powerstack-1	SP-PS	Stndaln	350	150	200	0	1	1
Power Stack	PS-A	PS-B	Power	Allo		ail Co	sumd	Pwr
SW Name	(W)	(W)	Budgt (W)) Powe	(W)	(W)	/ PoE	
1 Powerstack-1	350	0	200	200	0	60	10	
Totals:				200	0	60	10	

show shell

To display shell information, use the show shell command in user EXEC mode.
show shell [\{enviornment | functions [\{brief shell_function $\}$]| triggers $\}$]

Syntax Description

environment	(Optional) Displays shell environment inform
functions [brief \mid shell_function]	(Optional) Displays macro information.

- brief-Names of the shell functions.
- shell_function-Name of a shell function
triggers
(Optional) Displays event trigger information

\section*{| Command Modes |
| :--- |
| Command History |}

Usage Guidelines

Use this command to display the shell information for the switch.

Example

This example shows how to use the show shell triggers command to view the event triggers in the switch software:

```
Device# term shell
Device# show shell triggers
User defined triggers
---------------------
Built-in triggers
-----------------
Trigger Id: CISCO_CUSTOM_EVENT
Trigger descriptiōn: Custom macroevent to apply user defined configuration
Trigger environment: User can define the macro
Trigger mapping function: CISCO_CUSTOM_AUTOSMARTPORT
Trigger Id: CISCO_DMP_EVENT
Trigger description: Digital media-player device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS VLAN=(1)
    The value in the parenthesis is a default value
Trigger mapping function: CISCO_DMP_AUTO_SMARTPORT
Trigger Id: CISCO_IPVSC_EVENT
Trigger descriptiōn: IP-}\mathrm{ Camera device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
    The value in parenthesis is a default value
Trigger mapping function: CISCO_IP_CAMERA_AUTO_SMARTPORT
```

```
Trigger Id: CISCO LAST RESORT EVENT
Trigger description: Last resortevent to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
    The value in the parenthesis is a default value
Trigger mapping function: CISCO_LAST_RESORT_SMARTPORT
Trigger Id: CISCO PHONE EVENT
Trigger description: IP-phone device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
and $VOICE VLAN=(2), The value in the parenthesis is a default value
Trigger mapping function: CISCO_PHONE_AUTO_SMARTPORT
Trigger Id: CISCO_ROUTER_EVENT
Trigger description: Router device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $NATIVE_VLAN=(1)
    The value in the parenthesis is a default value
Trigger mapping function: CISCO_ROUTER_AUTO_SMARTPORT
Trigger Id: CISCO_SWITCH_ETHERCHANNEL_CONFIG
Trigger description: etherchannel parameter
Trigger environment: $INTERFACE_LIST=(),$PORT-CHANNEL_ID=(),
    $EC_MODE=(),$EC_PROTOCOLTYPE=(),
    POR\overline{T}
Trigger mapping function: CISCO_ETHERCHANNEL_AUTOSMARTPORT
Trigger Id: CISCO_SWITCH_EVENT
Trigger description: Switch device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $NATIVE_VLAN=(1)
    The value in the parenthesis is a default value
Trigger mapping function: CISCO_SWITCH_AUTO_SMARTPORT
Trigger Id: CISCO_WIRELESS_AP_EVENT
Trigger description: Autonomous ap device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $NATIVE_VLAN=(1)
    The value in the parenthesis is a default value
Trigger mapping function: CISCO_AP_AUTO_SMARTPORT
Trigger Id: CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT
Trigger description: Lightweight-ap device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
    The value in the parenthesis is a default value
Trigger mapping function: CISCO_LWAP_AUTO_SMARTPORT
Trigger Id: word
Trigger description: word
Trigger environment:
Trigger mapping function:
```

This example shows how to use the show shell functions command to view the built-in macros in the switch software:

```
Device# show shell functions
#User defined functions:
#Built-in functions:
function CISCO_AP_AUTO_SMARTPORT () {
    if [[ $LINKUP == YES ]]; then
        conf t
            interface $INTERFACE
                    macro description $TRIGGER
                    switchport trunk encapsulation dotlq
                    switchport trunk native vlan $NATIVE VLAN
                    switchport trunk allowed vlan ALL
```

```
                        switchport mode trunk
                switchport nonegotiate
                auto qos voip trust
                mls qos trust cos
                if [[ $LIMIT == 0 ]]; then
                        default srr-queue bandwidth limit
                else
                            srr-queue bandwidth limit $LIMIT
                            fi
                            if [[ $SW_POE == YES ]]; then
                            if [[ $AP125X == AP125X ]]; then
                                    macro description AP125X
                                    macro auto port sticky
                                    power inline port maximum 20000
                            fi
                    fi
                exit
            end
        fi
        if [[ $LINKUP == NO ]]; then
        conf t
            interface $INTERFACE
                    no macro description
                        no switchport nonegotiate
                        no switchport trunk native vlan $NATIVE_VLAN
                        no switchport trunk allowed vlan ALL
                        no auto qos voip trust
                        no mls qos trust cos
                        default srr-queue bandwidth limit
                    if [[ $AUTH_ENABLED == NO ]]; then
                        no switchport mode
                        no switchport trunk encapsulation
                            fi
                            if [[ $STICKY == YES ]]; then
                            if [[ $SW_POE == YES ]]; then
                        if [[ $AP125X == AP125X ]]; then
                                    no macro auto port sticky
                                    no power inline port maximum
                            fi
                            fi
                    fi
            exit
        end
    fi
}
<output truncated>
```


show system mtu

To display the global maximum transmission unit (MTU) or maximum packet size set for the switch, use the show system mtu command in privileged EXEC mode.
show system mtu
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Default None
Command Modes Privileged EXEC (\#)

Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
For information about the MTU values and the stack configurations that affect the MTU values, see the system mtu command.

Examples

This is an example of output from the show system mtu command:

```
Device# show system mtu
Global Ethernet MTU is 1500 bytes.
```


show tech-support

To automatically run show commands that display system information, use the show tech-support command in the privilege EXEC mode.

Command Modes

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was implemented.

Usage Guidelines The output from the show tech-support command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support > filename) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

You can use one of the following redirection methods:

- $>$ filename - Redirects the output to a file.
- >> filename - Redirects the output to a file in append mode.

show tech-support bgp

To automatically run show commands that display BGP related system information, use the show tech-support bgp command in the privileged EXEC mode.

Syntax Description

address-family	(Optional) Displays the output for a specified address family.
address-family all	(Optional) Displays the output for all address families.
ipv4	(Optional) Displays the output for IPv4 address family.
ipv6	(Optional) Displays the output for IPv6 address family.
12vpn	(Optional) Displays the output for L2VPN address family.
link-state	(Optional) Displays the output for Link State address family.
nsap	(Optional) Displays the output for NSAP address family.
rtfilter	(Optional) Displays the output for RT Filter address family.
vpnv4	(Optional) Displays the output for VPNv4 address family.
vpnv6	(Optional) Displays the output for VPNv6 address family.
flowspec	(Optional) Displays the flowspec related information for an address family.
multicast	(Optional) Displays the multicast related information for an address family.
unicast	(Optional) Displays the unicast related information for an address family.
mdt	(Optional) Displays the Multicast Distribution Tree (MDT) related information for an address family.

mvpn	(Optional) Displays the Multicast VPN (MVPN) related information for an address family.
vrf	Displays the information for a VPN Routing/Forwarding instance.
evpn	(Optional) Displays the Ethernet VPN (EVPN) related information for an address family.
vpls	(Optional) Displays the Virtual Private LAN Services (VPLS) related information for an address family.
vrf-instance-name	Specifies the name of the VPN Routing/Forwarding instance.
all	Displays the information about all VPN NLRIs.
detail	(Optional) Displays the detailed routes information.

Command Modes

User EXEC ($>$)
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Usage Guidelines

The show tech-support bgp command is used to display the outputs of various BGP show commands and log them to the show-tech file. The output from the show tech-support bgp command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support > filename) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

You can use one of the following redirection methods:

- > filename - Redirects the output to a file.
- >> filename - Redirects the output to a file in append mode.

The following show commands run automatically when the show tech-support bgp command is used:

- show clock
- show version
- show running-config
- show process cpu sorted
- show process cpu history
- show process memory sorted

The following show commands for a specific address family run automnatically when the show tech-support bgp address-familyaddress-family-name address-family-modifier command is used:

- show bgp address-family-name address-family-modifier summary
- show bgp address-family-name address-family-modifier detail
- show bgp address-family-name address-family-modifier internal
- show bgp address-family-name address-family-modifier neighbors
- show bgp address-family-name address-family-modifier update-group
- show bgp address-family-name address-family-modifier replication
- show bgp address-family-name address-family-modifier community
- show bgp address-family-name address-family-modifier dampening dampened-paths
- show bgp address-family-name address-family-modifier dampening flap-statistics
- show bgp address-family-name address-family-modifier dampening parameters
- show bgp address-family-name address-family-modifier injected-paths
- show bgp address-family-name address-family-modifier cluster-ids
- show bgp address-family-name address-family-modifier cluster-ids internal
- show bgp address-family-name address-family-modifier peer-group
- show bgp address-family-name address-family-modifier pending-prefixes
- show bgp address-family-name address-family-modifier rib-failure

In addition to the above commands, the following segment routing specific show commands also run when the show tech-support bgp command is used:

- show bgp all binding-sid
- show segment-routing client
- show segment-routing mpls state
- show segment-routing mpls gb
- show segment-routing mpls connected-prefix-sid-map protocol ipv4
- show segment-routing mpls connected-prefix-sid-map protocol backup ipv4
- show mpls traffic-eng tunnel auto-tunnel client bgp

show tech-support diagnostic

To display diagnostic information for technical support, use the show tech-support diagnostic command in privileged EXEC mode.
show tech-support diagnostic

Syntax Description	This command has no arguments or keywords.
Command Modes	Privileged EXEC (\#)
Command History	Release Modification
	Cisco IOS XE Gibraltar 16.10.1 This command was introduced.
Usage Guidelines	The output of this command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support diagnostic > flash:filename) in the local writable storage file system or remote file system.

Note For devices that support stacking, this command is executed on every switch that is up. For devices that do not support stacking, this command is executed only on the active switch.

The output of this command displays the output of the following commands:

- show clock
- show version
- show running-config
- show inventory
- show diagnostic bootup level
- show diagnostic status
- show diagnostic content switch all
- show diagnostic result switch all detail
- show diagnostic schedule switch all
- show diagnostic post
- show diagnostic description switch [switch number] test all
- show logging onboard switch [switch number] clilog detail
- show logging onboard switch [switch number] counter detail
- show logging onboard switch [switch number] environment detail
- show logging onboard switch [switch number] message detail
- show logging onboard switch [switch number] poe detail
- show logging onboard switch [switch number] status
- show logging onboard switch [switch number] temperature detail
- show logging onboard switch [switch number] uptime detail
- show logging onboard switch [switch number] voltage detail

Examples

The following is a sample output from the show tech-support diagnostic command:


```
------------------ show diagnostic content switch all ---------------------
switch 1:
    Diagnostics test suite attributes:
    M/C/* - Minimal bootup level test / Complete bootup level test / NA
        B/* - Basic ondemand test / NA
        P/V/* - Per port test / Per device test / NA
        D/N/* - Disruptive test / Non-disruptive test / NA
        S/* - Only applicable to standby unit / NA
        X/* - Not a health monitoring test / NA
        F/* - Fixed monitoring interval test / NA
        E/* - Always enabled monitoring test / NA
        A/I - Monitoring is active / Monitoring is inactive
```

 ID Test Name Attributes
 \(===\)
 1) DiagGoldPktTest -----------------> *BPN*X**
 not configured n/a
 2) DiagThermalTest -----------------> *B*N****A 000 00:01:30.00 5
 3) DiagFanTest ----------------------> *B*N****
 000 00:01:30.00 5
 4) DiagPhyLoopbackTest -------------> *BPD*X**I
 not configured \(n / a\)
 000 00:01:30.00 5
 6) TestUnusedPortLoopback ----------> *BPN**** I
 not configured \(n / a\)
 000 00:01:30.00 1
 8) DiagPoETest ----------------------> ***D*X**
 not configured n/a
 9) DiagStackCableTest --------------> ***D*X**
 not configured n/a
 10) DiagMemoryTest ------------------> *B*D*X**
 not configured \(n / a\)
 switch 2:
Diagnostics test suite attributes:
M/C/* - Minimal bootup level test / Complete bootup level test / NA
B/* - Basic ondemand test / NA
P/V/* - Per port test / Per device test / NA
D/N/* - Disruptive test / Non-disruptive test / NA
S/* - Only applicable to standby unit / NA
\qquad

CLI LOGGING SUMMARY INFORMATION
\qquad

COUNT COMMAND
\qquad

No summary data to display
\qquad
\qquad

MM/DD/YYYY HH:MM:SS COMMAND
\qquad

No continuous data
\qquad
\qquad
\qquad

CLI LOGGING SUMMARY INFORMATION
\qquad

COUNT COMMAND

No summary data to display

CLI LOGGING CONTINUOUS INFORMATION

MM/DD/YYYY HH:MM:SS COMMAND

No continuous data

\qquad

show tech-support poe

To display the output of all the PoE-related troubleshooting commands, use the show tech-support poe command in privileged EXEC mode. This command displays the output of the following commands:

- show clock
- show version
- show running-config
- show log
- show interface
- show interface status
- show controllers ethernet-controller
- show controllers power inline
- show cdp neighbors detail
- show llpd neighbors detail
- show post
- show platform software ilpower details
- show platform software ilpower system switch-id
- show power inline
- show power inline interface-id detail
- show power inline police
- show power inline priority
- show platform software trace message platform-mgr switch switch-number R0
- show platform software trace message fed switch switch-number
- show platform hardware fed switch switch-number fwd-asic register read register-name pimdeviceid
- show platform frontend-controller manager 0 switch-number
- show platform frontend-controller subordinate $\mathbf{0}$ switch-number
- show platform frontend-controller version 0 switch-number
- show stack-power budgeting
- show stack-power detail

Command Default

Command Modes

This command has no arguments or keywords.

Privileged EXEC

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Technology Package License Information:

Technology-package	Technology-package

Current Type Next reboot

network-essentials	cense	network-essentials	
None Subs	tion Smart	None	
cisco C9300-24T (ARM64) processor with 519006K/3071K bytes of memory.			
Processor board ID JPG220200A8			
1 Virtual Ethernet interface			
56 Gigabit Ethernet interfaces			
2048 K bytes of non-volatile configuration memory.			
2000996K bytes of physical memory.			
819200K bytes of Crash Files at crashinfo:.			
819200K bytes of Crash Files at crashinfo-2:.			
1941504K bytes of Flash at flash:.			
1941504K bytes of Flash at flash-2:.			
OK bytes of WebuI ODM Files at webui:.			
Base Ethernet MAC Address : 00:bf:77:62:62:80			
Motherboard Assembly Number : 73-18700			
Motherboard Serial Number : JAE2202			
Model Revision Number : 15			
Motherboard Revision Number : 07			
Model Number : C9300-			
System Serial Number : JPG220			
Switch Ports Model	SW Version	SW Image	Mode
* 124 C9300-24T	16.10 .1	CAT9K_LITE_IOSXE	INST
-- show runn	config	-	
Building configuration...			
Current configuration : 22900 bytes			
! Last configuration change at 14:59:57 PDT Mon Sep 112017			
version 16.3			
no service pad			
service timestamps debug datetime msec localtime show-timezone			
service timestamps log datetime msec localtime show-timezone			
no platform punt-keepalive disable-kernel-core			
platform shell			
!			
hostname stack9-mixed2			
!			
!			
vrf definition Mgmt-vrf			
!			
address-family ipv4			
exit-address-family			
!			
address-family ipv6			
exit-address-family			
!			
no logging monitor			
!			
no aaa new-model			
boot system switch all flash	kages.conf		
clock timezone PDT -7 0			
stack-mac persistent timer 4			
switch 1 provision ws-c3850-			

```
!
stack-power stack Powerstack-11
    mode redundant strict
!
stack-power switch 1
    stack Powerstack-11
!
ip routing
!
crypto pki trustpoint TP-self-signed-2636786964
    enrollment selfsigned
    subject-name cn=IOS-Self-Signed-Certificate-2636786964
    revocation-check none
    rsakeypair TP-self-signed-2636786964
!
crypto pki certificate chain TP-self-signed-2636786964
    certificate self-signed 01
        30820330 30820218 A0030201 02020101 300D0609 2A864886 F70D0101 05050030
        31312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274
        69666963 6174652D 32363336 37383639 3634301E 170D3137 30333137 31383331
        31325A17 0D323030 31303130 30303030 305A3031 312F302D 06035504 03132649
        4F532D53 656C662D 5369676E 65642D43 65727469 66696361 74652D32 36333637
        38363936 34308201 22300D06 092A8648 86F70D01 01010500 0382010F 00308201
        0A028201 0100E7C5 F498308A 83FF02DB 48AC4428 2F738E43 8587DD2E D1D43918
        7921617F 563890D7 35707C69 413D9F6D A160A6E2 D741C0B3 8E2969EA 9E732EA8
        D3BD6B75 3465C0E6 0FAC1055 340903A5 0EF67AE4 271D73BF F6C91B39 A13C2423
        9250D266 86E07FBC B41851AC 2B03B570 73300C09 0D1B15D1 E56DDA9A 4D39CDF2
        0C7A0831 C634DFE8 3EA55909 D9EEFEA7 B0EB872E 0E91CA86 B90965CC 326780EA
        28274CB1 EB13CA17 08959E01 8F9D25EC 4F8CE767 394E345C E870D776 10758D21
        9D6BD6CD D7619DD0 28B1E6CB D1032A62 DC215510 BA58895E D3724D3C 2A8481D4
        5E5129F5 65CE9105 47DCFD46 1AA7E20E 1D20E4DD 7C786428 83ACCDCE C5900822
        F85AF081 FF130203 010001A3 53305130 0F060355 1D130101 FF040530 030101FF
        301F0603 551D2304 18301680 149EE39D 6B4CC129 72868658 69880994 7AC71912
        04301D06 03551D0E 04160414 9EE39D6B 4CC12972 86865869 8809947A C7191204
        300D0609 2A864886 F70D0101 05050003 82010100 C42EAF92 1D2324B9 2B0153DD
        A85E607E FA9FA0AD BB677982 B5DAC3F7 DE938EC9 6F948385 9916A359 AF2BBA86
        06F04B7E 5B736DD7 CDD89067 1887C177 9241CDF5 0943000D D940F982 55F3DD8A
        9E52167E 64074D23 A1E93445 1B60E4A0 D923F5FA 19064241 E575D6B9 7E1CCE9C
        3957A4C7 67F86FE4 3CC37107 B003873A 3D986787 7DF29056 29D42E30 4AE1D7AC
        3DABD1E8 940DDDF9 C14DCE35 71C79000 A7AF6B28 AD050608 4E7B16CB 7ED8D32E
        FB4B5FF8 CDA2FFCD 3FDAFEF6 AC279A80 03A7FC31 FEB27C2F D7AEFCAE 1B01850F
        AEEAC787 1F1B6BBB 380AA70F CACE89AF 3B0096B6 05906C96 8D004FDC D35AECFC
        A644C0AF 4F874C6D 67F5769E A6147323 D199FE63
                quit
!
errdisable recovery cause inline-power
errdisable recovery interval 30
license boot level ipservicesk9
diagnostic bootup level minimal
spanning-tree mode rapid-pvst
spanning-tree extend system-id
!
redundancy
    mode sso
!
class-map match-any system-cpp-police-topology-control
    description Topology control
class-map match-any system-cpp-police-sw-forward
    description Sw forwarding, L2 LVX data, LOGGING
class-map match-any system-cpp-default
    description EWLC control, EWCL data
!
policy-map port_child_policy
    class non-client-nrt-class
```

```
        bandwidth remaining ratio 10
policy-map system-cpp-policy
    class system-cpp-police-data
        police rate 600 pps
    class system-cpp-police-sys-data
        police rate 100 pps
!
interface Port-channell
    no switchport
    no ip address
!
interface GigabitEthernet0/0
    vrf forwarding Mgmt-vrf
    ip address 10.5.49.131 255.255.255.0
    negotiation auto
!
interface FortyGigabitEthernet1/1/1
!
interface TenGigabitEthernet1/0/1
!
interface FortyGigabitEthernet2/1/1
    shutdown
!
interface TenGigabitEthernet2/1/1
    shutdown
!
interface GigabitEthernet3/0/40
    shutdown
!
interface GigabitEthernet9/0/1
    power inline port poe-ha
!
interface GigabitEthernet9/0/11
    power inline port priority high
!
interface Vlan1
    no ip address
!
ip forward-protocol nd
ip http server
ip http authentication local
ip http secure-server
!
ip tftp source-interface GigabitEthernet0/0
ip route 20.20.20.0 255.255.255.0 2.2.2.3
ip ssh time-out 60
ip ssh authentication-retries 2
ip ssh version 2
ip ssh server algorithm encryption aes128-ctr aes192-ctr aes256-ctr
ip ssh client algorithm encryption aes128-ctr aes192-ctr aes256-ctr
!
ip access-list extended AutoQos-4.0-wlan-Acl-Bulk-Data
    permit tcp any any eq 22
    permit tcp any any eq 465
    permit tcp any any eq 143
    permit tcp any any eq 993
    permit tcp any any eq 995
    permit tcp any any eq }191
    permit tcp any any eq ftp
    permit tcp any any eq ftp-data
    permit tcp any any eq smtp
    permit tcp any any eq pop3
ip access-list extended AutoQos-4.0-wlan-Acl-MultiEnhanced-Conf
    permit udp any any range 16384 32767
```

```
    permit tcp any any range 50000 59999
ip access-list extended AutoQos-4.0-wlan-Acl-Scavanger
    permit tcp any any range 2300 2400
    permit udp any any range 2300 2400
    permit tcp any any range 6881 6999
    permit tcp any any range 28800 29100
    permit tcp any any eq 1214
    permit udp any any eq 1214
    permit tcp any any eq 3689
    permit udp any any eq }368
    permit tcp any any eq 11999
ip access-list extended AutoQos-4.0-wlan-Acl-Signaling
    permit tcp any any range 2000 2002
    permit tcp any any range 5060 5061
    permit udp any any range 5060 5061
ip access-list extended AutoQos-4.0-wlan-Acl-Transactional-Data
    permit tcp any any eq 443
    permit tcp any any eq 1521
    permit udp any any eq }152
    permit tcp any any eq 1526
    permit udp any any eq }152
    permit tcp any any eq 1575
    permit udp any any eq 1575
    permit tcp any any eq 1630
    permit udp any any eq 1630
    permit tcp any any eq 1527
    permit tcp any any eq }620
    permit tcp any any eq }338
    permit tcp any any eq 5985
    permit tcp any any eq }808
!
control-plane
    service-policy input system-cpp-policy
!
!
no vstack
!
line con 0
    exec-timeout 0 0
    stopbits 1
    speed 115200
line aux 0
    stopbits 1
line vty 0 4
    login
line vty 5 15
    login
!
!
mac address-table notification mac-move
wsma agent exec
    profile httplistener
    profile httpslistener
!
wsma agent config
    profile httplistener
    profile httpslistener
!
wsma agent filesys
    profile httplistener
    profile httpslistener
!
wsma agent notify
    profile httplistener
```

```
profile httpslistener
!
!
wsma profile listener httplistener
    transport http
!
wsma profile listener httpslistener
    transport https
!
ap dot11 airtime-fairness policy-name Default 0
ap group default-group
ap hyperlocation ble-beacon 0
ap hyperlocation ble-beacon 1
ap hyperlocation ble-beacon 2
ap hyperlocation ble-beacon 3
ap hyperlocation ble-beacon 4
end
------------------ show log ---------------------
```

Syslog logging: enabled (0 messages dropped, 16 messages rate-limited, 0 flushes, 0 overruns,
xml disabled, filtering disabled)
No Active Message Discriminator.
No Inactive Message Discriminator.
Console logging: disabled
Monitor logging: level debugging, 0 messages logged, xml disabled,
filtering disabled
Buffer logging: level debugging, 782 messages logged, xml disabled,
filtering disabled
Exception Logging: size (4096 bytes)
Count and timestamp logging messages: disabled
File logging: disabled
Persistent logging: disabled
No active filter modules.

```
Trap logging: level informational, }310\mathrm{ message lines logged
Logging Source-Interface: VRF Name:
```

```
Log Buffer (4096 bytes):
rev) PD Class : Class 3/
    (curr/prev) PD Priority : low/unknown
    (curr/prev) Power Type : Type 2 PSE/Type 2 PSE
    (curr/prev) mdi_pwr_support: 15/0
    (curr/prev Power Pair) : Signal/
    (curr/prev) PSE Pwr Source : Primary/Unknown
Aug 22 17:17:28.966 PDT: %LINK-3-UPDOWN: Interface FiveGigabitEthernet1/0/1, changed state
    to down
Aug 22 17:17:29.196 PDT: %ILPOWER-5-POWER_GRANTED: Interface Fil/0/1: Power granted
Aug 22 17:17:47.209 PDT: %SYS-5-CONFIG_I: Configured from console by console
Aug 22 17:17:50.200 PDT: %ILPOWER-7-DETECT: Interface Fil/0/1: Power Device detected: IEEE
    PD
Aug 22 17:17:51.822 PDT: %ILPOWER-5-POWER_GRANTED: Interface Fil/0/1: Power granted
Aug 22 17:17:52.321 PDT: ilpower delete power from pd linkdown Fil/0/1
Aug 22 17:17:52.321 PDT: Ilpower interface (Fil/0/1), delete allocated power 15400
Aug 22 17:17:52.321 PDT: Ilpower interface (Fi1/0/1) setting ICUT_OFF threshold to 0.
Aug 22 17:17:52.321 PDT: ilpower_notify_lldp_power_via_mdi_tlv Fil/0/1 pwr alloc 0
Aug 22 17:17:52.321 PDT: Fil/0/1 AUTO PORT PWR Alloc 130 Request 130
Aug 22 17:17:52.321 PDT: Fi1/0/1: LLDP NOTIFY TLV:
    (curr/prev) PSE Allocation(mW): 13000/0
    (curr/prev) PD Request(mW) : 13000/0
    (curr/prev) PD Class : Class 3/
    (curr/prev) PD Priority : low/unknown
    (curr/prev) Power Type : Type 2 PSE/Type 2 PSE
    (curr/prev) mdi_pwr_support: 15/0
    (curr/prev Power Pair) : Signal/
    (curr/prev) PSE Pwr Source : Primary/Unknown
Aug 22 17:17:52.321 PDT: ILP notify LLDB-TLV: lldp power class tlv:
```

```
Aug 22 17:17:52.321 PDT: (curr/prev) pwr value 15400/0
Aug 22 17:17:52.322 PDT: %SYS-5-CONFIG_I: Configured from console by console
Aug 22 17:17:54.323 PDT: %LINK-5-CHANGED: Interface FiveGigabitEthernet1/0/1, changed state
    to administratively down
Aug 22 17:18:11.981 PDT: ILP notify LLDB-TLV: lldp power class tlv:
Aug 22 17:18:11.981 PDT: (curr/prev) pwr value 15400/0
Aug 22 17:18:11.982 PDT: %SYS-5-CONFIG_I: Configured from console by console
Aug 22 17:18:13.207 PDT: %ILPOWER-7-DETECT: Interface Fil/0/1: Power Device detected: IEEE
    PD
Aug 22 17:18:13.207 PDT: (Fil/0/1) data power pool 1
Aug 22 17:18:13.207 PDT: Ilpower PD device 3 class 6 from interface (Fil/0/1)
Aug 22 17:18:13.207 PDT: (Fil/0/1) state auto
Aug 22 17:18:13.207 PDT: (Fi1/0/1) data power pool: 1, pool 1
Aug 22 17:18:13.207 PDT: (Fi1/0/1) curr pwr usage 15400
Aug 22 17:18:13.207 PDT: (Fi1/0/1) req pwr 15400
Aug 22 17:18:13.207 PDT: (Fi1/0/1) total pwr 610000
Aug 22 17:18:13.207 PDT: (Fi1/0/1) power status OK
Aug 22 17:18:13.207 PDT: ilpower new power from pd discovery Fil/0/1, power_status ok
Aug 22 17:18:13.207 PDT: Ilpower interface (Fil/0/1) power status change, allocated power
15400
Aug 22 17:18:13.207 PDT: ILP notify LLDB-TLV: lldp power class tlv:
Aug 22 17:18:13.207 PDT: (curr/prev) pwr value 15400/0
Aug 22 17:18:13.208 PDT: ilpower_notify_lldp_power_via_mdi_tlv Fil/0/1 pwr alloc 15400
Aug 22 17:18:13.208 PDT: Fil/0/1 AUTO PORT PWR Alloc 130 Request 130
Aug 22 17:18:13.208 PDT: Fi1/0/1: LLDP NOTIFY TLV:
    (curr/prev) PSE Allocation(mW): 13000/0
    (curr/prev) PD Request(mW) : 13000/0
    (curr/prev) PD Class : Class 3/
    (curr/prev) PD Priority : low/unknown
    (curr/prev) Power Type : Type 2 PSE/Type 2 PSE
    (curr/prev) mdi_pwr_support: 15/0
    (curr/prev Power Pair) : Signal/
    (curr/prev) PSE Pwr Source : Primary/Unknown
Aug 22 17:18:13.981 PDT: %LINK-3-UPDOWN: Interface FiveGigabitEthernet1/0/1, changed state
```

to down

Aug 22 17:18:14.207 PDT: \%ILPOWER-5-POWER_GRANTED: Interface Fil/0/1: Power granted

Aug 22 17:18:32.180 PDT: \%SYS-5-LOG_CONFIG_CHANGE: Console logging disabled

Aug 22 17:18:32.242 PDT: \%SYS-5-CONFIG_I: Configured from console by console
Aug 22 17:47:45.133 PDT: \%SYS-5-CONFIG_I: Configured from console by console
Aug 22 17:47:45.717 PDT: \%SYS-5-CONFIG_I: Configured from console by console
Aug 22 17:47:45.000 PDT: \%SYS-6-CLOCKUPDATE: System clock has been updated from 17:47:45 PDT Wed Aug 222018 to 17:47:45 PDT Wed Aug 22 2018, configured from console by console.
\qquad

Port	Name	Status	Vlan	Duplex	Spee	d Type
Fi1/0/1		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/2		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/3		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/4		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/5		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/6		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/7		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/8		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/9		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/10		notconnect	100	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/11		notconnect	100	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/12		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/13		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/14		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/15		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/16		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/17		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/18		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX
Fil/0/19		notconnect	1	auto	auto	100/1000/2.5G/5GBaseTX

Fil/0/20	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/21	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/22	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/23	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/24	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/25	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/26	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/27	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/28	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/29	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/30	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/31	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/32	notconnect	1	auto	auto $100 / 1000 / 2.5 \mathrm{G} / 5 \mathrm{GBaseTX}$
Fil/0/33	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/34	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/35	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/36	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/37	notconnect	1	auto	auto $100 / 1000 / 2.5 \mathrm{G} / 5 \mathrm{GBaseTX}$
Fil/0/38	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/39	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/40	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/41	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/42	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fil/0/43	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/44	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/45	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/46	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/47	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Fi1/0/48	notconnect	1	auto	auto 100/1000/2.5G/5GBaseTX
Te1/1/1	notconnect	1	auto	auto unknown
Te1/1/2	notconnect	1	auto	auto unknown
Te1/1/3	notconnect	1	auto	auto unknown

Te1/1/4	notconnect 1	auto auto unknown
Po1	notconnect unassigned auto auto N/A	
Po100	notconnect unassigned auto auto N/A	

Fil/0/1 (if_id: 7)

00 e 0 : 1140
$00 e 1$: 7969
$00 e 2$: ae02
$00 e 3: 5161$
Phy ID 2 : 0101000101100001
$00 e 4$: 9181
Auto-Negotiation Advertisement : 1001000110000001
$00 e 5$: cle1 Auto-Negotiation Link Partner : 1100000111100001
$00 e 6$: 006f Auto-Negotiation Expansion Reg : 0000000001101111
$00 e 7$: 0000 Next Page Transmit Register : 0000000000000000
$00 e 8$: 6801 Link Partner Next page Register : 0110100000000001
00e9 : 0600 PHY Control Register : 0000011000000000

00ea : 3800 PHY Control Status : 0011100000000000
$00 f 0$: 0001 PHY Specific Control : 0000000000000001
$00 f 1$: 2301 PHY Specific Status : 0010001100000001

0000 : 3000 AN Control Register : 0011000000000000

0001 : 002d AN Control Status : 0000000000101101

0010 : 9181 AN Advertisement : 1001000110000001
0013 : cle1 AN Link Partner : 1100000111100001
0016 : 2001 AN Next Page Transmit : 0010000000000001
0019 : 0000 AN Link Partner Next page: 0000000000000000
0020 : 21e3 AN Specific Control : 0010000111100011
0021 : 0000 AN Specific Status: 0000000000000000
000d : 4032 Global Status : 0100000000110010

```
\begin{tabular}{rrrrl}
\(003 b: 8400\) & MGBASE-T LED Control : 1000010000000000 \\
\(003 c: 0040\) & MGBASE-T LED Ctrl status : 0000000001000000 \\
\(003 d: 0000\) & MGBASE-T LED Ctrl High status : 0000000000000000
\end{tabular}
------------------ show cdp neighbors detail ---------------------
% CDP is not enabled
------------------ show lldp neighbors detail ----------------------
% LLDP is not enabled
------------------ show post ---------------------
Stored system POST messages:
Switch 1
---------
POST: MBIST Tests : Begin
POST: MBIST Tests : End, Status Passed
POST: CRYPTO Tests : Begin
POST: CRYPTO Tests : End, Status Passed
POST: PHY Loopback: loopback Test : Begin
POST: PHY Loopback: loopback Test : End, Status Passed
POST: Inline Power Controller Tests : Begin
POST: Inline Power Controller Tests : End, Status Passed
POST: Thermal, Temperature Tests : Begin
```

```
POST: Thermal, Temperature Tests : End, Status Passed
POST: Thermal, Fan Tests : Begin
POST: Thermal, Fan Tests : End, Status Passed
POST: SIF Tests : Begin
POST: SIF Tests : End, Status Passed
------------------ show power inline ----------------------
```

Module	Availab (Watts)		Used Re (Watts)	maining (Watts)		
1	610.		15.4	594.6		
Interface	Admin	Oper	Power (Watts)	Device	Class	Max
Fil/0/1	auto	on	15.4	Ieee PD	3	60.0
Fil/0/2	auto	off	0.0	n/a	n / a	60.0
Fi1/0/3	auto	off	0.0	n / a	n / a	60.0
Fil/0/4	auto	off	0.0	n / a	n / a	60.0
Fil/0/5	auto	off	0.0	n / a	n / a	60.0
Fil/0/6	auto	off	0.0	n / a	n / a	60.0
Fil/0/7	auto	off	0.0	n / a	n / a	60.0
Fil/0/8	auto	off	0.0	n / a	n / a	60.0
Fil/0/9	auto	off	0.0	n / a	n / a	60.0
Fil/0/10	auto	off	0.0	n / a	n / a	60.0
Fi1/0/11	auto	off	0.0	n / a	n / a	60.0
Fil/0/12	auto	off	0.0	n / a	n / a	60.0
Fil/0/13	auto	off	0.0	n / a	n / a	60.0
Fil/0/14	auto	off	0.0	n / a	n / a	60.0

Fil/0/15	auto	off	0.0	n / a	n / a	60.0
Fil/0/16	auto	off	0.0	n / a	n / a	60.0
Fil/0/17	auto	off	0.0	n / a	n / a	60.0
Fil/0/18	auto	off	0.0	n / a	n / a	60.0
Fil/0/19	auto	off	0.0	n / a	n / a	60.0
Fil/0/20	auto	off	0.0	n / a	n / a	60.0
Fil/0/21	auto	off	0.0	n / a	n / a	60.0
Fil/0/22	auto	off	0.0	n / a	n / a	60.0
Fil/0/23	auto	off	0.0	n / a	n / a	60.0
Fil/0/24	auto	off	0.0	n / a	n / a	60.0
Fil/0/25	auto	off	0.0	n / a	n / a	60.0
Fil/0/26	auto	off	0.0	n / a	n / a	60.0
Fil/0/27	auto	off	0.0	n / a	n / a	60.0
Fil/0/28	auto	off	0.0	n / a	n / a	60.0
Fil/0/29	auto	off	0.0	n / a	n / a	60.0
Fil/0/30	auto	off	0.0	n / a	n / a	60.0
Fil/0/31	auto	off	0.0	n / a	n / a	60.0
Fil/0/32	auto	off	0.0	n / a	n / a	60.0
Fil/0/33	auto	off	0.0	n / a	n / a	60.0
Fil/0/34	auto	off	0.0	n / a	n / a	60.0
Fil/0/35	auto	off	0.0	n / a	n / a	60.0
Fil/0/36	auto	off	0.0	n / a	n / a	60.0
Fil/0/37	auto	off	0.0	n / a	n / a	60.0
Fil/0/38	auto	off	0.0	n / a	n / a	60.0
Fil/0/39	auto	off	0.0	n / a	n / a	60.0
Fil/0/40	auto	off	0.0	n / a	n / a	60.0
Fil/0/41	auto	off	0.0	n / a	n / a	60.0
Fil/0/42	auto	off	0.0	n / a	n / a	60.0
Fil/0/43	auto	off	0.0	n / a	n / a	60.0
Fil/0/44	auto	off	0.0	n / a	n / a	60.0
Fil/0/45	auto	off	0.0	n / a	n / a	60.0
Fil/0/46	auto	off	0.0	n / a	n / a	60.0

Fil/0/47 auto off	0.0	n / a	n / a	60.0	
Fil/0/48	auto off	0.0	n / a	n / a	60.0

------------------ show power inline police -------------------------

Module	Availab (Watts)	le	Used Rem (Watts) (W	maining Watts)		
1	610.		15.4	594.6		
Interface	Admin	Oper	Admin	Oper	Cutoff	Oper
	State	State	Police	Police	Power	Power
Fil/0/1	auto	on	none	n / a	n / a	9.3
Fil/0/2	auto	off	none	n / a	n / a	n / a
Fi1/0/3	auto	off	none	n / a	n / a	n / a
Fil/0/4	auto	off	none	n / a	n / a	n / a
Fi1/0/5	auto	off	none	n / a	n / a	n / a
Fi1/0/6	auto	off	none	n / a	n / a	n / a
Fil/0/7	auto	off	none	n / a	n / a	n / a
Fil/0/8	auto	off	none	n / a	n / a	n / a
Fil/0/9	auto	off	none	n / a	n / a	n / a
Fi1/0/10	auto	off	none	n / a	n / a	n / a
Fi1/0/11	auto	off	none	n / a	n / a	n / a
Fil/0/12	auto	off	none	n / a	n / a	n / a
Fil/0/13	auto	off	none	n / a	n / a	n / a
Fi1/0/14	auto	off	none	n / a	n / a	n / a
Fi1/0/15	auto	off	none	n / a	n / a	n / a
Fil/0/16	auto	off	none	n / a	n / a	n / a
Fi1/0/17	auto	off	none	n / a	n / a	n / a
Fil/0/18	auto	off	none	n / a	n / a	n / a

Fil/0/19	auto	off	none	n / a	n / a	n / a
Fil/0/20	auto	off	none	n / a	n / a	n / a
Fil/0/21	auto	off	none	n / a	n / a	n / a
Fil/0/22	auto	off	none	n / a	n / a	n / a
Fil/0/23	auto	off	none	n / a	n / a	n / a
Fil/0/24	auto	off	none	n / a	n / a	n / a
Fil/0/25	auto	off	none	n / a	n / a	n / a
Fil/0/26	auto	off	none	n / a	n / a	n / a
Fil/0/27	auto	off	none	n / a	n / a	n / a
Fil/0/28	auto	off	none	n / a	n / a	n / a
Fil/0/29	auto	off	none	n / a	n / a	n / a
Fi1/0/30	auto	off	none	n / a	n / a	n / a
Fil/0/31	auto	off	none	n / a	n / a	n / a
Fil/0/32	auto	off	none	n / a	n / a	n / a
Fi1/0/33	auto	off	none	n / a	n / a	n / a
Fi1/0/34	auto	off	none	n / a	n / a	n / a
Fil/0/35	auto	off	none	n / a	n / a	n / a
Fil/0/36	auto	off	none	n / a	n / a	n / a
Fil/0/37	auto	off	none	n / a	n / a	n / a
Fil/0/38	auto	off	none	n / a	n / a	n / a
Fil/0/39	auto	off	none	n / a	n / a	n / a
Fi1/0/40	auto	off	none	n / a	n / a	n / a
Fil/0/41	auto	off	none	n / a	n / a	n / a
Fil/0/42	auto	off	none	n / a	n / a	n / a
Fil/0/43	auto	off	none	n / a	n / a	n / a
Fil/0/44	auto	off	none	n / a	n / a	n / a
Fil/0/45	auto	off	none	n / a	n / a	n / a
Fil/0/46	auto	off	none	n / a	n / a	n / a
Fil/0/47	auto	off	none	n / a	n / a	n / a
Fil/0/48	auto	off	none	n / a	n / a	n / a
Totals:						9.3

\qquad

Interface	Admin	Oper	Admin
	State	State	Priority

Fil/0/1	auto	on	low
Fil/0/2	auto	off	low
Fil/0/3	auto	off	low
Fil/0/4	auto	off	low
Fil/0/5	auto	off	low
Fil/0/6	auto	off	low
Fil/0/7	auto	off	low
Fil/0/8	auto	off	low
Fil/0/9	auto	off	low
Fil/0/10	auto	off	low
Fil/0/11	auto	off	low
Fil/0/12	auto	off	low
Fil/0/13	auto	off	low
Fil/0/14	auto	off	low
Fil/0/15	auto	off	low
Fil/0/16	auto	off	low
Fil/0/17	auto	off	low
Fil/0/18	auto	off	low
Fil/0/19	auto	off	low
Fil/0/20	auto	off	low
Fil/0/21	auto	off	low
Fil/0/22	auto	off	low
Fil/0/23	auto	off	low
Fil/0/24	auto	off	low
Fil/0/25	auto	off	low

Fil/0/26	auto	off	low
Fil/0/27	auto	off	low
Fil/0/28	auto	off	low
Fil/0/29	auto	off	low
Fil/0/30	auto	off	low
Fil/0/31	auto	off	low
Fil/0/32	auto	off	low
Fil/0/33	auto	off	low
Fil/0/34	auto	off	low
Fil/0/35	auto	off	low
Fil/0/36	auto	off	low
Fil/0/37	auto	off	low
Fil/0/38	auto	off	low
Fil/0/39	auto	off	low
Fil/0/40	auto	off	low
Fil/0/41	auto	off	low
Fil/0/42	auto	off	low
Fil/0/43	auto	off	low
Fil/0/44	auto	off	low
Fil/0/45	auto	off	low
Fi1/0/46	auto	off	low
Fi1/0/47	auto	off	low
Fil/0/48	auto	off	low
		- sh	face
Vlan1 is administratively down,			
Hardware is Ethernet SVI, address is f8b7.e24f.37c7 (bia f8b7.e24f.37c7)			
MTU 1500 bytes, BW $1000000 \mathrm{Kbit/sec}$,DLY 10 usec,			
reliability $255 / 255$, txload 1/255, rxload 1/255			
Encapsulation ARPA, loopback not set			
Keepalive not supported			
ARP type: ARPA, ARP Timeout 04:00:00			
Last input never, output never, output hang never			

```
    Last clearing of "show interface" counters never
    Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 minute output rate 0 bits/sec, 0 packets/sec
        O packets input, 0 bytes, 0 no buffer
        Received 0 broadcasts (0 IP multicasts)
        0 \text { runts, 0 giants, 0 throttles}
        O input errors, 0 CRC, O frame, 0 overrun, 0 ignored
        O packets output, 0 bytes, 0 underruns
        O output errors, 1 interface resets
        O unknown protocol drops
        O output buffer failures, 0 output buffers swapped out
GigabitEthernet0/0 is up, line protocol is up
    Hardware is RP management port, address is f8b7.e24f.3780 (bia f8b7.e24f.3780)
    Internet address is 10.8.40.172/16
    MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
        reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full Duplex, 100Mbps, link type is auto, media type is RJ45
    output flow-control is unsupported, input flow-control is unsupported
    ARP type: ARPA, ARP Timeout 04:00:00
    Last input 00:00:00, output 00:01:47, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/75/2531/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 5000 bits/sec, 3 packets/sec
    5 \text { minute output rate 0 bits/sec, 0 packets/sec}
        1 6 3 6 6 4 0 \text { packets input, 321164654 bytes, 0 no buffer}
```

```
    Received O broadcasts (0 IP multicasts)
    O runts, O giants, 0 throttles
    O input errors, O CRC, O frame, O overrun, O ignored
    O watchdog, 0 multicast, 0 pause input
    7 6 4 1 \text { packets output, 2207212 bytes, 0 underruns}
    O output errors, 0 collisions, 0 interface resets
    1 4 1 4 \text { unknown protocol drops}
    O babbles, O late collision, O deferred
    O lost carrier, 0 no carrier, 0 pause output
    0 output buffer failures, 0 output buffers swapped out
    O carrier transitions
FiveGigabitEthernet1/0/1 is down, line protocol is down (notconnect)
    Hardware is Five Gigabit Ethernet, address is f8b7.e24f.3781 (bia f8b7.e24f.3781)
MTU 1500 bytes, BW 5000000 Kbit/sec, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Auto-duplex, Auto-speed, media type is 100/1000/2.5G/5GBaseTX
input flow-control is on, output flow-control is unsupported
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 \text { minute output rate 0 bits/sec, 0 packets/sec}
    0 \text { packets input, 0 bytes, 0 no buffer}
    Received O broadcasts (0 multicasts)
    O runts, 0 giants, 0 throttles
    O input errors, 0 CRC, O frame, O overrun, O ignored
    O watchdog, 0 multicast, 0 pause input
```

0 input packets with dribble condition detected

0 packets output, 0 bytes, 0 underruns

0 output errors, 0 collisions, 29 interface resets

0 unknown protocol drops

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier, 0 pause output

0 output buffer failures, 0 output buffers swapped out
\qquad

Power Stack	Stack	Stack	Total	Rsvd	Alloc	Unused	Num	Num
Name	Mode	Topolgy	Pwr (W)	Pwr (W)	Pwr (W)	Pwr (W)	SW	PS
Powerstack-1	SP-PS	Stndaln	1100	30	475	595	1	1

Power stack name: Powerstack-1
Stack mode: Power sharing
Stack topology: Standalone
Switch 1:
Power budget: 1070

Power allocated: 475

Low port priority value: 22

High port priority value: 13

Switch priority value: 4

Port 1 status: Shut

Port 2 status: Shut

Neighbor on port 1: 0000.0000.0000

Neighbor on port 2: 0000.0000.0000
------------------ show controllers power inline module 1 ----------------------

```
    Alchemy instance 0, address 0
Pending event flag : N N N N N N N N N N N N
Current State : 00 00 10 93 D8 E8
Current Event : 11 11 14 00 00 00
Timers :22 00 00 00 00 00 00 00 00 00 00 00
Error State : 14 14 14 14 14 14
Error Code : 00 00 00 00 00 00 00 00 00 00 00 00
Power Status : N N N N N N N N N N N N
Auto Config : N N N N N N N N N N N N
Disconnect : N N N N N N N N N N N N
Detection Status: F0 00 10 00 00 00
Current Class : 00 00 00 00 00 00
Tweetie debug : 00 00 00 00
POE Commands pending at sub:
    Command 0 on each port : 00 00 00 00 00 00
    Command 1 on each port : 00 00 00 00 00 00
    Command 2 on each port : 00 00 00 00 00 00
    Command 3 on each port : 00 00 00 00 00 00
    Alchemy instance 1, address E
Pending event flag : N N N N N N N N N N N N
Current State: 00 00 10 93 D8 E8
Current Event : 11 11 11 00 00 00
Timers : 2A 00 00 00 00 00 00 00 00 00 00 00
Error State : 26 26 26 26 26 2A
Error Code : 00 00 00 00 00 00 00 00 00 00 00 00
Power Status : N N N N N N N N N N N N
Auto Config : N N N N N N N N N N N N
Disconnect : N N N N N N N N N N N N
Detection Status: FO 00 00 00 00 00
Current Class : 00 00 00 00 00 00
Tweetie debug : 00 00 00 00
POE Commands pending at sub:
    Command 0 on each port : 00 00 00 00 00 00
    command 1 on each port : 00 00 00 00 00 00
    Command 2 on each port : 00 00 00 00 00 00
    command 3 on each port : 00 00 00 00 00 00
------------------ show stack-power detail ----------------------
```

Power Stack	Stack	Stack	Total	Rsvd	Alloc	Unused	Num	Num
Name	Mode	Topolgy	Pwr (W)	Pwr (W)	Pwr (W)	Pwr (W)	SW	PS
Powerstack-1	SP-PS	Stndaln	1100	30	475	595	1	1

Power stack name: Powerstack-1

Stack mode: Power sharing

Stack topology: Standalone

```
    Switch 1:
    Power budget: 1070
    Power allocated: 475
    Low port priority value: 22
    High port priority value: 13
    Switch priority value: 4
    Port 1 status: Shut
    Port 2 status: Shut
    Neighbor on port 1: 0000.0000.0000
    Neighbor on port 2: 0000.0000.0000
------------------ show platform software ilpower details ---------------------
ILP Port Configuration for interface Te2/0/1
    Initialization Done: Yes
    ILP Supported: Yes
    ILP Enabled: Yes
    POST: Yes
    Detect On: No
    Powered Device Detected Yes
    Powered Device Class Done No
    Cisco Powered Device: No
    Power is On: No
    Power Denied: No
    Powered Device Type: Null
    Powerd Device Class: Null
    Power State: Off
    Current State: NGWC ILP DETECTING S
    Previous State: NGWC_ILP_DETECTING_S
    Requested Power in milli watts: 0
    Short Circuit Detected:
    Short Circuit Count: 0
    Cisco Powerd Device Detect Count: 0
    Spare Pair mode: 0
    Spare Pair Architecture: 1
    Signal Pair Power allocation in milli watts: 0
    Spare Pair Power On: 0
    Powered Device power state: 0
    Timer:
        Power Good: Stopped
        Power Denied: Stopped
        Cisco Powered Device Detect: Stopped
        IEEE Detect: Stopped
        IEEE Short: Stopped
        Link Down: Stopped
        Voltage sense: Stopped
------------------ show platform software ilpower system 3 ----------------------
ILP System Configuration
    Slot: 3
    ILP Supported: Yes
    Total Power: 1101000
```

```
Used Power: 49400
Initialization Done: Yes
Post Done: Yes
Post Result Logged: No
Post Result: Success
Power Summary:
    Module: 0
        Power Total: }110100
        Power Used: 49400
        Power Threshold: 0
        Operation Status: On
Pool: 3
Pool Valid: Yes
Total Power: 1101000
Power Usage: 49400
------------------ show platform hardware fed switch 1 fwd-asic register read register-name
pimdeviceid ------------------
```

For asic 0 core 0
------------------ show platform software trace message platform-mgr switch 1 R0

Interface: Gi9/0/16
Inline Power Mode: auto
Operational status: off
Device Detected: no
Device Type: n/a
IEEE Class: n/a
Discovery mechanism used/configured: Ieee and Cisco
Police: off

Power Allocated
Admin Value: 60.0
Power drawn from the source: 0.0
Power available to the device: 0.0
Actual consumption
Measured at the port: 0.0
Maximum Power drawn by the device since powered on: 0.0

Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0

```
Mosfet Counter: 0
Invalid Signature Counter: 0
Power Denied Counter: 0
Power Negotiation Used: None
LLDP Power Negotiation --Sent to PD-- --Rcvd from PD--
    Power Type: -
    Power Source: - -
    Power Priority: - -
    Requested Power(W): - -
    Allocated Power(W): - -
Four-Pair PoE Supported: Yes
Spare Pair Power Enabled: No
Four-Pair PD Architecture: N/A
------------------ show power inline Te8/0/1 detail ----------------------
Interface Te8/0/1: inline power not supported
------------------ show power inline police ---------------------
```

Module	Available (Watts)		Used \quad Remaining(Watts) \quad (Watts)				
1	n / a		n / a		n / a		
Interface	Admin	Oper		Admin	Oper	Cutoff	Oper
	State	State		Police	Police	Power	Power

Module A	Available (Watts)		Used Re (Watts)	Remaining (Watts)		
3	1131.0		49.4	1081.6		
Interface	Admin	Oper	Admin	Oper	Cutoff	Oper
	State	State	Police	Police	Power	Power
Gi3/0/1	auto	off	none	n / a	n / a	n / a
Gi3/0/2	auto	off	none	n / a	n / a	n / a
Gi3/0/3	auto	off	none	n / a	n / a	n / a
Gi3/0/4	auto	off	none	n / a	n / a	n / a
Gi3/0/5	auto	off	none	n / a	n / a	n / a
Gi3/0/6	auto	off	none	n / a	n / a	n / a
Gi3/0/7	auto	off	none	n / a	n / a	n / a
Gi3/0/8	auto	off	none	n / a	n / a	n / a
Gi3/0/9	auto	off	none	n / a	n / a	n / a
Gi3/0/10	auto	Off	none	n / a	n / a	n / a
Gi3/0/11	auto	off	none	n / a	n / a	n / a
Gi3/0/12	auto	off	none	n / a	n / a	n / a
Gi3/0/13	auto	on	none	n / a	n / a	3.6
Gi3/0/14	auto	on	none	n / a	n / a	7.0
Gi3/0/15	auto	off	none	n / a	n / a	n / a
Gi3/0/16	auto	on	none	n / a	n / a	3.7
Gi3/0/17	auto	on	none	n / a	n / a	3.7
Gi3/0/18	auto	off	none	n / a	n / a	n / a
Gi3/0/19	auto	on	none	n / a	n / a	3.7
Gi3/0/20	auto	off	none	n / a	n / a	n / a
Gi3/0/21	auto	on	none	n / a	n / a	3.7
Gi3/0/22	auto	off	none	n / a	n / a	n / a
Gi3/0/23	auto	off	none	n / a	n / a	n / a
Gi3/0/24	auto	off	none	n / a	n / a	n / a
Gi3/0/25	auto	off	none	n / a	n / a	n / a
Gi3/0/26	auto	off	none	n / a	n / a	n / a
Gi3/0/27	auto	off	none	n / a	n / a	n / a
Gi3/0/28	auto	off	none	n / a	n / a	n / a
Gi3/0/29	auto	off	none	n / a	n / a	n / a
Gi3/0/30	auto	off	none	n / a	n / a	n / a
Gi3/0/31	auto	off	none	n / a	n / a	n / a
Gi3/0/32	auto	off	none	n / a	n / a	n / a
Gi3/0/33	auto	off	none	n / a	n / a	n / a
Gi3/0/34	auto	off	none	n / a	n / a	n / a
Gi3/0/35	auto	on	none	n / a	n / a	2.3
Gi3/0/36	auto	off	none	n/a	n / a	n / a
Gi3/0/37	auto	off	none	n/a	n / a	n / a
Gi3/0/38	auto	off	none	n / a	n / a	n / a
Gi3/0/39	auto	off	none	n / a	n / a	n / a
Gi3/0/40	auto	off	none	n / a	n / a	n / a
Gi3/0/41	auto	off	none	n / a	n / a	n / a
Gi3/0/42	auto	off	none	n / a	n / a	n / a
Gi3/0/43	auto	off	none	n / a	n / a	n / a
Gi3/0/44	auto	off	none	n / a	n / a	n / a
Gi3/0/45	auto	off	none	n / a	n / a	n / a
Gi3/0/46	auto	off	none	n / a	n / a	n / a
Gi3/0/47	auto	off	none	n / a	n / a	n / a
Gi3/0/48	auto	off	none	n / a	n / a	n / a

Tx cmd cnt SYS App	24681
Rx cmd cnt SYS App	24681
Tx cmd ignore SYS App	0
Tx cmd Q full SYS App	0
Tx cmd cnt SYS App	17706
Rx cmd cnt SYS App	11804
Tx cmd ignore SYS App	0
Tx cmd Q full SYS App	0
Tx cmd cnt SYS App	0
Rx cmd cnt SYS App	0
Tx cmd ignore SYS App	0
Tx cmd Q full SYS App	0
Tx cmd cnt POE App	0
Rx cmd cnt POE App	0
Tx cmd ignore POE App	0
Tx cmd Q full POE App	0
Tx cmd cnt FRUFE App	0
Rx cmd cnt FRUFE App	0
Tx cmd ignore FRUFE App	0
Tx cmd Q full FRUFE App	0
Tx cmd cnt SYS App	1744
Rx cmd cnt SYS App	993
Tx cmd ignore SYS App	0
Tx cmd Q full SYS App	0
Tx cmd cnt IMAGE App	13809
Rx cmd cnt IMAGE App	13808
Tx cmd ignore IMAGE App	0
Tx cmd Q full IMAGE App	0
Tx cmd cnt STACK App	0
Rx cmd cnt STACK App	0
Tx cmd ignore STACK App	0
Tx cmd Q full STACK App	0
Tx cmd cnt J2A App	0
Rx cmd cnt J2A App	0
Tx cmd ignore J2A App	0
Tx cmd Q full J2A App	0
Tx cmd cnt THERM App	0
Rx cmd cnt THERM App	0
Tx cmd ignore THERM App	0
Tx cmd Q full THERM App	0
Tx cmd cnt GPIO App	0
Rx cmd cnt GPIO App	255
Tx cmd ignore GPIO App	255
Tx cmd Q full GPIO App	255
Tx cmd cnt POE_E App	-369383984
Rx cmd cnt POE_E App	-369346528
Tx cmd ignore POE_E App	-1826379312
Tx cmd Q full POE_E App	-394693324
Tx cmd cnt DMSG App	0
Rx cmd cnt DMSG App	0
Tx cmd ignore DMSG App	0
Tx cmd Q full DMSG App	255
Tx reg cnt	16
Rx reg cnt	16
Tx reg ignore	0
Tx reg Q full	0
Rx invalid frame	0
Rx invalid App	748
Rx invalid Seq	0

Rx invalid checksum	0
Nack cnt	0
Send Break count	0
Early Send Break count	0
Retransmission cnt	0

```
------------------ show platform frontend-controller subordinate 0 1 --------------------
```

```
    showing sub info: 1
State OK
Last Reset Reason UNKNOWN REASON
UART FE Error 0
UART PE Error 0
UART DOR Error 0
Rx Buf Overflow 0
Rx Buf Underflow 0
Tx Buf Full 0
Rx Bad Endbyte 0
PLE Invalid App 0
PLE Disabled App 0
PLE Invalid Data 0
PLE Invalid Flags 0
PLE App Error 0
PLE Lost Ctxt 0
PLE Invalid Reg 0
PLE Invalid Reg Len 0
PLE Invalid Msg Len 0
SLE Poe No Port 0
SLE I2C Busy 0
SLE I2C Error 0
SLE I2C Timeout 0
SLE Invalid Reg Len 0
SLE Msg Underrun 0
----------------- show platform frontend-controller version 0 1 ----------------------
```

Switch 1 MCU:	
Software Version	0.109
System Type	6
Device Id	2
Device Revision	0
Hardware Version	41
Bootloader Version	16

speed

To specify the speed of a port, use the speed command in interface configuration mode. To return to the default value, use the no form of this command.

Note Available configuration options depend on the switch model and transceiver module installed. Options include $10,100,1000,2500,5000,10000,25000,40000,100000$

no speed
Syntax Description

10	Specifies that the port runs at 10 Mbps .
100	Specifies that the port runs at 100 Mbps .
1000	Specifies that the port runs at 1000 Mbps . This option is valid and visible only on 10/100/1000 Mb / s ports.
2500	Specifies that the port runs at 2500 Mbps . This option is valid and visible only on multi-Gigabit-supported Ethernet ports.
5000	Specifies that the port runs at 5000 Mbps . This option is valid and visible only on multi-Gigabit-supported Ethernet ports.
auto	Detects the speed at which the port should run, automatically, based on the port at the other end of the link. If you use the $\mathbf{1 0}, \mathbf{1 0 0}, \mathbf{1 0 0 0}, \mathbf{2 5 0 0}$, or $\mathbf{5 0 0 0}$ keyword with the auto keyword, the port autonegotiates only at the specified speeds.
nonegotiate	Disables autonegotiation, and the port runs at 1000 Mbps .

$\overline{\overline{\text { Command Default }}} \overline{\text { Command Modes }}$

The default is auto.
Interface configuration (config-if)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

You cannot configure speed on 10-Gigabit Ethernet ports.
Except for the 1000BASE-T small form-factor pluggable (SFP) modules, you can configure the speed to not negotiate (nonegotiate) when an SFP module port is connected to a device that does not support autonegotiation.
The keywords, $\mathbf{2 5 0 0}$ and $\mathbf{5 0 0 0}$ are visible only on multi-Gigabit (m-Gig) Ethernet supporting devices.
If the speed is set to auto, the switch negotiates with the device at the other end of the link for the speed setting, and then forces the speed setting to the negotiated value. The duplex setting remains configured on each end of the link, which might result in a duplex setting mismatch.

If both ends of the line support autonegotiation, we highly recommend the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, use the auto setting on the supported side, but set the duplex and speed on the other side.

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

For guidelines on setting the switch speed and duplex parameters, see the "Configuring Interface Characteristics" chapter in the software configuration guide for this release.

Verify your settings using the show interfaces privileged EXEC command.

Examples

The following example shows how to set speed on a port to 100 Mbps :

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed 100
```

The following example shows how to set a port to autonegotiate at only 10 Mbps :

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto 10
```

The following example shows how to set a port to autonegotiate at only 10 or 100 Mbps :

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto 10 100
```


stack-power

To configure StackPower parameters for the power stack or for a switch in the power stack, use the stack power command in global configuration mode. To return to the default setting, use the no form of the command,

	\mathbb{Q}	
	Note Cisco Catalyst 9300L Series Switches do not support this command.	
	stack-power \{stack power-stack-name \| switch stack-member-number\} no stack-power \{stack power-stack-name \mid switch stack-member-number\}	
Syntax Description	stack power-stack-name	Specifies the name of the power stack. The name can be up to 31 characters. Entering these keywords followed by a carriage return enters power stack configuration mode.
	switch stack-member-number	Specifies the switch number in the stack (1 to 4) to enter switch stack-power configuration mode for the switch.
Command Default	There is no default.	
Command Modes	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

When you enter the stack-power stack power stack name command, you enter power stack configuration mode, and these commands are available:

- default-Returns a command to its default setting.
- exit-Exits ARP access-list configuration mode.
- mode-Sets the power mode for the power stack. See the mode command.
- no-Negates a command or returns to default settings.

If you enter the stack-power switch switch-number command with a switch number that is not participating in StackPower, you receive an error message.

When you enter the stack-power switch switch-number command with the number of a switch participating in StackPower, you enter switch stack power configuration mode, and these commands are available:

- default-Returns a command to its default setting.
- exit-Exits switch stack power configuration mode.
- no-Negates a command or returns to default settings.
- power-priority-Sets the power priority for the switch and the switch ports. See the power-priority command.
- stack-id name-Enters the name of the power stack to which the switch belongs. If you do not enter the power stack-ID, the switch does not inherit the stack parameters. The name can be up to 31 characters.
- standalone-Forces the switch to operate in standalone power mode. This mode shuts down both stack power ports.

Examples

This example removes switch 2 , which is connected to the power stack, from the power pool and shutting down both power ports:

```
Device(config)# stack-power switch 2
Device(config-switch-stackpower)# standalone
Device(config-switch-stackpower)# exit
```


switchport block

To prevent unknown multicast or unicast packets from being forwarded, use the switchport block command in interface configuration mode. To allow forwarding unknown multicast or unicast packets, use the no form of this command.
switchport block \{multicast | unicast\} no switchport block \{multicast |unicast\}

Syntax Description

Command Default
 Command Modes

Command History

Usage Guidelines

multicast Specifies that unknown multicast traffic should be blocked.
Note Only pure Layer 2 multicast traffic is blocked. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.
unicast Specifies that unknown unicast traffic should be blocked.

Unknown multicast and unicast traffic is not blocked.
Interface configuration (config-if)

Release

Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.

By default, all traffic with unknown MAC addresses is sent to all ports. You can block unknown multicast or unicast traffic on protected or nonprotected ports. If unknown multicast or unicast traffic is not blocked on a protected port, there could be security issues.

With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

Blocking unknown multicast or unicast traffic is not automatically enabled on protected ports; you must explicitly configure it.
For more information about blocking packets, see the software configuration guide for this release.
This example shows how to block unknown unicast traffic on an interface:

```
Device(config-if)# switchport block unicast
```

You can verify your setting by entering the show interfaces interface-id switchport privileged EXEC command.

system mtu

To set the global maximum packet size or MTU size for switched packets on Gigabit Ethernet and 10-Gigabit Ethernet ports, use the system mtu command in global configuration mode. To restore the global MTU value to its default value, use the no form of this command.
system mtu bytes
no system mtu

Syntax Description
bytes The global MTU size in bytes. The range is 1500 to 9198 bytes; the default is 1500 bytes.
$\overline{\text { Command Default }}$ The default MTU size for all ports is 1500 bytes.
Command Modes Global configuration (config)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\overline{\text { Usage Guidelines }}$ You can verify your setting by entering the show system mtu privileged EXEC command.
The switch does not support the MTU on a per-interface basis.
If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted.

Examples

This example shows how to set the global system MTU size to 6000 bytes:

```
Device(config)# system mtu 6000
Global Ethernet MTU is set to 6000 bytes.
Note: this is the Ethernet payload size, not the total
Ethernet frame size, which includes the Ethernet
header/trailer and possibly other tags, such as ISL or
802.1q tags.
```


voice-signaling vlan (network-policy configuration)

To create a network-policy profile for the voice-signaling application type, use the voice-signaling vlan command in network-policy configuration mode. To delete the policy, use the no form of this command.
voice-signaling vlan $\{$ vlan-id $[\{\cos$ cos-value $\mid \mathbf{d s c} d s c p$-value $\}] \mid \mathbf{d o t} 1 \mathbf{p}[\{\cos 12$-priority $\mid \mathbf{d s c p}$ $d s c p\}]$ | none | untagged $\}$

Syntax Description

vlan-id (Optional) The VLAN for voice traffic. The range is 1 to 4094.
cos cos-value (Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7 ; the default is 5 .
dscp dscp-value (Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63 ; the default is 46 .
dot1p (Optional) Configures the phone to use IEEE 802.1p priority tagging and to use VLAN 0 (the native VLAN).
none (Optional) Does not instruct the Cisco IP phone about the voice VLAN. The phone uses the configuration from the phone key pad.
untagged (Optional) Configures the phone to send untagged voice traffic. This is the default for the phone.

Command Default

No network-policy profiles for the voice-signaling application type are defined.
The default CoS value is 5 .
The default DSCP value is 46 .
The default tagging mode is untagged.

Command Modes

Command History

Usage Guidelines
Network-policy profile configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the network-policy profile global configuration command to create a profile and to enter network-policy profile configuration mode.
The voice-signaling application type is for network topologies that require a different policy for voice signaling than for voice media. This application type should not be advertised if all of the same network policies apply as those advertised in the voice policy TLV.
When you are in network-policy profile configuration mode, you can create the profile for voice-signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).

To return to privileged EXEC mode from the network-policy profile configuration mode, enter the exit command.

This example shows how to configure voice-signaling for VLAN 200 with a priority 2 CoS:

```
(config)# network-policy profile 1
(config-network-policy)# voice-signaling vlan 200 cos 2
```

This example shows how to configure voice-signaling for VLAN 400 with a DSCP value of 45:

```
(config)# network-policy profile 1
(config-network-policy) # voice-signaling vlan 400 dscp 45
```

This example shows how to configure voice-signaling for the native VLAN with priority tagging:

```
(config-network-policy)# voice-signaling vlan dot1p cos 4
```


voice vlan (network-policy configuration)

To create a network-policy profile for the voice application type, use the voice vlan command in network-policy configuration mode. To delete the policy, use the no form of this command.
voice vlan $\{$ vlan-id $[\{\cos \cos$-value $\mid \mathbf{d s c p} d s c p-v a l u e\}] \mid \boldsymbol{d o t} 1 \mathbf{p}[\{\cos 12$-priority $\mid \mathbf{d s c p} d s c p\}] \mid$ none | untagged \}

Syntax Description

vlan-id (Optional) The VLAN for voice traffic. The range is 1 to 4094.
\cos cos-value (Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7 ; the default is 5 .
dscp dscp-value (Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63 ; the default is 46 .

$\boldsymbol{d o t 1 p}$	(Optional) Configures the phone to use IEEE 802.1p priority tagging and to use VLAN
0 (the native VLAN).	

none (Optional) Does not instruct the Cisco IP phone about the voice VLAN. The phone uses the configuration from the phone key pad.
untagged (Optional) Configures the phone to send untagged voice traffic. This is the default for the phone.

Command Default

No network-policy profiles for the voice application type are defined.
The default CoS value is 5 .
The default DSCP value is 46 .
The default tagging mode is untagged.

Command Modes

Command History

Usage Guidelines
Network-policy profile configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the network-policy profile global configuration command to create a profile and to enter network-policy profile configuration mode.
The voice application type is for dedicated IP telephones and similar devices that support interactive voice services. These devices are typically deployed on a separate VLAN for ease of deployment and enhanced security through isolation from data applications.

When you are in network-policy profile configuration mode, you can create the profile for voice by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).

To return to privileged EXEC mode from the network-policy profile configuration mode, enter the exit command.

This example shows how to configure the voice application type for VLAN 100 with a priority 4 CoS:

```
(config)# network-policy profile 1
(config-network-policy)# voice vlan 100 cos 4
```

This example shows how to configure the voice application type for VLAN 100 with a DSCP value of 34 :
(config) \# network-policy profile 1
(config-network-policy) \# voice vlan 100 dscp 34

This example shows how to configure the voice application type for the native VLAN with priority tagging:
(config-network-policy) \# voice vlan dot1p cos 4

${ }_{\text {past }}$ IV

IP Addressing Services

- IP Addressing Services Commands, on page 425

IP Addressing Services Commands

- clear ip nhrp, on page 430
- clear ipv6 access-list, on page 431
- clear ipv6 dhcp, on page 432
- clear ipv6 dhcp binding, on page 433
- clear ipv6 dhcp client, on page 434
- clear ipv6 dhcp conflict, on page 435
- clear ipv6 dhcp relay binding, on page 436
- clear ipv6 eigrp, on page 437
- clear ipv6 mfib counters, on page 438
- clear ipv6 mld counters, on page 439
- clear ipv6 mld traffic, on page 440
- clear ipv6 mtu, on page 441
- clear ipv6 multicast aaa authorization, on page 442
- clear ipv6 nd destination, on page 443
- clear ipv6 nd on-link prefix, on page 444
- clear ipv6 nd router, on page 445
- clear ipv6 neighbors, on page 446
- clear ipv6 nhrp, on page 448
- clear ipv6 ospf, on page 449
- clear ipv6 ospf counters, on page 450
- clear ipv6 ospf events, on page 452
- clear ipv6 pim reset, on page 453
- clear ipv6 pim topology, on page 454
- clear ipv6 pim traffic, on page 455
- clear ipv6 prefix-list, on page 456
- clear ipv6 rip, on page 457
- clear ipv6 route, on page 458
- clear ipv6 spd, on page 459
- debug nhrp, on page 460
- fhrp delay, on page 462
- fhrp version vrrp v3, on page 463
- ip address dhcp, on page 464
- ip address pool (DHCP), on page 467
- ip address, on page 468
- ip nat inside source, on page 470
- ip nat outside source, on page 475
- ip nat pool, on page 478
- ip nat translation (timeout), on page 480
- ip nhrp map, on page 482
- ip nhrp map multicast, on page 484
- ip nhrp network-id, on page 485
- ip nhrp nhs, on page 486
- ip unnumbered, on page 488
- ip wccp, on page 490
- ipv6 access-list, on page 495
- ipv6 address-validate, on page 498
- ipv6 cef, on page 499
- ipv6 cef accounting, on page 501
- ipv6 cef distributed, on page 503
- ipv6 cef load-sharing algorithm, on page 505
- ipv6 cef optimize neighbor resolution, on page 506
- ipv6 destination-guard policy, on page 507
- ipv6 dhcp-relay bulk-lease, on page 508
- ipv6 dhcp-relay option vpn, on page 509
- ipv6 dhcp-relay source-interface, on page 510
- ipv6 dhcp binding track ppp, on page 511
- ipv6 dhcp database, on page 512
- ipv6 dhcp iana-route-add, on page 514
- ipv6 dhcp iapd-route-add, on page 515
- ipv6 dhcp-ldra , on page 516
- ipv6 dhcp ping packets, on page 517
- ipv6 dhcp pool, on page 518
- ipv6 dhcp server vrf enable, on page 520
- ipv6 flow monitor, on page 521
- ipv6 general-prefix, on page 522
- ipv6 local policy route-map, on page 524
- ipv6 local pool, on page 526
- ipv6 mld snooping (global), on page 528
- ipv6 mld ssm-map enable, on page 529
- ipv6 mld state-limit, on page 530
- ipv6 multicast-routing, on page 531
- ipv6 multicast group-range, on page 532
- ipv6 multicast pim-passive-enable, on page 534
- ipv6 multicast rpf, on page 535
- ipv6 nd cache expire, on page 536
- ipv6 nd cache interface-limit (global), on page 537
- ipv6 nd host mode strict, on page 538
- ipv6 nd na glean, on page 539
- ipv6 nd ns-interval, on page 540
- ipv6 nd nud retry, on page 541
- ipv6 nd reachable-time, on page 543
- ipv6 nd resolution data limit, on page 544
- ipv6 nd route-owner, on page 545
- ipv6 neighbor, on page 546
- ipv6 ospf name-lookup, on page 548
- ipv6 pim, on page 549
- ipv6 pim accept-register, on page 550
- ipv6 pim allow-rp , on page 551
- ipv6 pim neighbor-filter list, on page 552
- ipv6 pim rp-address, on page 553
- ipv6 pim rp embedded, on page 556
- ipv6 pim spt-threshold infinity, on page 557
- ipv6 prefix-list, on page 558
- ipv6 source-guard attach-policy, on page 561
- ipv6 source-route, on page 562
- ipv6 spd mode, on page 563
- ipv6 spd queue max-threshold, on page 564
- ipv6 traffic interface-statistics, on page 565
- ipv6 unicast-routing, on page 566
- key chain, on page 567
- key-string (authentication), on page 568
- key, on page 569
- show ip nat translations, on page 570
- show ip nhrp nhs, on page 573
- show ip ports all, on page 576
- show ipv6 access-list, on page 578
- show ipv6 destination-guard policy, on page 581
- show ipv6 dhcp, on page 582
- show ipv6 dhcp binding, on page 583
- show ipv6 dhcp conflict, on page 586
- show ipv6 dhcp database, on page 587
- show ipv6 dhcp guard policy, on page 589
- show ipv6 dhcp interface, on page 591
- show ipv6 dhcp relay binding, on page 593
- show ipv6 eigrp events, on page 595
- show ipv6 eigrp interfaces, on page 597
- show ipv6 eigrp topology, on page 599
- show ipv6 eigrp traffic, on page 601
- show ipv6 general-prefix, on page 603
- show ipv6 interface, on page 604
- show ipv6 mfib, on page 612
- show ipv6 mld groups, on page 618
- show ipv6 mld interface, on page 621
- show ipv6 mld snooping, on page 623
- show ipv6 mld ssm-map, on page 625
- show ipv6 mld traffic, on page 627
- show ipv6 mrib client, on page 629
- show ipv6 mrib route, on page 631
- show ipv6 mroute, on page 633
- show ipv6 mtu, on page 637
- show ipv6 nd destination, on page 639
- show ipv6 nd on-link prefix, on page 640
- show ipv6 neighbors, on page 641
- show ipv6 nhrp, on page 645
- show ipv6 ospf, on page 648
- show ipv6 ospf border-routers, on page 652
- show ipv6 ospf event, on page 654
- show ipv6 ospf graceful-restart, on page 657
- show ipv6 ospf interface, on page 659
- show ipv6 ospf request-list, on page 664
- show ipv6 ospf retransmission-list, on page 666
- show ipv6 ospf statistics, on page 668
- show ipv6 ospf summary-prefix, on page 670
- show ipv6 ospf timers rate-limit, on page 671
- show ipv6 ospf traffic, on page 672
- show ipv6 ospf virtual-links, on page 676
- show ipv6 pim anycast-RP, on page 678
- show ipv6 pim bsr, on page 679
- show ipv6 pim df, on page 681
- show ipv6 pim group-map, on page 683
- show ipv6 pim interface, on page 685
- show ipv6 pim join-prune statistic, on page 687
- show ipv6 pim limit, on page 688
- show ipv6 pim neighbor, on page 689
- show ipv6 pim range-list, on page 691
- show ipv6 pim topology, on page 693
- show ipv6 pim traffic, on page 695
- show ipv6 pim tunnel, on page 697
- show ipv6 policy, on page 699
- show ipv6 prefix-list, on page 700
- show ipv6 protocols, on page 703
- show ipv6 rip, on page 706
- show ipv6 route, on page 711
- show ipv6 routers, on page 715
- show ipv6 rpf, on page 718
- show ipv6 source-guard policy, on page 720
- show ipv6 spd, on page 721
- show ipv6 static, on page 722
- show ipv6 traffic, on page 726
- show key chain, on page 729
- show track, on page 730
- track, on page 732
- vrrp, on page 734
- vrrp description, on page 735
- vrrp preempt, on page 736
- vrrp priority, on page 737
- vrrp timers advertise, on page 738
- vrrs leader, on page 740

clear ip nhrp

To clear all dynamic entries from the Next Hop Resolution Protocol (NHRP) cache, use the clear ip nhrp command in user EXEC or privileged EXEC mode.
clear ip nhrp[\{vrf $\{v r f$-name \mid global $\}\}]$ [\{dest-ip-address [\{dest-mask $\}$] |tunnel number |counters [\{interface tunnel number $\}] \mid$ stats $[\{$ tunnel number $[\{\mathbf{v r f}\{$ vrf-name \mid global $\}\}]\}]\}]$

Syntax Description

vrf	(Optional) Deletes entries from the NHRP cache for the specified virtual routing and forwarding (VRF) instance.
vrf-name	(Optional) Name of the VRF address family to which the command is applied.
global	(Optional) Specifies the global VRF instance.
dest-ip-address	(Optional) Destination IP address. Specifying this argument clears NHRP mapping entries for the specified destination IP address.
dest-mask	(Optional) Destination network mask.
counters	(Optional) Clears the NHRP counters.
interface	(Optional) Clears the NHRP mapping entries for all interfaces.
tunnel number	(Optional) Removes the specified interface from the NHRP cache.
stats	(Optional) Clears all IPv4 statistic information for all interfaces.

Command Modes

User EXEC (>)
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Denali 16.5.1	This command was introduced.

Usage Guidelines

The clear ip nhrp command does not clear any static (configured) IP-to-NBMA address mappings from the NHRP cache.

Examples

The following example shows how to clear all dynamic entries from the NHRP cache for an interface:

Switch\# clear ip nhrp

Related Commands

Command	Description
show ip nhrp	Displays NHRP mapping information.

clear ipv6 access-list

To reset the IPv6 access list match counters, use the clear ipv6 access-listcommand in privileged EXEC mode.
clear ipv6 access-list [access-list-name]

Syntax Description

Command Default

Command Modes
Command History
access-list-name
(Optional) Name of the IPv6 access list for which to clear the match counters. Names cannot contain a space or quotation mark, or begin with a numeric.

No reset is initiated.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
The clear ipv6 access-list command is similar to the clear ip access-list counterscommand, except that it is IPv6-specific.

The clear ipv6 access-listcommand used without the access-list-nameargument resets the match counters for all IPv6 access lists configured on the router.

This command resets the IPv6 global ACL hardware counters.

Examples

Related Commands
The following example resets the match counters for the IPv6 access list named marketing:

```
# clear ipv6 access-list marketing
```

Command	Description
hardware statistics	Enables the collection of hardware statistics.
ipv6 access-list	Defines an IPv6 access list and enters IPv6 access list configuration mode.
show ipv6 access-list	Displays the contents of all current IPv6 access lists.

clear ipv6 dhcp

To clear IPv6 Dynamic Host Configuration Protocol (DHCP) information, use the clear ipv6 dhcpcommand in privileged EXEC mode:
clear ipv6 dhcp
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Modes Privileged EXEC (\#)

Command History	Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.	

Usage Guidelines The clear ipv6 dhcp command deletes DHCP for IPv6 information.

Examples
The following example :
\# clear ipv6 dhcp

clear ipv6 dhcp binding

To delete automatic client bindings from the Dynamic Host Configuration Protocol (DHCP) for IPv6 server binding table, use the clear ipv6 dhcp binding command in privileged EXEC mode.
clear ipv6 dhcp binding [ipv6-address] [vrf vrf-name]

Syntax Description

Command Modes
Command History

ipv6-address	(Optional) The address of a DHCP for IPv6 client. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

Usage Guidelines

The clear ipv6 dhep binding command is used as a server function.
A binding table entry on the DHCP for IPv6 server is automatically:

- Created whenever a prefix is delegated to a client from the configuration pool.
- Updated when the client renews, rebinds, or confirms the prefix delegation.
- Deleted when the client releases all the prefixes in the binding voluntarily, all prefixes' valid lifetimes have expired, or an administrator runs the clear ipv6 dhep binding command.

If the clear ipv6 dhep binding command is used with the optional ipv6-address argument specified, only the binding for the specified client is deleted. If the clear ipv6 dhcp binding command is used without the ipv6-address argument, then all automatic client bindings are deleted from the DHCP for IPv6 binding table. If the optional vrf vrf-name keyword and argument combination is used, only the bindings for the specified VRF are cleared.

$\overline{\text { Examples }}$	The following example deletes all automatic client bindings from the DHCP for IPv6 server binding table: \# clear ipv6 dhcp binding	
Related Commands	Command	Description
show ipv6 dhcp binding	Displays automatic client bindings from the DHCP for IPv6 server binding table.	

clear ipv6 dhcp client

To restart the Dynamic Host Configuration Protocol (DHCP) for IPv6 client on an interface, use the clear ipv6 dhcp client command in privileged EXEC mode.
clear ipv6 dhcp client interface-type interface-number

Syntax Description

Command Modes

Command History

Usage Guidelines
interface-type interface-number \quad Interface type and number. For more information, use the question mark $(?)$ online help function.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The clear ipv6 dhcp client command restarts the DHCP for IPv6 client on specified interface after first releasing and unconfiguring previously acquired prefixes and other configuration options (for example, Domain Name System [DNS] servers).

Examples	The following example restarts the DHCP for IPv6 client for Ethernet interface	
	\# clear ipv6 dhcp client Ethernet 1/0	
Related Commands	Command	Description
show ipv6 dhcp interface	Displays DHCP for IPv6 interface information.	

clear ipv6 dhcp conflict

To clear an address conflict from the Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server database, use the clear ipv6 dhcp conflict command in privileged EXEC mode.
clear ipv6 dhcp conflict \{*ipv6-address | vrf vrf-name \}

Syntax Description

$*$	Clears all address conflicts.
ipv6-address	Clears the host IPv6 address that contains the conflicting address.
vrf vrf-name	Specifies a virtual routing and forwarding (VRF) name.

Command Modes

Command History

Usage Guidelines When you configure the DHCPv6 server to detect conflicts, it uses ping. The client uses neighbor discovery to detect clients and reports to the server through a DECLINE message. If an address conflict is detected, the address is removed from the pool, and the address is not assigned until the administrator removes the address from the conflict list.

If you use the asterisk $\left(^{*}\right)$ character as the address parameter, DHCP clears all conflicts.
If the vrf vrf-name keyword and argument are specified, only the address conflicts that belong to the specified VRF will be cleared.

Related Commands

Examples
 The following example shows how to clear all address conflicts from the DHCPv6 server database:

\# clear ipv6 dhcp conflict *

Command	Description
show ipv6 dhcp conflict	Displays address conflicts found by a DHCPv6 server when addresses are offered to the client.

clear ipv6 dhcp relay binding

To clear an IPv6 address or IPv6 prefix of a Dynamic Host Configuration Protocol (DHCP) for IPv6 relay binding, use the clear ipv6 dhep relay binding command in privileged EXEC mode.
clear ipv6 dhcp relay binding $\{v r f$ vrf-name $\}\{* i p v 6-a d d r e s s i p v 6-p r e f i x\}$
clear ipv6 dhcp relay binding $\{\mathbf{v r f}$ vrf-name $\}$ \{* ipv6-prefix $\}$
Syntax Description

vrf vrf-name	Specifies a virtual routing and forwarding (VRF) configuration.
$*$	Clears all DHCPv6 relay bindings.
ipv6-address	DHCPv6 address.
ipv6-prefix	IPv6 prefix.

Command Modes

Privileged EXEC (\#)
Command History

Usage Guidelines
The clear ipv6 dhcp relay binding command deletes a specific IPv6 address or IPv6 prefix of a DHCP for IPv6 relay binding. If no relay client is specified, no binding is deleted.

Examples

The following example shows how to clear the binding for a client with a specified IPv6 address:

```
# clear ipv6 dhcp relay binding 2001:ODB8:3333:4::5
```

The following example shows how to clear the binding for a client with the VRF name vrf1 and a specified prefix on a Cisco uBR10012 universal broadband device:
\# clear ipv6 dhcp relay binding vrf vrf1 2001:DB8:0:1::/64

Related Commands

Command	Description
show ipv6 dhcp relay binding	Displays DHCPv6 IANA and DHCPv6 IAPD bindings on a relay agent.

clear ipv6 eigrp

To delete entries from Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6 routing tables, use the clear ipv6 eigrp command in privileged EXEC mode.
clear ipv6 eigrp [as-number] [neighbor [\{ipv6-address|interface-type interface-number\}]]

Syntax Description

as-number	(Optional) Autonomous system number.
neighbor	(Optional) Deletes neighbor router entries.
ipv6-address	(Optional) IPv6 address of a neighboring router.
interface-type	(Optional) The interface type of the neighbor router.
interface-number	(Optional) The interface number of the neighbor router.

Command Modes

Command History

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Usage Guidelines
Use the clear ipv6 eigrp command without any arguments or keywords to clear all EIGRP for IPv6 routing table entries. Use the as-number argument to clear routing table entries on a specified process, and use the neighboripv6-address keyword and argument, or the interface-typeinterface-number argument, to remove a specific neighbor from the neighbor table.

Examples The following example removes the neighbor whose IPv6 address is 3FEE:12E1:2AC1:EA32:

```
# clear ipv6 eigrp neighbor 3FEE:12E1:2AC1:EA32
```


clear ipv6 mfib counters

To reset all active Multicast Forwarding Information Base (MFIB) traffic counters, use the clear ipv6 mfib counters command in privileged EXEC mode.
clear ipv6 mfib [vrf vrf-name] counters [\{group-name \mid group-address [\{source-addresssource-name $\}]\}]$
Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
group-name \mid group-address	(Optional) IPv6 address or name of the multicast group.
source-address \| source-name	(Optional) IPv6 address or name of the source.

Command Modes

Command History

Usage Guidelines

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

After you enable the clear ipv6 mfib counters command, you can determine if additional traffic is forwarded by using one of the following show commands that display traffic counters:

- show ipv6 mfib
- show ipv6 mfib active
- show ipv6 mfib count
- show ipv6 mfib interface
- show ipv6 mfib summary

Examples

The following example clears and resets all MFIB traffic counters:

```
# clear ipv6 mfib counters
```


clear ipv6 mld counters

To clear the Multicast Listener Discovery (MLD) interface counters, use the clear ipv6 mld counters command in privileged EXEC mode.
clear ipv6 mld [vrf vrf-name] counters [interface-type]

Syntax Description

Command Modes
Command History

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

Usage Guidelines

Examples

Related Commands
Privileged EXEC (\#) command clears the counters on all interfaces.

The following example clears the counters for Ethernet interface $1 / 0$:
\# clear ipv6 mld counters Ethernet1/0

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
interface-type	(Optional) Interface type. For more information, use the question mark (?) online help function.

Use the clear ipv6 mld counters command to clear the MLD counters, which keep track of the number of joins and leaves received. If you omit the optional interface-type argument, the clear ipv6 mld counters

Command	Description
show ipv6 mld interface	Displays multicast-related information about an interface.

clear ipv6 mld traffic

To reset the Multicast Listener Discovery (MLD) traffic counters, use the clear ipv6 mld traffic command in privileged EXEC mode.
clear ipv6 mld [vrf vrf-name] traffic

Syntax Description

Command Modes

Command History

Usage Guidelines
Examples

vrf $v r f$-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Using the clear ipv6 mld traffic command will reset all MLD traffic counters.

The following example resets the MLD traffic counters:
\# clear ipv6 mld traffic

Command	Description
show ipv6 mld traffic	Displays the MLD traffic counters.

clear ipv6 mtu

To clear the maximum transmission unit (MTU) cache of messages, use the clear ipv6 mtucommand in privileged EXEC mode.
clear ipv6 mtu

$\overline{\text { Syntax Description }}$	This command has no arguments or keywords.	
$\overline{\text { Command Default }}$	Messages are not cleared from the MTU cache.	
$\overline{\text { Command Modes }}$	Privileged EXEC (\#)	
$\overline{\text { Command History }}$	Release	Modification
	Cisco IOS XE Everest $16.5 .1 a$	This command was introduced.

Usage Guidelines	If a router is flooded with ICMPv6 toobig messages, the router is forced to create an unlimited number of
entries in the MTU cache until all available memory is consumed. Use the clear ipv6 mtu command to clear	

Related Commands

Command	Description
ipv6 flowset	Configures flow-label marking in 1280-byte or larger packets sent by the router.

clear ipv6 multicast aaa authorization

To clear authorization parameters that restrict user access to an IPv6 multicast network, use the clear ipv6 multicast aaa authorizationcommand in privileged EXEC mode.
clear ipv6 multicast aaa authorization [interface-type interface-number]
interface-type interface-number Interface type and number. For more information, use the question mark (?) online help function.

Command Modes

Command History

Usage Guidelines

Using the clear ipv6 multicast aaa authorization command without the optional interface-type and interface-number arguments will clear all authorization parameters on a network.

Examples

Related Commands
The following example clears all configured authorization parameters on an IPv6 network:
\# clear ipv6 multicast aaa authorization FastEthernet 1/0

Command	Description
aaa authorization multicast default	Sets parameters that restrict user access to an IPv6 multicast network.

clear ipv6 nd destination

To clear IPv6 host-mode destination cache entries, use the clear ipv6 nd destination command in privileged EXEC mode.
clear ipv6 nd destination[vrf vrf-name]

Syntax Description

Command Modes

Command History

| vrf $\quad v r f-n a m e ~$ | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The clear ipv6 nd destination command clears IPv6 host-mode destination cache entries. If the vrf vrf-name keyword and argument pair is used, then only information about the specified VRF is cleared.

The following example shows how to clear IPv6 host-mode destination cache entries:
\# clear ipv6 nd destination

Related Commands

Command	Description
ipv6 nd host mode strict	Enables the conformant, or strict, IPv6 host mode.

clear ipv6 nd on-link prefix

To clear on-link prefixes learned through router advertisements (RAs), use the clear ipv6 nd on-link prefix command in privileged EXEC mode.
clear ipv6 nd on-link prefix[vrf vrf-name]

Syntax Description

Command Modes

Command History

Usage Guidelines

| vrf $\quad v r f-n a m e ~$ | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the clear ipv6 nd on-link prefix command to clear locally reachable IPv6 addresses (e.g., on-link prefixes) learned through RAs. If the vrf vrf-name keyword and argument pair is used, then only information about the specified VRF is cleared.

$\overline{\text { Examples }}$

Related Commands

The following examples shows how to clear on-link prefixes learned through RAs:
\# clear ipv6 nd on-link prefix

Command	Description
ipv6 nd host mode strict	Enables the conformant, or strict, IPv6 host mode.

clear ipv6 nd router

To clear neighbor discovery (ND) device entries learned through router advertisements (RAs), use the clear ipv6 nd router command in privileged EXEC mode.
clear ipv6 nd router[vrf vrf-name]

Syntax Description

Command Modes

Command History

Usage Guidelines

| vrf $\quad v r f-$-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the clear ipv6 nd router command to clear ND device entries learned through RAs. If the vrf vrf-name keyword and argument pair is used, then only information about the specified VRF is cleared.

Examples

The following example shows how to clear neighbor discovery ND device entries learned through RAs:
\# clear ipv6 nd router

Command	Description
ipv6 nd host mode strict	Enables the conformant, or strict, IPv6 host mode.

clear ipv6 neighbors

To delete all entries in the IPv6 neighbor discovery cache, except static entries and ND cache entries on non-virtual routing and forwarding (VRF) interfaces, use the clear ipv6 neighbors command in privileged EXEC mode.
clear ipv6 neighbors [\{interface type number[ipv6 ipv6-address] | statistics | vrf table-name [\{ipv6-address \mid statistics $\}]\}]$
clear ipv6 neighbors

Syntax Description

interface type number	(Optional) Clears the IPv6 neighbor discovery cache in the specified interface.
ipv6 ipv6-address	(Optional) Clears the IPv6 neighbor discovery cache that matches the specified IPv6 address on the specified interface.
statistics	(Optional) Clears the IPv6 neighbor discovery entry cache.
vrf	(Optional) Clears entries for a virtual private network (VPN) routing or forwarding instance.
table-name	(Optional) Table name or identifier. The value range is from 0x0 to 0xFFFFFFFF (0 to 65535 in decimal).

Command Modes
 Command History

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
The clear ipv6 neighbor command clears ND cache entries. If the command is issued without the vrf keyword, then the command clears ND cache entries on interfaces associated with the default routing table (e.g., those interfaces that do not have a vrf forwarding statement). If the command is issued with the vrf keyword, then it clears ND cache entries on interfaces associated with the specified VRF.

Examples

The following example deletes all entries, except static entries and ND cache entries on non-VRF interfaces, in the neighbor discovery cache:
\# clear ipv6 neighbors
The following example clears all IPv6 neighbor discovery cache entries, except static entries and ND cache entries on non-VRF interfaces, on Ethernet interface 0/0:
\# clear ipv6 neighbors interface Ethernet 0/0
The following example clears a neighbor discovery cache entry for 2001:0DB8:1::1 on Ethernet interface $0 / 0$:

```
# clear ipv6 neighbors interface Ethernet0/0 ipv6 2001:0DB8:1::1
```

In the following example, interface Ethernet $0 / 0$ is associated with the VRF named red. Interfaces Ethernet $1 / 0$ and Ethernet $2 / 0$ are associated with the default routing table (because they are not associated with a VRF). Therefore, the clear ipv6 neighbor command will clear ND cache entries on interfaces Ethernet $1 / 0$ and Ethernet $2 / 0$ only. In order to clear ND cache entries on interface Ethernet $0 / 0$, the user must issue the clear ipv6 neighbor vrf red command.

```
interface ethernet0/0
    vrf forward red
    ipv6 address 2001:db8:1::1/64
interface ethernet1/0
    ipv6 address 2001:db8:2::1/64
interface ethernet2/0
    ipv6 address 2001:db8:3::1/64
```

Related Commands

Command	Description
ipv6 neighbor	Configures a static entry in the IPv6 neighbor discovery cache.
show ipv6 neighbors	Displays IPv6 neighbor discovery cache information.

clear ipv6 nhrp

To clear all dynamic entries from the Next Hop Resolution Protocol (NHRP) cache, use the clear ipv6 nhrp command in privileged EXEC mode.
clear ipv6 nhrp [\{ipv6-address \mid counters $\}$]

Syntax Description

ipv6-address	(Optional) The IPv6 network to delete.
counters	(Optional) Specifies NHRP counters to delete.

Command Modes

Command History

Usage Guidelines

This command does not clear any static (configured) IPv6-to-nonbroadcast multiaccess (NBMA) address mappings from the NHRP cache.

Examples

The following example shows how to clear all dynamic entries from the NHRP cache for the interface:
\# clear ipv6 nhrp

Related Commands

Command	Description
show ipv6 nhrp	Displays the NHRP cache.

clear ipv6 ospf

To clear the Open Shortest Path First (OSPF) state based on the OSPF routing process ID, use the cl ear ipv6 ospf command in privileged EXEC mode.
clear ipv6 ospf [process-id] \{process |force-spf | redistribution\}
Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.
process	Restarts the OSPF process.
force-spf	Starts the shortest path first (SPF) algorithm without first clearing the OSPF database.
redistribution	Clears OSPF route redistribution.

Command Modes

Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
When the process keyword is used with the clear ipv6 ospfcommand, the OSPF database is cleared and repopulated, and then the shortest path first (SPF) algorithm is performed. When the force-spfkeyword is used with the clear ipv6 ospfcommand, the OSPF database is not cleared before the SPF algorithm is performed.

Use the process-idoption to clear only one OSPFprocess. If the process-idoptionis not specified,all OSPF processesare cleared.

Examples The following example starts the SPF algorithm without clearing the OSPF database:

```
# clear ipv6 ospf force-spf
```


clear ipv6 ospf counters

To clear the Open Shortest Path First (OSPF) state based on the OSPF routing process ID, use the cl ear ipv6 ospf command in privileged EXEC mode.
clear ipv6 ospf [process-id] counters [neighbor [\{neighbor-interfaceneighbor-id\}]]

Syntax Description

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.
neighbor	(Optional) Neighbor statistics per interface or neighbor ID.
neighbor-interface	(Optional) Neighbor interface.
neighbor-id	(Optional) IPv6 or IP address of the neighbor.

Command Modes

Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Use the neighbor neighbor-interface option to clear counters for all neighbors on a specified interface. If the neighbor neighbor-interface option is not used, all OSPF counters are cleared.
Use the neighbor neighbor-id option to clear counters at a specified neighbor. If the neighbor neighbor-id option is not used,all OSPF counters are cleared.

Examples

The following example provides detailed information on a neighbor router:

```
# show ipv6 ospf neighbor detail
    Neighbor 10.0.0.1
        In the area 1 via interface Serial19/0
        Neighbor:interface-id 21, link-local address FE80::A8BB:CCFF:FE00:6F00
        Neighbor priority is 1, State is FULL, 6 state changes
        Options is 0x194AE05
    Dead timer due in 00:00:37
    Neighbor is up for 00:00:15
    Index 1/1/1, retransmission queue length 0, number of retransmission 1
    First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
    Last retransmission scan length is 1, maximum is 1
    Last retransmission scan time is 0 msec, maximum is 0 msec
```

The following example clears all neighbors on the specified interface:

```
# clear ipv6 ospf counters neighbor s19/0
```

The following example now shows that there have been 0 state changes since the clear ipv6 ospf counters neighbor s19/0 command was used:

```
# show ipv6 ospf neighbor detail
    Neighbor 10.0.0.1
        In the area 1 via interface Serial19/0
        Neighbor:interface-id 21, link-local address FE80::A8BB:CCFF:FE00:6F00
        Neighbor priority is 1, State is FULL, 0 state changes
        Options is 0x194AE05
        Dead timer due in 00:00:39
        Neighbor is up for 00:00:43
        Index 1/1/1, retransmission queue length 0, number of retransmission 1
        First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
        Last retransmission scan length is 1, maximum is 1
        Last retransmission scan time is 0 msec, maximum is 0 msec
```

Related Commands

Command	Description
show ipv6 ospf neighbor	Displays OSPF neighbor information on a per-interface basis.

clear ipv6 ospf events

To clear the Open Shortest Path First (OSPF) for IPv6 event log content based on the OSPF routing process ID, use the cl ear ipv6 ospf events command in privileged EXEC mode.
clear ipv6 ospf [process-id] events

Syntax Description

Command Modes

Command History

Usage Guidelines

$\overline{\text { Examples }}$

process-id	(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the optional process-id argument to clear the IPv6 event log content of a specified OSPF routing process. If the process-id argument is not used, all event log content is cleared.

The following example enables the clearing of OSPF for IPv6 event log content for routing process 1:
\# clear ipv6 ospf 1 events

clear ipv6 pim reset

To delete all entries from the topology table and reset the Multicast Routing Information Base (MRIB) connection, use the clear ipv6 pim reset command in privileged EXEC mode.
clear ipv6 pim [vrf vrf-name] reset

Syntax Description

Command Modes

Command History

| vrf \quad vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Using the clear ipv6 pim reset command breaks the PIM-MRIB connection, clears the topology table, and then reestablishes the PIM-MRIB connection. This procedure forces MRIB resynchronization.

Caution Use the clear ipv6 pim reset command with caution, as it clears all PIM protocol information from the PIM topology table. Use of the clear ipv6 pim reset command should be reserved for situations where PIM and MRIB communication are malfunctioning.

Examples The following example deletes all entries from the topology table and resets the MRIB connection:
\# clear ipv6 pim reset

clear ipv6 pim topology

To clear the Protocol Independent Multicast (PIM) topology table, use the clear ipv6 pim topology command in privileged EXEC mode.
clear ipv6 pim [vrf vrf-name] topology [\{group-namegroup-address $\}$]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
group-name \| group-address	(Optional) IPv6 address or name of the multicast group.

Command Default

When the command is used with no arguments, all group entries located in the PIM topology table are cleared of PIM protocol information.

Command Modes

Command History

Usage Guidelines

This command clears PIM protocol informationfrom all group entries located in the PIM topology table. Information obtained from the MRIB table is retained. If a multicast group is specified, only those group entries are cleared.

Examples

The following example clears all group entries located in the PIM topology table:
\# clear ipv6 pim topology

clear ipv6 pim traffic

To clear the Protocol Independent Multicast (PIM) traffic counters, use the clear ipv6 pim traffic command in privileged EXEC mode.
clear ipv6 pim [vrf vrf-name] traffic

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

Examples

vrf $v r$-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.

When the command is used with no arguments, all traffic counters are cleared.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This command clears PIM traffic counters. If the vrf vrf-name keyword and argument are used, only those counters are cleared.

The following example clears all PIM traffic counter:
\# clear ipv6 pim traffic

clear ipv6 prefix-list

To reset the hit count of the IPv6 prefix list entries, use the clear ipv6 prefix-list command in privileged EXEC mode.
clear ipv6 prefix-list [prefix-list-name] [ipv6-prefix/prefix-length]

Syntax Description

prefix-list-name	(Optional) The name of the prefix list from which the hit count is to be cleared.
ipv6-prefix	(Optional) The IPv6 network from which the hit count is to be cleared. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
/ prefix-length	(Optional) The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Command Default
 Command Modes

The hit count is automatically cleared for all IPv6 prefix lists.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

The clear ipv6 prefix-list command is similar to the clear ip prefix-list command, except that it is IPv6-specific.
The hit count is a value indicating the number of matches to a specific prefix list entry.

Examples

The following example clears the hit count from the prefix list entries for the prefix list named first_list that match the network mask 2001:0DB8::/35.
\# clear ipv6 prefix-list first_list 2001:0DB8::/35

Related Commands

Command	Description
ipv6 prefix-list	Creates an entry in an IPv6 prefix list.
ipv6 prefix-list sequence-number	Enables the generation of sequence numbers for entries in an IPv6 prefix list.
show ipv6 prefix-list	Displays information about an IPv6 prefix list or prefix list entries.

clear ipv6 rip

To delete routes from the IPv6 Routing Information Protocol (RIP) routing table, use the clear ipv6 rip command in privileged EXEC mode.
clear ipv6 rip [name][vrf vrf-name]
clear ipv6 rip [name]

Syntax Description

name	(Optional) Name of an IPv6 RIP process.
vrf vrf-name	(Optional) Clears information about the specified Virtual Routing and Forwarding (VRF) instance.

Command Modes

Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

When the name argument is specified, only routes for the specified IPv6 RIP process are deleted from the IPv6 RIP routing table. If no name argument is specified, all IPv6 RIP routes are deleted.
Use the show ipv6 rip command to display IPv6 RIP routes.
Use the clear ipv6 rip name vrf vrf-name command to delete the specified VRF instances for the specified IPv6 RIP process.

Examples

The following example deletes all the IPv6 routes for the RIP process called one:

```
# clear ipv6 rip one
```

The following example deletes the IPv6 VRF instance, called vrf1 for the RIP process, called one:

```
# clear ipv6 rip one vrf vrf1
*Mar 15 12:36:17.022: RIPng: Deleting 2001:DB8::/32
*Mar 15 12:36:17.022: [Exec]IPv6RT[vrf1]: rip <name>, Delete all next-hops for 2001:DB8::1
*Mar 15 12:36:17.022: [Exec]IPv6RT[vrf1]: rip <name>, Delete 2001:DB8::1 from table
*Mar 15 12:36:17.022: [IPv6 RIB Event Handler]IPv6RT[<red>]: Event: 2001:DB8::1, Del, owner
    rip, previous None
```

Related Commands

Command	Description
debug ipv6 rip	Displays the current contents of the IPv6 RIP routing table.
ipv6 rip vrf-mode enable	Enables VRF-aware support for IPv6 RIP.
show ipv6 rip	Displays the current content of the IPv6 RIP routing table.

clear ipv6 route

To delete routes from the IPv6 routing table, use the clear ipv6 route command in privileged EXEC mode.
\{clear ipv6 route $\left.\{$ ipv6-addressipv6-prefix/prefix-length $\left.\}\right|^{*}\right\}$

Syntax Description

Command Modes
 Command History

Usage Guidelines

ipv6-address	The address of the IPv6 network to delete from the table. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
ipv6-prefix	The IPv6 network number to delete from the table. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
/ prefix-length	The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
*	Clears all IPv6 routes.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The clear ipv6 route command is similar to the clear ip route command, except that it is IPv6-specific.
When the ipv6-address or ipv6-prefix/ prefix-length argument is specified, only that route is deleted from the IPv6 routing table. When the * keyword is specified, all routes are deleted from the routing table (the per-destination maximum transmission unit [MTU] cache is also cleared).

Examples

The following example deletes the IPv6 network 2001:0DB8::/35:
\# clear ipv6 route 2001:0DB8::/35

Related Commands

Command	Description
ipv6 route	Establishes static IPv6 routes.
show ipv6 route	Displays the current contents of the IPv6 routing table.

clear ipv6 spd

To clear the most recent Selective Packet Discard (SPD) state transition, use the clear ipv6 spd command in privileged EXEC mode.
clear ipv6 spd
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords
Command Modes
Privileged EXEC (\#)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Examples

The clear ipv6 spd command removes the most recent SPD state transition and any trend historical data.

The following example shows how to clear the most recent SPD state transition:
\# clear ipv6 spd

debug nhrp

To enable Next Hop Resolution Protocol (NHRP) debugging, use the debug nhrp command in privileged EXEC mode. To disable debugging output, use the no form of this command.
debug nhrp [\{attribute |cache |condition \{interface tunnel number | peer \{nbma \{ipv4-nbma-address nbma-name ipv6-nbma-address $\}\} \mid$ umatched |vrf vrf-name $\} \mid$ detail |error |extension |group | packet |rate\}]
no debug nhrp [\{attribute |cache |condition \{interface tunnel number| peer \{nbma \{ipv4-nbma-address nbma-name ipv6-nbma-address \} \} unmatched | vrf vrf-name $\}$ |detail|error | extension | group | packet | rate \}]

Syntax Description

attribute	(Optional) Enables NHRP attribute debugging operations.
cache	(Optional) Enables NHRP cache debugging operations.
condition	(Optional) Enables NHRP conditional debugging operations.
interface tunnel number	(Optional) Enables debugging operations for the tunnel interface.
nbma	(Optional) Enables debugging operations for the non-broadcast multiple access (NBMA) network.
ipv4-nbma-address	(Optional) Enables debugging operations based on the IPv4 address of the NBMA network.
nbma-name	(Optional) NBMA network name.
IPv6-address	(Optional) Enables debugging operations based on the IPv6 address of the NBMA network.
vrf $v r f-n a m e ~$	(Optional) Enables debugging operations for the virtual routing and forwarding instance.
detail	(Optional) Displays detailed logs of NHRP debugs.
error	(Optional) Enables NHRP error debugging operations.
extension	(Optional) Enables NHRP extension processing debugging operations.
group	(Optional) Enables NHRP group debugging operations.
packet	(Optional) Enables NHRP activity debugging.
rate	(Optional) Enables NHRP rate limiting.
routing	(Onal) Enables NHRP routing debugging operations.

Command Default

Command Modes Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Denali 16.5.1	This command was introduced.

Usage Guidelines Use the debug nhrp detail command to view the NHRP attribute logs.

The Virtual-Access number keyword-argument pair is visible only if the virtual access interface is available on the device.

Examples

The following sample output from the debug nhrp command displays NHRP debugging output for IPv4:

```
Switch# debug nhrp
```


Related Commands

Command	Description
show ip nhrp	Displays NHRP mapping information.

fhrp delay

Syntax Description

To specify the delay period for the initialization of First Hop Redundancy Protocol (FHRP) clients, use the fhrp delay command in interface configuration mode. To remove the delay period specified, use the no form of this command.
fhrp delay $\{[$ minimum $]$ [reload] seconds $\}$
no fhrp delay $\{[$ minimum $]$ [reload $]$ seconds $\}$

minimum	(Optional) Configures the delay period after an interface becomes available.
reload	(Optional) Configures the delay period after the device reloads.
seconds	Delay period in seconds. The range is from 0 to 3600.

Command Default
Command Modes
Examples

Related Commands

Command	Description
show fhrp	Displays First Hop Redundancy Protocol (FHRP) information.

fhrp version vrrp v3

To enable Virtual Router Redundancy Protocol version 3 (VRRPv3) and Virtual Router Redundancy Service (VRRS) configuration on a device, use the fhrp version vrrp v3 command in global configuration mode. To disable the ability to configure VRRPv3 and VRRS on a device, use the no form of this command.
fhrp version vrrp v3 no fhrp version vrrp v3
$\overline{\text { Syntax Description }}$ This command has no keywords or arguments.

| Command Default | VRRPv3 and VRRS configuration on a device is not enabled. |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Global configuration (config) |
| Usage Guidelines | When VRRPv3 is in use, VRRP version 2 (VRRPv2) is unavailable. |

Examples

In the following example, a tracking process is configured to track the state of an IPv6 object using a VRRPv3 group. VRRP on GigabitEthernet interface $0 / 0 / 0$ then registers with the tracking process to be informed of any changes to the IPv6 object on the VRRPv3 group. If the IPv6 object state on serial interface VRRPv3 goes down, then the priority of the VRRP group is reduced by 20 :

```
Device(config) # fhrp version vrrp v3
Device(config)# interface GigabitEthernet 0/0/0
Device(config-if)# vrrp 1 address-family ipv6
Device(config-if-vrrp)# track 1 decrement 20
```

Related Commands

Command	Description
track (VRRP)	Enables an object to be tracked using a VRRPv3 group.

ip address dhcp

To acquire an IP address on an interface from the DHCP, use the ip address dhcp command in interface configuration mode. To remove any address that was acquired, use the no form of this command.
ip address dhcp [client-id interface-type number] [hostname hostname] no ip address dhcp [client-id interface-type number] [hostname hostname]

Syntax Description

client-id	(Optional) Specifies the client identifier. By default, the client identifier is an ASCII value. The client-id interface-type number option sets the client identifier to the hexadecimal MAC address of the named interface.
interface-type	(Optional) Interface type. For more information, use the question mark (?) online help function.
number	(Optional) Interface or subinterface number. For more information about the numbering syntax for your networking device, use the question mark (?) online help function.
hostname	(Optional) Specifies the hostname.
hostname	(Optional) Name of the host to be placed in the DHCP option 12 field. This name need not be the same as the hostname entered in global configuration mode.

Command Default

Command Modes

Usage Guidelines

The hostname is the globally configured hostname of the device. The client identifier is an ASCII value.

Interface configuration (config-if)

The ip address dhep command allows any interface to dynamically learn its IP address by using the DHCP protocol. It is especially useful on Ethernet interfaces that dynamically connect to an Internet service provider (ISP). Once assigned a dynamic address, the interface can be used with the Port Address Translation (PAT) of Cisco IOS Network Address Translation (NAT) to provide Internet access to a privately addressed network attached to the device.

The ip address dhep command also works with ATM point-to-point interfaces and will accept any encapsulation type. However, for ATM multipoint interfaces you must specify Inverse ARP via the protocol ip inarp interface configuration command and use only the aa15snap encapsulation type.

Some ISPs require that the DHCPDISCOVER message have a specific hostname and client identifier that is the MAC address of the interface. The most typical usage of the ip address dhcp client-id interface-type number hostname hostname command is when interface-type is the Ethernet interface where the command is configured and interface-type number is the hostname provided by the ISP.

A client identifier (DHCP option 61) can be a hexadecimal or an ASCII value. By default, the client identifier is an ASCII value. The client-id interface-type number option overrides the default and forces the use of the hexadecimal MAC address of the named interface.

If a Cisco device is configured to obtain its IP address from a DHCP server, it sends a DHCPDISCOVER message to provide information about itself to the DHCP server on the network.

If you use the ip address dhcp command with or without any of the optional keywords, the DHCP option 12 field (hostname option) is included in the DISCOVER message. By default, the hostname specified in option 12 will be the globally configured hostname of the device. However, you can use the ip address dhcp hostname
hostname command to place a different name in the DHCP option 12 field than the globally configured hostname of the device.

The no ip address dhcp command removes any IP address that was acquired, thus sending a DHCPRELEASE message.

You might need to experiment with different configurations to determine the one required by your DHCP server. The table below shows the possible configuration methods and the information placed in the DISCOVER message for each method.

Table 31: Configuration Method and Resulting Contents of the DISCOVER Message

Configuration Method	Contents of DISCOVER Messages
ip address dhcp	The DISCOVER message contains "cisco- mac-address -Eth1" in the client ID field. The mac-address is the MAC address of the Ethernet 1 interface and contains the default hostname of the device in the option 12 field.
ip address dhcp hostname hostname	The DISCOVER message contains "cisco- mac-address -Eth1" in the client ID field. The mac-address is the MAC address of the Ethernet 1 interface, and contains hostname in the option 12 field.
ip address dhcp client-id ethernet $\mathbf{1}$	The DISCOVER message contains the MAC address of the Ethernet 1 interface in the client ID field and contains the default hostname of the device in the option 12 field.
ip address dhcp client-id ethernet $\mathbf{1}$ hostname hostname	The DISCOVER message contains the MAC address of the Ethernet 1 interface in the client ID field and contains hostname in the option 12 field.

Examples

In the examples that follow, the command ip address dhep is entered for Ethernet interface 1. The DISCOVER message sent by a device configured as shown in the following example would contain "cisco- mac-address -Eth1" in the client-ID field, and the value abc in the option 12 field.

```
hostname abc
!
interface GigabitEthernet 1/0/1
    ip address dhcp
```

The DISCOVER message sent by a device configured as shown in the following example would contain "cisco- mac-address -Eth1" in the client-ID field, and the value def in the option 12 field.

```
hostname abc
!
interface GigabitEthernet 1/0/1
    ip address dhcp hostname def
```

The DISCOVER message sent by a device configured as shown in the following example would contain the MAC address of Ethernet interface 1 in the client-id field, and the value abc in the option 12 field.

```
hostname abc
```

!

```
interface Ethernet 1
    ip address dhcp client-id GigabitEthernet 1/0/1
```

The DISCOVER message sent by a device configured as shown in the following example would contain the MAC address of Ethernet interface 1 in the client-id field, and the value def in the option 12 field.

```
hostname abc
!
interface Ethernet 1
    ip address dhcp client-id GigabitEthernet 1/0/1 hostname def
```

Related Commands	Command	Description
	Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode.	

ip address pool (DHCP)

To enable the IP address of an interface to be automatically configured when a Dynamic Host Configuration Protocol (DHCP) pool is populated with a subnet from IP Control Protocol (IPCP) negotiation, use the ip address pool command in interface configuration mode. To disable autoconfiguring of the IP address of the interface, use the no form of this command.
ip address pool name no ip address pool

Syntax Description

Command Default
Command Modes
Usage Guidelines
name \quad Name of the DHCP pool. The IP address of the interface will be automatically configured from the DHCP pool specified in name.

IP address pooling is disabled.
Interface configuration
Use this command to automatically configure the IP address of a LAN interface when there are DHCP clients on the attached LAN that should be serviced by the DHCP pool on the device. The DHCP pool obtains its subnet dynamically through IPCP subnet negotiation.

The following example specifies that the IP address of GigabitEthernet interface $1 / 0 / 1$ will be automatically configured from the address pool named abc:

```
ip dhcp pool abc
    import all
    origin ipcp
!
interface GigabitEthernet 1/0/1
    ip address pool abc
```

Command	Description
show ip interface	Displays the usability status of interfaces configured for IP.

ip address

To set a primary or secondary IP address for an interface, use the ip address command in interface configuration mode. To remove an IP address or disable IP processing, use the noform of this command.
ip address ip-address mask [secondary [vrf vrf-name]] no ip address ip-address mask [secondary [vrf vrf-name]]

Syntax Description

ip-address	IP address.
mask	Mask for the associated IP subnet.
secondary	(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address. Note \quadIf the secondary address is used for a VRF table configuration with the vrf keyword, the vrf keyword must be specified also. vrf(Optional) Name of the VRF table. The vrf-name argument specifies the VRF name of the ingress interface.

Command Default
Command Modes
Command History

Usage Guidelines

No IP address is defined for the interface.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

An interface can have one primary IP address and multiple secondary IP addresses. Packets generated by the Cisco IOS software always use the primary IP address. Therefore, all devices and access servers on a segment should share the same primary network number.

Hosts can determine subnet masks using the Internet Control Message Protocol (ICMP) mask request message. Devices respond to this request with an ICMP mask reply message.

You can disable IP processing on a particular interface by removing its IP address with the no ip address command. If the software detects another host using one of its IP addresses, it will print an error message on the console.

The optional secondary keyword allows you to specify an unlimited number of secondary addresses. Secondary addresses are treated like primary addresses, except the system never generates datagrams other than routing updates with secondary source addresses. IP broadcasts and Address Resolution Protocol (ARP) requests are handled properly, as are interface routes in the IP routing table.

Secondary IP addresses can be used in a variety of situations. The following are the most common applications:

- There may not be enough host addresses for a particular network segment. For example, your subnetting allows up to 254 hosts per logical subnet, but on one physical subnet you need 300 host addresses. Using
secondary IP addresses on the devices or access servers allows you to have two logical subnets using one physical subnet.
- Many older networks were built using Level 2 bridges. The judicious use of secondary addresses can aid in the transition to a subnetted, device-based network. Devices on an older, bridged segment can be easily made aware that many subnets are on that segment.
- Two subnets of a single network might otherwise be separated by another network. This situation is not permitted when subnets are in use. In these instances, the first network is extended, or layered on top of the second network using secondary addresses.
- If any device on a network segment uses a secondary address, all other devices on that same segment must also use a secondary address from the same network or subnet. Inconsistent use of secondary addresses on a network segment can very quickly cause routing loops.
- When you are routing using the Open Shortest Path First (OSPF) algorithm, ensure that all secondary addresses of an interface fall into the same OSPF area as the primary addresses.
- If you configure a secondary IP address, you must disable sending ICMP redirect messages by entering the no ip redirects command, to avoid high CPU utilization.

Examples

In the following example, 192.108.1.27 is the primary address and 192.31.7.17 is the secondary address for GigabitEthernet interface $1 / 0 / 1$:

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet 1/0/1
Device(config-if)# ip address 192.108.1.27 255.255.255.0
Device(config-if)# ip address 192.31.7.17 255.255.255.0 secondary
```

Related Commands

Command	Description
match ip route-source	Specifies a source IP address to match to required route maps that have been set up based on VRF connected routes.
route-map	Defines the conditions for redistributing routes from one routing protocol into another, or to enable policy routing.
set vrf	Enables VPN VRF selection within a route map for policy-based routing VRF selection.
show ip arp	Displays the ARP cache, in which SLIP addresses appear as permanent ARP table entries.
show ip interface	Displays the usability status of interfaces configured for IP.
show route-map	Displays static and dynamic route maps.

ip nat inside source

To enable Network Address Translation (NAT) of the inside source address, use the ip nat inside source command in global configuration mode. To remove the static translation, or the dynamic association to a pool, use the no form of this command.

Dynamic NAT

ip nat inside source \{list \{access-list-number access-list-name \} |route-map name \} \{ interface type number |pool name \} [no-payload] [overload] [c] [vrf name] no ip nat inside source \{list \{access-list-number access-list-name \}|route-map name \} \{interface type number \mid pool name \} [no-payload] [overload][vrf name]

Static NAT

ip nat inside source static \{interface type number |local-ip global-ip\} [extendable] [no-alias] [no-payload] [route-map name] [reversible][vrf name [forced]] no ip nat inside source static \{interface type number |local-ip global-ip\} [extendable] [no-alias] [no-payload] [route-map name] [vrf name [forced]]

Port Static NAT

ip nat inside source static $\{\mathbf{t c p} \mid \mathbf{u d p}\}$ \{local-ip local-port global-ip global-port [extendable] [forced] [no-alias] [no-payload] [route-map name] [vrf name] |interface global-port\} no ip nat inside source static $\{\mathbf{t c p} \mid \mathbf{u d p}\}\{l o c a l-$ ip local-port global-ip global-port [extendable] [forced] [no-alias] [no-payload] [route-map name] [vrf name] |interface global-port\}

Network Static NAT

ip nat inside source static network local-network global-network mask [extendable] [forced] [no-alias] [no-payload] [vrf name] no ip nat inside source static network local-network global-network mask [extendable] [forced] [no-alias] [no-payload] [vrf name]

list access-list-number	Specifies the number of a standard IP access list. Packets with source addresses that pass the access list are dynamically translated using global addresses from the named pool.
list access-list-name	Specifies the name of a standard IP access list. Packets with source addresses that pass the access list are dynamically translated using global addresses from the named pool.
route-map name	Specifies the named route map.
interface	Specifies an interface for the global address.
type	Interface type. For more information, use the question mark (?) online help function.
number	Interface or subinterface number. For more information about the numbering syntax for your networking device, use the question mark (?) online help function.
pool name	Specifies the name of the pool from which global IP addresses are allocated dynamically.

no-payload	(Optional) Prohibits the translation of an embedded address or port in the payload.
overload	(Optional) Enables the device to use one global address for many local addresses. When overloading is configured, the TCP or UDP port number of each inside host distinguishes between the multiple conversations using the same local IP address.
vrf name	(Optional) Associates the NAT translation rule with a particular VPN routing and forwarding (VRF) instance.
static	Sets up a single static translation.
local-ip	Local IP address assigned to a host on the inside network. The address could be randomly chosen, allocated from RFC 1918, or obsolete.
global-ip	Globally unique IP address of an inside host as it appears to the outside network.
extendable	(Optional) Extends the translation.
forced	(Optional) Forcefully deletes an entry and its children from the configuration.
no-alias	Establishes the TCP protocol.
tcp	Establishes the UDP protocol.
udp	Local TCP or UDP port. The range is from 1 to 65535.
local-port	Global TCP or UDP port. The range is from 1 to 65535.
global-port	Specifies the local subnet translation.
network local-network alias from being created for the global address.	
global-network	Globabet translation.
mask	Spask to be used with subnet translations.

Command Default
Command Modes

Command History

Command History

No NAT translation of inside source addresses occurs.

Global configuration (config)

Release Modification

Cisco IOS XE Gibraltar 16.10.1 This command was introduced.
Cisco IOS XE Dublin 17.10.1 The route-map keyword was introduced.
Cisco IOS XE Amsterdam 17.1.1 The vrf keyword was introduced.

Usage Guidelines
 The optional keywords of the ip nat inside source command can be entered in any order.

This command has two forms: the dynamic and the static address translation. The form with an access list establishes the dynamic translation. Packets from addresses that match the standard access list are translated using global addresses allocated from the pool named with the ip nat pool command.

Packets that enter the device through the inside interface and packets sourced from the device are checked against the access list for possible NAT candidates. The access list is used to specify which traffic is to be translated.

Alternatively, the syntax form with the keyword static establishes a single static translation.

Note When a session is initiated from outside with the source IP as the outside global address, the device is unable to determine the destination VRF of the packet.

Examples

The following example shows how to translate between inside hosts addressed from either the 192.0.2.0 or the 198.51.100.0 network to the globally unique 203.0.113.209/28 network:

```
ip nat pool net-209 203.0.113.209 203.0.113.222 prefix-length 28
ip nat inside source list 1 pool net-209
!
interface ethernet 0
    ip address 203.0.113.113 255.255.255.240
    ip nat outside
!
interface ethernet 1
    ip address 192.0.2.1 255.255.255.0
    ip nat inside
!
access-list 1 permit 192.0.2.1 255.255.255.0
access-list 1 permit 198.51.100.253 255.255.255.0
```

The following example shows how to translate the traffic that is local to the provider's edge device running NAT (NAT-PE):

```
ip nat inside source list 1 interface ethernet 0 vrf vrf1 overload
ip nat inside source list 1 interface ethernet 0 vrf vrf2 overload
!
ip route vrf vrf1 10.0.0.1 10.0.0.1 192.0.2.1
ip route vrf vrf2 10.0.0.1 10.0.0.1 192.0.2.1
!
access-list 1 permit 10.1.1.1 0.0.0.255
!
ip nat inside source list 1 interface ethernet 1 vrf vrf1 overload
ip nat inside source list 1 interface ethernet 1 vrf vrf2 overload
!
ip route vrf vrf1 10.0.0.1 10.0.0.1 198.51.100.1 global
ip route vrf vrf2 10.0.0.1 10.0.0.1 198.51.100.1 global
access-list 1 permit 10.1.1.0 0.0.0.255
```

The following example shows how to translate sessions from outside to inside networks:

```
ip nat pool POOL-A 10.1.10.1 10.1.10.126 255.255.255.128
ip nat pool POOL-B 10.1.20.1 10.1.20.126 255.255.255.128
ip nat inside source route-map MAP-A pool POOL-A reversible
```

```
ip nat inside source route-map MAP-B pool POOL-B reversible
!
ip access-list extended ACL-A
    permit ip any 10.1.10.128 0.0.0.127
ip access-list extended ACL-B
    permit ip any 10.1.20.128 0.0.0.127
!
route-map MAP-A permit 10
    match ip address ACL-A
!
route-map MAP-B permit 10
    match ip address ACL-B
!
```

The following example shows how to configure the route map R1 to allow outside-to-inside translation for static NAT:

```
ip nat inside source static 10.1.1.1 10.2.2.2 route-map R1 reversible
!
ip access-list extended ACL-A
permit ip any 10.1.10.128 0.0.0.127
route-map R1 permit 10
match ip address ACL-A
```

The following example shows how to configure NAT inside and outside traffic in the same VRF:

```
interface Loopback1
    ip vrf forwarding forwarding1
    ip address 192.0.2.11 255.255.255.0
    ip nat inside
    ip virtual-reassembly
!
interface Ethernet0/0
    ip vrf forwarding forwarding2
    ip address 192.0.2.22 255.255.255.0
    ip nat outside
    ip virtual-reassembly
ip nat pool MYPOOL 192.0.2.5 192.0.2.5 prefix-length 24
ip nat inside source list acl-nat pool MYPOOL vrf vrf1 overload
!
!
ip access-list extended acl-nat
permit ip 192.0.2.0 0.0.0.255 any
```

Related Commands

Command	Description
access-list (IP extended)	Defines an extended IP access list.
access-list (IP standard)	Defines a standard IP access list.
clear ip nat translation	Clears dynamic NAT translations from the translation table.
interface	Configures an interface type and enters interface configuration mode.
ip access-list	Defines an IP access list or object group access control list by name or number.
ip nat	Designates that traffic originating from or destined for the interface is subject to NAT.

Command	Description
ip nat inside destination	Enables NAT of the inside destination address.
ip nat outside source	Enables NAT of the outside source address.
ip nat pool	Defines a pool of IP addresses for NAT.
ip nat service	Enables a port other than the default port.
ip route vrf	Establishes static routes for a VRF instance.
ip vrf forwarding	Associates a VRF instance with a diameter peer.
permit	Sets conditions in a named IP access list or object group access control list that will permit packets.
route-map	Defines the conditions for redistributing routes from one routing protocol into another routing protocol, or enables policy routing.
show ip nat statistics	Displays NAT statistics.
show ip nat translations	Displays active NAT translations.

ip nat outside source

To enable Network Address Translation (NAT) of the outside source address, use the ip nat outside source command in global configuration mode. To remove the static entry or the dynamic association, use the no form of this command.

Dynamic NAT
ip nat outside source \{list \{access-list-number access-list-name \} \} pool pool-name [vrf name] [add-route]
no ip nat outside source \{list \{access-list-number access-list-name \} \} pool pool-name [vrf name] [add-route]

Static NAT

ip nat outside source static global-ip local-ip [vrf name] [add-route] [extendable] [no-alias]
no ip nat outside source static global-ip local-ip [vrf name] [add-route] [extendable] [no-alias]

Port Static NAT

ip nat outside source static \{tcp |udp\} global-ip global-port local-ip local-port [vrf name] [add-route] [extendable] [no-alias] no ip nat outside source static \{tep |udp\} global-ip global-port local-ip local-port [vrf name] [add-route] [extendable] [no-alias]

Network Static NAT

ip nat outside source static network global-network local-network mask [vrf name] [add-route] [extendable] [no-alias]
no ip nat outside source static network global-network local-network mask [vrf name] [add-route] [extendable] [no-alias]

Syntax Description

list access-list-number	Specifies the number of a standard IP access list. Packets with source addresses that pass the access list are translated using global addresses from the named pool.
list access-list-name	Specifies the name of a standard IP access list. Packets with source addresses that pass the access list are translated using global addresses from the named pool.
pool pool-name	Specifies the name of the pool from which global IP addresses are allocated.
add-route	(Optional) Adds a static route for the outside local address.
vrf name	(Optional) Associates the NAT rule with a particular VPN routing and forwarding (VRF) instance.
static	Sets up a single static translation.
global-ip	Globally unique IP address assigned to a host on the outside network by its owner. The address was allocated from the globally routable network space.

local-ip	Local IP address of an outside host as it appears to the inside network. The address was allocated from the address space routable on the inside (RFC 1918, Address Allocation for Private Internets).
extendable	(Optional) Extends the transmission.
no-alias	(Optional) Prohibits an alias from being created for the local address.
tcp	Establishes the TCP.
udp	Pstablishes the UDP.
global-port	Port number of an outside host as it appears to the inside network.
local-port	Sets up a single static network translation.
static network	Globally unique network address assigned to a host on the outside network by its owner. The address is allocated from a globally routable network space.
global-network	Local network address of an outside host as it appears to the inside network. The address is allocated from an address space that is routable on the inside network.
local-network	Subnet mask for the networks that are translated.
mask	

\section*{| Command Default |
| :--- |
| Command Modes |
| Command History |
| Command History |
 Command History}

No translation of source addresses coming from the outside to the inside network occurs.
Global configuration (config)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Cisco IOS XE Amsterdam 17.1.1 The vrf keyword was introduced.

Usage Guidelines

The optional keywords of the ip nat outside source command except for the vrf name keyword can be entered in any order.

You can use NAT to translate inside addresses that overlap with outside addresses. Use this command if your IP addresses in the stub network happen to be legitimate IP addresses belonging to another network, and you need to communicate with those hosts or devices.

This command has two general forms: dynamic and static address translation. The form with an access list establishes dynamic translation. Packets from addresses that match the standard access list are translated using global addresses allocated from the pool that is named by using the ip nat pool command.

Alternatively, the syntax form with the static keyword establishes a single static translation.
When you configure the ip nat outside source static command to add static routes for static outside local addresses, there is a delay in the translation of packets and packets are dropped. To avoid dropped packets, configure either the ip nat outside source static add-route command or the ip route command.

Examples

The following example shows how to translate between inside hosts addressed from the 10.114.11.0 network to the globally unique 10.69.233.208/28 network. Further, packets from outside hosts addressed from the 10.114.11.0 network (the true 10.114.11.0 network) are translated to appear to be from the 10.0.1.0/24 network.

```
ip nat pool net-208 10.69.233.208 10.69.233.223 prefix-length 28
ip nat pool net-10 10.0.1.0 10.0.1.255 prefix-length 24
ip nat inside source list 1 pool net-208
ip nat outside source list 1 pool net-10
!
interface ethernet 0
    ip address 10.69.232.182 255.255.255.240
    ip nat outside
!
interface ethernet 1
    ip address 10.114.11.39 255.255.255.0
    ip nat inside
!
access-list 1 permit 10.114.11.0 0.0.0.255
```

Related Commands

Command	Description
access-list (IP extended)	Defines an extended IP access list.
access-list (IP standard)	Defines a standard IP access list.
clear ip nat translation	Clears dynamic NAT from the translation table.
interface	Configures an interface type and enters interface configuration mode.
ip address	Sets a primary or secondary IP address for an interface.
ip nat	Designates the traffic originating from or destined for the interface as subject to NAT.
ip nat inside destination	Enables NAT of the inside destination address.
ip nat inside source	Enables NAT of the inside source address.
ip nat pool	Defines a pool of IP addresses for NAT.
ip nat service	Enables a port other than the default port.
ip route	Establishes static routes.
show ip nat statistics	Displays NAT statistics.
show ip nat translations	Displays active NATs.

ip nat pool

To define a pool of IP addresses for Network Address Translation (NAT) translations, use the ip nat pool command in global configuration mode. To remove one or more addresses from the pool, use the no form of this command.
ip nat pool name start-ip end-ip \{netmask netmask|prefix-length prefix-length \}
[add-route] [type]
no ip nat pool name start-ip end-ip \{netmask netmask|prefix-length prefix-length \}
[add-route] [type]

Syntax Description

name	Name of the pool.
start-ip	Starting IP address that defines the range of addresses in the address pool.
end-ip	Ending IP address that defines the range of addresses in the address pool.
netmask netmask	Specifies the network mask that indicates the address bits that belong to the network and subnetwork fields and the ones that belong to the host field. • Specify the network mask of the network to which the pool addresses belong.
prefix-length prefix-length	Specifies the number that indicates how many bits of the address is dedicated for the network.
add-route	(Optional) Specifies that a route is added to the NAT Virtual Interface (NVI) for the global address.
type	(Optional) Indicates the type of pool.

Command Default
Command Modes

Usage Guidelines

No pool of addresses is defined.
Global configuration (config)

Command History

 Command HistoryThis command defines a pool of addresses by specifying the start address, the end address, and either network mask or prefix length.

When you enable the no-alias keyword, IP aliases are not created for IP addresses mentioned in the NAT pool.

Using the nopreservation keyword with the prefix-length or the netmask keyword disables the default behavior, which is known as IP address reservation. The no form of the command with the nopreservation keyword enables the default behavior and reserves the first IP address in the NAT pool, making the IP address unavailable for dynamic translation.

Examples

The following example shows how to translate between inside hosts addressed from either the 192.0.2.1 or 192.0.2.2 network to the globally unique 10.69.233.208/28 network:

```
ip nat pool net-208 10.69.233.208 10.69.233.223 prefix-length 28
ip nat inside source list 1 pool net-208
!
interface ethernet 0
    ip address 10.0.0.1 255.255.255.240
    ip nat outside
!
interface ethernet 1
    ip address 192.0.2.4 255.255.255.0
    ip nat inside
!
access-list 1 permit 192.0.2.1 0.0.0.255
access-list 1 permit 192.0.2.2 0.0.0.255
```

The following example shows how to add a route to the NVI interface for the global address:

```
ip nat pool NAT 192.0.2.0 192.0.2.3 netmask 255.255.255.0 add-route
ip nat source list 1 pool NAT vrf group1 overload
```

Related Commands

Command	Description
access-list	Defines a standard IP access list.
clear ip nat translation	Clears dynamic NAT translations from the translation table.
debug ip nat	Displays information about IP packets translated by NAT.
interface	Configures an interface and enters interface configuration mode.
ip address	Sets a primary or secondary IP address for an interface.
ip nat	Designates that traffic originating from or destined for an interface is subject to NAT.
ip nat inside source	Enables NAT of the inside source address.
ip nat outside source	Enables NAT of the outside source address.
ip nat service	Enables a port other than the default port.
ip nat source	Enables NAT on a virtual interface without inside or outside specification.
show ip nat statistics	Displays NAT statistics.
show ip nat translations	Displays active NAT translations.

ip nat translation (timeout)

To change the Network Address Translation (NAT) timeout, use the ip nat translation command in global configuration mode. To disable the timeout, use the no form of this command.
ip nat translation \{finrst-timeout |icmp-timeout |port-timeout \{tcp|udp\} port-number | syn-timeout | tcp-timeout |timeout |udp-timeout \} \{seconds | never\}
no ip nat translation \{finrst-timeout |icmp-timeout|port-timeout \{tcp|udp\} port-number | syn-timeout | tcp-timeout | timeout |udp-timeout \}

Syntax Description

finrst-timeout	Specifies that the timeout value applies to Finish and Reset TCP packets, which terminate a connection. The default is 60 seconds.
icmp-timeout	Specifies the timeout value for Internet Control Message Protocol (ICMP) flows. The default is 60 seconds.
port-timeout	Specifies that the timeout value applies to the TCP/UDP port.
tcp	Specifies TCP.
udp	Specifies UDP.
port-number	Specifies that the timeout value applies to TCP flows immediately after a synchronous transmission (SYN) message that consists of digital signals that are sent with precise clocking. The default is 60 seconds.
syn-timeout	Specifies that the timeout value applies to the TCP port. Default is 86,400 seconds (24 hours).
tcp-timeout	Specifies that the timeout value applies to dynamic translations, except for overload translations. The default is 86,400 seconds (24 hours).
timeout	Specifies that the timeout value applies to the UDP port. The default is 300 seconds (5 minutes).
udp-timeout	Number of seconds after which the specified port translation times out.
seconds	Specifies that port translation will not time out.

Command Default

Command Modes

NAT translation timeouts are enabled by default.
Global configuration (config)

Command History		
Command History	Release	Modification
	Cisco IOS XE Gibraltar 16.10.1	This command was introduced.
Usage Guidelines	When port translation is configured, each entry contains more information about the traffic that is using the translation, which gives you finer control over translation entry timeouts. Non-DNS UDP translations time out after 5 minutes, and DNS times out in 1 minute. TCP translations time out in 24 hours, unless a TCP Reset (RST) or a Finish (FIN) bit is seen on the stream, in which case they will time out in 1 minute.	
Examples	The following example shows how to configure the router to cause UDP port translation entries to time out after 10 minutes (600 seconds):	
	Router\# configure terminal Router (config) \# ip nat translation udp-timeout 600	
Related Commands	Command	Description
	clear ip nat translation	Clears dynamic NAT translations from the translation table.
	ip nat	Designates that traffic originating from or destined for the interface is subject to NAT; enables NAT logging; or enables static IP address support.
	ip nat inside destination	Enables NAT of a globally unique host address to multiple inside host addresses.
	ip nat inside source	Enables NAT of the inside source address.
	ip nat outside source	Enables NAT of the outside source address.
	ip nat pool	Defines a pool of IP addresses for NAT.
	ip nat service	Specifies a port other than the default port for NAT.
	ip nat translation max-entries	Limits the size of a NAT table to a specified maximum.
	show ip nat statistics	Displays NAT statistics.
	show ip nat translations	Displays active NAT translations.

ip nhrp map

To statically configure the IP-to-nonbroadcast multiaccess (NBMA) address mapping of IP destinations connected to an NBMA network, use the ip nhrp map interface configuration command. To remove the static entry from Next Hop Resolution Protocol (NHRP) cache, use the no form of this command.
ip nhrp map \{ip-address [nbma-ip-address][dest-mask][nbma-ipv6-address] | multicast \{nbma-ip-address nbma-ipv6-address | dynamic $\}$ \}
no ip nhrp map \{ip-address [nbma-ip-address][dest-mask][nbma-ipv6-address] |multicast \{nbma-ip-address nbma-ipv6-address | dynamic $\}$ \}

Syntax Description

ip-address	IP address of the destinations reachable through the Nonbroadcast multiaccess (NBMA) network. This address is mapped to the NBMA address.
nbma-ip-address	NBMA IP address.
dest-mask	Destination network address for which a mask is required.
nbma-ipv6-address	NBMA IPv6 address.
dynamic	Dynamically learns destinations from client registrations on hub.
multicast	NBMA address that is directly reachable through the NBMA network. The address format varies depending on the medium you are using. For example, ATM has a Network Service Access Point (NSAP) address, Ethernet has a MAC address, and Switched Multimegabit Data Service (SMDS) has an E.164 address. This address is mapped to the IP address.

Command Default

Command Modes
Command History
No static IP-to-NBMA cache entries exist.
Interface configuration (config-if)

Release	Modification
	This command was introduced.

Usage Guidelines

You will probably need to configure at least one static mapping in order to reach the next-hop server. Repeat this command to statically configure multiple IP-to-NBMA address mappings.

Examples

In the following example, this station in a multipoint tunnel network is statically configured to be served by two next-hop servers 10.0 .0 .1 and 10.0 .1 .3 . The NBMA address for 10.0 .0 .1 is statically configured to be 192.0.0.1 and the NBMA address for 10.0.1.3 is 192.2.7.8.

```
Device(config)# interface tunnel 0
Device(config-if) # ip nhrp nhs 10.0.0.1
Device(config-if) # ip nhrp nhs 10.0.1.3
Device(config-if)# ip nhrp map 10.0.0.1 192.0.0.1
Device(config-if)# ip nhrp map 10.0.1.3 192.2.7.8
```


Examples

In the following example, if a packet is sent to 10.255 .255 .255 , it is replicated to destinations 10.0.0.1 and 10.0.0.2 Addresses 10.0.0.1 and 10.0.0.2 are the IP addresses of two other routers that are part of the tunnel network, but those addresses are their addresses in the underlying network, not the tunnel network. They would have tunnel addresses that are in network 10.0.0.0.

```
Device(config)# interface tunnel 0
Device(config-if)# ip address 10.0.0.3 255.0.0.0
Device(config-if)# ip nhrp map multicast 10.0.0.1
Device(config-if)# ip nhrp map multicast 10.0.0.2
```

Related Commands

Command	Description
clear ip nhrp	Clears all dynamic entries from the NHRP cache.

ip nhrp map multicast

To configure nonbroadcast multiaccess (NBMA) addresses used as destinations for broadcast or multicast packets to be sent over a tunnel network, use the ip nhrp map multicastcommand in interface configuration mode. To remove the destinations, use the no form of this command.
ip nhrp map multicast \{ip-nbma-address ipv6-nbma-address |dynamic\} no ip nhrp map multicast \{ip-nbma-address ipv6-nbma-address |dynamic\}

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

ip-nbma-address	NBMA address that is directly reachable through the NBMA network. The address format varies depending on the medium that you are using.
ipv6-nbma-address	IPv6 NBMA address.
dynamic	Dynamically learns destinations from client registrations on the hub.

No NBMA addresses are configured as destinations for broadcast or multicast packets.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Denali 16.5.1	This command was introduced.

This command applies only to tunnel interfaces. This command is useful for supporting broadcasts over a tunnel network when the underlying network does not support IP multicast. If the underlying network does support IP multicast, you should use the tunnel destination command to configure a multicast destination for transmission of tunnel broadcasts or multicasts.

When multiple NBMA addresses are configured, the system replicates the broadcast packet for each address.

In the following example, if a packet is sent to 10.255 .255 .255 , it is replicated to destinations 10.0.0.1 and 10.0.0.2:

Switch(config) \# interface tunnel 0
Switch(config-if) \# ip address 10.0.0.3 255.0.0.0
Switch (config-if) \# ip nhrp map multicast 10.0.0.1
Switch (config-if) \# ip nhrp map multicast 10.0.0.2

Related Commands

Command	Description
debug nhrp	Enables NHRP debugging.
interface	Configures an interface and enters interface configuration mode.
tunnel destination	Specifies the destination for a tunnel interface.

ip nhrp network-id

To enable the Next Hop Resolution Protocol (NHRP) on an interface, use the ip nhrp network-id command in interface configuration mode. To disable NHRP on the interface, use the no form of this command.
ip nhrp network-id number no ip nhrp network-id [number]

Syntax Description
number Globally unique, 32-bit network identifier from a nonbroadcast multiaccess (NBMA) network. The range is from 1 to 4294967295 .

Command Default
Command Modes
Command History

Usage Guidelines

The following example enables NHRP on the interface:

Device(config-if) \# ip nhrp network-id 1

ip nhrp nhs

To specify the address of one or more Next Hop Resolution Protocol (NHRP) servers, use the ip nhrp nhscommand in interface configuration mode. To remove the address, use the no form of this command.
ip nhrp nhs \{nhs-address [nbma \{nbma-addressFQDN-string\}] [multicast] [priority value] [cluster value]|cluster value max-connections value|dynamic nbma \{nbma-addressFQDN-string\} [multicast] [priority value] [cluster value]\}
no ip nhrp nhs \{nhs-address [nbma \{nbma-addressFQDN-string\}] [multicast] [priority value] [cluster value]|cluster value max-connections value |dynamic nbma \{nbma-addressFQDN-string\} [multicast] [priority value] [cluster value]\}

Syntax Description

nhs-address	Address of the next-hop server being specified.
net-address	(Optional) IP address of a network served by the next-hop server.
netmask	(Optional) IP network mask to be associated with the IP address. The IP address is logically ANDed with the mask.
nbma	(Optional) Specifies the nonbroadcast multiple access (NBMA) address or FQDN.
nbma-address	NBMA address.
FQDN-string	Next hop server (NHS) fully qualified domain name (FQDN) string.
multicast	(Optional) Specifies to use NBMA mapping for broadcasts and multicasts.
priority value	(Optional) Assigns a priority to hubs to control the order in which spokes select hubs to establish tunnels. The range is from 0 to $255 ; 0$ is the highest and 255 is the lowest priority.
cluster value	(Optional) Specifies NHS groups. The range is from 0 to $10 ; 0$ is the highest and 10 is the lowest. The default value is 0.
max-connections value	Specifies the number of NHS elements from each NHS group that needs to be active. The range is from 0 to 255.
dynamic	Configures the spoke to learn the NHS protocol address dynamically.

Command Default

Command Modes

Command History

No next-hop servers are explicitly configured, so normal network layer routing decisions are used to forward NHRP traffic.

Interface configuration (config-if)

Release	Modification
	This command was introduced.

Use the ip nhrp nhs command to specify the address of a next hop server and the networks it serves. Normally, NHRP consults the network layer forwarding table to determine how to forward NHRP packets. When next
hop servers are configured, these next hop addresses override the forwarding path that would otherwise be used for NHRP traffic.

When the ip nhrp nhs dynamic command is configured on a DMVPN tunnel and the shut command is issued to the tunnel interface, the crypto socket does not receive shut message, thereby not bringing up a DMVPN session with the hub.

For any next hop server that is configured, you can specify multiple networks by repeating this command with the same nhs-addressargument, but with different IP network addresses.

Examples
 The following example shows how to register a hub to a spoke using NBMA and FQDN:

```
Device# configure terminal
Device(config)# interface tunnel 1
Device(config-if)# ip nhrp nhs 192.0.2.1 nbma examplehub.example1.com
```

The following example shows how to configure the desired max-connections value:

```
Device# configure terminal
Device(config)# interface tunnel 1
Device(config-if)# ip nhrp nhs cluster 5 max-connections 100
```

The following example shows how to configure NHS priority and group values:

```
Device# configure terminal
Device(config)# interface tunnel 1
Device(config-if)# ip nhrp nhs 192.0.2.1 priority 1 cluster 2
```

Related Commands

Command	Description
ip nhrp map	Statically configures the IP-to-NBMA address mapping of IP destinations connected to an NBMA network.
show ip nhrp	Displays NHRP mapping information.

ip unnumbered

To enable IP processing on an interface without assigning an explicit IP address to the interface, use the ip unnumbered command in interface configuration mode or subinterface configuration mode. To disable the IP processing on the interface, use the no form of this command.

```
ip unnumbered type number [poll][point-to-point]
no ip unnumbered [type number]
```


Command Default

Command Modes
Interface configuration (config-if)
Subinterface configuration (config-subif)

Command History

Usage Guidelines

Release	Modification
Cisco IOS XE Fuji 16.8.1a	This command was introduced.

When an unnumbered interface generates a packet (for example, for a routing update), it uses the address of the specified interface as the source address of the IP packet. It also uses the address of the specified interface in determining which routing processes are sending updates over the unnumbered interface.
The following restrictions are applicable for this command:

- Serial interfaces using High-Level Data Link Control (HDLC), PPP, Link Access Procedure Balanced (LAPB), Frame Relay encapsulations, and Serial Line Internet Protocol (SLIP), and tunnel interfaces can be unnumbered.
- You cannot use the ping EXEC command to determine whether the interface is up because the interface has no address. Simple Network Management Protocol (SNMP) can be used to remotely monitor interface status.
- It is not possible to netboot a Cisco IOS image over a serial interface that is assigned an IP address with the ip unnumbered command.
- You cannot support IP security options on an unnumbered interface.

The interface that you specify using the type and number arguments must be enabled (listed as "up" in the show interfaces command display).

If you are configuring Intermediate System-to-Intermediate System (IS-IS) across a serial line, you must configure the serial interfaces as unnumbered. This configuration allows you to comply with RFC 1195, which states that IP addresses are not required on each interface.

Note

Using an unnumbered serial line between different major networks (or majornets) requires special care. If at each end of the link there are different majornets assigned to the interfaces that you specified as unnumbered, any routing protocol that is running across the serial line must not advertise subnet information.

Examples

The following example shows how to assign the address of Ethernet 0 to the first serial interface:

```
Device(config)# interface ethernet 0
Device(config-if)# ip address 10.108.6.6 255.255.255.0
!
Device(config-if)# interface serial 0
Device(config-if)# ip unnumbered ethernet 0
```

The following example shows how to configure Ethernet VLAN subinterface 3/0.2 as an IP unnumbered subinterface:

```
Device(config)# interface ethernet 3/0.2
Device(config-subif)# encapsulation dot1q 200
Device(config-subif) # ip unnumbered ethernet 3/1
```

The following example shows how to configure Fast Ethernet subinterfaces in the range from 5/1.1 to $5 / 1.4$ as IP unnumbered subinterfaces:

```
Device(config)# interface range fastethernet5/1.1 - fastethernet5/1.4
Device(config-if-range)# ip unnumbered ethernet 3/1
```

The following example shows how to enable polling on a Gigabit Ethernet interface:

```
Device(config)# interface loopback0
Device(config-if)# ip address 10.108.6.6 255.255.255.0
!
Device(config-if) # ip unnumbered gigabitethernet 3/1
Device(config-if)# ip unnumbered loopback0 poll
```

To enable support of the specified Web Cache Communication Protocol (WCCP) service for participation in a service group, use the ip wecp command in global configuration mode. To disable the service group, use the no form of this command.
ip wcep [\{ vrf vrf-name \}] \{web-cache service-number\} [service-list service-access-list] [mode \{open |closed \}] [group-address multicast-address] [redirect-list access-list] [group-list access-list] [password [\{0|7\}] password] no ip wecp [\{ vrf vrf-name \}] \{web-cache service-number\} [service-list service-access-list] [mode \{open |closed \}] [group-address multicast-address] [redirect-list access-list] [group-list access-list] [password [\{0|7\}] password]

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding instance (VRF) to associate with a service group.
web-cache	Specifies the web-cache service (WCCP Version 1 and Version 2). NoteWeb-cache counts as one of the services. The maximum number of services, including those assigned with the service-number argument, is 256. service-numberDynamic service identifier, which means the service definition is dictated by the cache. The dynamic service number can be from 0 to 254. The maximum number of services is 256, which includes the web-cache service specified with the web-cache keyword. Note Cisco cache engines are used in the cache cluster, the reverse proxy service is indicated by a value of 99.
service-list	
service-access-list	(Optional) Identifies a named extended IP access list that defines the packets that will match the service.
mode open	(Optional) Identifies the service as open. This is the default service mode.
mode closed	(Optional) Identifies the service as closed.
group-address multicast-address	(Optional) Specifies the multicast IP address that communicates with the WCCP service group. The multicast address is used by the device to determine which web cache should receive redirected messages.
redirect-list access-list	(Optional) Specifies the access list that controls traffic redirected to this service group. The access-list argument should consist of a string of no more than 64 characters (name or number) in length that specifies the access list.
group-list access-list	(Optional) Specifies the access list that determines which web caches are allowed to participate in the service group. The access-list argument specifies either the number or the name of a standard or extended access list.

password $[\mathbf{0} \mid 7]$ password	(Optional) Specifies the message digest algorithm 5 (MD5) authentication for messages received from the service group. Messages that are not accepted by the authentication are discarded. The encryption type can be 0 or 7, with 0
specifying not yet encrypted and 7 for proprietary. The password argument can	
be up to eight characters in length.	

Command Default
 Command Modes
 Command History

WCCP services are not enabled on the device.
Global configuration (config)

Release	Modification
	This command was introduced.
Cisco IOS XE Bengaluru 17.6.1	The vrf keyword and vrf-name argument pair were added.

Usage Guidelines

WCCP transparent caching bypasses Network Address Translation (NAT) when Cisco Express Forwarding switching is enabled. To work around this situation, configure WCCP transparent caching in the outgoing direction, enable Cisco Express Forwarding switching on the content engine interface, and specify the ip wcep web-cache redirect out command. Configure WCCP in the incoming direction on the inside interface by specifying the ip wecp redirect exclude in command on the device interface facing the cache. This configuration prevents the redirection of any packets arriving on that interface.
You can also include a redirect list when configuring a service group. The specified redirect list will deny packets with a NAT (source) IP address and prevent redirection.

This command instructs a device to enable or disable support for the specified service number or the web-cache service name. A service number can be from 0 to 254 . Once the service number or name is enabled, the device can participate in the establishment of a service group.

Note All WCCP parameters must be included in a single IP WCCP command. For example: ip wccp 61 redirect-list 10 password password.

The vrf vrf-name keyword and argument pair is optional. It allows you to specify a VRF to associate with a service group. You can then specify a web-cache service name or service number.

The same service (web-cache or service number) can be configured in different VRF tables. Each service will operate independently.
When the no ip wcep command is entered, the device terminates participation in the service group, deallocates space if none of the interfaces still has the service configured, and terminates the WCCP task if no other services are configured.
The keywords following the web-cache keyword and the service-number argument are optional and may be specified in any order, but only may be specified once. The following sections outline the specific usage of each of the optional forms of this command.
ip wccp [vrf vrf-name] \{web-cache | service-number\} group-address multicast-address
A WCCP group address can be configured to set up a multicast address that cooperating devices and web caches can use to exchange WCCP protocol messages. If such an address is used, IP multicast routing must be enabled so that the messages that use the configured group (multicast) addresses are received correctly.

This option instructs the device to use the specified multicast IP address to coalesce the "I See You" responses for the "Here I Am" messages that it has received on this group address. The response is also sent to the group address. The default is for no group address to be configured, in which case all "Here I Am" messages are responded to with a unicast reply.
ip wccp [vrf vrf-name] \{web-cache \mid service-number\} redirect-list access-list
This option instructs the device to use an access list to control the traffic that is redirected to the web caches of the service group specified by the service name given. The access-list argument specifies either the number or the name of a standard or extended access list. The access list itself specifies which traffic is permitted to be redirected. The default is for no redirect list to be configured (all traffic is redirected).

WCCP requires that the following protocol and ports not be filtered by any access lists:

- UDP (protocol type 17) port 2048. This port is used for control signaling. Blocking this type of traffic prevents WCCP from establishing a connection between the device and web caches.
- Generic routing encapsulation (GRE) (protocol type 47 encapsulated frames). Blocking this type of traffic prevents the web caches from ever seeing the packets that are intercepted.

ip wccp [vrf $v r f$-name] \{web-cache \mid service-number\} group-list access-list

This option instructs the device to use an access list to control the web caches that are allowed to participate in the specified service group. The access-list argument specifies either the number of a standard or extended access list or the name of any type of named access list. The access list itself specifies which web caches are permitted to participate in the service group. The default is for no group list to be configured, in which case all web caches may participate in the service group.

Note The ip wecp \{web-cache | service-number\} group-list command syntax resembles the ip wcep \{web-cache \mid service-number $\}$ group-listen command, but these are entirely different commands. The ip wccp group-listen command is an interface configuration command used to configure an interface to listen for multicast notifications from a cache cluster.
ip wcep [vrf $v r f$-name] web-cache \mid service-number $\}$ password password
This option instructs the device to use MD5 authentication on the messages received from the service group specified by the service name given. Use this form of the command to set the password on the device. You must also configure the same password separately on each web cache. The password can be up to a maximum of eight characters in length. Messages that do not authenticate when authentication is enabled on the device are discarded. The default is for no authentication password to be configured and for authentication to be disabled.

ip wcep service-number service-list service-access-list mode closed

In applications where the interception and redirection of WCCP packets to external intermediate devices for the purpose of applying feature processing are not available within Cisco IOS software, packets for the application must be blocked when the intermediary device is not available. This blocking is called a closed service. By default, WCCP operates as an open service, wherein communication between clients and servers proceeds normally in the absence of an intermediary device. The service-list keyword can be used only for closed mode services. When a WCCP service is configured as closed, WCCP discards packets that do not have a client application registered to receive the traffic. Use the service-list keyword and service-access-list argument to register an application protocol type or port number.

When the definition of a service in a service list conflicts with the definition received via the WCCP protocol, a warning message similar to the following is displayed:

Sep 28 14:06:35.923: \%WCCP-5-SERVICEMISMATCH: Service 90 mismatched on WCCP client 10.1.1.13

When there is service list definitions conflict, the configured definition takes precedence over the external definition received via WCCP protocol messages.

Examples

The following example shows how to configure a device to run WCCP reverse-proxy service, using the multicast address of 239.0.0.0:

```
Device> enable
Device# configure terminal
Device(config)# ip multicast-routing
Device(config)# ip wccp 99 group-address 239.0.0.0
Device(config)# interface ethernet 0
Device(config-if) # ip wccp 99 group-listen
```

The following example shows how to configure a device to redirect web-related packets without a destination of 10.168.196.51 to the web cache:

```
Device> enable
Device# configure terminal
Device(config)# access-list 100 deny ip any host 10.168.196.51
Device(config)# access-list }100\mathrm{ permit ip any any
Device(config)# ip wccp web-cache redirect-list }10
Device(config) # interface ethernet 0
Device(config-if)# ip wccp web-cache redirect out
```

The following example shows how to configure an access list to prevent traffic from network 10.0.0.0 leaving Fast Ethernet interface $0 / 0$. Because the outbound access control list (ACL) check is enabled, WCCP does not redirect that traffic. WCCP checks packets against the ACL before they are redirected.

```
Device> enable
Device# configure terminal
Device(config)# ip wccp web-cache
Device(config)# ip wccp check acl outbound
Device(config) # interface fastethernet0/0
Device(config-if)# ip access-group 10 out
Device(config-if)# ip wccp web-cache redirect out
Device(config-if)# access-list 10 deny 10.0.0.0 0.255.255.255
Device(config-if)# access-list 10 permit any
```

If the outbound ACL check is disabled, HTTP packets from network 10.0.0.0 would be redirected to a cache, and users with that network address could retrieve web pages when the network administrator wanted to prevent this from happening.

The following example shows how to configure a closed WCCP service:

```
Device> enable
Device# configure terminal
Device(config)# ip wccp 99 service-list access1 mode closed
```

- If multiple parameters are required, all parameters under ip wcep [vrf $v r f$-name] web-cache | service-number $\}$ must be configured as a single command.
- If the command is reissued with different parameters, the existing parameter will be removed and the new parameter will be configured.

The following example shows how to configure multiple parameters as a single command:

```
Device> enable
Device# configure terminal
Device(config)# ip wccp 61 group-address 10.0.0.1 password 0 password mode closed
redirect-list 121
```

Related Commands	Command	Description
	ip wecp check services all	Enables all WCCP services.
	ip wecp group listen	Configures an interface on a device to enable or disable the reception of IP multicast packets for WCCP.
	ip wccp redirect exclude in	Enables redirection exclusion on an interface.
	ip wecp redirect out	Configures redirection on an interface in the outgoing direction.
	ip wecp version	Specifies which version of WCCP you want to use on your device.
	show ip wecp	Displays global statistics related to WCCP.

ipv6 access-list

To define an IPv6 access list and to place the device in IPv6 access list configuration mode, use the ipv6 access-list command in global configuration mode. To remove the access list, use the no form of this command.
ipv6 access-list access-list-name
no ipv6 access-list access-list-name

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

| access-list-name | Name of the IPv6 access list. Names cannot contain a space or quotation mark, or begin |
| :--- | :--- | with a numeric.

No IPv6 access list is defined.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 access-list command is similar to the ip access-listcommand, except that it is IPv6-specific.
The standard IPv6 ACL functionality supports --in addition to traffic filtering based on source and destination addresses--filtering of traffic based on IPv6 option headers and optional, upper-layer protocol type information for finer granularity of control (functionality similar to extended ACLs in IPv4). IPv6 ACLs are defined by using the ipv6 access-list command in global configuration mode and their permit and deny conditions are set by using the deny and permit commands in IPv6 access list configuration mode. Configuring the ipv6 access-list command places the device in IPv6 access list configuration mode--the device prompt changes to Device(config-ipv6-acl)\#. From IPv6 access list configuration mode, permit and deny conditions can be set for the defined IPv6 ACL.

Note IPv6 ACLs are defined by a unique name (IPv6 does not support numbered ACLs). An IPv4 ACL and an IPv6 ACL cannot share the same name.

For backward compatibility, the ipv6 access-list command with the deny and permit keywords in global configuration mode is still supported; however, an IPv6 ACL defined with deny and permit conditions in global configuration mode is translated to IPv6 access list configuration mode.
Refer to the deny (IPv6) and permit (IPv6) commands for more information on filtering IPv6 traffic based on IPv6 option headers and optional, upper-layer protocol type information. See the "Examples" section for an example of a translated IPv6 ACL configuration.

Every IPv6 ACL has implicit permit icmp any any nd-na, permit icmp any any nd-ns, and deny ipv6 any any statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.) An IPv6 ACL must contain at least one entry for the implicit deny ipv6 any any statement to take effect. The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, makes use of a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

IPv6 prefix lists, not access lists, should be used for filtering routing protocol prefixes.

Use the ipv6 traffic-filter interface configuration command with the access-list-name argument to apply an IPv6 ACL to an IPv6 interface. Use the ipv6 access-class line configuration command with the access-list-name argument to apply an IPv6 ACL to incoming and outgoing IPv6 virtual terminal connections to and from the device.

An IPv6 ACL applied to an interface with the ipv6 traffic-filter command filters traffic that is forwarded, not originated, by the device.

Note When using this command to modify an ACL that is already associated with a bootstrap router (BSR) candidate rendezvous point (RP) (see the ipv6 pim bsr candidate rp command) or a static RP (see the ipv6 pim rp-address command), any added address ranges that overlap the PIM SSM group address range (FF3x::/96) are ignored. A warning message is generated and the overlapping address ranges are added to the ACL, but they have no effect on the operation of the configured BSR candidate RP or static RP commands.

Duplicate remark statements can no longer be configured from the IPv6 access control list. Because each remark statement is a separate entity, each one is required to be unique.

Examples

The following example is from a device running Cisco IOS Release 12.0(23)S or later releases. The example configures the IPv6 ACL list named list1 and places the device in IPv6 access list configuration mode.

Device(config) \# ipv6 access-list list1
Device (config-ipv6-acl) \#
The following example is from a device running Cisco IOS Release 12.2(2)T or later releases, $12.0(21) \mathrm{ST}$, or $12.0(22) \mathrm{S}$. The example configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on Ethernet interface 0 . Specifically, the first ACL entry keeps all packets from the network FEC0:0:0:2::/64 (packets that have the site-local prefix FEC0:0:0:2 as the first 64 bits of their source IPv6 address) from exiting out of Ethernet interface 0 . The second entry in the ACL permits all other traffic to exit out of Ethernet interface 0 . The second entry is necessary because an implicit deny all condition is at the end of each IPv6 ACL.

```
Device(config)# ipv6 access-list list2 deny FEC0:0:0:2::/64 any
Device(config)# ipv6 access-list list2 permit any any
Device(config)# interface ethernet 0
Device(config-if)# ipv6 traffic-filter list2 out
```

If the same configuration was entered on a device running Cisco IOS Release 12.0(23)S or later releases, the configuration would be translated into IPv6 access list configuration mode as follows:

```
ipv6 access-list list2
    deny FEC0:0:0:2::/64 any
    permit ipv6 any any
interface ethernet 0
    ipv6 traffic-filter list2 out
```

Note IPv6 is automatically configured as the protocol type in permit any any and deny any any statements that are translated from global configuration mode to IPv6 access list configuration mode.

Note IPv6 ACLs defined on a device running Cisco IOS Release 12.2(2)T or later releases, 12.0(21)ST, or $12.0(22)$ S that rely on the implicit deny condition or specify a deny any any statement to filter traffic should contain permit statements for link-local and multicast addresses to avoid the filtering of protocol packets (for example, packets associated with the neighbor discovery protocol). Additionally, IPv6 ACLs that use deny statements to filter traffic should use a permit any any statement as the last statement in the list.

Note An IPv6 device will not forward to another network an IPv6 packet that has a link-local address as either its source or destination address (and the source interface for the packet is different from the destination interface for the packet).

Related Commands

Command	Description
deny (IPv6)	Sets deny conditions for an IPv6 access list.
ipv6 access-class	Filters incoming and outgoing connections to and from the device based on an IPv6 access list.
ipv6 pim bsr candidate rp	Configures the candidate RP to send PIM RP advertisements to the BSR.
ipv6 pim rp-address	Configure the address of a PIM RP for a particular group range.
ipv6 traffic-filter	Filters incoming or outgoing IPv6 traffic on an interface.
permit (IPv6)	Sets permit conditions for an IPv6 access list.
show ipv6 access-list	Displays the contents of all current IPv6 access lists.

ipv6 address-validate

To enable IPv6 address validation, use the ipv6 address-validate in global configuration mode. To disable IPv6 address validation, use the no form of this command.

```
ipv6 address-validate
no ipv6 address-validate
```

Command Default	This command is enabled by default.	
Command Modes	Global configuration (config)	Modification
Command History	Release	This command was introduced.
	Cisco IOS XE Gibraltar 16.11.1	

Usage Guidelines

The ipv6 address-validate command is used to validate whether the interface identifiers in an assigned IPv6 address are a part of the reserved IPv6 interface identifiers range, as specified in RFC5453. If the interface identifiers of the assigned IPv6 address are a part of the reserved range, a new IPv6 address is assigned.

Only auto-configured addresses or addresses configured by DHCPv6 are validated.

The no ipv6-address validate command disables the IPv6 address validation and allows assigning of IPv6 addresses with interface identifiers that are a part of the reserved IPv6 interface identifiers range. We do not recommend the use of this command.

You must enter a minimum of eight characters of the ipv6-address validate command if you're using CLI help (?) for completing the syntax of this command. If you enter less than eight characters the command will conflict with the no ipv6 address command in interface configuration mode.

Examples

The following example shows how to re-enable IPv6 address validation if it is disabled using the no ipv6-address validate command:

Device> enable
Device\# configure terminal
Device(config) \# ipv6 address-validate

ipv6 cef

To enable Cisco Express Forwarding for IPv6, use the ipv6 cef command in global configuration mode. To disable Cisco Express Forwarding for IPv6, use the no form of this command.
ipv6 cef
no ipv6 cef
Syntax Description This command has no arguments or keywords.

Command Default	Cisco Express Forwarding for IPv6 is disabled by default.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest $16.5 .1 a$	This command was introduced.

Usage Guidelines The ipv6 cef command is similar to the ip cef command, except that it is IPv6-specific.
The ipv6 cef command is not available on the Cisco 12000 series Internet routers because this distributed platform operates only in distributed Cisco Express Forwarding for IPv6 mode.

Note The ipv6 cefcommand is not supported in interface configuration mode.

Note Some distributed architecture platforms support both Cisco Express Forwarding for IPv6 and distributed Cisco Express Forwarding for IPv6. When Cisco Express Forwarding for IPv6 is configured on distributed platforms, Cisco Express Forwarding switching is performed by the Route Processor (RP).

Note You must enable Cisco Express Forwarding for IPv4 by using the ip cef global configuration command before enabling Cisco Express Forwarding for IPv6 by using the ipv6 cef global configuration command.

Cisco Express Forwarding for IPv6 is advanced Layer 3 IP switching technology that functions the same and offer the same benefits as Cisco Express Forwarding for IPv4. Cisco Express Forwarding for IPv6 optimizes network performance and scalability for networks with dynamic, topologically dispersed traffic patterns, such as those associated with web-based applications and interactive sessions.

Examples

The following example enables standard Cisco Express Forwarding for IPv4 operation and then standard Cisco Express Forwarding for IPv6 operation globally on the .
(config) \# ip cef
(config) \# ipv6 cef

Related Commands

Command	Description
ip route-cache	Controls the use of high-speed switching caches for IP routing.
ipv6 cef accounting	Enables Cisco Express Forwarding for IPv6 and distributed Cisco Express Forwarding for IPv6 network accounting.
ipv6 cef distributed	Enables distributed Cisco Express Forwarding for IPv6.
show cef	Displays which packets the line cards dropped or displays which packets were not express-forwarded.
show ipv6 cef	Displays entries in the IPv6 FIB.

ipv6 cef accounting

To enable Cisco Express Forwarding for IPv6 and distributed Cisco Express Forwarding for IPv6 network accounting, use the ipv6 cef accounting command in global configuration mode or interface configuration mode. To disable Cisco Express Forwarding for IPv6 network accounting, use the no form of this command.
ipv6 cef accounting accounting-types
no ipv6 cef accounting accounting-types

Specific Cisco Express Forwarding Accounting Information Through Interface Configuration Mode ipv6 cef accounting non-recursive \{external|internal\} no ipv6 cef accounting non-recursive \{external|internal\}

Syntax Description

Command Default

Command Modes

accounting-types	The accounting-types argument must be replaced with at least one of the following keywords. Optionally, you can follow this keyword by any or all of the other keywords, but you can use each keyword only once. - load-balance-hash --Enables load balancing hash bucket counters. - non-recursive --Enables accounting through nonrecursive prefixes. - per-prefix --Enables express forwarding of the collection of the number of packets and bytes to a destination (or prefix). - prefix-length --Enables accounting through prefix length.
non-recursive	Enables accounting through nonrecursive prefixes. This keyword is optional when used in global configuration mode after another keyword is entered. See the accounting-types argument.
external	Counts input traffic in the nonrecursive external bin.
internal	Counts input traffic in the nonrecursive internal bin.

Cisco Express Forwarding for IPv6 network accounting is disabled by default.
Global configuration (config)
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

The ipv6 cef accounting command is similar to the ip cef accounting command, except that it is IPv6-specific.
Configuring Cisco Express Forwarding for IPv6 network accounting enables you to collect statistics on Cisco Express Forwarding for IPv6 traffic patterns in your network.

When you enable network accounting for Cisco Express Forwarding for IPv6 by using the ipv6 cef accounting command in global configuration mode, accounting information is collected at the Route Processor (RP) when Cisco Express Forwarding for IPv6 mode is enabled and at the line cards when distributed Cisco Express Forwarding for IPv6 mode is enabled. You can then display the collected accounting information using the show ipv6 cef EXEC command.

For prefixes with directly connected next hops, the non-recursive keyword enables express forwarding of the collection of packets and bytes through a prefix. This keyword is optional when this command is used in global configuration mode after you enter another keyword on the ipv6 cef accounting command.

This command in interface configuration mode must be used in conjunction with the global configuration command. The interface configuration command allows a user to specify two different bins (internal or external) for the accumulation of statistics. The internal bin is used by default. The statistics are displayed through the show ipv6 cef detail command.

Per-destination load balancing uses a series of 16 hash buckets into which the set of available paths are distributed. A hash function operating on certain properties of the packet is applied to select a bucket that contains a path to use. The source and destination IP addresses are the properties used to select the bucket for per-destination load balancing. Use the load-balance-hash keyword with the ipv6 cef accounting command to enable per-hash-bucket counters. Enter the show ipv6 cef prefix internal command to display the per-hash-bucket counters.

Examples	The following example enables the collection of Cisco Express Forwarding for IPv6 accounting information for prefixes with directly connected next hops: (config) \# ipv6 cef accounting non-recursive	
	Related Commands Command Description ip cef accounting Enable Cisco Express Forwarding network accounting (for IPv4). show cef Displays information about packets forwarded by Cisco Express Forwarding. show ipv6 cef Displays entries in the IPv6 FIB.	

ipv6 cef distributed

To enable distributed Cisco Express Forwarding for IPv6, use the ipv6 cef distributed command in global configuration mode. To disable Cisco Express Forwarding for IPv6, use the no form of this command.
ipv6 cef distributed no ipv6 cef distributed
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

$\overline{\text { Command Default }}$	Distributed Cisco Express Forwarding for IPv6 is disabled by default.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Usage Guidelines The ipv6 cef distributed command is similar to the ip cef distributed command, except that it is IPv6-specific.
Enabling distributed Cisco Express Forwarding for IPv6 globally on the router by using the ipv6 cef distributed in global configuration mode distributes the Cisco Express Forwarding processing of IPv6 packets from the Route Processor (RP) to the line cards of distributed architecture platforms.

Note To forward distributed Cisco Express Forwarding for IPv6 traffic on the router, configure the forwarding of IPv6 unicast datagrams globally on your router by using the ipv6 unicast-routing global configuration command, and configure an IPv6 address and IPv6 processing on an interface by using the ipv6 address interface configuration command.

Examples
The following example enables distributed Cisco Express Forwarding for IPv6 operation:

```
(config)# ipv6 cef distributed
```

Related Commands	Command	Description
	ip route-cache	Controls the use of high-speed switching caches for IP routing.
show ipv6 cef	Displays entries in the IPv6 FIB.	

ipv6 cef load-sharing algorithm

To select a Cisco Express Forwarding load-balancing algorithm for IPv6, use the ipv6 cef load-sharing algorithm command in global configuration mode. To return to the default universal load-balancing algorithm, use the no form of this command.
ipv6 cef load-sharing algorithm \{original | universal $[i d]\}$ no ipv6 cef load-sharing algorithm

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

original	Sets the load-balancing algorithm to the original algorithm based on a source and destination hash.
universal	Sets the load-balancing algorithm to the universal algorithm that uses a source and destination and an ID hash.
id	(Optional) Fixed identifier in hexadecimal format.

The universal load-balancing algorithm is selected by default. If you do not configure the fixed identifier for a load-balancing algorithm, the device automatically generates a unique ID.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 cef load-sharing algorithm command is similar to the ip cef load-sharing algorithm command, except that it is IPv6-specific.
When the Cisco Express Forwarding for IPv6 load-balancing algorithm is set to universal mode, each device on the network can make a different load-sharing decision for each source-destination address pair.

The following example shows how to enable the Cisco Express Forwarding original load-balancing algorithm for IPv6:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 cef load-sharing algorithm original
```


Related Commands

Command	Description
ip cef load-sharing algorithm	Selects a Cisco Express Forwarding load-balancing algorithm (for IPv4).

ipv6 cef optimize neighbor resolution

To configure address resolution optimization from Cisco Express Forwarding for IPv6 for directly connected neighbors, use the ipv6 cef optimize neighbor resolution command in global configuration mode. To disable address resolution optimization from Cisco Express Forwarding for IPv6 for directly connected neighbors, use the no form of this command.
ipv6 cef optimize neighbor resolution no ipv6 cef optimize neighbor resolution

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

This command has no arguments or keywords.
If this command is not configured, Cisco Express Forwarding for IPv6 does not optimize the address resolution of directly connected neighbors.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 cef optimize neighbor resolution command is very similar to the ip cef optimize neighbor resolution command, except that it is IPv 6 -specific.

Use this command to trigger Layer 2 address resolution of neighbors directly from Cisco Express Forwarding for IPv6.

Examples $\begin{aligned} & \text { The following example shows how to optimize address resolution from Cisco Express Forwarding } \\ & \text { for IPv6 for directly connected neighbors: }\end{aligned}$
(config) \# ipv6 cef optimize neighbor resolution

Related Commands

Command	Description
ip cef optimize neighbor resolution	Configures address resolution optimization from Cisco Express Forwarding for IPv4 for directly connected neighbors.

ipv6 destination-guard policy

To define a destination guard policy, use the ipv6 destination-guard policy command in global configuration mode. To remove the destination guard policy, use the no form of this command.
ipv6 destination-guard policy [policy-name]
no ipv6 destination-guard policy [policy-name]

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines
$\overline{\text { Examples }}$

Related Commands

policy-name	(Optional) Name of the destination guard policy.

No destination guard policy is defined.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This command enters destination-guard configuration mode. The destination guard policies can be used to filter IPv6 traffic based on the destination address to block data traffic from an unknown source.

The following example shows how to define the name of a destination guard policy:
(config)\#ipv6 destination-guard policy policy1

Command	Description
show ipv6 destination-guard policy	Displays destination guard information.

ipv6 dhcp-relay bulk-lease

To configure bulk lease query parameters, use the ipv6 dhcp-relay bulk-lease command in global configuration mode. To remove the bulk-lease query configuration, use the no form of this command.
ipv6 dhcp-relay bulk-lease \{data-timeout seconds \mid retry number\} [disable] no ipv6 dhcp-relay bulk-lease [disable]

Syntax Description

data-timeout	(Optional) Bulk lease query data transfer timeout.
seconds	(Optional) The range is from 60 seconds to 600 seconds. The default is 300 seconds.
retry	(Optional) Sets the bulk lease query retries.
number	(Optional) The range is from 0 to 5. The default is 5.
disable	(Optional) Disables the DHCPv6 bulk lease query feature.

Command Modes

Command History

Usage Guidelines

Use the ipv6 dhcp-relay bulk-lease command in global configuration mode to configure bulk lease query parameters, such as data transfer timeout and bulk-lease TCP connection retries.

The DHCPv6 bulk lease query feature is enabled automatically when the DHCPv6 relay agent is enabled. The DHCPv6 bulk lease query feature itself cannot be enabled using this command. To disable this feature, use the ipv6 dhcp-relay bulk-lease command with the disable keyword.

Examples
The following example shows how to set the bulk lease query data transfer timeout to 60 seconds:

ipv6 dhcp-relay option vpn

To enable the DHCP for IPv6 relay VRF-aware feature, use the ipv6 dhcp-relay option vpn command in global configuration mode. To disable the feature, use the no form of this command.
ipv6 dhep-relay option vpn no ipv6 dhcp-relay option vpn
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default	The DHCP for IPv6 relay VRF-aware feature is not enabled on the device.	
Command Modes	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Usage Guidelines The ipv6 dhcp-relay option vpn command allows the DHCPv6 relay VRF-aware feature to be enabled globally on the device. If the ipv6 dhcp relay option vpn command is enabled on a specified interface, it overrides the global ipv6 dhcp-relay option vpn command.

Examples
The following example enables the DHCPv6 relay VRF-aware feature globally on the device:
(config) \# ipv6 dhcp-relay option vpn

Related Commands

Command	Description
ipv6 dhcp relay option vpn	Enables the DHCPv6 relay VRF-aware feature on an interface.

ipv6 dhcp-relay source-interface

To configure an interface to use as the source when relaying messages, use the ipv6 dhcp-relay source-interface command in global configuration mode. To remove the interface from use as the source, use the no form of this command.
ipv6 dhcp-relay source-interface interface-type interface-number no ipv6 dhep-relay source-interface interface-type interface-number

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

interface-type interface-number

(Optional) Interface type and number that specifies output interface for a destination. If this argument is configured, client messages are forwarded to the destination address through the link to which the output interface is connected.

The address of the server-facing interface is used as the IPv6 relay source.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

If the configured interface is shut down, or if all of its IPv6 addresses are removed, the relay will revert to its standard behavior.
The interface configuration (using the ipv6 dhep relay source-interface command in interface configuration mode) takes precedence over the global configuration if both have been configured.

Examples
The following example configures the Loopback 0 interface to be used as the relay source:

```
(config)# ipv6 dhcp-relay source-interface loopback 0
```


Related Commands

Command	Description
ipv6 dhcp relay source-interface	Enables DHCP for IPv6 service on an interface.

ipv6 dhcp binding track ppp

To configure Dynamic Host Configuration Protocol (DHCP) for IPv6 to release any bindings associated with a PPP connection when that connection closes, use the ipv6 dhcp binding track ppp command in global configuration mode. To return to the default behavior, use the no form of this command.
ipv6 dhep binding track ppp no ipv6 dhep binding track ppp

Syntax Description This command has no arguments or keywords.

$\overline{\text { Command Default }}$	When a PPP connection closes, the DHCP bindings associated with that connection are not released.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest $16.5 .1 a$	This command was introduced.

Usage Guidelines
The ipv6 dhep binding track ppp command configures DHCP for IPv6 to automatically release any bindings associated with a PPP connection when that connection is closed. The bindings are released automatically to accommodate subsequent new registrations by providing sufficient resource.

Note In IPv6 broadband deployment using DHCPv6, you must enable release of prefix bindings associated with a PPP virtual interface using this command. This ensures that DHCPv6 bindings are tracked together with PPP sessions, and in the event of DHCP REBIND failure, the client initiates DHCPv6 negotiation again.

A binding table entry on the DHCP for IPv6 server is automatically:

- Created whenever a prefix is delegated to a client from the configuration pool.
- Updated when the client renews, rebinds, or confirms the prefix delegation.
- Deleted when the client releases all the prefixes in the binding voluntarily, all prefixes' valid lifetimes have expired, or an administrator clears the binding.

Examples
The following example shows how to release the prefix bindings associated with the PPP:

```
(config)# ipv6 dhcp binding track ppp
```


ipv6 dhcp database

To configure a Dynamic Host Configuration Protocol (DHCP) for IPv6 binding database agent, use the ipv6 dhep database command in global configuration mode. To delete the database agent, use the no form of this command.
ipv6 dhep database agent [write-delay seconds] abort[timeout seconds] no ipv6 dhep database agent

Syntax Description

Usage Guidelines

agent	A flash, local bootflash, compact flash, NVRAM, FTP, TFTP, or Remote Copy Protocol (RCP) uniform resource locator.
write-delay seconds	(Optional) How often (in seconds) DHCP for IPv6 sends database updates. The default is 300 seconds. The minimum write delay is 60 seconds.
timeout seconds	(Optional) How long, in seconds, the router waits for a database transfer.

Command Default
 Command Modes
 Command History

Write-delay default is 300 seconds. Timeout default is 300 seconds.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 dhcp database command specifies DHCP for IPv6 binding database agent parameters. The user may configure multiple database agents.

A binding table entry is automatically created whenever a prefix is delegated to a client from the configuration pool, updated when the client renews, rebinds, or confirms the prefix delegation, and deleted when the client releases all the prefixes in the binding voluntarily, all prefixes' valid lifetimes have expired, or administrators enable the clear ipv6 dhcp binding command. These bindings are maintained in RAM and can be saved to permanent storage using the agent argument so that the information about configuration such as prefixes assigned to clients is not lost after a system reload or power down. The bindings are stored as text records for easy maintenance.

Each permanent storage to which the binding database is saved is called the database agent. A database agent can be a remote host such as an FTP server or a local file system such as NVRAM.

The write-delay keyword specifies how often, in seconds, that DHCP sends database updates. By default, DHCP for IPv6 server waits 300 seconds before sending any database changes.

The timeout keyword specifies how long, in seconds, the router waits for a database transfer. Infinity is defined as 0 seconds, and transfers that exceed the timeout period are canceled. By default, the DHCP for IPv6 server waits 300 seconds before canceling a database transfer. When the system is going to reload, there is no transfer timeout so that the binding table can be stored completely.

Examples

The following example specifies DHCP for IPv6 binding database agent parameters and stores binding entries in TFTP:
(config) \# ipv6 dhcp database tftp://10.0.0.1/dhcp-binding
The following example specifies DHCP for IPv6 binding database agent parameters and stores binding entries in bootflash:
(config) \# ipv6 dhcp database bootflash

Related Commands

Command	Description
clear ipv6 dhcp binding	Deletes automatic client bindings from the DHCP for IPv6 server binding table
show ipv6 dhcp database	Displays DHCP for IPv6 binding database agent information.

ipv6 dhcp iana-route-add

To add routes for individually assigned IPv6 addresses on a relay or server, use the ipv6 dhcp iana-route-add command in global configuration mode. To disable route addition for individually assigned IPv6 addresses on a relay or server, use the no form of the command.
ipv6 dhep iana-route-add
no ipv6 dhep iana-route-add
Syntax Description
This command has no arguments or keywords.

$\overline{\text { Command Default }}$	Route addition for individually assigned IPv6 addresses on a relay or server is disabled by default.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest $16.5 .1 a$	This command was introduced.

Usage Guidelines

The ipv6 dhep iana-route-add command is disabled by default and has to be enabled if route addition is required. Route addition for Internet Assigned Numbers Authority (IANA) is possible if the client is connected to the relay or server through unnumbered interfaces, and if route addition is enabled with the help of this command.

Examples

The following example shows how to enable route addition for individually assigned IPv6 addresses:

Device(config) \# ipv6 dhcp iana-route-add

ipv6 dhcp iapd-route-add

To enable route addition by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) relay and server for the delegated prefix, use the ipv6 dhep iapd-route-add command in global configuration mode. To disable route addition, use the no form of the command.
ipv6 dhcp iapd-route-add
no ipv6 dhcp iapd-route-add

Syntax Description
This command has no arguments or keywords.

Command Default
Command Modes
Command History

Usage Guidelines
The DHCPv6 relay and the DHCPv6 server add routes for delegated prefixes by default. The presence of this command on a device does not mean that routes will be added on that device. When you configure the command, routes for delegated prefixes will only be added on the first Layer 3 relay and server.

Examples
DHCPv6 relay and DHCPv6 server add routes for delegated prefixes by default.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The following example shows how to enable the DHCPv6 relay and server to add routes for a delegated prefix:

```
Device(config)# ipv6 dhcp iapd-route-add
```


ipv6 dhcp-Idra

To enable Lightweight DHCPv6 Relay Agent (LDRA) functionality on an access node, use the ipv6 dhcp-ldra command in global configuration mode. To disable the LDRA functionality, use the no form of this command.
ipv6 dhep-ldra \{enable | disable\} no ipv6 dhcp-ldra \{enable | disable\}

Syntax Description

enable	Enables LDRA functionality on an access node.
disable	Disables LDRA functionality on an access node.

$\overline{\text { Command Default }}$		By default, LDRA functionality is not enabled on an access node.
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest	This command was introduced.
	16.5 .1 a	

Usage Guidelines

You must configure the LDRA functionality globally using the ipv6 dhcp-ldra command before configuring it on a VLAN or an access node (such as a Digital Subscriber Link Access Multiplexer [DSLAM] or an Ethernet switch) interface.

Example

The following example shows how to enable the LDRA functionality:

```
(config)# ipv6 dhcp-ldra enable
(config)# exit
```

Note In the above example, Device denotes an access node.

Related Commands	Command
ipv6 dhcp Idra attach-policy	Enables LDRA functionality on a VLAN.
ipv6 dhcp-Idra attach-policy	Enables LDRA functionality on an interface.

ipv6 dhcp ping packets

To specify the number of packets a Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server sends to a pool address as part of a ping operation, use the ipv6 dhcp ping packets command in global configuration mode. To prevent the server from pinging pool addresses, use the no form of this command.
ipv6 dhep ping packets number ipv6 dhcp ping packets

Syntax Description
number The number of ping packets sent before the address is assigned to a requesting client. The valid range is from 0 to 10 .

Command Default
Command Modes
Command History

Usage Guidelines

No ping packets are sent before the address is assigned to a requesting client.
Global configuration (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The DHCPv6 server pings a pool address before assigning the address to a requesting client. If the ping is unanswered, the server assumes, with a high probability, that the address is not in use and assigns the address to the requesting client.

Setting the number argument to 0 turns off the DHCPv6 server ping operation

The following example specifies four ping attempts by the DHCPv6 server before further ping attempts stop:
(config) \# ipv6 dhcp ping packets 4

Command	Description
clear ipv6 dhcp conflict	Clears an address conflict from the DHCPv6 server database.
show ipv6 dhcp conflict	Displays address conflicts found by a DHCPv6 server, or reported through a DECLINE message from a client.

ipv6 dhep pool

To configure a Dynamic Host Configuration Protocol (DHCP) for IPv6 server configuration information pool and enter DHCP for IPv6 pool configuration mode, use the ipv6 dhcp pool command in global configuration mode. To delete a DHCP for IPv6 pool, use the no form of this command.

ipv6 dhcp pool poolname

no ipv6 dhcp pool poolname

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

poolname User-defined name for the local prefix pool. The pool name can be a symbolic string (such as "Engineering") or an integer (such as 0).

DHCP for IPv6 pools are not configured.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the ipv6 dhcp poolcommand to create a DHCP for IPv6 server configuration information pool. When the ipv6 dhep pool command is enabled, the configuration mode changes to DHCP for IPv6 pool configuration mode. In this mode, the administrator can configure pool parameters, such as prefixes to be delegated and Domain Name System (DNS) servers, using the following commands:

- address prefix IPv6-prefix [lifetime \{valid-lifetime preferred-lifetime |infinite\}]sets an address prefix for address assignment. This address must be in hexadecimal, using 16-bit values between colons.
- link-address IPv6-prefix sets a link-address IPv6 prefix. When an address on the incoming interface or a link-address in the packet matches the specified IPv6-prefix, the server uses the configuration information pool. This address must be in hexadecimal, using 16-bit values between colons.
- vendor-specific vendor-id enables DHCPv6 vendor-specific configuration mode. Specify a vendor identification number. This number is the vendor IANA Private Enterprise Number. The range is 1 to 4294967295. The following configuration command is available:
- suboption number sets vendor-specific suboption number. The range is 1 to 65535 . You can enter an IPv6 address, ASCII text, or a hex string as defined by the suboption parameters.

Note The hex value used under the suboption keyword allows users to enter only hex digits (0-f). Entering an invalid hex value does not delete the previous configuration.

Once the DHCP for IPv6 configuration information pool has been created, use the ipv6 dhcp server command to associate the pool with a server on an interface. If you do not configure an information pool, you need to use the ipv6 dhcp server interface configuration command to enable the DHCPv 6 server function on an interface.

When you associate a DHCPv6 pool with an interface, only that pool services requests on the associated interface. The pool also services other interfaces. If you do not associate a DHCPv6 pool with an interface, it can service requests on any interface.

Not using any IPv6 address prefix means that the pool returns only configured options.
The link-address command allows matching a link-address without necessarily allocating an address. You can match the pool from multiple relays by using multiple link-address configuration commands inside a pool.

Since a longest match is performed on either the address pool information or the link information, you can configure one pool to allocate addresses and another pool on a subprefix that returns only configured options.

Examples

```
(config)# ipv6 dhcp pool cisco1
(config-dhcpv6)#
```

The following example shows how to configure an IPv6 address prefix for the IPv6 configuration pool cisco1:

```
(config-dhcpv6)# address prefix 2001:1000::0/64
(config-dhcpv6)# end
```

The following example shows how to configure a pool named engineering with three link-address prefixes and an IPv6 address prefix:

```
# configure terminal
(config)# ipv6 dhcp pool engineering
(config-dhcpv6)# link-address 2001:1001::0/64(config-dhcpv6)# link-address
2001:1002::0/64(config-dhcpv6) # link-address 2001:2000::0/48(config-dhcpv6) # address prefix
2001:1003::0/64
(config-dhcpv6)# end
```

The following example shows how to configure a pool named 350 with vendor-specific options:

```
# configure terminal
(config)# ipv6 dhcp pool 350
(config-dhcpv6)# vendor-specific 9
(config-dhcpv6-vs)# suboption 1 address 1000:235D::1(config-dhcpv6-vs)# suboption 2 ascii
"IP-Phone"
(config-dhcpv6-vs)# end
```

Related Commands

Command	Description
ipv6 dhcp server	Enables DHCP for IPv6 service on an interface.
show ipv6 dhcp pool	Displays DHCP for IPv6 configuration pool information.

ipv6 dhcp server vrf enable

To enable the DHCP for IPv6 server VRF-aware feature, use the ipv6 dhcp server vrf enable command in global configuration mode. To disable the feature, use the no form of this command.
ipv6 dhep server vrf enable no ipv6 dhcp server vrf enable

$\overline{\text { Syntax Description }}$	This command has no arguments or keywords.	
$\overline{\text { Command Default }}$	The DHCPv6 server VRF-aware feature is not enabled.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
$\overline{\text { Command History }}$	Release	Modification

Usage Guidelines

The ipv6 dhcp server option vpn command allows the DHCPv6 server VRF-aware feature to be enabled globally on a device.

Examples

The following example enables the DHCPv6 server VRF-aware feature globally on a device:

```
(config)# ipv6 dhcp server option vpn
```


ipv6 flow monitor

This command activates a previously created flow monitor by assigning it to the interface to analyze incoming or outgoing traffic.
To activate a previously created flow monitor, use the ipv6 flow monitor command. To de-activate a flow monitor, use the no form of the command.
ipv6 flow monitor ipv6-monitor-name [sampler ipv6-sampler-name] \{input |output\} no ipv6 flow monitor ipv6-monitor-name [sampler ipv6-sampler-name] \{input |output\}
ipv6-monitor-name Activates a previously created flow monitor by assigning it to the interface to analyze incoming or outgoing traffic.

sampler ipv6-sampler-name	Applies the flow monitor sampler.
input	Applies the flow monitor on input traffic.
output	Applies the flow monitor on output traffic.

$\overline{\text { Command Default }}$
Command Modes

IPv6 flow monitor is not activated until it is assigned to an interface.
Interface configuration (config-if)
Command History
Release \quad Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
You cannot attach a NetFlow monitor to a port channel interface. If both service module interfaces are part of an EtherChannel, you should attach the monitor to both physical interfaces.

This example shows how to apply a flow monitor to an interface:

```
(config) # interface gigabitethernet 1/1/2
(config-if)# ip flow monitor FLOW-MONITOR-1 input
(config-if)# ip flow monitor FLOW-MONITOR-2 output
(config-if) # end
```


ipv6 general-prefix

To define an IPv6 general prefix, use the ipv6 general-prefix command in global configuration mode. To remove the IPv6 general prefix, use the no form of this command.
ipv6 general-prefix prefix-name \{ipv6-prefix/prefix-length $\mid \mathbf{6 t o 4}$ interface-type interface-number \mid 6rd interface-type interface-number\}
no ipv6 general-prefix prefix-name

Syntax Description

prefix-name	The name assigned to the prefix.
ipv6-prefix	The IPv6 network assigned to the general prefix. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. When defining a general prefix manually, specify both the ipv6-prefix and / prefix-length arguments.
/ prefix-length	The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value. When defining a general prefix manually, specify both the ipv6-prefix and / prefix-length arguments.
6to4	Allows configuration of a general prefix based on an interface used for 6to4 tunneling. When defining a general prefix based on a 6to4 interface, specify the 6to4 keyword and the interface-type interface-numberargument.
interface-type	
interface-number	Interface type and number. For more information, use the question mark (?) online help function. When defining a general prefix based on a 6to4 interface, specify the 6to4 keyword and the interface-type interface-numberargument.
6rd	Allows configuration of a general prefix computed from an interface used for IPv6 rapid deployment (6RD) tunneling.

Command Default
Command Modes
Command History

Usage Guidelines
No general prefix is defined.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the ipv6 general-prefix command to define an IPv6 general prefix.

A general prefix holds a short prefix, based on which a number of longer, more specific, prefixes can be defined. When the general prefix is changed, all of the more specific prefixes based on it will change, too. This function greatly simplifies network renumbering and allows for automated prefix definition.

More specific prefixes, based on a general prefix, can be used when configuring IPv6 on an interface.
When defining a general prefix based on an interface used for 6 to 4 tunneling, the general prefix will be of the form 2002:a.b.c.d::/48, where "a.b.c.d" is the IPv4 address of the interface referenced.
$\overline{\text { Examples }} \quad$ The following example manually defines an IPv6 general prefix named my-prefix:
(config) \# ipv6 general-prefix my-prefix 2001:DB8:2222::/48
The following example defines an IPv6 general prefix named my-prefix based on a 6to4 interface:
(config) \# ipv6 general-prefix my-prefix 6 to4 ethernet0

Related Commands

Command	Description
show ipv6 general-prefix	Displays information on general prefixes for an IPv6 addresses.

ipv6 local policy route-map

To enable local policy-based routing (PBR) for IPv6 packets, use the ipv6 local policy route-map command in global configuration mode. To disable local policy-based routing for IPv6 packets, use the no form of this command.
ipv6 local policy route-map route-map-name no ipv6 local policy route-map route-map-name

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

route-map-name
Name of the route map to be used for local IPv6 PBR. The name must match a route-map-name value specified by the route-map command.

IPv6 packets are not policy routed.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Packets originating from a router are not normally policy routed. However, you can use the ipv6 local policy route-map command to policy route such packets. You might enable local PBR if you want packets originated at the router to take a route other than the obvious shortest path.

The ipv6 local policy route-map command identifies a route map to be used for local PBR. The route-map commands each have a list of match and set commands associated with them. The match commands specify the match criteria, which are the conditions under which packets should be policy routed. The set commands specify set actions, which are particular policy routing actions to be performed if the criteria enforced by the match commands are met. The no ipv6 local policy route-map command deletes the reference to the route map and disables local policy routing.

In the following example, packets with a destination IPv6 address matching that allowed by access list pbr-src-90 are sent to the router at IPv6 address 2001:DB8::1:

```
ipv6 access-list src-90
    permit ipv6 host 2001::90 2001:1000::/64
route-map pbr-src-90 permit 10
    match ipv6 address src-90
    set ipv6 next-hop 2001:DB8::1
ipv6 local policy route-map pbr-src-90
```

Related Commands

Command	Description
ipv6 policy route-map	Configures IPv6 PBR on an interface.
match ipv6 address	Specifies an IPv6 access list to be used to match packets for PBR for IPv6.
match length	Bases policy routing on the Level 3 length of a packet.

Command	Description
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set default interface	Specifies the default interface to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Specifies the default interface to output packets that pass a match clause of a route map for policy routing.
set ipv6 default next-hop	Specifies an IPv6 default next hop to which matching packets will be forwarded.
set ipv6 next-hop (PBR)	Indicates where to output IPv6 packets that pass a match clause of a route map for policy routing.
set ipv6 precedence	Sets the precedence value in the IPv6 packet header.

ipv6 local pool

To configure a local IPv6 prefix pool, use the ipv6 local pool configuration command with the prefix pool name. To disband the pool, use the no form of this command.
ipv6 local pool poolname prefix/prefix-length assigned-length [shared] [cache-size size] no ipv6 local pool poolname

Syntax Description

poolname	User-defined name for the local prefix pool.
prefix	IPv6 prefix assigned to the pool. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
$/$ prefix-length	The length of the IPv6 prefix assigned to the pool. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address).
assigned-length	Length of prefix, in bits, assigned to the user from the pool. The value of the assigned-length argument cannot be less than the value of the / prefix-length argument.
shared	(Optional) Indicates that the pool is a shared pool.
cache-size size	(Optional) Specifies the size of the cache.

Command Default
Command Modes

Command History

Usage Guidelines

No pool is configured.

Global configuration (global)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

All pool names must be unique.
IPv6 prefix pools have a function similar to IPv4 address pools. Contrary to IPv4, a block of addresses (an address prefix) are assigned and not single addresses.

Prefix pools are not allowed to overlap.
Once a pool is configured, it cannot be changed. To change the configuration, the pool must be removed and recreated. All prefixes already allocated will also be freed.

Examples

This example shows the creation of an IPv6 prefix pool:

```
(config)# ipv6 local pool pool1 2001:ODB8::/29 64
(config)# end
# show ipv6 local pool
```

```
Pool Prefix Free In use
pool1 2001:0DB8::/29 65516 20
```

Related Commands

Command	Description
debug ipv6 pool	Enables IPv6 pool debugging.
peer default ipv6 address pool	Specifies the pool from which client prefixes are assigned for PPP links.
prefix-delegation pool	Specifies a named IPv6 local prefix pool from which prefixes are delegated to DHCP for IPv6 clients.
show ipv6 local pool	Displays information about any defined IPv6 address pools.

ipv6 mld snooping (global)

To enable Multicast Listener Discovery version 2 (MLDv2) protocol snooping globally, use the ipv6 mld snooping command in global configuration mode. To disable the MLDv2 snooping globally, use the no form of this command.
ipv6 mld snooping
no ipv6 mld snooping

Syntax Description

Command Default

This command is enabled.
Command Modes Global configuration (config)

Command History

Usage Guidelines
MLDv2 snooping is supported on the Supervisor Engine 720 with all versions of the Policy Feature Card 3 (PFC3).
To use MLDv2 snooping, configure a Layer 3 interface in the subnet for IPv6 multicast routing or enable the MLDv2 snooping querier in the subnet.
$\overline{\text { Examples } \quad \text { This example shows how to enable MLDv2 snooping globally: }}$
(config) \# ipv6 mld snooping

Related Commands

Command	Description
show ipv6 mld snooping	Displays MLDv2 snooping information.

ipv6 mld ssm-map enable

To enable the Source Specific Multicast (SSM) mapping feature for groups in the configured SSM range, use the ipv6 mld ssm-map enable command in global configuration mode. To disable this feature, use the no form of this command.
ipv6 mld [vrf vrf-name] ssm-map enable no ipv6 mld [vrf vrf-name] ssm-map enable

Syntax Description

Command Default
Command Modes
Command History

| vrf $\quad v r f-n a m e ~$ | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

The SSM mapping feature is not enabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 mld ssm-map enable command enables the SSM mapping feature for groups in the configured SSM range. When the ipv6 mld ssm-map enable command is used, SSM mapping defaults to use the Domain Name System (DNS).

SSM mapping is applied only to received Multicast Listener Discovery (MLD) version 1 or MLD version 2 membership reports.

The following example shows how to enable the SSM mapping feature:
(config) \# ipv6 mld ssm-map enable

Command	Description
debug ipv6 mld ssm-map	Displays debug messages for SSM mapping.
ipv6 mld ssm-map query dns	Enables DNS-based SSM mapping.
ipv6 mld ssm-map static	Configures static SSM mappings.
show ipv6 mld ssm-map	Displays SSM mapping information.

ipv6 mld state-limit

To limit the number of Multicast Listener Discovery (MLD) states globally, use the ipv6 mld state-limit command in global configuration mode. To disable a configured MLD state limit, use the no form of this command.
ipv6 mld [vrf vrf-name] state-limit number
no ipv6 mld [vrf vrf-name] state-limit number

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

vrf \quad vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
number	Maximum number of MLD states allowed on a router. The valid range is from 1 to 64000.

No default number of MLD limits is configured. You must configure the number of maximum MLD states allowed globally on a router when you configure this command.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1aCisco IOS XE Everest 16.5.1a	This command was introduced.

Use the ipv6 mld state-limit command to configure a limit on the number of MLD states resulting from MLD membership reports on a global basis. Membership reports sent after the configured limits have been exceeded are not entered in the MLD cache and traffic for the excess membership reports is not forwarded.
Use the ipv6 mld limit command in interface configuration mode to configure the per-interface MLD state limit.

Per-interface and per-system limits operate independently of each other and can enforce different configured limits. A membership state will be ignored if it exceeds either the per-interface limit or global limit.

The following example shows how to limit the number of MLD states on a router to 300 :
(config) \# ipv6 mld state-limit 300

Related Commands

Command	Description
ipv6 mld access-group	Enables the performance of IPv6 multicast receiver access control.
ipv6 mld limit	Limits the number of MLD states resulting from MLD membership state on a per-interface basis.

ipv6 multicast-routing

To enable multicast routing using Protocol Independent Multicast (PIM) and Multicast Listener Discovery (MLD) on all IPv6-enabled interfaces of the router and to enable multicast forwarding, use the ipv6 multicast-routing command in global configuration mode. To stop multicast routing and forwarding, use the no form of this command.
ipv6 multicast-routing [vrf vrf-name] no ipv6 multicast-routing

Syntax Description

| vrf $\quad v r f-n a m e ~$ | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

Command Default
Command Modes
Command History

Usage Guidelines

Multicast routing is not enabled.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Use the ipv6 multicast-routing command to enable multicast forwarding. This command also enables Protocol Independent Multicast (PIM) and Multicast Listener Discovery (MLD) on all IPv6-enabled interfaces of the router being configured.

You can configure individual interfaces before you enable multicast so that you can then explicitly disable PIM and MLD protocol processing on those interfaces, as needed. Use the no ipv6 pim or the no ipv6 mld router command to disable IPv6 PIM or MLD router-side processing, respectively.

Examples

The following example enables multicast routing and turns on PIM and MLD on all interfaces:
(config) \# ipv6 multicast-routing

Related Commands

Command	Description
ipv6 pim rp-address	Configures the address of a PIM RP for a particular group range.
no ipv6 pim	Turns off IPv6 PIM on a specified interface.
no ipv6 mld router	Disables MLD router-side processing on a specified interface.

ipv6 multicast group-range

To disable multicast protocol actions and traffic forwarding for unauthorized groups or channels on all the interfaces in a router, use the ipv6 multicast group-range command in global configuration mode. To return to the command's default settings, use the no form of this command.
ipv6 multicast [vrf vrf-name] group-range [access-list-name] no ipv6 multicast [vrf vrf-name] group-range [access-list-name]

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

vrf \quad vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
access-list-name	(Optional) Name of an access list that contains authenticated subscriber groups and authorized channels that can send traffic to the router.

Multicast is enabled for groups and channels permitted by a specified access list and disabled for groups and channels denied by a specified access list.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 multicast group-range command provides an access control mechanism for IPv6 multicast edge routing. The access list specified by the access-list-name argument specifies the multicast groups or channels that are to be permitted or denied. For denied groups or channels, the router ignores protocol traffic and actions (for example, no Multicast Listener Discovery (MLD) states are created, no mroute states are created, no Protocol Independent Multicast (PIM) joins are forwarded), and drops data traffic on all interfaces in the system, thus disabling multicast for denied groups or channels.

Using the ipv6 multicast group-range global configuration command is equivalent to configuring the MLD access control and multicast boundary commands on all interfaces in the system. However, the ipv6 multicast group-range command can be overridden on selected interfaces by using the following interface configuration commands:

- ipv6 mld access-group access-list-name
- ipv6 multicast boundary scope scope-value

Because the no ipv6 multicast group-range command returns the router to its default configuration, existing multicast deployments are not broken.

The following example ensures that the router disables multicast for groups or channels denied by an access list named list2:
(config) \# ipv6 multicast group-range list2
The following example shows that the command in the previous example is overridden on an interface specified by int2:

```
(config)# interface int2
(config-if)# ipv6 mld access-group int-list2
```

On int2, MLD states are created for groups or channels permitted by int-list2 but are not created for groups or channels denied by int-list2. On all other interfaces, the access-list named list2 is used for access control.

In this example, list2 can be specified to deny all or most multicast groups or channels, and int-list2 can be specified to permit authorized groups or channels only for interface int2.

Related Commands	Command	Description
ipv6 mld access-group	Performs IPv6 multicast receiver access control.	
ipv6 multicast boundary scope	Configures a multicast boundary on the interface for a specified scope.	

ipv6 multicast pim-passive-enable

To enable the Protocol Independent Multicast (PIM) passive feature on an IPv6 router, use the ipv6 multicast pim-passive-enable command in global configuration mode. To disable this feature, use the no form of this command.
ipv6 multicast pim-passive-enable no ipv6 multicast pim-passive-enable

Syntax Description
This command has no arguments or keywords.

Command Default

PIM passive mode is not enabled on the router.

Command Modes

Command History

Usage Guidelines
Use the ipv6 multicast pim-passive-enable command to configure IPv6 PIM passive mode on a router. Once PIM passive mode is configured globally, use the ipv6 pim passive command in interface configuration mode to configure PIM passive mode on a specific interface.

Examples

Related Commands
The following example configures IPv6 PIM passive mode on a router:
(config) \# ipv6 multicast pim-passive-enable

Command	Description
ipv6 pim passive	Configures PIM passive mode on a specific interface.

ipv6 multicast rpf

To enable IPv6 multicast reverse path forwarding (RPF) check to use Border Gateway Protocol (BGP) unicast routes in the Routing Information Base (RIB), use the ipv6 multicast rpf command in global configuration mode. To disable this function, use the no form of this command.
ipv6 multicast [vrf vrf-name] rpf \{backoff initial-delay max-delay|use-bgp\} no ipv6 multicast [vrf vrf-name] rpf \{backoff initial-delay max-delay|use-bgp\}

Syntax Description

vrf \quad vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
backoff	Specifies the backoff delay after a unicast routing change.
initial-delay	Initial RPF backoff delay, in milliseconds (ms). The range is from 200 to 65535.
max-delay	Maximum RPF backoff delay, in ms. The range is from 200 to 65535.
use-bgp	Specifies to use BGP routes for multicast RPF lookups.

Command Default
Command Modes

Command History

Usage Guidelines

Examples

Related Commands

The multicast RPF check does not use BGP unicast routes.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

When the ipv6 multicast rpf command is configured, multicast RPF check uses BGP unicast routes in the RIB. This is not done by default.

The following example shows how to enable the multicast RPF check function:
(config) \# ipv6 multicast rpf use-bgp

Command	Description
ipv6 multicast limit	Configure per-interface multicast route (mroute) state limiters in IPv6.
ipv6 multicast multipath	Enables load splitting of IPv6 multicast traffic across multiple equal-cost paths.

ipv6 nd cache expire

To configure the duration of time before an IPv6 neighbor discovery cache entry expires, use the ipv6 nd cache expire command in the interface configuration mode. To remove this configuration, use the no form of this command.
ipv6 nd cache expire expire-time-in-seconds [refresh] no ipv6 nd cache expire expire-time-in-seconds [refresh]

Syntax Description

Command Modes

Command History

Usage Guidelines

expire-time-in-seconds
The time range is from 1 through 65536 seconds. The default is 14 or 4 hours.
refresh
(Optional) Automatically refreshes the neighbor discovery cache e

Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

By default, a neighbor discovery cache entry is expired and deleted if it remains in the STALE state for 14,400 seconds or 4 hours. The ipv6 nd cache expire command allows the expiry time to vary and to trigger auto refresh of an expired entry before the entry is deleted.

When the refresh keyword is used, a neighbor discovery cache entry is auto refreshed. The entry moves into the DELAY state and the neighbor unreachability detection process occurs, in which the entry transitions from the DELAY state to the PROBE state after 5 seconds. When the entry reaches the PROBE state, a neighbor solicitation is sent and then retransmitted as per the configuration.

The following example shows that the neighbor discovery cache entry is configured to expire in 7200 seconds or 2 hours:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd cache expire }720
```


Related Commands

Command	Description
ipv6 nd na glean	Configures neighbor discovery to glean an entry from an unsolicited neighbor advertisement.
ipv6 nd nud retry	Configures the number of times neighbor unreachability detection resends neighbor solicitations.
show ipv6 interface	Displays the usability status of interfaces that are configured for IPv6.

ipv6 nd cache interface-limit (global)

To configure a neighbor discovery cache limit on all interfaces on the device, use the ipv6 nd cache interface-limit command in global configuration mode. To remove the neighbor discovery from all interfaces on the device, use the no form of this command.
ipv6 nd cache interface-limit size [log rate] no ipv6 nd cache interface-limit size [log rate]

Syntax Description

Command Default

Command Modes

Command History

size	Cache size.
$\boldsymbol{l o g}$ rate	(Optional) Adjustable logging rate, in seconds. The valid values are 0 and 1.

Default logging rate for the device is one entry every second.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines The ipv6 nd cache interface-limit command in global configuration mode imposes a common per-interface cache size limit on all interfaces on the device.

Issuing the no or default form of the command will remove the neighbor discovery limit from every interface on the device that was configured using global configuration mode. It will not remove the neighbor discovery limit from any interface configured using the ipv6 nd cache interface-limit command in interface configuration mode.

The default (and maximum) logging rate for the device is one entry every second.
$\overline{\text { Examples }}$
The following example shows how to set a common per-interface cache size limit of 4 seconds on all interfaces on the device:
(config) \# ipv6 nd cache interface-limit 4

Related Commands

Command	Description
ipv6 nd cache interface-limit (interface)	Configures a neighbor discovery cache limit on a specified interface on the device.

ipv6 nd host mode strict

To enable the conformant, or strict, IPv6 host mode, use the ipv6 nd host mode strict command in global configuration mode. To reenable conformant, or loose, IPv6 host mode, use the no form of this command.
ipv6 nd host mode strict

Syntax Description
Command Default

Command Modes

Command History

Usage Guidelines

This command has no arguments or keywords.
Nonconformant, or loose, IPv6 host mode is enabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The default IPv6 host mode type is loose, or nonconformant. To enable IPv6 strict, or conformant, host mode, use the ipv6 nd host mode strict command. You can change between the two IPv6 host modes using the no form of this command.
The ipv6 nd host mode strict command selects the type of IPv6 host mode behavior and enters interface configuration mode. However, the ipv6 nd host mode strict command is ignored if you have configured IPv6 routing with the ipv6 unicast-routing command. In this situation, the default IPv6 host mode type, loose, is used.

Examples

The following example shows how to configure the device as a strict IPv6 host and enables IPv6 address autoconfiguration on Ethernet interface $0 / 0$:

```
(config)# ipv6 nd host mode strict
(config-if)# interface ethernet0/0
(config-if)# ipv6 address autoconfig
```

The following example shows how to configure the device as a strict IPv6 host and configures a static IPv6 address on Ethernet interface 0/0:

```
(config)# ipv6 nd host mode strict
(config-if)# interface ethernet0/0
(config-if)# ipv6 address 2001::1/64
```

Command	Description
ipv6 unicast-routing	Enables the forwarding of IPv6 unicast datagrams.

ipv6 nd na glean

To configure the neighbor discovery to glean an entry from an unsolicited neighbor advertisement, use the ipv6 nd na glean command in the interface configuration mode. To disable this feature, use the no form of this command.
ipv6 nd na glean
no ipv6 nd na glean

Command Modes
Interface configuration

Command History

Release Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.

Usage Guidelines
IPv6 nodes may emit a multicast unsolicited neighbor advertisement packet following the successful completion of duplicate address detection (DAD). By default, other IPv6 nodes ignore these unsolicited neighbor advertisement packets. The ipv6 nd na glean command configures the router to create a neighbor advertisement entry on receipt of an unsolicited neighbor advertisement packet (assuming no such entry already exists and the neighbor advertisement has the link-layer address option). Use of this command allows a device to populate its neighbor advertisement cache with an entry for a neighbor before data traffic exchange with the neighbor.

Examples
The following example shows how to configure neighbor discovery to glean an entry from an unsolicited neighbor advertisement:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd na glean
```

Related Commands

Command	Description
ipv6 nd cache expire	Configures the duration of time before an IPv6 neighbor discovery cache entry expires.
ipv6 nd nud retry	Configures the number of times neighbor unreachability detection resends neighbor solicitations.
show ipv6 interface	Displays the usability status of interfaces that are configured for IPv6.

ipv6 nd ns-interval

To configure the interval between IPv6 neighbor solicitation (NS) retransmissions on an interface, use the ipv6 nd ns-interval command in interface configuration mode. To restore the default interval, use the no form of this command.
ipv6 nd ns-interval milliseconds no ipv6 nd ns-interval

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

Examples

milliseconds	The interval between IPv6 neighbor solicit transmissions for address resolution. The acceptable range is from 1000 to 3600000 milliseconds.

0 milliseconds (unspecified) is advertised in router advertisements and the value 1000 is used for the neighbor discovery activity of the router itself.

Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1aCisco IOS XE Everest 16.5.1a	This command was introduced.

By default, using the ipv6 nd ns-interval command changes the NS retransmission interval for both address resolution and duplicate address detection (DAD). To specify a different NS retransmission interval for DAD, use the ipv6 nd dad time command.

This value will be included in all IPv6 router advertisements sent out this interface. Very short intervals are not recommended in normal IPv6 operation. When a nondefault value is configured, the configured time is both advertised and used by the router itself.

The following example configures an IPv6 neighbor solicit transmission interval of 9000 milliseconds for Ethernet interface $0 / 0$:
(config) \# interface ethernet 0/0
(config-if) \# ipv6 nd ns-interval 9000

Related Commands

Command	Description
ipv6 nd dad time	Configures the NS retransmit interval for DAD separately from the NS retransmit interval for address resolution.
show ipv6 interface	Displays the usability status of interfaces configured for IPv6.

ipv6 nd nud retry

To configure the number of times the neighbor unreachability detection process resends neighbor solicitations, use the ipv6 nd nud retry command in the interface configuration mode. To disable this feature, use the no form of this command.
ipv6 nd nud retry base interval max-attempts \{final-wait-time $\}$ no ipv6 nd nud retry base interval max-attempts \{final-wait-time $\}$

Syntax Description

base	The neighbor unreachability detection process base value.
interval	The time interval, in milliseconds, between retries.
	The range is from 1000 to 32000.
max-attempts	The maximum number of retry attempts, depending on the base
	The range is from 1 to 128.
final-wait-time	The waiting time, in milliseconds, on the last probe.
	The range is from 1000 to 32000.

Command Modes

Command History
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

When a device runs neighbor unreachability detection to resolve the neighbor detection entry for a neighbor again, it sends three neighbor solicitation packets 1 second apart. In certain situations, for example, spanning-tree events, or high-traffic events, or end-host reloads), three neighbor solicitation packets that are sent at an interval of 1 second may not be sufficient. To help maintain the neighbor cache in such situations, use the ipv6 nd nud retry command to configure exponential timers for neighbor solicitation retransmits.

The maximum number of retry attempts is configured using the max-attempts argument. The retransmit interval is calculated with the following formula:
tm ${ }^{\wedge}$
here,

- $\mathrm{t}=$ Time interval
- $\mathrm{m}=$ Base (1, 2, or 3)
- $\mathrm{n}=$ Current neighbor solicitation number (where the first neighbor solicitation is 0).

Therefore, ipv6 nd nud retry $\mathbf{3 1 0 0 0} 5$ command retransmits at intervals of $1,3,9,27,81$ seconds. If the final wait time is not configured, the entry remains for 243 seconds before it is deleted.

The ipv6 nd nud retry command affects only the retransmit rate for the neighbor unreachability detection process, and not for the initial resolution, which uses the default of three neighbor solicitation packets sent 1 second apart.

Examples

The following example shows how to configure a fixed interval of 1 second and three retransmits:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd nud retry 1 1000 3
```

The following example shows how to configure a retransmit interval of $1,2,4$, and 8 :

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd nud retry 2 1000 4
```

The following example shows how to configure the retransmit intervals of $1,3,9,27,81$:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd nud retry 3 1000 5
```


Related Commands

Command	Description
ipv6 nd cache expire	Configures the duration of time before an IPv6 neighbor discovery (ND) cache entry expires.
ipv6 nd na glean	Configures neighbor discovery to glean an entry from an unsolicited neighbor advertisement.
show ipv6 interface	Displays the usability status of interfaces that are configured for IPv6.

ipv6 nd reachable-time

To configure the amount of time that a remote IPv6 node is considered reachable after some reachability confirmation event has occurred, use the ipv6 nd reachable-time command in interface configuration mode. To restore the default time, use the no form of this command.
ipv6 nd reachable-time milliseconds no ipv6 nd reachable-time

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

milliseconds	The amount of time that a remote IPv6 node is considered reachable (in milliseconds).

0 milliseconds (unspecified) is advertised in router advertisements and the value 30000 (30 seconds) is used for the neighbor discovery activity of the router itself.

Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The configured time enables the router to detect unavailable neighbors. Shorter configured times enable the router to detect unavailable neighbors more quickly; however, shorter times consume more IPv6 network bandwidth and processing resources in all IPv6 network devices. Very short configured times are not recommended in normal IPv6 operation.

The configured time is included in all router advertisements sent out of an interface so that nodes on the same link use the same time value. A value of 0 means indicates that the configured time is unspecified by this router.

The following example configures an IPv6 reachable time of 1,700,000 milliseconds for Ethernet interface $0 / 0$:
(config) \# interface ethernet 0/0
(config-if) \# ipv6 nd reachable-time 1700000

Command	Description
show ipv6 interface	Displays the usability status of interfaces configured for IPv6.

ipv6 nd resolution data limit

To configure the number of data packets queued pending Neighbor Discovery resolution, use the ipv6 nd resolution data limit command in global configuration mode.
ipv6 nd resolution data limit number-of-packets
no ipv6 nd resolution data limit number-of-packets

Syntax Description

number-of-packets	The number of queued data packets. The range is from 16 to 2048 packets.

$\overline{\text { Command Default }}$

Command History

Usage Guidelines

The ipv6 nd resolution data limit command allows the customer to configure the number of data packets queued pending Neighbor Discovery resolution. IPv6 Neighbor Discovery queues a data packet that initiates resolution for an unresolved destination. Neighbor Discovery will only queue one packet per destination.
Neighbor Discovery also enforces a global (per-router) limit on the number of packets queued. Once the global queue limit is reached, further packets to unresolved destinations are discarded. The minimum (and default) value is 16 packets, and the maximum value is 2048.

In most situations, the default value of 16 queued packets pending Neighbor Discovery resolution is sufficient. However, in some high-scalability scenarios in which the router needs to initiate communication with a very large number of neighbors almost simultaneously, then the value may be insufficient. This may lead to loss of the initial packet sent to some neighbors. In most applications, the initial packet is retransmitted, so initial packet loss generally is not a cause for concern. (Note that dropping the initial packet to an unresolved destination is normal in IPv4.) However, there may be some high-scale configurations where loss of the initial packet is inconvenient. In these cases, the customer can use the ipv6 nd resolution data limit command to prevent the initial packet loss by increasing the unresolved packet queue size.

$\overline{\text { Examples }}$

The following example configures the global number of data packets held awaiting resolution to be 32:
(config) \# ipv6 nd resolution data limit 32

ipv6 nd route-owner

To insert Neighbor Discovery-learned routes into the routing table with "ND" status and to enable ND autoconfiguration behavior, use the ipv6 nd route-owner command. To remove this information from the routing table, use the no form of this command.
ipv6 ndroute-owner
This command has no arguments or keywords.
Syntax Description
The status of Neighbor Discovery-learned routes is "Static."
Command Default
Global configuration (config)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
The ipv6 nd route-owner command inserts routes learned by Neighbor Discovery into the routing table with a status of "ND" rather than "Static" or "Connected."

This global command also enables you to use the ipv6 nd autoconfig default or ipv6 nd autoconfig prefix commands in interface configuration mode. If the ipv6 nd route-owner command is not issued, then the ipv6 nd autoconfig default and ipv6 nd autoconfig prefix commands are accepted by the router but will not work.

Examples

Related Commands

Command	Description
ipv6 nd autoconfig default	Allows Neighbor Discovery to install a default route to the Neighbor Discovery-derived default router.
ipv6 nd autoconfig prefix	Uses Neighbor Discovery to install all valid on-link prefixes from RAs received on the interface.

ipv6 neighbor

To configure a static entry in the IPv6 neighbor discovery cache, use the ipv6 neighbor command in global configuration mode. To remove a static IPv6 entry from the IPv6 neighbor discovery cache, use the no form of this command.
ipv6 neighbor ipv6-address interface-type interface-number hardware-address no ipv6 neighbor ipv6-address interface-type interface-number

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines

ipv6-address	The IPv6 address that corresponds to the local data-link address. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
interface-type	The specified interface type. For supported interface types, use the question mark (?) online help function.
interface-number	The specified interface number.
hardware-address	The local data-link address (a 48-bit address).

Static entries are not configured in the IPv6 neighbor discovery cache.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The ipv6 neighbor command is similar to the arp (global) command.
If an entry for the specified IPv6 address already exists in the neighbor discovery cache--learned through the IPv6 neighbor discovery process--the entry is automatically converted to a static entry.

Use the show ipv6 neighbors command to view static entries in the IPv6 neighbor discovery cache. A static entry in the IPv6 neighbor discovery cache can have one of the following states:

- INCMP (Incomplete)--The interface for this entry is down.
- REACH (Reachable)--The interface for this entry is up.

Note Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP and REACH states are different for dynamic and static cache entries. See the show ipv6 neighbors command for descriptions of the INCMP and REACH states for dynamic cache entries.

The clear ipv6 neighbors command deletes all entries in the IPv6 neighbor discovery cache, except static entries. The no ipv6 neighbor command deletes a specified static entry from the neighbor discovery cache; the command does not remove dynamic entries--learned from the IPv6 neighbor discovery process--from the
cache. Disabling IPv6 on an interface by using the no ipv6 enable command or the no ipv6 unnumbered command deletes all IPv6 neighbor discovery cache entries configured for that interface, except static entries (the state of the entry changes to INCMP).
Static entries in the IPv6 neighbor discovery cache are not modified by the neighbor discovery process.

Note Static entries for IPv6 neighbors can be configured only on IPv6-enabled LAN and ATM LAN Emulation interfaces.

Examples

The following example configures a static entry in the IPv6 neighbor discovery cache for a neighbor with the IPv6 address 2001:0DB8::45A and link-layer address 0002.7 D 1 A .9472 on Ethernet interface 1 :
(config)\# ipv6 neighbor 2001:0DB8::45A ethernet1 0002.7D1A. 9472

Related Commands

Command	Description
arp (global)	Adds a permanent entry in the ARP cache.
clear ipv6 neighbors	Deletes all entries in the IPv6 neighbor discovery cache, except static entries.
no ipv6 enable	Disables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.
no ipv6 unnumbered	Disables IPv6 on an unnumbered interface.
show ipv6 neighbors	Displays IPv6 neighbor discovery cache information.

ipv6 ospf name-lookup

To display Open Shortest Path First (OSPF) router IDs as Domain Naming System (DNS) names, use the ipv6 ospf name-lookup command in global configuration mode. To stop displaying OSPF router IDs as DNS names, use the no form of this command.
ipv6 ospf name-lookup no ipv6 ospf name-lookup

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines
This command makes it easier to identify a router because the router is displayed by name rather than by its router ID or neighbor ID.

Examples

The following example configures OSPF to look up DNS names for use in all OSPF show EXEC command displays:
(config)\# ipv6 ospf name-lookup

ipv6 pim

To reenable IPv6 Protocol Independent Multicast (PIM) on a specified interface, use the ipv6 pim command in interface configuration mode. To disable PIM on a specified interface, use the no form of the command.
ipv6 pim
no ipv6 pim
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Default
PIM is automatically enabled on every interface.

Command Modes	Interface configuration (config-if)	
Command History	Release	Modification
	Cisco IOS XE Everest $16.5 .1 a$	This command was introduced.

Usage Guidelines

After a user has enabled the ipv6 multicast-routing command, PIM is enabled to run on every interface. Because PIM is enabled on every interface by default, use the no form of the ipv6 pim command to disable PIM on a specified interface. When PIM is disabled on an interface, it does not react to any host membership notifications from the Multicast Listener Discovery (MLD) protocol.

Examples

The following example turns off PIM on Fast Ethernet interface $1 / 0$:
(config) \# interface FastEthernet 1/0
(config-if) \# no ipv6 pim

Related Commands

Command	Description
ipv6 multicast-routing	Enables multicast routing using PIM and MLD on all IPv6-enabled interfaces of the router and enables multicast forwarding.

ipv6 pim accept-register

To accept or reject registers at the rendezvous point (RP), use the ipv6 pim accept-register command in global configuration mode. To return to the default value, use the no form of this command.
ipv6 pim [vrf vrf-name] accept-register \{list access-list | route-map map-name\} no ipv6 pim [vrf vrf-name] accept-register \{list access-list | route-map map-name\}

Syntax Description

vrf \quad vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
list access-list	Defines the access list name.
route-map map-name	Defines the route map.

Command Default
Command Modes
Command History

Usage Guidelines

Use the ipv6 pim accept-register command to configure a named access list or route map with match attributes. When the permit conditions as defined by the access-list and map-name arguments are met, the register message is accepted. Otherwise, the register message is not accepted, and an immediate register-stop message is returned to the encapsulating designated router.

The following example shows how to filter on all sources that do not have a local multicast Border Gateway Protocol (BGP) prefix:

```
ipv6 pim accept-register route-map reg-filter
route-map reg-filter permit 20
    match as-path 101
ip as-path access-list }101\mathrm{ permit
```


ipv6 pim allow-rp

To enable the PIM Allow RP feature for all IP multicast-enabled interfaces in an IPv6 device, use the ip pim allow-rp command in global configuration mode. To return to the default value, use the no form of this command.
ipv6 pim allow-rp [\{group-list access-list| rp-list access-list [group-list access-list]\}] no ipv6 pim allow-rp

Syntax Description

group-list	(Optional) Identifies an access control list (ACL) of allowed group ranges for PIM Allow RP.
rp-list	(Optional) Specifies an ACL for allowed rendezvous-point (RP) addresses for PIM Allow RP.
access-list	(Optional) Unique number or name of a standard ACL.

Command Default
Command Modes
Command History

Usage Guidelines

Related Commands

Use this command to enable the receiving device in an IP multicast network to accept a (*, G) Join from an unexpected (different) RP address. Before enabling PIM Allow RP, you must first use the ipv6 pim rp-address command to define an RP.
PIM Allow RP is disabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Command	Description
ipv6 pim rp-address	Statically configures the address of a PIM RP for multicast groups.

ipv6 pim neighbor-filter list

To filter Protocol Independent Multicast (PIM) neighbor messages from specific IPv6 addresses, use the ipv6 pim neighbor-filter command in the global configuration mode. To return to the router default, use the no form of this command.
ipv6 pim [vrf vrf-name] neighbor-filter list access-list no ipv6 pim [vrf vrf-name] neighbor-filter list access-list

Syntax Description

vrf \quad vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
access-list	Name of an IPv6 access list that denies PIM hello packets from a source.

Command Default

PIM neighbor messages are not filtered.

Command Modes

Global configuration (config)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

The ipv6 pim neighbor-filter list command is used to prevent unauthorized routers on the LAN from becoming PIM neighbors. Hello messages from addresses specified in this command are ignored.

Examples

The following example causes PIM to ignore all hello messages from IPv6 address FE80::A8BB:CCFF:FE03:7200:

```
(config)# ipv6 pim neighbor-filter list nbr_filter_acl
(config)# ipv6 access-list nbr_filter_acl
(config-ipv6-acl)# deny ipv6 host FE80::A8BB:CCFF:FE03:7200 any
(config-ipv6-acl) # permit any any
```


ipv6 pim rp-address

To configure the address of a Protocol Independent Multicast (PIM) rendezvous point (RP) for a particular group range, use the ipv6 pim rp-address command in global configuration mode. To remove an RP address, use the no form of this command.
ipv6 pim [vrf vrf-name] rp-address ipv6-address [group-access-list] [bidir] no ipv6 pim rp-address ipv6-address [group-access-list] [bidir]

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
ipv6-address	The IPv6 address of a router to be a PIM RP. The ipv6-addressargument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
group-access-list	(Optional) Name of an access list that defines for which multicast groups the RP should be used. If the access list contains any group address ranges that overlap the assigned source-specific multicast (SSM) group address range (FF3x::/96), a warning message is displayed, and the overlapping ranges are ignored. If no access list is specified, the specified RP is used for all valid multicast non-SSM address ranges. To support embedded RP, the router configured as the RP must use a configured access list that permits the embedded RP group ranges derived from the embedded RP address. Note that the embedded RP group ranges need not include all the scopes (for example, 3 through 7).
bidir	(Optional) Indicates that the group range will be used for bidirectional shared-tree forwarding; otherwise, it will be used for sparse-mode forwarding. A single IPv6 address can be configured to be RP only for either bidirectional or sparse-mode group ranges. A single group-range list can be configured to operate either in bidirectional or sparse mode.

No PIM RPs are preconfigured. Embedded RP support is enabled by default when IPv6 PIM is enabled (where embedded RP support is provided). Multicast groups operate in PIM sparse mode.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1aCisco IOS XE Everest 16.5.1a	This command was introduced.

When PIM is configured in sparse mode, you must choose one or more routers to operate as the RP. An RP is a single common root of a shared distribution tree and is statically configured on each router.

Where embedded RP support is available, only the RP needs to be statically configured as the RP for the embedded RP ranges. No additional configuration is needed on other IPv6 PIM routers. The other routers will
discover the RP address from the IPv6 group address. If these routers want to select a static RP instead of the embedded RP, the specific embedded RP group range must be configured in the access list of the static RP.
The RP address is used by first-hop routers to send register packets on behalf of source multicast hosts. The RP address is also used by routers on behalf of multicast hosts that want to become members of a group. These routers send join and prune messages to the RP.

If the optional group-access-list argument is not specified, the RP is applied to the entire routable IPv6 multicast group range, excluding SSM, which ranges from FFX[3-f]::/8 to FF3X::/96. If the group-access-list argument is specified, the IPv6 address is the RP address for the group range specified in the group-access-list argument.

You can configure Cisco IOS software to use a single RP for more than one group. The conditions specified by the access list determine which groups the RP can be used for. If no access list is configured, the RP is used for all groups.

A PIM router can use multiple RPs, but only one per group.

Examples
 The following example shows how to set the PIM RP address to 2001::10:10 for all multicast groups:

```
(config)# ipv6 pim rp-address 2001::10:10
```

The following example sets the PIM RP address to 2001::10:10 for the multicast group FF04::/64 only:

```
(config)# ipv6 access-list acc-grp-1
(config-ipv6-acl)# permit ipv6 any ff04::/64
(config)# ipv6 pim rp-address 2001::10:10 acc-grp-1
```

The following example shows how to configure a group access list that permits the embedded RP ranges derived from the IPv6 RP address 2001:0DB8:2::2:

```
(config)# ipv6 pim rp-address 2001:0DB8:2::2 embd-ranges
(config)# ipv6 access-list embd-ranges
(config-ipv6-acl)# permit ipv6 any ff73:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff74:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff75:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff76:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff77:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff78:240:2:2:2::/96
```

The following example shows how to enable the address $100:: 1$ as the bidirectional RP for the entries multicast range $\mathrm{FF}:: / 8$:
ipv6 pim rp-address 100::1 bidir
In the following example, the IPv6 address $200:: 1$ is enabled as the bidirectional RP for the ranges permitted by the access list named bidir-grps. The ranges permitted by this list are ff05::/16 and ff06::/16.

```
(config)# ipv6 access-list bidir-grps
(config-ipv6-acl)# permit ipv6 any ff05::/16
(config-ipv6-acl)# permit ipv6 any ff06::/16
(config-ipv6-acl)# exit
(config)# ipv6 pim rp-address 200::1 bidir-grps bidir
```

Related Commands	Command	Description
	debug ipv6 pim df-election	Displays debug messages for PIM bidirectional DF-election message processing.
ipv6 access-list	Defines an IPv6 access list and places the router in IPv6 access list configuration mode.	
show ipv6 pim df	Displays the DF -election state of each interface for each RP.	
show ipv6 pim df winner	Displays the DF-election winner on each interface for each RP.	

ipv6 pim rp embedded

To enable embedded rendezvous point (RP) support in IPv6 Protocol Independent Multicast (PIM), use the ipv6 pim rp-embedded command in global configuration mode. To disable embedded RP support, use the no form of this command.
ipv6 pim [vrf vrf-name] rp embedded no ipv6 pim [vrf vrf-name] rp embedded

Syntax Description

Command Default	Embedded RP support is enabled by default.	
Command Modes	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Because embedded RP support is enabled by default, users will generally use the no form of this command to turn off embedded RP support.

The ipv6 pim rp embedded command applies only to the embedded RP group ranges ff7X::/16 and fffX::/16. When the router is enabled, it parses groups in the embedded RP group ranges ff $7 \mathrm{X}:: / 16$ and fffX::/16, and extracts the RP to be used from the group address.

The following example disables embedded RP support in IPv6 PIM:

```
# no ipv6 pim rp embedded
```


ipv6 pim spt-threshold infinity

To configure when a Protocol Independent Multicast (PIM) leaf router joins the shortest path tree (SPT) for the specified groups, use the ipv6 pim spt-threshold infinity command in global configuration mode. To restore the default value, use the no form of this command.
ipv6 pim [vrf vrf-name] spt-threshold infinity [group-list access-list-name] no ipv6 pim spt-threshold infinity

Syntax Description

vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.
group-list access-list-name	(Optional) Indicates to which groups the threshold applies. Must be a standard IPv6 access list name. If the value is omitted, the threshold applies to all groups.

Command Default

Command Modes

Command History
When this command is not used, the PIM leaf router joins the SPT immediately after the first packet arrives from a new source. Once the router has joined the SPT, configuring the ipv6 pim spt-threshold infinity command will not cause it to switch to the shared tree.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

Usage Guidelines

Using the ipv6 pim spt-threshold infinitycommand enables all sources for the specified groups to use the shared tree. The group-list keyword indicates to which groups the SPT threshold applies.

The access-list-nameargument refers to an IPv6 access list. When the access-list-nameargument is specified with a value of 0 , or the group-list keyword is not used, the SPT threshold applies to all groups. The default setting (that is, when this command is not enabled) is to join the SPT immediately after the first packet arrives from a new source.

The following example configures a PIM last-hop router to stay on the shared tree and not switch to the SPT for the group range ff04::/64.:
(config) \# ipv6 access-list acc-grp-1
(config-ipv6-acl)\# permit ipv6 any FF04::/64
(config-ipv6-acl) \# exit
(config) \# ipv6 pim spt-threshold infinity group-list acc-grp-1

ipv6 prefix-list

To create an entry in an IPv6 prefix list, use the ipv6 prefix-list command in global configuration mode. To delete the entry, use the no form of this command.
ipv6 prefix-list list-name [seq seq-number] \{deny ipv6-prefix/prefix-length |permit ipv6-prefix/prefix-length \mid description text $\}$ [ge ge-value] [le le-value] no ipv6 prefix-list list-name

Syntax Description

list-name	Name of the prefix list. - Cannot be the same name as an existing access list. - Cannot be the name "detail" or "summary" because they are keywords in the show ipv6 prefix-list command.
seq seq-number	(Optional) Sequence number of the prefix list entry being configured.
deny	Denies networks that matches the condition.
permit	Permits networks that matches the condition.
ipv6-prefix	The IPv6 network assigned to the specified prefix list. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
Iprefix-length	The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
description text	A description of the prefix list that can be up to 80 characters in length.
ge ge-value	(Optional) Specifies a prefix length greater than or equal to the ipv6-prefix/prefix-length arguments. It is the lowest value of a range of the length (the "from" portion of the length range).
le le-value	(Optional) Specifies a prefix length less than or equal to the ipv6-prefix/prefix-length arguments. It is the highest value of a range of the length (the "to" portion of the length range).

$\overline{\text { Command Default }}$	No prefix list is created.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest $16.5 .1 a$	This command was introduced.

Usage Guidelines

The ipv6 prefix-list command is similar to the ip prefix-list command, except that it is IPv6-specific.
To suppress networks from being advertised in updates, use the distribute-list out command.
The sequence number of a prefix list entry determines the order of the entries in the list. The router compares network addresses to the prefix list entries. The router begins the comparison at the top of the prefix list, with the entry having the lowest sequence number.

If multiple entries of a prefix list match a prefix, the entry with the lowest sequence number is considered the real match. Once a match or deny occurs, the router does not go through the rest of the prefix list. For efficiency, you may want to put the most common permits or denies near the top of the list, using the seq-number argument.

The show ipv6 prefix-list command displays the sequence numbers of entries.
IPv6 prefix lists are used to specify certain prefixes or a range of prefixes that must be matched before a permit or deny statement can be applied. Two operand keywords can be used to designate a range of prefix lengths to be matched. A prefix length of less than, or equal to, a value is configured with the le keyword. A prefix length greater than, or equal to, a value is specified using the ge keyword. The ge and le keywords can be used to specify the range of the prefix length to be matched in more detail than the usual
ipv6-prefix/prefix-length argument. For a candidate prefix to match against a prefix list entry three conditions can exist:

- The candidate prefix must match the specified prefix list and prefix length entry.
- The value of the optional le keyword specifies the range of allowed prefix lengths from the prefix-length argument up to, and including, the value of the le keyword.
- The value of the optional ge keyword specifies the range of allowed prefix lengths from the value of the ge keyword up to, and including, 128.

Note The first condition must match before the other conditions take effect.
An exact match is assumed when the ge or le keywords are not specified. If only one keyword operand is specified then the condition for that keyword is applied, and the other condition is not applied. The prefix-length value must be less than the ge value. The ge value must be less than, or equal to, the le value. The le value must be less than or equal to 128 .

Every IPv6 prefix list, including prefix lists that do not have any permit and deny condition statements, has an implicit deny any any statement as its last match condition.
$\overline{\text { Examples }} \quad$ The following example denies all routes with a prefix of $:: / 0$.
(config) \# ipv6 prefix-list abc deny ::/0
The following example permits the prefix 2002::/16:
(config) \# ipv6 prefix-list abc permit 2002::/16
The following example shows how to specify a group of prefixes to accept any prefixes from prefix 5F00::/48 up to and including prefix 5F00::/64.

```
(config)# ipv6 prefix-list abc permit 5F00::/48 le 64
```

The following example denies prefix lengths greater than 64 bits in routes that have the prefix 2001:0DB8::/64.
(config) \# ipv6 prefix-list abc permit 2001:0DB8::/64 le 128
The following example permits mask lengths from 32 to 64 bits in all address space.
(config) \# ipv6 prefix-list abc permit : :/0 ge 32 le 64
The following example denies mask lengths greater than 32 bits in all address space.
(config) \# ipv6 prefix-list abc deny ::/0 ge 32
The following example denies all routes with a prefix of 2002::/128.
(config) \# ipv6 prefix-list abc deny 2002::/128
The following example permits all routes with a prefix of $:: / 0$.
(config) \# ipv6 prefix-list abc permit : :/0

Related Commands	Command	Description
	clear ipv6 prefix-list	Resets the hit count of the IPv6 prefix list entries.
distribute-list out	Suppresses networks from being advertised in updates.	
ipv6 prefix-list sequence-number	Enables the generation of sequence numbers for entries in an IPv6 prefix list.	
match ipv6 address	Distributes IPv6 routes that have a prefix permitted by a prefix list.	
show ipv6 prefix-list	Displays information about an IPv6 prefix list or IPv6 prefix list entries.	

ipv6 source-guard attach-policy

To apply IPv6 source guard policy on an interface, use the ipv6 source-guard attach-policy in interface configuration mode. To remove this source guard from the interface, use the no form of this command.
ipv6 source-guard attach-policy[source-guard-policy]

Syntax Description

Command Default

Command Modes

Command History
source-guard-policy (Optional) User-defined name of the source guard policy. The policy name can be a symbolic string (such as Engineering) or an integer (such as 0).

An IPv6 source-guard policy is not applied on the interface.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

If no policy is specified using the source-guard-policy argument, then the default source-guard policy is applied.

A dependency exists between IPv6 source guard and IPv6 snooping. Whenever IPv6 source guard is configured, when the ipv6 source-guard attach-policy command is entered, it verifies that snooping is enabled and issues a warning if it is not. If IPv6 snooping is disabled, the software checks if IPv6 source guard is enabled and sends a warning if it is.

The following example shows how to apply IPv6 source guard on an interface:
(config) \# interface gigabitethernet 0/0/1
(config-if) \# ipv6 source-guard attach-policy mysnoopingpolicy

Command	Description
ipv6 snooping policy	Configures an IPv6 snooping policy and enters IPv6 snooping configuration mode.

ipv6 source-route

To enable processing of the IPv6 type 0 routing header (the IPv6 source routing header), use the ipv6 source-route command in global configuration mode. To disable the processing of this IPv6 extension header, use the no form of this command.

ipv6 source-route

no ipv6 source-route

Syntax Description

This command has no arguments or keywords.

Command Default

The no version of the ipv6 source-route command is the default. When the router receives a packet with a type 0 routing header, the router drops the packet and sends an IPv6 Internet Control Message Protocol (ICMP) error message back to the source and logs an appropriate debug message.

Command Modes

Command History

Usage Guidelines

The default was changed to be the no version of the ipv6 source-route command, which means this functionality is not enabled. Before this change, this functionality was enabled automatically. User who had configured the no ipv6 source-route command before the default was changed will continue to see this configuration in their show config command output, even though the no version of the command is the default.

The no ipv6 source-route command (which is the default) prevents hosts from performing source routing using your routers. When the no ipv6 source-route command is configured and the router receives a packet with a type0 source routing header, the router drops the packet and sends an IPv6 ICMP error message back to the source and logs an appropriate debug message.

In IPv6, source routing is performed only by the destination of the packet. Therefore, in order to stop source routing from occurring inside your network, you need to configure an IPv6 access control list (ACL) that includes the following rule:

```
deny ipv6 any any routing
```

The rate at which the router generates all IPv6 ICMP error messages can be limited by using the ipv6 icmp error-intervalcommand.

The following example disables the processing of IPv6 type 0 routing headers:
no ipv6 source-route

Related Commands

Command	Description
deny (IPv6)	Sets deny conditions for an IPv6 access list.
ipv6 icmp error-interval	Configures the interval for IPv6 ICMP error messages.

ipv6 spd mode

To configure an IPv6 Selective Packet Discard (SPD) mode, use the ipv6 spd mode command in global configuration mode. To remove the IPv6 SPD mode, use the no form of this command.
ipv6 spd mode \{aggressive |tos protocol ospf\} no ipv6 spd mode \{aggressive | tos protocol ospf\}

Syntax Description

Command Default
 Command Modes
 Command History

aggressive	Aggressive drop mode discards incorrectly formatted packets when the IPv6 SPD is in random drop state.
tos protocol o spf	OSPF mode allows OSPF packets to be handled with SPD priority.

No IPv6 SPD mode is configured.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

Examples

Related Commands

The default setting for the IPv6 SPD mode is none, but you may want to use the ipv6 spd mode command to configure a mode to be used when a certain SPD state is reached.

The aggressive keyword enables aggressive drop mode, which drops deformed packets when IPv6 SPD is in random drop state. The ospf keyword enables OSPF mode, in which OSPF packets are handled with SPD priority.

The size of the process input queue governs the SPD state: normal (no drop), random drop, or max. When the process input queue is less than the SPD minimum threshold, SPD takes no action and enters normal state. In the normal state, no packets are dropped. When the input queue reaches the maximum threshold, SPD enters max state, in which normal priority packets are discarded. If the input queue is between the minimum and maximum thresholds, SPD enters the random drop state, in which normal packets may be dropped.

The following example shows how to enable the router to drop deformed packets when the router is in the random drop state:
(config) \# ipv6 spf mode aggressive

Command	Description
ipv6 spd queue max-threshold	Configures the maximum number of packets in the IPv6 SPD process input queue.
ipv6 spd queue min-threshold	Configures the minimum number of packets in the IPv6 SPD process input queue.
show ipv6 spd	Displays the IPv6 SPD configuration.

ipv6 spd queue max-threshold

To configure the maximum number of packets in the IPv6 Selective Packet Discard (SPD) process input queue, use the ipv6 spd queue max-threshold command in global configuration mode. To return to the default value, use the no form of this command.
ipv6 spd queue max-threshold value no ipv6 spd queue max-threshold

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines

value	Number of packets. The range is from 0 through 65535.

No SPD queue maximum threshold value is configured.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1aCisco IOS XE Everest 16.5.1a	This command was introduced.

Use the ipv6 spd queue max-threshold command to configure the SPD queue maximum threshold value.
The size of the process input queue governs the SPD state: normal (no drop), random drop, or max. When the process input queue is less than the SPD minimum threshold, SPD takes no action and enters normal state. In the normal state, no packets are dropped. When the input queue reaches the maximum threshold, SPD enters max state, in which normal priority packets are discarded. If the input queue is between the minimum and maximum thresholds, SPD enters the random drop state, in which normal packets may be dropped.

The following example shows how to set the maximum threshold value of the queue to 60,000 :
(config) \# ipv6 spd queue max-threshold 60000

Related Commands

Command	Description
ipv6 spd queue min-threshold	Configures the minimum number of packets in the IPv6 SPD process input queue.
show ipv6 spd	Displays the IPv6 SPD configuration.

ipv6 traffic interface-statistics

To collect IPv6 forwarding statistics for all interfaces, use the ipv6 traffic interface-statistics command in global configuration mode. To ensure that IPv6 forwarding statistics are not collected for any interface, use the no form of this command.
ipv6 traffic interface-statistics [unclearable] no ipv6 traffic interface-statistics [unclearable]

Syntax Description

Command Default
Command Modes
Command History
unclearable (Optional) IPv6 forwarding statistics are kept for all interfaces, but it is not possible to clear the statistics on any interface.

IPv6 forwarding statistics are collected for all interfaces.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Using the optional unclearable keyword halves the per-interface statistics storage requirements.

The following example does not allow statistics to be cleared on any interface:
(config) \# ipv6 traffic interface-statistics unclearable

ipv6 unicast-routing

To enable the forwarding of IPv6 unicast datagrams, use the ipv6 unicast-routing command in global configuration mode. To disable the forwarding of IPv6 unicast datagrams, use the no form of this command.
ipv6 unicast-routing no ipv6 unicast-routing

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

This command has no arguments or keywords.

IPv6 unicast routing is disabled.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Configuring the no ipv6 unicast-routing command removes all IPv6 routing protocol entries from the IPv6 routing table.

Examples

Related Commands

The following example enables the forwarding of IPv6 unicast datagrams:
(config) \# ipv6 unicast-routing

Command	Description
ipv6 address link-local	Configures an IPv6 link-local address for an interface and enables IPv6 processing on the interface.
ipv6 address eui-64	Configures an IPv6 address and enables IPv6 processing on an interface using an EUI-64 interface ID in the low-order 64 bits of the address.
ipv6 enable	Enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.
ipv6 unnumbered	Enables IPv6 processing on an interface without assigning an explicit IPv6 address to the interface.
show ipv6 route	Displays the current contents of the IPv6 routing table.

key chain

To define an authentication key chain needed to enable authentication for routing protocols and enter key-chain configuration mode, use the key chain command in global configuration mode. To remove the key chain, use the no form of this command.
key chain name-of-chain
no key chain name-of-chain

Syntax Description

Command Default

Command Modes

Usage Guidelines
name-of-chain
Name of a key chain. A key chain must have at least one key and can have up to 2147483647 keys.

No key chain exists.

Global configuration (config)

You must configure a key chain with keys to enable authentication.
Although you can identify multiple key chains, we recommend using one key chain per interface per routing protocol. Upon specifying the key chain command, you enter key chain configuration mode.

The following example shows how to specify key chain:

Device(config-keychain-key) \# key-string chestnut

Related Commands

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
key	Identifies an authentication key on a key chain.
key-string (authentication)	Specifies the authentication string for a key.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
show key chain	Displays authentication key information.

key-string (authentication)

To specify the authentication string for a key, use the key-string(authentication) command in key chain key configuration mode. To remove the authentication string, use the no form of this command.
key-string key-string text no key-string text

Syntax Description
$\overline{\text { Command Default }}$

Examples

Related Commands
text Authentication string that must be sent and received in the packets using the routing protocol being authenticated. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters.

No authentication string for a key exists.
Key chain key configuration (config-keychain-key)

The following example shows how to specify the authentication string for a key:

Device(config-keychain-key) \# key-string key1

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
key	Identifies an authentication key on a key chain.
key chain	Defines an authentication key-chain needed to enable authentication for routing protocols.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
show key chain	Displays authentication key information.

Syntax Description

Command Default

Command Modes

Usage Guidelines

To identify an authentication key on a key chain, use the key command in key-chain configuration mode. To remove the key from the key chain, use the no form of this command.
key key-id
no key key-id
key-id \quad Identification number of an authentication key on a key chain. The range of keys is from 0 to 2147483647. The key identification numbers need not be consecutive.

No key exists on the key chain.
Key-chain configuration (config-keychain)
It is useful to have multiple keys on a key chain so that the software can sequence through the keys as they become invalid after time, based on the accept-lifetime and send-lifetime key chain key command settings.

Each key has its own key identifier, which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use. Only one authentication packet is sent, regardless of the number of valid keys. The software starts looking at the lowest key identifier number and uses the first valid key.
If the last key expires, authentication will continue and an error message will be generated. To disable authentication, you must manually delete the last valid key.
To remove all keys, remove the key chain by using the no key chain command.

Examples

The following example shows how to specify a key to identify authentication on a key-chain:

Device(config-keychain) \# key 1

Related Commands

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
key chain	Defines an authentication key chain needed to enable authentication for routing protocols.
key-string (authentication)	Specifies the authentication string for a key.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
show key chain	Displays authentication key information.

show ip nat translations

To display active Network Address Translation (NAT) translations, use the show ip nat translations command in EXEC mode.
show ip nat translations [inside global-ip] [outside local-ip] [icmp] [tcp] [udp] [verbose] [vrf vrf-name]

Syntax Description

icmp	(Optional) Displays Internet Control Message Protocol (ICMP) entries.
inside global-ip	(Optional) Displays entries for only a specific inside global IP address.
outside local-ip	(Optional) Displays entries for only a specific outside local IP address.
tcp	(Optional) Displays TCP protocol entries.
udp	(Optional) Displays User Datagram Protocol (UDP) entries.
verbose	(Optional) Displays additional information for each translation table entry, including how long ago the entry was created and used.
vrf vrf-name	(Optional) Displays VPN routing and forwarding (VRF) traffic-related information.

Command Modes

Command History

 Command HistoryEXEC

| Release \quad Modification |
| :--- | :--- |

Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

Examples

The following is sample output from the show ip nat translations command. Without overloading, two inside hosts are exchanging packets with some number of outside hosts.

```
Router# show ip nat translations
Pro Inside global 
--- 10.69.233.210 192.168.1.89 --- --
```

With overloading, a translation for a Domain Name Server (DNS) transaction is still active, and translations for two Telnet sessions (from two different hosts) are also active. Note that two different inside hosts appear on the outside with a single IP address.

```
Router# show ip nat translations
Pro Inside global Inside local Outside local Outside global
udp 10.69.233.209:1220 192.168.1.95:1220 172.16.2.132:53 172.16.2.132:53
tcp 10.69.233.209:11012 192.168.1.89:11012 172.16.1.220:23 172.16.1.220:23
tcp 10.69.233.209:1067 192.168.1.95:1067 172.16.1.161:23 172.16.1.161:23
```

The following is sample output that includes the verbose keyword:

```
Router# show ip nat translations verbose
\begin{tabular}{|c|c|c|c|c|}
\hline & de & de local & e local & global \\
\hline udp & 172.16.233.209:1220 & 192.168.1.95:1220 & 172.16.2.132:53 & 172.16.2.132:53 \\
\hline & create 00:00:02, & use 00:00:00, fl & : extended & \\
\hline tcp & \[
\begin{array}{r}
172.16 .233 .209: 11012 \\
\text { create } 00: 01: 13,
\end{array}
\] & \[
\begin{aligned}
& 192.168 .1 .89: 1101 \\
& \text { use 00:00:50, fla }
\end{aligned}
\] & \begin{tabular}{l}
172.16.1.220:23 \\
s: extended
\end{tabular} & 172.16.1.220:23 \\
\hline tcp & 172.16.233.209:1067 & 192.168.1.95:1067 & 172.16.1.161:23 & 172.16.1.161:23 \\
\hline & create 00:00:02 & use 00:00:00, fl & extended & \\
\hline
\end{tabular}
```

The following is sample output that includes the vrf keyword:

```
Router# show ip nat translations vrf
abc
Pro Inside global Inside local
--- 10.2.2.1
    192.168.121.113
    Outside local
        ---
--- 10.2.2.2
--- 10.2.2.11
    192.168.122.49
    192.168.11.1
    192.168.11.3
    172.16.5.20
    Inside local
    192.168.121.113
    ---
--- 10.2.2.12
    ---
    ---
    ---
--- 10.2.2.13
Pro Inside global
    Outside local
--- 10.2.2.3
    192.168.121.113
    ---
    Outside global
    ---
    ---
    Outside global
    ---
--- 10.2.2.4
```

The following is sample output that includes the insidekeyword:

```
Router# show ip nat translations inside 10.69.233.209
Pro Inside global 
```

The following is sample output when NAT that includes the insidekeyword:

```
Router# show ip nat translations inside 10.69.233.209
Pro Inside global 
```

The following is a sample output that displays information about NAT port parity and conservation:

Router\# show ip nat translations Pro Inside global								Inside local	Outside local	Outside global
udp	$200.200 .0 .100: 5066$	$100.100 .0 .56: 5066$	$200.200 .0 .56: 5060$	$200.200 .0 .56: 5060$						
udp	$200.200 .0 .100: 1025$	$100.100 .0 .57: 10001$	$200.200 .0 .57: 10001$	$200.200 .0 .57: 10001$						
udp	$200.200 .0 .100: 10000$	$100.100 .0 .56: 10000$	$200.200 .0 .56: 10000$	$200.200 .0 .56: 10000$						
udp $200.200 .0 .100: 1024$	$100.100 .0 .57: 10000$	$200.200 .0 .57: 10000$	$200.200 .0 .57: 10000$							
udp $200.200 .0 .100: 10001$	$100.100 .0 .56: 10001$	$200.200 .0 .56: 10001$	$200.200 .0 .56: 10001$							
udp $200.200 .0 .100: 9985$	$100.100 .0 .57: 5066$	$200.200 .0 .57: 5060$	$200.200 .0 .57: 5060$							

Total number of translations: 6

The table below describes the significant fields shown in the display.

Table 32: show ip nat translations Field Descriptions

Field	Description
Pro	Protocol of the port identifying the address.
Inside global	The legitimate IP address that represents one or more inside local IP addresses to the outside world.

Field	Description
Inside local	The IP address assigned to a host on the inside network; probably not a legitimate address assigned by the Network Interface Card (NIC) or service provider.
Outside local	IP address of an outside host as it appears to the inside network; probably not a legitimate address assigned by the NIC or service provider.
Outside global	The IP address assigned to a host on the outside network by its owner.
create	How long ago the entry was created (in hours:minutes:seconds).
use	How long ago the entry was last used (in hours:minutes:seconds). • extended--Extended translation • static--Static translation • destination--Rotary translation • outside--Outside translation \cdot fliming out--Translation will no longer be used, due to a TCP finish (FIN) or reset (RST) flag.

Related Commands

Command	Description
clear ip nat translation	Clears dynamic NAT translations from the translation table.
ip nat	Designates that traffic originating from or destined for the interface is subject to NAT.
ip nat inside destination	Enables NAT of the inside destination address.
ip nat inside source	Enables NAT of the inside source address.
ip nat outside source	Enables NAT of the outside source address.
ip nat pool	Defines a pool of IP addresses for NAT.
ip nat service	Enables a port other than the default port.
show ip nat statistics	Displays NAT statistics.

show ip nhrp nhs

To display Next Hop Resolution Protocol (NHRP) next hop server (NHS) information, use the show ip nhrp nhscommand in user EXEC or privileged EXEC mode.
show ip nhrp nhs [\{interface $\}$] [detail] [\{redundancy [\{cluster number | preempted | running | waiting $\}$] $\}$]

Syntax Description

interface	(Optional) Displays NHS information currently configured on the interface. See the table below for types, number ranges, and descriptions.
detail	(Optional) Displays detailed NHS information.
redundancy	(Optional) Displays information about NHS redundancy stacks.
cluster number	(Optional) Displays redundancy cluster information.
preempted	(Optional) Displays information about NHS that failed to become active and is preempted.
running	(Optional) Displays NHSs that are currently in Responding or Expecting replies states.
waiting	(Optional) Displays NHSs awaiting to be scheduled.

Command Modes

User EXEC (>)
Privileged EXEC (\#)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
The table below lists the valid types, number ranges, and descriptions for the optional interfaceargument.

Note The valid types can vary according to the platform and interfaces on the platform.

Table 33: Valid Types, Number Ranges, and Interface Descriptions

Valid Types	Number Ranges	Interface Descriptions
ANI	0 to 1000	Autonomic-Networking virtual interface
Auto-Template	1 to 999	Auto-Template interface
Capwap	0 to 2147483647	Control and Provisioning of Wireless Access Points protocol (CAPWAP) tunnel interface

Valid Types	Number Ranges	Interface Descriptions
GMPLS	0 to 1000	Multiprotocol Label Switching (MPLS) interface
GigabitEthernet	0 to 9	GigabitEthernet IEEE 802.3z
InternalInterface	0 to 9	Internal interface LISP interface
loopback	0 to 2147483647	Loopback interface
Null	0 to 0	Null interface
PROTECTION_GROUP	0 to 0	Protection-group controller
Port-channel	1 to 128	Port channel interface
TenGigabitEthernet	0 to 9	TenGigabitEthernet interface
Tunnel	0 to 2147483647	0 to 65535
Tunnel-tp	1 to 4094	MPLS Transport Profile interface interface
Vlan		VLAN interface

Examples

The following is sample output from the show ip nhrp nhs detail command:

```
Switch# show ip nhrp nhs detail
Legend:
    E=Expecting replies
    R=Responding
Tunnel1:
    10.1.1.1 E req-sent 128 req-failed 1 repl-recv 0
Pending Registration Requests:
Registration Request: Reqid 1, Ret 64 NHS 10.1.1.1
```

The table below describes the significant field shown in the display.

Table 34: show ip nhrp nhs Field Descriptions

Field	Description
Tunnel1	Interface through which the target network is reached.

Command	Description
ip nhrp map	Statically configures the IP-to-NBMA address mapping of IP destinations connected to an NBMA network.

Command	Description
show ip nhrp	Displays NHRP mapping information.

show ip ports all

To display all the open ports on a device, use the show ip ports all in user EXEC or privileged EXEC mode.
show ip ports all

| Syntax Description | Syntax Description |
| :--- | :--- | :--- |
| | This command has no arguments or keywords. |

$\overline{\text { Command Default }}$	No default behavior or
$\overline{\text { Command Modes }}$	User EXEC ($>$)
	Privileged EXEC (\#)

Command History

Usage Guidelines

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This command provides a list of all open TCP/IP ports on the system including the ports opened using Cisco networking stack.

To close open ports, you can use one of the following methods:

- Use Access Control List (ACL).
- To close the UDP 2228 port, use the no $\mathbf{1 2}$ traceroute command.
- To close TCP 80, TCP 443, TCP 6970, TCP 8090 ports, use the no ip http server and no ip http secure-server commands.

Examples

The following is sample output from the show ip ports all command:

```
Device#
show ip ports all
Proto Local Address Foreign Address State PID/Program Name
TCB Local Address Foreign Address (state)
tcp *:4786 *:* LISTEN 224/[IOS]SMI IBC server process
tcp *:443 *:* LISTEN 286/[IOS]HTTP CORE
tcp *:443 *:* LISTEN 286/[IOS]HTTP CORE
tcp *:80 *:* LISTEN 286/[IOS]HTTP CORE
tcp *:80 *:* LISTEN 286/[IOS]HTTP CORE
udp *:10002 *:* 0/[IOS] Unknown
udp *:2228 10.0.0.0:0 318/[IOS]L2TRACE SERVER
```

The table below describes the significant fields shown in the display
Table 35: Field Descriptions of show ip ports all

Field	Description
Protocol	Transport protocol used.

Field	Description
Local Address.	Device IP Address.
Foreign Address	Remote or peer address.
State	State of the connection. It can be listen, established or connected.
PID/Program Name	Process ID or name

Related Commands	Command	Description
	show tcp brief all	Displays information about TCP connection endpoints.
show ip sockets	Displays IP sockets information.	

show ipv6 access-list

To display the contents of all current IPv6 access lists, use the show ipv6 access-list command in user EXEC or privileged EXEC mode.
show ipv6 access-list [access-list-name]

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

Examples

access-list-name	(Optional) Name of access list.

All IPv6 access lists are displayed.
User EXEC ($>$)
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1aCisco IOS XE Everest 16.5.1a	This command was introduced.

The show ipv6 access-list command provides output similar to the show ip access-list command, except that it is IPv6-specific.

The following output from the show ipv6 access-list command shows IPv6 access lists named inbound, tcptraffic, and outbound:

```
# show ipv6 access-list
IPv6 access list inbound
        permit tcp any any eq bgp reflect tcptraffic (8 matches) sequence 10
        permit tcp any any eq telnet reflect tcptraffic (15 matches) sequence 20
        permit udp any any reflect udptraffic sequence 30
IPv6 access list tcptraffic (reflexive) (per-user)
    permit tcp host 2001:0DB8:1::1 eq bgp host 2001:0DB8:1::2 eq 11000 timeout 300 (time
            left 243) sequence 1
    permit tcp host 2001:0DB8:1::1 eq telnet host 2001:0DB8:1::2 eq 11001 timeout 300
    (time left 296) sequence 2
IPv6 access list outbound
    evaluate udptraffic
    evaluate tcptraffic
```

The following sample output shows IPv6 access list information for use with IPSec:

```
# show ipv6 access-list
IPv6 access list Tunnel0-head-0-ACL (crypto)
    permit ipv6 any any (34 matches) sequence 1
IPv6 access list Ethernet2/0-ipsecv6-ACL (crypto)
    permit 89 FE80::/10 any (85 matches) sequence 1
```

The table below describes the significant fields shown in the display.

Table 36: show ipv6 access-list Field Descriptions

Field	Description
ipv6 access list inbound	Name of the IPv6 access list, for example, inbound.
permit	Permits any packet that matches the specified protocol type.
tcp	Transmission Control Protocol. The higher-level (Layer 4) protocol type that the packet must match.
any	Equal to ::/0.
eq	An equal operand that compares the source or destination ports of TCP or UDP packets.
bgp	Border Gateway Protocol. The lower-level (Layer 3) protocol type that the packet must be equal to.
reflect	Indicates a reflexive IPv6 access list.
tcptraffic (8 matches)	The name of the reflexive IPv6 access list and the number of matches for the access list. The clear ipv6 access-list privileged EXEC command resets the IPv6 access list match counters.
sequence 10	Sequence in which an incoming packet is compared to lines in an access list. Lines in an access list are ordered from first priority (lowest number, for example, 10) to last priority (highest number, for example, 80).
host 2001:0DB8:1::1	The source IPv6 host address that the source address of the packet must match.
host 2001:0DB8:1::2	The destination IPv6 host address that the destination address of the packet must match.
11000	The ephemeral source port number for the outgoing connection.
timeout 300	The total interval of idle time (in seconds) after which the temporary IPv6 reflexive access list named tcptraffic will time out for the indicated session.
(time left 243)	The amount of idle time (in seconds) remaining before the temporary IPv6 reflexive atcess list named teptraffic is deleted for the indicated session. Additional received traffic that matches the indicated session resets this value to 300 seconds.
evdicates the IPv6 reflexive access list named udptraffic is nested in the IPv6 access list named outbound.	

Related Commands

Command	Description
clear ipv6 access-list	Resets the IPv6 access list match counters.
hardware statistics	Enables the collection of hardware statistics.
show ip access-list	Displays the contents of all current IP access lists.

Command	Description
show ip prefix-list	Displays information about a prefix list or prefix list entries.
show ipv6 prefix-list	Displays information about an IPv6 prefix list or IPv6 prefix list entries.

show ipv6 destination-guard policy

To display destination guard information, use the show ipv6 destination-guard policy command in privileged EXEC mode.
show ipv6 destination-guard policy [policy-name]

Syntax Description

Command History

Usage Guidelines If the policy-name argument is specified, only the specified policy information is displayed. If the policy-name argument is not specified, information is displayed for all policies.

Examples The following is sample output from the show ipv6 destination-guard policy command when the policy is applied to a VLAN:
\# show ipv6 destination-guard policy poll
Destination guard policy destination:
enforcement always
Target: vlan 300

The following is sample output from the show ipv6 destination-guard policy command when the policy is applied to an interface:
\# show ipv6 destination-guard policy poll
Destination guard policy destination:
enforcement always
Target: Gi0/0/1

Related Commands

show ipv6 dhep

To display the Dynamic Host Configuration Protocol (DHCP) unique identifier (DUID) on a specified device, use the show ipv6 dhcp command in user EXEC or privileged EXEC mode.
show ipv6 dhep
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

$\overline{\text { Command Modes }}$	User EXEC ($>$)
	Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

The show ipv6 dhep command uses the DUID based on the link-layer address for both client and server identifiers. The device uses the MAC address from the lowest-numbered interface to form the DUID. The network interface is assumed to be permanently attached to the device. Use the show ipv6 dhcp command to display the DUID of a device.

Examples
The following is sample output from the show ipv6 dhep command. The output is self-explanatory:

```
# show ipv6 dhcp
This device's DHCPv6 unique identifier(DUID): 000300010002FCA5DC1C
```


show ipv6 dhcp binding

To display automatic client bindings from the Dynamic Host Configuration Protocol (DHCP) for IPv6 server binding table, use the show ipv6 dhcp binding command in user EXEC or privileged EXEC mode.
show ipv6 dhcp binding [ipv6-address] [vrf vrf-name]
Syntax Description

Command Modes
User EXEC (>)
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

Usage Guidelines
The show ipv6 dhcp binding command displays all automatic client bindings from the DHCP for IPv6 server binding table if the ipv6-address argument is not specified. When the ipv6-address argument is specified, only the binding for the specified client is displayed.

If the vrf vrf-namekeyword and argument combination is specified, all bindings that belong to the specified VRF are displayed.

The ipv6 dhep server vrf enable command must be enabled for the configured VRF to work. If the command is not configured, the output of the show ipv6 dhep binding command will not display the configured VRF; it will only display the default VRF details.

Examples
The following sample output displays all automatic client bindings from the DHCP for IPv6 server binding table:
\# show ipv6 dhcp binding

Client: FE80: : A8BB:CCFF:FE00:300
DUID: 00030001AABBCC000300
Username : Client_1
Interface: Virtual-Access2.1
IA PD: IA ID 0x000C0001, T1 75, T2 135
Prefix: 2001:380:E00::/64
preferred lifetime 150, valid lifetime 300
expires at Dec 062007 12:57 PM (262 seconds)
Client: FE80: :A8BB:CCFF:FE00:300 (Virtual-Access2.2)
DUID: 00030001 AABBCC000300
IA PD: IA ID 0x000D0001, T1 75, T2 135
Prefix: 2001:0DB8:E00:1::/64

```
preferred lifetime 150, valid lifetime 300
expires at Dec 06 2007 12:58 PM (288 seconds)
```

The table below describes the significant fields shown in the display.
Table 37: show ipv6 dhcp binding Field Descriptions

Field	Description
Client	Address of a specified client.
DUID	DHCP unique identifier (DUID).
Virtual-Access2.1	First virtual client. When an IPv6 DHCP client requests two prefixes with the same DUID but a different identity association for prefix delegation (IAPD) on two different interfaces, these prefixes are considered to be for two different clients, and interface information is maintained for both.
Username : client_1	The username associated with the binding.
IA PD	Collection of prefixes assigned to a client.
IA ID	Identifier for this IAPD.
Prefix	Prefixes delegated to the indicated IAPD on the specified client.
preferred lifetime, valid lifetime	The preferred lifetime and valid lifetime settings, in seconds, for the specified client.
Expires at	Date and time at which the valid lifetime expires.
Virtual-Access2.2	Second virtual client. When an IPv6 DHCP client requests two prefixes with the same DUID but different IAIIs on two different interfaces, these prefixes are considered to be for two different clients, and interface information is maintained for both.

When the DHCPv6 pool on the Cisco IOS DHCPv6 server is configured to obtain prefixes for delegation from an authentication, authorization, and accounting (AAA) server, it sends the PPP username from the incoming PPP session to the AAA server for obtaining the prefixes. The PPP username is associated with the binding is displayed in output from the show ipv6 dhcp binding command. If there is no PPP username associated with the binding, this field value is displayed as "unassigned."
The following example shows that the PPP username associated with the binding is "client_1":

```
# show ipv6 dhcp binding
Client: FE80::2AA:FF:FEBB:CC
    DUID: 0003000100AA00BB00CC
    Username : client_1
    Interface : Virtu\overline{al-Access2}
    IA PD: IA ID 0x00130001, T1 75, T2 135
        Prefix: 2001:0DB8:1:3::/80
            preferred lifetime 150, valid lifetime 300
            expires at Aug 07 2008 05:19 AM (225 seconds)
```

The following example shows that the PPP username associated with the binding is unassigned:

```
# show ipv6 dhcp binding
Client: FE80::2AA:FF:FEBB:CC
    DUID: 0003000100AA00BB00CC
    Username : unassigned
    Interface : Virtual-Access2
    IA PD: IA ID 0x00130001, T1 150, T2 240
        Prefix: 2001:0DB8:1:1::/80
            preferred lifetime 300, valid lifetime 300
            expires at Aug 11 2008 06:23 AM (233 seconds)
```

Related Commands

Command	Description
ipv6 dhcp server vrf enable	Enables the DHCPv6 server VRF-aware feature.
clear ipv6 dhcp binding	Deletes automatic client bindings from the DHCP for IPv6 binding table.

show ipv6 dhep conflict

To display address conflicts found by a Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server when addresses are offered to the client, use the show ipv6 dhep conflict command in privileged EXEC mode.
show ipv6 dhcp conflict [ipv6-address] [vrf vrf-name]

Syntax Description

Command Modes

Command History

ipv6-address	(Optional) The address of a DHCP for IPv6 client.
vrf vrf-name	(Optional) Specifies a virtual routing and forwarding (VRF) configuration.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1aCisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines

When you configure the DHCPv6 server to detect conflicts, it uses ping. The client uses neighbor discovery to detect clients and reports to the server through a DECLINE message. If an address conflict is detected, the address is removed from the pool, and the address is not assigned until the administrator removes the address from the conflict list.

Examples
The following is a sample output from the show ipv6 dhep conflict command. This command shows the pool and prefix values for DHCP conflicts.:

```
# show ipv6 dhcp conflict
```

Pool 350, prefix 2001:0DB8:1005::/48
2001:0DB8:1005::10

Related Commands

show ipv6 dhcp database

To display the Dynamic Host Configuration Protocol (DHCP) for IPv6 binding database agent information, use the show ipv6 dhep database command in user EXEC or privileged EXEC mode.
show ipv6 dhcp database [agent-URL]
Syntax Description

| agent-URL | (Optional) A flash, NVRAM, FTP, TFTP, or remote copy protocol (RCP) uniform resource |
| :--- | :--- | locator.

Command Modes

User EXEC ($>$)
Privileged EXEC (\#)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
Each permanent storage to which the binding database is saved is called the database agent. An agent can be configured using the ipv6 dhep database command. Supported database agents include FTP and TFTP servers, RCP, Flash file system, and NVRAM.

The show ipv6 dhcp database command displays DHCP for IPv6 binding database agent information. If the agent-URL argument is specified, only the specified agent is displayed. If the agent-URL argument is not specified, all database agents are shown.

Examples

 The following is sample output from the show ipv6 dhcp database command:```
show ipv6 dhcp database
```


# show ipv6 dhcp database

Database agent tftp://172.19.216.133/db.tftp:
Database agent tftp://172.19.216.133/db.tftp:
write delay: 69 seconds, transfer timeout: }300\mathrm{ seconds
write delay: 69 seconds, transfer timeout: }300\mathrm{ seconds
last written at Jan 09 2003 01:54 PM,
last written at Jan 09 2003 01:54 PM,
write timer expires in 56 seconds
write timer expires in 56 seconds
last read at Jan 06 2003 05:41 PM
last read at Jan 06 2003 05:41 PM
successful read times 1
successful read times 1
failed read times 0
failed read times 0
successful write times }317
successful write times }317
failed write times 2
failed write times 2
Database agent nvram:/dhcpv6-binding:
Database agent nvram:/dhcpv6-binding:
write delay: 60 seconds, transfer timeout: }300\mathrm{ seconds
write delay: 60 seconds, transfer timeout: }300\mathrm{ seconds
last written at Jan 09 2003 01:54 PM,
last written at Jan 09 2003 01:54 PM,
write timer expires in 37 seconds
write timer expires in 37 seconds
last read at never
last read at never
successful read times 0
successful read times 0
failed read times 0
failed read times 0
successful write times }332
successful write times }332
failed write times 0
failed write times 0
Database agent flash:/dhcpv6-db:
Database agent flash:/dhcpv6-db:
write delay: }82\mathrm{ seconds, transfer timeout: 3 seconds
write delay: }82\mathrm{ seconds, transfer timeout: 3 seconds
last written at Jan 09 2003 01:54 PM,
last written at Jan 09 2003 01:54 PM,
write timer expires in 50 seconds
write timer expires in 50 seconds
last read at never

```
 last read at never
```

```
successful read times 0
failed read times 0
successful write times 2220
failed write times 614
```

The table below describes the significant fields shown in the display.
Table 38: show ipv6 dhcp database Field Descriptions

| Field | Description |
| :--- | :--- |
| Database agent | Specifies the database agent. |
| Write delay | The amount of time (in seconds) to wait before updating the database. |
| transfer timeout | Specifies how long (in seconds) the DHCP server should wait before canceling <br> a database transfer. Transfers that exceed the timeout period are canceled. |
| Last written | The last date and time bindings were written to the file server. |
| Write timer expires... | The length of time, in seconds, before the write timer expires. |
| Last read | The last date and time bindings were read from the file server. |
| Successful/failed read times | The number of successful or failed read times. |
| Successful/failed write times | The number of successful or failed write times. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
| ipv6 dhcp database | Specifies DHCP for IPv6 binding database agent parameters. |  |

## show ipv6 dhcp guard policy

To display Dynamic Host Configuration Protocol for IPv6 (DHCPv6) guard information, use the show ipv6 dhep guard policy command in privileged EXEC mode.
show ipv6 dhcp guard policy [policy-name]

Syntax Description

## Command Modes

Command History

| policy-name | (Optional) DHCPv6 guard policy name. |
| :--- | :--- |

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a |  |

$\overline{\text { Usage Guidelines If the policy-name argument is specified, only the specified policy information is displayed. If the policy-name }}$ argument is not specified, information is displayed for all policies.

Examples The following is sample output from the show ipv6 dhep guard guard command:

```
show ipv6 dhcp guard policy
Dhcp guard policy: default
 Device Role: dhcp client
 Target: Et0/3
Dhcp guard policy: test1
 Device Role: dhcp server
 Target: vlan 0 vlan 1 vlan 2 vlan 3 vlan 4
 Max Preference: 200
 Min Preference: 0
 Source Address Match Access List: acl1
 Prefix List Match Prefix List: pfxlist1
Dhcp guard policy: test2
 Device Role: dhcp relay
 Target: Et0/0 Et0/1 Et0/2
```

The table below describes the significant fields shown in the display.

## Table 39: show ipv6 dhcp guard Field Descriptions

| Field | Description |
| :--- | :--- |
| Device <br> Role | The role of the device. The role is either client, server or relay. |
| Target | The name of the target. The target is either an interface or a VLAN. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
| ipv6 dhcp guard policy | Defines the DHCPv6 guard policy name. |  |

## show ipv6 dhcp interface

To display Dynamic Host Configuration Protocol (DHCP) for IPv6 interface information, use the show ipv6 dhcp interface command in user EXEC or privileged EXEC mode.
show ipv6 dhcp interface [type number]
Syntax Description

| type number | (Optional) Interface type and number. For more information, use the question mark (?) online <br> help function. |
| :--- | :--- |

Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Usage Guidelines
If no interfaces are specified, all interfaces on which DHCP for IPv6 (client or server) is enabled are shown. If an interface is specified, only information about the specified interface is displayed.

## Examples

The following is sample output from the show ipv6 dhcp interface command. In the first example, the command is used on a router that has an interface acting as a DHCP for IPv6 server. In the second example, the command is used on a router that has an interface acting as a DHCP for IPv6 client:

```
show ipv6 dhcp interface
Ethernet2/1 is in server mode
 Using pool: svr-p1
 Preference value: 20
 Rapid-Commit is disabled
Router2# show ipv6 dhcp interface
Ethernet2/1 is in client mode
 State is OPEN (1)
 List of known servers:
 Address: FE80::202:FCFF:FEA1:7439, DUID 000300010002FCA17400
 Preference: 20
 IA PD: IA ID 0x00040001, T1 120, T2 192
 Prefix: 3FFE:C00:C18:1::/72
 preferred lifetime 240, valid lifetime 54321
 expires at Nov 08 2002 09:10 AM (54319 seconds)
 Prefix: 3FFE:C00:C18:2::/72
 preferred lifetime 300, valid lifetime 54333
 expires at Nov 08 2002 09:11 AM (54331 seconds)
 Prefix: 3FFE:C00:C18:3::/72
 preferred lifetime 280, valid lifetime 51111
 expires at Nov 08 2002 08:17 AM (51109 seconds)
 DNS server: 1001::1
 DNS server: 1001::2
 Domain name: domain1.net
 Domain name: domain2.net
 Domain name: domain3.net
```

```
Prefix name is cli-p1
Rapid-Commit is enabled
```

The table below describes the significant fields shown in the display.
Table 40: show ipv6 dhcp interface Field Descriptions

| Field | Description |
| :--- | :--- |
| Ethernet2/1 is in server/client mode | Displays whether the specified interface is in server or client mode. |
| Preference value: | The advertised (or default of 0) preference value for the indicated server. |
| Prefix name is cli-p1 | Displays the IPv6 general prefix pool name, in which prefixes <br> successfully acquired on this interface are stored. |
| Using pool: svr-p1 | The name of the pool that is being used by the interface. |
| State is OPEN | State of the DHCP for IPv6 client on this interface. "Open" indicates <br> that configuration information has been received. |
| List of known servers | Lists the servers on the interface. |
| Address, DUID | Address and DHCP unique identifier (DUID) of a server heard on the <br> specified interface. |
| Rapid commit is disabled | Displays whether the rapid-commit keyword has been enabled on the <br> interface. |

The following example shows the DHCP for IPv6 relay agent configuration on FastEthernet interface $0 / 0$, and use of the show ipv6 dhcp interface command displays relay agent information on FastEthernet interface 0/0:

```
(config-if)# ipv6 dhcp relay destination FE80::250:A2FF:FEBF:A056 FastEthernet0/1
show ipv6 dhcp interface FastEthernet 0/0
FastEthernet0/0 is in relay mode
 Relay destinations:
 FE80::250:A2FF:FEBF:A056 via FastEthernet0/1
```

Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 dhcp client pd | Enables the DHCP for IPv6 client process and enables requests for prefix <br> delegation through a specified interface. |
| ipv6 dhcp relay destination | Specifies a destination address to which client messages are forwarded and <br> enables DHCP for IPv6 relay service on the interface. |
| ipv6 dhcp server | Enables DHCP for IPv6 service on an interface. |

## show ipv6 dhcp relay binding

To display DHCPv6 Internet Assigned Numbers Authority (IANA) and DHCPv6 Identity Association for Prefix Delegation (IAPD) bindings on a relay agent, use the show ipv6 dhcp relay binding command in user EXEC or privileged EXEC mode.
show ipv6 dhcp relay binding [vrf vrf-name]


## Examples <br> The following is sample output from the show ipv6 dhep relay binding command:

Device\# show ipv6 dhcp relay binding
The following example shows output from the show ipv6 dhcp relay binding command with a specified VRF name on a Cisco uBR10012 universal broadband device:

```
Device# show ipv6 dhcp relay binding vrf vrf1
Prefix: 2001:DB8:0:1:/64 (Bundle100.600)
 DUID: 000300010023BED94D31
 IAID: 3201912114
 lifetime: 600
```

The table below describes the significant fields shown in the display.

## Table 41: show ipv6 dhcp relay binding Field Descriptions

| Field | Description |
| :--- | :--- |
| Prefix | IPv6 prefix for DHCP. |


| Field | Description |
| :--- | :--- |
| DUID | DHCP Unique Identifier (DUID) for the IPv6 relay binding. |
| IAID | Identity Association Identification (IAID) for DHCP. |
| lifetime | Lifetime of the prefix, in seconds. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | clear ipv6 dhcp relay binding | Clears a specific IPv6 address or IPv6 <br> prefix of a DHCP for IPv6 relay binding. |
| debug ipv6 dhcp relay | Enables debugging for IPv6 DHCP relay <br> agent. |  |
| debug ipv6 dhcp relay bulk-lease | Enables bulk lease query debugging for <br> IPv6 DHCP relay agent. |  |

## show ipv6 eigrp events

To display Enhanced Interior Gateway Routing Protocol (EIGRP) events logged for IPv6, use the show ipv6 eigrp events command in user EXEC or privileged EXEC mode.
show ipv6 eigrp events [\{[\{errmsg|sia\}][event-num-start event-num-end]|type $\}]$
Syntax Description

| errmsg | (Optional) Displays error messages being logged. |
| :--- | :--- |
| sia | (Optional) Displays Stuck In Active (SIA) messages. |
| event-num-start | (Optional) Starting number of the event range. The range is from 1 to 4294967295. |
| event-num-end | (Optional) Ending number of the event range. The range is from 1 to 4294967295. |
| type | (Optional) Displays event types being logged. |

Command Default

## Command Modes

If no event range is specified, information for all IPv6 EIGRP events is displayed.

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5 .1 a | This command was introduced. |

The show ipv6 eigrp events command is used to analyze a network failure by the Cisco support team and is not intended for general use. This command provides internal state information about EIGRP and how it processes route notifications and changes.

## Examples

The following is sample output from the show ipv6 eigrp events command. The fields are self-explanatory.

```
show ipv6 eigrp events
Event information for AS 65535:
 00:56:41.719 State change: Successor Origin Local origin
 00:56:41.719 Metric set: 2555:5555::/32 4294967295
 00:56:41.719 Poison squashed: 2555:5555::/32 lost if
 00:56:41.719 Poison squashed: 2555:5555::/32 rt gone
 00:56:41.719 Route installing: 2555:5555::/32 FE80::ABCD:4:EF00:1
 00:56:41.719 RDB delete: 2555:5555::/32 FE80::ABCD:4:EF00:2
 00:56:41.719 Send reply: 2555:5555::/32 FE80::ABCD:4:EF00:1
 00:56:41.719 Find FS: 2555:5555::/32 4294967295
 00:56:41.719 Free reply status: 2555:5555::/32
 00:56:41.719 Clr handle num/bits: 0 0x0
 00:56:41.719 Clr handle dest/cnt: 2555:5555::/32 0
 00:56:41.719 Rcv reply met/succ met: 4294967295 4294967295
 00:56:41.719 Rcv reply dest/nh: 2555:5555::/32 FE80::ABCD:4:EF00:2
 00:56:41.687 Send reply: 2555:5555::/32 FE80::ABCD:4:EF00:2
 00:56:41.687 Rcv query met/succ met: 4294967295 4294967295
```

```
16 00:56:41.687 Rcv query dest/nh: 2555:5555::/32 FE80::ABCD:4:EF00:2
17 00:56:41.687 State change: Local origin Successor Origin
18 00:56:41.687 Metric set: 2555:5555::/32 4294967295
19 00:56:41.687 Active net/peers: 2555:5555::/32 65536
20 00:56:41.687 FC not sat Dmin/met: 4294967295 2588160
21 00:56:41.687 Find FS: 2555:5555::/32 2588160
22 00:56:41.687 Rcv query met/succ met: 4294967295 4294967295
23 00:56:41.687 Rcv query dest/nh: 2555:5555::/32 FE80::ABCD:4:EF00:1
24 00:56:41.659 Change queue emptied, entries: 1
25 00:56:41.659 Metric set: 2555:5555::/32 2588160
```

| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | clear ipv6 eigrp | Deletes entries from EIGRP for IPv6 routing tables. |
| debug ipv6 eigrp | Displays information about EIGRP for IPv6 protocol. |  |
| ipv6 eigrp | Enables EIGRP for IPv6 on a specified interface. |  |

## show ipv6 eigrp interfaces

To display information about interfaces configured for the Enhanced Interior Gateway Routing Protocol (EIGRP) in IPv6 topologies, use the show ipv6 eigrp interfaces command in user EXEC or privileged EXEC mode.
show ipv6 eigrp [as-number] interfaces [type number] [detail]

Syntax Description

| as-number | (Optional) Autonomous system number. |
| :--- | :--- |
| type | (Optional) Interface type. For more information, use the question mark (?) online help function. |
| number | (Optional) Interface number. For more information about the numbering syntax for your <br> networking device, use the question mark (?) online help function. |
| detail | (Optional) Displays detailed interface information. |

## Command Modes

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Usage Guidelines
User EXEC (>)
Privileged EXEC (\#)

Use the show ipv6 eigrp interfaces command to determine the interfaces on which EIGRP is active and to
get information about EIGRP processes related to those interfaces. The optional type number argument and the detail keyword can be entered in any order.
If an interface is specified, only that interface is displayed. Otherwise, all interfaces on which EIGRP is running are displayed.

If an autonomous system is specified, only the routing process for the specified autonomous system is displayed. Otherwise, all EIGRP processes are displayed.

## Examples The following is sample output from the show ipv6 eigrp interfaces command:

```
show ipv6 eigrp 1 interfaces
IPv6-EIGRP interfaces for process 1
\begin{tabular}{lll}
& & Xmit Queue \\
Interface Peers \(\quad\)\begin{tabular}{l}
Un/Reliable
\end{tabular} & Mean \\
SRTT
\end{tabular}
Et0/0 0 0/0 0
Pacing Time
Un/Reliable
\(0 / 10\)
Multicast
Flow Timer
0
```

The following is sample output from the show ipv6 eigrp interfaces detail command:

```
show ipv6 eigrp interfaces detail
IPv6-EIGRP interfaces for process 1
\begin{tabular}{lcccccc}
& & Xmit Queue & Mean & Pacing Time & Multicast & Pending \\
Interface & Peers & Un/Reliable & SRTT & Un/Reliable & Flow Timer & Routes \\
Et0/0 & 0 & \(0 / 0\) & 0 & \(0 / 10\) & 0 & 0
\end{tabular}
```

```
Hello interval is 5 sec
Next xmit serial <none>
Un/reliable mcasts: 0/0 Un/reliable ucasts: 0/0
Mcast exceptions: 0 CR packets: 0 ACKs suppressed: 0
Retransmissions sent: 0 Out-of-sequence rcvd: 0
Authentication mode is not set
```

The following sample output from the show ipv6 eigrp interface detail command displays detailed information about a specific interface on which the no ipv6 next-hop self command is configured with the no-ecmp-mode option:

| Device\# show ipv6 eigrp interfaces | ail tunnel |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EIGRP-IPv6 Interfaces for AS (1) |  |  |  |  |  |
| Interface Peers Un/Reliable | Un/Reliable | SRTT | Un/Reliable | Flow Timer | Routes |
| Tuol0 $20 / 0$ | 0/0 | 29 | 0/0 | 136 | 0 |
| Hello-interval is 5, Hold-time is 15 |  |  |  |  |  |
| Split-horizon is disabled |  |  |  |  |  |
| Next xmit serial <none> |  |  |  |  |  |
| Packetized sent/expedited: 48/1 |  |  |  |  |  |
| Hello's sent/expedited: 13119/49 |  |  |  |  |  |
| Un/reliable mcasts: 0/20 Un/reliable ucasts: 31/398 |  |  |  |  |  |
| Mcast exceptions: 5 CR packets: 5 ACKs suppressed: 1 |  |  |  |  |  |
| Retransmissions sent: 355 Out-of-sequence rcvd: 6 |  |  |  |  |  |
| Next-hop-self disabled, next-hop info forwarded, ECMP mode Enabled |  |  |  |  |  |
| Authentication mode is not set |  |  |  |  |  |

The table below describes the significant fields shown in the displays.
Table 42: show ipv6 eigrp interfaces Field Descriptions

| Field | Description |
| :--- | :--- |
| Interface | Interface over which EIGRP is configured. |
| Peers | Number of directly connected EIGRP neighbors. |
| Xmit Queue Un/Reliable | Number of packets remaining in the Unreliable and Reliable transmit queues. |
| Mean SRTT | Mean smooth round-trip time (SRTT) interval (in seconds). |
| Pacing Time Un/Reliable | Pacing time (in seconds) used to determine when EIGRP packets (unreliable and <br> reliable) should be sent out of the interface. |
| Multicast Flow Timer | Maximum number of seconds in which the device will send multicast EIGRP <br> packets. |
| Pending Routes | Number of routes in the transmit queue waiting to be sent. |
| Hello interval is 5 sec | Length (in seconds) of the hello interval. |

## show ipv6 eigrp topology

To display Enhanced Interior Gateway Routing Protocol (EIGRP) IPv6 topology table entries, use the show ipv6 eigrp topology command in user EXEC or privileged EXEC mode.
show ipv6 eigrp topology [\{as-number ipv6-address\}] [\{active |all-links | pending |summary | zero-successors $\}$ ]

Syntax Description

| as-number | (Optional) Autonomous system number. |
| :--- | :--- |
| ipv6-address | (Optional) IPv6 address. |
| active | (Optional) Displays only active entries in the EIGRP topology table. |
| all-links | (Optional) Displays all entries in the EIGRP topology table (including <br> nonfeasible-successor sources). |
| pending | (Optional) Displays all entries in the EIGRP topology table that are either waiting for an <br> update from a neighbor or waiting to reply to a neighbor. |
| summary | (Optional) Displays a summary of the EIGRP topology table. |
| zero-successors | (Optional) Displays the available routes that have zero successors. |

Command Modes
User EXEC (>)
Privileged EXEC (\#)

Command History

## Usage Guidelines

If this command is used without any keywords or arguments, only routes that are feasible successors are displayed. The show ipv6 eigrp topology command can be used to determine Diffusing Update Algorithm (DUAL) states and to debug possible DUAL problems.

Examples
The following is sample output from the show ipv6 eigrp topology command. The fields in the display are self-explanatory.

```
show ipv6 eigrp topology
IPv6-EIGRP Topology Table for AS(1)/ID(2001:0DB8:10::/64)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - reply Status, s - sia Status
P 2001:0DB8:3::/64, 1 successors, FD is 281600
via Connected, Ethernet1/0
```

The following sample output from the show ipv6 eigrp topology prefix command displays ECMP mode information when the no ipv6 next-hop-self command is configured without the no-ecmp-mode option in the EIGRP topology. The ECMP mode provides information about the path that is being
advertised. If there is more than one successor, the top most path will be advertised as the default path over all interfaces, and the message "ECMP Mode: Advertise by default" will be displayed in the output. If any path other than the default path is advertised, the message "ECMP Mode: Advertise out <Interface name>" will be displayed. The fields in the display are self-explanatory.

```
show ipv6 eigrp topology 2001:DB8:10::1/128
EIGRP-IPv6 Topology Entry for AS(1)/ID(192.0.2.100) for 2001:DB8:10::1/128
 State is Passive, Query origin flag is 1, 2 Successor(s), FD is 284160
 Descriptor Blocks:
 FE80::A8BB:CCFF:FE01:2E01 (Tunnel0), from FE80::A8BB:CCFF:FE01:2E01, Send flag is 0x0
 Composite metric is (284160/281600), route is Internal
 Vector metric:
 Minimum bandwidth is 10000 Kbit
 Total delay is }1100\mathrm{ microseconds
 Reliability is 255/255
 Load is 1/255
 Minimum MTU is 1400
 Hop count is 1
 Originating router is 10.10.1.1
 ECMP Mode: Advertise by default
FE80::A8BB:CCFF:FE01:3E01 (Tunnel1), from FE80::A8BB:CCFF:FE01:3E01, Send flag is 0x0
 Composite metric is (284160/281600), route is Internal
 Vector metric:
 Minimum bandwidth is 10000 Kbit
 Total delay is 1100 microseconds
 Reliability is 255/255
 Load is 1/255
 Minimum MTU is 1400
 Hop count is 1
 Originating router is 10.10.2.2
 ECMP Mode: Advertise out Tunnel1
```

| Command | Description |
| :--- | :--- |
| show eigrp address-family topology | Displays entries in the EIGRP topology table. |

## show ipv6 eigrp traffic

To display the number of Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6 packets sent and received, use the show ipv6 eigrp traffic command in user EXEC or privileged EXEC mode.
show ipv6 eigrp traffic [as-number]

Syntax Description

## Command Modes

## Command History

| as-number | (Optional) Autonomous system number. |
| :--- | :--- |

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

$\overline{\text { Usage Guidelines }}$ Use the show ipv6 eigrp traffic command to provide information on packets received and sent.

## Examples

```
show ipv6 eigrp traffic
IPv6-EIGRP Traffic Statistics for process 9
 Hellos sent/received: 218/205
 Updates sent/received: 7/23
 Queries sent/received: 2/0
 Replies sent/received: 0/2
 Acks sent/received: 21/14
```

The table below describes the significant fields shown in the display.
Table 43: show ipv6 eigrp traffic Field Descriptions

| Field | Description |
| :--- | :--- |
| process 9 | Autonomous system number specified in the ipv6 router eigrpcommand. |
| Hellos sent/received | Number of hello packets sent and received. |
| Updates sent/received | Number of update packets sent and received. |
| Queries sent/received | Number of query packets sent and received. |
| Replies sent/received | Number of reply packets sent and received. |
| Acks sent/received | Number of acknowledgment packets sent and received. |


| Related Commands | Command |
| :--- | :--- |
| ipv6 router eigrp | Configures the EIGRP for IPv6 routing process. |

## show ipv6 general-prefix

To display information on IPv6 general prefixes, use the show ipv6 general-prefix command in user EXEC or privileged EXEC mode.
show ipv6 general-prefix

Syntax Description
Command Modes

This command has no arguments or keywords.

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

Examples
Use the show ipv6 general-prefix command to view information on IPv6 general prefixes.

The following example shows an IPv6 general prefix called my-prefix, which has been defined based on a 6 to4 interface. The general prefix is also being used to define an address on interface loopback 42.

```
show ipv6 general-prefix
IPv6 Prefix my-prefix, acquired via 6to4
2002:B0B:B0B::/48
 Loopback42 (Address command)
```

The table below describes the significant fields shown in the display.

## Table 44: show ipv6 general-prefix Field Descriptions

| Field | Description |
| :--- | :--- |
| IPv6 Prefix | User-defined name of the IPv6 general prefix. |
| Acquired via | The general prefix has been defined based on a 6to4 interface. A general <br> prefix can also be defined manually or acquired using DHCP for IPv6 <br> prefix delegation. |
| 2002:B0B:B0B::/48 | The prefix value for this general prefix. |
| Loopback42 (Address command) | List of interfaces where this general prefix is used. |

Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 general-prefix | Defines a general prefix for an IPv6 address manually. |

## show ipv6 interface

To display the usability status of interfaces configured for IPv6, use the show ipv6 interface command in user EXEC or privileged EXEC mode.
show ipv6 interface [brief ][type number][prefix]

## Syntax Description

| brief | (Optional) Displays a brief summary of IPv6 status and configuration for each interface. |
| :--- | :--- |
| type | (Optional) The interface type about which to display information. |
| number | (Optional) The interface number about which to display information. |
| prefix | (Optional) Prefix generated from a local IPv6 prefix pool. |


| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |

## Command History

## Usage Guidelines

All IPv6 interfaces are displayed.

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

The show ipv6 interface command provides output similar to the show ip interface command, except that it is IPv6-specific.

Use the show ipv6 interface command to validate the IPv6 status of an interface and its configured addresses. The show ipv6 interface command also displays the parameters that IPv6 is using for operation on this interface and any configured features.

If the interface's hardware is usable, the interface is marked up. If the interface can provide two-way communication for IPv6, the line protocol is marked up.

If you specify an optional interface type and number, the command displays information only about that specific interface. For a specific interface, you can enter the prefix keyword to see the IPv6 neighbor discovery (ND) prefixes that are configured on the interface.

## Interface Information for a Specific Interface with IPv6 Configured

The show ipv6 interface command displays information about the specified interface.

```
(config)# show ipv6 interface ethernet0/0
Ethernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:6700
 No Virtual link-local address(es):
 Global unicast address(es):
 2001::1, subnet is 2001::/64 [DUP]
 2001::A8BB:CCFF:FE00:6700, subnet is 2001::/64 [EUI]
 2001:100::1, subnet is 2001:100::/64
```

```
Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF00:1
 FF02::1:FF00:6700
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds (using 30000)
ND advertised reachable time is 0 (unspecified)
ND advertised retransmit interval is 0 (unspecified)
ND router advertisements are sent every 200 seconds
ND router advertisements live for }1800\mathrm{ seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
```

The table below describes the significant fields shown in the display.
Table 45: show ipv6 interface Field Descriptions

| Field | Description |
| :--- | :--- |
| Ethernet0/0 is up, line protocol is <br> up | Indicates whether the interface hardware is active (whether line signal is <br> present) and whether it has been taken down by an administrator. If the <br> interface hardware is usable, the interface is marked "up." For an interface <br> to be usable, both the interface hardware and line protocol must be up. |
| line protocol is up, down (down <br> is not shown in sample output) | Indicates whether the software processes that handle the line protocol <br> consider the line usable (that is, whether keepalives are successful or <br> IPv6 CP has been negotiated). If the interface can provide two-way <br> communication, the line protocol is marked up. For an interface to be <br> usable, both the interface hardware and line protocol must be up. |
| IPv6 is enabled, stalled, disabled <br> (stalled and disabled are not <br> shown in sample output) | Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 <br> is enabled, the interface is marked "enabled." If duplicate address detection <br> processing identified the link-local address of the interface as being a <br> duplicate address, the processing of IPv6 packets is disabled on the <br> interface and the interface is marked "stalled." If IPv6 is not enabled, the <br> interface is marked "disabled." |
| link-local address | Displays the link-local address assigned to the interface. |
| Global unicast address(es): | Displays the global unicast addresses assigned to the interface. |
| Joined group address(es): | Indicates the multicast groups to which this interface belongs. |
| MTU | Maximum transmission unit of the interface. |
| ICMP error messages | Specifies the minimum interval (in milliseconds) between error messages <br> sent on this interface. |
| ICMP redirects | The state of Internet Control Message Protocol (ICMP) IPv6 redirect <br> messages on the interface (the sending of the messages is enabled or <br> disabled). |


| Field | Description |
| :--- | :--- |
| ND DAD | The state of duplicate address detection on the interface (enabled or <br> disabled). |
| number of DAD attempts: | Number of consecutive neighbor solicitation messages that are sent on <br> the interface while duplicate address detection is performed. |
| ND reachable time | Displays the neighbor discovery reachable time (in milliseconds) assigned <br> to this interface. |
| ND advertised reachable time | Displays the neighbor discovery reachable time (in milliseconds) <br> advertised on this interface. |
| ND advertised retransmit interval | Displays the neighbor discovery retransmit interval (in milliseconds) <br> advertised on this interface. |
| ND router advertisements | Specifies the interval (in seconds) for neighbor discovery router <br> advertisements (RAs) sent on this interface and the amount of time before <br> the advertisements expire. |
| As of Cisco IOS Release 12.4(2)T, this field displays the default router <br> preference (DRP) value sent by this device on this interface. |  |
| ND advertised default router <br> preference is Medium | The DRP for the device on a specific interface. |

The show ipv6 interface command displays information about attributes that may be associated with an IPv6 address assigned to the interface.

| Attribute | Description |
| :--- | :--- |
| ANY | Anycast. The address is an anycast address, as <br> specified when configured using the ipv6 address <br> command. |
| CAL | Calendar. The address is timed and has valid and <br> preferred lifetimes. |
| DEP | Deprecated. The timed address is deprecated. |
| DUP | Duplicate. The address is a duplicate, as determined <br> by duplicate address detection (DAD). To re-attampt <br> DAD, the user must use the shutdown or no <br> shutdown command on the interface. |
| EUI | EUI-64 based. The address was generated using <br> EUI-64. |
| OFF | Offlink. The address is offlink. |


| Attribute | Description |
| :--- | :--- |
| OOD | Overly optimistic DAD. DAD will not be performed <br> for this address. This attribute applies to virtual <br> addresses. |
| PRE | Preferred. The timed address is preferred. |
| TEN | Tentative. The address is in a tentative state per DAD. |
| UNA | Unactivated. The virtual address is not active and is <br> in a standby state. |
| VIRT | Virtual. The address is virtual and is managed by <br> HSRP, VRRP, or GLBP. |

## show ipv6 interface Command Using the brief Keyword

The following is sample output from the show ipv6 interface command when entered with the brief keyword:

```
show ipv6 interface brief
Ethernet0 is up, line protocol is up
Ethernet0 [up/up]
 unassigned
Ethernet1 [up/up]
 2001:0DB8:1000:/29
Ethernet2 [up/up]
 2001:0DB8:2000:/29
Ethernet3 [up/up]
 2001:0DB8:3000:/29
Ethernet4 [up/down]
 2001:0DB8:4000:/29
Ethernet5 [administratively down/down]
 2001:123::210:7BFF:FEC2:ACD8
Interface Status IPv6 Address
Ethernet0 up 3FFE:C00:0:1:260:3EFF:FE11:6770
Ethernet1 up unassigned
Fddio up
Serial0 administratively down unassigned
Serial1 administratively down unassigned
Serial2 administratively down unassigned
Serial3 administratively down unassigned
Tunnel0 up unnumbered (Ethernet0)
Tunnel1 up 3FFE:700:20:1::12
```


## IPv6 Interface with ND Prefix Configured

This sample output shows the characteristics of an interface that has generated a prefix from a local IPv6 prefix pool:

```
show ipv6 interface Ethernet 0/0 prefix
interface Ethernet0/0
 ipv6 address 2001:0DB8::1/64
 ipv6 address 2001:0DB8::2/64
```

```
ipv6 nd prefix 2001:0DB8:2::/64
ipv6 nd prefix 2001:0DB8:3::/64 2592000 604800 off-link
end
•
IPv6 Prefix Advertisements Ethernet0/0
Codes: A - Address, P - Prefix-Advertisement, O - Pool
 U - Per-user prefix, D - Default
 N - Not advertised, C - Calendar
 default [LA] Valid lifetime 2592000, preferred lifetime 604800
AD 2001:0DB8:1::/64 [LA] Valid lifetime 2592000, preferred lifetime 604800
APD 2001:0DB8:2::/64 [LA] Valid lifetime 2592000, preferred lifetime 604800
P 2001:0DB8:3::/64 [A] Valid lifetime 2592000, preferred lifetime 604800
```

The default prefix shows the parameters that are configured using the ipv6 nd prefix default command.

## IPv6 Interface with DRP Configured

This sample output shows the state of the DRP preference value as advertised by this device through an interface:

```
show ipv6 interface gigabitethernet 0/1
 GigabitEthernet0/1 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::130
 Description: Management network (dual stack)
 Global unicast address(es):
 FEC0:240:104:1000::130, subnet is FEC0:240:104:1000::/64
 Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF00:130
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
 ND router advertisements live for 1800 seconds
 ND advertised default router preference is Low
 Hosts use stateless autoconfig for addresses.
```


## IPv6 Interface with HSRP Configured

When HSRP IPv6 is first configured on an interface, the interface IPv6 link-local address is marked unactive (UNA) because it is no longer advertised, and the HSRP IPv6 virtual link-local address is added to the virtual link-local address list with the UNA and tentative DAD (TEN) attributes set. The interface is also programmed to listen for the HSRP IPv6 multicast address.

This sample output shows the status of UNA and TEN attributes, when HSRP IPv6 is configured on an interface:

```
show ipv6 interface ethernet 0/0
Ethernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80:2::2 [UNA]
 Virtual link-local address(es):
```

```
 FE80::205:73FF:FEA0:1 [UNA/TEN]
Global unicast address(es):
 2001:2::2, subnet is 2001:2::/64
Joined group address(es):
 FF02::1
 FF02::2
 FF02::66
 FF02::1:FF00:2
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ND DAD is enabled, number of DAD attempts: 1
```

After the HSRP group becomes active, the UNA and TEN attributes are cleared, and the overly optimistic DAD (OOD) attribute is set. The solicited node multicast address for the HSRP virtual IPv6 address is also added to the interface.

This sample output shows the status of UNA, TEN and OOD attributes, when HSRP group is activated:

```
show ipv6 interface ethernet 0/0
Ethernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80:2::2 [UNA]
 Virtual link-local address(es):
 FE80::205:73FF:FEA0:1 [OPT]
 Global unicast address(es):
 2001:2::2, subnet is 2001:2::/64
 Joined group address(es):
 FF02::1
 FF02::2
 FF02::66
 FF02::1:FF00:2
 FF02::1:FFA0:1
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
```

The table below describes additional significant fields shown in the displays for the show ipv6 interface command with HSRP configured.

Table 46: show ipv6 interface Command with HSRP Configured Field Descriptions

| Field | Description |
| :--- | :--- |
| IPv6 is enabled, link-local address is <br> FE80:2::2 [UNA] | The interface IPv6 link-local address is marked UNA because <br> it is no longer advertised. |
| FE80::205:73FF:FEA0:1 [UNA/TEN] | The virtual link-local address list with the UNA and TEN <br> attributes set. |
| FF02::66 | HSRP IPv6 multicast address. |
| FE80::205:73FF:FEA0:1 [OPT] | HSRP becomes active, and the HSRP virtual address marked <br> OPT. |
| FF02::1:FFA0:1 | HSRP solicited node multicast address. |

## IPv6 Interface with Minimum RA Interval Configured

When you enable Mobile IPv6 on an interface, you can configure a minimum interval between IPv6 router advertisement (RA) transmissions. The show ipv6 interface command output reports the minimum RA interval, when configured. If the minimum RA interval is not explicitly configured, then it is not displayed.
In the following example, the maximum RA interval is configured as 100 seconds, and the minimum RA interval is configured as 60 seconds on Ethernet interface $1 / 0$ :

```
(config-if)# ipv6 nd ra-interval 100 60
```

Subsequent use of the show ipv6 interface then displays the interval as follows:

```
(config)# show ipv6 interface ethernet 1/0
Ethernet1/0 is administratively down, line protocol is down
 IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:5A01 [TEN]
 No Virtual link-local address(es):
 No global unicast address is configured
 Joined group address(es):
 FF02::1
 FF02::2
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 60 to 100 seconds
 ND router advertisements live for }1800\mathrm{ seconds
 ND advertised default router preference is Medium
 Hosts use stateless autoconfig for addresses.
```

In the following example, the maximum RA interval is configured as 100 milliseconds ( ms ), and the minimum RA interval is configured as 60 ms on Ethernet interface $1 / 0$ :

```
(config)# show ipv6 interface ethernet 1/0
Ethernet1/0 is administratively down, line protocol is down
 IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:5A01 [TEN]
 No Virtual link-local address(es):
 No global unicast address is configured
 Joined group address(es):
 FF02::1
 FF02::2
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 60 to 100 milliseconds
 ND router advertisements live for 1800 seconds
 ND advertised default router preference is Medium
 Hosts use stateless autoconfig for addresses.
```

The table below describes additional significant fields shown in the displays for the show ipv6 interface command with minimum RA interval information configured.

## Table 47: show ipv6 interface Command with Minimum RA Interval Information Configuration Field Descriptions

| Field | Description |
| :--- | :--- |
| ND router advertisements are sent <br> every 60 to 100 seconds | ND RAs are sent at an interval randomly selected from a value <br> between the minimum and maximum values. In this example, the <br> minimum value is 60 seconds, and the maximum value is 100 <br> seconds. |
| ND router advertisements are sent <br> every 60 to 100 milliseconds | ND RAs are sent at an interval randomly selected from a value <br> between the minimum and maximum values. In this example, the <br> minimum value is 60 ms, and the maximum value is 100 ms. |

Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 nd prefix | Configures which IPv6 prefixes are included in IPv6 router advertisements. |
| ipv6 nd ra interval | Configures the interval between IPv6 RA transmissions on an interface. |
| show ip interface | Displays the usability status of interfaces configured for IP. |

## show ipv6 mfib

To display the forwarding entries and interfaces in the IPv6 Multicast Forwarding Information Base (MFIB), use the show ipv6 mfib command in user EXEC or privileged EXEC mode.
show ipv6 mfib [vrf vrf-name] [\{all |linkscope | verbose group-address-name | ipv6-prefix/ prefix-length source-address-name $\mid$ interface $\mid$ status $\mid$ summary $\}]$
show ipv6 mfib [vrf vrf-name] [\{all|linkscope | verbose | interface | status | summary $\}$ ]

## Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| all | (Optional) Displays all forwarding entries and interfaces in the IPv6 MFIB. |
| linkscope | (Optional) Displays the link-local groups. |
| verbose | (Optional) Provides additional information, such as the MAC encapsulation header <br> and platform-specific information. |
| ipv6-prefix | (Optional) The IPv6 network assigned to the interface. The default IPv6 prefix is <br> 128. <br> This argument must be in the form documented in RFC 2373 where the address is <br> specified in hexadecimal using 16-bit values between colons. |
| $/$ prefix-length | (Optional) The length of the IPv6 prefix. A decimal value that indicates how many <br> of the high-order contiguous bits of the address comprise the prefix (the network <br> portion of the address). A slash mark must precede the decimal value. |
| group-address-name | (Optional) IPv6 address or name of the multicast group. |
| source-address-name | (Optional) IPv6 address or name of the multicast group. |
| interface | (Optional) Interface settings and status. |
| status | (Optional) General settings and status. |

## Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

Use the show ipv6 mfib command to display MFIB entries; and forwarding interfaces, and their traffic statistics. This command can be enabled on virtual IP (VIP) if the router is operating in distributed mode.

A forwarding entry in the MFIB has flags that determine the default forwarding and signaling behavior to use for packets matching the entry. The entry also has per-interface flags that further specify the forwarding
behavior for packets received or forwarded on specific interfaces. The table below describes the MFIB forwarding entries and interface flags.

Table 48: MFIB Entries and Interface Flags

| Flag | Description |
| :--- | :--- |
| F | Forward--Data is forwarded out of this interface. |
| A | Accept--Data received on this interface is accepted for forwarding. |
| IC | Internal copy--Deliver to the router a copy of the packets received or forwarded on this interface. |
| NS | Negate signal--Reverse the default entry signaling behavior for packets received on this interface. |
| DP | Do not preserve--When signaling the reception of a packet on this interface, do not preserve a copy of <br> it (discard it instead). |
| SP | Signal present--The reception of a packet on this interface was just signaled. |
| S | Signal--By default, signal the reception of packets matching this entry. |
| C | Perform directly connected check for packets matching this entry. Signal the reception if packets were <br> originated by a directly connected source. |

## Examples

The following example displays the forwarding entries and interfaces in the MFIB. The router is configured for fast switching, and it has a receiver joined to FF05::1 on Ethernet $1 / 1$ and a source (2001::1:1:20) sending on Ethernet $1 / 2$ :

```
show ipv6 mfib
IP Multicast Forwarding Information Base
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
 AR - Activity Required, D - Drop
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts: FS Pkt Count/PS Pkt Count
(*,FFO0::/8) Flags: C
 Forwarding: 0/0/0/0, Other: 0/0/0
 Tunnel0 Flags: NS
(*,FFOO::/15) Flags: D
 Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF05::1) Flags: C
 Forwarding: 2/0/100/0, Other: 0/0/0
 Tunnel0 Flags: A NS
 Ethernet1/1 Flags: F NS
 Pkts: 0/2
(2001::1:1:200,FF05::1) Flags:
 Forwarding: 5/0/100/0, Other: 0/0/0
 Ethernet1/2 Flags: A
 Ethernet1/1 Flags: F NS
 Pkts: 3/2
(*,FF10::/15) Flags: D
 Forwarding: 0/0/0/0, Other: 0/0/0
```

The table below describes the significant fields shown in the display.

## Table 49: show ipv6 mfib Field Descriptions

| Field | Description |
| :--- | :--- |
| Entry Flags | Information about the entry. |
| Forwarding Counts | Statistics on the packets that are received from and forwarded to at least one interface. |
| Pkt Count/ | Total number of packets received and forwarded since the creation of the multicast <br> forwarding state to which this counter applies. |
| Pkts per second/ | Number of packets received and forwarded per second. |
| Avg Pkt Size/ | Total number of bytes divided by the total number of packets for this multicast <br> forwarding state. There is no direct display for the total number of bytes. You can <br> calculate the total number of bytes by multiplying the average packet size by the packet <br> count. |
| Kbits per second | Bytes per second divided by packets per second divided by 1000. |
| Other counts: | Statistics on the received packets. These counters include statistics about the packets <br> received and forwarded and packets received but not forwarded. |
| Interface Flags: | Information about the interface. |
| Interface Counts: | Interface statistics. |

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FF03:1::1 specified:

```
show ipv6 mfib FF03:1::1
IP Multicast Forwarding Information Base
Entry Flags:C - Directly Connected, S - Signal, IA - Inherit A
flag,
 AR - Activity Required, D - Drop
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kbits per
second
Other counts:Total/RPF failed/Other drops
Interface Flags:A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts:FS Pkt Count/PS Pkt Count
*,FF03:1::1) Flags:C
 Forwarding:0/0/0/0, Other:0/0/0
 Tunnel1 Flags:A NS
 GigabitEthernet5/0.25 Flags:F NS
 Pkts:0/0
 GigabitEthernet5/0.24 Flags:F NS
 Pkts:0/0
(5002:1::2,FF03:1::1) Flags:
 Forwarding:71505/0/50/0, Other:42/0/42
 GigabitEthernet5/0 Flags:A
 GigabitEthernet5/0.19 Flags:F NS
 Pkts:239/24
 GigabitEthernet5/0.20 Flags:F NS
 Pkts:239/24
 GigabitEthernet5/0.21 Flags:F NS
 Pkts:238/24
```

```
GigabitEthernet5/0.16 Flags:F NS
Pkts:71628/24
```

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FF03:1::1 and a source address of $5002: 1:: 2$ specified:

```
show ipv6 mfib FF03:1::1 5002:1::2
IP Multicast Forwarding Information Base
Entry Flags:C - Directly Connected, S - Signal, IA - Inherit A flag,
 AR - Activity Required, D - Drop
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts:Total/RPF failed/Other drops
Interface Flags:A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts:FS Pkt Count/PS Pkt Count
(5002:1::2,FF03:1::1) Flags:
 Forwarding:71505/0/50/0, Other:42/0/42
 GigabitEthernet5/0 Flags:A
 GigabitEthernet5/0.19 Flags:F NS
 Pkts:239/24
 GigabitEthernet5/0.20 Flags:F NS
 Pkts:239/24
.
.
 GigabitEthernet5/0.16 Flags:F NS
 Pkts:71628/24
```

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FF03:1::1 and a default prefix of 128 :

```
show ipv6 mfib FF03:1::1/128
IP Multicast Forwarding Information Base
Entry Flags:C - Directly Connected, S - Signal, IA - Inherit A flag,
 AR - Activity Required, D - Drop
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts:Total/RPF failed/Other drops
Interface Flags:A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts:FS Pkt Count/PS Pkt Count
(*,FF03:1::1) Flags:C
 Forwarding:0/0/0/0, Other:0/0/0
 Tunnel1 Flags:A NS
 GigabitEthernet5/0.25 Flags:F NS
 Pkts:0/0
 GigabitEthernet5/0.24 Flags:F NS
 Pkts:0/0
.
.
 GigabitEthernet5/0.16 Flags:F NS
 Pkts:0/0
```

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FFE0 and a prefix of 15 :

```
show ipv6 mfib FFEO::/15
```

```
IP Multicast Forwarding Information Base
Entry Flags:C - Directly Connected, S - Signal, IA - Inherit A flag,
 AR - Activity Required, D - Drop
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts:Total/RPF failed/Other drops
Interface Flags:A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts:FS Pkt Count/PS Pkt Count
(*,FFEO::/15) Flags:D
 Forwarding:0/0/0/0, Other:0/0/0
```

The following example shows output of the show ipv6 mfib command used with the verbose keyword. It shows forwarding entries and interfaces in the MFIB and additional information such as the MAC encapsulation header and platform-specific information.

```
show ipv6 mfib ff33::1:1 verbose
IP Multicast Forwarding Information Base
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
 AR - Activity Required, K - Keepalive
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
Platform per slot HW-Forwarding Counts: Pkt Count/Byte Count
Platform flags: HF - Forwarding entry,HB - Bridge entry,HD - NonRPF Drop entry,
 NP - Not platform switchable,RPL - RPF-ltl linkage,
 MCG - Metset change,ERR - S/w Error Flag,RTY - In RetryQ,
 LP - L3 pending,MP - Met pending,AP - ACL pending
Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts: Distributed FS Pkt Count/FS Pkt Count/PS Pkt Count
(10::2,FF33::1:1) Flags: K
 RP Forwarding: 0/0/0/0, Other: 0/0/0
 LC Forwarding: 0/0/0/0, Other: 0/0/0
 HW Forwd: 0/0/0/0, Other: NA/NA/NA
 Slot 6: HW Forwarding: 0/0, Platform Flags: HF RPL
 Slot 1: HW Forwarding: 0/0, Platform Flags: HF RPL
 Vlan10 Flags: A
 Vlan30 Flags: F NS
 Pkts: 0/0/0 MAC: 33330001000100D0FFFE180086DD
```

The table below describes the fields shown in the display.
Table 50: show ipv6 mfib verbose Field Descriptions

| Field | Description |
| :--- | :--- |
| Platform flags | Information about the platform. |
| Platform per slot HW-Forwarding Counts | Total number of packets per bytes forwarded. |


| Command | Description |
| :--- | :--- |
| show ipv6 mfib active | Displays the rate at which active sources are sending to multicast groups. |
| show ipv6 mfib count | Displays summary traffic statistics from the MFIB about the group and source. |
| show ipv6 mfib interface | Displays information about IPv6 multicast-enabled interfaces and their <br> forwarding status. |


| Command | Description |
| :--- | :--- |
| show ipv6 mfib status | Displays the general MFIB configuration and operational status. |
| show ipv6 mfib summary | Displays summary information about the number of IPv6 MFIB entries <br> (including link-local groups) and interfaces. |

## show ipv6 mld groups

To display the multicast groups that are directly connected to the router and that were learned through Multicast Listener Discovery (MLD), use the show ipv6 mld groups command in user EXEC or privileged EXEC mode.
show ipv6 mld [vrf vrf-name] groups [link-local] [\{group-namegroup-address $\}$ ] [interface-type interface-number] [\{detail|explicit $\}$ ]

## Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| link-local | (Optional) Displays the link-local groups. |
| group-name \| group-address | (Optional) IPv6 address or name of the multicast group. |
| interface-type interface-number | (Optional) Interface type and number. |
| detail | (Optional) Displays detailed information about individual sources. |
| explicit | (Optional) Displays information about the hosts being explicitly tracked <br> on each interface for each group. |

## Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

If you omit all optional arguments, the show ipv6 mld groups command displays by group address and interface type and number all directly connected multicast groups, including link-local groups (where the link-local keyword is not available) used.

## Examples

The following is sample output from the show ipv6 mld groups command. It shows all of the groups joined by Fast Ethernet interface 2/1, including link-local groups used by network protocols.

```
show ipv6 mld groups FastEthernet 2/1
MLD Connected Group Membership
Group Address Interface Uptime Expires
FF02::2 FastEthernet2/1 3d18h never
FF02::D FastEthernet2/1 3d18h never
FF02::16 FastEthernet2/1 3d18h never
FF02::1:FF00:1 FastEthernet2/1 3d18h 00:00:27
FF02::1:FF00:79 FastEthernet2/1 3d18h never
FF02::1:FF23:83C2 FastEthernet2/1 3d18h 00:00:22
FF02::1:FFAF:2C39 FastEthernet2/1 3d18h never
FF06:7777::1 FastEthernet2/1 3d18h 00:00:26
```

The following is sample output from the show ipv6 mld groups command using the detail keyword:

```
show ipv6 mld groups detail
Interface: Ethernet2/1/1
Group: FF33::1:1:1
Uptime: 00:00:11
Router mode: INCLUDE
Host mode: INCLUDE
Last reporter: FE80::250:54FF:FE60:3B14
Group source list:
Source Address Uptime Expires Fwd Flags
2004:4::6 00:00:11 00:04:08 Yes Remote Ac 4
```

The following is sample output from the show ipv6 mld groups command using the explicit keyword:

```
show ipv6 mld groups explicit
Ethernet1/0, FF05::1
 Up:00:43:11 EXCLUDE(0/1) Exp:00:03:17
 Host Address Uptime Expires
 FE80::A8BB:CCFF:FE00:800 00:43:11 00:03:17
 Mode:EXCLUDE
Ethernet1/0, FF05::6
 Up:00:42:22 INCLUDE (1/0) Exp:not used
 Host Address Uptime Expires
 FE80::A8BB:CCFF:FE00:800 00:42:22 00:03:17
 Mode:INCLUDE
 300::1
 300::2
 300::3
Ethernet1/0 - Interface
ff05::1 - Group address
Up:Uptime for the group
EXCLUDE/INCLUDE - The mode the group is in on the router.
(0/1) (1/0) - (Number of hosts in INCLUDE mode/Number of hosts in EXCLUDE moe)
Exp:Expiry time for the group.
FE80::A8BB:CCFF:FE00:800 - Host ipv6 address.
00:43:11 - Uptime for the host.
00:03:17 - Expiry time for the host
Mode:INCLUDE/EXCLUDE - Mode the Host is operating in.
300::1, 300::2, 300::3 - Sources that the host has joined in the above specified mode.
```

The table below describes the significant fields shown in the display.
Table 51: show ipv6 mld groups Field Descriptions

| Field | Description |
| :--- | :--- |
| Group Address | Address of the multicast group. |
| Interface | Interface through which the group is reachable. |
| Uptime | How long (in hours, minutes, and seconds) this multicast group has been known. |
| Expires | How long (in hours, minutes, and seconds) until the entry is removed from the MLD groups <br> table. <br> The expiration timer shows "never" if the router itself has joined the group, and the expiration <br> timer shows "not used" when the router mode of the group is INCLUDE. In this situation, <br> the expiration timers on the source entries are used. |
| Last reporter: | Last host to report being a member of the multicast group. |


| Field | Description |
| :--- | :--- |
| Flags Ac 4 | Flags counted toward the MLD state limits configured. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
| ipv6 mld query-interval | Configures the frequency at which the Cisco IOS software sends MLD host-query <br> messages. |  |

## show ipv6 mld interface

To display multicast-related information about an interface, use the show ipv6 mld interface command in user EXEC or privileged EXEC mode.
show ipv6 mld [vrf vrf-name] interface [type number]

Syntax Description

Command Modes

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| type number | (Optional) Interface type and number. |

User EXEC (>)
Privileged EXEC (\#)

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a |  |

## Usage Guidelines

If you omit the optional type and number arguments, the show ipv6 mld interface command displays information about all interfaces.

## Examples

The following is sample output from the show ipv6 mld interface command for Ethernet interface 2/1/1:

```
show ipv6 mld interface Ethernet 2/1/1
Global State Limit : 2 active out of 2 max
Loopback0 is administratively down, line protocol is down
 Internet address is ::/0
.
Ethernet2/1/1 is up, line protocol is up
 Internet address is FE80::260:3EFF:FE86:5649/10
 MLD is enabled on interface
 Current MLD version is 2
 MLD query interval is }125\mathrm{ seconds
 MLD querier timeout is 255 seconds
 MLD max query response time is }10\mathrm{ seconds
 Last member query response interval is 1 seconds
 Interface State Limit : 2 active out of 3 max
 State Limit permit access list:
 MLD activity: }83\mathrm{ joins, }63\mathrm{ leaves
 MLD querying router is FE80::260:3EFF:FE86:5649 (this system)
```

The table below describes the significant fields shown in the display.

## Table 52: show ipv6 mld interface Field Descriptions

| Field | Description |
| :--- | :--- |
| Global State Limit: 2 active out of 2 max | Two globally configured MLD states are active. |


| Field | Description |
| :--- | :--- |
| Ethernet2/1/1 is up, line protocol is up | Interface type, number, and status. |
| Internet address is... | Internet address of the interface and subnet mask being applied <br> to the interface. |
| MLD is enabled in interface | Indicates whether Multicast Listener Discovery (MLD) has been <br> enabled on the interface with the ipv6 multicast-routing <br> command. |
| Current MLD version is 2 | The current MLD version. |
| MLD query interval is 125 seconds | Interval (in seconds) at which the Cisco IOS software sends MLD <br> query messages, as specified with the ipv6 mld query-interval <br> command. |
| MLD querier timeout is 255 seconds | The length of time (in seconds) before the router takes over as <br> the querier for the interface, as specified with the ipv6 mld <br> query-timeout command. |
| MLD max query response time is 10 <br> seconds | The length of time (in seconds) that hosts have to answer an MLD <br> Query message before the router deletes their group, as specified <br> with the ipv6 mld query-max-response-time command. |
| Last member query response interval is 1 <br> seconds | Used to calculate the maximum response code inserted in group <br> and source-specific query. Also used to tune the "leave latency" <br> of the link. A lower value results in reduced time to detect the <br> last member leaving the group. |
| Interface State Limit : 2 active out of 3 <br> max | Two out of three configured interface states are active. <br> FE80::260:3EFF:FE86:5649 (this system) |
| IPv6 address of the querying router. <br> MLD querying router is access list: change | Activity for the state permit access list. |
| Number of groups joins and leaves that have been received. |  |

## Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 mld join-group | Configures MLD reporting for a specified group and source. |
| ipv6 mld query-interval | Configures the frequency at which the Cisco IOS software sends MLD host-query <br> messages. |

## show ipv6 mld snooping

Use the show ipv6 mld snooping command in EXEC mode to display IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping configuration of the switch or the VLAN.
show ipv6 mld snooping [vlan vlan-id]

Syntax Description

## Command Modes

Command History

| vlan vlan-id | (Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094. |
| :--- | :--- |

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a |  |

Usage Guidelines
Use this command to display MLD snooping configuration for the switch or for a specific VLAN.
VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

To configure the dual IPv4 and IPv6 template, enter the sdm prefer dual-ipv4-and-ipv6 global configuration command and reload the switch.

## Examples <br> This is an example of output from the show ipv6 mld snooping vlan command. It shows snooping

characteristics for a specific VLAN.

```
show ipv6 mld snooping vlan 100
Global MLD Snooping configuration:
MLD snooping : Enabled
MLDv2 snooping (minimal) : Enabled
Listener message suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000
Vlan 100:

MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000
```

This is an example of output from the show ipv6 mld snooping command. It displays snooping characteristics for all VLANs on the switch.


## show ipv6 mld ssm-map

To display Source Specific Multicast (SSM) mapping information, use the show ipv6 mld ssm-map static command in user EXEC or privileged EXEC mode.
show ipv6 mld [vrf vrf-name] ssm-map [source-address]

Syntax Description

Command Modes

Command History

## Usage Guidelines

## Examples

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| source-address | (Optional) Source address associated with an MLD membership for a group identified by <br> the access list. |

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

If the optional source-address argument is not used, all SSM mapping information is displayed.

The following example shows all SSM mappings for the router:

```
show ipv6 mld ssm-map
SSM Mapping : Enabled
DNS Lookup : Enabled
```

The following examples show SSM mapping for the source address 2001:0DB8::1:

```
show ipv6 mld ssm-map 2001:0DB8::1
 Group address : 2001:0DB8::1
 Group mode ssm : TRUE
 Database : STATIC
 Source list : 2001:0DB8::2
 2001:0DB8::3
Router# show ipv6 mld ssm-map 2001:0DB8::2
 Group address : 2001:0DB8::2
 Group mode ssm : TRUE
 Database : DNS
 Source list : 2001:0DB8::3
 2001:0DB8::1
```

The table below describes the significant fields shown in the displays.

## Table 53: show ipv6 mId ssm-map Field Descriptions

| Field | Description |
| :--- | :--- |
| SSM Mapping | The SSM mapping feature is enabled. |


| Field | Description |
| :--- | :--- |
| DNS Lookup | The DNS lookup feature is automatically enabled when the SSM mapping feature <br> is enabled. |
| Group address | Group address identified by a specific access list. |
| Group mode ssm : TRUE | The identified group is functioning in SSM mode. |
| Database : STATIC | The router is configured to determine source addresses by checking static SSM <br> mapping configurations. |
| Database : DNS | The router is configured to determine source addresses using DNS-based SSM <br> mapping. |
| Source list | Source address associated with a group identified by the access list. |

## Related Commands

| Command | Description |
| :--- | :--- |
| debug ipv6 mld ssm-map | Displays debug messages for SSM mapping. |
| ipv6 mld ssm-map enable | Enables the SSM mapping feature for groups in the configured SSM range |
| ipv6 mld ssm-map query dns | Enables DNS-based SSM mapping. |
| ipv6 mld ssm-map static | Configures static SSM mappings. |

## show ipv6 mld traffic

To display the Multicast Listener Discovery (MLD) traffic counters, use the show ipv6 mld traffic command in user EXEC or privileged EXEC mode.
show ipv6 mld [vrf vrf-name] traffic

| Syntax Description |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines

| vrf $\quad$ vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- | :--- |

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Use the show ipv6 mld traffic command to check if the expected number of MLD protocol messages have been received and sent.

## Examples

The following example displays the MLD protocol messages received and sent.

```
show ipv6 mld traffic
MLD Traffic Counters
Elapsed time since counters cleared:00:00:21
 Received Sent
Valid MLD Packets 3 1
Queries 1 0
Reports 2 1
Leaves 0 0
Mtrace packets 0 0
Errors:
Malformed Packets 0
Bad Checksums 0
Martian source 0
Packets Received on MLD-disabled Interface 0
```

The table below describes the significant fields shown in the display.
Table 54: show ipv6 mld traffic Field Descriptions

| Field | Description |
| :--- | :--- |
| Elapsed time since counters cleared | Indicates the amount of time (in hours, minutes, and seconds) since the <br> counters cleared. |
| Valid MLD packets | Number of valid MLD packets received and sent. |
| Queries | Number of valid queries received and sent. |


| Field | Description |
| :--- | :--- |
| Reports | Number of valid reports received and sent. |
| Leaves | Number of valid leaves received and sent. |
| Mtrace packets | Number of multicast trace packets received and sent. |
| Errors | Types of errors and the number of errors that have occurred. |

## show ipv6 mrib client

To display information about the clients of the Multicast Routing Information Base (MRIB), use the show ipv6 mrib client command in user EXEC or privileged EXEC mode.
show ipv6 mrib [vrf vrf-name] client [filter] [name \{client-name $\mid$ client-name : client-id $\}$ ]
Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| filter | (Optional) Displays information about MRIB flags that each client owns and that <br> each client is interested in. |
| name | (Optional) The name of a multicast routing protocol that acts as a client of MRIB, <br> such as Multicast Listener Discovery (MLD) and Protocol Independent Multicast <br> (PIM). |
| client-name : client-id | The name and ID of a multicast routing protocol that acts as a client of MRIB, <br> such as MLD and PIM. The colon is required. |

## Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Usage Guidelines
Use the filter keyword to display information about the MRIB flags each client owns and the flags in which each client is interested.

## Examples

The following is sample output from the show ipv6 mrib client command:

```
show ipv6 mrib client
IP MRIB client-connections
igmp:145 (connection id 0)
pim:146 (connection id 1)
mfib ipv6:3 (connection id 2)
slot 3 mfib ipv6 rp agent:16 (connection id 3)
slot 1 mfib ipv6 rp agent:16 (connection id 4)
slot 0 mfib ipv6 rp agent:16 (connection id 5)
slot 4 mfib ipv6 rp agent:16 (connection id 6)
slot 2 mfib ipv6 rp agent:16 (connection id 7)
```

The table below describes the significant fields shown in the display.

## Table 55: show ipv6 mrib client Field Descriptions

| Field | Description |
| :--- | :--- |
| igmp:145 (connection id 0) pim:146 (connection id 1) mfib ipv6:3 <br> (connection id 2) mfib ipv6 rp agent:16 (connection id 3) | Client ID (client name:process ID) |

## show ipv6 mrib route

To display Multicast Routing Information Base (MRIB) route information, use the show ipv6 mrib route command in user EXEC or privileged EXEC mode.
show ipv6 mrib [vrf vrf-name] route [\{link-local|summary |[\{source-addresssource-name |*\}] [groupname-or-address [prefix-length]]\}]

Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| link-local | (Optional) Displays the link-local groups. |
| summary | (Optional) Displays the number of MRIB entries (including link-local groups) <br> and interfaces present in the MRIB table. |
| source address-or-name | (Optional) IPv6 address or name of the source. |
| $*$ | (Optional) Displays all MRIB route information. |
| groupname or-address | (Optional) IPv6 address or name of the multicast group. |
| prefix-length | (Optional) IPv6 prefix length. |

## Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

All entries are created by various clients of the MRIB, such as Multicast Listener Discovery (MLD), Protocol Independent Multicast (PIM), and Multicast Forwarding Information Base (MFIB). The flags on each entry or interface serve as a communication mechanism between various clients of the MRIB. The entries reveal how PIM sends register messages for new sources and the action taken.

The summary keyword shows the count of all entries, including link-local entries.
The interface flags are described in the table below.
Table 56: Description of Interface Flags

| Flag | Description |
| :--- | :--- |
| F | Forward--Data is forwarded out of this interface |
| A | Accept--Data received on this interface is accepted for forwarding |
| IC | Internal copy |
| NS | Negate signal |


| Flag | Description |
| :--- | :--- |
| DP | Do not preserve |
| SP | Signal present |
| II | Internal interest |
| ID | Internal uninterest |
| LI | Local interest |
| LD | Local uninterest |
| C | Perform directly connected check |

Special entries in the MRIB indicate exceptions from the normal behavior. For example, no signaling or notification is necessary for arriving data packets that match any of the special group ranges. The special group ranges are as follows:

- Undefined scope (FFX0::/16)
- Node local groups (FFX1::/16)
- Link-local groups (FFX2::/16)
- Source Specific Multicast (SSM) groups (FF3X::/32).

For all the remaining (usually sparse-mode) IPv6 multicast groups, a directly connected check is performed and the PIM notified if a directly connected source arrives. This procedure is how PIM sends register messages for new sources.

## Examples

The following is sample output from the show ipv6 mrib route command using the summary keyword:

```
show ipv6 mrib route summary
MRIB Route-DB Summary
 No. of (*,G) routes = 52
 No. of (S,G) routes = 0
 No. of Route x Interfaces (RxI) = 10
```

The table below describes the significant fields shown in the display.

## Table 57: show ipv6 mrib route Field Descriptions

| Field | Description |
| :--- | :--- |
| No. of (*, G) routes | Number of shared tree routes in the MRIB. |
| No. of (S, G) routes | Number of source tree routes in the MRIB. |
| No. of Route x Interfaces (RxI) | Sum of all the interfaces on each MRIB route entry. |

## show ipv6 mroute

To display the information in the PIM topology table in a format similar to the show ip mroute command, use the show ipv6 mroute command in user EXEC or privileged EXEC mode.
show ipv6 mroute [vrf vrf-name] [\{link-local |[\{group-name | group-address [\{source-addresssource-name $\}]\}]\}]$ [summary] [count]

Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| link-local | (Optional) Displays the link-local groups. |
| group-name \| group-address | (Optional) IPv6 address or name of the multicast group. |
| source-address $\mid$ source-name | (Optional) IPv6 address or name of the source. |
| summary | (Optional) Displays a one-line, abbreviated summary of each entry in the <br> IPv6 multicast routing table. |
| count | (Optional) Displays statistics from the Multicast Forwarding Information <br> Base (MFIB) about the group and source, including number of packets, <br> packets per second, average packet size, and bytes per second. |


| Command Default |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines
The IPv6 multicast implementation does not have a separate mroute table. For this reason, the show ipv6 mroute command enables you to display the information in the PIM topology table in a format similar to the show ip mroute command.
If you omit all optional arguments and keywords, the show ipv6 mroute command displays all the entries in the PIM topology table (except link-local groups where the link-local keyword is available).

The Cisco IOS software populates the PIM topology table by creating ( $\mathrm{S}, \mathrm{G}$ ) and $\left({ }^{*}, \mathrm{G}\right)$ entries based on PIM protocol messages, MLD reports, and traffic. The asterisk (*) refers to all source addresses, the "S" refers to a single source address, and the " G " is the destination multicast group address. In creating ( $\mathrm{S}, \mathrm{G}$ ) entries, the software uses the best path to that destination group found in the unicast routing table (that is, through Reverse Path Forwarding [RPF]).
Use the show ipv6 mroute command to display the forwarding status of each IPv6 multicast route.

## Examples

```
show ipv6 mroute ff07::1
Multicast Routing Table
Flags:D - Dense, S - Sparse, B - Bidir Group, s - SSM Group,
 C - Connected, L - Local, I - Received Source Specific Host Report,
 P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
 J - Join SPT
Timers:Uptime/Expires
Interface state:Interface, State
(*, FF07::1), 00:04:45/00:02:47, RP 2001:0DB8:6::6, flags:S
 Incoming interface:Tunnel5
 RPF nbr:6:6:6::6
 Outgoing interface list:
 POS4/0, Forward, 00:04:45/00:02:47
(2001:0DB8:999::99, FF07::1), 00:02:06/00:01:23, flags:SFT
 Incoming interface:POS1/0
 RPF nbr:2001:0DB8:999::99
 Outgoing interface list:
 POS4/0, Forward, 00:02:06/00:03:27
```

The following is sample output from the show ipv6 mroute command with the summary keyword:

```
show ipv6 mroute ff07::1 summary
Multicast Routing Table
Flags:D - Dense, S - Sparse, B - Bidir Group, s - SSM Group,
 C - Connected, L - Local, I - Received Source Specific Host Report,
 P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
 J - Join SPT
Timers:Uptime/Expires
Interface state:Interface, State
(*, FF07::1), 00:04:55/00:02:36, RP 2001:0DB8:6::6, OIF count:1, flags:S
(2001:0DB8:999::99, FF07::1), 00:02:17/00:01:12, OIF count:1, flags:SFT
```

The following is sample output from the show ipv6 mroute command with the count keyword:

```
show ipv6 mroute ff07::1 count
IP Multicast Statistics
71 routes, 24 groups, 0.04 average sources per group
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Group:FF07::1
 RP-tree:
 RP Forwarding:0/0/0/0, Other:0/0/0
 LC Forwarding:0/0/0/0, Other:0/0/0
 Source:2001:0DB8:999::99,
 RP Forwarding:0/0/0/0, Other:0/0/0
 LC Forwarding:0/0/0/0, Other:0/0/0
 HW Forwd: 20000/0/92/0, Other:0/0/0
 Tot. shown:Source count:1, pkt count:20000
```

The table below describes the significant fields shown in the display.

## Table 58: show ipv6 mroute Field Descriptions

| Field | Description |
| :---: | :---: |
| Flags: | Provides information about the entry. <br> - S--sparse. Entry is operating in sparse mode. <br> - s--SSM group. Indicates that a multicast group is within the SSM range of IP addresses. This flag is reset if the SSM range changes. <br> - C--connected. A member of the multicast group is present on the directly connected interface. <br> - L--local. The router itself is a member of the multicast group. <br> - I--received source specific host report. Indicates that an (S, G) entry was created by an ( $\mathrm{S}, \mathrm{G}$ ) report. This flag is set only on the designated router (DR). <br> - P--pruned. Route has been pruned. The Cisco IOS software keeps this information so that a downstream member can join the source. <br> - R--RP-bit set. Indicates that the (S, G) entry is pointing toward the RP. This is typically prune state along the shared tree for a particular source. <br> - F--register flag. Indicates that the software is registering for a multicast source. <br> - T--SPT-bit set. Indicates that packets have been received on the shortest path source tree. <br> - J--join SPT. For ( ${ }^{*}$, G) entries, indicates that the rate of traffic flowing down the shared tree is exceeding the SPT-Threshold value set for the group. (The default SPT-Threshold setting is 0 kbps .) When the J - Join shortest path tree (SPT) flag is set, the next $(\mathrm{S}, \mathrm{G})$ packet received down the shared tree triggers an $(\mathrm{S}, \mathrm{G})$ join in the direction of the source, thereby causing the router to join the source tree. The default SPT-Threshold value of 0 kbps is used for the group, and the J - Join SPT flag is always set on $\left({ }^{*}, \mathrm{G}\right)$ entries and is never cleared. The router immediately switches to the shortest path source tree when traffic from a new source is received |
| Timers: Uptime/Expires | "Uptime" indicates per interface how long (in hours, minutes, and seconds) the entry has been in the IPv6 multicast routing table. "Expires" indicates per interface how long (in hours, minutes, and seconds) until the entry will be removed from the IPv6 multicast routing table. |
| Interface state: | Indicates the state of the incoming or outgoing interface. <br> - Interface. Indicates the type and number of the interface listed in the incoming or outgoing interface list. <br> - Next-Hop. "Next-Hop" specifies the IP address of the downstream neighbor. <br> - State/Mode. "State" indicates that packets will either be forwarded, pruned, or null on the interface depending on whether there are restrictions due to access lists. "Mode" indicates that the interface is operating in sparse mode. |


| Field | Description |
| :--- | :--- |
| $(*$, FF07::1) and <br> $(2001: 0 \mathrm{DB} 8: 999:: 99)$ | Entry in the IPv6 multicast routing table. The entry consists of the IPv6 address of the <br> source router followed by the IPv6 address of the multicast group. An asterisk (*) in <br> place of the source router indicates all sources. <br> Entries in the first format are referred to as $\left(^{*}, \mathrm{G}\right)$ or "star comma G" entries. Entries <br> in the second format are referred to as (S, G) or "S comma G" entries; $\left(^{*}, \mathrm{G}\right)$ entries <br> are used to build (S, G) entries. |
| RP | Address of the RP router. |
| flags: | Information set by the MRIB clients on this MRIB entry. |
| Incoming interface: | Expected interface for a multicast packet from the source. If the packet is not received <br> on this interface, it is discarded. |
| RPF nbr | IP address of the upstream router to the RP or source. |
| Outgoing interface <br> list: | Interfaces through which packets will be forwarded. For (S,G) entries, this list will <br> not include the interfaces inherited from the $\left(^{*}, G\right)$ entry. |

## Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 multicast-routing | Enables multicast routing using PIM and MLD on all IPv6-enabled interfaces of <br> the router and enables multicast forwarding. |
| show ipv6 mfib | Displays the forwarding entries and interfaces in the IPv6 MFIB. |

## show ipv6 mtu

To display maximum transmission unit (MTU) cache information for IPv6 interfaces, use the show ipv6 mtu command in user EXEC or privileged EXEC mode.
show ipv6 mtu [vrf vrfname]

Syntax Description

Command Modes

Command History

Usage Guidelines
Examples

| vrf | (Optional) Displays an IPv6 Virtual Private Network (VPN) routing/forwarding instance (VRF). |
| :--- | :--- |
| vrfname | (Optional) Name of the IPv6 VRF. |

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a |  |

The vrf keyword and vrfname argument allow you to view MTUs related to a specific VRF.

The following is sample output from the show ipv6 mtu command:

```
show ipv6 mtu
MTU Since Destination Address
1400 00:04:21 5000:1::3
1280 00:04:50 FE80::203:A0FF:FED6:141D
```

The following is sample output from the show ipv6 mtu command using the vrf keyword and vrfname argument. This example provides information about the VRF named vrfname1:

| \# show ipv6 mtu | vrf vrfname1 |  |  |
| :--- | :--- | :--- | :--- |
| MTU | Since | Source Address | Destination Address |
| 1300 | $00: 00: 04$ | $2001: 0$ DB8:2 | 2001:0DB8:7 |

The table below describes the significant fields shown in the display.

## Table 59: show ipv6 mtu Field Descriptions

| Field | Description |
| :--- | :--- |
| MTU | MTU, which was contained in the Internet Control Message Protocol (ICMP) <br> packet-too-big message, used for the path to the destination address. |
| Since | Age of the entry since the ICMP packet-too-big message was received. |
| Destination Address | Address contained in the received ICMP packet-too-big message. Packets originating <br> from this router to this address should be no bigger than the given MTU. |


| Related Commands | Command |
| :--- | :--- |
|  | Description |
| ipv6 mtu | Sets the MTU size of IPv6 packets sent on an interface. |

## show ipv6 nd destination

To display information about IPv6 host-mode destination cache entries, use the show ipv6 nd destination command in user EXEC or privileged EXEC mode.
show ipv6 nd destination[vrf vrf-name][interface-type interface-number]
Syntax Description

| vrf $\quad$ vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| interface- type | (Optional) Specifies the Interface type. |
| interface- number | (Optional) Specifies the Interface number. |

## Command Modes

Command History
User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Usage Guidelines
Use the show ipv6 nd destination command to display information about IPv6 host-mode destination cache entries. If the vrf $v r f$-name keyword and argument pair is used, then only information about the specified VRF is displayed. If the interface-type and interface-number arguments are used, then only information about the specified interface is displayed.

## Examples

```
show ipv6 nd destination
IPv6 ND destination cache (table: default)
Code: R - Redirect
 2001::1 [8]
 via FE80::A8BB:CCFF:FE00:5B00/Ethernet0/0
```

The following table describes the significant fields shown in the display.

## Table 60: show ipv6 nd destination Field Descriptions

| Field | Description |
| :--- | :--- |
| Code: R-Redirect | Destinations learned through redirect. |
| $2001:: 1[8]$ | The value displayed in brackets is the time, in seconds, since the destination cache entry <br> was last used. |

Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 nd host mode strict | Enables the conformant, or strict, IPv6 host mode. |

## show ipv6 nd on-link prefix

To display information about on-link prefixes learned through router advertisements (RAs), use the show ipv6 nd on-link prefix command in user EXEC or privileged EXEC mode.
show ipv6 nd on-link prefix[vrf vrf-name][interface-type interface-number]

## Syntax Description

| vrf $\quad$ vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| interface-type | (Optional) Specifies the Interface type. |
| interface-number | (Optional) Specifies the Interface number. |


| Command Modes |
| :--- |
| Command History |

## Usage Guidelines

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Use the show ipv6 nd on-link prefix command to display information about on-link prefixes learned through RAs.

Prefixes learned from an RA may be inspected using the show ipv6 nd on-link prefix command. If the vrf vrf-name keyword and argument pair is used, then only information about the specified VRF is displayed. If the interface-type and interface-number arguments are used, then only information about the specified interface is displayed.

## Examples

## Related Commands

The following example displays information about on-link prefixes learned through RAs:

```
show ipv6 nd on-link prefix
IPv6 ND on-link Prefix (table: default), 2 prefixes
Code: A - Autonomous Address Config
A 2001::/64 [2591994/604794]
router FE80::A8BB:CCFF:FE00:5A00/Ethernet0/0
2001:1:2::/64 [2591994/604794]
router FE80::A8BB:CCFF:FE00:5A00/Ethernet0/0
```

| Command | Description |
| :--- | :--- |
| ipv6 nd host mode strict | Enables the conformant, or strict, IPv6 host mode. |

## show ipv6 neighbors

To display IPv6 neighbor discovery (ND) cache information, use the show ipv6 neighbors command in user EXEC or privileged EXEC mode.
show ipv6 neighbors [\{interface-type interface-numberipv6-addressipv6-hostname | statistics\}]
Syntax Description

| interface-type | (Optional) Specifies the type of the interface from which IPv6 neighbor information is to <br> be displayed. |
| :--- | :--- |
| interface-number | (Optional) Specifies the number of the interface from which IPv6 neighbor information <br> is to be displayed. |
| ipv6-address | (Optional) Specifies the IPv6 address of the neighbor. <br> This argument must be in the form documented in RFC 2373 where the address is specified <br> in hexadecimal using 16-bit values between colons. |
| ipv6-hostname | (Optional) Specifies the IPv6 hostname of the remote networking device. |
| statistics | (Optional) Displays ND cache statistics. |

## Command Default <br> Command Modes

All IPv6 ND cache entries are listed.
User EXEC (>)
Privileged EXEC (\#)

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Usage Guidelines
When the interface-type and interface-number arguments are not specified, cache information for all IPv6 neighbors is displayed. Specifying the interface-type and interface-number arguments displays only cache information about the specified interface.
Specifying the statistics keyword displays ND cache statistics.
The following is sample output from the show ipv6 neighbors command when entered with an interface type and number:

```
show ipv6 neighbors ethernet 2
IPv6 Address Age Link-layer Addr State Interface
2000:0:0:4::2 0 0003.a0d6.141e REACH Ethernet2
FE80::203:A0FF:FED6:141E 0 0003.a0d6.141e REACH Ethernet2
3001:1::45a - 0002.7d1a.9472 REACH Ethernet2
```

The following is sample output from the show ipv6 neighbors command when entered with an IPv6 address:

```
show ipv6 neighbors 2000:0:0:4::2
```

IPv6 Address Age Link-layer Addr State Interface
2000:0:0:4::2 0 0003.a0d6.141e REACH Ethernet2

The table below describes the significant fields shown in the displays.
Table 61: show ipv6 neighbors Field Descriptions

| Field | Description |
| :---: | :---: |
| IPv6 Address | IPv6 address of neighbor or interface. |
| Age | Time (in minutes) since the address was confirmed to be reachable. A hyphen ( - ) indicates a static entry. |
| Link-layer Addr | MAC address. If the address is unknown, a hyphen (-) is displayed. |
| State | The state of the neighbor cache entry. Following are the states for dynamic entries in the IPv6 neighbor discovery cache: <br> - INCMP (Incomplete)--Address resolution is being performed on the entry. A neighbor solicitation message has been sent to the solicited-node multicast address of the target, but the corresponding neighbor advertisement message has not yet been received. <br> - REACH (Reachable)--Positive confirmation was received within the last ReachableTime milliseconds that the forward path to the neighbor was functioning properly. While in REACH state, the device takes no special action as packets are sent. <br> - STALE--More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While in STALE state, the device takes no action until a packet is sent. <br> - DELAY--More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. A packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a neighbor solicitation message and change the state to PROBE . <br> - PROBE--A reachability confirmation is actively sought by resending neighbor solicitation messages every RetransTimer milliseconds until a reachability confirmation is received. <br> - ????--Unknown state. <br> Following are the possible states for static entries in the IPv6 neighbor discovery cache: <br> - INCMP (Incomplete)--The interface for this entry is down. <br> - REACH (Reachable)--The interface for this entry is up. <br> Note <br> Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP (Incomplete) and REACH (Reachable) states are different for dynamic and static cache entries. |
| Interface | Interface from which the address was reachable. |

The following is sample output from the show ipv6 neighbors command with the statistics keyword:

```
show ipv6 neighbor statistics
IPv6 ND Statistics
 Entries 2, High-water 2, Gleaned 1, Scavenged 0
 Entry States
 INCMP 0 REACH 0 STALE 2 GLEAN 0 DELAY 0 PROBE 0
 Resolutions (INCMP)
 Requested 1, timeouts 0, resolved 1, failed 0
 In-progress 0, High-water 1, Throttled 0, Data discards 0
Resolutions (PROBE)
 Requested 3, timeouts 0, resolved 3, failed 0
```

The table below describes the significant fields shown in this display:
Table 62: show ipv6 neighbors statistics Field Descriptions
\(\left.$$
\begin{array}{|l|l|}\hline \text { Field } & \text { Description } \\
\hline \text { Entries } & \text { Total number of ND neighbor entries in the ND cache. } \\
\hline \text { High-Water } & \text { Maximum amount (so far) of ND neighbor entries in ND cache. } \\
\hline \text { Gleaned } & \begin{array}{l}\text { Number of ND neighbor entries gleaned (that is, learned from a neighbor NA or } \\
\text { other ND packet). }\end{array} \\
\hline \text { Scavenged } & \begin{array}{l}\text { Number of stale ND neighbor entries that have timed out and been removed from } \\
\text { the cache. }\end{array} \\
\hline \text { Entry States } & \begin{array}{l}\text { Number of ND neighbor entries in each state. }\end{array} \\
\hline \text { Resolutions (INCMP) } & \begin{array}{l}\text { Statistics for neighbor resolutions attempted in INCMP state (that is, resolutions } \\
\text { prompted by a data packet). Details about the resolutions attempted in INCMP state } \\
\text { are follows: }\end{array}
$$ <br>
• Timeouts--Number of timeouts during resolutions. <br>

• Resolved--Number of successful resolutions.\end{array}\right\}\)| • Failed--Number of unsuccessful resolutions. |
| :--- |
| • In-progress--Number of resolutions in progress. |

\(\left.$$
\begin{array}{|l|l|}\hline \text { Field } & \text { Description } \\
\hline \text { Resolutions (PROBE) } & \begin{array}{l}\text { Statistics for neighbor resolutions attempted in PROBE state (that is, re-resolutions } \\
\text { of existing entries prompted by a data packet): }\end{array}
$$ <br>

\& • Requested--Total number of resolutions requested.\end{array}\right\}\)|  | • Timeouts--Number of timeouts during resolutions. |
| :--- | :--- |
|  | •Resolved--Number of successful resolutions. |
|  | • Failed--Number of unsuccessful resolutions. |
|  |  |

## show ipv6 nhrp

To display Next Hop Resolution Protocol (NHRP) mapping information, use the show ipv6 nhrp command in user EXEC or privileged EXEC mode.
show ipv6 nhrp [\{dynamic [ipv6-address]|incomplete | static\}] [\{address |interface\}] [\{brief | detail\}] [purge]

## Syntax Description

## Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Usage Guidelines The table below lists the valid types, number ranges, and descriptions for the optional interface argument.

Note The valid types can vary according to the platform and interfaces on the platform.

Table 63: Valid Types, Number Ranges, and Interface Description

| Valid Types | Number Ranges | Interface Descriptions |
| :--- | :--- | :--- |
| async | 1 | Async |
| atm | 0 to 6 | ATM |
| bvi | 1 to 255 | Bridge-Group Virtual Interface |
| cdma-ix | 1 | CDMA Ix |
| ctunnel | 0 to 2147483647 | C-Tunnel |
| dialer | 0 to 20049 | Dialer |
| ethernet | 0 to 4294967295 | Ethernet |
| fastethernet 6 to 2147483647 | Lex |  |
| lex | 0 to 2147483647 | Loopback |
| loopback | 0 to 2147483647 | Multilink Frame Relay bundle |
| mfr | 0 to 2147483647 | Multilink-group |
| multilink | 0 | Null |
| null | 0 to 2147483647 | Extended tag ATM |
| port-channel | 1 to 64 | Port channel |
| tunnel | 0 to 2147483647 | Tunnel |
| vif | 1 | PGM multicast host |
| virtual-ppp | 0 to 2147483647 | Virtual PPP |
| virtual-template | 1 to 1000 | Virtual template |
| virtual-tokenring | 0 to 2147483647 | Virtual Token Ring |
| xtagatm | 3 |  |

## Examples

The following is sample output from the show ipv6 nhrp command:

```
show ipv6 nhrp
2001:0db8:3c4d:0015::1a2f:3d2c/48 via
2001:0db8:3c4d:0015::1a2f:3d2c
Tunnel0 created 6d05h, never expire
```

The table below describes the significant fields shown in the display.

## Table 64: show ipv6 nhrp Field Descriptions

| Field | Description |
| :--- | :--- |
| 2001:0db8:3c4d:0015::1a2f: 3d2c/48 | Target network. |
| 2001:0db8:3c4d:0015::1a2f:3d2c | Next hop to reach the target network. |
| Tunnel0 | Interface through which the target network is reached. |
| created 6d05h | Length of time since the entry was created (dayshours). |
| never expire | Indicates that static entries never expire. |

The following is sample output from the show ipv6 nhrp command using the brief keyword:

```
show ipv6 nhrp brief
2001:0db8:3c4d:0015:0000:0000:1a2f:3d2c/48
via 2001:0db8:3c4d:0015:0000:0000:1a2f:3d2c
Interface: Tunnel0 Type: static
NBMA address: 10.11.11.99
```

The table below describes the significant fields shown in the display.
Table 65: show ipv6 nhrp brief Field Descriptions

| Field | Description |
| :---: | :---: |
| 2001:0db8:3c4d:0015:0000:0000: 1a2f:3d2c/48 | Target network. |
| via 2001:0db8:3c4d:0015:0000:0000: 1a2f:3d2c | Next Hop to reach the target network. |
| Interface: Tunnel0 | Interface through which the target network is reached. |
| Type: static | Type of tunnel. The types can be one of the following: <br> - dynamic--NHRP mapping is obtained dynamically. The mapping entry is created using information from the NHRP resolution and registrations. <br> - static--NHRP mapping is configured statically. Entries configured by the ipv6 nhrp map command are marked static. <br> - incomplete--The NBMA address is not known for the target network. |

Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 nhrp map | Statically configures the IPv6-to-NBMA address mapping of IP destinations connected <br> to an NBMA network. |

## show ipv6 ospf

To display general information about Open Shortest Path First ( OSPF) routing processes, use the show ipv6 ospf command in user EXEC or privileged EXEC mode.
show ipv6 ospf [process-id] [area-id] [rate-limit]

## Syntax Description

| process-id | (Optional) Internal identification. It is locally assigned and can be any positive integer. The <br> number used here is the number assigned administratively when the OSPF routing process is <br> enabled. |
| :--- | :--- |
| area-id | (Optional) Area ID. This argument displays information about a specified area only. |
| rate-limit | (Optional) Rate-limited link-state advertisements (LSAs). This keyword displays LSAs that <br> are currently being rate limited, together with the remaining time to the next generation. |

## Command Modes

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## show ipv6 ospf Output Example

The following is sample output from the show ipv6 ospf command:

```
show ipv6 ospf
Routing Process "ospfv3 1" with ID 10.10.10.1
 SPF schedule delay 5 secs, Hold time between two SPFs }10\mathrm{ secs
 Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
 LSA group pacing timer 240 secs
 Interface flood pacing timer 33 msecs
 Retransmission pacing timer 66 msecs
 Number of external LSA 0. Checksum Sum 0x000000
 Number of areas in this device is 1. 1 normal 0 stub 0 nssa
 Area BACKBONE(0)
 Number of interfaces in this area is 1
 MD5 Authentication, SPI 1000
 SPF algorithm executed 2 times
 Number of LSA 5. Checksum Sum 0x02A005
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA O
 Flood list length 0
```

The table below describes the significant fields shown in the display.

Table 66: show ipv6 ospf Field Descriptions

| Field | Description |
| :--- | :--- |
| Routing process "ospfv3 1" with ID 10.10.10.1 | Process ID and OSPF device ID. |
| LSA group pacing timer | Configured LSA group pacing timer (in seconds). |
| Interface flood pacing timer | Configured LSA flood pacing timer (in milliseconds). |
| Retransmission pacing timer | Configured LSA retransmission pacing timer (in <br> milliseconds). |
| Number of areas | Number of areas in device, area addresses, and so on. |

## show ipv6 ospf With Area Encryption Example

The following sample output shows the show ipv6 ospf command with area encryption information:

```
show ipv6 ospf
Routing Process "ospfv3 1" with ID 10.0.0.1
It is an area border device
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this device is 2. 2 normal 0 stub 0 nssa
Reference bandwidth unit is 100 mbps
 Area BACKBONE (0)
 Number of interfaces in this area is 2
 SPF algorithm executed 3 times
 Number of LSA 31. Checksum Sum 0x107493
 Number of DCbitless LSA 0
 Number of indication LSA O
 Number of DoNotAge LSA 20
 Flood list length 0
 Area 1
 Number of interfaces in this area is 2
 NULL Encryption SHA-1 Auth, SPI }100
 SPF algorithm executed 7 times
 Number of LSA 20. Checksum Sum 0x095E6A
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```

The table below describes the significant fields shown in the display.

## Table 67: show ipv6 ospf with Area Encryption Information Field Descriptions

| Field | Description |
| :--- | :--- |
| Area 1 | Subsequent fields describe area 1. |


| Field | Description |
| :--- | :--- |
| NULL Encryption SHA-1 Auth, SPI <br> 1001 | Displays the encryption algorithm (in this case, null, meaning no <br> encryption algorithm is used), the authentication algorithm (SHA-1), <br> and the security policy index (SPI) value (1001). |

The following example displays the configuration values for SPF and LSA throttling timers:

```
show ipv6 ospf
 Routing Process "ospfv3 1" with ID 10.9.4.1
 Event-log enabled, Maximum number of events: 1000, Mode: cyclic
 It is an autonomous system boundary device
 Redistributing External Routes from,
 ospf 2
 Initial SPF schedule delay 5000 msecs
 Minimum hold time between two consecutive SPFs }10000\mathrm{ msecs
 Maximum wait time between two consecutive SPFs }10000\mathrm{ msecs
 Minimum LSA interval 5 secs
 Minimum LSA arrival }1000\mathrm{ msecs
```

The table below describes the significant fields shown in the display.
Table 68: show ipv6 ospf with SPF and LSA Throttling Timer Field Descriptions

| Field | Description |
| :--- | :--- |
| Initial SPF schedule delay | Delay time of SPF calculations. |
| Minimum hold time between two consecutive <br> SPFs | Minimum hold time between consecutive SPF calculations. |
| Maximum wait time between two consecutive <br> SPFs 10000 msecs | Maximum hold time between consecutive SPF <br> calculations. |
| Minimum LSA interval 5 secs | Minimum time interval (in seconds) between link-state <br> advertisements. |
| Minimum LSA arrival 1000 msecs | Maximum arrival time (in milliseconds) of link-state <br> advertisements. |

The following example shows information about LSAs that are currently being rate limited:

```
show ipv6 ospf rate-limit
List of LSAs that are in rate limit Queue
 LSAID: 0.0.0.0 Type: 0x2001 Adv Rtr: 10.55.55.55 Due in: 00:00:00.500
 LSAID: 0.0.0.0 Type: 0x2009 Adv Rtr: 10.55.55.55 Due in: 00:00:00.500
```

The table below describes the significant fields shown in the display.

## Table 69: show ipv6 ospf rate-limit Field Descriptions

| Field | Description |
| :--- | :--- |
| LSAID | Link-state ID of the LSA. |
| Type | Description of the LSA. |


| Field | Description |
| :--- | :--- |
| Adv Rtr | ID of the advertising device. |
| Due in: | Remaining time until the generation of the next event. |

## show ipv6 ospf border-routers

To display the internal Open Shortest Path First (OSPF) routing table entries to an Area Border Router (ABR) and Autonomous System Boundary Router (ASBR), use the show ipv6 ospf border-routers command in user EXEC or privileged EXEC mode.
show ip ospf [process-id] border-routers

## Syntax Description

## Command Modes

## Command History

## Examples

The following is sample output from the show ipv6 ospf border-routers command:

```
show ipv6 ospf border-routers
OSPFv3 Process 1 internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 172.16.4.4 [2] via FE80: 205:5FFF:FED3:5808, FastEthernet0/0, ABR, Area 1, SPF 13
i 172.16.4.4 [1] via FE80::205:5FFF:FED3:5406, POS4/0, ABR, Area 0, SPF 8
i 172.16.3.3 [1] via FE80::205:5FFF:FED3:5808, FastEthernet0/0, ASBR, Area 1, SPF 3
```

The table below describes the significant fields shown in the display.

## Table 70: show ipv6 ospf border-routers Field Descriptions

| Field | Description |
| :--- | :--- |
| i - Intra-area route, I - Inter-area route | The type of this route. |
| $172.16 .4 .4,172.16 .3 .3$ | Router ID of the destination router. |
| $[2],[1]$ | Metric used to reach the destination router. |
| FE80::205:5FFF:FED3:5808, <br> FE80::205:5FFF:FED3:5406, <br> FE80::205:5FFF:FED3:5808 | Link-local routers. |
| FastEthernet0/0, POS4/0 | The interface on which the IPv6 OSPF protocol is <br> configured. |
| ABR | Area border router. |


| Field | Description |
| :--- | :--- |
| ASBR | Autonomous system boundary router. |
| Area 0, Area 1 | The area ID of the area from which this route is learned. |
| SPF 13, SPF 8, SPF 3 | The internal number of the shortest path first (SPF) <br> calculation that installs this route. |

## show ipv6 ospf event

To display detailed information about IPv6 Open Shortest Path First (OSPF) events, use the show ipv6 ospf event command in privileged EXEC mode.
show ipv6 ospf [process-id] event [\{generic|interface |lsa|neighbor|reverse |rib|spf\}]

## Syntax Description

## Command Modes

## Command History

## Usage Guidelines

## Examples

| process-id | (Optional) Internal identification. It is locally assigned and can be any positive integer. The <br> number used here is the number assigned administratively when the OSPF routing process is <br> enabled. |
| :--- | :--- |
| generic | (Optional) Generic information regarding OSPF for IPv6 events. |
| interface | (Optional) Interface state change events, including old and new states. |
| lsa | (Optional) LSA arrival and LSA generation events. |
| neighbor | (Optional) Neighbor state change events, including old and new states. |
| reverse | (Optional) Keyword to allow the display of events in reverse-from the latest to the oldest or <br> from oldest to the latest. |
| rib | (Optional) Routing Information Base (RIB) update, delete, and redistribution events. |
| spf | (Optional) Scheduling and SPF run events. |

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

An OSPF event log is kept for every OSPF instance. If you enter no keywords with the show ipv6 ospf event command, all information in the OSPF event log is displayed. Use the keywords to filter specific information.

The following example shows scheduling and SPF run events, LSA arrival and LSA generation events, in order from the oldest events to the latest generated events:

```
show ipv6 ospf event spf lsa reverse
OSPFv3 Router with ID (10.0.0.1) (Process ID 1)
1 *Sep 29 11:59:18.367: Rcv Changed Type-0x2009 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seq# 80007699, Age 3600
3 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type P
4 *Sep 29 11:59:18.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seq# 80007699, Age 2
5 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
6*Sep 29 11:59:18.367: Rcv Changed Type-0x2002 LSA, LSID 10.1.0.1, Adv-Rtr 192.168.0.1,
Seq# 80007699, Age 3600
8 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.1.0.1, LSA type N
```

```
9 *Sep 29 11:59:18.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 1.1.1.1, Seq#
80007699, Age 2
10 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
11 *Sep 29 11:59:18.867: Starting SPF
12 *Sep 29 11:59:18.867: Starting Intra-Area SPF in Area 0
16 *Sep 29 11:59:18.867: Starting Inter-Area SPF in area 0
17 *Sep 29 11:59:18.867: Starting External processing
18 *Sep 29 11:59:18.867: Starting External processing in area 0
19 *Sep 29 11:59:18.867: Starting External processing in area 1
20 *Sep 29 11:59:18.867: End of SPF
21 *Sep 29 11:59:19.367: Generate Changed Type-0x2003 LSA, LSID 10.0.0.4, Seq# 80000002,
Age 3600, Area 1, Prefix 3000:11:22::/64
23 *Sep 29 11:59:20.367: Rcv Changed Type-0x2009 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seq# 8000769A, Age 2
24 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type P
25 *Sep 29 11:59:20.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1,
Seq# 8000769A, Age 2
26 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
27 *Sep 29 11:59:20.367: Rcv Changed Type-0x2002 LSA, LSID 10.1.0.1, Adv-Rtr 192.168.0.1,
Seq# 8000769A, Age 2
28 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.1.0.1, LSA type N
29 *Sep 29 11:59:20.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 1.1.1.1, Seq#
8000769A, Age 2
30 *Sep 29 11:59:20.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
31 *Sep 29 11:59:20.867: Starting SPF
32 *Sep 29 11:59:20.867: Starting Intra-Area SPF in Area 0
36 *Sep 29 11:59:20.867: Starting Inter-Area SPF in area 0
37 *Sep 29 11:59:20.867: Starting External processing
38 *Sep 29 11:59:20.867: Starting External processing in area 0
39 *Sep 29 11:59:20.867: Starting External processing in area 1
40 *Sep 29 11:59:20.867: End of SPF
```

The table below describes the significant fields shown in the display.

## Table 71: show ip ospf Field Descriptions

| Field | Description |
| :--- | :--- |
| OSPFv3 Router with ID (10.0.0.1) (Process <br> ID 1) | Process ID and OSPF router ID. |
| Rcv Changed Type-0x2009 LSA | Description of newly arrived LSA. |
| LSID | Link-state ID of the LSA. |
| Adv-Rtr | ID of the advertising router. |
| Seq\# | Link state sequence number (detects old or duplicate link state <br> advertisements). |
| Age | Link state age (in seconds). |
| Schedule SPF | Enables SPF to run. |
| Area | OSPF area ID. |
| Change in LSID | LSA type. |
| LSA type |  |

## show ipv6 ospf graceful-restart

To display Open Shortest Path First for IPv6 (OSPFv3) graceful restart information, use the show ipv6 ospf graceful-restart command in privileged EXEC mode.
show ipv6 ospf graceful-restart
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Modes
Privileged EXEC (\#)
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a |  |

## Usage Guidelines

Use the show ipv6 ospf graceful-restart command to discover information about the OSPFv3 graceful restart feature.

## Examples

The following example displays OSPFv3 graceful restart information:

```
show ipv6 ospf graceful-restart
Routing Process "ospf 1"
 Graceful Restart enabled
 restart-interval limit: 120 sec, last restart 00:00:15 ago (took 36 secs)
 Graceful Restart helper support enabled
 Router status : Active
 Router is running in SSO mode
 OSPF restart state : NO_RESTART
 Router ID 10.1.1.1, che}\overline{c}kpoint Router ID 10.0.0.0
```

The table below describes the significant fields shown in the display.
Table 72: show ipv6 ospf graceful-restart Field Descriptions

| Field | Description |
| :--- | :--- |
| Routing Process "ospf 1" | The OSPFv3 routing process ID. |
| Graceful Restart enabled | The graceful restart feature is enabled on this router. |
| restart-interval limit: 120 sec | The restart-interval limit. |
| last restart 00:00:15 ago (took 36 secs) | How long ago the last graceful restart occurred, and how long <br> it took to occur. |
| Graceful Restart helper support enabled | Graceful restart helper mode is enabled. Because graceful restart <br> mode is also enabled on this router, you can identify this router <br> as being graceful-restart capable. A router that is <br> graceful-restart-aware cannot be configured in graceful-restart <br> mode. |


| Field | Description |
| :--- | :--- |
| Router status : Active | This router is in active, as opposed to standby, mode. |
| Router is running in SSO mode | The router is in stateful switchover mode. |
| OSPF restart state : NO_RESTART | The current OSPFv3 restart state. |
| Router ID 10.1.1.1, checkpoint Router ID <br> 10.0 .0 .0 | The IPv6 addresses of the current router and the checkpoint <br> router. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | show ipv6 ospf interface | Displays OSPFv3-related interface information. |

## show ipv6 ospf interface

To display Open Shortest Path First (OSPF)-related interface information, use the showipv6ospfinterface command in user EXEC or privileged mode.
show ipv6 ospf [process-id] [area-id] interface [type number] [brief]

Syntax Description

Command Modes

Command History

| process-id | (Optional) Internal identification. It is locally assigned and can be any positive integer. The <br> number used here is the number assigned administratively when the OSPF routing process <br> is enabled. |
| :--- | :--- |
| area-id | (Optional) Displays information about a specified area only. |
| type number | (Optional) Interface type and number. |
| brief | (Optional) Displays brief overview information for OSPF interfaces, states, addresses and <br> masks, and areas on the router. |

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Examples

## show ipv6 ospf interface Standard Output Example

The following is sample output from the showipv6ospfinterface command:

```
show ipv6 ospf interface
```


# show ipv6 ospf interface

ATM3/O is up, line protocol is up
ATM3/O is up, line protocol is up
Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 13
Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 13
Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
Network Type POINT_TO_POINT, Cost: 1
Network Type POINT_TO_POINT, Cost: 1
Transmit Delay is \overline{1}
Transmit Delay is \overline{1}
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:06
Hello due in 00:00:06
Index 1/2/2, flood queue length 0
Index 1/2/2, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 12, maximum is }1
Last flood scan length is 12, maximum is }1
Last flood scan time is 0 msec, maximum is 0 msec
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 172.16.4.4
Adjacent with neighbor 172.16.4.4
Suppress hello for 0 neighbor(s)
Suppress hello for 0 neighbor(s)
FastEthernet0/0 is up, line protocol is up
FastEthernet0/0 is up, line protocol is up
Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 3
Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 3
Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
Network Type BROADCAST, Cost: 1
Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State BDR, Priority 1
Transmit Delay is 1 sec, State BDR, Priority 1
Designated Router (ID) 172.16.6.6, local address 2001:0DB1:205:5FFF:FED3:6408
Designated Router (ID) 172.16.6.6, local address 2001:0DB1:205:5FFF:FED3:6408
Backup Designated router (ID) 172.16.3.3, local address 2001:0DB1:205:5FFF:FED3:5808

```
 Backup Designated router (ID) 172.16.3.3, local address 2001:0DB1:205:5FFF:FED3:5808
```

```
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:05
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 12, maximum is 12
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 172.16.6.6 (Designated Router)
Suppress hello for 0 neighbor(s)
```

The table below describes the significant fields shown in the display.

## Table 73: show ipv6 ospf interface Field Descriptions

| Field | Description |
| :--- | :--- |
| ATM3/0 | Status of the physical link and operational status of protocol. |
| Link Local Address | Interface IPv6 address. |
| Area 1, Process ID 1, Instance ID 0, Router <br> ID 172.16.3.3 | The area ID, process ID, instance ID, and router ID of the area <br> from which this route is learned. |
| Network Type POINT_TO_POINT, Cost: <br> 1 | Network type and link-state cost. |
| Transmit Delay | Transmit delay, interface state, and router priority. |
| Designated Router | Designated router ID and respective interface IP address. |
| Backup Designated router | Configuration of timer intervals. |
| Timer intervals configured | Number of seconds until the next hello packet is sent out this <br> interface. |
| Hello | Count of network neighbors and list of adjacent neighbors. |
| Neighbor Count |  |

## Cisco IOS Release 12.2(33)SRB Example

The following is sample output of the showipv6ospfinterface command when the brief keyword is entered.

| \# show ipv6 ospf interface brief |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Interface | PID | Area | Intf | ID | Cost | State | Nbrs |
| VL0 $/ C$ |  |  |  |  |  |  |  |
| VL0 | 6 | 0 | 21 | 65535 | DOWN | $0 / 0$ |  |
| Se3/0 | 6 | 0 | 14 | 64 | P2P | $0 / 0$ |  |
| Lo1 | 6 | 0 | 20 | 1 | LOOP | $0 / 0$ |  |
| Se2/0 | 6 | 6 | 10 | 62 | P2P | $0 / 0$ |  |
| Tu0 | 1000 | 0 | 19 | 11111 | DOWN | $0 / 0$ |  |

## OSPF with Authentication on the Interface Example

The following is sample output from the showipv6ospfinterface command with authentication enabled on the interface:

```
show ipv6 ospf interface
Ethernet0/O is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
 MD5 Authentication SPI 500, secure socket state UP (errors:0)
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
 Backup Designated router (ID) 10.10.10.1, local address
2001:0DB1:A8BB:CCFF:FE00:6E00
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:01
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.11.11.1 (Designated Router)
 Suppress hello for 0 neighbor(s)
```


## OSPF with Null Authentication Example

The following is sample output from the showipv6ospfinterface command with null authentication configured on the interface:

```
show ipv6 ospf interface
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
 Authentication NULL
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
 Backup Designated router (ID) 10.10.10.1, local address
2001:0DB1:A8BB:CCFF:FE00:6E00
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:03
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.11.11.1 (Designated Router)
 Suppress hello for 0 neighbor(s)
```


## OSPF with Authentication for the Area Example

The following is sample output from the showipv6ospfinterface command with authentication configured for the area:

```
show ipv6 ospf interface
```

```
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
 MD5 Authentication (Area) SPI 1000, secure socket state UP (errors:0)
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
 Backup Designated router (ID) 10.10.10.1, local address
FE80::A8BB:CCFF:FE00:6E00
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:03
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.11.11.1 (Designated Router)
 Suppress hello for 0 neighbor(s)
```


## OSPF with Dynamic Cost Example

The following display shows sample output from the showipv6ospfinterface command when the OSPF cost dynamic is configured.

```
show ipv6 ospf interface serial 2/0
Serial2/O is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:100, Interface ID 10
 Area 1, Process ID 1, Instance ID 0, Router ID 172.1.1.1
 Network Type POINT_TO_MULTIPOINT, Cost: 64 (dynamic), Cost Hysteresis: 200
 Cost Weights: Throughput 100, Resources 20, Latency 80, L2-factor 100
 Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT,
 Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
 Hello due in 00:00:19
 Index 1/2/3, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 0
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)
```


## OSPF Graceful Restart Example

The following display shows sample output from the showipv6ospfinterface command when the OSPF graceful restart feature is configured:

```
show ipv6 ospf interface
Ethernet0/0 is up, line protocol is up
 Link Local Address FE80::A8BB:CCFF:FE00:300, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.3.3.3
 Network Type POINT_TO_POINT, Cost: 10
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Graceful Restart p2p timeout in 00:00:19
 Hello due in 00:00:02
 Graceful Restart helper support enabled
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
```

```
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.1.1.1
Suppress hello for 0 neighbor(s)
```


## Example of an Enabled Protocol

The following display shows that the OSPF interface is enabled for Bidirectional Forwarding Detection (BFD):

```
show ipv6 ospf interface
Serial10/0 is up, line protocol is up
 Link Local Address FE80::A8BB:CCFF:FE00:6500, Interface ID 42
 Area 1, Process ID 1, Instance ID 0, Router ID 10.0.0.1
 Network Type POINT TO POINT, Cost: 64
 Transmit Delay is \overline{1}
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:07
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.1.0.1
 Suppress hello for 0 neighbor(s)
```

| Command | Description |
| :--- | :--- |
| show ipv6 ospf graceful-restart | Displays OSPFv3 graceful restart information. |

## show ipv6 ospf request-list

To display a list of all link-state advertisements (LSAs) requested by a router, use the show ipv6 ospf request-list command in user EXEC or privileged EXEC mode.
show ipv6 ospf [process-id] [area-id] request-list [neighbor] [interface] [interface-neighbor]

## Syntax Description

## Command Modes

| process-id | (Optional) Internal identification. It is locally assigned and can be any positive integer. <br> The number used here is the number assigned administratively when the Open Shortest <br> Path First (OSPF) routing process is enabled. |
| :--- | :--- |
| area-id | (Optional) Displays information only about a specified area. |
| neighbor | (Optional) Displays the list of all LSAs requested by the router from this neighbor. |
| interface | (Optional) Displays the list of all LSAs requested by the router from this interface. |
| interface-neighbor | (Optional) Displays the list of all LSAs requested by the router on this interface, from <br> this neighbor. |

User EXEC ( $>$ )
Privileged EXEC (\#)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

The information displayed by the show ipv6 ospf request-list command is useful in debugging OSPF routing operations.

## Examples

The following example shows information about the LSAs requested by the router:

```
show ipv6 ospf request-list
 OSPFv3 Router with ID (192.168.255.5) (Process ID 1)
 Neighbor 192.168.255.2, interface Ethernet0/0 address
FE80::A8BB:CCFF:FE00:6600
\begin{tabular}{clllll}
Type & LS ID & ADV RTR & Seq NO & Age & Checksum \\
1 & 0.0 .0 .0 & 192.168 .255 .3 & \(0 \times 800000 \mathrm{C} 2\) & 1 & \(0 \times 0014 \mathrm{C} 5\) \\
1 & 0.0 .0 .0 & 192.168 .255 .2 & \(0 \times 800000 \mathrm{C} 8\) & 0 & \(0 \times 000 \mathrm{CA}\) \\
1 & 0.0 .0 .0 & 192.168 .255 .1 & \(0 \times 800000 \mathrm{C} 5\) & 1 & \(0 \times 008 \mathrm{CD} 1\) \\
2 & 0.0 .0 .3 & 192.168 .255 .3 & \(0 \times 800000 \mathrm{~A} 9\) & 774 & \(0 \times 0058 \mathrm{C} 0\) \\
2 & 0.0 .0 .2 & 192.168 .255 .3 & \(0 \times 800000 \mathrm{~B} 7\) & 1 & \(0 \times 003 \mathrm{~A} 63\)
\end{tabular}
```

The table below describes the significant fields shown in the display.

## Table 74: show ipv6 ospf request-list Field Descriptions

| Field | Description |
| :--- | :--- |
| OSPFv3 Router with ID (192.168.255.5) <br> (Process ID 1) | Identification of the router for which information is displayed. |
| Interface Ethernet0/0 | Interface for which information is displayed. |
| Type | Type of LSA. |
| LS ID | Link-state ID of the LSA. |
| ADV RTR | IP address of advertising router. |
| Seq NO | Sequence number of LSA. |
| Age | Checksum of LSA. |
| Checksum |  |

## show ipv6 ospf retransmission-list

To display a list of all link-state advertisements (LSAs) waiting to be re-sent, use the show ipv6 ospf retransmission-list command in user EXEC or privileged EXEC mode.
show ipv6 ospf [process-id] [area-id] retransmission-list [neighbor] [interface] [interface-neighbor]

## Syntax Description

## Command Modes

## Command History

## Usage Guidelines

## Examples

The following is sample output from the show ipv6 ospf retransmission-list command:

```
show ipv6 ospf retransmission-list
 OSPFv3 Router with ID (192.168.255.2) (Process ID 1)
Neighbor 192.168.255.1, interface Ethernet0/0
Link state retransmission due in 3759 msec, Queue length 1
Type LS ID ADV RTR Seq NO Age Checksum
0x2001 0 192.168.255.2 0x80000222 1 0x00AE52
```

The table below describes the significant fields shown in the display.

## Table 75: show ipv6 ospf retransmission-list Field Descriptions

| Field | Description |
| :--- | :--- |
| OSPFv3 Router with ID (192.168.255.2) <br> (Process ID 1) | Identification of the router for which information is displayed. |


| Field | Description |
| :--- | :--- |
| Interface Ethernet0/0 | Interface for which information is displayed. |
| Link state retransmission due in | Length of time before next link-state transmission. |
| Queue length | Number of elements in the retransmission queue. |
| Type | Type of LSA. |
| LS ID | Link-state ID of the LSA. |
| ADV RTR | IP address of advertising router. |
| Seq NO | Sequence number of the LSA. |
| Age | Age of LSA (in seconds). |
| Checksum | Checksum of LSA. |

## show ipv6 ospf statistics

To display Open Shortest Path First for IPv6 (OSPFv6) shortest path first (SPF) calculation statistics, use the show ipv6 ospf statistics command in user EXEC or privileged EXEC mode.
show ipv6 ospf statistics [detail]

| detail | (Optional) Displays statistics separately for each OSPF area and includes additional, more detailed |
| :--- | :--- | statistics.

## Syntax Description

## Command Modes

## Command History

## Usage Guidelines

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

The show ipv6 ospf statistics command provides important information about SPF calculations and the events that trigger them. This information can be meaningful for both OSPF network maintenance and troubleshooting. For example, entering the show ipv6 ospf statistics command is recommended as the first troubleshooting step for link-state advertisement (LSA) flapping.

## Examples

The following example provides detailed statistics for each OSPFv6 area:

```
show ipv6 ospf statistics detail
 Area 0: SPF algorithm executed 3 times
SPF 1 executed 00:06:57 ago, SPF type Full
 SPF calculation time (in msec):
 SPT Prefix D-Int Sum D-Sum Ext D-Ext Total
 0 0 0 0 0 0
 RIB manipulation time (in msec):
 RIB Update RIB Delete
 0 0
 LSIDs processed R:1 N:0 Prefix:0 SN:0 SA:0 X7:0
 Change record R N SN SA L
 LSAs changed 1
 Changed LSAs. Recorded is Advertising Router, LSID and LS type:
 10.2.2.2/0(R)
SPF 2 executed 00:06:47 ago, SPF type Full
 SPF calculation time (in msec):
 SPT Prefix D-Int Sum D-Sum Ext D-Ext Total
```



```
 RIB manipulation time (in msec):
 RIB Update RIB Delete
 0 0
 LSIDs processed R:1 N:0 Prefix:1 SN:0 SA:0 X7:0
 Change record R L P
 LSAs changed 4
 Changed LSAs. Recorded is Advertising Router, LSID and LS type:
 10.2.2.2/2(L) 10.2.2.2/0(R) 10.2.2.2/2(L) 10.2.2.2/0(P)
```

The table below describes the significant fields shown in the display.
Table 76: show ipv6 ospf statistics Field Descriptions

| Field | Description |
| :---: | :---: |
| Area | OSPF area ID. |
| SPF | Number of SPF algorithms executed in the OSPF area. The number increases by one for each SPF algorithm that is executed in the area. |
| Executed ago | Time in milliseconds that has passed between the start of the SPF algorithm execution and the current time. |
| SPF type | SPF type can be Full or Incremental. |
| SPT | Time in milliseconds required to compute the first stage of the SPF algorithm (to build a short path tree). The SPT time plus the time required to process links to stub networks equals the Intra time. |
| Ext | Time in milliseconds for the SPF algorithm to process external and not so stubby area (NSSA) LSAs and to install external and NSSA routes in the routing table. |
| Total | Total duration time in milliseconds for the SPF algorithm process. |
| LSIDs processed | Number of LSAs processed during the SPF calculation: <br> - N--Network LSA. <br> - R--Router LSA. <br> - SA--Summary Autonomous System Boundary Router (ASBR) (SA) LSA. <br> - SN--Summary Network (SN) LSA. <br> - Stub--Stub links. <br> - X7--External Type-7 (X7) LSA. |

## show ipv6 ospf summary-prefix

To display a list of all summary address redistribution information configured under an OSPF process, use the show ipv6 ospf summary-prefix command in user EXEC or privileged EXEC mode.
show ipv6 ospf [process-id] summary-prefix

## Syntax Description

| process-id | (Optional) Internal identification. It is locally assigned and can be any positive integer. The <br> number used here is the number assigned administratively when the OSPF routing process is <br> enabled. |
| :--- | :--- |

## Command Modes

## Command History

## Usage Guidelines

## Examples

User EXEC ( $>$ )
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

The process-id argument can be entered as a decimal number or as an IPv6 address format.

The following is sample output from the show ipv6 ospf summary-prefix command:

```
show ipv6 ospf summary-prefix
OSPFv3 Process 1, Summary-prefix
FECO::/24 Metric 16777215, Type 0, Tag 0
```

The table below describes the significant fields shown in the display.
Table 77: show ipv6 ospf summary-prefix Field Descriptions

| Field | Description |
| :--- | :--- |
| OSPFv3 Process | Process ID of the router for which information is displayed. |
| Metric | Metric used to reach the destination router. |
| Type | Type of link-state advertisement (LSA). |
| Tag | LSA tag. |

## show ipv6 ospf timers rate-limit

To display all of the link-state advertisements (LSAs) in the rate limit queue, use the show ipv6 ospf timers rate-limit command in privileged EXEC mode.
show ipv6 ospf timers rate-limit
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Modes
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

Use the show ipv6 ospf timers rate-limit command to discover when LSAs in the queue will be sent.

## Examples

## show ipv6 ospf timers rate-limit Output Example

The following is sample output from the show ipv6 ospf timers rate-limitcommand:

```
show ipv6 ospf timers rate-limit
List of LSAs that are in rate limit Queue
 LSAID: 0.0.0.0 Type: 0x2001 Adv Rtr: 55.55.55.55 Due in: 00:00:00.500
 LSAID: 0.0.0.0 Type: 0x2009 Adv Rtr: 55.55.55.55 Due in: 00:00:00.500
```

The table below describes the significant fields shown in the display.
Table 78: show ipv6 ospf timers rate-limit Field Descriptions

| Field | Description |
| :--- | :--- |
| LSAID | ID of the LSA. |
| Type | Type of LSA. |
| Adv Rtr | ID of the advertising router. |
| Due in: | When the LSA is scheduled to be sent (in hours:minutes:seconds). |

## show ipv6 ospf traffic

To display IPv6 Open Shortest Path First Version 3 (OSPFv3) traffic statistics, use the show ipv6 ospf traffic command in privileged EXEC mode.
show ipv6 ospf [process-id] traffic [interface-type interface-number]

## Syntax Description

| process-id | (Optional) OSPF process ID for which you want traffic statistics (for <br> example, queue statistics, statistics for each interface under the OSPF <br> process, and per OSPF process statistics). |
| :--- | :--- |
| interface-type interface-number | (Optional) Type and number associated with a specific OSPF interface. |

## Command Default

When the show ipv6 ospf traffic command is entered without any arguments, global OSPF traffic statistics are displayed, including queue statistics for each OSPF process, statistics for each interface, and per OSPF process statistics.

## Command Modes

## Command History

## Usage Guidelines

You can limit the displayed traffic statistics to those for a specific OSPF process by entering a value for the process-id argument, or you can limit output to traffic statistics for a specific interface associated with an OSPF process by entering values for the interface-type and interface-number arguments. To reset counters and clear statistics, use the clear ipv6 ospf traffic command.

## $\overline{\text { Examples }}$

The following example shows the display output for the show ipv6 ospf traffic command for OSPFv3:

```
show ipv6 ospf traffic
OSPFv3 statistics:
 Rcvd: 32 total, 0 checksum errors
 10 hello, 7 database desc, 2 link state req
 9 link state updates, 4 link state acks
 0 LSA ignored
 Sent: 45 total, 0 failed
 17 hello, 12 database desc, 2 link state req
 8 link state updates, 6 link state acks
 OSPFv3 Router with ID (10.1.1.4) (Process ID 6)
OSPFv3 queues statistic for process ID 6
 Hello queue size 0, no limit, max size 2
 Router queue size 0, limit 200, drops 0, max size 2
Interface statistics:
 Interface Serial2/0
OSPFv3 packets received/sent
 Type Packets Bytes
 RX Invalid 0 0
 RX Hello 5 196
 RX DB des 4 172
```



```
OSPFv3 LSA errors
 Type 0, Length 0, Data 0, Checksum 0,
```

The network administrator wants to start collecting new statistics, resetting the counters and clearing the traffic statistics by entering the clear ipv6 ospf traffic command as follows:

```
clear ipv6 ospf traffic
```

The table below describes the significant fields shown in the display.
Table 79: show ipv6 ospf traffic Field Descriptions

| Field | Description |
| :---: | :---: |
| OSPFv3 statistics | Traffic statistics accumulated for all OSPF processes running on the router. To ensure compatibility with the showiptraffic command, only checksum errors are displayed. Identifies the route map name. |
| OSPFv3 queues statistic for process ID | Queue statistics specific to Cisco IOS software. |
| Hello queue | Statistics for the internal Cisco IOS queue between the packet switching code (process IP Input) and the OSPF hello process for all received OSPF packets. |
| Router queue | Statistics for the internal Cisco IOS queue between the OSPF hello process and the OSPF router for all received OSPF packets except OSPF hellos. |
| queue size | Actual size of the queue. |
| queue limit | Maximum allowed size of the queue. |
| queue max size | Maximum recorded size of the queue. |
| Interface statistics | Per-interface traffic statistics for all interfaces that belong to the specific OSPFv3 process ID. |
| OSPFv3 packets received/sent | Number of OSPFv3 packets received and sent on the interface, sorted by packet types. |
| OSPFv3 header errors | Packet appears in this section if it was discarded because of an error in the header of an OSPFv3 packet. The discarded packet is counted under the appropriate discard reason. |
| OSPFv3 LSA errors | Packet appears in this section if it was discarded because of an error in the header of an OSPF link-state advertisement (LSA). The discarded packet is counted under the appropriate discard reason. |
| Summary traffic statistics for process ID | Summary traffic statistics accumulated for an OSPFv3 process. <br> Note The OSPF process ID is a unique value assigned to the OSPFv3 process in the configuration. <br> The value for the received errors is the sum of the OSPFv3 header errors that are detected by the OSPFv3 process, unlike the sum of the checksum errors that are listed in the global OSPF statistics. |


| Related Commands | Command | Description |
| :--- | :--- | :--- |
|  | clear ip ospf traffic | Clears OSPFv2 traffic statistics. |
| clear ipv6 ospf traffic | Clears OSPFv3 traffic statistics. |  |
| show ip ospf traffic | Displays OSPFv2 traffic statistics. |  |

## show ipv6 ospf virtual-links

To display parameters and the current state of Open Shortest Path First (OSPF) virtual links, use the s how ipv6 ospf virtual-links command in user EXEC or privileged EXEC mode.

## show ipv6 ospf virtual-links

## Syntax Description

## Command Modes

This command has no arguments or keywords.

## User EXEC (>)

Privileged EXEC (\#)

## Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

The information displayed by the show ipv6 ospf virtual-links command is useful in debugging OSPF routing operations.

## Examples

The following is sample output from the show ipv6 ospf virtual-links command:

```
show ipv6 ospf virtual-links
Virtual Link OSPF_VLO to router 172.16.6.6 is up
 Interface ID 27, IPv6 address FEC0:6666:6666::
 Run as demand circuit
 DoNotAge LSA allowed.
 Transit area 2, via interface ATM3/0, Cost of using 1
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:06
```

The table below describes the significant fields shown in the display.

## Table 80: show ipv6 ospf virtual-links Field Descriptions

| Field | Description |
| :--- | :--- |
| Virtual Link OSPF_VL0 to router <br> 172.16 .6 .6 is up | Specifies the OSPF neighbor, and if the link to that neighbor is <br> up or down. |
| Interface ID | Interface ID and IPv6 address of the router. |
| Transit area 2 | The transit area through which the virtual link is formed. |
| via interface ATM3/0 | The interface through which the virtual link is formed. |
| Cost of using 1 | The cost of reaching the OSPF neighbor through the virtual link. |
| Transmit Delay is 1 sec | The transmit delay (in seconds) on the virtual link. |
| State POINT_TO_POINT | The state of the OSPF neighbor. |


| Field | Description |
| :--- | :--- |
| Timer intervals... | The various timer intervals configured for the link. |
| Hello due in 0:00:06 | When the next hello is expected from the neighbor. |

The following sample output from the show ipv6 ospf virtual-links command has two virtual links. One is protected by authentication, and the other is protected by encryption.

```
show ipv6 ospf virtual-links
Virtual Link OSPFv3_VL1 to router 10.2.0.1 is up
 Interface ID 69, IPv6 address 2001:0DB8:11:0:A8BB:CCFF:FE00:6A00
 Run as demand circuit
 DoNotAge LSA allowed.
 Transit area 1, via interface Serial12/0, Cost of using 64
 NULL encryption SHA-1 auth SPI 3944, secure socket UP (errors: 0)
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 2, Dead 10, Wait 40, Retransmit 5
 Adjacency State FULL (Hello suppressed)
 Index 1/2/4, retransmission queue length 0, number of retransmission 1
 First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec
Virtual Link OSPFv3 VLO to router 10.1.0.1 is up
 Interface ID 67, IPv6 address 2001:0DB8:13:0:A8BB:CCFF:FE00:6700
 Run as demand circuit
 DoNotAge LSA allowed.
 Transit area 1, via interface Serial11/0, Cost of using 128
 MD5 authentication SPI 940, secure socket UP (errors: 0)
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Adjacency State FULL (Hello suppressed)
 Index 1/1/3, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec
```


## show ipv6 pim anycast-RP

To verify IPv6 PIM anycast RP operation, use the show ipv6 pim anycast-RP command in user EXEC or privileged EXEC mode.
show ipv6 pim anycast-RP rp-address

## Syntax Description



| Command Modes | User EXEC ( $>$ ) |  |
| :--- | :--- | :--- |
|  | Privileged EXEC (\#) |  |
| $\overline{\text { Command History }}$ | Release Modification <br>  Cisco IOS XE Everest <br> 16.5 .1 a <br>   | This command was introduced. |
|  |  |  |

## Usage Guidelines

Examples

```
show ipv6 pim anycast-rp 110::1:1:1
Anycast RP Peers For 110::1:1:1 Last Register/Register-Stop received
 20::1:1:1 00:00:00/00:00:00
```


## Related Commands

| Command | Description |
| :--- | :--- |
| ipv6 pim anycast-RP | Configures the address of the PIM RP for an anycast group range. |

## show ipv6 pim bsr

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the show ipv6 pim bsr command in user EXEC or privileged EXEC mode.
show ipv6 pim [vrf vrf-name] bsr \{election | rp-cache | candidate-rp\}

Syntax Description

## Command Modes

Command History

## Usage Guidelines

## Examples

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| election | Displays BSR state, BSR election, and bootstrap message (BSM)-related timers. |
| rp-cache | Displays candidate rendezvous point (C-RP) cache learned from unicast C-RP announcements <br> on the elected BSR. |
| candidate-rp | Displays C-RP state on devices that are configured as C-RPs. |

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

Use the show ipv6 pim bsr command to display details of the BSR election-state machine, C-RP advertisement state machine, and the C-RP cache. Information on the C-RP cache is displayed only on the elected BSR device, and information on the C-RP state machine is displayed only on a device configured as a C-RP.

The following example displays BSM election information:

```
show ipv6 pim bsr election
PIMv2 BSR information
BSR Election Information
Scope Range List: ff00::/8
This system is the Bootstrap Router (BSR)
BSR Address: 60::1:1:4
Uptime: 00:11:55, BSR Priority: 0, Hash mask length: 126
RPF: FE80::A8BB:CCFF:FE03:C400,Ethernet0/0
BS Timer: 00:00:07
This system is candidate BSR
Candidate BSR address: 60::1:1:4, priority: 0, hash mask length: 126
```

The table below describes the significant fields shown in the display.

## Table 81: show ipv6 pim bsr election Field Descriptions

| Field | Description |
| :--- | :--- |
| Scope Range List | Scope to which this BSR information applies. |


| Field | Description |
| :--- | :--- |
| This system is the Bootstrap Router <br> (BSR) | Indicates this device is the BSR and provides information on the <br> parameters associated with it. |
| BS Timer | On the elected BSR, the BS timer shows the time in which the next <br> BSM will be originated. <br> On all other devices in the domain, the BS timer shows the time at which <br> the elected BSR expires. |
| This system is candidate BSR | Indicates this device is the candidate BSR and provides information on <br> the parameters associated with it. |

The following example displays information that has been learned from various C-RPs at the BSR. In this example, two candidate RPs have sent advertisements for the FF00::/8 or the default IPv6 multicast range:

```
show ipv6 pim bsr rp-cache
PIMv2 BSR C-RP Cache
BSR Candidate RP Cache
Group(s) FF00::/8, RP count 2
 RP 10::1:1:3
 Priority 192, Holdtime 150
 Uptime: 00:12:36, expires: 00:01:55
 RP 20::1:1:1
 Priority 192, Holdtime 150
 Uptime: 00:12:36, expires: 00:01:5
```

The following example displays information about the C-RP. This RP has been configured without a specific scope value, so the RP will send C-RP advertisements to all BSRs about which it has learned through BSMs it has received.

```
show ipv6 pim bsr candidate-rp
PIMv2 C-RP information
 Candidate RP: 10::1:1:3
 All Learnt Scoped Zones, Priority 192, Holdtime 150
 Advertisement interval 60 seconds
 Next advertisement in 00:00:33
```

The following example confirms that the IPv6 C-BSR is PIM-enabled. If PIM is disabled on an IPv6 C-BSR interface, or if a C-BSR or C-RP is configured with the address of an interface that does not have PIM enabled, the show ipv6 pim bsr command used with the election keyword would display that information instead.

```
show ipv6 pim bsr election
PIMv2 BSR information
BSR Election Information
 Scope Range List: ff00::/8
 BSR Address: 2001:DB8:1:1:2
 Uptime: 00:02:42, BSR Priority: 34, Hash mask length: 28
 RPF: FE80::20:1:2,Ethernet1/0
 BS Timer: 00:01:27
```


## show ipv6 pim df

To display the designated forwarder (DF)-election state of each interface for each rendezvous point (RP), use the show ipv6 pim df command in user EXEC or privileged EXEC mode.
show ipv6 pim [vrf vrf-name] df [interface-type interface-number] [rp-address]
Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |
| :--- | :--- |
| interface-type interface-number | (Optional) Interface type and number. For more information, use the <br> question mark (?) online help function. |
| rp-address | (Optional) RP IPv6 address. |

Command Default

## Command Modes

If no interface or RP address is specified, all DFs are displayed.

User EXEC (>)
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest <br> 16.5.1a | This command was introduced. |

## Usage Guidelines

## Examples

The following example displays the DF-election states:

Use the show ipv6 pim df command to display the state of the DF election for each RP on each Protocol Independent Multicast (PIM)-enabled interface if the bidirectional multicast traffic is not flowing as expected.

```
show ipv6 pim df
```


# show ipv6 pim df

Interface DF State Timer Metrics
Ethernet0/0
RP :200::1
Ethernet1/0
RP :200::1

```


Lose
rimer
4 s 8 ms
0s 0ms
[120/2]
[inf/inf]

The following example shows information on the RP:
```


# show ipv6 pim df

Interface DF State Timer Metrics
Ethernet0/0 None:RP LAN 0s 0ms [inf/inf]
RP :200::1
Ethernet1/0
RP :200::1
Ethernet2/0 Winner 9s 8ms [0/0]
RP :200::1

```

The table below describes the significant fields shown in the display.

\section*{Table 82: show ipv6 pim df Field Descriptions}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Interface & Interface type and number that is configured to run PIM. \\
\hline DF State & \begin{tabular}{l}
The state of the DF election on the interface. The state can be: \\
- Offer \\
- Winner \\
- Backoff \\
- Lose \\
- None:RP LAN \\
The None:RP LAN state indicates that no DF election is taking place on this LAN because the RP is directly connected to this LAN.
\end{tabular} \\
\hline Timer & DF election timer. \\
\hline Metrics & Routing metrics to the RP announced by the DF. \\
\hline RP & The IPv6 address of the RP. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline debug ipv6 pim df-election & \begin{tabular}{l}
Displays debug messages for PIM bidirectional DF-election message \\
processing.
\end{tabular} \\
\hline ipv6 pim rp-address & Configures the address of a PIM RP for a particular group range. \\
\hline show ipv6 pim df winner & Displays the DF-election winner on each interface for each RP. \\
\hline
\end{tabular}

\section*{show ipv6 pim group-map}

To display an IPv6 Protocol Independent Multicast (PIM) group mapping table, use the show ipv6 pim group-map command in user EXEC or privileged EXEC mode.
\(\{\) show ipv6 pim [vrf vrf-name] group-map [\{group-namegroup-address \(\}] \mid[\{\) group-rangegroup-mask \(\}]\) [info-source \(\{\mathbf{b s r} \mid\) default \(\mid\) embedded-rp \(\mid\) static \(\}]\}\)

Syntax Description
\begin{tabular}{|l|l|}
\hline vrf vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline group-name | group-address & (Optional) IPv6 address or name of the multicast group. \\
\hline group-range | group-mask & \begin{tabular}{l}
(Optional) Group range list. Includes group ranges with the same prefix or \\
mask length.
\end{tabular} \\
\hline info-source & \begin{tabular}{l}
(Optional) Displays all mappings learned from a specific source, such as the \\
bootstrap router (BSR) or static configuration.
\end{tabular} \\
\hline bsr & Displays ranges learned through the BSR. \\
\hline default & Displays ranges enabled by default. \\
\hline embedded-rp & Displays group ranges learned through the embedded rendezvous point (RP). \\
\hline static & Displays ranges enabled by static configuration. \\
\hline
\end{tabular}

\section*{Command Modes}

User EXEC (>)
Privileged EXEC (\#)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
Use the show ipv6 pim group-map command to find all group mappings installed by a given source of information, such as BSR or static configuration.

You can also use this command to find which group mapping a router at a specified IPv6 group address is using by specifying a group address, or to find an exact group mapping entry by specifying a group range and mask length.

Examples The following is sample output from the show ipv6 pim group-map command:
```


# show ipv6 pim group-map

FF33::/32*
SSM
Info source:Static
Uptime:00:08:32, Groups:0
FF34::/32*
SSM

```
```

Info source:Static
Uptime:00:09:42, Groups:0

```

The table below describes the significant fields shown in the display.
Table 83: show ipv6 pim group-map Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RP & Address of the RP router if the protocol is sparse mode or bidir. \\
\hline Protocol & \begin{tabular}{l}
Protocol used: sparse mode (SM), Source Specific Multicast (SSM), link-local (LL), or \\
NOROUTE (NO). \\
LL is used for the link-local scoped IPv6 address range (fff0-f[2::/16). LL is treated as a separate \\
protocol type, because packets received with these destination addresses are not forwarded, but \\
the router might need to receive and process them. \\
NOROUTE or NO is used for the reserved and node-local scoped IPv6 address range \\
(ff[0-f][0-1]::/16). These addresses are nonroutable, and the router does not need to process \\
them.
\end{tabular} \\
\hline Groups & How many groups are present in the topology table from this range. \\
\hline Info source & Mappings learned from a specific source; in this case, static configuration. \\
\hline Uptime & The uptime for the group mapping displayed. \\
\hline
\end{tabular}

The following example displays the group mappings learned from BSRs that exist in the PIM group-to-RP or mode-mapping cache. The example shows the address of the BSR from which the group mappings have been learned and the associated timeout.
```

Router\# show ipv6 pim group-map info-source bsr
FFO0::/8*
SM, RP: 20::1:1:1
RPF: Et1/0,FE80::A8BB:CCFF:FE03:C202
Info source: BSR From: 60::1:1:4(00:01:42), Priority: 192
Uptime: 00:19:51, Groups: 0
FFO0::/8*
SM, RP: 10::1:1:3
RPF: Et0/0,FE80::A8BB:CCFF:FE03:C102
Info source: BSR From: 60::1:1:4(00:01:42), Priority: 192
Uptime: 00:19:51, Groups: 0

```

\section*{show ipv6 pim interface}

To display information about interfaces configured for Protocol Independent Multicast (PIM), use the show ipv6 pim interface command in privileged EXEC mode.
show ipv6 pim [vrf vrf-name] interface [state-on] [state-off] [type number]

Syntax Description

Command Modes
Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5 .1 a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{|l|l|}
\hline vrf vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline state-on & (Optional) Displays interfaces with PIM enabled. \\
\hline state-off & (Optional) Displays interfaces with PIM disabled. \\
\hline type number & (Optional) Interface type and number. \\
\hline
\end{tabular}

Privileged EXEC (\#) neighbors, and the designated router (DR) on the interface.

The following is sample output from the show ipv6 pim interface command using the state-on

The show ipv6 pim interface command is used to check if PIM is enabled on an interface, the number of keyword:
```


# show ipv6 pim interface state-on

Interface PIM Nbr Hello DR
Ethernet0 Count Intvl Prior
Ethernet0 on 0 30 1
Address:FE80::208:20FF:FE08:D7FF
DR :this system
POS1/0 on 0 30 1
Address:FE80::208:20FF:FE08:D554
DR :this system
POS4/0 on 1 30 1
Address:FE80::208:20FF:FE08:D554
DR :FE80::250:E2FF:FE8B:4C80
POS4/1 on 0 30 1
Address:FE80::208:20FF:FE08:D554
DR :this system
Loopback0 on 0 30 1
Address:FE80::208:20FF:FE08:D554
DR :this system

```

The table below describes the significant fields shown in the display.

\section*{Table 84: show ipv6 pim interface Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Interface & Interface type and number that is configured to run PIM. \\
\hline PIM & Whether PIM is enabled on an interface. \\
\hline Nbr Count & Number of PIM neighbors that have been discovered through this interface. \\
\hline Hello Intvl & Frequency, in seconds, of PIM hello messages. \\
\hline DR & IP address of the designated router (DR) on a network. \\
\hline Address & Interface IP address of the next-hop router. \\
\hline
\end{tabular}

The following is sample output from the show ipv6 pim interface command, modified to display passive interface information:

The table below describes the significant change shown in the display.
Table 85: show ipv6 pim interface Field Description
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline PIM & \begin{tabular}{l}
Whether PIM is enabled on an interface. When PIM passive mode is used, a "P" is displayed in the \\
output.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ipv6 pim neighbor & Displays the PIM neighbors discovered by the Cisco IOS software. \\
\hline
\end{tabular}

\section*{show ipv6 pim join-prune statistic}

To display the average join-prune aggregation for the most recently aggregated \(1000,10,000\), and 50,000 packets for each interface, use the show ipv6 pim join-prune statistic command in user EXEC or privileged EXEC mode.
show ipv6 pim [vrf vrf-name] join-prune statistic [interface-type]

Syntax Description

Command Modes

Command History

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline vrf \(\quad\) vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline interface-type & \begin{tabular}{l}
(Optional) Interface type. For more information, use the question mark (?) online help \\
function.
\end{tabular} \\
\hline
\end{tabular}

User EXEC (>)
Privileged EXEC (\#)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

When Protocol Independent Multicast (PIM) sends multiple joins and prunes simultaneously, it aggregates them into a single packet. The show ipv6 pim join-prune statistic command displays the average number of joins and prunes that were aggregated into a single packet over the last 1000 PIM join-prune packets, over the last 10,000 PIM join-prune packets, and over the last 50,000 PIM join-prune packets.

\section*{Examples}

The following example provides the join/prune aggregation on Ethernet interface 0/0/0:
```


# show ipv6 pim join-prune statistic Ethernet0/0/0

PIM Average Join/Prune Aggregation for last (1K/10K/50K) packets
Interface Transmitted Received
Ethernet0/0/0 0 / 0 / 0 1 / 0 / 0

```

The table below describes the significant fields shown in the display.
Table 86: show ipv6 pim join-prune statistics Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Interface & The interface from which the specified packets were transmitted or on which they were received. \\
\hline Transmitted & The number of packets transmitted on the interface. \\
\hline Received & The number of packets received on the interface. \\
\hline
\end{tabular}

\section*{show ipv6 pim limit}

To display Protocol Independent Multicast (PIM) interface limit, use the show ipv6 pim limit command in privileged EXEC mode.
show ipv6 pim [vrf vrf-name] limit [interface]
\begin{tabular}{|l|l|}
\hline vrf \(\quad\) vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline interface & (Optional) Specific interface for which limit information is provided. \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

The show ipv6 pim limit command checks interface statistics for limits. If the optional interface argument is enabled, only information for the specified interface is shown.

\section*{Examples}

The following example displays s PIM interface limit information:
\# show ipv6 pim limit

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ipv6 multicast limit & Configures per-interface mroute state limiters in IPv6. \\
\hline ipv6 multicast limit cost & Applies a cost to mroutes that match per interface mroute state limiters in IPv6. \\
\hline
\end{tabular}

\section*{show ipv6 pim neighbor}

To display the Protocol Independent Multicast (PIM) neighbors discovered by the Cisco software, use the show ipv6 pim neighbor command in privileged EXEC mode.
show ipv6 pim [vrf vrf-name]neighbor [detail][\{interface-type interface-number |count \(\}\)]

Syntax Description
\begin{tabular}{|l|l|}
\hline vrf vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline detail & \begin{tabular}{l}
(Optional) Displays the additional addresses of the neighbors learned, if \\
any, through the routable address hello option.
\end{tabular} \\
\hline interface-type interface-number & (Optional) Interface type and number. \\
\hline count & (Optional) Displays neighbor counts on each interface. \\
\hline
\end{tabular}

\section*{Command Modes}

Privileged EXEC (\#)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The show ipv6 pim neighbor command displays which routers on the LAN are configured for PIM.

\section*{Examples}

The following is sample output from the show ipv6 pim neighbor command using the detail keyword to identify the additional addresses of the neighbors learned through the routable address hello option:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Neighbor Address(es) & Interface & Uptime & Expires & & Bidir \\
\hline \[
\begin{aligned}
& \text { FE80::A8BB:CCFF:FE00:401 } \\
& 60: 1: 1: 3
\end{aligned}
\] & Ethernet0/0 & 01:34:16 & 00:01:16 & 1 & B \\
\hline FE80::A8BB:CCFF:FE00:501
\[
60:: 1: 1: 4
\] & Ethernet0/0 & 01:34:15 & 00:01:18 & 1 & B \\
\hline
\end{tabular}

The table below describes the significant fields shown in the display.
Table 87: show ipv6 pim neighbor Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Neighbor addresses & IPv6 address of the PIM neighbor. \\
\hline Interface & Interface type and number on which the neighbor is reachable. \\
\hline Uptime & \begin{tabular}{l}
How long (in hours, minutes, and seconds) the entry has been in the PIM neighbor \\
table.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Expires & \begin{tabular}{l}
How long (in hours, minutes, and seconds) until the entry will be removed from the \\
IPv6 multicast routing table.
\end{tabular} \\
\hline DR & Indicates that this neighbor is a designated router (DR) on the LAN. \\
\hline pri & DR priority used by this neighbor. \\
\hline Bidir & The neighbor is capable of PIM in bidirectional mode. \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show ipv6 pim interfaces & Displays information about interfaces configured for PIM. \\
\hline
\end{tabular}

\section*{show ipv6 pim range-list}

To display information about IPv6 multicast range lists, use the show ipv6 pim range-list command in privileged EXEC mode.
show ipv6 pim [vrf vrf-name] range-list [config] [\{rp-addressrp-name \(\}\)]

Syntax Description

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline vrf vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline config & (Optional) The client. Displays the range lists configured on the router. \\
\hline rp-address \(\mid\) rp-name & \begin{tabular}{l}
(Optional) The address of a Protocol Independent Multicast (PIM) rendezvous point \\
(RP).
\end{tabular} \\
\hline
\end{tabular}

Privileged EXEC (\#)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

The show ipv6 pim range-list command displays IPv6 multicast range lists on a per-client and per-mode basis. A client is the entity from which the specified range list was learned. The clients can be config, and the modes can be Source Specific Multicast (SSM) or sparse mode (SM).

\section*{Examples}

The following is sample output from the show ipv6 pim range-list command:

The table below describes the significant fields shown in the display.
```


# show ipv6 pim range-list

```
show ipv6 pim range-list
config SSM Exp:never Learnt from :::
config SSM Exp:never Learnt from :::
 FF33::/32 Up:00:26:33
 FF33::/32 Up:00:26:33
 FF34::/32 Up:00:26:33
 FF34::/32 Up:00:26:33
 FF35::/32 Up:00:26:33
 FF35::/32 Up:00:26:33
 FF36::/32 Up:00:26:33
 FF36::/32 Up:00:26:33
 FF37::/32 Up:00:26:33
 FF37::/32 Up:00:26:33
 FF38::/32 Up:00:26:33
 FF38::/32 Up:00:26:33
 FF39::/32 Up:00:26:33
 FF39::/32 Up:00:26:33
 FF3A::/32 Up:00:26:33
 FF3A::/32 Up:00:26:33
 FF3B::/32 Up:00:26:33
 FF3B::/32 Up:00:26:33
 FF3C::/32 Up:00:26:33
 FF3C::/32 Up:00:26:33
 FF3D::/32 Up:00:26:33
 FF3D::/32 Up:00:26:33
 FF3E::/32 Up:00:26:33
 FF3E::/32 Up:00:26:33
 FF3F::/32 Up:00:26:33
 FF3F::/32 Up:00:26:33
config SM RP:40::1:1:1 Exp:never Learnt from :::
config SM RP:40::1:1:1 Exp:never Learnt from :::
 FF13::/64 Up:00:03:50
 FF13::/64 Up:00:03:50
config SM RP:40::1:1:3 Exp:never Learnt from :: :
config SM RP:40::1:1:3 Exp:never Learnt from :: :
 FF09::/64 Up:00:03:50
```

    FF09::/64 Up:00:03:50
    ```

\section*{Table 88: show ipv6 pim range-list Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline config & Config is the client. \\
\hline SSM & Protocol being used. \\
\hline FF33::/32 & Group range. \\
\hline Up: & Uptime. \\
\hline
\end{tabular}

\section*{show ipv6 pim topology}

To display Protocol Independent Multicast (PIM) topology table information for a specific group or all groups, use the show ipv6 pim topology command in user EXEC or privileged EXEC mode.
show ipv6 pim [vrf vrf-name] topology [\{group-name \(\mid\) group-address [\{source-addresssource-name \(\}\)] | link-local \(\}\)]route-count [detail]

Syntax Description
\begin{tabular}{|l|l|}
\hline vrf \(\quad\) vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline group-name \(\mid\) group-address & (Optional) IPv6 address or name of the multicast group. \\
\hline source-address | source-name & (Optional) IPv6 address or name of the source. \\
\hline link-local & (Optional) Displays the link-local groups. \\
\hline route-count & (Optional) Displays the number of routes in PIM topology table. \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

User EXEC (>)
Privileged EXEC (\#)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

This command shows the PIM topology table for a given group--(*, G), (S, G), and (S, G) Rendezvous Point Tree (RPT)-- as internally stored in a PIM topology table. The PIM topology table may have various entries for a given group, each with its own interface list. The resulting forwarding state is maintained in the Multicast Routing Information Base (MRIB) table, which shows which interface the data packet should be accepted on and which interfaces the data packet should be forwarded to for a given (\(\mathrm{S}, \mathrm{G}\)) entry. Additionally, the Multicast Forwarding Information Base (MFIB) table is used during forwarding to decide on per-packet forwarding actions.

The route-count keyword shows the count of all entries, including link-local entries.
PIM communicates the contents of these entries through the MRIB, which is an intermediary for communication between multicast routing protocols (such as PIM), local membership protocols (such as Multicast Listener Discovery [MLD]), and the multicast forwarding engine of the system.
For example, an interface is added to the (*, G) entry in PIM topology table upon receipt of an MLD report or PIM (*, G) join message. Similarly, an interface is added to the (S, G) entry upon receipt of the MLD INCLUDE report for the S and G or PIM (S, G) join message. Then PIM installs an (S, G) entry in the MRIB with the immediate olist (from (S, G)) and the inherited olist (from (*, G)). Therefore, the proper forwarding state for a given entry (S, G) can be seen only in the MRIB or the MFIB, not in the PIM topology table.
\(\overline{\text { Examples }}\)
The following is sample output from the show ipv6 pim topology command:
\# show ipv6 pim topology
```

IP PIM Multicast Topology Table
Entry state:(*/S,G)[RPT/SPT] Protocol Uptime Info
Entry flags:KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive,
RA - Really Alive, LH - Last Hop, DSS - Don't Signal Sources,
RR - Register Received, SR - Sending Registers, E - MSDP External,
DCC - Don't Check Connected
Interface state:Name, Uptime, Fwd, Info
Interface flags:LI - Local Interest, LD - Local Dissinterest,
II - Internal Interest, ID - Internal Dissinterest,
LH - Last Hop, AS - Assert, AB - Admin Boundary
(*,FF05::1)
SM UP:02:26:56 JP:Join(now) Flags:LH
RP:40::1:1:2
RPF:Ethernet1/1,FE81::1
Ethernet0/1 02:26:56 fwd LI LH
(50::1:1:200,FF05::1)
SM UP:00:00:07 JP:Null(never) Flags:
RPF:Ethernet1/1,FE80::30:1:4
Ethernet1/1 00:00:07 off LI

```

The table below describes the significant fields shown in the display.

\section*{Table 89: show ipv6 pim topology Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Entry flags: KAT & \begin{tabular}{l}
The keepalive timer (KAT) associated with a source is used to keep track of two intervals \\
while the source is alive. When a source first becomes active, the first-hop router sets the \\
keepalive timer to 3 minntes and 30 secons, during which time it does not probe to see \\
if the source is alive. Once this timer expires, the router enters the probe interval and resets \\
the timer to 65 seconds, during which time the router assumes the source is alive and starts \\
probing to determine if it actually is. If the router determines that the source is alive, the \\
router exits the probe interval and resets the keepalive timer to 3 minutes and 30 seconds. \\
If the source is not alive, the entry is deleted at the end of the probe interval.
\end{tabular} \\
\hline AA, PA & \begin{tabular}{l}
The assume alive (AA) and probe alive (PA) flags are set when the router is in the probe \\
interval for a particular source.
\end{tabular} \\
\hline RR & \begin{tabular}{l}
The register received (RR) flag is set on the (S, G) entries on the Route Processor (RP) \\
as long as the RP receives registers from the source Designated Router (DR), which keeps \\
the source state alive on the RP.
\end{tabular} \\
\hline SR & \begin{tabular}{l}
The sending registers (SR) flag is set on the (S, G) entries on the DR as long as it sends \\
registers to the RP.
\end{tabular} \\
\hline
\end{tabular}

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ipv6 mrib client & Displays information about the clients of the MRIB. \\
\hline show ipv6 mrib route & Displays MRIB route information. \\
\hline
\end{tabular}

\section*{show ipv6 pim traffic}

To display the Protocol Independent Multicast (PIM) traffic counters, use the show ipv6 pim traffic command in user EXEC or privileged EXEC mode.
show ipv6 pim [vrf vrf-name] traffic
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Modes \\
\hline Command History
\end{tabular}
\begin{tabular}{|l|l|}
\hline vrf \(v r f\)-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline
\end{tabular}
User EXEC (\(>\))
Privileged EXEC (\#)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Usage Guidelines
Use the show ipv6 pim traffic command to check if the expected number of PIM protocol messages have been received and sent.
\(\overline{\text { Examples }}\)
The following example shows the number of PIM protocol messages received and sent.
```


# show ipv6 pim traffic

PIM Traffic Counters
Elapsed time since counters cleared:00:05:29
Received Sent
Valid PIM Packets 22 22
Hello 22 22
Join-Prune 0
Register 0 0
Register Stop 0 0
Assert 0 0
Bidir DF Election 0 0
Errors:
Malformed Packets 0
Bad Checksums 0
Send Errors 0
Packet Sent on Loopback Errors 0
Packets Received on PIM-disabled Interface 0
Packets Received with Unknown PIM Version 0

```

The table below describes the significant fields shown in the display.
Table 90: show ipv6 pim traffic Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Elapsed time since counters cleared & \begin{tabular}{l}
Indicates the amount of time (in hours, minutes, and seconds) since the \\
counters cleared.
\end{tabular} \\
\hline Valid PIM Packets & Number of valid PIM packets received and sent. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Hello & Number of valid hello messages received and sent. \\
\hline Join-Prune & Number of join and prune announcements received and sent. \\
\hline Register & Number of PIM register messages received and sent. \\
\hline Register Stop & Number of PIM register stop messages received and sent. \\
\hline Assert & Number of asserts received and sent. \\
\hline
\end{tabular}

\section*{show ipv6 pim tunnel}

To display information about the Protocol Independent Multicast (PIM) register encapsulation and de-encapsulation tunnels on an interface, use the show ipv6 pim tunnel command in privileged EXEC mode.
show ipv6 pim [vrf vrf-name] tunnel [interface-type interface-number]

Syntax Description

Command Modes
Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Privileged EXEC (\#)
\begin{tabular}{|l|l|}
\hline vrf vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline interface-type interface-number & (Optional) Tunnel interface type and number. \\
\hline
\end{tabular}

If you use the show ipv6 pim tunnel command without the optional interface keyword, information about the PIM register encapsulation and de-encapsulation tunnel interfaces is displayed.
The PIM encapsulation tunnel is the register tunnel. An encapsulation tunnel is created for every known rendezvous point (RP) on each router. The PIM decapsulation tunnel is the register decapsulation tunnel. A decapsulation tunnel is created on the RP for the address that is configured to be the RP address.

The following is sample output from the show ipv6 pim tunnel command on the RP:
```


# show ipv6 pim tunnel

Tunnel0*
Type :PIM Encap
RP :100::1
Source:100::1
Tunnel0*
Type :PIM Decap
RP :100::1
Source: -

```

The following is sample output from the show ipv6 pim tunnel command on a non-RP:
```


# show ipv6 pim tunnel

Tunnel0*
Type :PIM Encap
RP :100::1
Source:2001::1:1:1

```

The table below describes the significant fields shown in the display.

\section*{Table 91: show ipv6 pim tunnel Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Tunnel0* & Name of the tunnel. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Type & Type of tunnel. Can be PIM encapsulation or PIM de-encapsulation. \\
\hline source & Source address of the router that is sending encapsulating registers to the RP. \\
\hline
\end{tabular}

\section*{show ipv6 policy}

To display the IPv6 policy-based routing (PBR) configuration, use the show ipv6 policy command in user EXEC or privileged EXEC mode.
show ipv6 policy
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
Command Modes
User EXEC (\(>\))
Privileged EXEC (\#)

Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

IPv6 policy matches will be counted on route maps, as is done in IPv4. Therefore, IPv6 policy matches can also be displayed on the show route-map command.

The following example displays the PBR configuration:
\# show ipv6 policy
```

Interface Routemap
Ethernet0/0

```

The table below describes the significant fields shown in the display.
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Interface & Interface type and number that is configured to run Protocol-Independent Multicast (PIM). \\
\hline Routemap & The name of the route map on which IPv6 policy matches were counted. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show route-map & Displays all route maps configured or only the one specified. \\
\hline
\end{tabular}

\section*{show ipv6 prefix-list}

To display information about an IPv6 prefix list or IPv6 prefix list entries, use the show ipv6 prefix-list command in user EXEC or privileged EXEC mode.
show ipv6 prefix-list [\{detail| summary\}] [list-name]
show ipv6 prefix-list list-name ipv6-prefix/prefix-length [\{longer|first-match\}]
show ipv6 prefix-list list-name seq seq-num

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline detail \(\mid\) summary & (Optional) Displays detailed or summarized information about all IPv6 prefix lists. \\
\hline list-name & (Optional) The name of a specific IPv6 prefix list. \\
\hline ipv6-prefix & \begin{tabular}{l}
All prefix list entries for the specified IPv6 network. \\
This argument must be in the form documented in RFC 2373 where the address is \\
specified in hexadecimal using 16-bit values between colons.
\end{tabular} \\
\hline / prefix-length & \begin{tabular}{l}
The length of the IPv6 prefix. A decimal value that indicates how many of the high-order \\
contiguous bits of the address comprise the prefix (the network portion of the address). \\
A slash mark must precede the decimal value.
\end{tabular} \\
\hline longer & \begin{tabular}{l}
(Optional) Displays all entries of an IPv6 prefix list that are more specific than the given \\
ipv6-prefix / prefix-lengthvalues.
\end{tabular} \\
\hline first-match & \begin{tabular}{l}
(Optional) Displays the entry of an IPv6 prefix list that matches the given ipv6-prefix / \\
prefix-lengthvalues.
\end{tabular} \\
\hline seq seq-num & The sequence number of the IPv6 prefix list entry. \\
\hline
\end{tabular}

\section*{Command Default \\ Command Modes \\ Command History}

Usage Guidelines
The show ipv6 prefix-list command provides output similar to the show ip prefix-list command, except that it is IPv6-specific.

\section*{Examples}

The following example shows the output of the show ipv6 prefix-list command with the detail keyword:
```


# show ipv6 prefix-list detail

Prefix-list with the last deletion/insertion: bgp-in
ipv6 prefix-list 6to4:

```
```

    count: 1, range entries: 0, sequences: 5 - 5, refcount: 2
    seq 5 permit 2002::/16 (hit count: 313, refcount: 1)
    ipv6 prefix-list aggregate:
count: 2, range entries: 2, sequences: 5 - 10, refcount: 30
seq 5 deny 3FFE:CO0::/24 ge 25 (hit count: 568, refcount: 1)
seq 10 permit ::/0 le 48 (hit count: 31310, refcount: 1)
ipv6 prefix-list bgp-in:
count: 6, range entries: 3, sequences: 5 - 30, refcount: 31
seq 5 deny 5F00::/8 le 128 (hit count: 0, refcount: 1)
seq 10 deny ::/0 (hit count: 0, refcount: 1)
seq 15 deny ::/1 (hit count: 0, refcount: 1)
seq 20 deny ::/2 (hit count: 0, refcount: 1)
seq 25 deny ::/3 ge 4 (hit count: 0, refcount: 1)
seq 30 permit ::/0 le 128 (hit count: 240664, refcount: 0)

```

The table below describes the significant fields shown in the display.

\section*{Table 92: show ipv6 prefix-list Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Prefix list with the latest deletion/insertion: & Prefix list that was last modified. \\
\hline count & Number of entries in the list. \\
\hline range entries & Number of entries with matching range. \\
\hline sequences & Sequence number for the prefix entry. \\
\hline refcount & Number of objects currently using this prefix list. \\
\hline seq & Entry number in the list. \\
\hline permit, deny & Granting status. \\
\hline hit count & Number of matches for the prefix entry. \\
\hline
\end{tabular}

The following example shows the output of the show ipv6 prefix-list command with the summary keyword:
```


# show ipv6 prefix-list summary

Prefix-list with the last deletion/insertion: bgp-in
ipv6 prefix-list 6to4:
count: 1, range entries: 0, sequences: 5 - 5, refcount: 2
ipv6 prefix-list aggregate:
count: 2, range entries: 2, sequences: 5 - 10, refcount: 30
ipv6 prefix-list bgp-in:
count: 6, range entries: 3, sequences: 5 - 30, refcount: 31

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline clear ipv6 prefix-list & Resets the hit count of the prefix list entries. \\
\hline distribute-list in & Filters networks received in updates. \\
\hline distribute-list out & Suppresses networks from being advertised in updates. \\
\hline ipv6 prefix-list & Creates an entry in an IPv6 prefix list. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ipv6 prefix-list description & Adds a text description of an IPv6 prefix list. \\
\hline match ipv6 address & Distributes IPv6 routes that have a prefix permitted by a prefix list. \\
\hline neighbor prefix-list & Distributes BGP neighbor information as specified in a prefix list. \\
\hline remark (prefix-list) & Adds a comment for an entry in a prefix list. \\
\hline
\end{tabular}

\section*{show ipv6 protocols}

To display the parameters and the current state of the active IPv6 routing protocol processes, use the show ipv6 protocols command in user EXEC or privileged EXEC mode.
show ipv6 protocols [summary]

Syntax Description

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{|l|l|}
\hline summary & (Optional) Displays the configured routing protocol process names. \\
\hline
\end{tabular}
User EXEC (\(>\))
Privileged EXEC (\#)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines

\section*{Examples}

The information displayed by the show ipv6 protocols command is useful in debugging routing operations.

The following sample output from the show ipv6 protocols command displays Intermediate

System-to-Intermediate System (IS-IS) routing protocol information:
```


# show ipv6 protocols

IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "isis"
Interfaces:
Ethernet0/0/3
Ethernet0/0/1
Serial1/0/1
Loopback1 (Passive)
Loopback2 (Passive)
Loopback3 (Passive)
Loopback4 (Passive)
Loopback5 (Passive)
Redistribution:
Redistributing protocol static at level 1
Inter-area redistribution
Redistributing L1 into L2 using prefix-list word
Address Summarization:
L2: 33::/16 advertised with metric 0
L2: 44::/16 advertised with metric 20
L2: 66::/16 advertised with metric 10
L2: 77::/16 advertised with metric 10

```

The table below describes the significant fields shown in the display.

Table 93: show ipv6 protocols Field Descriptions for IS-IS Processes
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline IPv6 Routing Protocol is & Specifies the IPv6 routing protocol used. \\
\hline Interfaces & Specifies the interfaces on which the IPv6 IS-IS protocol is configured. \\
\hline Redistribution & Lists the protocol that is being redistributed. \\
\hline Inter-area redistribution & Lists the IS-IS levels that are being redistributed into other levels. \\
\hline using prefix-list & Names the prefix list used in the interarea redistribution. \\
\hline Address Summarization & \begin{tabular}{l}
Lists all the summary prefixes. If the summary prefix is being advertised, \\
"advertised with metric \(x\) " will be displayed after the prefix.
\end{tabular} \\
\hline
\end{tabular}

The following sample output from the show ipv6 protocols command displays the Border Gateway Protocol (BGP) information for autonomous system 30:
```


# show ipv6 protocols

IPv6 Routing Protocol is "bgp 30"
IGP synchronization is disabled
Redistribution:
Redistributing protocol connected
Neighbor(s):
Address FiltIn FiltOut Weight RoutemapIn RoutemapOut
2001:DB8:0:ABCD::1 5 7 200
2001:DB8:0:ABCD::2
2001:DB8:0:ABCD::3
rmap-in rmap-out

```

The table below describes the significant fields shown in the display.
Table 94: show ipv6 protocols Field Descriptions for BGP Process
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline IPv6 Routing Protocol is & Specifies the IPv6 routing protocol used. \\
\hline Redistribution & Lists the protocol that is being redistributed. \\
\hline Address & Neighbor IPv6 address. \\
\hline FiltIn & AS-path filter list applied to input. \\
\hline FiltOut & AS-path filter list applied to output. \\
\hline Weight & Neighbor weight value used in BGP best path selection. \\
\hline RoutemapIn & Neighbor route map applied to input. \\
\hline RoutemapOut & Neighbor route map applied to output. \\
\hline
\end{tabular}

The following is sample output from the show ipv6 protocols summary command:
```


# show ipv6 protocols summary

```
```

Index Process Name
connected
static
rip myrip
bgp }3

```

The following sample output from the show ipv6 protocols command displays the EIGRP information including the vector metric and EIGRP IPv6 NSF:
```


# show ipv6 protocols

IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "bgp 1"
IGP synchronization is disabled
Redistribution:
None
IPv6 Routing Protocol is "bgp multicast"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "eigrp 1"
EIGRP-IPv6 VR(name) Address-Family Protocol for AS(1)
Metric weight K1=1, K2=0, K3=1, K4=0, K5=0 K6=0
Metric rib-scale 128
Metric version 64bit
NSF-aware route hold timer is 260
EIGRP NSF enabled
NSF signal timer is 15s
NSF converge timer is 65s
Router-ID: 10.1.2.2
Topology : 0 (base)
Active Timer: 3 min
Distance: internal 90 external 170
Maximum path: 16
Maximum hopcount 100
Maximum metric variance 1
Total Prefix Count: 0
Total Redist Count: 0
Interfaces:
Redistribution:
None

```

The following example displays IPv6 protocol information after configuring redistribution in an Open Shortest Path First (OSPF) domain:
```


# redistribute ospf 1 match internal

(config-rtr)\# end

# show ipv6 protocols

IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "rip 1"
Interfaces:
Ethernet0/1
Loopback9
Redistribution:
Redistributing protocol ospf 1 (internal)
IPv6 Routing Protocol is "ospf 1"
Interfaces (Area 0):
Ethernet0/0
Redistribution:
None

```

\section*{show ipv6 rip}

To display information about current IPv6 Routing Information Protocol (RIP) processes, use the show ipv6 rip command in user EXEC or privileged EXEC mode.
show ipv6 rip [name] [vrf vrf-name][\{database |next-hops \(\}]\)
show ipv6 rip [name] [\{database |next-hops \(\}\)]
Syntax Description
\begin{tabular}{|l|l|}
\hline name & \begin{tabular}{l}
(Optional) Name of the RIP process. If the name is not entered, details of all configured RIP \\
processes are displayed.
\end{tabular} \\
\hline vrf \(v r f-\) name & \begin{tabular}{l}
(Optional) Displays information about the specified Virtual Routing and Forwarding (VRF) \\
instance.
\end{tabular} \\
\hline database & (Optional) Displays information about entries in the specified RIP IPv6 routing table. \\
\hline next-hops & \begin{tabular}{l}
(Optional) Displays information about the next hop addresses for the specified RIP IPv6 \\
process. If no RIP process name is specified, the next-hop addresses for all RIP IPv6 processes \\
are displayed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}

Information about all current IPv6 RIP processes is displayed.
User EXEC (\(>\))
Privileged EXEC (\#)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following is sample output from the show ipv6 rip command:
```


# show ipv6 rip

RIP process "one", port 521, multicast-group FF02::9, pid 55
Administrative distance is 25. Maximum paths is 4
Updates every 30 seconds, expire after 180
Holddown lasts 0 seconds, garbage collect after 120
Split horizon is on; poison reverse is off
Default routes are not generated
Periodic updates 8883, trigger updates 2
Interfaces:
Ethernet2
Redistribution:
RIP process "two", port 521, multicast-group FF02::9, pid 61
Administrative distance is 120. Maximum paths is 4
Updates every 30 seconds, expire after 180
Holddown lasts 0 seconds, garbage collect after 120
Split horizon is on; poison reverse is off
Default routes are not generated

```
```

    Periodic updates 8883, trigger updates 0
    Interfaces:
None
Redistribution:

```

The table below describes the significant fields shown in the display.
Table 95: show ipv6 rip Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RIP process & The name of the RIP process. \\
\hline port & The port that the RIP process is using. \\
\hline multicast-group & The IPv6 multicast group of which the RIP process is a member. \\
\hline pid & The process identification number (pid) assigned to the RIP process. \\
\hline Administrative distance & \begin{tabular}{l}
Used to rank the preference of sources of routing information. Connected routes \\
have an administrative distance of 1 and are preferred over the same route learned \\
by a protocol with a larger administrative distance value.
\end{tabular} \\
\hline Updates & The value (in seconds) of the update timer. \\
\hline expire & The interval (in seconds) in which updates expire. \\
\hline Holddown & The value (in seconds) of the hold-down timer. \\
\hline garbage collect & The value (in seconds) of the garbage-collect timer. \\
\hline Split horizon & The split horizon state is either on or off. \\
\hline poison reverse & The poison reverse state is either on or off. \\
\hline Default routes & \begin{tabular}{l}
The origination of a default route into RIP. Default routes are either generated or \\
not generated.
\end{tabular} \\
\hline Periodic updates & The number of RIP update packets sent on an update timer. \\
\hline trigger updates & The number of RIP update packets sent as triggered updates. \\
\hline
\end{tabular}

The following is sample output from the show ipv6 rip database command.
```


# show ipv6 rip one database

RIP process "one", local RIB
2001:72D:1000::/64, metric 2
Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
2001:72D:2000::/64, metric 2, installed
Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
2001:72D:3000::/64, metric 2, installed
Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
Ethernet1/2001:DB8::1, expires in 120 secs
2001:72D:4000::/64, metric 16, expired, [advertise 119/hold 0]
Ethernet2/2001:DB8:0:ABCD::1
3004::/64, metric 2 tag 2A, installed
Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs

```

The table below describes the significant fields shown in the display.
Table 96: show ipv6 rip database Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RIP process & The name of the RIP process. \\
\hline 2001:72D:1000::/64 & The IPv6 route prefix. \\
\hline metric & Metric for the route. \\
\hline installed & Route is installed in the IPv6 routing table. \\
\hline Ethernet2/2001:DB8:0:ABCD::1 & Interface and LL next hop through which the IPv6 route was learned. \\
\hline expires in & The interval (in seconds) before the route expires. \\
\hline advertise & \begin{tabular}{l}
For an expired route, the value (in seconds) during which the route will \\
be advertised as expired.
\end{tabular} \\
\hline hold & The value (in seconds) of the hold-down timer. \\
\hline tag & Route tag. \\
\hline
\end{tabular}

The following is sample output from the show ipv6 rip next-hops command.
```


# show ipv6 rip one next-hops

RIP process "one", Next Hops
FE80::210:7BFF:FEC2:ACCF/Ethernet4/2 [1 routes]
FE80::210:7BFF:FEC2:B286/Ethernet4/2 [2 routes]

```

The table below describes the significant fields shown in the display.

\section*{Table 97: show ipv6 rip next-hops Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RIP process & The name of the RIP process. \\
\hline 2001:DB8:0:1::1/Ethernet4/2/2 & \begin{tabular}{l}
The next-hop address and interface through which it was learned. Next hops \\
are either the addresses of IPv6 RIP neighbors from which we have learned \\
routes or explicit next hops received in IPv6 RIP advertisements. \\
Note \begin{tabular}{l}
An IPv6 RIP neighbor may choose to advertise all its routes with \\
an explicit next hop. In this case the address of the neighbor would \\
not appear in the next hop display.
\end{tabular} \\
\hline [1 routes] \\
\hline
\end{tabular} \begin{tabular}{l}
The number of routes in the IPv6 RIP routing table using the specified next \\
hop.
\end{tabular} \\
\hline
\end{tabular}

The following is sample output from the show ipv6 rip vrf command:

\footnotetext{
\# show ipv6 rip vrf red
}
```

    RIP VRF "red", port 521, multicast-group 2001:DB8::/32, pid 295
    Administrative distance is 120. Maximum paths is 16
    Updates every 30 seconds, expire after 180
    Holddown lasts 0 seconds, garbage collect after 120
    Split horizon is on; poison reverse is off
    Default routes are not generated
    Periodic updates 99, trigger updates 3
    Full Advertisement 0, Delayed Events 0
    Interfaces:
Ethernet0/1
Loopback2
Redistribution:
None

```

The table below describes the significant fields shown in the display.
Table 98: show ipv6 rip vrf Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RIP VRF & The name of the RIP VRF. \\
\hline port & The port that the RIP process is using. \\
\hline multicast-group & The IPv6 multicast group of which the RIP process is a member. \\
\hline Administrative distance & \begin{tabular}{l}
Used to rank the preference of sources of routing information. Connected routes \\
have an administrative distance of 1 and are preferred over the same route learned \\
by a protocol with a larger administrative distance value.
\end{tabular} \\
\hline Updates & The value (in seconds) of the update timer. \\
\hline expires after & The interval (in seconds) in which updates expire. \\
\hline Holddown & The value (in seconds) of the hold-down timer. \\
\hline garbage collect & The value (in seconds) of the garbage-collect timer. \\
\hline Split horizon & The split horizon state is either on or off. \\
\hline poison reverse & The poison reverse state is either on or off. \\
\hline Default routes & \begin{tabular}{l}
The origination of a default route into RIP. Default routes are either generated or \\
not generated.
\end{tabular} \\
\hline Periodic updates & The number of RIP update packets sent on an update timer. \\
\hline trigger updates & The number of RIP update packets sent as triggered updates. \\
\hline
\end{tabular}

The following is sample output from show ipv6 rip vrf next-hops command:
```

Device\# show ipv6 rip vrf blue next-hops
RIP VRF "blue", local RIB
AAAA::/64, metric 2, installed
Ethernet0/0/FE80::A8BB:CCFF:FE00:7C00, expires in 177 secs

```

Table 99: show ipv6 rip vrf next-hops Field Descriptions
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline RIP VRF & The name of the RIP VRF. \\
\hline metric & Metric for the route. \\
\hline installed & Route is installed in the IPv6 routing table. \\
\hline Ethernet0/0/FE80::A8BB:CCFF:FE00:7C00 & \begin{tabular}{l}
The next hop address and interface through which it was learned. Next hops are either the addresses of IPv6 RIP neighbors from which we have learned routes, or explicit next hops received in IPv6 RIP advertisements. \\
Note An IPv6 RIP neighbor may choose to advertise all its routes with an explicit next hop. In this case the address of the neighbor would not appear in the next hop display.
\end{tabular} \\
\hline expires in & The interval (in seconds) before the route expires. \\
\hline
\end{tabular}

The following is sample output from show ipv6 rip vrf database command:
```


# show ipv6 rip vrf blue database

    RIP VRF "blue", Next Hops
    FE80::A8BB:CCFF:FE00:7C00/Ethernet0/0 [1 paths]
    ```

Table 100: show ipv6 rip vrf database Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RIP VRF & The name of the RIP VRF. \\
\hline FE80::A8BB:CCFF:FE00:7C00/Ethernet0/0 & \begin{tabular}{l}
Interface and LL next hop through which the IPv6 route was \\
learned.
\end{tabular} \\
\hline 1 paths & \begin{tabular}{l}
Indicates the number of unique paths to this router that exist in \\
the routing table.
\end{tabular} \\
\hline
\end{tabular}

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline clear ipv6 rip & Deletes routes from the IPv6 RIP routing table. \\
\hline debug ipv6 rip & Displays the current contents of the IPv6 RIP routing table. \\
\hline ipv6 rip vrf-mode enable & Enables VRF-aware support for IPv6 RIP. \\
\hline
\end{tabular}

\section*{show ipv6 route}

To display contents of the IPv6 routing table, use the show ipv6 route command in user EXEC or privileged EXEC mode.
show ipv6 route [\{ipv6-address | ipv6-prefix/prefix-length [\{longer-prefixes \(\}\)]|[\{protocol \(\}\)] | [repair] | [\{updated [\{boot-up \(\}][\{\) day month \(\}][\{\) time \(\}]\}] \mid\) interface type number \(\mid\) nd \(\mid\) nsf \(\mid\) table table-id \(\mid\) watch \(\}\)]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline ipv6-address & (Optional) Displays routing information for a specific IPv6 address. \\
\hline ipv6-prefix & (Optional) Displays routing information for a specific IPv6 network. \\
\hline Iprefix-length & \begin{tabular}{l}
(Optional) The length of the IPv6 prefix. A decimal value that indicates how many of the \\
high-order contiguous bits of the address comprise the prefix (the network portion of the \\
address). A slash mark must precede the decimal value.
\end{tabular} \\
\hline longer-prefixes & (Optional) Displays output for longer prefix entries. \\
\hline protocol & \begin{tabular}{l}
(Optional) The name of a routing protocol or the keyword connected, local, mobile, or \\
static. If you specify a routing protocol, use one of the following keywords: bgp, isis, eigrp, \\
ospf, or rip.
\end{tabular} \\
\hline repair & (Optional) Displays routes with repair paths. \\
\hline updated & (Optional) Displays routes with time stamps. \\
\hline boot-up & (Optional) Displays routing information since bootup. \\
\hline day month & (Optional) Displays routes since the specified day and month. \\
\hline time & (Optional) Displays routes since the specified time, in hh:mm format. \\
\hline interface & (Optional) Displays information about the interface. \\
\hline type & (Optional) Interface type. \\
\hline number & (Optional) Interface number. \\
\hline nd & (Optional) Displays only routes from the IPv6 Routing Information Base (RIB) that are \\
owned by Neighbor Discovery (ND). \\
\hline repair & (Optional) Displays routes in the nonstop forwarding (NSF) state. \\
\hline natch (Optenal) \\
\hline (Optional) Displays IPv6 RIB table information for the specified table ID. The table ID \\
must be in hexadecimal format. The range is from 0 to 0-0xFFFFFFFF. \\
\hline
\end{tabular}

Command Default If none of the optional syntax elements is chosen, all IPv6 routing information for all active routing tables is displayed.

\section*{Command Modes}

User EXEC (>)
Privileged EXEC (\#)
Command History

\section*{Usage Guidelines}

The show ipv6 route command provides output similar to the show ip route command, except that the information is IPv6-specific.

When the ipv6-address or ipv6-prefix/prefix-length argument is specified, the longest match lookup is performed from the routing table, and only route information for that address or network is displayed. When a routing protocol is specified, only routes for that protocol are displayed. When the connected, local, mobile, or static keyword is specified, only the specified type of route is displayed. When the interface keyword and type and number arguments are specified, only routes for the specified interface are displayed.

\section*{Examples}

The following is sample output from the show ipv6 route command when no keywords or arguments are specified:
```


# show ipv6 route

IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - IIS interarea
B 2001:DB8:4::2/48 [20/0]
via FE80::A8BB:CCFF:FE02:8B00, Serial6/0
L 2001:DB8:4::3/48 [0/0]
via ::, Ethernet1/0
C 2001:DB8:4::4/48 [0/0]
via ::, Ethernet1/0
LC 2001:DB8:4::5/48 [0/0]
via ::, Loopback0
L 2001:DB8:4::6/48 [0/0]
via ::, Serial6/0
C 2001:DB8:4::7/48 [0/0]
via ::, Serial6/0
S 2001:DB8:4::8/48 [1/0]
via 2001:DB8:1::1, Null
L FE80::/10 [0/0]
via ::, Null0
L FFOO::/8 [0/0]
via ::, Null0

```

The table below describes the significant fields shown in the display.

Table 101: show ipv6 route Field Descriptions
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Codes: & \begin{tabular}{l}
Indicates the protocol that derived the route. Values are as follows: \\
-B—BGP derived \\
- C-Connected \\
- I1—ISIS L1—Integrated IS-IS Level 1 derived \\
- I2—ISIS L2—Integrated IS-IS Level 2 derived \\
- IA—ISIS interarea—Integrated IS-IS interarea derived \\
- L—Local \\
- R-RIP derived \\
- S—Static
\end{tabular} \\
\hline 2001:DB8:4::2/48 & Indicates the IPv6 prefix of the remote network. \\
\hline [20/0] & The first number in brackets is the administrative distance of the information source; the second number is the metric for the route. \\
\hline via FE80::A8BB:CCFF:FE02:8B00 & Specifies the address of the next device to the remote network. \\
\hline
\end{tabular}

When the ipv6-address or ipv6-prefix/prefix-length argument is specified, only route information for that address or network is displayed. The following is sample output from the show ipv6 route command when IPv6 prefix 2001:DB8::/35 is specified. The fields in the display are self-explanatory.
```


# show ipv6 route 2001:DB8::/35

IPv6 Routing Table - 261 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
B 2001:DB8::/35 [20/3]
via FE80::60:5C59:9E00:16, Tunnel1

```

When you specify a protocol, only routes for that particular routing protocol are shown. The following is sample output from the show ipv6 route bgp command. The fields in the display are self-explanatory.
```


# show ipv6 route bgp

IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
B 2001:DB8:4::4/64 [20/0]
via FE80::A8BB:CCFF:FE02:8B00, Serial6/0

```

The following is sample output from the show ipv6 route local command. The fields in the display are self-explanatory.
```


# show ipv6 route local

IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
L 2001:DB8:4::2/128 [0/0]
via ::, Ethernet1/0
LC 2001:DB8:4::1/128 [0/0]
via ::, Loopback0
L 2001:DB8:4::3/128 [0/0]
via ::, Serial6/0
L FE80::/10 [0/0]
via ::, Null0
L FFOO::/8 [0/0]
via ::, Null0

```

The following is sample output from the show ipv6 route command when the 6PE multipath feature is enabled. The fields in the display are self-explanatory.
```


# show ipv6 route

IPv6 Routing Table - default - 19 entries
Codes:C - Connected, L - Local, S - Static, R - RIP, B - BGP
U - Per-user Static route
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
.
•
B 2001:DB8::/64 [200/0]
via ::FFFF:172.16.0.1
via ::FFFF:172.30.30.1

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\hline ipv6 route & Establishes a static IPv6 route. \\
\hline show ipv6 interface & Displays IPv6 interface information. \\
\hline show ipv6 route summary & Displays the current contents of the IPv6 routing table in summary format. \\
\hline show ipv6 tunnel & Displays IPv6 tunnel information. \\
\hline
\end{tabular}

\section*{show ipv6 routers}

To display IPv6 router advertisement (RA) information received from on-link devices, use the show ipv6 routers command in user EXEC or privileged EXEC mode.
show ipv6 routers [interface-type interface-number][conflicts][vrf vrf-name][detail]
Syntax Description
\begin{tabular}{|l|l|}
\hline interface -type & (Optional) Specifies the Interface type. \\
\hline interface -number & (Optional) Specifies the Interface number. \\
\hline conflicts & (Optional) Displays RAs that differ from the RAs configured for a specified interface. \\
\hline vrf vrf-name & (Optional) Specifies a virtual routing and forwarding (VRF) configuration. \\
\hline detail & \begin{tabular}{l}
(Optional) Provides detail about the eligibility of the neighbor for election as the default \\
device.
\end{tabular} \\
\hline
\end{tabular}

Command Default

Command Modes

When an interface is not specified, on-link RA information is displayed for all interface types. (The term onl-ink refers to a locally reachable address on the link.)

User EXEC (\(>\))
Privileged EXEC (\#)

Command History

\section*{Usage Guidelines}

Devices that advertise parameters that differ from the RA parameters configured for the interface on which the RAs are received are marked as conflicting.

\section*{Examples}

The following is sample output from the show ipv6 routers command when entered without an IPv6 interface type and number:
```


# show ipv6 routers

Device FE80::83B3:60A4 on Tunnel5, last update 3 min
Hops 0, Lifetime 6000 sec, AddrFlag=0, OtherFlag=0
Reachable time 0 msec, Retransmit time 0 msec
Prefix 3FFE:C00:8007::800:207C:4E37/96 autoconfig
Valid lifetime -1, preferred lifetime -1
Device FE80::290:27FF:FE8C:B709 on Tunnel57, last update 0 min
Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0
Reachable time 0 msec, Retransmit time 0 msec

```

The following sample output shows a single neighboring device that is advertising a high default device preference and is indicating that it is functioning as a Mobile IPv6 home agent on this link.
```


# show ipv6 routers

```
```

IPV6 ND Routers (table: default)
Device FE80::100 on Ethernet0/0, last update 0 min
Hops 64, Lifetime 50 sec, AddrFlag=0, OtherFlag=0, MTU=1500
HomeAgentFlag=1, Preference=High
Reachable time 0 msec, Retransmit time 0 msec
Prefix 2001::100/64 onlink autoconfig
Valid lifetime 2592000, preferred lifetime 604800

```

The following table describes the significant fields shown in the displays.

\section*{Table 102: show ipv6 routers Field Descriptions}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Hops & The configured hop limit value for the RA. \\
\hline Lifetime & The configured lifetime value for the RA. A value of 0 indicates that the device is not a default device. A value other than 0 indicates that the device is a default device. \\
\hline AddrFlag & If the value is 0 , the RA received from the device indicates that addresses are not configured using the stateful autoconfiguration mechanism. If the value is 1 , the addresses are configured using this mechanism. \\
\hline OtherFlag & If the value is 0 , the RA received from the device indicates that information other than addresses is not obtained using the stateful autoconfiguration mechanism. If the value is 1 , other information is obtained using this mechanism. (The value of OtherFlag can be 1 only if the value of AddrFlag is 1.) \\
\hline MTU & The maximum transmission unit (MTU). \\
\hline HomeAgentFlag=1 & The value can be either 0 or 1 . A value of 1 indicates that the device from which the RA was received is functioning as a mobile IPv6 home agent on this link, and a value of 0 indicates it is not functioning as a mobile IPv6 home agent on this link. \\
\hline Preference=High & The DRP value, which can be high, medium, or low. \\
\hline Retransmit time & The configured RetransTimer value. The time value to be used on this link for neighbor solicitation transmissions, which are used in address resolution and neighbor unreachability detection. A value of 0 means the time value is not specified by the advertising device. \\
\hline Prefix & A prefix advertised by the device. Also indicates if on-link or autoconfig bits were set in the RA message. \\
\hline Valid lifetime & The length of time (in seconds) relative to the time the advertisement is sent that the prefix is valid for the purpose of on-link determination. A value of -1 (all ones, 0xffffffff) represents infinity. \\
\hline preferred lifetime & The length of time (in seconds) relative to the time the advertisements is sent that addresses generated from the prefix via address autoconfiguration remain valid. A value of -1 (all ones, 0xffffffff) represents infinity. \\
\hline
\end{tabular}

When the interface-type and interface-number arguments are specified, RA details about that specific interface are displayed. The following is sample output from the show ipv6 routers command when entered with an interface type and number:
```


# show ipv6 routers tunnel 5

Device FE80::83B3:60A4 on Tunnel5, last update 5 min
Hops 0, Lifetime 6000 sec, AddrFlag=0, OtherFlag=0
Reachable time 0 msec, Retransmit time 0 msec
Prefix 3FFE:C00:8007::800:207C:4E37/96 autoconfig
Valid lifetime -1, preferred lifetime -1

```

Entering the conflicts keyword with the show ipv6 routers command displays information for devices that are advertising parameters different from the parameters configured for the interface on which the advertisements are being received, as the following sample output shows:
```


# show ipv6 routers conflicts

Device FE80::203:FDFF:FE34:7039 on Ethernet1, last update 1 min, CONFLICT
Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0
Reachable time 0 msec, Retransmit time 0 msec
Prefix 2003::/64 onlink autoconfig
Valid lifetime -1, preferred lifetime -1
Device FE80::201:42FF:FECA:A5C on Ethernet1, last update 0 min, CONFLICT
Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0
Reachable time 0 msec, Retransmit time 0 msec
Prefix 2001::/64 onlink autoconfig
Valid lifetime -1, preferred lifetime -1

```

Use of the detail keyword provides information about the preference rank of the device, its eligibility for election as default device, and whether the device has been elected:
```


# show ipv6 routers detail

Device FE80::A8BB:CCFF:FE00:5B00 on Ethernet0/0, last update 0 min
Rank 0x811 (elegible), Default Router
Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500
HomeAgentFlag=0, Preference=Medium, trustlevel = 0
Reachable time 0 (unspecified), Retransmit time 0 (unspecified)
Prefix 2001::/64 onlink autoconfig
Valid lifetime 2592000, preferred lifetime 604800

```

\section*{show ipv6 rpf}

To check Reverse Path Forwarding (RPF) information for a given unicast host address and prefix, use the show ipv6 rpf command in user EXEC or privileged EXEC mode.
```

show ipv6 rpf {source-vrf [access-list]| vrf receiver-vrf{source-vrf [access-list]| select}}

```

\section*{Syntax Description}

\section*{Command Modes}
\begin{tabular}{|l|l|}
\hline source-vrf & \begin{tabular}{l}
Name or address of the virtual routing and forwarding (VRF) on which lookups are to be \\
performed.
\end{tabular} \\
\hline receiver-vrf & Name or address of the VRF in which the lookups originate. \\
\hline access-list & \begin{tabular}{l}
Name or address of access control list (ACL) to be applied to the group-based VRF selection \\
policy.
\end{tabular} \\
\hline vrf & Displays information about the VRF instance. \\
\hline select & Displays group-to-VRF mapping information. \\
\hline
\end{tabular}

User EXEC (>)
Privileged EXEC (\#)

\section*{Command History}

\section*{Usage Guidelines}

The show ipv6 rpf command displays information about how IPv6 multicast routing performs Reverse Path Forwarding (RPF). Because the router can find RPF information from multiple routing tables (for example, unicast Routing Information Base [RIB], multiprotocol Border Gateway Protocol [BGP] routing table, or static mroutes), the show ipv6 rpf command to display the source from which the information is retrieved.

\section*{Examples}

The following example displays RPF information for the unicast host with the IPv6 address of 2001::1:1:2:
```


# show ipv6 rpf 2001::1:1:2

RPF information for 2001::1:1:2
RPF interface:Ethernet3/2
RPF neighbor:FE80::40:1:3
RPF route/mask:20::/64
RPF type:Unicast
RPF recursion count:0
Metric preference:110
Metric:30

```

The table below describes the significant fields shown in the display.

\section*{Table 103: show ipv6 rpf Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RPF information for 2001::1:1:2 & Source address that this information concerns. \\
\hline RPF interface:Ethernet3/2 & \begin{tabular}{l}
For the given source, the interface from which the router expects to get \\
packets.
\end{tabular} \\
\hline RPF neighbor:FE80::40:1:3 & \begin{tabular}{l}
For the given source, the neighbor from which the router expects to get \\
packets.
\end{tabular} \\
\hline RPF route/mask:20::/64 & Route number and mask that matched against this source. \\
\hline RPF type:Unicast & \begin{tabular}{l}
Routing table from which this route was obtained, either unicast, \\
multiprotocol BGP, or static mroutes.
\end{tabular} \\
\hline RPF recursion count & Indicates the number of times the route is recursively resolved. \\
\hline Metric preference:110 & \begin{tabular}{l}
The preference value used for selecting the unicast routing metric to the \\
Route Processor (RP) announced by the designated forwarder (DF).
\end{tabular} \\
\hline Metric:30 & Unicast routing metric to the RP announced by the DF. \\
\hline
\end{tabular}

\section*{show ipv6 source-guard policy}

To display the IPv6 source-guard policy configuration, use the show ipv6 source-guard policy command in user EXEC or privileged EXEC mode.
show ipv6 source-guard policy[source-guard-policy]

\section*{Syntax Description}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

The show ipv6 source-guard policy command displays the IPv6 source-guard policy configuration, as well as all the interfaces on which the policy is applied. The command also displays IPv6 prefix guard information if the IPv6 prefix guard feature is enabled on the device.

\section*{Examples}

Related Commands
```


# show ipv6 source-guard policy policy1

Policy policy1 configuration:
data-glean
prefix-guard
address-guard
Policy policy1 is applied on the following targets:

| Target | Type Policy | Feature | Target range |  |
| :--- | :--- | :--- | :--- | :--- |
| Et0/0 | PORT | policyl | source-guard | vlan all |

vlan 100 VLAN policy1 source-guard vlan all

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ipv6 source-guard attach-policy & Applies IPv6 source guard on an interface. \\
\hline ipv6 source-guard policy & \begin{tabular}{l}
Defines an IPv6 source-guard policy name and \\
enters source-guard policy configuration mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{show ipv6 spd}

To display the IPv6 Selective Packet Discard (SPD) configuration, use the show ipv6 spd command in privileged EXEC mode.
show ipv6 spd

Syntax Description
Command Modes
Privileged EXEC (\#)
Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use the show ipv6 spd command to display the SPD configuration, which may provide useful troubleshooting information.

\section*{Examples}

The following is sample output from the show ipv6 spd command:
\# show ipv6 spd
Current mode: normal
Queue max threshold: 74, Headroom: 100, Extended Headroom: 10
IPv6 packet queue: 0
The table below describes the significant fields shown in the display.

\section*{Table 104: show ipv6 spd Field Description}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Current mode: normal & The current SPD state or mode. \\
\hline Queue max threshold: 74 & The process input queue maximum. \\
\hline
\end{tabular}

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ipv6 spd queue max-threshold & \begin{tabular}{l}
Configures the maximum number of packets in the SPD process input \\
queue.
\end{tabular} \\
\hline
\end{tabular}

\section*{show ipv6 static}

To display the current contents of the IPv6 routing table, use the show ipv6 static command in user EXEC or privileged EXEC mode.
show ipv6 static [\{ipv6-address |ipv6-prefix/prefix-length \}] [\{interface type number |recursive\}] [detail]

Syntax Description
\begin{tabular}{|l|l|}
\hline ipv6-address & \begin{tabular}{l}
(Optional) Provides routing information for a specific IPv6 address. \\
This argument must be in the form documented in RFC 2373 where the address is specified \\
in hexadecimal using 16-bit values between colons.
\end{tabular} \\
\hline ipv6-prefix & \begin{tabular}{l}
(Optional) Provides routing information for a specific IPv6 network. \\
This argument must be in the form documented in RFC 2373 where the address is specified \\
in hexadecimal using 16-bit values between colons.
\end{tabular} \\
\hline /prefix-length & \begin{tabular}{l}
(Optional) The length of the IPv6 prefix. A decimal value that indicates how many of the \\
high-order contiguous bits of the address comprise the prefix (the network portion of the \\
address). A slash mark must precede the decimal value.
\end{tabular} \\
\hline interface & \begin{tabular}{l}
(Optional) Name of an interface.
\end{tabular} \\
\hline type & \begin{tabular}{l}
(Optional, but required if the interface keyword is used) Interface type. For a list of supported \\
interface types, use the question mark (?) online help function.
\end{tabular} \\
\hline number & \begin{tabular}{l}
(Optional, but required if the interface keyword is used) Interface number. For specific \\
numbering syntax for supported interface types, use the question mark (?) online help function.
\end{tabular} \\
\hline recursive & \begin{tabular}{l}
(Optional) Allows the display of recursive static routes only.
\end{tabular} \\
\hline detail & \begin{tabular}{l}
(Optional) Specifies the following additional information: \\
\(\cdot\) For valid recursive routes, the output path set and maximum resolution depth. \\
• For invalid recursive routes, the reason why the route is not valid.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default \\ Command Modes}

All IPv6 routing information for all active routing tables is displayed.
User EXEC (\(>\))
Privileged EXEC (\#)
Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The show ipv6 static command provides output similar to the show ip route command, except that it is IPv6-specific.

When the ipv6-address or ipv6-prefix/prefix-length argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. Only the information matching the criteria specified in the command syntax is displayed. For example, when the type number arguments are specified, only the specified interface-specific routes are displayed.

\section*{Examples}

\section*{show ipv6 static Command with No Options Specified in the Command Syntax: Example}

When no options specified in the command, those routes installed in the IPv6 Routing Information Base (RIB) are marked with an asterisk, as shown in the following example:
```


# show ipv6 static

IPv6 Static routes
Code: * - installed in RIB

* 3000::/16, interface Ethernet1/0, distance 1
* 4000::/16, via nexthop 2001:1::1, distance 1
5000::/16, interface Ethernet3/0, distance 1
* 5555::/16, via nexthop 4000::1, distance 1
5555::/16, via nexthop 9999::1, distance 1
* 5555::/16, interface Ethernet2/0, distance 1
* 6000::/16, via nexthop 2007::1, interface Ethernet1/0, distance 1

```

The table below describes the significant fields shown in the display.

\section*{Table 105: show ipv6 static Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline via nexthop & Specifies the address of the next in the path to the remote network. \\
\hline distance 1 & Indicates the administrative distance to the specified route. \\
\hline
\end{tabular}

\section*{show ipv6 static Command with the IPv6 Address and Prefix: Example}

When the ipv6-address or ipv6-prefix/prefix-length argument is specified, only information about static routes for that address or network is displayed. The following is sample output from the show ipv6 route command when entered with the IPv6 prefix 2001:200::/35:
```


# show ipv6 static 2001:200::/35

IPv6 Static routes
Code: * - installed in RIB

* 2001:200::/35, via nexthop 4000::1, distance 1
2001:200::/35, via nexthop 9999::1, distance 1
* 2001:200::/35, interface Ethernet2/0, distance 1

```

\section*{show ipv6 static interface Command: Example}

When an interface is supplied, only those static routes with the specified interface as the outgoing interface are displayed. The interface keyword may be used with or without the IPv6 address and prefix specified in the command statement.
```


# show ipv6 static interface ethernet 3/0

```

IPv6 Static routes Code: * - installed in RIB 5000::/16, interface Ethernet3/0, distance 1

\section*{show ipv6 static recursive Command: Example}

When the recursive keyword is specified, only recursive static routes are displayed:
```


# show ipv6 static recursive

```

IPv6 Static routes Code: * - installed in RIB * 4000::/16, via nexthop 2001:1::1, distance 1 * 5555::/16, via nexthop \(4000:: 1\), distance \(15555:: / 16\), via nexthop \(9999:: 1\), distance 1

\section*{show ipv6 static detail Command: Example}

When the detail keyword is specified, the following additional information is displayed:
- For valid recursive routes, the output path set and maximum resolution depth.
- For invalid recursive routes, the reason why the route is not valid.
- For invalid direct or fully specified routes, the reason why the route is not valid.
```


# show ipv6 static detail

IPv6 Static routes
Code: * - installed in RIB

* 3000::/16, interface Ethernet1/0, distance 1
* 4000::/16, via nexthop 2001:1::1, distance 1
Resolves to 1 paths (max depth 1)
via Ethernet1/0
5000::/16, interface Ethernet3/0, distance 1
Interface is down
* 5555::/16, via nexthop 4000::1, distance 1
Resolves to 1 paths (max depth 2)
via Ethernet1/0
5555::/16, via nexthop 9999::1, distance 1
Route does not fully resolve
* 5555::/16, interface Ethernet2/0, distance 1
* 6000::/16, via nexthop 2007::1, interface Ethernet1/0, distance 1

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ipv6 route & Establishes a static IPv6 route. \\
\hline show ip route & Displays the current state of the routing table. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ipv6 interface & Displays IPv6 interface information. \\
\hline show ipv6 route summary & Displays the current contents of the IPv6 routing table in summary format. \\
\hline show ipv6 tunnel & Displays IPv6 tunnel information. \\
\hline
\end{tabular}

\section*{show ipv6 traffic}

To display statistics about IPv6 traffic, use the show ipv6 traffic command in user EXEC or privileged EXEC mode.
show ipv6 traffic [interface[interface type number]]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline interface & \begin{tabular}{l}
(Optional) All interfaces. IPv6 forwarding statistics for all interfaces on which IPv6 \\
forwarding statistics are being kept will be displayed.
\end{tabular} \\
\hline interface type number & \begin{tabular}{l}
(Optional) Specified interface. Interface statistics that have occurred since the \\
statistics were last cleared on the specific interface are displayed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes \\ Command History}

User EXEC (>)
Privileged EXEC (\#)

\section*{Usage Guidelines}

The show ipv6 traffic command provides output similar to the show ip traffic command, except that it is IPv6-specific.

\section*{Examples}

The following is sample output from the show ipv6 traffic command:
```


# show ipv6 traffic

IPv6 statistics:
Rcvd: 0 total, 0 local destination
0 source-routed, 0 truncated
0 format errors, 0 hop count exceeded
O bad header, 0 unknown option, O bad source
O unknown protocol, 0 not a device
O fragments, 0 total reassembled
O reassembly timeouts, 0 reassembly failures
0 unicast RPF drop, 0 suppressed RPF drop
Sent: 0 generated, 0 forwarded
0 fragmented into 0 fragments, 0 failed
O encapsulation failed, 0 no route, 0 too big
Mcast: O received, 0 sent
ICMP statistics:
Rcvd: O input, 0 checksum errors, 0 too short
O unknown info type, 0 unknown error type
unreach: 0 routing, 0 admin, 0 neighbor, 0 address, 0 port
parameter: O error, 0 header, 0 option
O hopcount expired, 0 reassembly timeout,0 too big
O echo request, 0 echo reply
O group query, 0 group report, 0 group reduce
O device solicit, O device advert, O redirects

```

The following is sample output for the show ipv6 interface command without IPv6 CEF running:
```


# show ipv6 interface ethernet 0/1/1

Ethernet0/1/1 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::203:FDFF:FE49:9
Description: sat-2900a f0/12
Global unicast address(es):
7::7, subnet is 7::/32
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF00:7
FF02::1:FF49:9
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
Input features: RPF
Unicast RPF access-list MINI
Process Switching:
0 verification drops
O suppressed verification drops
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds

```

The following is sample output for the show ipv6 interface command with IPv6 CEF running:
```


# show ipv6 interface ethernet 0/1/1

Ethernet0/1/1 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::203:FDFF:FE49:9
Description: sat-2900a f0/12
Global unicast address(es):
7::7, subnet is 7::/32
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF00:7
FF02::1:FF49:9
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
Input features: RPF
Unicast RPF access-list MINI
Process Switching:
O verification drops
O suppressed verification drops
CEF Switching:
O verification drops
O suppressed verification drops
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.

```

The table below describes the significant fields shown in the display.

\section*{Table 106: show ipv6 traffic Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline source-routed & Number of source-routed packets. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline truncated & Number of truncated packets. \\
\hline format errors & Errors that can result from checks performed on header fields, the version number, and packet length. \\
\hline not a device & Message sent when IPv6 unicast routing is not enabled. \\
\hline 0 unicast RPF drop, 0 suppressed RPF drop & Number of unicast and suppressed reverse path forwarding (RPF) drops. \\
\hline failed & Number of failed fragment transmissions. \\
\hline encapsulation failed & Failure that can result from an unresolved address or try-and-queue packet. \\
\hline no route & Counted when the software discards a datagram it did not know how to route. \\
\hline unreach & \begin{tabular}{l}
Unreachable messages received are as follows: \\
- routing--Indicates no route to the destination. \\
- admin--Indicates that communication with the destination is administratively prohibited. \\
- neighbor--Indicates that the destination is beyond the scope of the source address. For example, the source may be a local site or the destination may not have a route back to the source. \\
- address--Indicates that the address is unreachable. \\
- port--Indicates that the port is unreachable.
\end{tabular} \\
\hline Unicast RPF access-list MINI & Unicast RPF access-list in use. \\
\hline Process Switching & Displays process RPF counts, such as verification and suppressed verification drops. \\
\hline CEF Switching & Displays CEF switching counts, such as verification drops and suppressed verification drops. \\
\hline
\end{tabular}

\section*{show key chain}

To display the keychain, use the show key chain command.
show key chain [name-of-chain]

Syntax Description
name-of-chain \(\quad\) (Optional) Name of the key chain to display, as named in the key chain command.

Command Default
Command Modes
Privileged EXEC (\#)

\section*{Examples}

The following is sample output from the show key chain command:
```

show key chain
Device\# show key chain
Key-chain AuthenticationGLBP:
key 1 -- text "Thisisasecretkey"
accept lifetime (always valid) - (always valid) [valid now]
send lifetime (always valid) - (always valid) [valid now]
Key-chain glbp2:
key 100 -- text "abc123"
accept lifetime (always valid) - (always valid) [valid now]
send lifetime (always valid) - (always valid) [valid now]

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline key-string & Specifies the authentication string for a key. \\
\hline send-lifetime & Sets the time period during which an authentication key on a key chain is valid to be sent. \\
\hline
\end{tabular}

\section*{show track}

To display information about objects that are tracked by the tracking process, use the show track command in privileged EXEC mode.
show track [\{object-number [brief] |application [brief] |interface [brief] |ip[route [brief] | [sla [brief]] |ipv6 [route [brieff] | list [route [brief]] |resolution [ip | ipv6] |stub-object [brief] | summary |timers \(\}\)]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline object-number & \begin{tabular}{l}
(Optional) Object number that represents the object to be tracked. The range is from 1 to \\
1000.
\end{tabular} \\
\hline brief & \begin{tabular}{l}
(Optional) Displays a single line of information related to the preceding argument or \\
keyword.
\end{tabular} \\
\hline application & (Optional) Displays tracked application objects. \\
\hline interface & (Optional) Displays tracked interface objects. \\
\hline ip route & (Optional) Displays tracked IP route objects. \\
\hline ip sla & (Optional) Displays tracked IP SLA objects. \\
\hline ipv6 route & (Optional) Displays tracked IPv6 route objects. \\
\hline list & (Optional) Displays the list of boolean objects. \\
\hline resolution & (Optional) Displays resolution of tracked parameters. \\
\hline summary & (Optional) Displays the summary of the specified object. \\
\hline timers & (Optional) Displays polling interval timers. \\
\hline
\end{tabular}

\section*{Command Modes}

Privileged EXEC (\#)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use this command to display information about objects that are tracked by the tracking process. When no arguments or keywords are specified, information for all objects is displayed.
A maximum of 1000 objects can be tracked. Although 1000 tracked objects can be configured, each tracked object uses CPU resources. The amount of available CPU resources on a device is dependent upon variables such as traffic load and how other protocols are configured and run. The ability to use 1000 tracked objects is dependent upon the available CPU. Testing should be conducted on site to ensure that the service works under the specific site traffic conditions.

\section*{Examples}
```

Track 1
Interface GigabitEthernet 1/0/1 ip routing
IP routing is Down (no IP addr)
1 change, last change 00:01:08

```
Device\# show track 1

The table below describes the significant fields shown in the displays.

\section*{Table 107: show track Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Track & Object number that is being tracked. \\
\hline \begin{tabular}{l}
Interface GigabitEthernet \(1 / 0 / 1\) ip \\
routing
\end{tabular} & Interface type, interface number, and object that is being tracked. \\
\hline IP routing is & \begin{tabular}{l}
State value of the object, displayed as Up or Down. If the object is \\
down, the reason is displayed.
\end{tabular} \\
\hline 1 change, last change & \begin{tabular}{l}
Number of times that the state of a tracked object has changed and \\
the time (in hh:mm:ss) since the last change.
\end{tabular} \\
\hline
\end{tabular}

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show track resolution & Displays the resolution of tracked parameters. \\
\hline track interface & Configures an interface to be tracked and enters tracking configuration mode. \\
\hline track ip route & Tracks the state of an IP route and enters tracking configuration mode. \\
\hline
\end{tabular}

\section*{track}

To configure an interface to be tracked where the Gateway Load Balancing Protocol (GLBP) weighting changes based on the state of the interface, use the track command in global configuration mode. To remove the tracking, use the no form of this command.
track object-number interface type number \{line-protocol|ip routing | ipv6 routing\} no track object-number interface type number \{line-protocol|ip routing | ipv6 routing\}

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline object-number & Object number in the range from 1 to 1000 representing the interface to be tracked. \\
\hline interface type number & Interface type and number to be tracked. \\
\hline line-protocol & Tracks whether the interface is up. \\
\hline ip routing & \begin{tabular}{l}
Tracks whether IP routing is enabled, an IP address is configured on the interface, \\
and the interface state is up, before reporting to GLBP that the interface is up.
\end{tabular} \\
\hline ipv6 routing & \begin{tabular}{l}
Tracks whether IPv6 routing is enabled, an IP address is configured on the interface, \\
and the interface state is up, before reporting to GLBP that the interface is up.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes
Command History

\section*{Usage Guidelines}

The state of the interfaces is not tracked.

Global configuration (config)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced.. \\
\hline
\end{tabular}

Use the track command in conjunction with the glbp weighting and glbp weighting track commands to configure parameters for an interface to be tracked. If a tracked interface on a GLBP device goes down, the weighting for that device is reduced. If the weighting falls below a specified minimum, the device will lose its ability to act as an active GLBP virtual forwarder.
A maximum of 1000 objects can be tracked. Although 1000 tracked objects can be configured, each tracked object uses CPU resources. The amount of available CPU resources on a device is dependent upon variables such as traffic load and how other protocols are configured and run. The ability to use 1000 tracked objects is dependent upon the available CPU. Testing should be conducted on site to ensure that the service works under the specific site traffic conditions.

\section*{Examples}

In the following example, TenGigabitEthernet interface \(0 / 0 / 1\) tracks whether GigabitEthernet interfaces \(1 / 0 / 1\) and \(1 / 0 / 3\) are up. If either of the GigabitEthernet interface goes down, the GLBP weighting is reduced by the default value of 10 . If both GigabitEthernet interfaces go down, the GLBP weighting will fall below the lower threshold and the device will no longer be an active forwarder. To resume its role as an active forwarder, the device must have both tracked interfaces back up, and the weighting must rise above the upper threshold.
```

Device(config-track)\# exit
Device(config)\# track 2 interface GigabitEthernet 1/0/3 line-protocol
Device(config-track)\# exit
Device(config)\# interface TenGigabitEthernet 0/0/1
Device(config-if)\# ip address 10.21.8.32 255.255.255.0
Device(config-if)\# glbp 10 weighting 110 lower 95 upper 105
Device(config-if) \# glbp 10 weighting track 1
Device(config-if)\# glbp 10 weighting track 2

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline glbp weighting & Specifies the initial weighting value of a GLBP gateway. \\
\hline glbp weighting track & Specifies an object to be tracked that affects the weighting of a GLBP gateway. \\
\hline
\end{tabular}

\section*{vrrp}

To create a Virtual Router Redundancy Protocol version 3 (VRRPv3) group and enter VRRPv3 group configuration mode, use the vrrp. To remove the VRRPv3 group, use the no form of this command.
vrrp group-id address-family \(\{\mathbf{i p v} 4 \mid \operatorname{ipv6}\}\)
no vrrp group-id address-family \(\{\mathbf{i p v 4} \mid \boldsymbol{i p v 6}\}\)

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline group-id & Virtual router group number. The range is from 1 to 255. \\
\hline address-family & Specifies the address-family for this VRRP group. \\
\hline ipv4 & (Optional) Specifies IPv4 address. \\
\hline ipv6 & (Optional) Specifies IPv6 address. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

Examples
The following example shows how to create a VRRPv3 group and enter VRRP configuration mode:

Device(config-if) \# vrrp 3 address-family ipv4

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline timers advertise & Sets the advertisement timer in milliseconds. \\
\hline
\end{tabular}

\section*{vrrp description}

To assign a description to the Virtual Router Redundancy Protocol (VRRP) group, use the vrrp description command in interface configuration mode. To remove the description, use the no form of this command.
description text
no description

Syntax Description

\section*{Command Default}

Command Modes
Command History
\begin{tabular}{|l|l}
text & Text (up to 80 characters) that describes the purpose or use of the group. \\
\hline
\end{tabular}

There is no description of the VRRP group.
VRRP configuration (config-if-vrrp)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Examples}

The following example enables VRRP. VRRP group 1 is described as Building A - Marketing and Administration.

Device(config-if-vrrp) \# description Building A - Marketing and Administration

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \(\operatorname{vrrp}\) & Creates a VRRPv3 group and enters VRRPv3 group configuration mode. \\
\hline
\end{tabular}

\section*{vrrp preempt}

To configure the device to take over as primary virtual router for a Virtual Router Redundancy Protocol (VRRP) group if it has higher priority than the current primary virtual router, use the preempt command in VRRP configuration mode. To disable this function, use the no form of this command.
```

preempt [delay minimum seconds]
no preempt

```

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}
delay minimum seconds (Optional) Number of seconds that the device will delay before issuing an advertisement claiming primary ownership. The default delay is 0 seconds.

This command is enabled.
VRRP configuration (config-if-vrrp)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

By default, the device being configured with this command will take over as primary virtual router for the group if it has a higher priority than the current primary virtual router. You can configure a delay, which will cause the VRRP device to wait the specified number of seconds before issuing an advertisement claiming primary ownership.

Note The device that is the IP address owner will preempt, regardless of the setting of this command.

\section*{\(\overline{\text { Examples }}\)}

The following example configures the device to preempt the current primary virtual router when its priority of 200 is higher than that of the current primary virtual router. If the device preempts the current primary virtual router, it waits 15 seconds before issuing an advertisement claiming it is the primary virtual router.

Device(config-if-vrrp) \#preempt delay minimum 15

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline vrrp & Creates a VRRPv3 group and enters VRRPv3 group configuration mode. \\
\hline priority & Sets the priority level of the device within a VRRP group. \\
\hline
\end{tabular}

\section*{vrrp priority}

To set the priority level of the device within a Virtual Router Redundancy Protocol (VRRP) group, use the priority command in interface configuration mode. To remove the priority level of the device, use the no form of this command.
priority level
no priority level

Syntax Description

Command Default
Command Modes
Command History

\section*{Usage Guidelines}

Examples
level \(\quad\) Priority of the device within the VRRP group. The range is from 1 to 254 . The default is 100 .

The priority level is set to the default value of 100 .
VRRP configuration (config-if-vrrp)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Use this command to control which device becomes the primary virtual router.

The following example configures the device with a priority of 254:
Device(config-if-vrrp) \# priority 254
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline vrrp & Creates a VRRPv3 group and enters VRRPv3 group configuration mode. \\
\hline vrrp preempt & \begin{tabular}{l}
Configures the device to take over as primary virtual router for a VRRP group if it has \\
higher priority than the current primary virtual router.
\end{tabular} \\
\hline
\end{tabular}

\section*{vrrp timers advertise}

To configure the interval between successive advertisements by the primary virtual router in a Virtual Router Redundancy Protocol (VRRP) group, use the timers advertise command in VRRP configuration mode. To restore the default value, use the no form of this command.
timers advertise [msec] interval
no timers advertise [msec] interval

Syntax Description

\section*{Command Default \\ Command Modes \\ Command History}

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline group & Virtual router group number. The group number range is from 1 to 255. \\
\hline msec & \begin{tabular}{l}
(Optional) Changes the unit of the advertisement time from seconds to milliseconds. Without this \\
keyword, the advertisement interval is in seconds.
\end{tabular} \\
\hline interval & \begin{tabular}{l}
Time interval between successive advertisements by the primary virtual router. The unit of the \\
interval is in seconds, unless the msec keyword is specified. The default is 1 second. The valid \\
range is 1 to 255 seconds. When the msec keyword is specified, the valid range is 50 to 999 \\
milliseconds.
\end{tabular} \\
\hline
\end{tabular}

The default interval of 1 second is configured.

VRRP configuration (config-if-vrrp)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

The advertisements being sent by the primary virtual router communicate the state and priority of the current primary virtual router.
The vrrp timers advertise command configures the time between successive advertisement packets and the time before other routers declare the primary router to be down. Routers or access servers on which timer values are not configured can learn timer values from the primary router. The timers configured on the primary router always override any other timer settings. All routers in a VRRP group must use the same timer values. If the same timer values are not set, the devices in the VRRP group will not communicate with each other and any misconfigured device will change its state to primary.

\section*{\(\overline{\text { Examples }}\)}

The following example shows how to configure the primary virtual router to send advertisements every 4 seconds:

Device(config-if-vrrp) \# timers advertise 4

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline vrrp & Creates a VRRPv3 group and enters VRRPv3 group configuration mode. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline timers learn & \begin{tabular}{l}
Configures the device, when it is acting as backup virtual router for a VRRP group, to learn \\
the advertisement interval used by the primary virtual router.
\end{tabular} \\
\hline
\end{tabular}

\section*{vrrs leader}

To specify a leader's name to be registered with Virtual Router Redundancy Service (VRRS), use the vrrs leader command. To remove the specified VRRS leader, use the no form of this command.
vrrs leader vrrs-leader-name
no vrrs leader vrrs-leader-name

\section*{Syntax Description}

\section*{Command Default}

Command Modes
Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

\section*{Related Commands}

The following example specifies a leader's name to be registered with VRRS:

Device(config-if-vrrp) \# vrrs leader leader-1
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \(\operatorname{vrrp}\) & Creates a VRRP group and enters VRRP configuration mode. \\
\hline
\end{tabular}

\section*{\({ }_{\text {pati }}\) V}

\section*{IP Multicast Routing}
- IP Multicast Routing Commands, on page 743

\section*{IP Multicast Routing Commands}
- clear ip mfib counters, on page 745
- clear ip mroute, on page 746
- debug condition vrf, on page 747
- debug ip pim, on page 748
- debug ipv6 pim, on page 750
- ip igmp filter, on page 752
- ip igmp max-groups, on page 753
- ip igmp profile, on page 755
- ip igmp snooping, on page 756
- ip igmp snooping last-member-query-count, on page 757
- ip igmp snooping querier, on page 759
- ip igmp snooping report-suppression, on page 761
- ip igmp snooping vlan mrouter, on page 762
- ip igmp snooping vlan static, on page 763
- ip multicast auto-enable, on page 764
- ip multicast-routing, on page 765
- ip pim accept-register, on page 766
- ip pim bidir-enable, on page 767
- ip pim bsr-candidate, on page 768
- ip pim rp-address, on page 770
- ip pim rp-candidate, on page 772
- ip pim send-rp-announce, on page 773
- ip pim spt-threshold, on page 775
- ipv6 deny echo reply, on page 776
- match message-type, on page 777
- match service-type, on page 778
- match service-instance, on page 779
- mrinfo, on page 780
- service-policy-query, on page 782
- service-policy, on page 783
- show ip igmp filter, on page 784
- show ip igmp profile, on page 785
- show ip igmp snooping, on page 786
- show ip igmp snooping groups, on page 788
- show ip igmp snooping mrouter, on page 790
- show ip igmp snooping querier, on page 791
- show ip pim autorp, on page 793
- show ip pim bsr-router, on page 794
- show ip pim bsr, on page 795
- show ip pim interface df, on page 796
- show ip pim rp, on page 798
- show ip pim tunnel, on page 800
- show platform software fed switch ip multicast groups, on page 802
- show platform software fed switch ip multicast, on page 803
- show platform software fed switch ip multicast df, on page 806

\section*{clear ip mfib counters}

To clear all the active IPv4 Multicast Forwarding Information Base (MFIB) traffic counters, use the clear ip mfib counters command in privileged EXEC mode.
clear ip mfib [global | vrf *] counters [group-address] [hostname | source-address]
Syntax Description
\begin{tabular}{ll}
\hline global & (Optional) Resets the IP MFIB cache to the global default configuration. \\
\hline vrf * & (Optional) Clears the IP MFIB cache for all VPN routing and forwarding instances. \\
\hline group-address & (Optional) Limits the active MFIB traffic counters to the indicated group address. \\
\hline hostname & (Optional) Limits the active MFIB traffic counters to the indicated host name. \\
\hline source-address & (Optional) Limits the active MFIB traffic counters to the indicated source address. \\
\hline
\end{tabular}

None
Privileged EXEC (\#)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Example}

The following example shows how to reset all the active MFIB traffic counters for all the multicast tables:
```


# clear ip mfib counters

```

The following example shows how to reset the IP MFIB cache counters to the global default configuration:
```


# clear ip mfib global counters

```

The following example shows how to clear the IP MFIB cache for all the VPN routing and forwarding instances:
```


# clear ip mfib vrf * counters

```

\section*{clear ip mroute}

To delete the entries in the IP multicast routing table, use the clear ip mroutecommand in privileged EXEC mode.
clear ip mroute [vrf vrf-name] \{* | ip-address | group-address\} [hostname | source-address]

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
vrf vrf-name (Optional) Specifies the name that is assigned to the multicast VPN routing and forwarding (VRF) instance.
\begin{tabular}{ll}
\hline\(*\) & Specifies all Multicast routes. \\
\hline ip-address & Multicast routes for the IP address. \\
\hline group-address & Multicast routes for the group address. \\
\hline hostname & (Optional) Multicast routes for the host name. \\
\hline source-address & (Optional) Multicast routes for the source address. \\
\hline
\end{tabular}

None
Privileged EXEC

\section*{Release}

\section*{Modification}

This command was introduced.

The group-address variable specifies one of the following:
- Name of the multicast group as defined in the DNS hosts table or with the ip host command.
- IP address of the multicast group in four-part, dotted notation.

If you specify a group name or address, you can also enter the source argument to specify a name or address of a multicast source that is sending to the group. A source does not need to be a member of the group.

\section*{Example}

The following example shows how to delete all the entries from the IP multicast routing table:
```


# clear ip mroute *

```

The following example shows how to delete all the sources on the 228.3.0.0 subnet that are sending to the multicast group 224.2.205.42 from the IP multicast routing table. This example shows how to delete all sources on network 228.3, not individual sources:
\# clear ip mroute 224.2.205.42 228.3.0.0

\section*{debug condition vrf}

To limit debug output to a specific virtual routing and forwarding (VRF) instance, use the debug condition vrf command in privileged EXEC mode. To remove the debug condition, use the no form of the command.
debug condition vrf \(\{\) default \(\mid\) global \(\mid\) green \(\mid\) name \(\{v r f\)-name \(\mid\) green \(\}\}\)
no debug condition vrf \(\{\) default \(\mid\) global \(\mid\) green \(\mid\) name \(\{\) vrf-name \(\mid\) green \(\}\}\)

Syntax Description
\begin{tabular}{|l|l|}
\hline Syntax & Description \\
\hline default & Specifies the default routing table. \\
\hline global & Specifies the global routing table. \\
\hline green & Specifies the VRF name. \\
\hline name vrf-name & Specifies the name of the routing table. \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Command Modes & Privileged EXEC mode (\#) & \\
\cline { 1 - 3 } \cline { 3 - 4 } Command History & Release & Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) Use this command to limit debug output to a single VRF.
\[
\begin{aligned}
\boxed{\Delta!} & \\
\text { Caution } & \begin{array}{l}
\text { Because debugging output is assigned high priority in the CPU process, it can render the system unusable. } \\
\text { For this reason, use the debug commands only to troubleshoot specific problems or during troubleshooting } \\
\text { sessions with Cisco technical support staff. It is best to use the debug commands during periods of lower } \\
\text { network traffic and fewer users. Debugging during these periods decreases the likelihood that increased debug } \\
\text { command processing overhead will affect system use. }
\end{array}
\end{aligned}
\]

\section*{Example}

The following example shows how to limit debugging output to VRF red:
Device\# debug condition vrf red

\section*{debug ip pim}

To display PIM packets received and transmitted, as well as PIM related events, use the debug ip pim command in privileged EXEC mode. To disable the debug output, use the no form of the command.
debug ip \(\operatorname{pim}[\{\mathbf{v r f}\) vrf-name \(\}][\{\) ip-address \(\mid\) atm \(\mid\) auto-rp \(\mid\) bfd | bsr \(\mid\) crimson \(\mid\) df rp-address \(\mid\) drlb | hello | timers \(\}\)]
no debug ip pim [\{vrf \(v r f\)-name \(\}][\{i p-a d d r e s s \mid\) atm \(\mid\) auto-rp \(\mid\) bfd | bsr \(\mid\) crimson \(\mid\) df \(r p\)-address \(\mid\) drlb | hello | timers \(\}\)]

Syntax Description
\begin{tabular}{|l|l|}
\hline Syntax & Description \\
\hline vrf vrf-name & \begin{tabular}{l}
(Optional) Specifies the VPN Routing and Forwarding \\
instance. \\
This keyword overrides debugging of any VRFs \\
specified in the debug condition vrf \(v r f-n a m e\) \\
command.
\end{tabular} \\
\hline ip-address & \begin{tabular}{l}
(Optional) Specifies the IP group address.
\end{tabular} \\
\hline atm & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
ATM signalling activity.
\end{tabular} \\
\hline auto-rp & \begin{tabular}{l}
(Optional) Displays debugging information about \\
Auto-RP information.
\end{tabular} \\
\hline bfd & \begin{tabular}{l}
(Optional) Displays debugging information about \\
BFD configuration.
\end{tabular} \\
\hline bsr & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
Candidate-RP and BSR activity.
\end{tabular} \\
\hline crimson & \begin{tabular}{l}
(Optional) Displays debugging information about \\
Crimson database activity.
\end{tabular} \\
\hline df \(r p-\) address & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
RP designated forwarder election activity.
\end{tabular} \\
\hline drlb & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
designated router load-balancing activity.
\end{tabular} \\
\hline (Optional) Displays debugging information about PIM \\
Hello packets received and sent.
\end{tabular}\(|\)\begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
timer events.
\end{tabular}

\section*{Command Modes}

Privileged EXEC mode (\#)

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{4}

Caution Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use the debug commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use the debug commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased debug command processing overhead will affect system use.

You can debug a maximum of 8 VRFs in a PIM at a time. To debug multiple VRFs at the same time, perform the following sequence of steps:
```

debug condition vrf vrf-namel
debug condition vrf vrf-name2
debug condition vrf vrf-name8
debug ip pim

```

\section*{Example}

The following example shows how to display the Crimson database activity:
```

Device\# debug ip pim crimson

```

The following example shows how to debug the two VRFs red and green in a PIM at the same time:
```

Device\# debug condition vrf red
Device\# debug condition vrf green
Device\# debug ip pim

```

\section*{debug ipv6 pim}

To enable debugging on Protocol Independent Multicast (PIM) protocol activity, use the debug ipv6 pim command in privileged EXEC mode. To restore the default value, use the no form of this command.
```

debug ipv6 pim
[{vrf vrf-name }]
[{bfd interface-type interface-number|bsr |crimson |df-election [{interface interface-type
interface-number | rp rp-address}]|drlb|group group-address |interface interface-type
interface-number |limit [{group-address }]|neighbor interface-type interface-number }]
no debug ipv6 pim
[{vrf vrf-name }]
[{bfd interface-type interface-number|bsr |crimson |df-election [{interface interface-type
interface-number | rp rp-address}]|drlb|group group-address | interface interface-type
interface-number |limit [{group-address }]|neighbor interface-type interface-number }]

```

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline Syntax & Description \\
\hline vrf vrf-name & \begin{tabular}{l}
(Optional) Specifies the VPN Routing and Forwarding \\
instance. \\
This keyword overrides debugging of any VRFs \\
specified in the debug condition vrf vrf-name \\
command.
\end{tabular} \\
\hline bfd & \begin{tabular}{l}
(Optional) Displays debugging information about \\
BFD configuration.
\end{tabular} \\
\hline bsr & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
Candidate-RP and BSR sent and received.
\end{tabular} \\
\hline crimson & \begin{tabular}{l}
(Optional) Displays debugging information about \\
Crimson database activity.
\end{tabular} \\
\hline df-election & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
designated forwarder election activity.
\end{tabular} \\
\hline drlb & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
designated router load-balancing activity.
\end{tabular} \\
\hline group group-address & \begin{tabular}{l}
(Optional) Displays debugging information about \\
group-related activity.
\end{tabular} \\
\hline interface & \begin{tabular}{l}
(Optional) Displays debugging information about \\
protocol activity of the specified interface.
\end{tabular} \\
\hline limit & \begin{tabular}{l}
(Optional) Displays debugging information about \\
interface limits.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Syntax & Description \\
\hline neighbor & \begin{tabular}{l}
(Optional) Displays debugging information about PIM \\
Hello messages received and sent.
\end{tabular} \\
\hline interface-type interface-number & \begin{tabular}{l}
(Optional) Displays debugging information about the \\
specified interface.
\end{tabular} \\
\hline \(\mathbf{r p}\) rp-address & \begin{tabular}{l}
(Optional) Displays debugging information about the \\
specified RP.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Command Modes & & \\
\(\overline{\text { Command History }}\) & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Caution
Because debugging output is assigned high priority in the CPU process, it can render the system unusable.
For this reason, use the debug commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use the debug commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased debug command processing overhead will affect system use.

You can debug a maximum of 8 VRFs in a PIM at a time. To debug multiple VRFs at the same time, perform the following sequence of steps:
```

debug condition vrf vrf-namel
debug condition vrf vrf-name2
debug condition vrf vrf-name8
debug ip pim

```

\section*{Example}

The following example shows how to display the Crimson database activity:
```

Device\# debug ipv6 pim crimson

```

The following example shows how to debug VRF red:
```

Device\# debug vrf red ipv6 pim

```

\section*{ip igmp filter}

To control whether or not all the hosts on a Layer 2 interface can join one or more IP multicast groups by applying an Internet Group Management Protocol (IGMP) profile to the interface, use the ip igmp filter interface configuration command on the stack or on a standalone. To remove the specified profile from the interface, use the no form of this command.
ip igmp filter profile number no ip igmp filter

Syntax Description

\section*{Command Default}

Command Modes
Command History
profile number IGMP profile number to be applied. The range is 1-4294967295.
No IGMP filters are applied.
Interface configuration (config-if)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

You can apply IGMP filters only to Layer 2 physical interfaces; you cannot apply IGMP filters to routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.
An IGMP profile can be applied to one or more port interfaces, but one port can have only one profile applied to it.

\section*{Example}

This example shows how to configure IGMP profile 40 to permit the specified range of IP multicast addresses, then shows how to apply that profile to a port as a filter:
```

(config)\# ip igmp profile 40
(config-igmp-profile)\# permit
(config-igmp-profile)\# range 233.1.1.1 233.255.255.255
(config-igmp-profile)\# exit
(config)\# interface gigabitethernet1/0/2
(config-if)\# switchport
*Jan 3 18:04:17.007: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/1, changed state to down.
NOTE: If this message appears, this interface changes to layer 2, so that you can apply the
filter.
(config-if)\# ip igmp filter 40

```

You can verify your setting by using the show running-config command in privileged EXEC mode and by specifying an interface.

\section*{ip igmp max-groups}

To set the maximum number of Internet Group Management Protocol (IGMP) groups that a Layer 2 interface can join or to configure the IGMP throttling action when the maximum number of entries is in the forwarding table, use the ip igmp max-groups interface configuration command on the stack or on a standalone. To set the maximum back to the default, which is to have no maximum limit, or to return to the default throttling action, which is to drop the report, use the no form of this command.
ip igmp max-groups \{max number | action \{ deny | replace\} \} no ip igmp max-groups \{max number | action\}

Syntax Description
max number Maximum number of IGMP groups that an interface can join. The range is 0-4294967294. The default is no limit.
action deny Drops the next IGMP join report when the maximum number of entries is in the IGMP snooping forwarding table. This is the default action.
action replace Replaces the existing group with the new group for which the IGMP report was received when the maximum number of entries is in the IGMP snooping forwarding table.

\section*{Command Default}

The default maximum number of groups is no limit.
After the learns the maximum number of IGMP group entries on an interface, the default throttling action is to drop the next IGMP report that the interface receives and to not add an entry for the IGMP group to the interface.

Interface configuration
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

You can use this command only on Layer 2 physical interfaces and on logical EtherChannel interfaces. You cannot set IGMP maximum groups for routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.
Follow these guidelines when configuring the IGMP throttling action:
- If you configure the throttling action as deny, and set the maximum group limit, the entries that were previously in the forwarding table are not removed, but are aged out. After these entries are aged out, when the maximum number of entries is in the forwarding table, the drops the next IGMP report received on the interface.
- If you configure the throttling action as replace, and set the maximum group limitation, the entries that were previously in the forwarding table are removed. When the maximum number of entries is in the forwarding table, the replaces a randomly selected multicast entry with the received IGMP report.
- When the maximum group limitation is set to the default (no maximum), entering the ip igmp max-groups \{deny | replace\} command has no effect.

\section*{Example}

The following example shows how to limit the number of IGMP groups that a port can join to 25 :
```

(config)\# interface gigabitethernet1/0/2
(config-if)\# ip igmp max-groups 25

```

The following example shows how to configure the to replace the existing group with the new group for which the IGMP report was received when the maximum number of entries is in the forwarding table:
(config) \# interface gigabitethernet2/0/1
(config-if) \# ip igmp max-groups action replace
You can verify your setting by using the show running-config privileged EXEC command and by specifying an interface.

\section*{ip igmp profile}

To create an Internet Group Management Protocol (IGMP) profile and enter IGMP profile configuration mode, use the ip igmp profile global configuration command on the stack or on a standalone. From this mode, you can specify the configuration of the IGMP profile to be used for filtering IGMP membership reports from a switch port. To delete the IGMP profile, use the no form of this command.
ip igmp profile profile number no ip igmp profile profile number

\section*{Syntax Description}

Command Default

Command Modes

Command History
profile number The IGMP profile number being configured. The range is from 1-4294967295.

No IGMP profiles are defined. When configured, the default action for matching an IGMP profile is to deny matching addresses.

Global configuration

\section*{Release Modification}

Cisco IOS XE Everest 16.5.1a
This command was introduced.

When you are in IGMP profile configuration mode, you can create a profile by using these commands:
- deny-Specifies that matching addresses are denied; this is the default condition.
- exit-Exits from igmp-profile configuration mode.
- no-Negates a command or resets to its defaults.
- permit-Specifies that matching addresses are permitted.
- range-Specifies a range of IP addresses for the profile. This can be a single IP address or a range with a start and an end address.

When entering a range, enter the low IP multicast address, a space, and the high IP multicast address.

You can apply an IGMP profile to one or more Layer 2 interfaces, but each interface can have only one profile applied to it.

\section*{Example}

The following example shows how to configure IGMP profile 40, which permits the specified range of IP multicast addresses:
```

(config)\# ip igmp profile 40
(config-igmp-profile)\# permit
(config-igmp-profile)\# range 233.1.1.1 233.255.255.255

```

You can verify your settings by using the show ip igmp profile command in privileged EXEC mode.

\section*{ip igmp snooping}

To globally enable Internet Group Management Protocol (IGMP) snooping on the or to enable it on a per-VLAN basis, use the ip igmp snooping global configuration command on the stack or on a standalone . To return to the default setting, use the no form of this command.
ip igmp snooping [vlan vlan-id]
no ip igmp snooping [vlan vlan-id]

\section*{Syntax Description}

\section*{Command Default}

Command Modes
Command History

\section*{Usage Guidelines}
vlan vlan-id (Optional) Enables IGMP snooping on the specified VLAN. Ranges are 1-1001 and 1006-4094.

IGMP snooping is globally enabled on the .
IGMP snooping is enabled on VLAN interfaces.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

When IGMP snooping is enabled globally, it is enabled in all of the existing VLAN interfaces. When IGMP snooping is globally disabled, it is disabled on all of the existing VLAN interfaces.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

\section*{Example}

The following example shows how to globally enable IGMP snooping:
```

(config) \# ip igmp snooping

```

The following example shows how to enable IGMP snooping on VLAN 1:
```

(config)\# ip igmp snooping vlan 1

```

You can verify your settings by entering the show ip igmp snooping command in privileged EXEC mode.

\section*{ip igmp snooping last-member-query-count}

To configure how often Internet Group Management Protocol (IGMP) snooping will send query messages in response to receiving an IGMP leave message, use the ip igmp snooping last-member-query-count command in global configuration mode. To set count to the default value, use the no form of this command.
ip igmp snooping [vlan vlan-id] last-member-query-count count no ip igmp snooping [vlan vlan-id] last-member-query-count count

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
vlan vlan-id (Optional) Sets the count value on a specific VLAN ID. The range is from 1-1001. Do not enter leading zeroes.
count Interval at which query messages are sent, in milliseconds. The range is from 1-7. The default is 2 .

A query is sent every 2 milliseconds.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

When a multicast host leaves a group, the host sends an IGMP leave message. To check if this host is the last to leave the group, IGMP query messages are sent when the leave message is seen until the
last-member-query-interval timeout period expires. If no response is received to the last-member queries before the timeout period expires, the group record is deleted.

Use the ip igmp snooping last-member-query-interval command to configure the timeout period.
When both IGMP snooping immediate-leave processing and the query count are configured, immediate-leave processing takes precedence.

Note Do not set the count to 1 because the loss of a single packet (the query packet from the to the host or the report packet from the host to the) may result in traffic forwarding being stopped even if the receiver is still there. Traffic continues to be forwarded after the next general query is sent by the, but the interval during which a receiver may not receive the query could be as long as 1 minute (with the default query interval).

The leave latency in Cisco IOS software may increase by up to 1 last-member query interval (LMQI) value when the is processing more than one leave within an LMQI. In such a scenario, the average leave latency is determined by the (count +0.5) * LMQI. The result is that the default leave latency can range from 2.0 to 3.0 seconds with an average of 2.5 seconds under a higher load of IGMP leave processing. The leave latency under load for the minimum LMQI value of 100 milliseconds and a count of 1 is from 100 to 200 milliseconds, with an average of 150 milliseconds. This is done to limit the impact of higher rates of IGMP leave messages.

\section*{Example}

The following example shows how to set the last member query count to 5 :
```

(config)\# ip igmp snooping last-member-query-count 5

```

\section*{ip igmp snooping querier}

To globally enable the Internet Group Management Protocol (IGMP) querier function in Layer 2 networks, use the ip igmp snooping querier global configuration command. Use the command with keywords to enable and configure the IGMP querier feature on a VLAN interface. To return to the default settings, use the no form of this command.
ip igmp snooping [vlan vlan-id] querier [address ip-address | max-response-time response-time | query-interval interval-count | ten query \{count count | interval interval\} | timer expiry expiry-time | version version] no ip igmp snooping [vlan vlan-id] querier [address | max-response-time | query-interval | ten query \(\{\) count | interval \(\}\) | timer expiry | version]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline vlan vlan-id & \begin{tabular}{l}
(Optional) Enables IGMP snooping and the IGMP querier function on the \\
specified VLAN. Ranges are 1-1001 and 1006-4094.
\end{tabular} \\
\hline address ip-address & \begin{tabular}{l}
(Optional) Specifies a source IP address. If you do not specify an IP \\
address, the querier tries to use the global IP address configured for the \\
IGMP querier.
\end{tabular} \\
\hline \begin{tabular}{l}
max-response-time \\
response-time
\end{tabular} & \begin{tabular}{l}
(Optional) Sets the maximum time to wait for an IGMP querier report. \\
The range is 1—25 seconds.
\end{tabular} \\
\hline query-interval interval-count & \begin{tabular}{l}
(Optional) Sets the interval between IGMP queriers. The range is 1—18000 \\
seconds.
\end{tabular} \\
\hline tcn query & \begin{tabular}{l}
(Optional) Sets parameters related to Topology Change Notifications \\
(TCNs).
\end{tabular} \\
\hline count count & \begin{tabular}{l}
Sets the number of TCN queries to be executed during the TCN interval \\
time. The range is 1—10.
\end{tabular} \\
\hline interval interval & Sets the TCN query interval time. The range is 1—255. \\
\hline timer expiry expiry-time & \begin{tabular}{l}
(Optional) Sets the length of time until the IGMP querier expires. The \\
range is 60-300 seconds.
\end{tabular} \\
\hline version version & \begin{tabular}{l}
(Optional) Selects the IGMP version number that the querier feature uses.
\end{tabular} \\
Select either 1 or 2.
\end{tabular}

\section*{Command Default}

The IGMP snooping querier feature is globally disabled on the .
When enabled, the IGMP snooping querier disables itself if it detects IGMP traffic from a multicast router.

\section*{Command Modes}

Command History

Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use this command to enable IGMP snooping to detect the IGMP version and IP address of a device that sends IGMP query messages, which is also called a querier.

By default, the IGMP snooping querier is configured to detect devices that use IGMP Version 2 (IGMPv2), but does not detect clients that are using IGMP Version 1 (IGMPv1). You can manually configure the max-response-time value when devices use IGMPv2. You cannot configure the max-response-time when devices use IGMPv1. (The value cannot be configured, and is set to zero).

Non-RFC-compliant devices running IGMPv1 might reject IGMP general query messages that have a non-zero value as the max-response-time value. If you want the devices to accept the IGMP general query messages, configure the IGMP snooping querier to run IGMPv1.

VLAN IDs 1002-1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

\section*{Example}

The following example shows how to globally enable the IGMP snooping querier feature:
```

(config)\# ip igmp snooping querier

```

The following example shows how to set the IGMP snooping querier maximum response time to 25 seconds:
```

(config)\# ip igmp snooping querier max-response-time 25

```

The following example shows how to set the IGMP snooping querier interval time to 60 seconds:
```

(config)\# ip igmp snooping querier query-interval 60

```

The following example shows how to set the IGMP snooping querier TCN query count to 25 :
```

(config)\# ip igmp snooping querier ton count 25

```

The following example shows how to set the IGMP snooping querier timeout value to 60 seconds:
```

(config)\# ip igmp snooping querier timer expiry }6

```

The following example shows how to set the IGMP snooping querier feature to Version 2:
```

(config)\# ip igmp snooping querier version 2

```

You can verify your settings by entering the show ip igmp snooping privileged EXEC command.

\section*{ip igmp snooping report-suppression}

To enable Internet Group Management Protocol (IGMP) report suppression, use the ip igmp snooping report-suppression global configuration command on the stack or on a standalone. To disable IGMP report suppression, and to forward all IGMP reports to multicast routers, use the no form of this command.
ip igmp snooping report-suppression no ip igmp snooping report-suppression

Syntax Description
Command Default
Command Modes
Command History

This command has no arguments or keywords.
IGMP report suppression is enabled.
Global configuration
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.
The uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP report suppression is enabled (the default), the sends the first IGMP report from all the hosts for a group to all the multicast routers. The does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPv1 and IGMPv2 reports, the forwards only the first IGMPv1 or IGMPv2 report from all the hosts for a group to all of the multicast routers. If the multicast router query also includes requests for IGMPv3 reports, the forwards all IGMPv1, IGMPv2, and IGMPv3 reports for a group to the multicast devices.
If you disable IGMP report suppression by entering the no ip igmp snooping report-suppression command, all IGMP reports are forwarded to all of the multicast routers.

\section*{Example}

The following example shows how to disable report suppression:
```

(config) \# no ip igmp snooping report-suppression

```

You can verify your settings by entering the show ip igmp snooping command in privileged EXEC mode.

\section*{ip igmp snooping vlan mrouter}

To add a multicast router port, use the ip igmp snooping mrouter global configuration command on the stack or on a standalone. To return to the default settings, use the no form of this command.
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & By default, there are no multicast router ports. \\
\(\overline{\text { Command Modes }}\) & Global configuration & \\
\cline { 1 - 2 } \cline { 3 - 3 } Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
& &
\end{tabular}

\section*{Usage Guidelines}

VLAN IDs 1002-1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping. The configuration is saved in NVRAM.

\section*{Example}

The following example shows how to configure a port as a multicast router port:
(config)\# ip igmp snooping vlan 1 mrouter interface gigabitethernet1/0/2
You can verify your settings by entering the show ip igmp snooping privileged EXEC command.

\section*{ip igmp snooping vlan static}

To enable Internet Group Management Protocol (IGMP) snooping and to statically add a Layer 2 port as a member of a multicast group, use the ip igmp snooping vlan static global configuration command on the stack or on a standalone. To remove the port specified as members of a static multicast group, use the no form of this command.
ip igmp snooping vlan vlan-id static ip-address interface interface-id no ip igmp snooping vlan vlan-id static ip-address interface interface-id

Syntax Description
\begin{tabular}{|c|c|}
\hline vlan-id & Enables IGMP snooping on the specified VLAN. Ranges are 1-1001 and 1006-4094. \\
\hline ip-address & Adds a Layer 2 port as a member of a multicast group with the specified group IP address. \\
\hline interface interface-i & \begin{tabular}{l}
Specifies the interface of the member port. The interface-id has these options: \\
- fastethernet interface number-A Fast Ethernet IEEE 802.3 interface. \\
- gigabitethernet interface number-A Gigabit Ethernet IEEE 802.3z interface. \\
- tengigabitethernet interface number-A 10-Gigabit Ethernet IEEE 802.3z interface. \\
- port-channel interface number-A channel interface. The range is 0-128.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes
Command History

By default, no ports are statically configured as members of a multicast group.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5 .1 a & This command was introduced. \\
\hline
\end{tabular}

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

The configuration is saved in NVRAM.

\section*{Example}

The following example shows how to statically configure a host on an interface:
```

(config)\# ip igmp snooping vlan 1 static 224.2.4.12 interface
gigabitEthernet1/0/1
Configuring port gigabitethernet1/0/1 on group 224.2.4.12

```

You can verify your settings by entering the show ip igmp snooping command in privileged EXEC mode.

\section*{ip multicast auto-enable}

To support authentication, authorization, and accounting (AAA) enabling of IP multicast, use the ip multicast auto-enable command. This command allows multicast routing to be enabled dynamically on dialup interfaces using AAA attributes from a RADIUS server. To disable IP multicast for AAA, use the no form of this command.
ip multicast auto-enable no ip multicast auto-enable
\begin{tabular}{lll}
\(\overline{\text { Syntax Description }}\) & This command has no arguments or keywords. & \\
\(\overline{\text { Command Default }}\) & None & \\
\hline\(\overline{\text { Command Modes }}\) & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines None}

\section*{Example}

The following example shows how to enable AAA on IP multicast:
```

(config)\# ip multicast auto-enable

```

\section*{ip multicast-routing}

To enable IP multicast routing, use the ip multicast-routing command in global configuration mode. To disable IP multicast routing, use the no form of this command.
ip multicast-routing [vrf vrf-name]
no ip multicast-routing [vrf vrf-name]
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{l}
vrf \\
vrf-name
\end{tabular} & \begin{tabular}{l}
(Optional) Enables IP multicast routing for the Multicast VPN routing and forwarding (MVRF) \\
instance specified for the vrf-name argument.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll|l|}
\hline\(\overline{\text { Command Default }}\) & IP multicast routing is disabled. \\
\(\overline{\text { Command Modes }}\) & Global configuration (config) \\
\hline Command History & Release & Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.6.1 & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines When IP multicast routing is disabled, the Cisco IOS XE software does not forward any multicast packets.

Note For IP multicast, after enabling IP multicast routing, PIM must be configured on all interfaces. Disabling IP multicast routing does not remove PIM; PIM still must be explicitly removed from the interface configurations.

\section*{Examples}

The following example shows how to enable IP multicast routing:
```

Device> enable
Device\# configure terminal
Device(config)\# ip multicast-routing

```

The following example shows how to enable IP multicast routing on a specific VRF:

Device(config) \# ip multicast-routing vrf vrf1

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ip pim & \begin{tabular}{l}
Enables PIM on an \\
interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip pim accept-register}

To configure a candidate rendezvous point (RP) switch to filter Protocol Independent Multicast (PIM) register messages, use the ip pim accept-register command in global configuration mode. To disable this function, use the no form of this command.
ip pim [vrf vrf-name] accept-register \{list access-list \} no ip pim [vrf vrf-name] accept-register

\section*{Syntax Description}

\section*{Command Default}

Command Modes

\section*{Command History}
vrf \(v r\)-name (Optional) Configures a PIM register filter on candidate RPs for (S, G) traffic associated with the multicast Virtual Private Network (VPN) routing and forwarding (MVRF) instance specified for the vrf-name argument.
list access-list Specifies the access-list argument as a number or name that defines the (\(\mathrm{S}, \mathrm{G}\)) traffic in PIM register messages to be permitted or denied. The range is \(100-199\) and the expanded range is 2000-2699. An IP-named access list can also be used.

No PIM register filters are configured.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Use this command to prevent unauthorized sources from registering with the RP. If an unauthorized source sends a register message to the RP, the RP will immediately send back a register-stop message.

The access list provided for the ip pim accept-register command should only filters IP source addresses and IP destination addresses. Filtering on other fields (for example, IP protocol or UDP port number) will not be effective and may cause undesired traffic to be forwarded from the RP down the shared tree to multicast group members. If more complex filtering is required, use the ip multicast boundary command instead.

\section*{Example}

The following example shows how to permit register packets for a source address sending to any group range, with the exception of source address 172.16 .10 .1 sending to the SSM group range (232.0.0.0/8). These are denied. These statements should be configured on all candidate RPs because candidate RPs will receive PIM registers from first-hop routers or switches.
```

(config)\# ip pim accept-register list ssm-range
(config)\# ip access-list extended ssm-range
(config-ext-nacl)\# deny ip any 232.0.0.0 0.255.255.255
(config-ext-nacl)\# permit ip any any

```

\section*{ip pim bidir-enable}

To enable bidirectional Protocol Independent Multicast (bidirectional PIM), use the ip pim bidir-enable command in global configuration mode. To disable bidirectional PIM, use the no form of this command.
ip pim bidir-enable
no ip pim bidir-enable

Command History

\section*{Command Default}

\section*{Command Modes}

Usage Guidelines
Release Modification

Cisco IOS XE Gibraltar 16.12.1

The command is enabled.

Global configuration (config)
When bidirectional PIM is disabled, the router will behave similarly to a router without bidirectional PIM support. The following conditions will apply:
- PIM hello messages sent by the router will not contain the bidirectional mode option.
- The router will not send designated forwarder (DF) election messages and will ignore DF election messages it receives.
- The ip pim rp-address, ip pim send-rp-announce, and ip pim rp-candidate global configuration commands will be treated as follows:
- If these commands are configured when bidirectional PIM is disabled, bidirectional mode will not be a configuration option.
- If these commands are configured with the bidirectional mode option when bidirectional PIM is enabled and then bidirectional PIM is disabled, these commands will be removed from the command-line interface (CLI). In this situation, these commands must be configured again with the bidirectional mode option when bidirectional PIM is reenabled.
- The df keyword for the show ip pim interface user EXEC or privileged EXEC command and debug ip pim privileged EXEC command is not supported.

The following example shows how to enable bidirectional PIM:
```

Device\# enable
Device\# configure terminal
Device(config)\# ip pim bidir-enable

```

\section*{ip pim bsr-candidate}

To configure the to be a candidate BSR, use the ip pim bsr-candidate command in global configuration mode. To remove the switch as a candidate BSR, use the no form of this command.
ip pim [vrf vrf-name] bsr-candidate interface-id [hash-mask-length] [priority] no ip pim [vrf vrf-name] bsr-candidate

\section*{Syntax Description}
\begin{tabular}{ll}
vrf vrf-name & \begin{tabular}{l}
(Optional) Configures the to be a candidate BSR for the Multicast Virtual Private \\
Network (MVPN) routing and forwarding (MVRF) instance specified for the vrf-name \\
argument.
\end{tabular} \\
\hline interface-id & \begin{tabular}{l}
ID of the interface on the from which the BSR address is derived to make it a candidate. \\
This interface must be enabled for Protocol Independent Multicast (PIM) using the ip \\
pim command. Valid interfaces include physical ports, port channels, and VLANs.
\end{tabular} \\
\hline hash-mask-length & \begin{tabular}{l}
(Optional) Length of a mask (32 bits maximum) that is to be ANDed with the group \\
address before the PIMv2 hash function is called. All groups with the same seed hash \\
correspond to the same rendezvous point (RP). For example, if this value is 24, only \\
the first 24 bits of the group addresses matter. The hash mask length allows one RP to \\
be used for multiple groups. The default hash mask length is 0.
\end{tabular}
\end{tabular}
priority (Optional) Priority of the candidate BSR (C-BSR). The range is from 0 to 255 . The default priority is 0 . The C-BSR with the highest priority value is preferred.

\section*{Command Default \\ Command Modes \\ Command History}

\section*{Usage Guidelines}

The is not configured to announce itself as a candidate BSR.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

The interface specified for this command must be enabled for Protocol Independent Multicast (PIM) using the ip pim command.

This command configures the to send BSR messages to all of its PIM neighbors, with the address of the designated interface as the BSR address.
This command should be configured on backbone s that have good connectivity to all parts of the PIM domain.
The BSR mechanism is specified in RFC 2362. Candidate RP (C-RP) switches unicast C-RP advertisement packets to the BSR. The BSR then aggregates these advertisements in BSR messages, which it regularly multicasts with a TTL of 1 to the ALL-PIM-ROUTERS group address, 224.0.0.13. The multicasting of these messages is handled by hop-by-hop RPF flooding; so, no pre-existing IP multicast routing setup is required (unlike with AutoRP). In addition, the BSR does not preselect the designated RP for a particular group range (unlike AutoRP); instead, each switch that receives BSR messages will elect RPs for group ranges based on the information in the BSR messages.

Cisco always accept and process BSR messages. There is no command to disable this function.

Cisco perform the following steps to determine which C-RP is used for a group:
- A long match lookup is performed on the group prefix that is announced by the BSR C-RPs.
- If more than one BSR-learned C-RP is found by the longest match lookup, the C-RP with the lowest priority (configured with the ip pim rp-candidate command) is preferred.
- If more than one BSR-learned C-RP has the same priority, the BSR hash function is used to select the RP for a group.
- If more than one BSR-learned C-RP returns the same hash value derived from the BSR hash function, the BSR C-RP with the highest IP address is preferred.

\section*{Example}

The following example shows how to configure the IP address of the on Gigabit Ethernet interface 1/0/0 to be a BSR C-RP with a hash mask length of 0 and a priority of 192:
```

(config)\# ip pim bsr-candidate GigabitEthernet1/0/1 0 192

```

\section*{ip pim rp-address}

To statically configure the address of a Protocol Independent Multicast (PIM) rendezvous point (RP) for multicast groups, use the ip pim rp-address command in global configuration mode. To remove an RP address, use the no form of this command.
ip pim [vrf vrf-name] rp-address rp-address [access-list] [override] [bidir]
no ip pim [vrf \(v r f\)-name] rp-address rp-address [access-list] [override] [bidir]

Syntax Description
\begin{tabular}{|c|c|}
\hline vrf \(v r\)-name & (Optional) Specifies that the static group-to-RP mapping be associated with the Multicast Virtual Private Network (MVPN) routing and forwarding (MVRF) instance specified for the vrf-name argument. \\
\hline rp-address rp-address & IP address of the RP to be used for the static group-to-RP mapping. This is a unicast IP address in four-part dotted-decimal notation. \\
\hline \multirow[t]{2}{*}{access-list} & (Optional) Number or name of a standard access list that defines the multicast groups to be statically mapped to the RP. \\
\hline & Note If no access list is defined, the RP will map to all multicast groups \\
\hline \multirow[t]{2}{*}{override} & (Optional) Specifies that if dynamic and static group-to-RP mappings are used together and there is an RP address conflict, the RP address configured for a static group-to-RP mapping will take precedence. \\
\hline & Note If the override keyword is not specified and there is RP address conflict, dynamic group-to-RP mappings will take precedence over static group-to-RP mappings. \\
\hline \multirow[t]{3}{*}{bidir} & (Optional) Specifies that the static group-to-RP mapping be applied to a bidirectional PIM RP. \\
\hline & If the command is configured without the bidir keyword, the groups will operate in sparse mode. \\
\hline & Note The bidir keyword is available as an optional keyword only if bidirectional PIM has been enabled using the ip pim bidir-enable command. \\
\hline
\end{tabular}

\section*{Command History}

\section*{Release Modification}

Cisco IOS XE Gibraltar 16.12.1
This command was introduced.

\section*{Command Default}

No PIM static group-to-RP mappings are configured.
Global configuration (config)
Under PIM, multicast groups in sparse mode (PIM-SM) or bidirectional mode (bidirectional PIM) use RPs to connect sources and receivers. All routers in a PIM domain need to have a consistent configuration for the mode and RP addresses of the multicast groups.

The Cisco IOS software learns the mode and RP addresses of multicast groups through the following three mechanisms: static group-to-RP mapping configurations, Auto-RP, and bootstrap router (BSR).

Use the ip pim rp-address command to statically define the RP address for PIM-SM or bidirectional PIM groups (an ip pim rp-address command configuration is referred to as a static group-to-RP mapping).
You can configure a single RP for more than one group using an access list. If no access list is specified, the static RP will map to all multicast groups.

You can configure multiple RPs, but only one RP per group range.
If multiple ip pim rp-address commands are configured, the following rules apply:
- Highest RP IP address selected regardless of reachability: If a multicast group is matched by the access list of more than one configured ip pim rp-address command, then the RP for the group is determined by the RP with the highest RP address configured.
- One RP address per command: If multiple ip pim rp-address commands are configured, each static group-to-RP mapping must be configured with a unique RP address (if not, it will be overwritten).This restriction also means that only one RP address can be used to provide RP functions for either sparse mode or bidirectional mode groups. If you want to configure static group-to-RP mappings for both bidirectional and sparse mode, the RP addresses must be unique for each mode.
- One access list per command: If multiple ip pim rp-address commands are configured, only one access list can be configured per static group-to-RP mapping. An access list cannot be reused with other static group-to-RP mappings configured on a router.

If dynamic and static group-to-RP mappings are used together, the following rule applies to a multicast group: Dynamic group-to-RP mappings take precedence over static group-to-RP mappings--unless the override keyword is used.

The following example shows how to set the bidirectional PIM RP address to 172.16.0.2 for the multicast range 239/8:
```

Device(config)\# access list 10 239.0.0.0 0.255.255.255
Device(config)\# ip pim rp-address 172.16.0.2 10 bidir

```

\section*{ip pim rp-candidate}

To configure the to advertise itself to the BSR as a Protocol Independent Multicast (PIM) Version 2 (PIMv2) candidate rendezvous point (C-RP), use the ip pim rp-candidate command in global configuration mode. To remove the as a C-RP, use the no form of this command.
ip pim [vrf vrf-name] rp-candidate interface-id [group-list access-list-number] no ip pim [vrf vrf-name] rp-candidate interface-id [group-list access-list-number]

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use this command to configure the to send PIMv2 messages so that it advertises itself as a candidate RP to the BSR.

This command should be configured on backbone s that have good connectivity to all parts of the PIM domain.
The IP address associated with the interface specified by interface-id will be advertised as the C-RP address.
The interface specified for this command must be enabled for Protocol Independent Multicast (PIM) using the ip pim command.

If the optional group-list keyword and access-list-number argument are configured, the group prefixes defined by the standard IP access list will also be advertised in association with the RP address.

\section*{Example}

The following example shows how to configure the switch to advertise itself as a C-RP to the BSR in its PIM domain. The standard access list number 4 specifies the group prefix associated with the RP that has the address identified by Gigabit Ethernet interface 1/0/1.

\footnotetext{
(config) \# ip pim rp-candidate GigabitEthernet1/0/1 group-list 4
}

\section*{ip pim send-rp-announce}

To use Auto-RP to configure groups for which the device will act as a rendezvous point (RP), use the ip pim send-rp-announce command in global configuration mode. To unconfigure the device as an RP, use the no form of this command.
ip pim [vrf vrf-name] send-rp-announce interface-id scope ttl-value [group-list access-list-number] [interval seconds] [bidir]
no ip pim [vrf vrf-name] send-rp-announce interface-id

Syntax Description
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}

Command History
\begin{tabular}{ll}
\hline vrf vrf-name & \begin{tabular}{l}
(Optional) Uses Auto-RP to configure groups for which the device will act as a \\
rendezvous point (RP) for the \(v r f\)-name argument.
\end{tabular} \\
\hline interface-id & \begin{tabular}{l}
Enter the interface ID of the interface that identifies the RP address. Valid interfaces \\
include physical ports, port channels, and VLANs.
\end{tabular} \\
\hline scope ttl-value & \begin{tabular}{l}
Specifies the time-to-live (TTL) value in hops that limits the number of Auto-RP \\
announcements. Enter a hop count that is high enough to ensure that the RP-announce \\
messages reach all the mapping agents in the network. There is no default setting. \\
The range is 1—255.
\end{tabular} \\
\hline \begin{tabular}{l}
group-list \\
access-list-number
\end{tabular} & \begin{tabular}{l}
(Optional) Specifies the standard IP access list number that defines the group prefixes \\
that are advertised in association with the RP address. Enter an IP standard access \\
list number from 1—99. If no access list is configured, the RP is used for all groups.
\end{tabular} \\
\hline interval seconds & \begin{tabular}{l}
(Optional) Specifies the interval between RP announcements, in seconds. The total \\
hold time of the RP announcements is automatically set to three times the value of \\
the interval. The default interval is 60 seconds. The range is 1-16383.
\end{tabular} \\
\hline bidir & \begin{tabular}{l}
(Optional) Indicates that the multicast groups specified by the access-listargument \\
are to operate in bidirectional mode. If the command is configured without this \\
keyword, the groups specified will operate in Protocol Independent Multicast sparse \\
mode (PIM-SM).
\end{tabular}
\end{tabular}

Auto-RP is disabled.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Cisco IOS XE Gibraltar 16.12.1 & \begin{tabular}{l}
This command was modified. The \\
bidir keyword was added.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
Enter this command on the device that you want to be an RP. When you are using Auto-RP to distribute group-to-RP mappings, this command causes the router to send an Auto-RP announcement message to the well-known group CISCO-RP-ANNOUNCE (224.0.1.39). This message announces the router as a candidate RP for the groups in the range described by the access list.

Use this command with the bidir keyword when you want bidirectional forwarding and you are using Auto-RP to distribute group-to-RP mappings. Other options are as follows:
- If you are using the PIM Version 2 bootstrap router (PIMv2 BSR) mechanism to distribute group-to-RP mappings, use the bidir keyword with the ip pim rp-candidate command.
- If you are not distributing group-to-RP mappings using either Auto-RP or the PIMv2 BSR mechanism, use the bidir keyword with the ip pim rp-address command.

\section*{Example}

The following example shows how to configure the device to send RP announcements out all Protocol Independent Multicast (PIM)-enabled interfaces for a maximum of 31 hops. The IP address by which the switch wants to be identified as RP is the IP address associated with Gigabit Ethernet interface \(1 / 0 / 1\) at an interval of 120 seconds:

\footnotetext{
Device (config) \# ip pim send-rp-announce GigabitEthernet1/0/1 scope 31 group-list 5 interval 120
}

\section*{ip pim spt-threshold}

To specify the threshold that must be reached before moving to shortest-path tree (spt), use the ip pim spt-threshold command in global configuration mode. To remove the threshold, use the no form of this command.
ip \(\mathbf{p i m}\{k b p s\) | infinity \(\}\) [group-list access-list] no ip pim \(\{k b p s\) | infinity \(\}\) [group-list access-list]

Syntax Description

Command Default
Command Modes

\section*{Command History}
kbps Threshold that must be reached before moving to shortest-path tree (spt). 0 is the only valid entry even though the range is 0 to 4294967. A 0 entry always switches to the source-tree.
infinity Specifies that all the sources for the specified group use the shared tree, never switching to the source tree.
group-list access-list (Optional) Specifies an access list number or a specific access list that you have created by name. If the value is 0 or if the group-list access-list option is not used, the threshold applies to all the groups.

Switches to the PIM shortest-path tree (spt).
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Example}

The following example shows how to make all the sources for access list 16 use the shared tree:

\section*{ipv6 deny echo reply}

To disable the generation of ICMP IPv6 echo reply message to an IPv6 multicast address or anycast address, use the ipv6 deny-echo-reply command in the global configuration mode. To enable the generation of ICMP IPv6 echo reply message, use the no form of the command.
ipv6 deny-echo-reply
no ipv6 deny-echo-reply
\begin{tabular}{lll}
\hline \begin{tabular}{lll}
Command Default & & ICMPv6 Echo Reply messages are sent from the device. \\
\(\overline{\text { Command Modes }}\) & Global configuration (config) & \\
\cline { 1 - 1 } Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Amsterdam 17.3.1 & The command was introduced. \\
\hline
\end{tabular} &
\end{tabular}

\section*{Usage Guidelines}

The ipv6 deny-echo-reply command works only for an IPv6 multicast or anycast address. It does not suppress an echo reply message for an IPv6 unicast address.

The following example shows how to configure a device to stop sending a response to an ICMPv6 echo message:
```

Device\# configure terminal
Device(config)\#ipv6 deny-echo-reply
Router(config) \#end

```

The following example shows how to remove the ipv6 deny-echo-reply configuration:
```

Device\# configure terminal
Device(config)\#no ipv6 deny-echo-reply
Router(config) \#end

```

\section*{match message-type}

To set a message type to match a service list, use the match message-type command.
match message-type \{announcement |any |query\}

Syntax Description

Usage Guidelines
\begin{tabular}{ll}
\hline announcement & Allows only service advertisements or announcements for the . \\
\hline any & Allows any match type. \\
\hline query & Allows only a query from the client for a certain in the network.
\end{tabular}

None
Service list configuration.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

Multiple service maps of the same name with different sequence numbers can be created, and the evaluation of the filters will be ordered on the sequence number. Service lists are an ordered sequence of individual statements, with each one having a permit or deny result. The evaluation of a service list consists of a list scan in a predetermined order, and an evaluation of the criteria of each statement that matches. A list scan is stopped once the first statement match is found and a permit/deny action associated with the statement match is performed. The default action after scanning through the entire list is to deny.

Note It is not possible to use the match command if you have used the service-list mdns-sd service-list-name query command. The match command can be used only for the permit or deny option.

\section*{Example}

The following example shows how to set the announcement message type to be matched:

\footnotetext{
(config-mdns-sd-sl) \# match message-type announcement
}

\section*{match service-type}

To set the value of the mDNS service type string to match, use the match service-type command.
match service-type line
\begin{tabular}{llll}
\(\overline{\text { Syntax Description }}\) & & line Regular expression to match the service type in packets. \\
\(\overline{\text { Command Default }}\) & None \\
\(\overline{\text { Command Modes }}\) & Service list configuration \\
\(\overline{\text { Command History }}\) & & \\
& Release & Cisco IOS XE Everest 16.5.1a This command was introduced.
\end{tabular}

Usage Guidelines It is not possible to use the match command if you have used the service-list mdns-sd service-list-name query command. The match command can be used only for the permit or deny option.

\section*{Example}

The following example shows how to set the value of the mDNS service type string to match:
(config-mdns-sd-sl) \# match service-type _ipp._tcp

\section*{match service-instance}

To set a service instance to match a service list, use the match service-instance command.
match service-instance line
\begin{tabular}{|c|c|}
\hline Syntax Description & line Regular expression to match the service instance in packets. \\
\hline Command Default & None \\
\hline Command Modes & Service list configuration \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines It is not possible to use the match command if you have used the service-list mdns-sd service-list-name query command. The match command can be used only for the permit or deny option.

\section*{Example}

The following example shows how to set the service instance to match:
(config-mdns-sd-sl) \# match service-instance servInst 1

\section*{mrinfo}

To query which neighboring multicast routers or multilayer switches are acting as peers, use the mrinfo command in user EXEC or privileged EXEC mode.
mrinfo [vrf route-name] [hostname | address] [interface-id]

\section*{Syntax Description}
vrf route-name (Optional) Specifies the VPN routing or forwarding instance.
hostname | address (Optional) Domain Name System (DNS) name or IP address of the multicast router or multilayer switch to query. If omitted, the switch queries itself.
interface-id (Optional) Interface ID.
\(\overline{\text { Command Default }}\)

\section*{Command History}

The command is disabled.
User EXEC
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The mrinfo command is the original tool of the multicast backbone (MBONE) to determine which neighboring multicast routers or switches are peering with multicast routers or switches. Cisco routers supports mrinfo requests from Cisco IOS Release 10.2.

You can query a multicast router or multilayer switch using the mrinfo command. The output format is identical to the multicast routed version of the Distance Vector Multicast Routing Protocol (DVMRP). (The mrouted software is the UNIX software that implements DVMRP.)

\section*{Example}

The following is the sample output from the mrinfo command:
```


# mrinfo

    vrf 192.0.1.0
    192.31.7.37 (barrnet-gw.cisco.com) [version cisco 11.1] [flags: PMSA]:
192.31.7.37 -> 192.31.7.34 (sj-wall-2.cisco.com) [1/0/pim]
192.31.7.37 -> 192.31.7.47 (dirtylab-gw-2.cisco.com) [1/0/pim]
192.31.7.37 -> 192.31.7.44 (dirtylab-gw-1.cisco.com) [1/0/pim]

```

Note The flags indicate the following:
- P: prune-capable
- M: mtrace-capable
- S: Simple Network Management Protocol-capable
- A: Auto RP capable

\section*{service-policy-query}

To configure the service-list query periodicity, use the service-policy-query command. To delete the configuration, use the no form of this command.
service-policy-query [service-list-query-name service-list-query-periodicity] no service-policy-query

\section*{Syntax Description}
service-list-query-name service-list-query-periodicity (Optional) Service-list query periodicity.
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{Disabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{mDNS configuration} \\
\hline Command History & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Since there are devices that do not send unsolicited announcements and to force such devices the learning of services and to keep them refreshed in the cache, this command contains an active query feature that ensures that the services listed in the active query list are queried.

\section*{Example}

This example shows how to configure service list query periodicity:
```

(config-mdns)\# service-policy-query sl-query1 100

```

\section*{service-policy}

To apply a filter on incoming or outgoing service-discovery information on a service list, use the service-policy command. To remove the filter, use the no form of this command.
service-policy service-policy-name \{IN | OUT \(\}\) no service-policy service-policy-name \(\{\) IN | OUT \(\}\)
\begin{tabular}{lll}
\hline Syntax Description & IN Applies a filter on incoming service-discovery informati \\
& OUT Applies a filter on outgoing service-discovery informati \\
& \begin{tabular}{lll}
Command Default & Disabled. \\
\hline Command Modes & mDNS configuration & \\
\hline Command History & Release & Modification \\
& \begin{tabular}{l}
Cisco IOS XE Everest
\end{tabular} & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
& 16.5.1a &
\end{tabular}
\end{tabular}

\section*{Example}

The following example shows how to apply a filter on incoming service-discovery information on a service list:
(config-mdns) \# service-policy serv-poll IN

\section*{show ip igmp filter}

To display Internet Group Management Protocol (IGMP) filter information, use the show ip igmp filter command in privileged EXEC mode.
show ip igmp [vrf \(v r f\)-name] filter

Syntax Description
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline
\end{tabular}
Command History

Usage Guidelines
vrf vrf-name (Optional) Supports the multicast VPN routing and forwarding (VRF) instance.

IGMP filters are enabled by default.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

The show ip igmp filter command displays information about all filters defined on the .

\section*{Example}

The following example shows the sample output from the show ip igmp filter command:
```


# show ip igmp filter

IGMP filter enabled

```

\section*{show ip igmp profile}

To display all the configured Internet Group Management Protocol (IGMP) profiles or a specified IGMP profile, use the show ip igmp profile command in privileged EXEC mode.
show ip igmp [vrf vrf-name] profile [profile number]
Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

IGMP profiles are undefined by default.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

None

\section*{Examples}

The following example shows the output of the show ip igmp profile command for profile number 40 on the :
```


# show ip igmp profile 40

IGMP Profile 40
permit
range 233.1.1.1 233.255.255.255

```

The following example shows the output of the show ip igmp profile command for all the profiles configured on the :
```


# show ip igmp profile

IGMP Profile 3
range 230.9.9.0 230.9.9.0
IGMP Profile 4
permit
range 229.9.9.0 229.255.255.255

```

\section*{show ip igmp snooping}

To display the Internet Group Management Protocol (IGMP) snooping configuration of the or the VLAN, use the show ip igmp snooping command in user EXEC or privileged EXEC mode.
show ip igmp snooping [groups | mrouter | querier] [vlan vlan-id] [detail]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline groups & (Optional) Displays the IGMP snooping multicast table. \\
\hline mrouter & (Optional) Displays the IGMP snooping multicast router ports. \\
\hline querier & (Optional) Displays the configuration and operation information for the IGMP querier. \\
\hline vlan vlan-id & (Optional) Specifies a VLAN; the range is 1 to 1001 and 1006 to 4094. \\
\hline detail & (Optional) Displays operational state information. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

\section*{Command History}

None

User EXEC
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

VLAN IDs 1002-1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.
Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

\section*{Examples}

The following is a sample output from the show ip igmp snooping vlan 1 command. It shows snooping characteristics for a specific VLAN:
```


# show ip igmp snooping vlan 1

Global IGMP Snooping configuration:
---------------------------------------------
IGMP snooping : Enabled
IGMPv3 snooping (minimal) : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000
Vlan 1:
--------
IGMP snooping : Enabled

```
```

IGMPv2 immediate leave : Disabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP ONLY
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000

```

The following is a sample output from the show ip igmp snooping command. It displays snooping characteristics for all the VLANs on the :
```


# show ip igmp snooping

Global IGMP Snooping configuration:
---------------------------------------------
IGMP snooping : Enabled
IGMPv3 snooping (minimal) : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000
Vlan 1:
IGMP snooping : Enabled
IGMPv2 immediate leave : Disabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Robustness variable
Last member query count : 2
Last member query interval : 1000
Vlan 2:
----
IGMP snooping : Enabled
IGMPv2 immediate leave : Disabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000

```

\section*{show ip igmp snooping groups}

To display the Internet Group Management Protocol (IGMP) snooping multicast table for the or the multicast information, use the show ip igmp snooping groups command in privileged EXEC mode.
show ip igmp snooping groups [vlan vlan-id] [[count] | ip_address]

\section*{Syntax Description}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

Privileged EXEC
User EXEC

\section*{Release}

\section*{Modification}

Cisco IOS XE Everest 16.5.1a
This command was introduced.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

\section*{Examples}

The following is a sample output from the show ip igmp snooping groups command without any keywords. It displays the multicast table for the .
\begin{tabular}{|c|c|c|c|c|}
\hline Vlan & Group & Type & Version & Port List \\
\hline 1 & 224.1.4.4 & igmp & & Gi1/0/11 \\
\hline 1 & 224.1.4.5 & igmp & & Gi1/0/11 \\
\hline 2 & 224.0.1.40 & igmp & v2 & Gi1/0/15 \\
\hline 104 & 224.1.4.2 & igmp & v2 & Gi2/0/1, Gi2/0/2 \\
\hline 104 & 224.1.4.3 & igmp & v2 & Gi2/0/1, Gi2/0/2 \\
\hline
\end{tabular}

The following is a sample output from the show ip igmp snooping groups count command. It displays the total number of multicast groups on the .
```


# show ip igmp snooping groups count

Total number of multicast groups: 2

```

The following is a sample output from the show ip igmp snooping groups vlan vlan-id ip-address command. It shows the entries for the group with the specified IP address:
```


# show ip igmp snooping groups vlan 104 224.1.4.2

Vlan Group Type Version Port List

```

\section*{show ip igmp snooping mrouter}

To display the Internet Group Management Protocol (IGMP) snooping dynamically learned and manually configured multicast router ports for the or for the specified multicast VLAN, use the show ip igmp snooping mrouter command in privileged EXEC mode.
show ip igmp snooping mrouter [vlan vlan-id]

Syntax Description

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
vlan vlan-id (Optional) Specifies a VLAN; Ranges are from 1—1001 and 1006-4094.

User EXEC
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

VLAN IDs 1002-1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.
When multicast VLAN registration (MVR) is enabled, the show ip igmp snooping mrouter command displays MVR multicast router information and IGMP snooping information.

Expressions are case sensitive, for example, if you enter | exclude output, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

\section*{Example}

The following is a sample output from the show ip igmp snooping mrouter command. It shows how to display multicast router ports on the :
```


# show ip igmp snooping mrouter

Vlan ports
---- -----
1 Gi2/0/1(dynamic)

```

\section*{show ip igmp snooping querier}

To display the configuration and operation information for the IGMP querier that is configured on a , use the show ip igmp snooping queriercommand in user EXEC mode.
show ip igmp snooping querier [vlan vlan-id] [detail]

Syntax Description

Command Modes

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline vlan vlan-id & (Optional) Specifies a VLAN; Ranges are from 1—1001 and 1006—4094. \\
\hline detail \(\quad\) (Optional) Displays detailed IGMP querier information. \\
\hline User EXEC & \\
Privileged EXEC
\end{tabular}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Use the show ip igmp snooping querier command to display the IGMP version and the IP address of a detected device, also called a querier, that sends IGMP query messages. A subnet can have multiple multicast routers but only one IGMP querier. In a subnet running IGMPv2, one of the multicast routers is elected as the querier. The querier can be a Layer 3 .

The show ip igmp snooping querier command output also shows the VLAN and the interface on which the querier was detected. If the querier is the , the output shows the Port field as Router. If the querier is a router, the output shows the port number on which the querier was detected in the Port field.
The show ip igmp snooping querier detail user EXEC command is similar to the show ip igmp snooping querier command. However, the show ip igmp snooping querier command displays only the device IP address most recently detected by the querier.
The show ip igmp snooping querier detail command displays the device IP address most recently detected by the querier and this additional information:
- The elected IGMP querier in the VLAN
- The configuration and operational information pertaining to the querier (if any) that is configured in the VLAN

Expressions are case sensitive, for example, if you enter | exclude output, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

\section*{Examples}

The following is a sample output from the show ip igmp snooping querier command:
\begin{tabular}{|c|c|c|c|}
\hline Vlan & IP Address & IGMP Version & Port \\
\hline 1 & 172.20.50.11 & v3 & Gi1/0/1 \\
\hline 2 & 172.20.40.20 & v2 & Router \\
\hline
\end{tabular}

The following is a sample output from the show ip igmp snooping querier detail command:

\section*{show ip pim autorp}

To display global information about auto-rp, use the show ip pim autorp command in privileged EXEC mode.
show ip pim autorp
\begin{tabular}{lll}
\(\overline{\text { Syntax Description }}\) & & \\
\(\overline{\text { Command Default }}\) & Auto RP is enabled by default. & \\
\(\overline{\text { Command Modes }}\) & Privileged EXEC & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
This command displays whether auto-rp is enabled or disabled.

\section*{Example}

The following command output shows that Auto RP is enabled:
\# show ip pim autorp
AutoRP Information:
AutoRP is enabled.
RP Discovery packet MTU is 0.
224.0.1.40 is joined on GigabitEthernet1/0/1.

PIM AutoRP Statistics: Sent/Received
RP Announce: 0/0, RP Discovery: 0/0

\section*{show ip pim bsr-router}

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the show ip pim bsr-router command in user EXEC or privileged EXEC mode.
show ip pim bsr-router
\begin{tabular}{llll}
\(\overline{\text { Syntax Description }}\) & This command has no arguments or keywords. & \\
\(\overline{\text { Command Default }}\) & None & \\
\hline Command Modes & User EXEC & \\
\hline & Privileged EXEC & \\
\hline Command History & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

In addition to Auto RP, the BSR RP method can be configured. After the BSR RP method is configured, this command displays the BSR router information.

The following is sample output from the show ip pim bsr-router command:
```


# show ip pim bsr-router

PIMv2 Bootstrap information
This system is the Bootstrap Router (BSR)
BSR address: 172.16.143.28
Uptime: 04:37:59, BSR Priority: 4, Hash mask length: 30
Next bootstrap message in 00:00:03 seconds
Next Cand RP advertisement in 00:00:03 seconds.
RP: 172.16.143.28(Ethernet0), Group acl: 6

```

\section*{show ip pim bsr}

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the show ip pim bsr command in user EXEC or privileged EXEC mode.
show ip pim bsr
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\begin{tabular}{ll}
\(\overline{\text { Command Default }}\) & None \\
\(\overline{\text { Command Modes }}\) & User EXEC \\
& Privileged EXEC
\end{tabular}
\begin{tabular}{lll}
\hline Command History & Release & Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines In addition to Auto RP, the BSR RP method can be configured. After the BSR RP method is configured, this command displays the BSR router information.

The following is sample output from the show ip pim bsr command:
```


# show ip pim bsr

PIMv2 Bootstrap information
This system is the Bootstrap Router (BSR)
BSR address: 172.16.143.28
Uptime: 04:37:59, BSR Priority: 4, Hash mask length: 30
Next bootstrap message in 00:00:03 seconds
Next Cand RP advertisement in 00:00:03 seconds.
RP: 172.16.143.28(Ethernet0), Group acl: 6

```

\section*{show ip pim interface df}

To display information about the elected designated forwarder (DF) for each rendezvous point (RP) on an interface configured for Bidirectional Protocol Independent Multicast (PIM), use the show ip pim interface df command in user EXEC or privileged EXEC mode.
show ip pim [vrf vrf-name] interface [interface-type | interface-name]df [rp-address]
\begin{tabular}{|l|l|}
\hline vrf vrf-name & \begin{tabular}{l}
(Optional) Specifies the multicast VPN routing and \\
forwarding (VRF) instance.
\end{tabular} \\
\hline interface [interface-type \(\mid\) interface-name] & Specifies the interface type or the interface number. \\
\hline rp-address & (Optional) Specifies the RP IP address. \\
\hline
\end{tabular}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.12.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes
If no interface is specified, all interfaces are displayed.
User EXEC (>)
Privileged EXEC (\#)
The following is sample output from the show ip pim interface df command:
\begin{tabular}{lclll}
Device\# show ip pim interface df & & \\
Interface & RP & DF Winner & Metric & Uptime \\
Ethernet3/3 & 10.10 .0 .2 & 10.4 .0 .2 & 0 & \(00: 03: 49\) \\
& 10.10 .0 .3 & 10.4 .0 .3 & 0 & \(00: 01: 49\) \\
& 10.10 .0 .5 & 10.4 .0 .4 & 409600 & \(00: 01: 49\) \\
Ethernet3/4 & 10.10 .0 .2 & 10.5 .0 .2 & 0 & \(00: 03: 49\) \\
& 10.10 .0 .3 & 10.5 .0 .2 & 409600 & \(00: 02: 32\) \\
& 10.10 .0 .5 & 10.5 .0 .2 & 435200 & \(00: 02: 16\) \\
Loopback0 & 10.10 .0 .2 & 10.10 .0 .2 & 0 & \(00: 03: 49\) \\
& 10.10 .0 .3 & 10.10 .0 .2 & 409600 & \(00: 02: 32\) \\
& 10.10 .0 .5 & 10.10 .0 .2 & 435200 & \(00: 02: 16\)
\end{tabular}

The following is sample output from the show ip pim interface df command when an interface is specified:
```

Device\# show ip pim interface Ethernet3/3 df 10.10.0.3
Designated Forwarder election for Ethernet3/3, 10.4.0.2, RP 10.10.0.3
State Non-DF
Offer count is 0
Current DF ip address 10.4.0.3
DF winner up time 00:02:33
Last winner metric preference 0
Last winner metric 0

```

The following table gives the output field descriptions for the show ip pim interface df command:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline RP & IP address of the RP. \\
\hline DF Winner & IP address of the elected DF. \\
\hline Metric & \begin{tabular}{l}
Unicast routing metric to the RP announced by the \\
DF.
\end{tabular} \\
\hline Uptime & \begin{tabular}{l}
Length of time the RP has been up, in days and hours. \\
If less than 1 day, time is shown in \\
hours:minutes:seconds.
\end{tabular} \\
\hline State & \begin{tabular}{l}
Indicates whether the specified interface is an elected \\
DF.
\end{tabular} \\
\hline Offer count is & \begin{tabular}{l}
Number of PIM DF election offer messages that the \\
router has sent out the interface during the current \\
election interval.
\end{tabular} \\
\hline Current DF IP address & IP address of the current DF. \\
\hline DF winner uptime & \begin{tabular}{l}
Length of time the current DF has been up, in days \\
and hours. If less than 1 day, time is shown in \\
hours:minutes:seconds.
\end{tabular} \\
\hline Last winner metric preference & \begin{tabular}{l}
The preference value used for selecting the unicast \\
routing metric to the RP announced by the DF.
\end{tabular} \\
\hline Last winner metric & \begin{tabular}{l}
Unicast routing metric to the RP announced by the \\
DF.
\end{tabular} \\
\hline
\end{tabular}

\section*{show ip pim rp}

To display active rendezvous points (RPs) that are cached with associated multicast routing entries, use the show ip pim rp command in user EXEC or privileged EXEC mode.
show ip pim [vrf vrf-name] rp [mapping [elected |in-use] |metric][rp-address]
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Syntax Description} & vrf \(v r f\)-name & (Optional) Specifies the multicast VPN routing and forwarding (VRF) instance. \\
\hline & mapping [elected | in-use] & (Optional) Displays all group-to-RP mappings of which the router is aware. (either configured or learned from Auto-RP) \\
\hline & & - elected- Displays elected Auto RPs. \\
\hline & & - in-use- Displays learned RPs in-use. \\
\hline & metric & (Optional) Displays the unicast routing metric to the RPs configured statically or learned via Auto-RP or the bootstrap router (BSR). \\
\hline & rp-address & (Optional) Specifies the RP IP address. \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Gibraltar 16.12.1 & This command was introduced. \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}

\section*{Usage Guidelines}

If no RP is specified, all active RPs are displayed.
User EXEC (>)
Privileged EXEC (\#)
The Protocol Independent Multicast (PIM) version known for an RP influences the type of PIM register messages (Version 1 or Version 2) that the router sends when acting as the designated router (DR) for an active source. If an RP is statically configured, the PIM version of the RP is not set and the router, if required to send register packets, tries to send PIM Version 2 register packets. If sending PIM Version 2 packets fails, the router sends PIM Version 1 register packets.

The version of the RP displayed in the show ip pim rp command output can change according to the operations of the router. When the group is created, the version shown is for the RP in the RP mapping cache. Later, the version displayed by this command may change. If this router is acting as a DR for an active source, the router sends PIM register messages. The PIM register messages are answered by the RP with PIM register stop messages. The router learns from these PIM register stop messages the actual PIM version of the RP. Once the actual PIM version of the RP is learned, this command displays only this version. If the router is not acting as a DR for active sources on this group, then the version shown for the RP of the group does not change. In this case, the PIM version of the RP is irrelevant to the router because the version of the RP influences only the PIM register messages that this router must send.

When you enter the show ip pim rp mapping command, the version of the RP displayed in the output is determined only by the method through which an RP is learned. If the RP is learned from Auto-RP then the \(R P\) displayed is either " \(v 1\) " or " \(v 2\), \(v 1\)." If the RP is learned from a static RP definition, the RP version is undetermined and no RP version is displayed in the output. If the RP is learned from the BSR, the RP version displayed is " v 2 ."

The following is sample output from the show ip pim rp command:
```

Device\# show ip pim rp
Group:227.7.7.7, RP:10.10.0.2, v2, v1, next RP-reachable in 00:00:48

```

The following is sample output from the show ip pim rp command when the mapping keyword is specified:
```

Device\# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent
Group(s) 227.0.0.0/8
RP 10.10.0.2 (?), v2v1, bidir
Info source:10.10.0.2 (?), via Auto-RP
Uptime:00:01:42, expires:00:00:32
Group(s) 228.0.0.0/8
RP 10.10.0.3 (?), v2v1, bidir
Info source:10.10.0.3 (?), via Auto-RP
Uptime:00:01:26, expires:00:00:34
Group(s) 229.0.0.0/8
RP 10.10.0.5 (mcast1.cisco.com), v2v1, bidir
Info source:10.10.0.5 (mcast1.cisco.com), via Auto-RP
Uptime:00:00:52, expires:00:00:37
Group(s) (-)230.0.0.0/8
RP 10.10.0.5 (mcast1.cisco.com), v2v1, bidir
Info source:10.10.0.5 (mcast1.cisco.com), via Auto-RP
Uptime:00:00:52, expires:00:00:37

```

The following is sample output from the show ip pim rp command when the metric keyword is specified:
\begin{tabular}{lllcll}
Device\# show ip pim rp metric & & & \\
RP Address & Metric Pref & Metric & Flags & RPF Type & Interface \\
10.10 .0 .2 & 0 & 0 & L & unicast & Loopback0 \\
10.10 .0 .3 & 90 & 409600 & L & unicast & Ethernet3/3 \\
10.10 .0 .5 & 90 & 435200 & L & unicast & Ethernet3/3
\end{tabular}

\section*{show ip pim tunnel}

To display information about the Protocol Independent Multicast (PIM) register encapsulation and decapsulation tunnels on an interface, use the show ip pim tunnel command.
show ip pim [vrf vrf-name] tunnel [Tunnel interface-number | verbose]

\section*{Syntax Description}
vrf vrf-name (Optional) Specifies a virtual routing and forwarding (VRF) configuration.
\begin{tabular}{ll}
\hline Tunnel interface-number & (Optional) Specifies the tunnel interface number. \\
\hline verbose & \begin{tabular}{l}
(Optional) Provides additional information, such as the MAC encapsulation \\
header and platform-specific information.
\end{tabular}
\end{tabular}
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline
\end{tabular}

None
Privileged EXEC

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use the show ip pim tunnel to display information about PIM tunnel interfaces.
PIM tunnel interfaces are used by the IPv4 Multicast Forwarding Information Base (MFIB) for the PIM sparse mode (PIM-SM) registration process. Two types of PIM tunnel interfaces are used by the the IPv4 MFIB:
- A PIM encapsulation tunnel (PIM Encap Tunnel)
- A PIM decapsulation tunnel (PIM Decap Tunnel)

The PIM Encap Tunnel is dynamically created whenever a group-to-rendezvous point (RP) mapping is learned (through auto-RP, bootstrap router (BSR), or static RP configuration). The PIM Encap Tunnel is used to encapsulate multicast packets sent by first-hop designated routers (DRs) that have directly connected sources.

Similar to the PIM Encap Tunnel, the PIM Decap Tunnel interface is dynamically created-but it is created only on the RP whenever a group-to-RP mapping is learned. The PIM Decap Tunnel interface is used by the RP to decapsulate PIM register messages.

Note PIM tunnels will not appear in the running configuration.
The following syslog message appears when a PIM tunnel interface is created:
* \%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel<interface_number>, changed state to up

The following is sample output from the show ip pim tunnel taken from an RP. The output is used to verify the PIM Encap and Decap Tunnel on the RP:
```


# show ip pim tunnel

Tunnel0
Type : PIM Encap
RP : 70.70.70.1*
Source: 70.70.70.1
Tunnel1*
Type : PIM Decap
RP : 70.70.70.1*
Source: -R2\#

```

Note The asterisk (*) indicates that the router is the RP. The RP will always have a PIM Encap and Decap Tunnel interface.

\section*{show platform software fed switch ip multicast groups}

To display platform-dependent IP multicast groups information, use the show platform software fed switch ip multicast groups command in privileged EXEC mode.
show platform software fed switch \{switch-number |active|standby \}ip multicast groups [vrf-id vrf-id | vrf-name vrf-name] [group-address [source source-address] [detail] | count | summary]

\section*{Syntax Description}
switch \{switch_num | active | standby \} The device for which you want to display information.
- switch_num—Enter the switch ID. Displays information for the specified switch.
- active-Displays information for the active switch.
- standby-Displays information for the standby switch, if available.
\(\left.\begin{array}{ll}\hline \text { vrf } \text { vrf-id } & \begin{array}{l}\text { (Optional) Specifies the multicast Virtual Routing and } \\
\text { Forwarding (VRF) ID. }\end{array} \\
\hline \text { vrf vrf-name } & \begin{array}{l}\text { (Optional) Specifies the multicast Virtual Routing and } \\
\text { Forwarding (VRF) name. }\end{array} \\
\hline \text { group-address } & \text { (Optional) Specifies the IP Multicast Group Address. } \\
\hline \text { source source-address } & \text { (Optional) Specifies the IP Multicast Source Address }\end{array}\right]\)\begin{tabular}{ll}
\hline (Optional) Specifies the IP Multicast group detail. \\
\hline count & (Optional) Specifies the IP Multicast group count. \\
\hline summary & (Optional) Specifies the Multicast group summary. \\
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced \\
\hline
\end{tabular}

\section*{Command Modes}

Usage Guidelines
Privileged EXEC (\#)
Use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

\section*{show platform software fed switch ip multicast}

To display platform-dependent IP multicast tables and other information, use the show platform software fed switch ip multicast command in privileged EXEC mode.
show platform software fed switch \(\{\) switch-number \(\mid\) active | standby\} ip multicast \(\{\) groups \(\mid\) hardware[\{detail\}]|interfaces |retry\}

\section*{Syntax Description}

\begin{tabular}{ll}
\hline groups & Displays the IP multicast routes per group. \\
\hline hardware [detail] & \begin{tabular}{l}
Displays the IP multicast routes loaded into hardware. The optional detail \\
keyword is used to show the port members in the destination index and route \\
index.
\end{tabular} \\
\hline interfaces & Displays the IP multicast interfaces. \\
\hline retry & Displays the IP multicast routes in the retry queue. \\
\hline
\end{tabular}

\section*{Command Modes}

Command History
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
Use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

\section*{Example}

The following example shows how to display platform IP multicast routes per group:
```


# show platform software fed active ip multicast groups

Total Number of entries:3
MROUTE ENTRY vrf 0(*, 224.0.0.0)
Token: 0x0000001f6 flags: C
No RPF interface.
Number of OIF: O
Flags: 0x10 Pkts : 0
OIF Details:No OIF interface.

```
```

DI details
-_--------
Handle:0x603cf7f8 Res-Type:ASIC_RSC_DI Asic-Num:255
Feature-ID:AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
Hardware Indices/Handles: index0:0x51f6 index1:0x51f6
Cookie length 56
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x4 0xe0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Detailed Resource Information (ASIC\# 0)
al_rsc_di
RM:index = 0x51f6
RM:pmap = 0x0
RM:cmi = 0x0
RM:rcp_pmap = 0x0
RM:force data copy = 0
RM:remote cpu copy = 0
RM:remote data copy = 0
RM:local cpu copy = 0
RM:local data copy = 0
al_rsc_cmi
RM:index = 0x51f6
RM:cti_lo[0] = 0x0
RM:cti_lo[1] = 0x0
RM:cti_lo[2] = 0x0
RM:cpu_q_vpn[0] = 0x0
RM:cpu_q_vpn[1] = 0x0
RM:cpu_q_vpn[2] = 0x0
RM:npu_index = 0x0
RM:strip_seg = 0x0
RM:copy__seg = 0x0
Detailed Resource Information (ASIC\# 1)
------------------------------------------
al_rsc_di
RM:index = 0x51f6
RM:pmap = 0x0
RM:cmi = 0x0
RM:rcp_pmap = 0x0
RM:force data copy = 0
RM:remote cpu copy = 0
RM:remote data copy = 0
RM:local cpu copy = 0
RM:local data copy = 0
al_rsc_cmi
RM:index = 0x51f6
RM:cti_lo[0] = 0x0
RM:cti_lo[1] = 0x0
RM:cti_lo[2] = 0x0
RM:cpu_q_vpn[0] = 0x0
RM:cpu_q_vpn[1] = 0x0
RM:cpu_q_vpn[2] = 0x0
RM:npu_index = 0x0
RM:strip_seg = 0x0
RM:copy_seg = 0x0

```

\section*{show platform software fed switch ip multicast df}

To display information about platform-dependent IP multicast designated forwarders (DF), use the show platform software fed switch ip multicast df command in privileged EXEC mode.
show platform software fed switch \(\{\) switch-number \(\mid\) active \(\mid\) standby \(\}\) ip multicast df[\{vrf-id \(v r f-i d \mid\) vrf-name \(v r f\)-name \(\}][\{d f\)-index \(\}]\)

Syntax Description
\begin{tabular}{|c|c|}
\hline switch \{switch_num | active | standby \} & \begin{tabular}{l}
The device for which you want to display information. \\
- switch_num—Enter the switch ID. Displays information for the specified switch. \\
- active-Displays information for the active switch. \\
- standby-Displays information for the standby switch, if available.
\end{tabular} \\
\hline vrf-id \(v r\)-id & (Optional) Specifies the multicast Virtual Routing and Forwarding (VRF) ID. \\
\hline vrf vrf-name & (Optional) Specifies the multicast Virtual Routing and Forwarding (VRF) name. \\
\hline df-index & (Optional) Specifies the DF index. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
Use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

The following is sample output from the show platform software fed switch ip multicast df command:
```

Device\# show platform software fed switch active ip multicast df
VRF-ID DF-Index Ref-Count DF Set
===================================================
2 1 1 Vlan254
Vlan186
Vlan305
Vlan135
Tunnel4
NullO

```

\({ }_{\text {равт }}\) VI

\section*{Layer 2/3}
- Layer \(2 / 3\) Commands, on page 809

\section*{Layer 2/3 Commands}
- avb, on page 812
- channel-group, on page 814
- channel-protocol, on page 817
- clear 12protocol-tunnel counters, on page 818
- clear lacp, on page 819
- clear pagp, on page 820
- clear spanning-tree counters, on page 821
- clear spanning-tree detected-protocols, on page 822
- debug etherchannel, on page 823
- debug lacp, on page 824
- debug pagp, on page 825
- debug platform pm, on page 826
- debug platform udld, on page 827
- debug spanning-tree , on page 828
- instance (VLAN), on page 830
- interface port-channel, on page 832
- 12protocol-tunnel, on page 834
- lacp fast-switchover, on page 837
- lacp max-bundle, on page 839
- lacp port-priority, on page 840
- lacp rate, on page 841
- lacp system-priority, on page 842
- loopdetect, on page 843
- mvrp vlan creation, on page 845
- mvrp registration, on page 846
- mvrp timer, on page 848
- name (MST), on page 850
- no ptp enable, on page 851
- pagp learn-method, on page 852
- pagp port-priority, on page 854
- policy-map, on page 855
- port-channel, on page 857
- port-channel auto, on page 858
- port-channel load-balance, on page 859
- port-channel load-balance extended, on page 861
- port-channel min-links, on page 863
- ptp priority 1 value, on page 864
- ptp priority 2 value, on page 865
- ptp profile dotlas, on page 866
- rep admin vlan, on page 867
- rep block port, on page 868
- rep lsl-age-timer, on page 870
- rep lsl-retries, on page 871
- rep preempt delay, on page 872
- rep preempt segment, on page 873
- rep segment, on page 874
- rep stcn, on page 876
- revision, on page 877
- show avb domain, on page 878
- show avb streams, on page 880
- show dot1q-tunnel, on page 881
- show etherchannel, on page 882
- show interfaces rep detail, on page 887
- show 12 protocol-tunnel, on page 888
- show lacp, on page 890
- show loopdetect, on page 894
- show msrp port bandwidth, on page 895
- show msrp streams, on page 897
- show pagp, on page 899
- show platform etherchannel, on page 901
- show platform hardware fed active vlan ingress, on page 902
- show platform pm, on page 903
- show platform software fed switch ptp, on page 904
- show ptp brief, on page 906
- show ptp clock, on page 907
- show ptp parent, on page 908
- show ptp port, on page 910
- show rep topology, on page 911
- show spanning-tree, on page 913
- show spanning-tree mst, on page 919
- show udld, on page 922
- show vlan dot1q tag native, on page 926
- spanning-tree backbonefast, on page 927
- spanning-tree bpdufilter, on page 928
- spanning-tree bpduguard, on page 930
- spanning-tree bridge assurance, on page 932
- spanning-tree cost, on page 933
- spanning-tree etherchannel guard misconfig, on page 935
- spanning-tree extend system-id, on page 937
- spanning-tree guard, on page 938
- spanning-tree link-type, on page 939
- spanning-tree loopguard default, on page 941
- spanning-tree mode, on page 942
- spanning-tree mst, on page 943
- spanning-tree mst configuration, on page 944
- spanning-tree mst forward-time, on page 946
- spanning-tree mst hello-time, on page 947
- spanning-tree mst max-age, on page 948
- spanning-tree mst max-hops, on page 949
- spanning-tree mst pre-standard, on page 950
- spanning-tree mst priority, on page 952
- spanning-tree mst root, on page 953
- spanning-tree mst simulate pvst global, on page 954
- spanning-tree pathcost method, on page 955
- spanning-tree port-priority, on page 956
- spanning-tree portfast edge bpdufilter default, on page 958
- spanning-tree portfast edge bpduguard default, on page 960
- spanning-tree portfast default, on page 961
- spanning-tree transmit hold-count, on page 963
- spanning-tree uplinkfast, on page 964
- spanning-tree vlan, on page 965
- switchport, on page 968
- switchport access vlan, on page 969
- switchport mode, on page 970
- switchport nonegotiate, on page 972
- switchport trunk, on page 973
- switchport voice vlan, on page 976
- udld, on page 979
- udld port, on page 981
- udld reset, on page 983
- vlan dot1q tag native, on page 984
- vtp mode, on page 985

Syntax Description

\section*{Command Default \\ Command Modes}

\section*{Command History}

To enable Audio Video Bridging (AVB), use the avb command in global configuration mode. To disable AVB, use the no form of this command.
avb [\{ msrp-join-timer milliseconds | msrp-leave-timer milliseconds | msrp-leaveall-timer milliseconds | msrp-tx-slow | strict | vlan vlan-id \(\}\)]
no avb [\{ msrp-join-timer | msrp-leave-timer | msrp-leaveall-timer | msrp-tx-slow | strict | vlan \}]
msrp-join-timer milliseconds
(Optional) Configures the Multiple Stream Reservation Protocol (MSRP) join timer value in milliseconds. The range is from 100 to 4000 . The default is 200 .
msrp-leave-timer milliseconds (Optional) Configures the MSRP leave timer value in milliseconds. The range is from 500 to 60000 . The default is 1000 .
\begin{tabular}{ll}
\hline \begin{tabular}{l}
msrp-leaveall-timer \\
milliseconds
\end{tabular} & \begin{tabular}{l}
(Optional) Configures the MSRP leaveall timer value in milliseconds. The \\
range is from 10000 to 50000. The default is 10000.
\end{tabular} \\
\hline msrp-tx-slow & \begin{tabular}{l}
(Optional) Slows down the default packet sending rate with a gap of 100 \\
milliseconds.
\end{tabular} \\
\hline strict & (Optional) Configures the strict mode of AVB. \\
\hline vlan vlan-id & \begin{tabular}{l}
(Optional) Configures a specified VLAN as the default AVB VLAN. The \\
range is from from 2 to 4094.
\end{tabular}
\end{tabular}

AVB is disabled.
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline Cisco IOS XE Gibraltar 16.12.5 & \begin{tabular}{l}
The msrp-join-timer, msrp-leave-timer, msrp-leaveall-timer, \\
msrp-tx-slow keywords were introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

This example shows how to enable AVB:
```

Device> enable
Device\# configure terminal
Device(config)\# avb

```

This example shows how to configure the MSRP leave timer value:
```

Device> enable
Device\# configure terminal
Device(config)\# avb msrp-leave-timer 6000

```

This example shows how to set a specified VLAN as the default AVB VLAN:
```

Device> enable
Device\# configure terminal
Device(config)\# avb vlan 10

```

This example shows how set a specified VLAN as the default AVB VLAN:
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 1/1/1
Device(config-if) \# switchport mode trunk
Device(config-if) \# exit
Device(config)\# vlan 2
Device(config)\# avb vlan 10

```

\section*{channel-group}

To assign an Ethernet port to an EtherChannel group, or to enable an EtherChannel mode, or both, use the channel-group command in interface configuration mode. To remove an Ethernet port from an EtherChannel group, use the no form of this command.
channel-group channel-group-number mode \{active |auto [non-silent]|desirable [non-silent]|on | passive \(\}\)
no channel-group

\section*{Syntax Description}
\begin{tabular}{ll}
\hline channel-group-number & \begin{tabular}{l}
Channel group number. \\
The range is 1 to 128.
\end{tabular} \\
\hline mode & \begin{tabular}{l}
Specifies the EtherChannel mode.
\end{tabular} \\
\hline active & \begin{tabular}{l}
Unconditionally enables Link \\
Aggregation Control Protocol \\
(LACP).
\end{tabular} \\
\hline auto & \begin{tabular}{l}
Enables the Port Aggregation \\
Protocol (PAgP) only if a PAgP \\
device is detected.
\end{tabular} \\
\hline non-silent & \begin{tabular}{l}
(Optional) Configures the interface \\
for nonsilent operation when \\
connected to a partner that is \\
PAgP-capable. Use in PAgP mode \\
with the auto or desirable keyword \\
when traffic is expected from the \\
other device.
\end{tabular} \\
\hline passive & \begin{tabular}{l}
Unconditionally enables PAgP.
\end{tabular} \\
\hline mesirable & \begin{tabular}{l}
Enables the on mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

\section*{Command Modes}

Command History
No channel groups are assigned.
No mode is configured.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

For Layer 2 EtherChannels, the channel-group command automatically creates the port-channel interface when the channel group gets its first physical port. You do not have to use the interface port-channel command
in global configuration mode to manually create a port-channel interface. If you create the port-channel interface first, the channel-group-number can be the same as the port-channel-number, or you can use a new number. If you use a new number, the channel-group command dynamically creates a new port channel.

Although it is not necessary to disable the IP address that is assigned to a physical port that is part of a channel group, we strongly recommend that you do so.

You create Layer 3 port channels by using the interface port-channel command followed by the no switchport interface configuration command. Manually configure the port-channel logical interface before putting the interface into the channel group.

After you configure an EtherChannel, configuration changes that you make on the port-channel interface apply to all the physical ports assigned to the port-channel interface. Configuration changes applied to the physical port affect only the port where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.
Active mode places a port into a negotiating state in which the port initiates negotiations with other ports by sending LACP packets. A channel is formed with another port group in either the active or passive mode.

Auto mode places a port into a passive negotiating state in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. A channel is formed only with another port group in desirable mode. When auto is enabled, silent operation is the default.

Desirable mode places a port into an active negotiating state in which the port starts negotiations with other ports by sending PAgP packets. An EtherChannel is formed with another port group that is in the desirable or auto mode. When desirable is enabled, silent operation is the default.

If you do not specify non-silent with the auto or desirable mode, silent is assumed. The silent mode is used when the switch is connected to a device that is not PAgP-capable and rarely, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port prevents that port from ever becoming operational. However, it allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission. Both ends of the link cannot be set to silent.

In on mode, a usable EtherChannel exists only when both connected port groups are in the on mode.

Caution Use care when using the on mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Passive mode places a port into a negotiating state in which the port responds to received LACP packets but does not initiate LACP packet negotiation. A channel is formed only with another port group in active mode.

Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack (but not in a cross-stack configuration). Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.

If you set the protocol by using the channel-protocol interface configuration command, the setting is not overridden by the channel-group interface configuration command.

Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x authentication on an EtherChannel port, an error message appears, and IEEE 802.1x authentication is not enabled.

Do not configure a secure port as part of an EtherChannel or configure an EtherChannel port as a secure port.

For a complete list of configuration guidelines, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

\section*{\(\triangle\)}

Caution Do not enable Layer 3 addresses on the physical EtherChannel ports. Do not assign bridge groups on the physical EtherChannel ports because it creates loops.

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:
```

Device\# configure terminal
Device(config)\# interface range GigabitEthernet 2/0/1 - 2
Device(config-if-range)\# switchport mode access
Device(config-if-range)\# switchport access vlan 10
Device(config-if-range) \# channel-group 5 mode desirable
Device(config-if-range)\# end

```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the LACP mode active:
```

Device\# configure terminal
Device(config)\# interface range GigabitEthernet 2/0/1 - 2
Device(config-if-range)\# switchport mode access
Device(config-if-range)\# switchport access vlan 10
Device(config-if-range) \# channel-group 5 mode active
Device(config-if-range) \# end

```

This example shows how to configure a cross-stack EtherChannel in a switch stack. It uses LACP passive mode and assigns two ports on stack member 2 and one port on stack member 3 as static-access ports in VLAN 10 to channel 5:
```

Device\# configure terminal
Device(config)\# interface range GigabitEthernet 2/0/4 - 5
Device(config-if-range) \# switchport mode access
Device(config-if-range)\# switchport access vlan 10
Device(config-if-range)\# channel-group 5 mode passive
Device(config-if-range)\# exit
Device(config)\# interface GigabitEthernet 3/0/3
Device(config-if)\# switchport mode access
Device(config-if)\# switchport access vlan 10
Device(config-if) \# channel-group 5 mode passive
Device(config-if) \# exit

```

You can verify your settings by entering the show running-config privileged EXEC command.

\section*{channel-protocol}

To restrict the protocol used on a port to manage channeling, use the channel-protocol command in interface configuration mode. To return to the default setting, use the no form of this command.
channel-protocol \(\{\operatorname{lacp} \mid\) pagp \(\}\)
no channel-protocol
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}
lacp Configures an EtherChannel with the Link Aggregation Control Protocol (LACP).
pagp Configures an EtherChannel with the Port Aggregation Protocol (PAgP).

No protocol is assigned to the EtherChannel.

Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use the channel-protocol command only to restrict a channel to LACP or PAgP. If you set the protocol by using the channel-protocol command, the setting is not overridden by the channel-group command in interface configuration mode.
You must use the channel-group command in interface configuration mode to configure the EtherChannel parameters. The channel-group command also can set the mode for the EtherChannel.

You cannot enable both the PAgP and LACP modes on an EtherChannel group.
PAgP and LACP are not compatible; both ends of a channel must use the same protocol.
You cannot configure PAgP on cross-stack configurations.

This example shows how to specify LACP as the protocol that manages the EtherChannel:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# channel-protocol lacp

```

You can verify your settings by entering the show etherchannel [channel-group-number] protocol command in privileged EXEC mode.

\section*{clear I2protocol-tunnel counters}

To clear the protocol counters in protocol tunnel ports, use the clear 12protocol-tunnel counters command in privileged EXEC mode.
clear 12protocol-tunnel counters [interface-id]
Syntax Description
\begin{tabular}{lll}
\hline Command Default & None \\
\(\overline{\text { Command Modes }}\) & Privileged EXEC
\end{tabular}

Command History

\section*{Usage Guidelines}
interface-id
(Optional) The interface (physical interface or port cha counters are to be cleared.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.12.1 & This command was introduced.
\end{tabular}

Use this command to clear protocol tunnel counters on the switch or on the specified interface.
This example shows how to clear Layer 2 protocol tunnel counters on an interface:
Device\# clear l2protocol-tunnel counters gigabitethernet1/0/3

\section*{clear lacp}

\section*{Command Modes}

Command History
To clear Link Aggregation Control Protocol (LACP) channel-group counters, use the clear lacp command in privileged EXEC mode.
clear lacp [channel-group-number] counters
Syntax Description

Usage Guidelines
You can clear all counters by using the clear lacp counters command, or you can clear only the counters for the specified channel group by using the clear lacp channel-group-number counters command.

This example shows how to clear all channel-group information:
```

Device> enable
Device\# clear lacp counters

```

This example shows how to clear LACP traffic counters for group 4:
```

Device> enable
Device\# clear lacp 4 counters

```

You can verify that the information was deleted by entering the show lacp counters or the show lacp channel-group-number counters command in privileged EXEC mode.

\section*{clear pagp}

\section*{Usage Guidelines}

You can clear all counters by using the clear pagp counters command, or you can clear only the counters for the specified channel group by using the clear pagp channel-group-number counters command.

This example shows how to clear all channel-group information:
```

Device> enable
Device\# clear pagp counters

```

This example shows how to clear PAgP traffic counters for group 10:
```

Device> enable
Device\# clear pagp 10 counters

```

You can verify that the information was deleted by entering the show pagp command in privileged EXEC mode.

\section*{clear spanning-tree counters}

To clear the spanning-tree counters, use the clear spanning-tree counters command in privileged EXEC mode.
clear spanning-tree counters [interface interface-id]

Syntax Description
\begin{tabular}{llll}
\hline Command Modes & & Privileged EXEC & \\
\cline { 1 - 1 } Command History & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & If the interface-id value is not specified, spanning-tree counters are cleared for all interfaces. \\
& \begin{tabular}{l}
This example shows how to clear spanning-tree counters for all interfaces: \\
\\
\\
Device> enable \\
Device\# clear spanning-tree counters
\end{tabular} &
\end{tabular}

\section*{clear spanning-tree detected-protocols}

To restart the protocol migration process and force renegotiation with neighboring devices on the interface, use the clear spanning-tree detected-protocols command in privileged EXEC mode.
clear spanning-tree detected-protocols [interface interface-id]

\section*{Syntax Description}

\section*{Command Modes}

Command History
interface interface-id
(Optional) Restarts the protocol migration process on the specified in channels.
The VLAN range is 1 to 4094.
The port-channel range is 1 to 128 .
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

A device running the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol or the Multiple Spanning Tree Protocol (MSTP) supports a built-in protocol migration method that enables it to interoperate with legacy IEEE 802.1D devices. If a rapid-PVST+ or an MSTP device receives a legacy IEEE 802.1D configuration bridge protocol data unit (BPDU) with the protocol version set to 0 , the device sends only IEEE 802.1D BPDUs on that port. A multiple spanning-tree (MST) device can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or a rapid spanning-tree (RST) BPDU (Version 2).
The device does not automatically revert to the rapid-PVST+ or the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot learn whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. Use the clear spanning-tree detected-protocols command in this situation.

This example shows how to restart the protocol migration process on a port:
```

Device> enable
Device\# clear spanning-tree detected-protocols interface gigabitethernet2/0/1

```

\section*{debug etherchannel}

To enable debugging of EtherChannels, use the debug etherchannel command in privileged EXEC mode. To disable debugging, use the no form of the command.
```

debug etherchannel [{all | detail | error |event |idb }]
no debug etherchannel [{all | detail | error |event |idb }]

```

Syntax Description

Debugging is disabled.
Privileged EXEC

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\begin{tabular}{ll}
all & (Optional) Displays all EtherChannel debug messages. \\
\hline detail & (Optional) Displays detailed EtherChannel debug messages. \\
\hline error & (Optional) Displays EtherChannel error debug messages. \\
\hline event & (Optional) Displays EtherChannel event messages. \\
\hline idb & (Optional) Displays PAgP interface descriptor block debug messages.
\end{tabular}

The undebug etherchannel command is the same as the no debug etherchannel command.

Note Although the linecard keyword is displayed in the command-line help, it is not supported.

This example shows how to display all EtherChannel debug messages:
```

Device> enable
Device\# debug etherchannel all

```

This example shows how to display debug messages related to EtherChannel events:
```

Device> enable
Device\# debug etherchannel event

```

\section*{debug lacp}
\begin{tabular}{ll}
& \begin{tabular}{l}
To enable debugging of Link Aggregation Control Protocol (LACP) activity, use the debug lacp command \\
in privileged EXEC mode. To disable LACP debugging, use the no form of this command.
\end{tabular} \\
& \begin{tabular}{l}
debug lacp [\{all \(\mid\) event \(\mid\) fsm \(\mid\) misc \(\mid\) packet \(\}]\) \\
no debug lacp \([\{\) all \(\mid\) event \(\mid\) fsm \(\mid\) misc \(\mid\) packet \(\}]\)
\end{tabular} \\
\hline Syntax Description & \\
& \begin{tabular}{ll}
all (Optional) Displays all LACP debug messages. \\
event (Optional) Displays LACP event debug messages.
\end{tabular} \\
\hline & \begin{tabular}{ll}
fsm (Optional) Displays messages about changes within the LACP finite state machine.
\end{tabular} \\
\hline (Optional) Displays miscellaneous LACP debug messages. \\
\hline Command Default & Debugging is disabled. \\
\hline Command Modes & Privileged EXEC \\
\hline Command History & Release \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The undebug etherchannel command is the same as the no debug etherchannel command.
This example shows how to display all LACP debug messages:
```

Device> enable
Device\# debug LACP all

```

This example shows how to display debug messages related to LACP events:
```

Device> enable
Device\# debug LACP event

```

\section*{debug pagp}

To enable debugging of Port Aggregation Protocol (PAgP) activity, use the debug pagp command in privileged EXEC mode. To disable PAgP debugging, use the no form of this command.
debug pagp [\{all|dual-active |event |fsm | misc|packet \(\}\)] no debug pagp [\{all|dual-active |event |fsm |misc|packet\}]

Syntax Description
\begin{tabular}{l}
Command Default \\
\hline Command Modes
\end{tabular}

\section*{Command History}
all (Optional) Displays all PAgP debug messages.
\begin{tabular}{ll}
\hline dual-active & (Optional) Displays dual-active detection messages. \\
\hline event & (Optional) Displays PAgP event debug messages. \\
\hline \(\mathbf{f s m}\) & (Optional) Displays messages about changes within the \\
& PAgP finite state machine. \\
\hline misc & (Optional) Displays miscellaneous PAgP debug messages. \\
\hline packet & \begin{tabular}{l}
(Optional) Displays the receiving and transmitting PAgP \\
\end{tabular} \\
\hline
\end{tabular}

Debugging is disabled.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

The undebug pagp command is the same as the no debug pagp command.

This example shows how to display all PAgP debug messages:
```

Device> enable
Device\# debug pagp all

```

This example shows how to display debug messages related to PAgP events:
```

Device> enable
Device\# debug pagp event

```

\section*{debug platform pm}

To enable debugging of the platform-dependent port manager software module, use the debug platform pm command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug platform pm \{all|counters | errdisable | fec | if-numbers | \(\mathbf{1 2}\)-control|link-status | platform | pm-vectors [detail]| ses | vlans\}
no debug platform pm \{all|counters | errdisable | fec | if-numbers | \(\mathbf{1 2}\)-control|link-status | platform | pm-vectors [detail]| ses | vlans\}

Syntax Description
\begin{tabular}{ll}
\hline all & Displays all port manager debug messages. \\
\hline counters & Displays counters for remote procedure call (RPC) debug messages. \\
\hline errdisable & Displays error-disabled-related events debug messages. \\
\hline fec & \begin{tabular}{l}
Displays forwarding equivalence class (FEC) platform-related events \\
debug messages.
\end{tabular} \\
\hline if-numbers & Displays interface-number translation event debug messages. \\
\hline l2-control & Displays Layer 2 control infra debug messages. \\
\hline link-status & Displays interface link-detection event debug messages. \\
\hline platform & Displays port manager function event debug messages. \\
\hline pm-vectors & Displays port manager vector-related event debug messages. \\
\hline detail & (Optional) Displays vector-function details. \\
\hline ses & Displays service expansion shelf(SES) related event debug messages. \\
\hline vlans & Displays VLAN creation and deletion event debug messages. \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes
Command History

\section*{Usage Guidelines}

Debugging is disabled.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

The undebug platform pm command is the same as the no debug platform pm command.
This example shows how to display debug messages related to the creation and deletion of VLANs:
Device> enable
Device\# debug platform pm vlans

\section*{debug platform udld}

To enable debugging of the platform-dependent UniDirectional Link Detection (UDLD) software, use the debug platform udld command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug platform udld [\{error \(\mid\) event \(\}\)] [switch switch-number] no debug platform udld [\{error|event \(\}\)] [switch switch-number]

\section*{Syntax Description}
\begin{tabular}{ll}
error & (Optional) Displays error condition debug messages. \\
\hline event & (Optional) Displays UDLD-related platform event debug messages. \\
\hline \begin{tabular}{l}
switch \\
switch-number
\end{tabular} & (Optional) Displays UDLD debug messages for the specified stack member. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{Debugging is disabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Privileged EXEC} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
The undebug platform udld command is the same as the no debug platform udld command.
When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the session switch-number command in privileged EXEC mode. Then enter the debug command at the command-line prompt of the stack member.

\section*{debug spanning-tree}

To enable debugging of spanning-tree activities, use the debug spanning-tree command in EXEC mode. To disable debugging, use the no form of this command.
debug spanning-tree \(\{\) all | backbonefast |bpdu | bpdu-opt |config |etherchannel |events |exceptions | general |ha |mstp |pvst+| root | snmp | synchronization |switch |uplinkfast \(\}\)
no debug spanning-tree \(\{\) all | backbonefast | bpdu | bpdu-opt |config | etherchannel |events | exceptions |general |mstp|pvst+|root|snmp|synchronization |switch|uplinkfast\}

Syntax Description
\begin{tabular}{ll}
\hline all & Displays all spanning-tree debug messages. \\
\hline backbonefast & Displays BackboneFast-event debug messages. \\
\hline bpdu & \begin{tabular}{l}
Displays spanning-tree bridge protocol data unit (BPDU) \\
debug messages.
\end{tabular} \\
\hline bpdu-opt & Displays optimized BPDU handling debug messages. \\
\hline config & \begin{tabular}{l}
Displays spanning-tree configuration change debug \\
messages.
\end{tabular} \\
\hline etherchannel & Displays EtherChannel-support debug messages. \\
\hline events & Displays spanning-tree topology event debug messages. \\
\hline exceptions & Displays spanning-tree exception debug messages. \\
\hline general & Displays general spanning-tree activity debug messages. \\
\hline ha & Displays high-availability spanning-tree debug messages.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Default & Debugging is disabled. \\
\hline Command Modes & Privileged EXEC \\
\hline \multirow[t]{2}{*}{Command History} & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline \multirow[t]{3}{*}{Usage Guidelines} & The undebug spanning-tree command is the same as the no debug spanning-tree command. \\
\hline & When you enable debugging on a stack, it is enabled only on the active switch. To enable debugging on the standby switch, start a session from the active switch by using the session switch-number command in privileged EXEC mode. Enter the debug command at the command-line prompt of the standby switch. \\
\hline & To enable debugging on the standby switch without first starting a session on the active switch, use the remote command switch-number LINE command in privileged EXEC mode. \\
\hline
\end{tabular}

This example shows how to display all spanning-tree debug messages:
```

Device> enable
Device\# debug spanning-tree all

```

\section*{instance (VLAN)}

To map a VLAN or a group of VLANs to a multiple spanning tree (MST) instance, use the instance command in MST configuration mode. To return the VLANs to the default internal spanning tree (CIST) instance, use the no form of this command.
instance instance-id vlans vlan-range
no instance instance-id

\section*{Syntax Description}

\section*{Command Default}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline instance-id & Instance to which the specified VLANs are mapped. The range is from 0 to 4094. \\
\hline vlans vlan-range & \begin{tabular}{l}
Specifies the number of the VLANs to be mapped to the specified instance. The range \\
is from 1 to 4094.
\end{tabular} \\
\hline
\end{tabular}

No VLANs are mapped to any MST instance (all VLANs are mapped to the CIST instance).

MST configuration mode (config-mst)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

The vlans vlan-range is entered as a single value or a range.
The mapping is incremental, not absolute. When you enter a range of VLANs, this range is added or removed to the existing instances.

Any unmapped VLAN is mapped to the CIST instance.

\section*{Examples}

The following example shows how to map a range of VLANs to instance 2 :
```

Device(config) \# spanning-tree mst configuration
Device(config-mst)\# instance 2 vlans 1-100
Device(config-mst) \#

```

The following example shows how to map a VLAN to instance 5:
```

Device(config)\# spanning-tree mst configuration
Device(config-mst)\# instance 5 vlans 1100
Device(config-mst)\#

```

The following example shows how to move a range of VLANs from instance 2 to the CIST instance:
```

Device(config)\# spanning-tree mst configuration
Device(config-mst) \# no instance 2 vlans 40-60
Device(config-mst)\#

```

The following example shows how to move all the VLANs that are mapped to instance 2 back to the CIST instance:
```

Device(config)\# spanning-tree mst configuration
Device(config-mst)\# no instance 2
Device(config-mst)\#

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline name (MST configuration mode) & Sets the name of an MST region. \\
\hline revision & Sets the revision number for the MST configuration. \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline spanning-tree mst configuration & Enters MST configuration mode. \\
\hline
\end{tabular}

\section*{interface port-channel}

To access or create a port channel, use the interface port-channel command in global configuration mode. Use the no form of this command to remove the port channel.
interface port-channel port-channel-number no interface port-channel

\section*{Syntax Description}
port-channel-number Channel group number.
The range is 1 to 128 .
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline
\end{tabular}

No port channel logical interfaces are defined.
Global configuration

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

For Layer 2 EtherChannels, you do not have to create a port-channel interface before assigning physical ports to a channel group. Instead, you can use the channel-group command in interface configuration mode, which automatically creates the port-channel interface when the channel group obtains its first physical port. If you create the port-channel interface first, the channel-group-number can be the same as the port-channel-number, or you can use a new number. If you use a new number, the channel-group command dynamically creates a new port channel.

You create Layer 3 port channels by using the interface port-channel command followed by the no switchport command in interface configuration mode. You should manually configure the port-channel logical interface before putting the interface into the channel group.

Only one port channel in a channel group is allowed.

Caution When using a port-channel interface as a routed port, do not assign Layer 3 addresses on the physical ports that are assigned to the channel group.

Caution
Do not assign bridge groups on the physical ports in a channel group used as a Layer 3 port channel interface because it creates loops. You must also disable spanning tree.

Follow these guidelines when you use the interface port-channel command:
- If you want to use the Cisco Discovery Protocol (CDP), you must configure it on the physical port and not on the port channel interface.
- Do not configure a port that is an active member of an EtherChannel as an IEEE 802.1x port. If IEEE 802.1 x is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.

For a complete list of configuration guidelines, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

This example shows how to create a port channel interface with a port channel number of 5:
```

Device> enable
Device\# configure terminal
Device(config)\# interface port-channel 5

```

You can verify your setting by entering either the show running-config in privileged EXEC mode or the show etherchannel channel-group-number detail command in privileged EXEC mode.

\section*{I2protocol-tunnel}

To enable tunneling of Layer 2 protocols on an access port, IEEE 802.1Q tunnel port, or a port channel, use the l2protocol-tunnel command in interface configuration mode on the switch stack or on a standalone switch. Use the no form of this command to disable tunneling on the interface.

12protocol-tunnel [\{drop-threshold | shutdown-threshold \(\}\)] [value] [\{cdp|stp|vtp \}] [lldp] [\{point-to-point | [\{pagp | lacp|udld \(\}]\}]\)
no 12protocol-tunnel [\{drop-threshold | shutdown-threshold\}] [value] [\{cdp|stp|vtp \}] [lldp] [\{point-to-point | [\{pagp | lacp|udld \(\}]\}]\)

\section*{Syntax Description}
drop-threshold (Optional) Sets a drop threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface drops packets.
shutdown-threshold (Optional) Sets a shutdown threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface is shut down.
\begin{tabular}{ll}
\hline value & \begin{tabular}{l}
A threshold in packets per second to be received for encapsulation before the interface \\
shuts down, or the threshold before the interface drops packets. The range is 1 to 4096. \\
The default is no threshold.
\end{tabular} \\
\hline cdp & \begin{tabular}{l}
(Optional) Enables tunneling of CDP, specifies a shutdown threshold for CDP, or \\
specifies a drop threshold for CDP.
\end{tabular} \\
\hline stp & \begin{tabular}{l}
(Optional) Enables tunneling of STP, specifies a shutdown threshold for STP, or \\
specifies a drop threshold for STP.
\end{tabular} \\
\hline vtp & \begin{tabular}{l}
(Optional) Enables tunneling or VTP, specifies a shutdown threshold for VTP, or \\
specifies a drop threshold for VTP.
\end{tabular} \\
\hline lldp & \begin{tabular}{l}
(Optional) Enables tunneling of LLDP packets.
\end{tabular} \\
\hline point-to-point & \begin{tabular}{l}
(Optional) Enables point-to point tunneling of PAgP, LACP, and UDLD packets. \\
(Optional) Enables point-to-point tunneling of PAgP, specifies a shutdown threshold \\
for PAgP, or specifies a drop threshold for PAgP.
\end{tabular} \\
\hline pagp & \begin{tabular}{l}
(Optional) Enables point-to-point tunneling of LACP, specifies a shutdown threshold \\
for LACP, or specifis a drop threshold for LACP.
\end{tabular} \\
\hline lacp & \begin{tabular}{l}
(Optional) Enables point-to-point tunneling of UDLD, specifies a shutdown threshold \\
for UDLD, or specifies a drop threshold for UDLD.
\end{tabular} \\
\hline udld &
\end{tabular}

\section*{Command Default}

The default is that no Layer 2 protocol packets are tunneled.
The default is no shutdown threshold for the number of Layer 2 protocol packets.
The default is no drop threshold for the number of Layer 2 protocol packets.

\section*{Command Modes}

Interface configuration

\section*{Command History}

\section*{Release Modification}

Cisco IOS XE Gibraltar 16.12.1 This command was introduced.

Usage Guidelines
You can enable tunneling for Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunking Protocol (VTP) packets. You can also enable point-to-point tunneling for Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or UniDirectional Link Detection (UDLD) packets.

You must enter this command, with or without protocol types, to tunnel Layer 2 packets.
If you enter this command for a port channel, all ports in the channel must have the same configuration.
Layer 2 protocol tunneling across a service-provider network ensures that Layer 2 information is propagated across the network to all customer locations. When protocol tunneling is enabled, protocol packets are encapsulated with a well-known Cisco multicast address for transmission across the network. When the packets reach their destination, the well-known MAC address is replaced by the Layer 2 protocol MAC address.

You can enable Layer 2 protocol tunneling for CDP, STP, and VTP individually or for all three protocols.
In a service-provider network, you can use Layer 2 protocol tunneling to enhance the creation of EtherChannels by emulating a point-to-point network topology. When protocol tunneling is enabled on the service-provider switch for PAgP or LACP, remote customer switches receive the protocol data units (PDUs) and can negotiate automatic creation of EtherChannels.

To enable tunneling of PAgP, LACP, and UDLD packets, you must have a point-to-point network topology. To decrease the link-down detection time, you should also enable UDLD on the interface when you enable tunneling of PAgP or LACP packets.

You can enable point-to-point protocol tunneling for PAgP, LACP, and UDLD individually or for all three protocols.

Caution PAgP, LACP, and UDLD tunneling is only intended to emulate a point-to-point topology. An erroneous configuration that sends tunneled packets to many ports could lead to a network failure.

Enter the shutdown-threshold keyword to control the number of protocol packets per second that are received on an interface before it shuts down. When no protocol option is specified with the keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a drop threshold on the interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value.
When the shutdown threshold is reached, the interface is error-disabled. If you enable error recovery by entering the errdisable recovery cause 12 ptguard global configuration command, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out. If the error recovery function is not enabled for \(\mathbf{1 2}\) ptguard, the interface stays in the error-disabled state until you enter the shutdown and no shutdown interface configuration commands.

Enter the drop-threshold keyword to control the number of protocol packets per second that are received on an interface before it drops packets. When no protocol option is specified with a keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a shutdown threshold on the interface, the drop-threshold value must be less than or equal to the shutdown-threshold value.

When the drop threshold is reached, the interface drops Layer 2 protocol packets until the rate at which they are received is below the drop threshold.

The configuration is saved in NVRAM.

For more information about Layer 2 protocol tunneling, see the software configuration guide for this release.

\section*{Examples}

This example shows how to enable protocol tunneling for CDP packets and to configure the shutdown threshold as 50 packets per second:
```

Device(config-if) \# l2protocol-tunnel cdp
Device(config-if) \# l2protocol-tunnel shutdown-threshold cdp 50

```

This example shows how to enable protocol tunneling for STP packets and to configure the drop threshold as 400 packets per second:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet1/0/11
Device(config-if) \# l2protocol-tunnel stp
Device(config-if) \# l2protocol-tunnel drop-threshold stp 400

```

This example shows how to enable point-to-point protocol tunneling for PAgP and UDLD packets and to configure the PAgP drop threshold as 1000 packets per second:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# switchport access vlan 19
Device(config-if) \# switchport mode dot1q-tunnel
Device(config-if)\# l2protocol-tunnel point-to-point pagp
Device(config-if)\# l2protocol-tunnel point-to-point udld
Device(config-if) \# l2protocol-tunnel drop-threshold point-to-point pagp 1000

```

\section*{lacp fast-switchover}

To enable Link Aggregation Control Protocol (LACP) 1:1 link redundancy, use the lacp fast-switchover command in interface configuration mode. To disable LACP 1:1 link redundancy, use the no form of this command.
lacp fast-switchover [dampening time] no lacp fast-switchover [dampening time]

Syntax Description
dampening time Enables LACP 1:1 hot-standby dampening. The range is 30 to 180 seconds.

Command Default
Command Modes
Command History
LACP 1:1 link redundancy is disabled by default.
Interface configuration (config-if)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & This command was introduced.
\end{tabular}

Usage Guidelines
Prior to entering the lacp fast-switchover command, you must ensure the following:
- The port channel protocol type is LACP.
- The lacp max-bundle 1 command has been entered on the port channel. The lacp fast-switchover command will not affect the lacp max-bundle command.

Prior to entering the lacp fast-switchover dampening command, you must ensure the following:
- The port channel protocol type is LACP.
- The lacp max-bundle 1 and lacp fast-switchover commands have been entered on the port channel.

When you enable LACP 1:1 link redundancy, based on the system priority and port priority, the port with the higher system priority chooses the link as the active link and the other link as the standby link (lower the LACP port priority, higher the preference, and lower the LACP system priority, higher the preference). In the case of LACP 1:1 redundancy feature, when the active link fails, the standby link is selected as the new active link without taking down the port channel. When the original active link recovers, it reverts to its active link status. During this change-over, the port channel is also up.

In the case of LACP 1:1 hot standby dampening feature, it configures a timer that delays switchover back to the higher priority port after it becomes active.

Note
- We recommend that you configure two ports only (one active and one hot-standby) in the bundle for optimum performance.
- LACP 1:1 redundancy must be enabled at both ends of the LACP EtherChannel.
- LACP 1:1 redundancy and dampening works only on LACP port-channels.

\section*{Examples}

This example shows how to enable LACP 1:1 link redundancy:
```

Device> enable
Device\# configure terminal
Device(config)\# interface port-channel 40
Device(config-if)\# lacp fast-switchover
Device(config-if) \# lacp max-bundle 1

```

This example shows how to enable LACP 1:1 hot standby dampening:
```

Device> enable
Device\# configure terminal
Device(config)\# interface port-channel 40
Device(config-if)\# lacp fast-switchover
Device(config-if)\# lacp max-bundle 1
Device(config-if) \# lacp fast-switchover dampening 70

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 1 - 3 } & lacp max-bundle & Assigns and configures an EtherChannel interface to an EtherChannel group. \\
\hline show etherchannel & Displays the EtherChannel information for a channel. \\
\hline show lacp & Displays the LACP channel-group information. \\
\hline
\end{tabular}

\section*{lacp max-bundle}

To define the maximum number of active LACP ports allowed in a port channel, use the lacp max-bundle command in interface configuration mode. To return to the default setting, use the no form of this command.
```

lacp max-bundle max_bundle_number
no lacp max-bundle

```

Syntax Description

\section*{Command Modes}

Command History
max_bundle_number The maximum number of active LACP ports in the port channel. The range is 1 to 8. The default is 8 .

Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in hot-standby mode. When there are more than eight ports in an LACP channel group, the device on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other device (the noncontrolling end of the link) are ignored.

The lacp max-bundle command must specify a number greater than the number specified by the port-channel min-links command.

Use the show etherchannel summary command in privileged EXEC mode to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

This example shows how to specify a maximum of five active LACP ports in port channel 2:
```

Device> enable
Device\# configure terminal
Device(config)\# interface port-channel 2
Device(config-if)\# lacp max-bundle 5

```

\section*{lacp port-priority}

To configure the port priority for the Link Aggregation Control Protocol (LACP), use the lacp port-priority command in interface configuration mode. To return to the default setting, use the no form of this command.
lacp port-priority priority no lacp port-priority
Syntax Description
priority Port priority for LACP. The range is 1 to 65535 .
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

\section*{Command History}

The default is 32768 .

Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

The lacp port-priority command in interface configuration mode determines which ports are bundled and which ports are put in hot-standby mode when there are more than eight ports in an LACP channel group.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.

In port-priority comparisons, a numerically lower value has a higher priority: When there are more than eight ports in an LACP channel group, the eight ports with the numerically lowest values (highest priority values) for LACP port priority are bundled into the channel group, and the lower-priority ports are put in hot-standby mode. If two or more ports have the same LACP port priority (for example, they are configured with the default setting of 65535), then an internal value for the port number determines the priority.

Note The LACP port priorities are only effective if the ports are on the device that controls the LACP link. See the lacp system-priority command in global configuration mode for determining which device controls the link.

Use the show lacp internal command in privileged EXEC mode to display LACP port priorities and internal port number values.
For information about configuring LACP on physical ports, see the configuration guide for this release.
This example shows how to configure the LACP port priority on a port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if) \# lacp port-priority 1000

```

You can verify your settings by entering the show lacp [channel-group-number] internal command in privileged EXEC mode.

\section*{lacp rate}

Syntax Description

\section*{Command Default \\ }

Command History

To set the rate at which Link Aggregation Control Protocol (LACP) control packets are ingressed to an LACP-supported interface, use the lacp rate command in interface configuration mode. To return to the default settings, use the no form of this command
lacp rate \(\{\) normal | fast \(\}\) no lacp rate
normal Specifies that LACP control packets are ingressed at the normal rate, every 30 seconds after the link is bundled.
fast Specifies that LACP control packets are ingressed at the fast rate, once every 1 second.

The default ingress rate for control packets is 30 seconds after the link is bundled.

Interface configuration
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines

Use this command to modify the duration of LACP timeout. The LACP timeout value on Cisco switch is three times the LACP rate that is configured on the interface. Using the lacp ratecommand, you can select the LACP timeout value for a switch to be either 90 seconds or 3 seconds.

This command is supported only on LACP-enabled interfaces.
This example shows how to specify the fast (1 second) ingress rate on interface GigabitEthernet \(0 / 0\) :
```

Device> enable
Device\# configure terminall
Device(config)\# interface gigabitEthernet 0/0
Device(config-if)\# lacp rate fast

```

\section*{lacp system-priority}

To configure the system priority for the Link Aggregation Control Protocol (LACP), use the lacp system-priority command in global configuration mode on the device. To return to the default setting, use the no form of this command.
lacp system-priority priority no lacp system-priority
Syntax Description
priority System priority for LACP. The range is 1 to 65535 .
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

The default is 32768 .
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

The lacp system-priority command determines which device in an LACP link controls port priorities.
An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode. When there are more than eight ports in an LACP channel group, the device on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other device (the noncontrolling end of the link) are ignored.

In priority comparisons, numerically lower values have a higher priority. Therefore, the system with the numerically lower value (higher priority value) for LACP system priority becomes the controlling system. If both devices have the same LACP system priority (for example, they are both configured with the default setting of 32768), the LACP system ID (the device MAC address) determines which device is in control.

The lacp system-priority command applies to all LACP EtherChannels on the device.
Use the show etherchannel summary command in privileged EXEC mode to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

This example shows how to set the LACP system priority:
```

Device> enable
Device\# configure terminal
Device(config)\# lacp system-priority 20000

```

You can verify your settings by entering the show lacp sys-id command in privileged EXEC mode.

\section*{loopdetect}

To detect network loops, use the loopdetect command in interface configuration mode. To disable loop-detection guard use the no form of this command.
loopdetect [time | action syslog | source-port] no loopdetect [time | action syslog | source-port]

Syntax Description
\begin{tabular}{ll}
time & \begin{tabular}{l}
(Optional) Time interval at which loop-detect frames are sent, in seconds. Range: 0 to 10. \\
\\
Default: 5.
\end{tabular} \\
\hline action syslog & (Optional) Displays a system message when a loop is detected. \\
\hline source-port & (Optional) Error-disables the source port. \\
\hline
\end{tabular}

\section*{Command Default}

Loop-detection guard is not enabled.
Interface configuration (config-if)

Command History
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.2.1 & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

You can error-disable either the source port or the destination port depending on your requirement. When the loopdetect command is configured without any of the keywords or variables, the feature is enabled and the destination port is error-disabled when a loop is detected. We recommend that you error-disable the source port to better control traffic flow to and from your network.

The loopdetect action syslog command displays only a system message and does not error-disable the configured port. The no loopdetect action syslog command reverts the system to the last configured option.

\section*{Examples}

The following example shows how to enable loop-detection guard. In this example, the destination port is error-disabled by default and loop-detect frames are sent at the default time interval of five seconds:
```

Device\# enable
Device\# configure terminal
Device(config)\# interface tengigabitethernet 1/0/18
Device(config-if)\# loopdetect

```

The following example shows how to configure the time interval to send loop-detect frames. In this example, loop-detect frames are sent every 7 seconds and destination port is error-disabled when a loop is detected:
```

Device\# enable
Device\# configure terminal
Device(config)\# interface tengigabitethernet 1/0/18
Device(config-if)\# loopdetect 7

```

The following example shows how to enable the feature and only display a system message. There is no action taken on either the destination port or the source port:
```

Device\# enable
Device\# configure terminal
Device(config)\# interface tengigabitethernet 1/0/18
Device(config-if) \# loopdetect action syslog

```

The following example shows how to enable the feature and error-disable the source port:
```

Device\# enable
Device\# configure terminal
Device(config)\# interface tengigabitethernet 1/0/18
Device(config-if)\# loopdetect source-port

```

The following example shows how the no loopdetect action syslog command works. In the first part of the example, the feature has been configured to error disable the source port (loopdetect source-port). The feature is then reconfigured to display a system message and not error-disable a port (loopdetect action syslog). In the last part of the example, the no form of the loopdetect action syslog command is configured, which causes the system to revert to the last configured option, that is, to error disable the source port.

Part 1: Error-disabling the source port:
```

Device\# enable
Device\# configure terminal
Device(config)\# interface twentyfivegigabitethernet 1/0/20
Device(config-if)\# loopdetect source-port

```

Part 2: Reconfiguring to display a system message and not error-disable a port:
```

Device(config-if) \# loopdetect action syslog

```

Part 3: Using the no form of loopdetect action syslog (see Twe 1/0/20):
```

Device(config-if)\# no loopdetect action syslog
Device(config-if) \# end
Device\# show loopdetect
Interface Interval Elapsed-Time Port-to-Errdisbale ACTION
--------- -------- ------------ -------------------------------------
Twe1/0/1 5 errdisable Source Port SYSLOG
Twe1/0/20 5 0 errdisable Source Port ERRDISABLE
Twe2/0/3 5 errdisable Dest Port ERRDISABLE
Loopdetect is ENABLED

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show loopdetect & Displays details of all the interfaces where loop-detection guard is enabled. \\
\hline
\end{tabular}

\section*{mvrp vlan creation}

To enable dynamic VLAN creation on a device using Multiple VLAN Registration Protocol (MVRP), use the mvrpvlancreationcommand in global configuration mode. To disable dynamic VLAN creation for MVRP, use the no form of this command.
mvrp vlan creation
no mvrp van creation

Syntax Description

\section*{Command Default}

Command Modes

Command History

\section*{Usage Guidelines}

Examples

This command has no arguments or keywords.
MVRP is disabled.

Global configuration (config)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji & This command was introduced. \\
16.8.1a & \\
\hline
\end{tabular}

MVRP dynamic VLAN creation can be used only if Virtual Trunking Protocol (VTP) is in transparent mode.

The following example shows a command sequence enabling MVRP dynamic VLAN creation. Notice that the device recognizes that the VTP mode is incorrect and rejects the request for dynamic VLAN creation. Once the VTP mode is changed, MVRP dynamic VLAN creation is allowed.
```

Device(config)\# mvrp vlan creation
%Command Rejected: VTP is in non-transparent (server) mode.
Device(config)\# vtp mode transparent
Setting device to VTP TRANSPARENT mode.
Device(config) \# mvrp vlan creation
%VLAN now may be dynamically created via MVRP/

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mvrp global & Enables MVRP globally on a device. \\
\hline vtp mode & Sets the mode for VTP mode on the device. \\
\hline
\end{tabular}

\section*{mvrp registration}

To set the registrars in a Multiple Registration Protocol (MRP) Attribute Declaration (MAD) instance associated with an interface, use the mvrpregistrationcommand in global configuration mode. To disable the registrars, use the no form of this command.
```

mvrp registration {normal | fixed | forbidden}
no mvrp registration

```

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline normal & \begin{tabular}{l}
Registrar responds normally to incoming Multiple VLAN Registration Protocol (MVRP) \\
messages. Normal is the default state.
\end{tabular} \\
\hline fixed & Registrar ignores all incoming MVRP messages and remains in the IN state. \\
\hline forbidden & Registrar ignores all incoming MVRP messages and remains in the EMPTY (MT) state. \\
\hline
\end{tabular}

\section*{\begin{tabular}{l}
Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}}

\section*{Usage Guidelines}

Registrars are set to the normal state.
Global configuration (config)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Fuji \\
16.8.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

The mvrpregistration command is operational only if MVRP is configured on an interface.
The nomvrpregistration command sets the registrar state to the default (normal).
This command can be used to set the registrar in a MAD instance associated with an interface to one of the three states. This command is effective only if MVRP is operational on the interface.

Given that up to 4094 VLANs can be configured on a trunk port, there may be up to 4094 Advanced Services Module (ASM) and Route Switch Module (RSM) pairs in a MAD instance associated with that interface.

The following example sets a fixed, forbidden, and normal registrar on a MAD instance:
```

Device(config)\# mvrp global
%MVRP is now globally enabled. MVRP is operational on IEEE 802.1q trunk ports only.
Device(config)\# interface fastethernet2/1
Device(config-if) \# mvrp registration fixed
Device(config-if) \# interface fastethernet2/2
Device(config-if)\# mvrp registration forbidden
Device(config-if) \# interface fastethernet2/3
Device(config-if) \# no mvrp registration

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline clear mvrp statistics & Clears MVRP-related statistics recorded on one or all MVRP-enabled ports. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline debug mvrp & Displays MVRP debugging information. \\
\hline mvrp global & Enables MVRP globally on a device and on a particular interface. \\
\hline mvrp mac-learning auto & Enables automatic learning of MAC table entries by MVRP. \\
\hline mvrp timer & Sets period timers that are used in MRP on a given interface. \\
\hline mvrp vlan create & Enables an MVRP dynamic VLAN. \\
\hline show mvrp interface & \begin{tabular}{l}
Displays details of the administrative and operational MVRP states of all or \\
one particular IEEE 802.1Q trunk port in the device.
\end{tabular} \\
\hline show mvrp summary & Displays the MVRP configuration at the device level. \\
\hline
\end{tabular}

\section*{mvrp timer}

To set period timers that are used in Multiple VLAN Registration Protocol (MVRP) on a given interface, use the morp timer command in interface configuration mode. To remove the timer value, use the no form of this command.
mvrp timer \(\{\) join \(\mid\) leave \(\mid\) leave-all \(\mid\) periodic \(\}\) [centiseconds]
no mvrp timer

Syntax Description

\section*{Command Default}

Join timer value: 20 centiseconds
Leave timer value: 60 centiseconds
LeaveAll timer value: 10000 centiseconds

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

\section*{Examples}

Interface configuration (config-if)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Fuji \\
16.8.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

The following example sets the timer levels on an interface:
\begin{tabular}{|c|c|}
\hline join & Specifies the time interval between two transmit opportunities that are applied to the Applicant State Machine (ASMs). \\
\hline leave & Specifies the duration time before a registrar is moved to EMPTY (MT) state from leave-all (LV) state. \\
\hline leave-all & Specifies the time it takes for a LeaveAll timer to expire. \\
\hline periodic & Sets the timer value to periodic, a fixed value of 100 centiseconds. \\
\hline centiseconds & \begin{tabular}{l}
Timer value measured in centiseconds. \\
- Join timer value range is 20 to 10000000 . \\
- Leave timer value range is 60 to 10000000 . \\
- LeaveAll timer value range is 10000 and 10000000 . \\
- Periodic timer value is fixed at 100 centiseconds.
\end{tabular} \\
\hline
\end{tabular}

The nomvrptimer command resets the timer value to the default value.
```

Device(config)\# mvrp global
%MVRP is now globally enabled. MVRP is operational on IEE 802.1q trunk ports.
Device(config)\# interface GigabitEthernet 6/1
Device(config-if) \# mvrp timer join 30
Device(config-if) \# mvrp timer leave 70
Device(config-if) \# mvrp timer leaveAll 15000

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline clear mvrp statistics & Clears MVRP-related statistics recorded on one or all MVRP enabled ports. \\
\hline debug mvrp & Displays MVRP debugging information. \\
\hline mvrp global & Enables MVRP globally on a device and on a particular interface. \\
\hline mvrp mac-learning auto & Enables automatic learning of MAC table entries by MVRP. \\
\hline mvrp registration & Sets the registrars in a MAD instance associated with an interface. \\
\hline mvrp vlan create & Enables an MVRP dynamic VLAN. \\
\hline show mvrp interface & \begin{tabular}{l}
Displays details of the administrative and operational MVRP states of all or \\
one particular IEEE 802.1q trunk port in the device.
\end{tabular} \\
\hline show mvrp summary & Displays the MVRP configuration at the device level. \\
\hline
\end{tabular}

\section*{name (MST)}

To set the name of a Multiple Spanning Tree (MST) region, use the name command in MST configuration submode. To return to the default name, use the no form of this command.
name name
no name name

\section*{Syntax Description}
name
Name to give the MST region. It can be any string with a maximum length of 32 characters.

\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Two or more devices with the same VLAN mapping and configuration version number are considered to be in different MST regions if the region names are different.

\section*{no ptp enable}

To disable PTP on an interface, use the no ptp enable command in interface configuration mode.
To re-enable PTP on the same interface, use the ptp enable command in interface configuration mode.
no ptp enable
ptp enable
\begin{tabular}{lll}
\hline\(\overline{\text { Syntax Description }}\) & This command has no aruguments or keywords. & \\
\hline \begin{tabular}{lll}
Command Default & PTP is enabled on all the ports, by default. & \\
\hline Command Modes & Interface configuration (config-if) & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular} &
\end{tabular}

\section*{Examples}

This example shows how to disable PTP on an interface:
```

Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# no ptp enable

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ptp (interface) & Configures PTP on interfaces. \\
\hline ptp profile dot1as & \begin{tabular}{l}
Enables Generalized Precision Time Protocol (gPTP) \\
globally.
\end{tabular} \\
\hline
\end{tabular}

\section*{pagp learn-method}

To learn the source address of incoming packets received from an EtherChannel port, use the pagp learn-method command in interface configuration mode. To return to the default setting, use the no form of this command.
pagp learn-method \{aggregation-port |physical-port\} no pagp learn-method

\section*{Syntax Description}
\begin{tabular}{l}
Command Default \\
\hline Command Modes
\end{tabular}

\section*{Usage Guidelines}
aggregation-port Specifies address learning on the logical port channel. The device sends packets to the source using any port in the EtherChannel. This setting is the default. With aggregation-port learning, it is not important on which physical port the packet arrives.
physical-port Specifies address learning on the physical port within the EtherChannel. The device sends packets to the source using the same port in the EtherChannel from which it learned the source address. The other end of the channel uses the same port in the channel for a particular destination MAC or IP address.

The default is aggregation-port (logical port channel).
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

The learn method must be configured the same at both ends of the link.
The device supports address learning only on aggregate ports even though the physical-port keyword is provided in the command-line interface (CLI). The pagp learn-method and the pagp port-priority commands in interface configuration mode have no effect on the device hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports.

When the link partner to the device is a physical learner, we recommend that you configure the device as a physical-port learner by using the pagp learn-method physical-port command in interface configuration mode. We also recommend that you set the load-distribution method based on the source MAC address by using the port-channel load-balance src-mac command in global configuration mode. Use the pagp learn-method command in interface configuration mode only in this situation.

This example shows how to set the learning method to learn the address on the physical port within the EtherChannel:
```

Device> enable
Device\# configure terminal
Device(config)\# interface port-channel }
Device(config-if) \# pagp learn-method physical-port

```

This example shows how to set the learning method to learn the address on the port channel within the EtherChannel:
```

Device> enable
Device\# configure terminal

```
```

Device(config)\# interface port-channel 2
Device(config-if) \# pagp learn-method aggregation-port

```

You can verify your settings by entering either the show running-config command in privileged EXEC mode or the show pagp channel-group-number internal command in privileged EXEC mode.

\section*{pagp port-priority}

To select a port over which all Port Aggregation Protocol (PAgP) traffic through the EtherChannel is sent, use the pagp port-priority command in interface configuration mode. If all unused ports in the EtherChannel are in hot-standby mode, they can be placed into operation if the currently selected port and link fails. To return to the default setting, use the no form of this command.
pagp port-priority priority
no pagp port-priority

\section*{Syntax Description}

\section*{Command Default}

Command Modes
Command History
priority Priority number. The range is from 0 to 255 .

The default is 128 .
Interface configuration
Release

Cisco IOS XE Everest 16.5.1a

\section*{Modification}

This command was introduced.

The physical port with the highest priority that is operational and has membership in the same EtherChannel is the one selected for PAgP transmission.

The device supports address learning only on aggregate ports even though the physical-port keyword is provided in the command-line interface (CLI). The pagp learn-method and the pagp port-priority commands in interface configuration mode have no effect on the device hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the device is a physical learner, we recommend that you configure the device as a physical-port learner by using the pagp learn-method physical-port command in interface configuration mode. We also recommend that you set the load-distribution method based on the source MAC address by using the port-channel load-balance sre-mac command in global configuration mode. Use the pagp learn-method command in interface configuration mode only in this situation.

This example shows how to set the port priority to 200:
```

Device> enable
Device\# configure terminal
Device(config) \# interface gigabitethernet2/0/1
Device(config-if)\# pagp port-priority }20

```

You can verify your setting by entering the show running-config command in privileged EXEC mode or the show pagp channel-group-number internal command in privileged EXEC mode.

\section*{policy-map}

To enter policy-map configuration mode and create or modify a policy map that can be attached to one or more interfaces to specify a service policy, use the policy-mapcommand in global configuration mode. To delete a policy map, use the no form of this command.
policy-map [type \{ access-control| control subscriber | packet-service | performance-monitor \}] policy-map name

\section*{Syntax Description}

\section*{Command Default \\ Command History}
\begin{tabular}{ll}
\hline type & (Optional) Specifies the policy-map type. \\
\hline access-control & (Optional) Enables the access-control specific policy map. \\
\hline control subscriber & (Optional) Enables subscriber control policy domain. \\
\hline packet-service & (Optional) Enables packet service policy map. \\
\hline performance-monitor & (Optional) Enables policy map for the performance monitoring feature. \\
\hline policy-map name & Specifies the policy map. \\
\hline
\end{tabular}

The policy map is not configured.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Command Modes Global configuration (config)}

Usage Guidelines
Use the policy-map command to specify the name of the policy map to create (add or modify) before you configure policies for classes whose match criteria are defined in a class map with the class-map and match commands. You can configure class policies in a policy map only if the classes have match criteria defined for them.

Because you can configure a maximum of 64 class maps, a policy map cannot contain more than 64 class policies.

A single policy map can be attached concurrently to more than one interface. Except as noted, when you attempt to attach a policy map to an interface, the attempt is denied if the available bandwidth on the interface cannot accommodate the total bandwidth requested by the multiple policies. In such cases, if the policy map is already attached to other interfaces, the map is removed.

\section*{Example:}

The following is sample output from the policy-map command:
```

Device\# policy-map AVB-Output-Child-Policy
policy-map AVB-Output-Child-Policy
class VOIP-PRIORITY-QUEUE
bandwidth remaining percent 30
queue-buffers ratio 10
class MULTIMEDIA-CONFERENCING-STREAMING-QUEUE
bandwidth remaining percent 15
queue-limit dscp AF41 percent 80
queue-limit dscp AF31 percent 80
queue-limit dscp AF42 percent 90
queue-limit dscp AF32 percent 90
queue-buffers ratio 10
class TRANSACTIONAL-DATA-QUEUE
bandwidth remaining percent }1
queue-limit dscp AF21 percent 80
queue-limit dscp AF22 percent 90
queue-buffers ratio 10
class BULK-SCAVENGER-DATA-QUEUE
bandwidth remaining percent 15
queue-limit dscp AF11 percent 80
queue-limit dscp AF12 percent 90
queue-limit dscp CS1 percent 80
queue-buffers ratio 15
class class-default
bandwidth remaining percent 25
queue-buffers ratio 25

```

\section*{port-channel}

To convert the auto created EtherChannel into a manual channel and adding configuration on the EtherChannel, use the port-channel command in privileged EXEC mode.
port-channel \{channel-group-number persistent | persistent \}

Syntax Description

\section*{Command Modes}

Command History
channel-group-number Channel group number.
The range is 1 to 128 .
persistent Converts the auto created EtherChannel into a manual channel and allows you to add configuration on the EtherChannel.

Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

You can use the show etherchannel summary command in privileged EXEC mode to display the EtherChannel information.

This example shows how to convert the auto created EtherChannel into a manual channel:
```

Device> enable
Device\# port-channel 1 persistent

```

\section*{port-channel auto}

To enable the auto-LAG feature on a switch globally, use the port-channel auto command in global configuration mode. To disable the auto-LAG feature on the switch globally, use no form of this command.
port-channel auto
no port-channel auto
\begin{tabular}{llll}
\hline \begin{tabular}{lll}
Command Default & & By default, the auto-LAG feature is disabled globally and is enabled on all port interfaces. \\
\(\overline{\text { Command Modes }}\) & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular} &
\end{tabular}

Usage Guidelines You can use the show etherchannel auto command in privileged EXEC mode to verify if the EtherChannel was created automatically.

Examples
This example shows how to enable the auto-LAG feature on the switch:
```

Device> enable
Device\# configure terminal
Device(config) \# port-channel auto

```

\section*{port-channel load-balance}

To set the load-distribution method among the ports in the EtherChannel, use the port-channel load-balance command in global configuration mode. To reset the load-balancing mechanism to the default setting, use the no form of this command.
port-channel load-balance \(\{d s t-i p \mid\) dst-mac \(\mid\) dst-mixed-ip-port \(\mid\) dst-port \(\mid\) extended \(\mid\) src-dst-ip \(\mid\) src-dst-mac \(\mid\) src-dst-mixed-ip-port \(\mid\) src-dst-port \(\mid\) src-ip | src-mac \(\mid\) src-mixed-ip-port \(\mid\) src-port \(\}\)
no port-channel load-balance

\section*{Syntax Description}
\begin{tabular}{ll}
\hline Command Default & The default value is src-mac. \\
\hline Command Modes & Global configuration (config)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & \multicolumn{2}{|l|}{You can verify your setting by entering either the show running-config command in privileged EXEC mode or the show etherchannel load-balance command in privileged EXEC mode.} \\
\hline \(\overline{\text { Examples }}\) & \begin{tabular}{l}
The following example shows how \\
Device> enable \\
Device\# configure terminal \\
Device(config) \# port-channel
\end{tabular} & \begin{tabular}{l}
to set the load-distribution method to dst-mac: \\
load-balance dst-mac
\end{tabular} \\
\hline \multirow[t]{3}{*}{Related Commands} & Command & Description \\
\hline & show etherchannel load-balance & Displays information about EtherChannel load balancing. \\
\hline & show running-config & Displays the running configuration. \\
\hline
\end{tabular}

\section*{port-channel load-balance extended}

To set combinations of load-distribution methods among the ports in the EtherChannel, use the port-channel load-balance extended command in global configuration mode. To reset the extended load-balancing mechanism to the default setting, use the no form of this command.
port-channel load-balance extended \(\{\) dst-ip \(\mid\) dst-mac \(\mid\) dst-port \(\mid\) ipv6-label | 13-proto \(\mid\) src-ip \(\mid\) src-mac | src-port \(\}\)
no port-channel load-balance extended

\section*{Syntax Description}
dst-ip Specifies load distribution based on the destination host IP address.
dst-mac Specifies load distribution based on the destination host MAC address. Packets to the same destination are sent on the same port, but packets to different destinations are sent on different ports in the channel.
dst-port Specifies load distribution based on the destination TCP/UDP (Layer 4) port number for both IPv4 and IPv6.
ipv6-label Specifies load distribution based on the source MAC address and IPv6 flow label.
13-proto Specifies load distribution based on the source MAC address and Layer 3 protocols.
src-ip Specifies load distribution based on the source host IP address.
src-mac Specifies load distribution based on the source MAC address. Packets from different hosts use different ports in the channel, but packets from the same host use the same port.
src-port Specifies load distribution based on the TCP/UDP (Layer 4) port number.
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{The default is src-mac.} \\
\hline Command Modes & Global configuration & \\
\hline \multirow[t]{3}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline & Cisco IOS XE Amsterdam 17.3.x & The command was modified. You have to mandatorily configure atleast one of the keywords for the port-channel load-balance extended command. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

You can verify your setting by entering either the show running-config command in privileged EXEC mode or the show etherchannel load-balance command in privileged EXEC mode.

Examples
This example shows how to set the extended load-distribution method:
```

Device> enable
Device\# configure terminal
Device(config)\# port-channel load-balance extended dst-ip dst-mac src-ip

```

\section*{port-channel min-links}

To define the minimum number of LACP ports that must be bundled in the link-up state and bundled in the EtherChannel in order that a port channel becomes active, use the port-channel min-links command in interface configuration mode. To return to the default setting, use the no form of this command.
port-channel min-links min_links_number no port-channel min-links

Syntax Description

Command Modes
Command History
min_links_number The minimum number of active LACP ports in the port channel.
The range is 2 to 8 if the port channel number is 128 or lesser and the range is 2 to 4 if the port channel number is 129 or greater.
The default is 1 .

Interface configuration
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in hot-standby mode. When there are more than eight ports in an LACP channel group, the device on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other device (the noncontrolling end of the link) are ignored.

The port-channel min-links command must specify a number a less than the number specified by the lacp max-bundle command.

Use the show etherchannel summary command in privileged EXEC mode to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

This example shows how to specify a minimum of three active LACP ports before port channel 2 becomes active:
```

Device> enable
Device\# configure terminal
Device(config)\# interface port-channel 2
Device(config-if)\# port-channel min-links 3

```

\section*{ptp priority1 value}

To specify the priority 1 value to use when advertising a PTP clock, use the ptp priority 1 value command in global configuration mode.
ptp priority1 value

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}
Command History

Default is 128 .
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

This example shows how to specify the priorityl value:
Device> enable
Device\# configure terminal
Device(config) \# ptp priority1 120

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ptp priority2 value & Specifies the priority 2 number to use for this clock. \\
\hline no ptp enable & Disables PTP on an interface. \\
\hline ptp profile dot1as & \begin{tabular}{l}
Enables Generalized Precision Time Protocol \((\mathrm{gPTP})\) \\
globally.
\end{tabular} \\
\hline
\end{tabular}

\section*{ptp priority2 value}

To specify the priority 2 number to use when advertising a PTP clock, use the ptp priority 2 value command in global configuration mode
ptp priority2 value

Syntax Description
Command Default

Command Modes
Command History
value Specifies the priority 2 number to use for this clock.
The range is 0 to 255 . The default value is 128 .

Default is 128 .
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

This example shows how to specify the priority 2 value:
Device> enable
Device\# configure terminal
Device(config) \# ptp priority 2120

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ptp priority1 value & Specifies the priority 1 number to use for this clock. \\
\hline no ptp enable & Disables PTP on an interface. \\
\hline ptp profile dot1as & \begin{tabular}{l}
Enables Generalized Precision Time Protocol (gPTP) \\
globally.
\end{tabular} \\
\hline
\end{tabular}

\section*{ptp profile dot1as}

To enable Generalized Precision Time Protocol (gPTP) globally, use the ptp profile dot1as command in global configuration mode. To disable gPTP, use the no form of the command.
ptp profile dot1as
no ptp profile dot1as
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}
Command History

Examples

Related Commands

PTP is disabled on interfaces.

Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular}

This example shows how to enable gPTP:
Device> enable
Device\# configure terminal
Device(config) \# ptp profile dotlas
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ptp (interface) & Configures PTP on interfaces. \\
\hline no ptp enable & Disables PTP on an interface. \\
\hline
\end{tabular}

\section*{rep admin vlan}

To configure a Resilient Ethernet Protocol (REP) administrative VLAN for the REP to transmit hardware flood layer (HFL) messages, use the rep admin vlan command in global configuration mode. To return to the default configuration with VLAN 1 as the administrative VLAN, use the no form of this command.
rep admin vlan vlan-id segment segment-id no rep admin vlan vlan-id segment segment-id
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Syntax Description} & vlan-id & 48-bit static MAC address. \\
\hline & segment & configures administrative VLAN for an REP segment. \\
\hline & segment-id & specifies the segment for which the admin VLAN has been assigned. Segment id number ranges from 1-1024 \\
\hline Command Default & & \\
\hline Command Modes & Global configuration & \\
\hline \multirow[t]{3}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline & Cisco IOS XE Amsterdam 17.2.1 & The segment keyword was introduced. \\
\hline
\end{tabular}

\section*{rep block port}

To configure Resilient Ethernet Protocol (REP) VLAN load balancing on a REP primary edge port, use the rep block port command in interface configuration mode. To return to the default configuration with VLAN 1 as the administrative VLAN, use the no form of this command.
rep block port \{id port-id | neighbor-offset | preferred\} vlan \{vlan-list | all\} no rep block port \{id port-id | neighbor-offset | preferred\}

Syntax Description
id port-id Specifies the VLAN blocking alternate port by entering the unique port ID, which is automatically generated when REP is enabled. The REP port ID is a 16 -character hexadecimal value.
neighbor-offset VLAN blocking alternate port by entering the offset number of a neighbor. The range is from -256 to +256 . A value of 0 is invalid.
preferred Selects the regular segment port previously identified as the preferred alternate port for VLAN load balancing.
vlan \(\quad\) Identifies the VLANs to be blocked.
vlan-list VLAN ID or range of VLAN IDs to be displayed. Enter a VLAN ID from 1 to 4094, or a range or sequence of VLANs (such as 1-3, 22, and 41-44) to be blocked.
all Blocks all the VLANs.

\section*{Command Default}

The default behavior after you enter the rep preempt segment command in privileged EXEC (for manual preemption) is to block all the VLANs at the primary edge port. This behavior remains until you configure the rep block port command.

If the primary edge port cannot determine which port is to be the alternate port, the default action is no preemption and no VLAN load balancing.

\section*{Command Modes}

\section*{Command History}

Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

When you select an alternate port by entering an offset number, this number identifies the downstream neighbor port of an edge port. The primary edge port has an offset number of 1; positive numbers above 1 identify downstream neighbors of the primary edge port. Negative numbers identify the secondary edge port (offset number -1) and its downstream neighbors.

Note Do not enter an offset value of 1 because that is the offset number of the primary edge port itself.
If you have configured a preempt delay time by entering the rep preempt delay seconds command in interface configuration mode and a link failure and recovery occurs, VLAN load balancing begins after the configured
preemption time period elapses without another link failure. The alternate port specified in the load-balancing configuration blocks the configured VLANs and unblocks all the other segment ports. If the primary edge port cannot determine the alternate port for VLAN balancing, the default action is no preemption.

Each port in a segment has a unique port ID. To determine the port ID of a port, enter the show interfaces interface-id rep detail command in privileged EXEC mode.

\section*{Examples}

The following example shows how to configure REP VLAN load balancing:
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 4/1
Device(config-if) \# rep block port id 0009001818D68700 vlan 1-100

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l}
show interfaces rep \\
detail
\end{tabular} & \begin{tabular}{l}
Displays detailed REP configuration and status for all the interfaces or the \\
specified interface, including the administrative VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{rep Isl-age-timer}

To configure the Resilient Ethernet Protocol (REP) link status layer (LSL) age-out timer value, use the rep Isl-age-timer command in interface configuration mode. To restore the default age-out timer value, use the no form of this command.
rep Isl-age-timer milliseconds
no rep Isl-age-timer milliseconds

Syntax Description
\(\overline{\text { Command Default }}\)

Command History

\section*{Usage Guidelines}

\section*{Examples}

Related Commands
milliseconds REP LSL age-out timer value, in milliseconds (ms). The range is from 120 to 10000 in multiples of 40 .

The default LSL age-out timer value is 5 ms .
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

While configuring REP configurable timers, we recommend that you configure the REP LSL number of retries first and then configure the REP LSL age-out timer value.

The following example shows how to configure a REP LSL age-out timer value:
```

Device> enable

```

Device\# configure terminal
Device(config) \# interface TenGigabitEthernet 4/1
Device(config-if) \# rep segment 1 edge primary
Device(config-if) \# rep lsl-age-timer 2000
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline interface interface-type interface-name & Specifies a physical interface or port channel to receive STCNs. \\
\hline rep segment & Enables REP on an interface and assigns a segment ID. \\
\hline
\end{tabular}

\section*{rep IsI-retries}

To configure the REP link status layer (LSL) number of retries, use the rep lsl-retries command in interface configuration mode. To restore the default number of retries, use the no form of this command.
rep lsl-retries number-of-retries
no rep Isl-retries number-of-retries

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History
number-of-retries Number of LSL retries. The range of retries is from 3 to 10 .

The default number of LSL retries is 5 .

Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced \\
\hline
\end{tabular}

Usage Guidelines The rep Isl-retries command is used to configure the number of retries before the REP link is disabled. While configuring REP configurable timers, we recommend that you configure the REP LSL number of retries first and then configure the REP LSL age-out timer value.

The following example shows how to configure REP LSL retries.
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 4/1
Device(config-if)\# rep segment 2 edge primary

```

\section*{rep preempt delay}

To configure a waiting period after a segment port failure and recovery before Resilient Ethernet Protocol (REP) VLAN load balancing is triggered, use the rep preempt delay command in interface configuration mode. To remove the configured delay, use the no form of this command.
rep preempt delay seconds no rep preempt delay

\section*{Syntax Description}

\section*{Command Default \\ Command Modes}

Command History

\section*{Usage Guidelines}
seconds Number of seconds to delay REP preemption. The range is from 15 to 300 seconds. The default is manual preemption without delay.

REP preemption delay is not set. The default is manual preemption without delay.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Enter this command on the REP primary edge port.
Enter this command and configure a preempt time delay for VLAN load balancing to be automatically triggered after a link failure and recovery.

If VLAN load balancing is configured after a segment port failure and recovery, the REP primary edge port starts a delay timer before VLAN load balancing occurs. Note that the timer restarts after each link failure. When the timer expires, the REP primary edge port alerts the alternate port to perform VLAN load balancing (configured by using the rep block port command in interface configuration mode) and prepares the segment for the new topology. The configured VLAN list is blocked at the alternate port, and all other VLANs are blocked at the primary edge port.

You can verify your settings by entering the show interfaces rep command.

\section*{Examples}

The following example shows how to configure a REP preemption time delay of 100 seconds on the primary edge port:
```

Device> enable

```
Device\# configure terminal
Device(config) \# interface TenGigabitEthernet 4/1
Device(config-if) \# rep preempt delay 100
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline rep block port & Configures VLAN load balancing. \\
\hline \begin{tabular}{l}
show interfaces rep \\
detail
\end{tabular} & \begin{tabular}{l}
Displays detailed REP configuration and status for all the interfaces or the \\
specified interface, including the administrative VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{rep preempt segment}

To manually start Resilient Ethernet Protocol (REP) VLAN load balancing on a segment, use the rep preempt segment command in privileged EXEC mode.
rep preempt segment segment-id

\section*{Syntax Description}

\section*{Command Default}

Command Modes

\section*{Command History}

Usage Guidelines
segment-id ID of the REP segment. The range is from 1 to 1024.

Manual preemption is the default behavior.
Privileged EXEC

\section*{Release Modification}

Cisco IOS XE Everest 16.5.1a
This command was introduced.

Enter this command on the segment, which has the primary edge port on the device.
Ensure that all the other segment configuratios are completed before setting preemption for VLAN load balancing. When you enter the rep preempt segment segment-id command, a confirmation message appears before the command is executed because preemption for VLAN load balancing can disrupt the network.

If you do not enter the rep preempt delay seconds command in interface configuration mode on the primary edge port to configure a preemption time delay, the default configuration is to manually trigger VLAN load balancing on the segment.

Enter the show rep topology command in privileged EXEC mode to see which port in the segment is the primary edge port.

If you do not configure VLAN load balancing, entering the rep preempt segment segment-id command results in the default behavior, that is, the primary edge port blocks all the VLANs.
You can configure VLAN load balancing by entering the rep block port command in interface configuration mode on the REP primary edge port before you manually start preemption.

Examples

Related Commands

The following example shows how to manually trigger REP preemption on segment 100 :
Device> enable
Device\# rep preempt segment 100
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline rep block port & Configures VLAN load balancing. \\
\hline \begin{tabular}{l}
rep preempt \\
delay
\end{tabular} & \begin{tabular}{l}
Configures a waiting period after a segment port failure and recovery before REP VLAN \\
load balancing is triggered.
\end{tabular} \\
\hline \begin{tabular}{l}
show rep \\
topology
\end{tabular} & Displays REP topology information for a segment or for all the segments. \\
\hline
\end{tabular}

\section*{rep segment}

To enable Resilient Ethernet Protocol (REP) on an interface and to assign a segment ID to the interface, use the rep segment command in interface configuration mode. To disable REP on the interface, use the no form of this command.
rep segment segment-id [edge [no-neighbor] [primary]] [preferred] no rep segment

\section*{Syntax Description}
segment-id Segment for which REP is enabled. Assign a segment ID to the interface. The range is from 1 to 1024.
edge (Optional) Configures the port as an edge port. Each segment has only two edge ports.
no-neighbor (Optional) Specifies the segment edge as one with no external REP neighbor.
primary (Optional) Specifies that the port is the primary edge port where you can configure VLAN load balancing. A segment has only one primary edge port.
preferred (Optional) Specifies that the port is the preferred alternate port or the preferred port for VLAN load balancing.

Note Configuring a port as a preferred port does not guarantee that it becomes the alternate port; it merely gives it a slight edge among equal contenders. The alternate port is usually a previously failed port.
\begin{tabular}{l}
\hline\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline
\end{tabular}

REP is disabled on the interface.
Interface configuration

\section*{Release}

Cisco IOS XE Everest 16.5.1a

\section*{Modification}

This command was introduced.

\section*{Usage Guidelines}

REP ports must be a Layer 2 IEEE 802.1Q port or a 802.1AD port. You must configure two edge ports on each REP segment, a primary edge port and a secondary edge port.

If REP is enabled on two ports on a device, both the ports must be either regular segment ports or edge ports. REP ports follow these rules:
- If only one port on a device is configured in a segment, that port should be an edge port.
- If two ports on a device belong to the same segment, both the ports must be regular segment ports.
- If two ports on a device belong to the same segment, and one is configured as an edge port and one as a regular segment port (a misconfiguration), the edge port is treated as a regular segment port.

Caution REP interfaces come up in a blocked state and remain in a blocked state until notified that it is safe to unblock. Be aware of this to avoid sudden connection losses.

When REP is enabled on an interface, the default is for that port to be a regular segment port.

\section*{Examples}

The following example shows how to enable REP on a regular (nonedge) segment port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 4/1
Device(config-if)\# rep segment 100

```

The following example shows how to enable REP on a port and identify the port as the REP primary edge port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 4/1
Device(config-if)\# rep segment 100 edge primary

```

The following example shows how to enable REP on a port and identify the port as the REP secondary edge port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 4/1
Device(config-if)\# rep segment 100 edge

```

The following example shows how to enable REP as an edge no-neighbor port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface TenGigabitEthernet 4/1
Device(config-if)\# rep segment 1 edge no-neighbor primary

```

\section*{rep stcn}

\section*{Syntax Description}

To configure a Resilient Ethernet Protocol (REP) edge port to send segment topology change notifications (STCNs) to another interface or to other segments, use the rep sten command in interface configuration mode. To disable the task of sending STCNs to the interface or to the segment, use the no form of this command.
```

rep sten {interface interface-id | segment segment-id-list}
no rep stcn {interface | segment}

```
interface interface-id Specifies a physical interface or port channel to receive STCNs.
segment segment-id-list Specifies one REP segment or a list of REP segments to receive STCNs. The segment range is from 1 to 1024 . You can also configure a sequence of segments, for example, 3 to 5, 77, 100.
\begin{tabular}{lll}
\hline Command Default & Transmission of STCNs to other interfaces or segments is disabled. & \\
\hline Command Modes & Interface configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Examples

You can verify your settings by entering the show interfaces rep detail command in privileged EXEC mode.

The following example shows how to configure a REP edge port to send STCNs to segments 25 to 50 :

Device> enable
Device\# configure terminal
Device(config) \# interface TenGigabitEthernet 4/1
Device(config-if) \# rep stcn segment 25-50

\section*{revision}

To set the revision number for the Multiple Spanning Tree (802.1s) (MST) configuration, use the revision command in MST configuration submode. To return to the default settings, use the no form of this command.
revision version no revision

Syntax Description

\section*{ \\ \begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}}
\begin{tabular}{|l|l|}
\hline version & Revision number for the configuration; valid values are from 0 to 65535. \\
\hline
\end{tabular}

\section*{Usage Guidelines}
version is \(\mathbf{0}\)

MST configuration (config-mst)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Devices that have the same configuration but different revision numbers are considered to be part of two different regions.

Note Be careful when using the revision command to set the revision number of the MST configuration because a mistake can put the switch in a different region.

\section*{Examples}

This example shows how to set the revision number of the MST configuration:
```

Device(config)\# spanning-tree mst configuration
Device(config-mst)\# revision 5
Device(config-mst)\#

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline instance & Maps a VLAN or a set of VLANs to an MST instance. \\
\hline name (MST configuration submode) & Sets the name of an MST region. \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline spanning-tree mst configuration & Enters MST-configuration submode. \\
\hline
\end{tabular}

\section*{show avb domain}

To display the AVB domain information, use the show avb domain command.
show avb domain
\begin{tabular}{l}
\hline Command History \\
\hline Command Modes
\end{tabular}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular}

Global configuration mode (\#)

\section*{Example:}

The following is sample output from the show avb domain command:
```

Device\# show avb domain
AVB Class-A
Priority Code Point : 3
VLAN : 2
Core ports : 1
Boundary ports : 67
AVB Class-B
Priority Code Point : 2
VLAN : 2
Core ports : 1
Boundary ports : 67

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Interface & State & Delay & PCP & VID & Information \\
\hline
\end{tabular}
Te1/0/1 down N/A Oper state not up
Te1/0/2 down N/A Oper state not up
Te1/0/3 down N/A Oper state not up
Te1/0/4 down N/A Oper state not up
Te1/0/5 up N/A Port is not asCapable
Te1/0/6 down N/A Oper state not up
Te1/0/7 down N/A Oper state not up
Te1/0/8 down N/A Oper state not up
Te1/0/9 down N/A Oper state not up
Te1/0/10 down N/A Oper state not up
Te1/0/11 down N/A Oper state not up
Te1/0/12 down N/A Oper state not up
Te1/0/13 down N/A Oper state not up
Te1/0/14 down N/A Oper state not up
Te1/0/15 down N/A Oper state not up
Te1/0/16 down N/A Oper state not up
Te1/0/17 down N/A Oper state not up
Te1/0/18 down N/A Oper state not up
Te1/0/19 up N/A Port is not asCapable
Te1/0/20 down N/A Oper state not up
Te1/0/21 down N/A Oper state not up
Te1/0/22 down N/A Oper state not up
Te1/0/23 up N/A Port is not asCapable
Te1/0/24 down N/A Oper state not up
Te1/0/25 down N/A Oper state not up
Te1/0/26 down Oper state not up
\begin{tabular}{|c|c|c|c|c|c|}
\hline Te1/0/27 & down & N/A & & & Oper state not up \\
\hline Te1/0/28 & down & N/A & & & Oper state not up \\
\hline Te1/0/29 & up & N/A & & & Port is not asCapable \\
\hline Te1/0/30 & down & N/A & & & Oper state not up \\
\hline Te1/0/31 & down & N/A & & & Oper state not up \\
\hline Te1/0/32 & down & N/A & & & Oper state not up \\
\hline Te1/0/33 & down & N/A & & & Oper state not up \\
\hline Te1/0/34 & down & N/A & & & Oper state not up \\
\hline Te1/0/35 & up & N/A & & & Port is not asCapable \\
\hline Te1/0/36 & down & N/A & & & Oper state not up \\
\hline Te1/0/37 & down & N/A & & & Oper state not up \\
\hline Te1/0/38 & down & N/A & & & Oper state not up \\
\hline Te1/0/39 & up & 507 ns & & & \\
\hline Class- & & core & 3 & 2 & \\
\hline Class- & & core & 2 & 2 & \\
\hline Te1/0/40 & down & N/A & & & Oper state not up \\
\hline Te1/0/41 & down & N/A & & & Oper state not up \\
\hline Te1/0/42 & down & N/A & & & Oper state not up \\
\hline Te1/0/43 & down & N/A & & & Oper state not up \\
\hline Te1/0/44 & down & N/A & & & Oper state not up \\
\hline Te1/0/45 & down & N/A & & & Oper state not up \\
\hline Te1/0/46 & down & N/A & & & Oper state not up \\
\hline Te1/0/47 & down & N/A & & & Oper state not up \\
\hline Te1/0/48 & down & N/A & & & Oper state not up \\
\hline Te1/1/1 & down & N/A & & & Oper state not up \\
\hline Te1/1/2 & down & N/A & & & Oper state not up \\
\hline Te1/1/3 & down & N/A & & & Oper state not up \\
\hline Te1/1/4 & down & N/A & & & Oper state not up \\
\hline Te1/1/5 & down & N/A & & & Oper state not up \\
\hline Te1/1/6 & down & N/A & & & Oper state not up \\
\hline Te1/1/7 & down & N/A & & & Oper state not up \\
\hline Te1/1/8 & down & N/A & & & Oper state not up \\
\hline Te1/1/9 & down & N/A & & & Oper state not up \\
\hline Te1/1/10 & down & N/A & & & Oper state not up \\
\hline Te1/1/11 & down & N/A & & & Oper state not up \\
\hline Te1/1/12 & down & N/A & & & Oper state not up \\
\hline Te1/1/13 & down & N/A & & & Oper state not up \\
\hline Te1/1/14 & down & N/A & & & Oper state not up \\
\hline Te1/1/15 & down & N/A & & & Oper state not up \\
\hline Te1/1/16 & down & N/A & & & Oper state not up \\
\hline Fol/1/1 & down & N/A & & & Oper state not up \\
\hline Fol/1/2 & down & N/A & & & Oper state not up \\
\hline Fo1/1/3 & down & N/A & & & Oper state not up \\
\hline Fol/1/4 & down & N/A & & & Oper state not up \\
\hline
\end{tabular}

\section*{show avb streams}

To display the AVB stream information, use the show avb streams command.
show avb streams

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Command Modes}

Global configuration mode (\#)

\section*{Example:}

The following is sample output from the show avb streams command:

\section*{show dot1q-tunnel}

To display information about IEEE 802.1Q tunnel ports, use the show dot1q-tunnel in EXEC mode.
show dot1q-tunnel [interface interface-id]

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}
interface interface-id (Optional) Specifies the interface for which to display IEEE 802.1Q tunneling information. Valid interfaces include physical ports and port channels.

None

User EXEC
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.12.1 & This command was introduced.
\end{tabular}

The following are examples of output from the show dot1q-tunnel command:
```

Device\# show dot1q-tunnel
dot1q-tunnel mode LAN Port(s)
------------------------------
Gi1/0/1
Gil/0/2
Gil/0/3
Gi1/0/6
Po2
Device\# show dot1q-tunnel interface gigabitethernet1/0/1
dot1q-tunnel mode LAN Port(s)
----------------------------
Gi1/0/1

```

\section*{show etherchannel}

To display EtherChannel information for a channel, use the show etherchannel command in user EXEC mode.
show etherchannel [\{ channel-group-number |\{detail|port|port-channel|protocol|summary \} \}] | [\{detail | load-balance | port | port-channel | protocol | summary | platform \}]

\section*{Syntax Description}
channel-group-number (Optional)

Channel group number.
The range is 1 to 128 .
\begin{tabular}{ll}
\hline detail & (Optional) Displays detailed EtherChannel information. \\
\hline load-balance & \begin{tabular}{l}
(Optional) Displays the load-balance or frame-distribution \\
scheme among ports in the port channel.
\end{tabular} \\
\hline port & (Optional) Displays EtherChannel port information. \\
\hline port-channel & (Optional) Displays port-channel information. \\
\hline protocol & \begin{tabular}{l}
(Optional) Displays the protocol that is being used in the \\
channel.
\end{tabular} \\
\hline summary & (Optional) Displays a one-line summary per channel group. \\
\hline platform & (Optional) Displays channel-group platform specific fields. \\
\hline
\end{tabular}

\section*{Command Modes}

Command History
User EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

If you do not specify a channel group number, all channel groups are displayed.
In the output, the passive port list field is displayed only for Layer 3 port channels. This field means that the physical port, which is still not up, is configured to be in the channel group (and indirectly is in the only port channel in the channel group).

This is an example of output from the show etherchannel channel-group-number detail command:
```

Device> show etherchannel 1 detail
Group state = L2
Ports: 2 Maxports = 16
Port-channels: 1 Max Port-channels = 16
Protocol: LACP
Ports in the group:
Port: Gi1/0/1
------------
Port state = Up Mstr In-Bndl

```
```

Channel group = 1
Port index = OLoad = 0x00 Protocol = LACP
Flags: S - Device is sending Slow LACPDUs F - Device is sending fast LACPDU
A - Device is in active mode. P - Device is in passive mode.
Local information:

|  |  |  | LACP port | Admin | Oper | Port | Port |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Port | Flags | State | Priority | Key | Key | Number | State |
| Gil/0/1 | SA | bndl | 32768 | $0 \times 1$ | $0 \times 1$ | $0 \times 101$ | $0 \times 3 D$ |
| Gil/0/2 | A | bndl | 32768 | $0 \times 0$ | $0 \times 1$ | $0 \times 0$ | $0 \times 3 D$ |

Age of the port in the current state: 01d:20h:06m:04s
Port-channels in the group:
Port-channelsin the gro
Port-channel: Po1 (Primary Aggregator)
Age of the Port-channel = 01d:20h:20m:26s
Logical slot/port = 10/1 Number of ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP
Ports in the Port-channel:

```

```

Time since last port bundled: 01d:20h:24m:44s Gi1/0/2

```

This is an example of output from the show etherchannel channel-group-number summary command:
```

Device> show etherchannel 1 summary
Flags: D - down P - in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
u - unsuitable for bundling
U - in use f - failed to allocate aggregator
d - default port
Number of channel-groups in use: 1
Number of aggregators: 1
Group Port-channel Protocol Ports
------+-------------+-----------+------------------------------------------------

```

This is an example of output from the show etherchannel channel-group-number port-channel command:
```

Device> show etherchannel 1 port-channel
Port-channels in the group:
----------------------
Port-channel: Po1 (Primary Aggregator)
------------
Age of the Port-channel = 01d:20h:24m:50s

```
```

Logical slot/port = 10/1 Number of ports = 2
Logical slot/port = 10/1 Number of ports = 2
Port state = Port-channel Ag-Inuse
Protocol = LACP
Ports in the Port-channel:

```

```

Time since last port bundled: 01d:20h:24m:44s Gil/0/2

```

This is an example of output from show etherchannel protocol command:
```

Device\# show etherchannel protocol
Channel-group listing:
*--------------------
Group: 1
----------
Protocol: LACP
Group: 2
----------
Protocol: PAgP

```

This is an example of output from the show etherchannel channel-group-number platform command:

```

| Default Duplex | auto |  |
| :--- | :--- | :--- |
| Speed | auto | 1000 |
| Auto Speed Capable | 1 | 1 |
| No Negotiate | 0 | 0 |
| No Negotiate Capable | 0 | 0 |
| Flow Control Receive | ON | ON |
| Flow Control Send | Off | Off |
| Jumbo | 0 | 0 |

saved_holdqueue_out 0
saved_input_defqcount 2000
Jumbo Size 1500
Forwarding Vlans : 775
Current Pruned Vlans : none
Previous Pruned Vlans : none

```
\begin{tabular}{|c|c|c|c|}
\hline If Name & If Id & local & Group Mask \\
\hline GigabitEthernet1/0/4 & 0x000000000000000c & true & 5555555555555555 \\
\hline GigabitEthernet2/0/5 & 0x000000000000004f & false & aaaaaaaaaaaaaaa \\
\hline
\end{tabular}
```

Sw LinkNeg State : LinkStateUp

```
Sw LinkNeg State : LinkStateUp
No.of LinkDownEvents : 0
No.of LinkDownEvents : 0
XgxsResetOnLinkDown(10GE):
XgxsResetOnLinkDown(10GE):
LastLinkDownDuration(sec) 0
LastLinkDownDuration(sec) 0
LastLinkUpDuration(sec): 1585770902
LastLinkUpDuration(sec): 1585770902
======== fed group-mask summary =============
======== fed group-mask summary =============
Group Mask Info
Group Mask Info
Aggport IIF Id: 0x00000000000000d3
Aggport IIF Id: 0x00000000000000d3
Of Active Ports : 2
Of Active Ports : 2
Member Ports
Member Ports
 ==== Switch 1 ======
 ==== Switch 1 ======
============== fed ifm if-id etherchannel summary =================
============== fed ifm if-id etherchannel summary =================
Interface Name : Port-channel3
Interface Name : Port-channel3
Interface State : Enabled
Interface State : Enabled
Interface Type : ETHERCHANNEL
Interface Type : ETHERCHANNEL
Port Type : SWITCH PORT
Port Type : SWITCH PORT
EC Channel-Group: 3
EC Channel-Group: 3
Of Active Ports : 2
Of Active Ports : 2
Base GPN : 1552
Base GPN : 1552
Member Interface Name : GigabitEthernet1/0/4
Member Interface Name : GigabitEthernet1/0/4
Member Interface State : Enabled
Member Interface State : Enabled
Member Interface Type : ETHER
Member Interface Type : ETHER
Port Type : SWITCH PORT
Port Type : SWITCH PORT
Port Location : LOCAL
Port Location : LOCAL
Asic/core/Port : 0/0/3
Asic/core/Port : 0/0/3
EC GPN : 1558
EC GPN : 1558
EC Channel-Group : 3
EC Channel-Group : 3
EC Index : 6
EC Index : 6
Port Physical Subblock:
Port Physical Subblock:
EC Port Mask [0x5555555555555555]
EC Port Mask [0x5555555555555555]
===== switch 2 ===
===== switch 2 ===
Member Interface Name : GigabitEthernet2/0/5
Member Interface Name : GigabitEthernet2/0/5
Member Interface State : Enabled
Member Interface State : Enabled
Member Interface Type : ETHER
```

Member Interface Type : ETHER

```
```

Port Type : SWITCH PORT
Port Location : LOCAL
Asic/core/Port : 0/1/5
EC GPN : 1559
EC Channel-Group : 3
EC Index : 7
Port Physical Subblock:
EC Port Mask ...... [0xaaaaaaaaaaaaaaaa]

```

\section*{show interfaces rep detail}

To display detailed Resilient Ethernet Protocol (REP) configuration and status for all interfaces or a specified interface, including the administrative VLAN, use the show interfaces rep detail command in privileged EXEC mode.
show interfaces [interface-id] rep detail

Syntax Description

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

Enter this command on a segment edge port to send STCNs to one or more segments or to an interface.
You can verify your settings by entering the show interfaces rep detail command in privileged EXEC mode.

\section*{Examples}

The following example shows how to display the REP configuration and status for a specified
interface;
```

Device> enable
Device\# show interfaces TenGigabitEthernet4/1 rep detail
TenGigabitEthernet4/1 REP enabled
Segment-id: 3 (Primary Edge)
PortID: 03010015FA66FF80
Preferred flag: No
Operational Link Status: TWO WAY
Current Key: 02040015FA66FF8\overline{0}4050
Port Role: Open
Blocked VLAN: <empty>
Admin-vlan: 1
Preempt Delay Timer: disabled
Configured Load-balancing Block Port: none
Configured Load-balancing Block VLAN: none
STCN Propagate to: none
LSL PDU rx: 999, tx: 652
HFL PDU rx: 0, tx: 0
BPA TLV rx: 500, tx: 4
BPA (STCN, LSL) TLV rx: 0, tx: 0
BPA (STCN, HFL) TLV rx: 0, tx: 0
EPA-ELECTION TLV rx: 6, tx: 5
EPA-COMMAND TLV rx: 0, tx: 0
EPA-INFO TLV rx: 135, tx: 136

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l}
rep admin \\
vlan
\end{tabular} & Configures a REP administrative VLAN for the REP to transmit HFL messages. \\
\hline
\end{tabular}

\section*{show I2protocol-tunnel}

To display information about Layer 2 protocol tunnel ports, use the show l2protocol-tunnel in EXEC mode.
show l2protocol-tunnel [interface interface-id] summary

\section*{Syntax Description}
interface interface-id (Optional) Specifies the interface for which protocol tunneling information appears. Valid interfaces are physical ports and port channels.

The port-channel range is 1 to 128 .
summary (Optional) Displays only Layer 2 protocol summary information.
\begin{tabular}{llll}
\hline Command Default & None & \\
\hline Command Modes & User EXEC & \\
& Privileged EXEC & \\
Command History & Release & Modification \\
& &
\end{tabular}

Cisco IOS XE Gibraltar 16.12.1 This command was introduced.

\section*{Usage Guidelines}

After enabling Layer 2 protocol tunneling on an access or IEEE 802.1Q tunnel port by using the 12protocol-tunnel interface configuration command, you can configure some or all of these parameters:
- Protocol type to be tunneled
- Shutdown threshold
- Drop threshold

If you enter the show l2protocol-tunnel interface command, only information about the active ports on which all the parameters are configured appears.

If you enter the show l2protocol-tunnel summary command, only information about the active ports on which some or all of the parameters are configured appears.

\section*{Examples}

This is an example of output from the show l2protocol-tunnel command:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Device> show l2protocol-tunnel} \\
\hline \multicolumn{7}{|l|}{COS for Encapsulated Packets: 5} \\
\hline \multicolumn{7}{|l|}{Drop Threshold for Encapsulated Packets: 0} \\
\hline Port & Protocol & \multicolumn{2}{|l|}{Shutdown Drop Threshold Threshold} & Encapsulation Counter & Decapsulation Counter & Drop Counter \\
\hline Gi3/0/3 & --- & ---- & ---- & ---- & ---- & \\
\hline & & & & & & \\
\hline & pagp & - & -- & 0 & 242500 & \\
\hline & lacp & ---- & ---- & 24268 & 242640 & \\
\hline & udld & ---- & - & 0 & 897960 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Gi3/0/4} & - & - & ---- & ---- & ---- & -- \\
\hline & --- & ---- & --- & ---- & ---- & -- \\
\hline & --- & ---- & ---- & ---- & - & -- \\
\hline & pagp & 1000 & -- & 24249 & 242700 & \\
\hline & lacp & --- & --- & 24256 & 242660 & \\
\hline & udld & - & ---- & 0 & 897960 & \\
\hline \multirow[t]{6}{*}{Gi6/0/1} & cdp & --- & - & 134482 & 1344820 & \\
\hline & --- & ---- & ---- & ---- & ---- & --- \\
\hline & --- & ---- & ---- & ---- & ---- & --- \\
\hline & pagp & 1000 & ---- & 0 & 242500 & \\
\hline & lacp & 500 & - & 0 & 485320 & \\
\hline & udld & 300 & ---- & 44899 & 448980 & \\
\hline \multirow[t]{6}{*}{Gi6/0/2} & cdp & ---- & ---- & 134482 & 1344820 & \\
\hline & --- & ---- & ---- & ---- & ---- & -- \\
\hline & --- & ---- & ---- & ---- & ---- & -- \\
\hline & pagp & ---- & 1000 & 0 & 242700 & \\
\hline & lacp & --- & -- & 0 & 485220 & \\
\hline & udld & 300 & ---- & 44899 & 448980 & \\
\hline
\end{tabular}

This is an example of output from the show l2protocol-tunnel summary command:

\section*{show lacp}
\(\xrightarrow[\text { Syntax Description }]{ }\)

To display Link Aggregation Control Protocol (LACP) channel-group information, use the show lacp command in user EXEC mode.
show lacp [channel-group-number] \{counters |internal| neighbor |sys-id\}

Syntax Description
channel-group-number (Optional) Channel group number.
The range is 1 to 128 .
\begin{tabular}{ll}
\hline counters & Displays traffic information. \\
\hline internal & Displays internal information. \\
\hline neighbor & Displays neighbor information. \\
\hline sys-id & \begin{tabular}{l}
Displays the system identifier that is being used by LACP. The system identifier \\
consists of the LACP system priority and the device MAC address.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

User EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

You can enter any show lacp command to display the active channel-group information. To display specific channel information, enter the show lacp command with a channel-group number.

If you do not specify a channel group, information for all channel groups appears.
You can enter the channel-group-number to specify a channel group for all keywords except sys-id.
This is an example of output from the show lacp counters user EXEC command. The table that follows describes the fields in the display.

Table 108: show lacp counters Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline LACPDUs Sent and Recv & \begin{tabular}{l}
The number of LACP packets sent and received by a \\
port.
\end{tabular} \\
\hline Marker Sent and Recv & \begin{tabular}{l}
The number of LACP marker packets sent and \\
received by a port.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Marker Response Sent and Recv & \begin{tabular}{l}
The number of LACP marker response packets sent \\
and received by a port.
\end{tabular} \\
\hline LACPDUs Pkts and Err & \begin{tabular}{l}
The number of unknown and illegal packets received \\
by LACP for a port.
\end{tabular} \\
\hline
\end{tabular}

This is an example of output from the show lacp internal command:
```

Device> show lacp 1 internal
Flags: S - Device is requesting Slow LACPDUs
F - Device is requesting Fast LACPDUs
A - Device is in Active mode P - Device is in Passive mode
Channel group 1

|  |  |  | LACP port | Admin | Oper | Port | Port |
| :--- | :---: | :---: | :---: | :--- | :---: | ---: | ---: |
| Port | Flags | State | Priority | Key | Key | Number | State |
| Gi2/0/1 | SA | bndl | 32768 | $0 \times 3$ | $0 \times 3$ | $0 \times 4$ | $0 \times 3 D$ |
| Gi2/0/2 | SA | bndl | 32768 | $0 \times 3$ | $0 \times 3$ | $0 \times 5$ | $0 \times 3 D$ |

```

The following table describes the fields in the display:

\section*{Table 109: show lacp internal Field Descriptions}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline State & \begin{tabular}{l}
State of the specific port. These are the allowed values: \\
- - - Port is in an unknown state. \\
- bndl—Port is attached to an aggregator and bundled with other ports. \\
- susp-Port is in a suspended state; it is not attached to any aggregator. \\
- hot-sby-Port is in a hot-standby state. \\
- indiv-Port is incapable of bundling with any other port. \\
- indep-Port is in an independent state (not bundled but able to handle data traffic. In this case, LACP is not running on the partner port). \\
- down-Port is down.
\end{tabular} \\
\hline LACP Port Priority & Port priority setting. LACP uses the port priority to put ports in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Admin Key & Administrative key assigned to this port. LACP automatically generates an administrative key value as a hexadecimal number. The administrative key defines the ability of a port to aggregate with other ports. A port's ability to aggregate with other ports is determined by the port physical characteristics (for example, data rate and duplex capability) and configuration restrictions that you establish. \\
\hline Oper Key & Runtime operational key that is being used by this port. LACP automatically generates this value as a hexadecimal number. \\
\hline Port Number & Port number. \\
\hline Port State & \begin{tabular}{l}
State variables for the port, encoded as individual bits within a single octet with these meanings: \\
- bit0: LACP_Activity \\
- bit1: LACP_Timeout \\
- bit2: Aggregation \\
- bit3: Synchronization \\
- bit4: Collecting \\
- bit5: Distributing \\
- bit6: Defaulted \\
- bit7: Expired \\
Note In the list above, bit7 is the MSB and bit0 is the LSB.
\end{tabular} \\
\hline
\end{tabular}

This is an example of output from the show lacp neighbor command:
```

Device> show lacp neighbor
Flags: S - Device is sending Slow LACPDUs F - Device is sending Fast LACPDUs
A - Device is in Active mode P - Device is in Passive mode
Channel group 3 neighbors
Partner's information:

|  | Partner | Partner |  | Partner |
| :--- | :--- | :--- | :--- | :---: |
| Port | System ID <br> Gi2/0/1 | $32768,0007$. eb49.5e80 | Port Number |  |
|  |  | Age | Flags |  |
|  | LACP Partner | Partner | Partner |  |
|  | Port Priority | Oper Key | Port State |  |
|  | 32768 | $0 x 3$ | $0 x 3 C$ |  |

```
Partner's information:
```

| Partner | Partner |  | Partner |
| :--- | :--- | :---: | :---: |
| System ID | Port Number | Age | Flags |
| $32768,0007 . e b 49.5 e 80$ | $0 x D$ | 15 s | SP |

LACP Partner Partner Partner
Port Priority Oper Key Port State
32768 0x3 0x3C

```

This is an example of output from the show lacp sys-id command:
```

Device> show lacp sys-id
32765,0002.4b29.3a00

```

The system identification is made up of the system priority and the system MAC address. The first two bytes are the system priority, and the last six bytes are the globally administered individual MAC address associated to the system.

\section*{show loopdetect}

To display the details of all the interfaces where loop-detection guard is enabled, use the show loopdetect command in user EXEC or privileged EXEC mode.
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History

This command has no arguments or keywords.
None
User EXEC (>)
Privileged EXEC(\#)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.2.1 & This command was introduced.
\end{tabular}

\section*{Examples}

The following is a sample output of the show loopdetect command:

The table below describes the significant fields shown in the display.
Table 110: show loopdetect Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Interface & Displays the interfaces that have loop-detection guard enabled. \\
\hline Interval & Displays the time interval set to send the loop-detect frames in seconds. \\
\hline Elapsed-Time & Displays the time elapsed within the set time interval to send loop-detect frames. \\
\hline Port-to-Errdisbale & Displays the port that is configured to be error-disabled. \\
\hline Action & Displays the action the system will take when it detects a network loop. \\
\hline
\end{tabular}

\section*{show msrp port bandwidth}

To display Multiple Stream Reservation Protocol (MSRP) port bandwidth information, use the show msrp port bandwidth command.
show msrp port bandwidth
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced.
\end{tabular}

Command Modes
Global configuration mode (\#)

\section*{Example:}

The following is sample output from the show msrp port bandwidth command:
\begin{tabular}{|c|c|c|c|c|}
\hline Ethernet & Capacity & Assigned & Available & Reserved \\
\hline Interface & (Kbit/s) & A | B & A | B & A | B \\
\hline Te1/0/1 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/2 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/3 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/4 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/5 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/6 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/8 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/9 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/10 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/11 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/12 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/13 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/14 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/15 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/16 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/17 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/18 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/19 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/20 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/21 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/22 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/23 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/0/24 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Gil/1/1 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Gi1/1/2 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Gil/1/3 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Gi1/1/4 & 1000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/1 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/2 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/3 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/4 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/5 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/6 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/7 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Te1/1/8 & 10000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline Fol/1/1 & 40000000 & 75 | 0 & 75 | 75 & 0 | 0 \\
\hline
\end{tabular}
Fo1/1/2 4000000075 | \(0 \quad 75\) | \(75 \quad 0\)

\section*{show msrp streams}

To display information about the Multiple Stream Reservation Protocol (MSRP) streams, use the show msrp streams command.
show msrp streams [detailed | brief]

\section*{Syntax Description}

Command Modes
\begin{tabular}{ll}
\hline detailed & Displays detailed MSRP stream information. \\
\hline brief & Displays MSRP stream information in brief. \\
\hline Release & \\
\hline Cisco IOS XE Fuji 16.8.1a & Modification \\
\hline
\end{tabular}

Global configuration mode (\#)

\section*{Example:}

The following is sample output from the show msrp streams command:
```

Device\# show msrp streams
Stream ID Talker Listener
Advertise Fail Ready ReadyFail AskFail
R | D R | D R | D R | D R | D
yy:yy:yy:yy:yy:yy:0001 1 | 2 0 | 0 1 | 0 0 | 1 1 | 0
zz:zz:zz:zz:zz:zz:0002 1 | 0 0 | 1 1 | 0 0 | 0 0 | 1

```

The following is sample output from the show msrp streams detailed command:
```

Device\# show msrp streams detailed
Stream ID: 0011.0100.0001:1
Stream Age: 01:57:46 (since Mon Apr 25 23:41:11.413)
Create Time: Mon Apr 25 23:41:11.413
Destination Address: 91E0.F000.FE00
VLAN Identifier: 1
Data Frame Priority: 3 (Class A)
MaxFrameSize: 100
MaxIntervalFrames: 1 frames/125us
Stream Bandwidth: 6400 Kbit/s
Rank: 1
Received Accumulated Latency: 20
Stream Attributes Table:
------------------------------------------------------------------------------------
Interface Attr State Direction Type
---------------------------------------------------------------------------------------
Gil/0/1 Register Talker Advertise
Attribute Age: 01:57:46 (since Mon Apr 25 23:41:11.413)
MRP Applicant: Very Anxious Observer, send None
MRP Registrar: In
Accumulated Latency: 20

```
```

    Te1/1/1 Declare Talker Advertise
    Attribute Age: 00:19:52 (since Tue Apr 26 01:19:05.525)
    MRP Applicant: Quiet Active, send None
    MRP Registrar: In
    Accumulated Latency: 20
    ----
Te1/1/1 Register Listener Ready
Attribute Age: 00:13:17 (since Tue Apr 26 01:25:40.635)
MRP Applicant: Very Anxious Observer, send None
MRP Registrar: In
Gi1/0/1 Declare Listener Ready
Attribute Age: 00:13:17 (since Tue Apr 26 01:25:40.649)
MRP Applicant: Quiet Active, send None
MRP Registrar: In

```

The following is sample output from the show msrp streams brief command:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Device\# show msrp streams brief} \\
\hline \multicolumn{6}{|l|}{Legend: \(\mathrm{R}=\) Registered, \(\mathrm{D}=\) Declared.} \\
\hline Stream ID & Destination Address & Bandwidth (Kbit/s) & \[
\begin{gathered}
\text { Talkers } \\
\text { R | D }
\end{gathered}
\] & \[
\begin{gathered}
\text { Listeners } \\
\text { R | D }
\end{gathered}
\] & Fail \\
\hline 0011.0100.0001:1 & 91E0.F000.FE00 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0002:2 & 91E0.F000.FE01 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0003:3 & 91E0.F000.FE02 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0004:4 & 91E0.F000.FE03 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0005:5 & 91E0.F000.FE04 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0006:6 & 91E0.F000.FE05 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0007:7 & 91E0.F000.FE06 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0008:8 & 91E0.F000.FE07 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.0009:9 & 91E0.F000.FE08 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline 0011.0100.000A:10 & 91E0.F000.FE09 & 6400 & 1 | 1 & 1 | 1 & No \\
\hline
\end{tabular}

\section*{show pagp}

To display Port Aggregation Protocol (PAgP) channel-group information, use the show pagp command in EXEC mode.
show pagp [channel-group-number] \{counters |dual-active |internal| neighbor\}
Syntax Description
channel-group-number (Optional) Channel group number.
The range is 1 to 128 .
\begin{tabular}{ll}
\hline counters & Displays traffic information. \\
\hline dual-active & Displays the dual-active status. \\
\hline internal & Displays internal information. \\
\hline neighbor & Displays neighbor information. \\
\hline
\end{tabular}

Command Modes
User EXEC
Privileged EXEC

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines You can enter any show pagp command to display the active channel-group information. To display the nonactive information, enter the show pagp command with a channel-group number.

\section*{Examples}

This is an example of output from the show pagp 1 counters command:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Port} & \multicolumn{2}{|l|}{Information} & \multicolumn{2}{|c|}{Flush} \\
\hline & Sent & Recv & Sent & Recv \\
\hline \multicolumn{5}{|l|}{Channel group: 1} \\
\hline Gi1/0/1 & 45 & 42 & 0 & 0 \\
\hline Gi1/0/2 & 45 & 41 & 0 & 0 \\
\hline
\end{tabular}

This is an example of output from the show pagp dual-active command:
```

Device> show pagp dual-active
PAgP dual-active detection enabled: Yes
PAgP dual-active version: 1.1
Channel group 1
Dual-Active Partner Partner Partner
Port Detect Capable Name Port Version
Gi1/0/1 No -p2 Gi3/0/3 N/A
Gi1/0/2 No -p2 Gi3/0/4 N/A
<output truncated>

```

This is an example of output from the show pagp 1 internal command:
```

Device> show pagp 1 internal
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.
A - Device is in Auto mode.
Timers: H - Hello timer is running. Q - Quit timer is running.
S - Switching timer is running. I - Interface timer is running.
Channel group 1

|  |  |  | Hello | Partner | PAgP | Learning | Group |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Port | Flags | State | Timers | Interval | Count | Priority | Method | Ifindex |
| Gi1/0/1 | SC | U6/S7 | H | 30 s | 1 | 128 | Any | 16 |
| Gi1/0/2 | SC | U6/S7 | H | 30 s | 1 | 128 | Any | 16 |

```

This is an example of output from the show pagp 1 neighbor command:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Device> show pagp 1 neighbor} \\
\hline Flags: & \multicolumn{2}{|l|}{\begin{tabular}{l}
S - Device is sending Slow hello. \\
A - Device is in Auto mode.
\end{tabular}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
C - Device is in Consistent state. \\
P - Device learns on physical port.
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{Channel group 1 neighbors} \\
\hline & Partner & Partner & Partn & & & Partner & Group \\
\hline Port & Name & Device ID & Port & & Age & Flags & Cap. \\
\hline Gi1/0/1 & -p2 & 0002.4b29.4600 & Gi01//1 & & SC & 10001 & \\
\hline Gi1/0/2 & -p2 & 0002.4b29.4600 & Gi1/0/2 & 24 s & & 10001 & \\
\hline
\end{tabular}

\section*{show platform etherchannel}

To display platform-dependent EtherChannel information, use the show platform etherchannel command in privileged EXEC mode.
show platform etherchannel channel-group-number \{group-mask |load-balance mac src-mac dst-mac [ip src-ip dst-ip [port src-port dst-port]]\} [switch switch-number]

\section*{Syntax Description}
channel-group-number Channel group number.
The range is 1 to 128 .
group-mask Displays EtherChannel group mask.
load-balance Tests EtherChannel load-balance hash algorithm.
mac src-mac Specifies the source and destination MAC addresses.
dst-mac
ip \(s r c\)-ip \(d s t\)-ip (Optional) Specifies the source and destination IP addresses.
port src-port (Optional) Specifies the source and destination layer port numbers.
dst-port
switch
(Optional) Specifies the stack member.
switch-number

Command Modes

Command History

Privileged EXEC
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Use this command only when you are working directly with a technical support representative while troubleshooting a problem.

Do not use this command unless a technical support representative asks you to do so.

\section*{show platform hardware fed active vlan ingress}

To display if native vlan tagging is enabled or disabled for a particular vlan, use the show platform hardware fed active vlan ingress
show platform hardware fed active vlan vlan ID ingress

Syntax Description
\begin{tabular}{|l|l|}
\hline Syntax & Description \\
\hline vlan vlan ID & Specifies the VLAN ID. \\
\hline ingress & \begin{tabular}{l}
Specifies Spanning Tree Protocol (STP) state \\
information in ingress direction.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(\overline{\text { Command Modes }}\) & & \\
\cline { 3 - 4 } \cline { 3 - 3 } Command History & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Gibraltar 16.11.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Example}

The following is sample output from the show platform hardware fed active vlan ingress command:
```

Device\# show platform hardware fed active vlan 1 ingress
VLAN STP State in hardware
vlan id is:: 1
Interfaces in forwarding state: : Hul/0/45(Tagged)
flood list: : Hul/0/45

```

\section*{show platform pm}

To display platform-dependent port manager information, use the show platform pm command in privileged EXEC mode.
show platform pm \{etherchannel channel-group-number group-mask|interface-numbers |port-data interface-id \(\mid\) port-state \(\}\)
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{l}
etherchannel channel-group-number \\
group-mask
\end{tabular} & \begin{tabular}{l}
Displays the EtherChannel group-mask table for the specified \\
channel group. \\
The range is 1 to 128.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{ll}
interface-numbers & Displays interface numbers information. \\
\hline port-data interface-id & Displays port data information for the specified interface. \\
\hline port-state & Displays port state information. \\
\hline Command History & Privileged EXEC \\
& Release \\
& Cisco IOS XE Everest 16.5.1a
\end{tabular} & \begin{tabular}{l}
Modification \\
\hline
\end{tabular}
\end{tabular}

Usage Guidelines Use this command only when you are working directly with your technical support representative while troubleshooting a problem.

Do not use this command unless your technical support representative asks you to do so.

\section*{show platform software fed switch ptp}

To display information about ptp status on the port, use the show platform software fed switch ptp command. show platform software fed switch \{switch-number | active | standby\} ptp \{ domain domain-value | if-id value | test \}

\section*{Syntax Description}
\begin{tabular}{ll}
\hline switch switch-number & \begin{tabular}{l}
Displays information about the switch. Valid values \\
for switch-number argument are from 0 to 9.
\end{tabular} \\
\hline active & \begin{tabular}{l}
Displays information about the active instance of the \\
switch.
\end{tabular} \\
\hline standby & \begin{tabular}{l}
Displays information about the standby instance of \\
the switch.
\end{tabular} \\
\hline domain domain-value & Displays information about the specified domain. \\
\hline if-id value & Displays information about the specified interface. \\
\hline test & Executes ptp test \\
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Command Modes}

Global configuration mode (\#)

\section*{Example:}

The following is sample output from the show platform software fed switch active ptp if-id \(0 x 20\) command:
```

Device\# show platform software fed switch active ptp if-id 0x20
Displaying port data for if_id 20
========================================
Port Mac Address 04:6C:9D:4E:3A:9A
Port Clock Identity 04:6C:9D:FF:FE:4E:3A:80
Port number 28
PTP Version 2
domain_value 0
dotlas capable: FALSE
sync_recpt_timeout_time_interval 375000000 nanoseconds
sync_interval 125000000- nanoseconds
neighbor_rate_ratio 0.000000
neighbor_prop_delay 0 nanoseconds
compute_neighbor_rate_ratio: TRUE
compute_neighbor_prop_delay: TRUE
port_enabled: TRUE
ptt_port_enabled: TRUE
current_log_pdelay_req_interval 0
pdelay_req_interval 0 ñanoseconds
allowed_lost_responses 3
neighbor_prop_delay_threshold 2000 nanoseconds

```
```

is_measuring_delay : FALSE
Port state: : MASTER
sync seq num 22023
delay_req_seq_num 23857
num sync messages transmitted 0
num sync messages received 0
num followup messages transmitted 0
num followup messages received 0
num pdelay requests transmitted 285695
num pdelay requests received 0
num pdelay responses transmitted 0
num pdelay responses received 0
num pdelay followup responses transmitted 0
num pdelay followup responses received 0

```

\section*{show ptp brief}

To display a brief status of PTP on the interfaces, use the show ptp brief command in global configuration mode.

\section*{show ptp brief}

This command has no aruguments or keywords.

\section*{Syntax Description \\ Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following is a sample output from the show ptp brief command:
```

Device\# show ptp brief

```
Interface Domain PTP state

FortyGigabitEthernet1/1/1
FortyGigabitEthernet1/1/2 FAULTY
SLAVE
GigabitEthernet1/1/1
FAULTY
GigabitEthernet1/1/2
FAULTY
GigabitEthernet1/1/3
FAULTY
GigabitEthernet1/1/4
FAULTY
TenGigabitEthernet1/0/1
FAULTY
TenGigabitEthernet1/0/2
FAULTY
TenGigabitEthernet1/0/3
MASTER
TenGigabitEthernet1/0/4
FAULTY
TenGigabitEthernet1/0/5
FAULTY
TenGigabitEthernet1/0/6
FAULTY
TenGigabitEthernet1/0/7
MASTER
TenGigabitEthernet1/0/8
FAULTY
TenGigabitEthernet1/0/9
FAULTY
TenGigabitEthernet1/0/10
FAULTY
TenGigabitEthernet1/0/11
MASTER
TenGigabitEthernet1/0/12
FAULTY
TenGigabitEthernet1/0/13
FAULTY
TenGigabitEthernet1/0/14
FAULTY
TenGigabitEthernet1/0/15
FAULTY
TenGigabitEthernet1/0/16
FAULTY

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ptp clock & Displays PTP clock information. \\
\hline show ptp parent & Displays the parent clock information. \\
\hline show ptp port & Displays the PTP port information. \\
\hline show ptp time-property & Displays the PTP clock time property. \\
\hline
\end{tabular}

\section*{show ptp clock}

To display PTP clock information, use the show ptp clock command in global configuration mode.

\section*{show ptp clock}
\(\overline{\text { Syntax Description }}\) This command has no aruguments or keywords.

Command Modes
Command History

Privileged EXEC (\#)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Fuji 16.8.1a & This command was introduced.
\end{tabular}

The following is a sample output from the show ptp clock command:
```

Device\# show ptp clock
PTP CLOCK INFO
PTP Device Type: Boundary clock
PTP Device Profile: IEEE 802/1AS Profile
Clock Identity: 0x4:6C:9D:FF:FE:4F:95:0
Clock Domain: 0
Number of PTP ports: 38
PTP Packet priority: 4
Priority1: 128
Priority2: 128
Clock Quality:
Class: 248
Accuracy: Unknown
Offset (log variance): 16640
Offset From Master(ns): 0
Mean Path Delay(ns): 0
Steps Removed: 3
Local clock time: 00:12:13 UTC Jan 1 1970

```
Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ptp brief & Displays a brief status of PTP on the interfaces. \\
\hline show ptp parent & Displays the parent clock information. \\
\hline show ptp port & Displays the PTP port information. \\
\hline show ptp time-property & Displays the PTP clock time property. \\
\hline
\end{tabular}

\section*{show ptp parent}
\begin{tabular}{lll}
& \begin{tabular}{l}
To display the PTP parent clock information, use the show ptp parent command in global configuration \\
mode.
\end{tabular} \\
\begin{tabular}{ll}
show ptp parent
\end{tabular} \\
\(\overline{\text { Syntax Description }}\) & This command has no aruguments or keywords.
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ptp time-property & Displays the PTP clock time property. \\
\hline
\end{tabular}

\section*{show ptp port}

To display the PTP port information, use the show ptp port command in global configuration mode.

\section*{show ptp port}
\begin{tabular}{lll}
\hline \begin{tabular}{ll}
Syntax Description & \\
Command Modes & Privileged EXEC (\#) \\
\\
\hline Command History & Release \\
\cline { 1 - 2 } & Cisco IOS XE Fuji 16.8.1a
\end{tabular} & \\
& & Modification \\
\hline
\end{tabular}

\section*{Examples}

The following is a sample output from the show ptp port command:
```

Device\# show ptp port
PTP PORT DATASET: FortyGigabitEthernet1/1/1
Port identity: clock identity: 0x4:6C:9D:FF:FE:4E:3A:80
Port identity: port number: 1
PTP version: 2
Port state: FAULTY
Delay request interval(log mean): 5
Announce receipt time out: 3
Peer mean path delay(ns): 0
Announce interval(log mean): 1
Sync interval(log mean): 0
Delay Mechanism: End to End
Peer delay request interval(log mean): 0
Sync fault limit: 500000000
PTP PORT DATASET: FortyGigabitEthernet1/1/2
Port identity: clock identity: 0x4:6C:9D:FF:FE:4E:3A:80
Port identity: port number: 2
PTP version: 2
Port state: FAULTY
Delay request interval(log mean): 5
Announce receipt time out: 3
Peer mean path delay(ns): 0
Announce interval(log mean): 1
--More-

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ptp brief & Displays a brief status of PTP on the interfaces. \\
\hline show ptp clock & Displays PTP clock information. \\
\hline show ptp parent & Displays the parent clock information. \\
\hline show ptp time-property & Displays the PTP clock time property. \\
\hline
\end{tabular}

\section*{show rep topology}

To display Resilient Ethernet Protocol (REP) topology information for a segment or for all the segments, including the primary and secondary edge ports in the segment, use the show rep topology command in privileged EXEC mode.
show rep topology [segment segment-id] [archive] [detail]

Syntax Description
segment segment-id (Optional) Specifies the segment for which to display the REP topology information. The segment-id range is from 1 to 1024.
(Optional) Displays the previous topology of the segment. This keyword is useful for troubleshooting a link failure.
\begin{tabular}{ll}
\hline archive & \begin{tabular}{l}
(Optional) Displays the previous topology of the segment. This keyword is \\
useful for troubleshooting a link failure.
\end{tabular} \\
\hline detail & (Optional) Displays detailed REP topology information. \\
\hline
\end{tabular}

Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Examples The following is a sample output from the show rep topology command:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Device\# show rep topology} \\
\hline \multicolumn{4}{|l|}{REP Segment 1} \\
\hline BridgeName & PortName & Edge & Role \\
\hline 10.64 .106 .63 & Te5/4 & Pri & Open \\
\hline 10.64 .106 .228 & Te3/4 & & Open \\
\hline 10.64 .106 .228 & Te3/3 & & Open \\
\hline 10.64 .106 .67 & Te4/3 & & Open \\
\hline 10.64 .106 .67 & Te4/4 & & Alt \\
\hline 10.64 .106 .63 & Te4/4 & Sec & Open \\
\hline \multicolumn{4}{|l|}{REP Segment 3} \\
\hline BridgeName & PortName & Edge & Role \\
\hline 10.64 .106 .63 & Gi50/1 & Pri & Open \\
\hline SVT_3400_2 & Gi0/3 & & Open \\
\hline SVT_3400_2 & Gi0/4 & & Open \\
\hline 10.64.106.68 & Gi40/2 & & Open \\
\hline 10.64 .106 .68 & Gi40/1 & & Open \\
\hline 10.64.106.63 & Gi50/2 & Sec & Alt \\
\hline
\end{tabular}

The following is a sample output from the show rep topology detail command:
```

Device\# show rep topology detail
REP Segment 1
10.64.106.63, Te5/4 (Primary Edge)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b2e.1700
Port Number: 010

```
```

    Port Priority: 000
    Neighbor Number: 1 / [-6]
    10.64.106.228, Te3/4 (Intermediate)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b1b.1f20
Port Number: 010
Port Priority: 000
Neighbor Number: 2 / [-5]
10.64.106.228, Te3/3 (Intermediate)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b1b.1f20
Port Number: 00E
Port Priority: 000
Neighbor Number: 3 / [-4]
10.64.106.67, Te4/3 (Intermediate)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b2e.1800
Port Number: 008
Port Priority: 000
Neighbor Number: 4 / [-3]
10.64.106.67, Te4/4 (Intermediate)
Alternate Port, some vlans blocked
Bridge MAC: 0005.9b2e.1800
Port Number: 00A
Port Priority: 000
Neighbor Number: 5 / [-2]
10.64.106.63, Te4/4 (Secondary Edge)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b2e.1700
Port Number: 00A
Port Priority: 000
Neighbor Number: 6 / [-1]

```

\section*{show spanning-tree}

To display spanning-tree information for the specified spanning-tree instances, use the show spanning-tree command in privileged EXEC mode.
show spanning-tree [bridge-group] [\{ active |backbonefast |blockedports |bridge [id] |detail| inconsistentports |instances |interface interface-type interface-number |mst [\{ list |configuration [digest] \}] | pathcost method | root | summary [totals] |uplinkfast | vlan vlan-id \}]

Syntax Description
\begin{tabular}{|c|c|}
\hline bridge-group & (Optional) Specifies the bridge group number. The range is 1 to 255 . \\
\hline active & (Optional) Displays spanning-tree information on active interfaces only. \\
\hline backbonefast & (Optional) Displays spanning-tree BackboneFast status. \\
\hline blockedports & (Optional) Displays blocked port information. \\
\hline bridge & (Optional) Displays status and configuration of this switch. \\
\hline detail & (Optional) Shows status and configuration details. \\
\hline inconsistentports & (Optional) Displays information about inconsistent ports. \\
\hline instances & (Optional) Displays information about maximum STP instances. \\
\hline interface interface-type interface-number & (Optional) Specifies the type and number of the interface. Enter each interface designator, using a space to separate it from the one before and the one after. Ranges are not supported. Valid interfaces include physical ports and virtual LANs (VLANs). See the "Usage Guidelines" for valid values. \\
\hline mst & (Optional) Specifies multiple spanning-tree. \\
\hline list & (Optional) Specifies a multiple spanning-tree instance list. \\
\hline configuration digest & (Optional) Displays the multiple spanning-tree current region configuration. \\
\hline pathcost method & (Optional) Displays the default path-cost calculation method that is used. See the "Usage Guidelines" section for the valid values. \\
\hline root & (Optional) Displays root-switch status and configuration. \\
\hline summary & (Optional) Specifies a summary of port states. \\
\hline totals & (Optional) Displays the total lines of the spanning-tree state section. \\
\hline uplinkfast & (Optional) Displays spanning-tree UplinkFast status. \\
\hline vlan vlan-id & \begin{tabular}{l}
(Optional) Specifies the VLAN ID. The range is 1 to 4094. \\
If the vlan-id value is omitted, the command applies to the spanning-tree instance for all VLANs.
\end{tabular} \\
\hline id & (Optional) Identifies the spanning tree bridge. \\
\hline
\end{tabular}
\begin{tabular}{ll|l|}
\hline port-channel number & (Optional) Identifies the Ethernet channel associated with the interfaces. \\
\hline Command Modes & Privileged EXEC (\#) & \\
\hline Command History & Release & Modification \\
\cline { 4 - 4 } & Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The keywords and arguments that are available with the show spanning-tree command vary depending on the platform you are using and the network modules that are installed and operational.
The port-channel number values from 257 to 282 are supported on the Content Switching Module (CSM) and the Firewal Services Module (FWSM) only.

The interface-number argument designates the module and port number. Valid values for interface-number depend on the specified interface type and the chassis and module that are used. For example, if you specify a Gigabit Ethernet interface and have a 48-port 10/100BASE-T Ethernet module that is installed in a 13 -slot chassis, valid values for the module number are from 2 to 13 and valid values for the port number are from 1 to 48.

When checking spanning tree-active states and you have a large number of VLANs, you can enter the show spanning-tree summary total command. You can display the total number of VLANs without having to scroll through the list of VLANs.
The valid values for keyword pathcoast method are:
- append: Appends the redirected output to a URL (supporting the append operation).
- begin: Begins with the matching line.
- exclude: Excludes matching lines.
- include: Includes matching lines.
- redirect: Redirects output to a URL.
- tee: Copies output to a URL.

When you run the show spanning-tree command for a VLAN or an interface the switch router will display the different port states for the VLAN or interface. The valid spanning-tree port states are listening, learning, forwarding, blocking, disabled, and loopback.
```

Device\#
show spanning-tree
VLAN0001
Spanning tree enabled protocol rstp
Root ID Priority 32769
Address 5c71.0dfe.8380
This bridge is the root
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 5c71.0dfe.8380
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 300 sec

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Interface & Role & Sts & Cost & Prio.N. & Type \\
\hline Gi1/0/1 & Desg & FWD & 20000 & 128.1 & P2p \\
\hline Gil/0/18 & Desg & FWD & 20000 & 128.18 & P2p \\
\hline Gi1/0/21 & Desg & FWD & 20000 & 128.21 & P2p \\
\hline Te1/0/25 & Desg & FWD & 20000 & 128.25 & P2p \\
\hline Te1/0/37 & Desg & FWD & 2000 & 128.37 & P2p \\
\hline Te1/0/38 & Desg & FWD & 2000 & 128.38 & P2p \\
\hline Te1/0/45 & Desg & FWD & 20000 & 128.45 & P2p \\
\hline Te1/0/48 & Desg & FWD & 20000 & 128.48 & P2p \\
\hline
\end{tabular}

See the table below for definitions of the port states:
Table 111: show spanning-tree vlan Command Port States
\begin{tabular}{|l|l|}
\hline Field & Definition \\
\hline BLK & Blocked is when the port is still sending and listening to BPDU packets but is not forwarding traffic. \\
\hline DIS & Disabled is when the port is not sending or listening to BPDU packets and is not forwarding traffic. \\
\hline FWD & Forwarding is when the port is sending and listening to BPDU packets and forwarding traffic. \\
\hline LBK & Loopback is when the port recieves its own BPDU packet back. \\
\hline LIS & Listening is when the port spanning tree initially starts to listen for BPDU packets for the root bridge. \\
\hline LRN & Learning is when the port sets the proposal bit on the BPDU packets it sends out \\
\hline
\end{tabular}

This example shows how to display a summary of interface information:
```

Device\#
show spanning-tree
VLAN0001
Spanning tree enabled protocol rstp
Root ID Priority 32769
Address 6cb2.ae4a.4fc0
This bridge is the root
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 6cb2.ae4a.4fc0
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 300 sec

```

\begin{tabular}{lllll}
Hu5/0/15 & Desg FWD 500 & 128.687 & P2p \\
Hu5/0/21 & Back BLK 500 & 128.693 & P2p \\
Hu5/0/23 & Back BLK 500 & 128.695 & P2p \\
Fou6/0/27 & Back BLK 50 & 128.867 & P2p \\
Hu6/0/29 & Desg FWD 200 & 128.869 & P2p \\
Hu6/0/30 & Back BLK 200 & 128.870 & P2p
\end{tabular}

The table below describes the fields that are shown in the example.

\section*{Table 112: show spanning-tree Command Output Fields}
\begin{tabular}{|l|l|}
\hline Field & Definition \\
\hline Port ID Prio.Nbr & Port ID and priority number. \\
\hline Cost & Port cost. \\
\hline Sts & Status information. \\
\hline
\end{tabular}

This example shows how to display information about the spanning tree for this bridge only:

Device\# show spanning-tree bridge

This example shows how to display detailed information about the interface:
```

Device\#
show spanning-tree detail
VLAN0001 is executing the rstp compatible Spanning Tree protocol
Bridge Identifier has priority 32768, sysid 1, address 5c71.0dfe.8380
Configured hello time 2, max age 20, forward delay 15, transmit hold-count 6
We are the root of the spanning tree
Topology change flag not set, detected flag not set
Number of topology changes 27 last change occurred 4d19h ago
from TenGigabitEthernet1/0/48
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15
Timers: hello 0, topology change 0, notification 0, aging 300
Port 1 (GigabitEthernet1/0/1) of VLAN0001 is designated forwarding
Port path cost 20000, Port priority 128, Port Identifier 128.1.
Designated root has priority 32769, address 5c71.0dfe.8380
Designated bridge has priority 32769, address 5c71.0dfe.8380
Designated port id is 128.1, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default
BPDU: sent 208695, received 1
Port 18 (GigabitEthernet1/0/18) of VLANO001 is designated forwarding
!
!
<<output truncated>>

```

This example shows how to display a summary of port states:
```

show spanning-tree summary
Switch is in rapid-pvst mode
Root bridge for: VLANOOO1
Extended system ID is enabled
Portfast Default is disabled
PortFast BPDU Guard Default is disabled
Portfast BPDU Filter Default is disabled
Loopguard Default is disabled
EtherChannel misconfig guard is enabled
UplinkFast is disabled
BackboneFast is enabled but inactive in rapid-pvst mode
Configured Pathcost method used is long

| Name | Blocking Listening Learning Forwarding STP Active |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VLAN0001 | 1 | 0 | 0 | 26 | 27 |

```

This example shows how to display the total lines of the spanning-tree state section:
```

Device\#
show spanning-tree summary total Switch is in rapid-pvst mode
Root bridge for: VLANO001
Extended system ID is enabled
Portfast Default is disabled
PortFast BPDU Guard Default is disabled
Portfast BPDU Filter Default is disabled
Loopguard Default is disabled
EtherChannel misconfig guard is enabled
UplinkFast is disabled
BackboneFast is enabled but inactive in rapid-pvst mode
Configured Pathcost method used is long
Name Blocking Listening Learning Forwarding STP Active

| 1 vlan | 1 | 0 | 0 | 26 | 27 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

This example shows how to display information about the spanning tree for a specific VLAN:

```

Te1/0/48 Desg FWD 20000 128.48 P2p
!
!
<<output truncated>>

```

The table below describes the fields that are shown in the example.
Table 113: show spanning-tree vlan Command Output Fields
\begin{tabular}{|l|l|}
\hline Field & Definition \\
\hline Role & \begin{tabular}{l}
Current 802.1w role; valid values are Boun (boundary), Desg (designated), Root, Altn (alternate), \\
and Back (backup).
\end{tabular} \\
\hline Sts & \begin{tabular}{l}
Spanning-tree states; valid values are BKN* (broken)³, BLK (blocking), DWN (down), LTN \\
(listening), LBK (loopback), LRN (learning), and FWD (forwarding).
\end{tabular} \\
\hline Cost & Port cost. \\
\hline Prio.Nbr & Port ID that consists of the port priority and the port number. \\
\hline Status & \begin{tabular}{c}
Status information; valid values are as follows: \\
• P2p/Shr: The interface is considered as a point-to-point (resp. shared) interface by the spanning \\
tree. \\
• Edge: PortFast has been configured (either globally using the defaultcommand or directly \\
on the interface) and no BPDU has been received. \\
• *ROOT_Inc, *LOOP_Inc, *PVID_Inc and *TYPE_Inc: The port is in a broken state (BKN*) \\
for an inconsistency. The port would be (respectively) Root inconsistent, Loopguard \\
inconsistent, PVID inconsistent, or Type inconsistent. \\
• Bound(type): When in MST mode, identifies the boundary ports and specifies the type of the \\
neighbor (STP, RSTP, or PVST). \\
• Peer(STP): When in PVRST rapid-pvst mode, identifies the port connected to a previous \\
version of the 802.1D bridge.
\end{tabular} \\
\hline
\end{tabular}
\({ }^{3}\) For information on the *, see the definition for the Status field.

\section*{show spanning-tree mst}

To display the information about the Multiple Spanning Tree (MST) protocol, use the show spanning-tree mst command in privileged EXEC mode.
show spanning-tree mst [\{ configuration [digest] |instance-id-number \}] [interface interface] [detail] [service instance]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline instance-id-number & (Optional) Instance identification number. The range is from 0 to 4094. \\
\hline detail & (Optional) Displays detailed information about the MST protocol. \\
\hline interface & \begin{tabular}{l}
(Optional) Displays the information about the interfaces. See the "Usage Guidelines" \\
section for valid number values.
\end{tabular} \\
\hline configuration & (Optional) Displays information about the region configuration. \\
\hline digest & \begin{tabular}{l}
(Optional) Displays information about the message digest 5 (MD5) algorithm included \\
in the current MST configuration identifier (MSTCI).
\end{tabular} \\
\hline interface & (Optional) Displays information about the interface type. \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The valid values for the interface argument depend on the specified interface type and the chassis and module that are used. For example, if you specify a Gigabit Ethernet interface and have a 48 -port 10/100BASE-T Ethernet module that is installed in a 13-slot chassis, valid values for the module number are from 2 to 13 and valid values for the port number are from 1 to 48 .

The number of valid values for port-channel number are a maximum of 64 values ranging from 1 to 282 . The port-channel number values from 257 to 282 are supported on the Content Switching Module (CSM) and the Firewall Services Module (FWSM) only.

The number of valid values for vlan are from 1 to 4094.
In the output display of the show spanning-tree mst configuration command, a warning message may be displayed. This message appears if you do not map secondary VLANs to the same instance as the associated primary VLAN. The display includes a list of the secondary VLANs that are not mapped to the same instance as the associated primary VLAN. The warning message is as follows:

These secondary vlans are not mapped to the same instance as their primary:
-> 3
In the output display of the show spanning-tree mst configuration digest command, if the output applies to both standard and prestandard bridges at the same time on a per-port basis, two different digests are displayed.

If you configure a port to transmit prestandard PortFast bridge protocol data units (BPDUs) only, the prestandard flag displays in the show spanning-tree commands. The variations of the prestandard flag are as follows:
- Pre-STD (or pre-standard in long format): This flag is displayed if the port is configured to transmit prestandard BPDUs and if a prestandard neighbor bridge has been detected on this interface.
- Pre-STD-Cf (or pre-standard (config) in long format): This flag is displayed if the port is configured to transmit prestandard BPDUs but a prestandard BPDU has not been received on the port, the autodetection mechanism has failed, or a misconfiguration, if there is no prestandard neighbor, has occurred.
- Pre-STD-Rx (or prestandard (rcvd) in long format): This flag is displayed when a prestandard BPDU has been received on the port, but it has not been configured to send prestandard BPDUs. The port will send prestandard BPDUs, but Cisco recommends that you change the port configuration so that the interaction with the prestandard neighbor does not rely only on the autodetection mechanism.

If the configuration is not prestandard compliant (for example, a single MST instance has an ID that is greater than or equal to 16,) the prestandard digest is not computed and the following output is displayed:
```

Device\# show spanning-tree mst configuration digest
Name [region1]
Revision 2 Instances configured 3
Digest 0x3C60DBF24B03EBF09C5922F456D18A03
Pre-std Digest N/A, configuration not pre-standard compatible

```

MST BPDUs include an MSTCI that consists of the region name, region revision, and an MD5 digest of the VLAN-to-instance mapping of the MST configuration.

See the show spanning-tree mst command field description table for output descriptions.

\section*{Examples}

The following example shows how to display information about the region configuration:

The following example shows how to display additional MST-protocol values:
```

Device\# show spanning-tree mst 3 detail

###### MST03 vlans mapped: 3,3000-3999

Bridge address 0002.172c.f400 priority 32771 (32768 sysid 3)
Root this switch for MST03
GigabitEthernet1/1 of MST03 is boundary forwarding
Port info port id 128.1 priority }12
cost 20000
Designated root address 0002.172c.f400 priority 32771
cost 0
Designated bridge address 0002.172c.f400 priority 32771 port
id 128.1
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 4, received 0
FastEthernet4/1 of MST03 is designated forwarding
Port info port id 128.193 priority 128 cost
200000
Designated root address 0002.172c.f400 priority 32771

```
```

cost 0
Designated bridge address 0002.172c.f400 priority 32771 port id
128.193
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 254, received 1
FastEthernet4/2 of MST03 is backup blocking
Port info port id 128.194 priority 128 cost
200000
Designated root address 0002.172c.f400 priority 32771
cost 0
Designated bridge address 0002.172c.f400 priority 32771 port id
128.193
Timers: message expires in 2 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 3, received 252

```

The following example shows how to display the MD5 digest included in the current MSTCI:
```

Device\# show spanning-tree mst configuration digest
Name [mst-config]
Revision 10 Instances configured 25
Digest 0x40D5ECA178C657835C83BBCB16723192
Pre-std Digest 0x27BF112A75B72781ED928D9EC5BB4251

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline spanning-tree mst & Sets the path cost and port-priority parameters for any MST instance. \\
\hline spanning-tree mst forward-time & \begin{tabular}{l}
Sets the forward-delay timer for all the instances on the Cisco 7600 \\
series router.
\end{tabular} \\
\hline spanning-tree mst hello-time & \begin{tabular}{l}
Sets the hello-time delay timer for all the instances on the Cisco 7600 \\
series router.
\end{tabular} \\
\hline spanning-tree mst max-hops & \begin{tabular}{l}
Specifies the number of possible hops in the region before a BPDU is \\
discarded.
\end{tabular} \\
\hline
\end{tabular}

\section*{show udld}

To display UniDirectional Link Detection (UDLD) administrative and operational status for all ports or the specified port, use the show udld command in user EXEC mode.
show udld [Auto-Template | Capwap | GigabitEthernet | GroupVI | InternalInterface | Loopback | Null | Port-channel | TenGigabitEthernet | Tunnel | Vlan] interface_number show udld neighbors

\section*{Syntax Description}
\begin{tabular}{ll}
\hline Auto-Template & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the auto-template \\
interface. The range is from 1 to 999.
\end{tabular} \\
\hline Capwap & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the CAPWAP \\
interface. The range is from 0 to 2147483647.
\end{tabular} \\
\hline GigabitEthernet & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the \\
GigabitEthernet interface. The range is from 0 to 9.
\end{tabular} \\
\hline GroupVI & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the group virtual \\
interface. The range is from 1 to 255.
\end{tabular} \\
\hline InternalInterface & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the internal \\
interface. The range is from 0 to 9.
\end{tabular} \\
\hline Loopback & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the loopback \\
interface. The range is from 0 to 2147483647.
\end{tabular} \\
\hline Null & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the null \\
interface.
\end{tabular} \\
\hline Port-channel & \begin{tabular}{l}
(Optional) Displays UDLD operational status of the Ethernet \\
channel interfaces.
\end{tabular} \\
\hline The range is 1 to 128.
\end{tabular} \begin{tabular}{ll}
(Optional) Displays UDLD operational status of the Ten Gigabit \\
Ethernet interface. The range is from 0 to 9.
\end{tabular}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
If you do not enter an interface ID, administrative and operational UDLD status for all interfaces appear.
This is an example of output from the show udld interface-id command. For this display, UDLD is enabled on both ends of the link, and UDLD detects that the link is bidirectional. The table that follows describes the fields in this display.
```

Device> show udld gigabitethernet2/0/1
Interface gi2/0/1
--
Port enable administrative configuration setting: Follows device default
Port enable operational state: Enabled
Current bidirectional state: Bidirectional
Current operational state: Advertisement - Single Neighbor detected
Message interval: 60
Time out interval: 5
Entry 1
Expiration time: 146
Device ID: 1
Current neighbor state: Bidirectional
Device name: Switch-A
Port ID: Gi2/0/1
Neighbor echo 1 device: Switch-B
Neighbor echo 1 port: Gi2/O/2
Message interval: 5
CDP Device name: Switch-A

```

Table 114: show udld Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Interface & \begin{tabular}{l}
The interface on the local device configured for \\
UDLD.
\end{tabular} \\
\hline Port enable administrative configuration setting & \begin{tabular}{l}
How UDLD is configured on the port. If UDLD is \\
enabled or disabled, the port enable configuration \\
setting is the same as the operational enable state. \\
Otherwise, the enable operational setting depends on \\
the global enable setting.
\end{tabular} \\
\hline Port enable operational state & \begin{tabular}{l}
Operational state that shows whether UDLD is \\
actually running on this port.
\end{tabular} \\
\hline Current bidirectional state & \begin{tabular}{l}
The bidirectional state of the link. An unknown state \\
appears if the link is down or if it is connected to an \\
UDLD-incapable device. A bidirectional state appears \\
if the link is a normal two-way connection to a \\
UDLD-capable device. All other values mean \\
miswiring.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Current operational state & \begin{tabular}{l}
The current phase of the UDLD state machine. For a \\
normal bidirectional link, the state machine is most \\
often in the Advertisement phase.
\end{tabular} \\
\hline Message interval & \begin{tabular}{l}
How often advertisement messages are sent from the \\
local device. Measured in seconds.
\end{tabular} \\
\hline Time out interval & \begin{tabular}{l}
The time period, in seconds, that UDLD waits for \\
echoes from a neighbor device during the detection \\
window.
\end{tabular} \\
\hline Entry 1 & \begin{tabular}{l}
Information from the first cache entry, which contains \\
a copy of echo information received from the \\
neighbor.
\end{tabular} \\
\hline Expiration time & \begin{tabular}{l}
The amount of time in seconds remaining before this \\
cache entry is aged out.
\end{tabular} \\
\hline Device ID & The neighbor device identification. \\
\hline Current neighbor state & \begin{tabular}{l}
The neighbor's current state. If both the local and \\
neighbor devices are running UDLD normally, the \\
neighbor state and local state should be bidirectional. \\
If the link is down or the neighbor is not \\
UDLD-capable, no cache entries appear.
\end{tabular} \\
\hline CDP device name & \begin{tabular}{l}
The CDP device name or the system serial number. \\
The system serial number appears if the device name \\
is not set or is set to the default (Switch).
\end{tabular} \\
\hline Neighbor echo 1 device & \begin{tabular}{l}
The device name or the system serial number of the \\
neighbor. The system serial number appears if the \\
device name is not set or is set to the default (Switch).
\end{tabular} \\
\hline Neighbor echo 1 port & \begin{tabular}{l}
The rate, in seconds, at which the neighbor is sending \\
advertisement messages.
\end{tabular} \\
\hline The enabled for UDLD. \\
which the echo originated. \\
echo originated.
\end{tabular}\(|\)\begin{tabular}{l}
The port number ID of the neighbor from which the \\
\hline
\end{tabular}

This is an example of output from the show udld neighbors command:
```

Device> enable
Device\# show udld neighbors
Port Device Name Device ID Port-ID OperState
-------- -------------------- ---------- -------------------------------
Gi2/0/1 Switch-A 1 Gi2/0/1 Bidirectional

```

\section*{show vlan dot1q tag native}

To display the status of tagging on the native VLAN use the show vlan dot1q tag native command.
show vlan dot1q tag native

Syntax Description
This command has no arguments or keywords.
\begin{tabular}{lll}
\(\overline{\text { Command Modes }}\) & & \\
Command History & & \\
& Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Everest 16.5.1aCisco IOS XE Gibraltar This command was introduced.
16.11.1

\section*{Example}

The following is sample output from the show vlan dot1q tag native command:
```

Device\# show vlan dot1q tag native
*Feb 1 06:47:30.719: %SYS-5-CONFIG_I: Configured from console by console
dotlq native vlan tagging is enabled globally
Per Port Native Vlan Tagging State
------------------------------------
Port Operational Native VLAN
Mode Tagging State
Hu1/0/45 trunk enabled

```

\section*{spanning-tree backbonefast}

To enable BackboneFast to allow a blocked port on a switch to change immediately to a listening mode, use the spanning-tree backbonefast command in global configuration mode. To return to the default setting, use the no form of this command.
spanning-tree backbonefast no spanning-tree backbonefast
\begin{tabular}{lll}
\hline\(\overline{\text { Syntax Description }}\) & This command has no arguments or keywords. & \\
\(\overline{y n}\) Command Default & BackboneFast is disabled. & \\
\hline \begin{tabular}{lll}
Command Modes & Global configuration (config) & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines BackboneFast should be enabled on all of the Cisco devices containing an Ethernet switch network module. BackboneFast provides for fast convergence in the network backbone after a spanning-tree topology change. It enables the switch to detect an indirect link failure and to start the spanning-tree reconfiguration sooner than it would under normal spanning-tree rules.

Use the show spanning-tree privileged EXEC command to verify your settings.

Examples The following example shows how to enable BackboneFast on the device:

Device(config) \# spanning-tree backbonefast

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline
\end{tabular}

\section*{spanning-tree bpdufilter}

To enable bridge protocol data unit (BPDU) filtering on the interface, use the spanning-tree bpdufilter command in interface configuration or template configuration mode. To return to the default settings, use the no form of this command.
spanning-tree bpdufilter \{ enable |disable \} no spanning-tree bpdufilter
Syntax Description

\section*{Command Default}

The setting that is already configured when you enter the spanning-tree portfast edge bpdufilter default command.

\section*{Command Modes}

Interface configuration (config-if)
Template configuration (config-template)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline enable & Enables BPDU filtering on this interface. \\
\hline disable & Disables BPDU filtering on this interface. \\
\hline
\end{tabular}

\section*{Release}

Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.

\section*{Usage Guidelines}

Be careful when you enter the spanning-tree bpdufilter enable command. Enabling BPDU filtering on an interface is similar to disabling the spanning tree for this interface. If you do not use this command correctly, you might create bridging loops.

Entering the spanning-tree bpdufilter enable command to enable BPDU filtering overrides the PortFast configuration.

When configuring Layer 2-protocol tunneling on all the service-provider edge switches, you must enable spanning-tree BPDU filtering on the 802.1 Q tunnel ports by entering the spanning-tree bpdufilter enable command.

BPDU filtering prevents a port from sending and receiving BPDUs. The configuration is applicable to the whole interface, whether it is trunking or not. This command has three states:
- spanning-tree bpdufilter enable: Unconditionally enables BPDU filtering on the interface.
- spanning-tree bpdufilter disable: Unconditionally disables BPDU filtering on the interface.
- no spanning-tree bpdufilter: Enables BPDU filtering on the interface if the interface is in operational PortFast state and if you configure the spanning-tree portfast bpdufilter default command.

Use the spanning-tree portfast bpdufilter default command to enable BPDU filtering on all ports that are already configured for PortFast.

\section*{Examples}

This example shows how to enable BPDU filtering on this interface:
```

Device(config-if)\# spanning-tree bpdufilter enable
Device(config-if)\#

```

The following example shows how to enable BPDU filtering on an interface using interface template:
```

Device\# configure terminal
Device(config)\# template user-template1
Device(config-template) \# spanning-tree bpdufilter enable
Device(config-template) \# end

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline spanning-tree portfast edge bpdufilter default & Enables BPDU filtering by default on all PortFast ports. \\
\hline
\end{tabular}

\section*{spanning-tree bpduguard}

To enable bridge protocol data unit (BPDU) guard on the interface, use the spanning-tree bpduguard command in interface configuration and template configuration mode. To return to the default settings, use the no form of this command.
spanning-tree bpduguard \{enable |disable \} no spanning-tree bpduguard

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline enable & Enables BPDU guard on this interface. \\
\hline disable & Disables BPDU guard on this interface. \\
\hline
\end{tabular}

\section*{Command Modes}

Interface configuration (config-if)
Template configuration (config-template)

\section*{Command History}

\section*{Usage Guidelines}

BPDU guard prevents a port from receiving BPDUs. Typically, this feature is used in a service-provider environment where the network administrator wants to prevent an access port from participating in the spanning tree. If the port still receives a BPDU, it is put in the error-disabled state as a protective measure. This command has three states:
- spanning-tree bpduguard enable: Unconditionally enables BPDU guard on the interface.
- spanning-tree bpduguard disable: Unconditionally disables BPDU guard on the interface.
- no spanning-tree bpduguard: E nables BPDU guard on the interface if it is in the operational PortFast state and if the spanning-tree portfast bpduguard default command is configured.

\section*{Examples}

This example shows how to enable BPDU guard on this interface:
```

Device(config-if) \# spanning-tree bpduguard enable
Device(config-if) \#

```

The following example shows how to enable BPDU guard on an interface using interface template:
```

Device\# configure terminal
Device(config)\# template user-template1
Device(config-template)\# spanning-tree bpduguard enable
Device(config-template)\# end

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline spanning-tree portfast edge bpduguard default & Enables BPDU guard by default on all PortFast ports. \\
\hline
\end{tabular}

\section*{spanning-tree bridge assurance}

To enable bridge assurance on all network ports on the device, use the spanning-tree bridge assurance command in global configuration mode. To disable bridge assurance, use the no form of this command.
spanning-tree bridge assurance no spanning-tree bridge assurance

Syntax Description
This command has no arguments or keywords.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
Bridge assurance protects against a unidirectional link failure or other software failure and a device that continues to forward data traffic when it is no longer running the spanning tree algorithm.
Bridge assurance is enabled only on spanning tree network ports that are point-to-point links. Both ends of the link must have bridge assurance enabled. If the device on one side of the link has bridge assurance enabled and the device on the other side either does not support bridge assurance or does not have this feature enabled, the connecting port is blocked.

Disabling bridge assurance causes all configured network ports to behave as normal spanning tree ports.

\section*{Examples}

This example shows how to enable bridge assurance on all network ports on the switch:
```

Device(config)\#
spanning-tree bridge assurance
Device(config) \#

```

This example shows how to disable bridge assurance on all network ports on the switch:
```

Device(config)\#
no spanning-tree bridge assurance
Device(config)\#

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline
\end{tabular}

\section*{spanning-tree cost}

To set the path cost of the interface for Spanning Tree Protocol (STP) calculations, use the spanning-tree cost command in interface configuration or template configuration mode. To revert to the default value, use the no form of this command.
spanning-tree cost cost
no spanning-tree cost

Syntax Description
cost \(\quad\) Path cost. The range is from 1 to 200000000.
Command Modes

Interface configuration (config-if)
Template configuration (config-template)

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
When you specify a value for the cost argument, higher values indicate higher costs. This range applies regardless of the protocol type specified.

If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.

\section*{Examples}

The following example shows how to access an interface and set a path cost value of 250 for the spanning tree VLAN associated with that interface:
```

Router(config)\# interface ethernet 2/0
Router(config-if)\# spanning-tree cost 250

```

The following example shows how to set a path cost value of 250 for the spanning tree VLAN associated with an interface using an interface template:
```

Device\# configure terminal
Device(config)\# template user-template1
Device(config-template)\# spanning-tree cost 250
Device(config-template) \# end

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & \begin{tabular}{l}
Displays spanning-tree information for the specified spanning-tree \\
instances.
\end{tabular} \\
\hline spanning-tree port-priority & \begin{tabular}{l}
Sets an interface priority when two bridges tie for position as the root \\
bridge.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline spanning-tree portfast (global) & \begin{tabular}{l}
Enables PortFast mode, where the interface is immediately put into the \\
forwarding state upon linkup without waiting for the timer to expire.
\end{tabular} \\
\hline spanning-tree portfast (interface) & \begin{tabular}{l}
Enables PortFast mode, where the interface is immediately put into the \\
forwarding state upon linkup without waiting for the timer to expire.
\end{tabular} \\
\hline spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline
\end{tabular}

\section*{spanning-tree etherchannel guard misconfig}

To display an error message when a loop due to a channel misconfiguration is detected, use the spanning-tree etherchannel guard misconfig command in global configuration mode. To disable the error message, use the no form of this command.
spanning-tree etherchannel guard misconfig no spanning-tree etherchannel guard misconfig
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
EtherChannel uses either Port Aggregation Protocol (PAgP) or Link Aggregation Control Protocol (LACP) and does not work if the EtherChannel mode of the interface is enabled using the channel-group group-number mode on command.

The spanning-tree etherchannel guard misconfig command detects two types of errors: misconfiguration and misconnection errors. A misconfiguration error is an error between the port-channel and an individual port. A misconnection error is an error between a device that is channeling more ports and a device that is not using enough Spanning Tree Protocol (STP) Bridge Protocol Data Units (BPDUs) to detect the error. In this case, the device will only error disable an EtherChannel if the switch is a nonroot device.

When an EtherChannel-guard misconfiguration is detected, this error message displays:
```

msgdef(CHNL_MISCFG, SPANTREE, LOG_CRIT, 0, "Detected loop due to etherchannel misconfiguration
of %S %S")

```

To determine which local ports are involved in the misconfiguration, enter the show interfaces status err-disabled command. To check the EtherChannel configuration on the remote device, enter the show etherchannel summary command on the remote device.

After you correct the configuration, enter the shutdown and the no shutdown commands on the associated port-channel interface.

Examples
This example shows how to enable the EtherChannel-guard misconfiguration:
```

Device(config) \# spanning-tree etherchannel guard misconfig

```
 Device(config) \#

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show etherchannel summary & Displays the EtherChannel information for a channel. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show interfaces status err-disabled & \begin{tabular}{l}
Displays the interface status or a list of interfaces in an error-disabled \\
state on LAN ports only.
\end{tabular} \\
\hline shutdown & Disables an interface. \\
\hline
\end{tabular}

\section*{spanning-tree extend system-id}

To enable the extended-system ID feature on chassis that support 1024 MAC addresses, use the spanning-tree extend system-id command in global configuration mode. To disable the extended system identification, use the no form of this command.
spanning-tree extend system-id no spanning-tree extend system-id
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\begin{tabular}{lll}
\hline Command Default & Enabled on systems that do not provide 1024 MAC addresses. \\
\hline Command Modes & Global configuration (config) & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) Enabling or disabling the extended-system ID updates the bridge IDs of all active Spanning Tree Protocol (STP) instances, which might change the spanning-tree topology.

Examples This example shows how to enable the extended-system ID:

Device(config) \# spanning-tree extend system-id
Device(config) \#

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline
\end{tabular}

\section*{spanning-tree guard}

To enable or disable the guard mode, use the spanning-tree guard command in interface configuration and template configuration mode. To return to the default settings, use the no form of this command.
spanning-tree guard \{loop |root |none \}
no spanning-tree guard

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline loop & Enables the loop-guard mode on the interface. \\
\hline root & Enables root-guard mode on the interface. \\
\hline none & Sets the guard mode to none. \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}

Guard mode is disabled.
Interface configuration (config-if)
Template configuration (config-template)
\begin{tabular}{lll}
\hline Command History & Release & Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was \\
& & introduced. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable root guard:

Device(config-if) \# spanning-tree guard root
Device(config-if) \#
The following example shows how to enable root guard on an interface using an interface template:

Device\# configure terminal
Device(config) \# template user-templatel
Device(config-template) \# spanning-tree guard root
Device(config-template) \# end

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline spanning-tree loopguard default & Enables loop guard as a default on all ports of a given bridge. \\
\hline
\end{tabular}

\section*{spanning-tree link-type}

To configure a link type for a port, use the spanning-tree link-type command in the interface configuration and template configuration mode. To return to the default settings, use the no form of this command.
spanning-tree link-type \{point-to-point |shared \}
no spanning-tree link-type

Syntax Description

\section*{Command Default}

Command Modes
\begin{tabular}{|l|l|}
\hline point-to-point & Specifies that the interface is a point-to-point link. \\
\hline shared & Specifies that the interface is a shared medium. \\
\hline
\end{tabular}

Link type is automatically derived from the duplex setting unless you explicitly configure the link type.
Interface configuration (config-if)
Template configuration (config-template)

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5 .1 a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Rapid Spanning Tree Protocol Plus (RSTP+) fast transition works only on point-to-point links between two bridges.

By default, the switch derives the link type of a port from the duplex mode. A full-duplex port is considered as a point-to-point link while a half-duplex configuration is assumed to be on a shared link.

If you designate a port as a shared link, RSTP+ fast transition is forbidden, regardless of the duplex setting.
If you connect a port (local port) to a remote port through a point-to-point link and the local port becomes a designated port, the device negotiates with the remote port and rapidly changes the local port to the forwarding state

This example shows how to configure the port as a shared link:
```

Device(config-if)\# spanning-tree link-type shared
Device(config-if)\#

```

The following example shows how to configure the port as a shared link using an interface template:
```

Device\# configure terminal
Device(config)\# template user-template1
Device(config-template)\# spanning-tree link-type shared
Device(config-template)\# end

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show spanning-tree interface & Displays information about the spanning-tree state. \\
\hline
\end{tabular}

\section*{spanning-tree loopguard default}

To enable loop guard as a default on all ports of a given bridge, use the spanning-tree loopguard default command in global configuration mode. To disable loop guard, use the no form of this command.
spanning-tree loopguard default no spanning-tree loopguard default

Syntax Description
Command Default
Command Modes

Command History

This command has no arguments or keywords.

Loop guard is disabled.
Global configuration (config)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Loop guard provides additional security in the bridge network. Loop guard prevents alternate or root ports from becoming the designated port due to a failure that could lead to a unidirectional link.

Loop guard operates only on ports that are considered point to point by the spanning tree.
The individual loop-guard port configuration overrides this command.

\section*{Examples}

Related Commands

This example shows how to enable loop guard:
Device(config) \# spanning-tree loopguard default
Device(config) \#
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline spanning-tree guard & Enables or disables the guard mode. \\
\hline
\end{tabular}

\section*{spanning-tree mode}

To switch between Per-VLAN Spanning Tree + (PVST +), Rapid-PVST + , and Multiple Spanning Tree (MST) modes, use the spanning-tree mode command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mode [\{ pvst | mst | rapid-pvst \}] no spanning-tree mode

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline pvst & (Optional) PVST+ mode. \\
\hline \(\mathbf{m s t}\) & (Optional) MST mode. \\
\hline rapid-pvst & (Optional) Rapid-PVST+ mode. \\
\hline
\end{tabular}

\section*{Command Default pvst \\ Command History}

Command Modes Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Note Be careful when using the spanning-tree mode command to switch between PVST + , Rapid-PVST + , and MST modes. When you enter the command, all spanning-tree instances are stopped for the previous mode and are restarted in the new mode. Using this command may cause disruption of user traffic.

\section*{Examples}

This example shows how to switch to MST mode:
```

Device(config) \# spanning-tree mode mst
Device(config) \#

```

This example shows how to return to the default mode (PVST +):
```

Device(config)\# no spanning-tree mode

```
Device(config) \#

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst}

To set the priority parameters or configure the device as a root for any Multiple Spanning Tree (MST) instance, use the spanning-tree mst command in interface configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst instance-id \{ priority priority |root \{primary |secondary \} \} no spanning-tree mst instance-id \{ \{ priority priority | root \{primary |secondary \} \} \}

Syntax Description

\section*{Command Modes}

Command History
\begin{tabular}{|l|l|}
\hline priority priority & Port priority for an instance. The range is from 0 to 61440 in increments of 4096. \\
\hline root & Configures the device as a root. \\
\hline
\end{tabular}

Interface configuration (config-if)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to set the priority:
```

Device(config-if)\#
spanning-tree mst O priority 1

```
Device(config-if) \#

This example shows how to set the device as a primary root:
```

Device(config-if)\#
spanning-tree mst 0 root primary
Device(config-if)\#

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst configuration}

To enter MST-configuration submode, use the spanning-tree mst configuration command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst configuration no spanning-tree mst configuration

\section*{Syntax Description}

Command Default

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

The MST configuration consists of three main parameters:
- Instance VLAN mapping: See the instance command.
- Region name: See the name command (MST configuration submode).
- Configuration revision number: See the revision command.

The abort and exit commands allow you to exit MST configuration submode. The difference between the two commands depends on whether you want to save your changes or not.
The exit command commits all the changes before leaving MST configuration submode. If you do not map secondary VLANs to the same instance as the associated primary VLAN, when you exit MST-configuration submode, a warning message displays and lists the secondary VLANs that are not mapped to the same instance as the associated primary VLAN. The warning message is as follows:

These secondary vlans are not mapped to the same instance as their primary:
-> 3
The abort command leaves MST-configuration submode without committing any changes.
Changing an MST-configuration submode parameter can cause connectivity loss. To reduce service disruptions, when you enter MST-configuration submode, make changes to a copy of the current MST configuration. When you are done editing the configuration, you can apply all the changes at once by using the exit keyword, or you can exit the submode without committing any change to the configuration by using the abort keyword.
In the unlikely event that two users commit a new configuration at exactly at the same time, this warning message displays:
\% MST CFG:Configuration change lost because of concurrent access

\section*{Examples \\ This example shows how to enter MST-configuration submode:}
```

Device(config)\# spanning-tree mst configuration
Device(config-mst)\#

```

This example shows how to reset the MST configuration to the default settings:
```

Device(config)\# no spanning-tree mst configuration
Device(config) \#

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline instance & Maps a VLAN or a set of VLANs to an MST instance. \\
\hline name (MST) & Sets the name of an MST region. \\
\hline revision & Sets the revision number for the MST configuration. \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst forward-time}

To set the forward-delay timer for all the instances on the device, use the spanning-tree mst forward-time command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst forward-time seconds
no spanning-tree mst forward-time
Syntax Description
seconds \(\quad\) Number of seconds to set the forward-delay timer for all the instances on the device. The range is from 4 to 30 seconds.
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{15 seconds.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Global configuration (config)} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to set the forward-delay timer:

Device(config) \# spanning-tree mst forward-time 20
Device(config)\#
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\hline & show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst hello-time}

To set the hello-time delay timer for all the instances on the device, use the spanning-tree mst hello-time command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst hello-time seconds
no spanning-tree mst hello-time

\section*{Syntax Description}
seconds Number of seconds to set the hello-time delay timer for all the instances on the device. The range is from 1 to 10 in seconds.
\begin{tabular}{lll}
\hline \begin{tabular}{ll}
Command Default & \\
\hline
\end{tabular} & 2 seconds & \\
\hline Command Modes & Global configuration (config) & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) If you do not specify the hello-time value, the value is calculated from the network diameter.

Examples This example shows how to set the hello-time delay timer:
```

Device(config)\# spanning-tree mst hello-time 3

```
Device(config) \#

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst max-age}

To set the max-age timer for all the instances on the device, use the spanning-tree mst max-age command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst max-age seconds
no spanning-tree mst max-age
Syntax Description
seconds \(\quad\) Number of seconds to set the max-age timer for all the instances on the device. The range is from 6 to 40 in seconds.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History
20 seconds
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to set the max-age timer:

Device(config)\# spanning-tree mst max-age 40
Device(config)\#
\begin{tabular}{|l|l|}
\hline Related Commands & Command \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst max-hops}

To specify the number of possible hops in the region before a bridge protocol data unit (BPDU) is discarded, use the spanning-tree mst max-hops command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst max-hops hopnumber no spanning-tree mst max-hops

\section*{Syntax Description}
hopnumber Number of possible hops in the region before a BPDU is discarded. The range is from 1 to 255 hops.

20 hops
Global configuration (config)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

This example shows how to set the number of possible hops:
```

Device(config)\# spanning-tree mst max-hops 25
Device(config)\#

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst pre-standard}

To configure a port to transmit only prestandard bridge protocol data units (BPDUs), use the spanning-tree mst pre-standard command in interface configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst pre-standard no spanning-tree mst pre-standard

\section*{Syntax Description}
\begin{tabular}{ll}
\(\overline{\text { Command Default }}\) & The default is to automatically detect prestandard neighbors. \\
\(\overline{\text { Command Modes }}\) & Interface configuration (config-if)
\end{tabular}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
Even with the default configuration, the port can receive both prestandard and standard BPDUs.
Prestandard BPDUs are based on the Cisco IOS Multiple Spanning Tree (MST) implementation that was created before the IEEE standard was finalized. Standard BPDUs are based on the finalized IEEE standard.

If you configure a port to transmit prestandard BPDUs only, the prestandard flag displays in the show spanning-tree commands. The variations of the prestandard flag are as follows:
- Pre-STD (or pre-standard in long format): This flag displays if the port is configured to transmit prestandard BPDUs and if a prestandard neighbor bridge has been detected on this interface.
- Pre-STD-Cf (or pre-standard (config) in long format): This flag displays if the port is configured to transmit prestandard BPDUs but a prestandard BPDU has not been received on the port, the autodetection mechanism has failed, or a misconfiguration, if there is no prestandard neighbor, has occurred.
- Pre-STD-Rx (or pre-standard (rcvd) in long format): This flag displays when a prestandard BPDU has been received on the port but it has not been configured to send prestandard BPDUs. The port will send prestandard BPDUs, but we recommend that you change the port configuration so that the interaction with the prestandard neighbor does not rely only on the autodetection mechanism.

If the MST configuration is not compatible with the prestandard (if it includes an instance ID greater than 15), only standard MST BPDUs are transmitted, regardless of the STP configuration on the port.

\section*{Examples}

This example shows how to configure a port to transmit only prestandard BPDUs:

Router(config-if) \# spanning-tree mst pre-standard
Router(config-if) \#
\begin{tabular}{l|l|l|}
\hline Related Commands & Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst priority}

To set the bridge priority for an instance, use the spanning-tree mst priority command in global configuration mode. To return to the default setting, use the no form of this command.
spanning-tree mst instance priority priority no spanning-tree mst priority

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline instance & Instance identification number; valid values are from 0 to 4094. \\
\hline priority priority & \begin{tabular}{l}
Specifies the bridge priority; see the "Usage Guidelines" section for valid values and \\
additional information.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

You can set the bridge priority in increments of 4096 only. When you set the priority, valid values are \(\mathbf{0}, \mathbf{4 0 9 6}\), 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440.

You can set the priority to \(\mathbf{0}\) to make the switch root.
You can enter instance as a single instance or a range of instances, for example, 0-3,5,7-9.
\(\overline{\text { Examples } \quad \text { This example shows how to set the bridge priority: }}\)

Device(config) \# spanning-tree mst 0 priority 4096
Device(config) \#

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst root}

To designate the primary and secondary root switch and set the timer value for an instance, use the spanning-tree mst root command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree mst instance root \(\{\) primary \(\mid\) secondary \} [diameter diameter [hello-time seconds]]
no spanning-tree mst instance root

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline instance & Instance identification number. The range is from 0 to 4094. \\
\hline primary & \begin{tabular}{l}
Specifies the high enough priority (low value) to make the root of the spanning-tree \\
instance.
\end{tabular} \\
\hline secondary & Specifies the switch as a secondary root, should the primary root fail. \\
\hline diameter diameter & \begin{tabular}{l}
(Optional) Specifies the timer values for the root switch that are based on the network \\
diameter. The range is from 1 to 7.
\end{tabular} \\
\hline hello-time seconds & \begin{tabular}{l}
(Optional) Specifies the duration between the generation of configuration messages \\
by the root switch.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

The spanning-tree mst root command has no default settings.

Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
You can enter instance as a single instance or a range of instances, for example, 0-3,5,7-9.
The spanning-tree mst root secondary value is 16384.
The diameter diameter and hello-time seconds keywords and arguments are available for instance 0 only.
If you do not specify the seconds argument, the value for it is calculated from the network diameter.
\(\overline{\text { Examples }}\)
This example shows how to designate the primary root switch and timer values for an instance:
```

Router(config)\# spanning-tree mst 0 root primary diameter 7 hello-time 2
Router(config)\# spanning-tree mst 5 root primary
Router(config)\#

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree mst simulate pvst global}

To enable Per-VLAN Spanning Tree (PVST) simulation globally, enter the spanning-tree mst simulate pvst global command in global configuration mode. To disable PVST simulation globally, enter the no form of this command.
spanning-tree mst simulate pvst global no spanning-tree mst simulate pvst global
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
PVST simulation is enabled by default so that all interfaces on the device interoperate between Multiple Spanning Tree (MST) and Rapid Per-VLAN Spanning Tree Plus (PVST +). To prevent an accidental connection to a device that does not run MST as the default Spanning Tree Protocol (STP) mode, you can disable PVST simulation. If you disable PVST simulation, the MST-enabled port moves to the blocking state once it detects it is connected to a Rapid PVST+-enabled port. This port remains in the inconsistent state until the port stops receiving Bridge Protocol Data Units (BPDUs), and then the port resumes the normal STP transition process.

To override the global PVST simulation setting for a port, enter the spanning-tree mst simulate pvst interface command in the interface command mode.

This example shows how to prevent the switch from automatically interoperating with a connecting device that is running Rapid PVST+:
```

Device(config)\#
no spanning-tree mst simulate pvst global
Device(config)\#

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree pathcost method}

To set the default path-cost calculation method, use the spanning-tree pathcost method command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree pathcost method \{long | short \} no spanning-tree pathcost method

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
\begin{tabular}{|l|l|}
\hline long & Specifies the 32-bit based values for default port-path costs. \\
\hline short & Specifies the 16-bit based values for default port-path costs. \\
\hline
\end{tabular}
short

Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

The long path-cost calculation method utilizes all 32 bits for path-cost calculation and yields values in the range of 1 through \(200,000,000\).

The short path-cost calculation method (16 bits) yields values in the range of 1 through 65535 .

\section*{Examples}

This example shows how to set the default path-cost calculation method to long:
```

Device(config
\#) spanning-tree pathcost method long
Device(config
\#)

```

This example shows how to set the default path-cost calculation method to short:

\section*{Device(config}
\#) spanning-tree pathcost method short
Device (config
\#)

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline
\end{tabular}

\section*{spanning-tree port-priority}

To set an interface priority when two bridges tie for position as the root bridge, use the spanning-tree port-priority command in interface configuration and template configuration mode. To revert to the default value, use the no form of this command.
spanning-tree port-priority port-priority no spanning-tree port-priority

\section*{Syntax Description}
\begin{tabular}{l}
Command Default \\
\hline Command Modes
\end{tabular}

\section*{Command History}

\section*{Usage Guidelines}

Examples
port-priority Port priority. The range is from 0 to 240 in increments of 16 . The default is 128.
The default port priority is 128 .
Interface configuration (config-if)
Template configuration (config-if)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was \\
& introduced. \\
\hline
\end{tabular}

The priority you set breaks the tie between two bridges to be designated as a root bridge.

The following example shows how to increase the likelihood that spanning-tree instance 20 is chosen as the root-bridge on interface Ethernet 2/0:
```

Device(config)\# interface ethernet 2/0
Device(config-if)\# spanning-tree port-priority 20
Device(config-if)\#

```

The following example shows how increase the likelihood that spanning-tree instance 20 is chosen as the root-bridge on an interface using an interface template:
```

Device\# configure terminal
Device(config)\# template user-template1
Device(config-template)\# spanning-tree port-priority 20
Device(config-template)\# end

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & \begin{tabular}{l}
Displays spanning-tree information for the specified spanning-tree \\
instances.
\end{tabular} \\
\hline spanning-tree cost & Sets the path cost of the interface for STP calculations. \\
\hline spanning-tree portfast (global) & \begin{tabular}{l}
Enables PortFast mode, where the interface is immediately put into the \\
forwarding state upon linkup without waiting for the timer to expire.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline
\end{tabular}

\section*{spanning-tree portfast edge bpdufilter default}

To enable bridge protocol data unit (BPDU) filtering by default on all PortFast ports, use the spanning-tree portfast edge bpdufilter default command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree portfast edge bpdufilter default no spanning-tree portfast edge bpdufilter default
\begin{tabular}{lll}
\hline \begin{tabular}{lll}
Syntax Description & This command has no arguments or keywords. & \\
\hline\(\overline{\text { Command Default }}\) & Disabled & \\
\hline\(\overline{\text { Command Modes }}\) & Global configuration (config) & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular} &
\end{tabular}

Usage Guidelines The spanning-tree portfast edge bpdufilter command enables BPDU filtering globally on PortFast ports. BPDU filtering prevents a port from sending or receiving any BPDUs.

You can override the effects of the portfast edge bpdufilter default command by configuring BPDU filtering at the interface level.

Note Be careful when enabling BPDU filtering. The feature's functionality is different when you enable it on a per-port basis or globally. When enabled globally, BPDU filtering is applied only on ports that are in an operational PortFast state. Ports send a few BPDUs at linkup before they effectively filter outbound BPDUs. If a BPDU is received on an edge port, it immediately loses its operational PortFast status and BPDU filtering is disabled. When enabled locally on a port, BPDU filtering prevents the device from receiving or sending BPDUs on this port.

Caution
Be careful when using this command. Using this command incorrectly can cause bridging loops.

\section*{Examples}

This example shows how to enable BPDU filtering by default:
```

Device(config)\#
spanning-tree portfast edge bpdufilter default
Device(config)\#

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline spanning-tree bpdufilter & Enables BPDU filtering on the interface. \\
\hline
\end{tabular}

\section*{spanning-tree portfast edge bpduguard default}

To enable bridge protocol data unit (BPDU) guard by default on all PortFast ports, use the spanning-tree portfast edge bpduguard default command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree portfast edge bpduguard default no spanning-tree portfast edge bpduguard default
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Disabled
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Be careful when using this command. You should use this command only with interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data-packet loop and disrupt the device and network operation.

BPDU guard disables a port if it receives a BPDU. BPDU guard is applied only on ports that are PortFast enabled and are in an operational PortFast state.

\section*{Examples}

This example shows how to enable BPDU guard by default:

Device (config) \#
spanning-tree portfast edge bpduguard default
Device(config) \#

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree mst & Displays the information about the MST protocol. \\
\hline spanning-tree bpdufilter & Enables BPDU filtering on the interface. \\
\hline
\end{tabular}

\section*{spanning-tree portfast default}

To enable PortFast by default on all access ports, use the spanning-tree portfast \{edge | network | normal\} default command in global configuration mode. To disable PortFast by default on all access ports, use the no form of this command.
spanning-tree portfast \{ edge [\{bpdufilter |bpduguard \}] |network |normal \} default no spanning-tree portfast \{ edge [\{bpdufilter |bpduguard \}] |network |normal \} default

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline bpdufilter & Enables PortFast edge BPDU filter by default on all PortFast edge ports. \\
\hline bpduguard & Enables PortFast edge BPDU guard by default on all PortFast edge ports. \\
\hline edge & Enables PortFast edge mode by default on all switch access ports. \\
\hline network & Enables PortFast network mode by default on all switch access ports. \\
\hline normal & Enables PortFast normal mode by default on all switch access ports. \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}

PortFast is disabled by default on all access ports.
Global configuration (config)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Note Be careful when using this command. You should use this command only with interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data-packet loop and disrupt the operation of the router or switch and the network.

An interface with PortFast mode enabled is moved directly to the spanning-tree forwarding state when linkup occurs without waiting for the standard forward-time delay.

You can enable PortFast mode on individual interfaces using the spanning-tree portfast (interface) command.
\(\overline{\text { Examples } \quad \text { This example shows how to enable PortFast edge mode with BPDU Guard by default on all access }}\) ports:
```

Device(config)\#
spanning-tree portfast edge bpduguard default
Device(config)\#

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show spanning-tree & Displays information about the spanning-tree state. \\
\hline spanning-tree portfast (interface) & Enables PortFast on a specific interface. \\
\hline
\end{tabular}

\section*{spanning-tree transmit hold-count}

To specify the transmit hold count, use the spanning-tree transmit hold-count command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree transmit hold-count value no spanning-tree transmit hold-count

Syntax Description
value Number of bridge protocol data units (BPDUs) that can be sent before pausing for 1 second. The range is from 1 to 20 .
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\\
\hline Usage Guidelines
\end{tabular} value is \(\mathbf{6}\) Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

This command is supported on all spanning-tree modes.
The transmit hold count determines the number of BPDUs that can be sent before pausing for 1 second.

\section*{Note}

Changing this parameter to a higher value may have a significant impact on CPU utilization, especially in rapid-Per-VLAN Spanning Tree (PVST) mode. Lowering this parameter could slow convergence in some scenarios. We recommend that you do not change the value from the default setting.

If you change the value setting, enter the show running-config command to verify the change.
If you delete the command, use the show spanning-tree mst command to verify the deletion.

Examples
This example shows how to specify the transmit hold count:

Device(config) \# spanning-tree transmit hold-count 8
Device(config) \#

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show running-config & Displays the status and configuration of the module or Layer 2 VLAN. \\
\hline show spanning-tree mst & Display the information about the MST protocol. \\
\hline
\end{tabular}

\section*{spanning-tree uplinkfast}

To enable UplinkFast, use the spanning-tree uplinkfast command in global configuration mode. To disable UplinkFast, use the no form of this command.
spanning-tree uplinkfast [max-update-rate packets-per-second] no spanning-tree uplinkfast [max-update-rate]

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands
max-update-rate packets-per-second (Optional) Specifies the maximum rate (in packets per second) at which update packets are sent. The range is from 0 to 32000 .

The defaults are as follows:
- UplinkFast is disabled.
- packets-per-second is 150 packets per second.

Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Use the spanning-tree uplinkfast max-update-rate command to enable UplinkFast (if it is not already enabled) and change the rate at which update packets are sent. Use the no form of this command to return to the default rate.

This example shows how to enable UplinkFast and set the maximum rate to 200 packets per second:

\section*{Device (config) \#}
spanning-tree uplinkfast max-update-rate 200
Device(config) \#
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show spanning-tree & Displays information about the spanning-tree state. \\
\hline
\end{tabular}

\section*{spanning-tree vlan}

To configure Spanning Tree Protocol (STP) on a per-virtual LAN (VLAN) basis, use the spanning-tree vlan command in global configuration mode. To return to the default settings, use the no form of this command.
spanning-tree vlan vlan-id [\{ forward-time seconds |hello-time seconds |max-age seconds |priority priority | root [\{ primary |secondary \}] \}] no spanning-tree vlan vlan-id [\{ forward-time |hello-time | max-age | priority |root \}]

Syntax Description

\section*{Command Default}
\begin{tabular}{|l|l|}
\hline vlan id & VLAN identification number. The range is from 1 to 4094. \\
\hline forward-time seconds & (Optional) Sets the STP forward delay time. The range is from 4 to 30 seconds. \\
\hline hello-time seconds & \begin{tabular}{l}
(Optional) Specifies the duration, in seconds, between the generation of configuration \\
messages by the root switch. The range is from 1 to 10 seconds.
\end{tabular} \\
\hline max-age seconds & \begin{tabular}{l}
(Optional) Sets the maximum number of seconds the information in a bridge packet \\
data unit (BPDU) is valid. the range is from 6 to 40 seconds.
\end{tabular} \\
\hline priority priority & (Optional) Sets the STP bridge priority. the range is from 0 to 65535. \\
\hline root primary & (Optional) Forces this switch to be the root bridge. \\
\hline root secondary & \begin{tabular}{l}
(Optional) Specifies this switch to act as the root switch should the primary root \\
fail.
\end{tabular} \\
\hline
\end{tabular}

The defaults are:
- forward-time: 15 seconds
- hello-time: 2 seconds
- max-age: 20 seconds
- priority: The default with IEEE STP enabled is 32768 ; the default with STP enabled is 128 .
- root : No STP root

When you issue the no spanning-tree vlan vlan_id command, the following parameters are reset to their defaults:
- priority: The default with IEEE STP enabled is 32768 ; the default with STP enabled is 128 .
- hello-time: 2 seconds
- forward-time: 15 seconds
- max-age: 20 seconds

Command Modes
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}
- When disabling spanning tree on a VLAN using the no spanning-tree van vlan-id command, ensure that all switches and bridges in the VLAN have spanning tree disabled. You cannot disable spanning tree on some switches and bridges in a VLAN and leave it enabled on other switches and bridges in the same VLAN because switches and bridges with spanning tree enabled have incomplete information about the physical topology of the network.
- We do not recommend disabling spanning tree, even in a topology that is free of physical loops. Spanning tree is a safeguard against misconfigurations and cabling errors. Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN.

When you set the max-age seconds parameter, if a bridge does not hear bridge protocol data units (BPDUs) from the root bridge within the specified interval, it assumes that the network has changed and recomputes the spanning-tree topology.

The spanning-tree root primary command alters this switch's bridge priority to 8192 . If you enter the spanning-tree root primary command and the switch does not become the root switch, then the bridge priority is changed to 100 less than the bridge priority of the current bridge. If the switch still does not become the root, an error results.

The spanning-tree root secondary command alters this switch's bridge priority to 16384 . If the root switch should fail, this switch becomes the next root switch.

Use the spanning-tree root commands on backbone switches only.
The spanning-tree etherchannel guard misconfig command detects two types of errors: misconfiguration and misconnection errors. A misconfiguration error is an error between the port-channel and an individual port. A misconnection error is an error between a switch that is channeling more ports and a switch that is not using enough Spanning Tree Protocol (STP) Bridge Protocol Data Units (BPDUs) to detect the error. In this case, the switch will only error disable an EtherChannel if the switch is a nonroot switch.

\section*{Examples}

The following example shows how to enable spanning tree on VLAN 200:

Device(config) \# spanning-tree van 200
The following example shows how to configure the switch as the root switch for VLAN 10 with a network diameter of 4 :

Device(config) \# spanning-tree van 10 root primary diameter 4
The following example shows how to configure the switch as the secondary root switch for VLAN 10 with a network diameter of 4 :

\footnotetext{
Device(config) \# spanning-tree van 10 root secondary diameter 4
}
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 2 } & Sets the path cost of the interface for STP calculations. \\
\hline \begin{tabular}{l}
spanning-tree etherchannel guard \\
misconfig
\end{tabular} & \begin{tabular}{l}
Displays an error message when a loop due to a channel \\
misconfiguration is detected
\end{tabular} \\
\hline spanning-tree port-priority & \begin{tabular}{l}
Sets an interface priority when two bridges tie for position as \\
the root bridge.
\end{tabular} \\
\hline spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline show spanning-tree & \begin{tabular}{l}
Displays spanning-tree information for the specified \\
spanning-tree instances.
\end{tabular} \\
\hline
\end{tabular}

\section*{switchport}

To put an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration, use the switchport command in interface configuration mode. To put an interface in Layer 3 mode, use the no form of this command.
switchport
no switchport
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\\
\hline Usage Guidelines
\end{tabular}

By default, all interfaces are in Layer 2 mode.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Use the no switchport command (without parameters) to set the interface to the routed-interface status and to erase all Layer 2 configurations. You must use this command before assigning an IP address to a routed port.
Entering the no switchport command shuts the port down and then reenables it, which might generate messages on the device to which the port is connected.

When you put an interface that is in Layer 2 mode into Layer 3 mode (or the reverse), the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

Note If an interface is configured as a Layer 3 interface, you must first enter the switchport command to configure the interface as a Layer 2 port. Then you can enter the switchport access vlan and switchport mode commands.

The switchport command is not used on platforms that do not support Cisco-routed ports. All physical ports on such platforms are assumed to be Layer 2-switched interfaces.

You can verify the port status of an interface by entering the show running-config privileged EXEC command.

\section*{\(\overline{\text { Examples }}\)}

This example shows how to cause an interface to cease operating as a Layer 2 port and become a Cisco-routed port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if) \# no switchport

```

This example shows how to cause the port interface to cease operating as a Cisco-routed port and convert to a Layer 2 switched interface:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# switchport

```

\section*{switchport access vlan}

To configure a port as a static-access port, use the switchport access vlan command in interface configuration mode. To reset the access mode to the default VLAN mode for the device, use the no form of this command.
switchport access vlan \(\{\) vlan-id \}
no switchport access vlan

Syntax Description

Command Default

Command Modes
Command History
vlan-id VLAN ID of the access mode VLAN; the range is 1 to 4094.

The default access VLAN and trunk interface native VLAN is a default VLAN corresponding to the platform or interface hardware.

Interface configuration
Release \(\quad\) Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

The port must be in access mode before the switchport access vlan command can take effect.
If the switchport mode is set to access vlan vlan-id, the port operates as a member of the specified VLAN. An access port can be assigned to only one VLAN.

The no switchport access command resets the access mode VLAN to the appropriate default VLAN for the device.

This example shows how to change a switched port interface that is operating in access mode to operate in VLAN 2 instead of the default VLAN:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# switchport access vlan 2

```

\section*{switchport mode}

To configure the VLAN membership mode of a port, use the switchport mode command in interface configuration mode. To reset the mode to the appropriate default for the device, use the no form of this command.
switchport mode \{access | dynamic |\{auto|desirable\}|trunk\} noswitchport mode \{access |dynamic |\{auto |desirable\}|trunk\}

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
access \(\quad\) Sets the port to access mode (either static-access or dynamic-access depending on the setting of the switchport access vlan interface configuration command). The port is set to access unconditionally and operates as a nontrunking, single VLAN interface that sends and receives nonencapsulated (non-tagged) frames. An access port can be assigned to only one VLAN.
dynamic auto Sets the port trunking mode dynamic parameter to auto to specify that the interface convert the link to a trunk link. This is the default switchport mode.
dynamic Sets the port trunking mode dynamic parameter to desirable to specify that the interface desirable
trunk actively attempt to convert the link to a trunk link.

Sets the port to trunk unconditionally. The port is a trunking VLAN Layer 2 interface.

The port sends and receives encapsulated (tagged) frames that identify the VLAN of origination. A trunk is a point-to-point link between two switches or between a switch and a router.

The default mode is dynamic auto.

Interface configuration
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

A configuration that uses the access, or trunk keywords takes effect only when you configure the port in the appropriate mode by using the switchport mode command. The static-access and trunk configuration are saved, but only one configuration is active at a time.
When you enter access mode, the interface changes to permanent nontrunking mode and negotiates to convert the link into a nontrunk link even if the neighboring interface does not agree to the change.

When you enter trunk mode, the interface changes to permanent trunking mode and negotiates to convert the link into a trunk link even if the interface connecting to it does not agree to the change.

When you enter dynamic auto mode, the interface converts the link to a trunk link if the neighboring interface is set to trunk or desirable mode.

When you enter dynamic desirable mode, the interface becomes a trunk interface if the neighboring interface is set to trunk, desirable, or auto mode.

To autonegotiate trunking, the interfaces must be in the same VLAN Trunking Protocol (VTP) domain. Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a point-to-point protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations. To avoid this problem, configure interfaces connected to devices that do not support DTP to not forward DTP frames, which turns off DTP.
- If you do not intend to trunk across those links, use the switchport mode access command in interface configuration mode to disable trunking.
- To enable trunking to a device that does not support DTP, use the switchport mode trunk and switchport nonegotiate commands in interface configuration mode to cause the interface to become a trunk but to not generate DTP frames.

Access ports and trunk ports are mutually exclusive.
The IEEE 802.1x feature interacts with switchport modes in these ways:
- If you try to enable IEEE 802.1x on a trunk port, an error message appears, and IEEE 802.1 x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, the port mode is not changed.
- If you try to enable IEEE 802.1x on a port set to dynamic auto or dynamic desirable, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to dynamic auto or dynamic desirable, the port mode is not changed.
- If you try to enable IEEE 802.1x on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and IEEE 802.1x is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.

You can verify your settings by entering the show interfaces interface-id switchport command in privileged EXEC mode and examining information in the Administrative Mode and Operational Mode rows.

\section*{Examples}

This example shows how to configure a port for access mode:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# switchport mode access

```

This example shows how set the port to dynamic desirable mode:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if) \# switchport mode dynamic desirable

```

This example shows how to configure a port for trunk mode:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# switchport mode trunk

```

\section*{switchport nonegotiate}

To specify that Dynamic Trunking Protocol (DTP) negotiation packets are not sent on the Layer 2 interface, use the switchport nonegotiate command in interface configuration mode. Use the no form of this command to return to the default setting.
switchport nonegotiate
no switchport nonegotiate
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) Th \\
\hline Command Modes
\end{tabular}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

The no switchport nonegotiate command removes nonegotiate status.
This command is valid only when the interface switchport mode is access or trunk (configured by using the switchport mode access or the switchport mode trunk interface configuration command). This command returns an error if you attempt to execute it in dynamic (auto or desirable) mode.

Internetworking devices that do not support DTP might forward DTP frames improperly and cause misconfigurations. To avoid this problem, turn off DTP by using the switchport nonegotiate command to configure the interfaces connected to devices that do not support DTP to not forward DTP frames.

When you enter the switchport nonegotiate command, DTP negotiation packets are not sent on the interface. The device does or does not trunk according to the mode parameter: access or trunk.
- If you do not intend to trunk across those links, use the switchport mode access interface configuration command to disable trunking.
- To enable trunking on a device that does not support DTP, use the switchport mode trunk and switchport nonegotiate interface configuration commands to cause the interface to become a trunk but to not generate DTP frames.

This example shows how to cause a port to refrain from negotiating trunking mode and to act as a trunk or access port (depending on the mode set):
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet2/0/1
Device(config-if)\# switchport nonegotiate

```

You can verify your setting by entering the show interfaces interface-id switchport command in privileged EXEC mode.

\section*{switchport trunk}

To set the trunk characteristics when the interface is in trunking mode, use the switchport trunk command in interface configuration mode. To reset a trunking characteristic to the default, use the no form of this command.
switchport trunk \{allowed vlan vlan-list \(\mid\) native vlan vlan-id \(\mid\) pruning vlan vlan-list\} no switchport trunk \{allowed vlan |native vlan \(\mid\) pruning vlan\}

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
allowed vlan vlan-list Sets the list of allowed VLANs that can receive and send traffic on this interface in tagged format when in trunking mode. See the Usage Guidelines for the vlan-list choices.
native vlan vlan-id Sets the native VLAN for sending and receiving untagged traffic when the interface is in IEEE 802.1Q trunking mode. The range is 1 to 4094.
pruning vlan vlan-list Sets the list of VLANs that are eligible for VTP pruning when in trunking mode. See the Usage Guidelines for the vlan-list choices.

VLAN 1 is the default native VLAN ID on the port.
The default for all VLAN lists is to include all VLANs.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

The vlan-list format is all | none | [add | remove | except] vlan-atom [,vlan-atom...]:
- all specifies all VLANs from 1 to 4094. This is the default. This keyword is not allowed on commands that do not permit all VLANs in the list to be set at the same time.
- none specifies an empty list. This keyword is not allowed on commands that require certain VLANs to be set or at least one VLAN to be set.
- add adds the defined list of VLANs to those currently set instead of replacing the list. Valid IDs are from 1 to 1005 ; extended-range VLANs (VLAN IDs greater than 1005) are valid in some cases.

Note You can add extended-range VLANs to the allowed VLAN list, but not to the pruning-eligible VLAN list.

Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.
- remove removes the defined list of VLANs from those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLAN IDs are valid in some cases.

Note You can remove extended-range VLANs from the allowed VLAN list, but you cannot remove them from the pruning-eligible list.
- except lists the VLANs that should be calculated by inverting the defined list of VLANs. (VLANs are added except the ones specified.) Valid IDs are from 1 to 1005 . Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.
- vlan-atom is either a single VLAN number from 1 to 4094 or a continuous range of VLANs described by two VLAN numbers, the lesser one first, separated by a hyphen.

\section*{Native VLANs:}
- All untagged traffic received on an IEEE 802.1Q trunk port is forwarded with the native VLAN configured for the port.
- If a packet has a VLAN ID that is the same as the sending-port native VLAN ID, the packet is sent without a tag; otherwise, the switch sends the packet with a tag.
- The no form of the native vlan command resets the native mode VLAN to the appropriate default VLAN for the device.

\section*{Allowed VLAN:}
- To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), Dynamic Trunking Protocol (DTP), and VLAN Trunking Protocol (VTP) in VLAN 1.
- The no form of the allowed vlan command resets the list to the default list, which allows all VLANs.

Trunk pruning:
- The pruning-eligible list applies only to trunk ports.
- Each trunk port has its own eligibility list.
- If you do not want a VLAN to be pruned, remove it from the pruning-eligible list. VLANs that are pruning-ineligible receive flooded traffic.
- VLAN 1, VLANs 1002 to 1005, and extended-range VLANs (VLANs 1006 to 4094) cannot be pruned.

This example shows how to configure VLAN 3 as the default for the port to send all untagged traffic:
```

Device> enable
Device(config)\# interface gigabitethernet1/0/2
Device(config-if)\# switchport trunk native vlan 3

```

This example shows how to add VLANs 1, 2, 5, and 6 to the allowed list:
```

Device> enable
Device(config)\# interface gigabitethernet1/0/2
Device(config-if)\# switchport trunk allowed vlan add 1,2,5,6

```

This example shows how to remove VLANs 3 and 10 to 15 from the pruning-eligible list:
```

Device> enable
Device(config) \# interface gigabitethernet1/0/2
Device(config-if) \# switchport trunk pruning vlan remove 3,10-15

```

You can verify your settings by entering the show interfaces interface-id switchport privileged EXEC command.

\section*{switchport voice vlan}

To configure voice VLAN on the port, use the switchport voice vlan command in interface configuration mode. To return to the default setting, use the no form of this command.
switchport voice vlan \{vlan-id | dot1p | none | untagged | name vlan_name\} no switchport voice vlan

\section*{Syntax Description}
\begin{tabular}{ll}
\hline vlan-id & \begin{tabular}{l}
The VLAN to be used for voice traffic. The range is 1 to 4094 . By default, the IP phone \\
forwards the voice traffic with an IEEE 802.1Q priority of 5.
\end{tabular} \\
\hline dot1p & \begin{tabular}{l}
Configures the telephone to use IEEE 802.1p priority tagging and uses VLAN 0 (the \\
native VLAN). By default, the Cisco IP phone forwards the voice traffic with an IEEE \\
802.1 p priority of 5.
\end{tabular} \\
\hline none & \begin{tabular}{l}
Does not instruct the IP telephone about the voice VLAN. The telephone uses the \\
configuration from the telephone key pad.
\end{tabular}
\end{tabular}
untagged Configures the telephone to send untagged voice traffic. This is the default for the telephone.
name vlan_name (Optional) Specifies the VLAN name to be used for voice traffic. You can enter up to 128 characters.

\section*{Command Default}

The default is not to automatically configure the telephone (none).
The telephone default is not to tag frames.
\begin{tabular}{lll}
\(\overline{\text { Command Modes }}\) & & \\
\cline { 3 - 4 } Command History & Interface configuration & \\
\cline { 3 - 4 } & Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

You should configure voice VLAN on Layer 2 access ports.
You must enable Cisco Discovery Protocol (CDP) on the switch port connected to the Cisco IP phone for the device to send configuration information to the phone. CDP is enabled by default globally and on the interface.
When you enter a VLAN ID, the IP phone forwards voice traffic in IEEE 802.1Q frames, tagged with the specified VLAN ID. The device puts IEEE 802.1Q voice traffic in the voice VLAN.
When you select dot1p, none, or untagged, the device puts the indicated voice traffic in the access VLAN. In all configurations, the voice traffic carries a Layer 2 IP precedence value. The default is 5 for voice traffic.

When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to 2 . When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but not on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.

If any type of port security is enabled on the access VLAN, dynamic port security is automatically enabled on the voice VLAN.

You cannot configure static secure MAC addresses in the voice VLAN.
A voice-VLAN port cannot be a private-VLAN port.
The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.

This example show how to first populate the VLAN database by associating a VLAN ID with a VLAN name, and then configure the VLAN (using the name) on an interface, in the access mode: You can also verify your configuration by entering the show interfaces interface-id switchport in privileged EXEC command and examining information in the Voice VLAN: row.

Part 1 - Making the entry in the VLAN database:
```

Device> enable
Device\# configure terminal
Device(config) \# vlan 55
Device(config-vlan)\# name test
Device(config-vlan)\# end

```

Part 2 - Checking the VLAN database:
```

Device> enable
Device\# show vlan id 55
VLAN Name Status Ports
---- ----------------------------------- ---------- ---------------------------------------
5 5 ~ t e s t ~ a c t i v e
VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
---- ----- ------ ---- ----- ------ -------- --- -------- ------------------
55 enet 100055 1500 -
Remote SPAN VLAN
Disabled
Primary Secondary Type Ports

```

Part 3- Assigning VLAN to the interface by using the name of the VLAN:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet3/1/1
Device(config-if)\# switchport mode access
Device(config-if)\# switchport voice vlan name test
Device(config-if)\# end
Device\#

```

Part 4 - Verifying configuration:
```

Device> enable
Device\# show running-config
interface gigabitethernet3/1/1
Building configuration...
Current configuration : }113\mathrm{ bytes
!
interface GigabitEthernet3/1/1
switchport voice vlan 55
switchport mode access
Switch\#

```

Part 5 - Also can be verified in interface switchport:
```

Device> enable
Device\# show interface GigabitEthernet3/1/1 switchport
Name: Gi3/1/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: 55 (test)
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none

```

To enable aggressive or normal mode in the UniDirectional Link Detection (UDLD) and to set the configurable message timer time, use the udld command in global configuration mode. To disable aggressive or normal mode UDLD on all fiber-optic ports, use the no form of the command.
udld \{aggressive \(\mid\) enable \(\mid\) message time message-timer-interval\} no udld \{aggressive | enable | message\}

\section*{Syntax Description}
\begin{tabular}{ll}
\hline aggressive & Enables UDLD in aggressive mode on all fiber-optic interfaces. \\
\hline enable & Enables UDLD in normal mode on all fiber-optic interfaces. \\
\hline message time & Configures the period of time between UDLD probe messages on ports \\
message-timer-interval & that are in the advertisement phase and are determined to be bidirectional. \\
& The range is 1 to 90 seconds. The default is 15 seconds. \\
\hline
\end{tabular}

Command Default
UDLD is disabled on all interfaces.
The message timer is set at 15 seconds.
Command Modes
Global configuration

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD detects unidirectional links due to misconnected interfaces on fiber-optic connections. In aggressive mode, UDLD also detects unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and due to misconnected interfaces on fiber-optic links.

If you change the message time between probe packets, you are making a compromise between the detection speed and the CPU load. By decreasing the time, you can make the detection-response faster but increase the load on the CPU.

This command affects fiber-optic interfaces only. Use the udld interface configuration command to enable UDLD on other interface types.

You can use these commands to reset an interface shut down by UDLD:
- The udld reset privileged EXEC command to reset all interfaces shut down by UDLD.
- The shutdown and no shutdown interface configuration commands.
- The no udld enable global configuration command followed by the udld \{aggressive | enable\} global configuration command to reenable UDLD globally.
- The no udld port interface configuration command followed by the udld port or udld port aggressive interface configuration command to reenable UDLD on the specified interface.
- The errdisable recovery cause udld and errdisable recovery interval interval global configuration commands to automatically recover from the UDLD error-disabled state.

This example shows how to enable UDLD on all fiber-optic interfaces:
```

Device> enable
Device\# configure terminal
Device(config)\# udld enable

```

You can verify your setting by entering the show udld command in privileged EXEC mode.

\section*{udld port}

To enable UniDirectional Link Detection (UDLD) on an individual interface or to prevent a fiber-optic interface from being enabled by the udld command in global configuration mode, use the udld port command in interface configuration mode. To return to the udld command setting in global configuration mode or to disable UDLD if entered for a nonfiber-optic port, use the no form of this command.
udld port [aggressive]
no udld port [aggressive]

\section*{Syntax Description}

\section*{Command Default}

Command Modes

Command History

Usage Guidelines
aggressive (Optional) Enables UDLD in aggressive mode on the specified interface.

On fiber-optic interfaces, UDLD is disabled and fiber-optic interfaces enable UDLD according to the state of the udld enable or udld aggressive command global configuration mode.

On nonfiber-optic interfaces, UDLD is disabled.

Interface configuration

Release Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.

A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another device.

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD detects unidirectional links due to misconnected interfaces on fiber-optic connections. In aggressive mode, UDLD also detects unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and due to misconnected interfaces on fiber-optic links.

To enable UDLD in normal mode, use the udld port command in interface configuration mode. To enable UDLD in aggressive mode, use the udld port aggressive command in interface configuration mode.

Use the no udld port command on fiber-optic ports to return control of UDLD to the udld enable global configuration command or to disable UDLD on nonfiber-optic ports.

Use the udld port aggressive command on fiber-optic ports to override the setting of the udld enable or udld aggressive command in global configuration mode. Use the no form on fiber-optic ports to remove this setting and to return control of UDLD enabling to the udld command in global configuration mode or to disable UDLD on nonfiber-optic ports.

You can use these commands to reset an interface shut down by UDLD:
- The udld reset command in privileged EXEC mode resets all interfaces shut down by UDLD.
- The shutdown and no shutdown command in interface configuration mode.
- The no udld enable command in global configuration mode, followed by the udld \{aggressive | enable\} command in global configuration mode reenables UDLD globally.
- The no udld port command in interface configuration mode, followed by the udld port or udld port aggressive command in interface configuration mode reenables UDLD on the specified interface.
- The errdisable recovery cause udld and errdisable recovery interval interval commands in global configuration mode automatically recover from the UDLD error-disabled state.

This example shows how to enable UDLD on an port:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet6/0/1
Device(config-if)\# udld port

```

This example shows how to disable UDLD on a fiber-optic interface despite the setting of the udld command in global configuration mode:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet6/0/1
Device(config-if) \# no udld port

```

You can verify your settings by entering the show running-config or the show udld interface command in privileged EXEC mode.

\section*{udld reset}

To reset all interfaces disabled by UniDirectional Link Detection (UDLD) and permit traffic to begin passing through them again (though other features, such as spanning tree, Port Aggregation Protocol (PAgP), and Dynamic Trunking Protocol (DTP) still have their normal effects, if enabled), use the udld reset command in privileged EXEC mode.
udld reset

Command Modes
Command History
Release

\section*{Modification}
Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
If the interface configuration is still enabled for UDLD, these ports begin to run UDLD again and are disabled for the same reason if the problem has not been corrected.

This example shows how to reset all interfaces disabled by UDLD:
```

Device> enable
Device\# udld reset
1 ports shutdown by UDLD were reset.

```

\section*{vlan dot1q tag native}

To enable tagging of native VLAN frames on all IEEE 802.1Q trunk ports, use the vlan dot1q tag native command in global configuration mode. To return to the default setting, use the no form of this command.

\section*{vlan dot \(1 q\) tag native no vlan dot1q tag native}

Syntax Description
\begin{tabular}{|c|c|}
\hline Command Default & The IEEE 802.1Q native VLAN tagging is disabled. \\
\hline Command Modes & Global configuration \\
\hline Command History & Release Modification \\
\hline
\end{tabular}

Cisco IOS XE Gibraltar 16.12.1 This command was introduced.

\section*{Usage Guidelines}

When enabled, native VLAN packets going out of all IEEE 802.1Q trunk ports are tagged.
When disabled, native VLAN packets going out of all IEEE 802.1Q trunk ports are not tagged.
You can use this command with the IEEE 802.1Q tunneling feature. This feature operates on an edge device of a service-provider network and expands VLAN space by using a VLAN-in-VLAN hierarchy and tagging the tagged packets. You must use IEEE 802.1Q trunk ports for sending packets to the service-provider network. However, packets going through the core of the service-provider network might also be carried on IEEE 802.1Q trunks. If the native VLANs of an IEEE 802.1Q trunks match the native VLAN of a tunneling port on the same device, traffic on the native VLAN is not tagged on the sending trunk port. This command ensures that native VLAN packets on all IEEE 802.1Q trunk ports are tagged.
For more information about IEEE 802.1Q tunneling, see the software configuration guide for this release.
This example shows how to enable IEEE 802.1Q tagging on native VLAN frames:
```

Device> enable
Device\# configure terminal
Device(config)\# vlan dotlq tag native
Device(config) \# end

```

You can verify your settings by entering the show vlan dot1q tag native privileged EXEC command.

\section*{vtp mode}

To configure the VLAN Trunking Protocol (VTP) device mode, use thevtp mode command. To revert to the default server mode, use the no form of this command.
vtp mode \(\{\) client | off |transparent \(\}\)
no vtp mode

Syntax Description
\begin{tabular}{ll}
\hline client & Specifies the device as a client. \\
\hline off & Specifies the device mode as off. \\
\hline server & Specifies the device as a server. \\
\hline transparent & Specifies the device mode as transparent. \\
\hline Server. & \\
\hline Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Fuji 16.8.1a This command was introduced.

Command Modes
Global configuration mode.

Usage Guidelines
VLAN Trunking Protocol (VTP) is a Cisco Proprietary Layer 2 messaging protocol used to distribute the VLAN configuration information across multiple devices within a VTP domain. Without VTP, you must configure VLANs in each device in the network. Using VTP, you configure VLANs on a VTP server and then distribute the configuration to other VTP devices in the VTP domain.

In VTP transparent mode, you can configure VLANs (add, delete, or modify) and private VLANs. VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. The VTP configuration revision number is always set to zero (0). Transparent switches do forward VTP advertisements that they receive out their trunk ports in VTP version 2.

A VTP device mode can be one of the following:
- server - You can create, modify, and delete VLANs and specify other configuration parameters, such as VTP version, for the entire VTP domain. VTP servers advertise their VLAN configuration to other switches in the same VTP domain and synchronize their VLAN configuration with other switches based on advertisements received over trunk links. VTP server is the default mode.

Note You can configure VLANs 1 to 1005. VLANs 1002 to 1005 are reserved for token ring in VTP version 2.
- client -VTP clients behave the same way as VTP servers, but you cannot create, change, or delete VLANs on a VTP client.
- transparent - You can configure VLANs (add, delete, or modify) and private VLANs. VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. Because of this, the VTP configuration revision number is always set to zero (0). Transparent switches do forward VTP advertisements that they receive out their trunk ports in VTP version 2.
- off - In the above three described modes, VTP advertisements are received and transmitted as soon as the switch enters the management domain state. In the VTP off mode, switches behave the same as in VTP transparent mode with the exception that VTP advertisements are not forwarded. You can use this VTP device to monitor the VLANs.

Note If you use the no vtp mode command to remove a VTP device, the device will be configured as a VTP server. Use the vtp mode off command to remove a VTP device.

\section*{Example}

This example shows how to configure a VTP device in transparent mode and add VLANs 2, 3, and 4:

Device> enable
Device (config) \#vtp mode transparent
Device (config) \# vlan 2-4

\section*{Example}

This example shows how to remove a device configured as a VTP device:
```

Device> enable
Device(config)\# vtp mode off

```

\section*{Example}

This example shows how to configure a VTP device as a VTP server and adds VLANs 2 and 3:
```

Device> enable
Device\# vtp mode server
Device(config)\# vlan 2,3

```

\section*{Example}

This example shows how to configure a VTP device as a client:
```

Device> enable
Device\# vtp mode client

```


\section*{past VII}

\section*{Multiprotocol Label Switching}
- MPLS Commands, on page 989

\section*{MPLS Commands}
- autodiscovery, on page 991
- backup peer, on page 993
- encapsulation mpls, on page 994
- ip multicast mrinfo-filter, on page 995
- ip multicast-routing, on page 996
- 12 vfi autodiscovery, on page 997
- 12 vfi manual, on page 998
- 12 vpn vfi context, on page 1000
- 12vpn xconnect context, on page 1001
- load-balance, on page 1002
- mdt log-reuse, on page 1004
- mdt default, on page 1005
- mdt data, on page 1007
- member (12vpn vfi), on page 1009
- member pseudowire, on page 1010
- mpls label range, on page 1012
- mpls label protocol (interface configuration), on page 1015
- mpls label protocol (global configuration), on page 1016
- mpls ldp logging neighbor-changes, on page 1017
- mpls ip (interface configuration), on page 1018
- mpls ip (global configuration), on page 1019
- mpls ip default-route, on page 1020
- neighbor (MPLS), on page 1021
- show ip pim mdt send, on page 1022
- show ip pim mdt receive, on page 1023
- show ip pim mdt history, on page 1025
- show ip pim mdt bgp, on page 1026
- show mpls label range, on page 1027
- show mpls ldp bindings, on page 1028
- show mpls ldp discovery, on page 1030
- show mpls ldp neighbor, on page 1031
- show mpls forwarding-table, on page 1032
- show mpls static binding, on page 1040
- show mpls static crossconnect, on page 1042
- mpls static binding ipv4, on page 1043
- show platform hardware fed (TCAM utilization), on page 1045
- show platform software fed switch 12 vpn , on page 1048
- show platform software fed switch mpls, on page 1050
- show platform software 12 vpn switch, on page 1052
- source template type pseudowire, on page 1054
- tunnel destination, on page 1055
- tunnel source, on page 1056
- xconnect, on page 1058

\section*{autodiscovery}

To designate a Layer 2 virtual forwarding interface (VFI) as having Border Gateway Protocol (BGP) or Label Distribution Protocol (LDP) autodiscovered pseudowire members, use the autodiscovery command in Layer 2 VFI configuration mode. To disable autodiscovery, use the no form of this command.
autodiscovery bgp signaling \(\{\mathbf{b g p} \mid \mathbf{l d p}\}[\) \{template template-name \(\}]\) no autodiscovery bgp signaling \(\{\mathbf{b g p} \mid \mathbf{l d p}\}[\{\mathbf{t e m p l a t e}\) template-name \(\}]\)

Syntax Description

Command Default

Command Modes
Command History
\begin{tabular}{ll}
\hline bgp & Specifies that BGP should be used for signaling and autodiscovery. \\
\hline \(\mathbf{l d p}\) & Specifies that LDP should be used for signaling. \\
\hline template template-name & Specifies the template to be used for autodiscovered pseudowires.
\end{tabular}

Layer 2 VFI autodiscovery is disabled.
Layer 2 VFI configuration (config-vfi)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.1.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Layer 2 VFI autodiscovery enables each VPLS provider edge (PE) device to discover other PE devices that are part of the same VPLS domain. VPLS autodiscovery also automatically detects when PE devices are added to or removed from the VPLS domain.

The bgp keyword specifies that BGP should be used for signaling and autodiscovery, accordance with RFC 4761.

The ldp keyword specifies that LDP should be used for signaling. BGP will be used for autodiscovery.
Use of the autodiscovery command places the device into Layer 2 VPN VFI autodiscovery configuration mode (config-vfi-autodiscovery).

\section*{Examples}

The following example shows how to enable Layer 2 VFI as having BGP autodiscovered pseudowire members and specify that LDP signaling should be used for autodiscovery:
```

Device> enable
Devide\# configure terminal
Device(config)\# l2vpn vfi context vfil
Device(config-vfi)\# vpn id 100
Device(config-vfi)\# autodiscovery bgp signaling ldp
Device(config-vfi-autodiscovery)\#

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \(\mathbf{1 2}\) vfi autodiscovery & \begin{tabular}{l}
Enables the VPLS PE device to automatically discover \\
other PE devices that are part of the same VPLS \\
domain.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline vpn id & Sets or updates a VPN ID on a VPLS instance. \\
\hline
\end{tabular}

\section*{backup peer}

To specify a redundant peer for a pseudowire virtual circuit (VC), use the backup peer command in interface configuration mode or Xconnect configuration mode. To remove the redundant peer, use the no form of this command.
backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]
no backup peer peer-router-ip-addr vcid

\section*{Syntax Description}
\begin{tabular}{ll}
peer-router-ip-addr & IP address of the remote peer. \\
\hline vcid & 32-bit identifier of the VC between the devices at each end of the layer control channel. \\
\hline pw-class & \begin{tabular}{l}
(Optional) Specifies the pseudowire type. If this is not specified, the pseudowire type \\
is inherited from the parent Xconnect.
\end{tabular} \\
\hline pw-class-name & \begin{tabular}{l}
(Optional) Name of the pseudowire that you created while establishing the pseudowire \\
class.
\end{tabular} \\
\hline priority value & \begin{tabular}{l}
(Optional) Specifies the priority of the backup pseudowire in instances where multiple \\
backup pseudowires exist. The range is from 1 to 10. The default is 1.
\end{tabular}
\end{tabular}

\section*{Command Default \\ \\ Command History}

No redundant peer is established.
Interface configuration (config-if)
Xconnect configuration (config-if-xconn)

\section*{Usage Guidelines}

The combination of the peer-router-ip-addr and \(v\) cid arguments must be unique on the device.

Examples
The following example shows how to configure a Multiprotocol Label Switching (MPLS) Xconnect with one redundant peer:

Device(config) \# interface GigabitEthernet1/0/44
Device(config-if) \# xconnect 10.0.0.1 100 encapsulation mpls
Device(config-if-xconn) \# backup peer 10.0.0.2 200

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline xconnect & \begin{tabular}{l}
Binds an attachment circuit to a pseudowire for Xconnect service, and enters Xconnect \\
configuration mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{encapsulation mpls}

To specify Multiprotocol Label Switching (MPLS) as the data encapsulation method, use the encapsulation mpls command in interface configuration mode. To remove the encapsulation type, use the no form of this command.
encapsulation mpls
no encapsulation mpls

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Examples}

\section*{Related Commands}

This command has no arguments or keywords.
The command is enabled by default.
Interface configuration (config-if)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced.
\end{tabular}

The following example shows how to configure MPLS as the data encapsulation method for a pseudowire interface:

Device> enable
Device\# configure terminal
Device(config) \# interface pseudowire 100
Device(config-if) \# encapsulation mpls
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline interface pseudowire & Specifies the pseudowire interface. \\
\hline xconnect & \begin{tabular}{l}
Binds an attachment circuit to a pseudowire for Xconnect service and enters Xconnect \\
configuration mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip multicast mrinfo-filter}

To filter multicast router information (mrinfo) request packets, use the ip multicast mrinfo-filtercommand in global configuration mode. To remove the filter on mrinfo requests, use the no form of this command.
ip multicast [vrf vrf-name] mrinfo-filter access-list no ip multicast [vrf vrf-name] mrinfo-filter

Syntax Description
\begin{tabular}{|l|l|}
\hline vrf & (Optional) Supports the multicast VPN routing and forwarding (VRF) instance. \\
\hline vrf-name & (Optional) Name assigned to the VRF. \\
\hline access-list & \begin{tabular}{l}
IP standard numbered or named access list that determines which networks or hosts can query \\
the local multicast device with the mrinfo command.
\end{tabular} \\
\hline
\end{tabular}

Command Default
Command Modes
Command History

Usage Guidelines

No default behavior or values
Global configuration
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

The ip multicast mrinfo-filtercommand filters the mrinfo request packets from all of the sources denied by the specified access list. That is, if the access list denies a source, that source's mrinfo requests are filtered. mrinfo requests from any sources permitted by the ACL are allowed to proceed.

The following example shows how to filter mrinfo request packets from all hosts on network 192.168.1.1 while allowing requests from any other hosts:
```

ip multicast mrinfo-filter 51
access-list 51 deny 192.168.1.1
access list }51\mathrm{ permit any

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mrinfo & Queries a multicast device about which neighboring multicast devices are peering with it. \\
\hline
\end{tabular}

\section*{ip multicast-routing}

To enable IP multicast routing, use the ip multicast-routing command in global configuration mode. To disable IP multicast routing, use the no form of this command.
ip multicast-routing [vrf \(v r f\)-name] no ip multicast-routing [vrf vrf-name]

\section*{Syntax Description}

\section*{Command Default}

Command Modes
Command History
vrf vrf-name (Optional) Enables IP multicast routing for the Multicast VPN routing and forwarding (MVRF) instance specified for the vrf-name argument.

IP multicast routing is disabled.
Global configuration (config).
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Usage Guidelines When IP multicast routing is disabled, the Cisco IOS software does not forward any multicast packets.

\section*{Examples}

The following example shows how to enable IP multicast routing:

Device(config) \# ip multicast-routing
The following example shows how to enable IP multicast routing on a specific VRF:

Device(config) \# ip multicast-routing vrf vrfi

The following example shows how to disable IP multicast routing:

Device(config) \# no ip multicast-routing

Related Commands

\section*{I2 vfi autodiscovery}

To enable the Virtual Private LAN Service (VPLS) provider edge (PE) device to automatically discover other PE devices that are part of the same VPLS domain, use the \(\mathbf{1 2} \mathbf{~ v f i}\) autodiscovery command in global configuration mode. To disable VPLS autodiscovery, use the no form of this command.

12 vfi \(v f i\)-name autodiscovery no \(\mathbf{1 2}\) vfi vfi-name autodiscovery

Syntax Description

\section*{Command Default}

Command Modes
Command History

Usage Guidelines
vfi-name
Specifies the name of the virtual forwarding instance. The virtual forwarding instance (VFI) identifies a group of pseudowires that are associated with a virtual switching instance (VSI).

Layer 2 VFI autodiscovery is not enabled.
Global configuration (config)
Release Modification

Cisco IOS XE Everest 16.6.1
This command was introduced.

VPLS autodiscovery enables each VPLS PE device to discover other PE devices that are part of the same VPLS domain. VPLS autodiscovery also automatically detects when PE devices are added to or removed from the VPLS domain.

The following example enables VPLS Autodiscovery on a PE device:
Device> enable
Device\# configure terminal
Device(config) \# 12 vfi vfi2 autodiscovery

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \(\mathbf{1 2}\) vfi manual & Manually creates a Layer 2 VFI. \\
\hline
\end{tabular}

\section*{12 vfi manual}

To create a Layer 2 virtual forwarding instance (VFI) and enter Layer 2 VFI manual configuration mode, use the \(\mathbf{1 2}\) vfi manual command in global configuration mode. To remove the Layer 2 VFI, use the no form of this command.

12 vfi name manual no \(\mathbf{1 2}\) vfi name manual
Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

A VFI is a collection of data structures used by the data plane, software-based or hardware-based, to forward packets to one or more virtual circuits (VC). It is populated and updated by both the control plane and the data plane and also serves as the data structure interface between the control plane and the data plane.
Within the Layer 2 VFI manual configuration mode, you can configure the following parameters:
- VPN ID of a Virtual Private LAN Service (VPLS) domain
- Addresses of other PE devices in this domain
- Type of tunnel signaling and encapsulation mechanism for each peer

Within the Layer 2 VFI manual configuration mode, the following commands are available:
- vpn id vpn-id
- [no] neighbor remote-router-id \{encapsulation mpls | pw-class pw-name| no-split-horizon\}

\section*{Examples}

This example shows how to create a Layer 2 VFI, enter Layer 2 VFI manual configuration mode, and configure a VPN ID:
```

Device> enable
Device\# configure terminal
Device(config)\# l2 vfi vfitest1 manual
Device(config-vfi)\# vpn id 303

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 2 } & \begin{tabular}{l}
Configures a VPN ID in RFC 2685 format. You can change the value \\
of the VPN ID only after its configuration, and you cannot remove \\
it.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l}
Specifies the type of tunnel signaling and encapsulation mechanism \\
for each peer.
\end{tabular} \\
\hline
\end{tabular}

\section*{I2vpn vfi context}

To establish a Layer 2 VPN virtual forwarding interface (VFI) between two or more separate networks, use the \(\mathbf{1 2 v p n}\) vfi context command in global configuration mode. To disable the connection, use the no form of this command.

12vpn vfi context name no l2vpn vfi context name
Syntax Description

\section*{name}

Name of the VFI context.

\section*{Command Default}

Command Modes

\section*{Command History}

Layer 2 VPN VFIs are not established.
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The \(\mathbf{1 2 v p n}\) vfi context command is used as part of the protocol-CLI mode for configuring Virtual Private LAN Service (VPLS). This command establishes a VFI for specifying core-facing pseudowires in a VPLS. The VFI represents an emulated LAN or a VPLS forwarder from the VPLS architectural model when using an emulated LAN interface.

\section*{Examples}

The following example shows how to establish an Layer 2 VPN VFI context:
```

Device> enable
Device\# configure terminal
Device(config)\# l2vpn vfi context vfil

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \(\mathbf{1 2}\) vfi & Establishes an Layer 2 VFI. \\
\hline
\end{tabular}

\section*{I2vpn xconnect context}

To create a Layer 2 VPN (L2VPN) cross-connect context and enter Xconnect configuration mode, use the 12vpn xconnect context command in global configuration mode. To remove the connection, use the no form of this command.

12vpn xconnect context context-name
no l2ypn xconnect context context-name

Syntax Description
\(\overline{\overline{\text { Command Default }}} \overline{\text { Command Modes }}\)

Usage Guidelines

L2VPN cross connections are not created.
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced.
\end{tabular}

Use the 12vpn xconnect context command to define a cross-connect context that specifies the two members in a Virtual Private Wire Service (VPWS), that is, attachment circuit to pseudowire, pseudowire-to-pseudowire (multisegment pseudowire), or attachment circuit-to-attachment circuit (local connection). The type of members specified, that is, attachment circuit interface or pseudowire, automatically define the type of L2VPN service.

The following example shows how to establish an L2VPN cross-connect context:
```

Device> enable
Device\# configure terminal
Device(config) \# l2vpn xconnect context con1
Device(config-xconnect)\# interworking ip

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline interworking & \begin{tabular}{l}
Enables L2VPN interworking and specifies the type of traffic that can be sent over the \\
pseudowire.
\end{tabular} \\
\hline
\end{tabular}

\section*{load-balance}

To set the load-distribution method for pseudowire, use the load-balance command in interface configuration mode. To reset the load-balancing mechanism to the default setting, use the no form of this command.
load-balance \{flow [\{ethernet [dst-mac | src-dst-mac |src-mac] |ip [dst-ip|src-dst-ip|src-ip] \}] | flow-label \{both | receive | transmit\}[static [advertise]]\}
no load-balance \{flow | flow-label\}

Syntax Description

\section*{Command Default \\ Command Modes}

Command History
\begin{tabular}{ll}
\hline flow & Enables flow-based load balancing for pseudowire. \\
\hline ethernet & Specifies Ethernet pseudowire flow classification. \\
\hline dst-mac & Specifies load distribution based on the destination host MAC address. \\
\hline src-dst-mac & Specifies load distribution based on the source and destination host MAC address. \\
\hline src-mac & Specifies load distribution based on the source MAC address. \\
\hline ip & Specifies IP pseudowire flow classification. \\
\hline dst-ip & Specifies load distribution based on the destination host IP address. \\
\hline src-dst-ip & Specifies load distribution based on the source and destination host IP address. \\
\hline src-ip & Specifies load distribution based on the source host IP address. \\
\hline flow-label & Enables flow-aware transport of pseudowire. \\
\hline both & Enables flow-aware transport of pseudowire in both directions. \\
\hline receive & Enables flow-aware transport of pseudowire in the receiving direction. \\
\hline transmit & Enables flow-aware transport of pseudowire in the transmitting direction. \\
\hline static & Enables flow labels even if not signaled by the remote peer. \\
\hline advertise & Sends flow label sub type, length, value (sub-TLV). \\
\hline
\end{tabular}

The command is disabled by default.
Interface configuration (config-if)

\section*{Release}

Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.

\section*{Examples}

This example shows how to set flow-based load balancing for pseudowire in the context of a specified IP address:
```

Device> enable
Device\# configure terminal
Device(config)\# interface pseudowire 17
Device(config-if)\# load-balance flow ip 192.168.2.25

```
\begin{tabular}{l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & interface pseudowire & Specifies the pseudowire interface. \\
\hline
\end{tabular}

\section*{mdt log-reuse}

To enable the recording of data multicast distribution tree (MDT) reuse, use the mdt log-reusecommand in VRF configuration or in VRF address family configuration mode. To disable this function, use the no form of this command.
mdt log-reuse
no mdt log-reuse

Syntax Description
\begin{tabular}{lll}
\hline Command Default & The command is disabled. \\
\cline { 1 - 1 } Command Modes & VRF address family configuration (config-vrf-af) \\
& VRF configuration (config-vrf)
\end{tabular}

\section*{Command History}

\section*{Usage Guidelines}

The mdt log-reuse command generates a syslog message whenever a data MDT is reused.
You can access the mdt log-reusecommand by using the ip vrf global configuration command. You can also access the mdt log-reuse command by using the vrf definition global configuration command followed by the address-family ipv4 VRF configuration command.
\(\overline{\text { Examples } \quad \text { The following example shows how to enable MDT log reuse: }}\)
mdt log-reuse

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mdt data & Configures the multicast group address range for data MDT groups. \\
\hline mdt default & Configures a default MDT group for a VPN VRF. \\
\hline
\end{tabular}

\section*{mdt default}

To configure a default multicast distribution tree (MDT) group for a Virtual Private Network (VPN) routing and forwarding (VRF) instance, use the mdt default command in VRF configuration or VRF address family configuration mode. To disable this function, use the no form of this command.
mdt defaultgroup-address
no mdt defaultgroup-address

Syntax Description

Command Default
Command Modes

Command History

Usage Guidelines
group-address \(\quad\) IP address of the default MDT group. This address serves as an identifier for the community in that provider edge (PE) devices configured with the same group address become members of the group, allowing them to receive packets sent by each other.

The command is disabled.
VRF address family configuration (config-vrf-af)
VRF configuration (config-vrf)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

The default MDT group must be the same group configured on all PE devices that belong to the same VPN.
If Source Specific Multicast (SSM) is used as the protocol for the default MDT, the source IP address will be the address used to source the Border Gateway Protocol (BGP) sessions.

A tunnel interface is created as a result of this command. By default, the destination address of the tunnel header is the group-address argument.

You can access the mdt default command by using the ip vrf global configuration command. You can also access the mdt default command by using the vrf definition global configuration command followed by the address-family ipv4 VRF configuration command.

In the following example, Protocol Independent Multicast (PIM) SSM is configured in the backbone. Therefore, the default and data MDT groups are configured within the SSM range of IP addresses. Inside the VPN, PIM sparse mode (PIM-SM) is configured and only Auto-RP announcements are accepted.
```

ip vrf vrf1
rd 1000:1
mdt default 236.1.1.1
mdt data 228.0.0.0 0.0.0.127 threshold 50
mdt data threshold 50
route-target export 1000:1
route-target import 1000:1
!
!

```
Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mdt data & Configures the multicast group address range for data MDT groups. \\
\hline
\end{tabular}

\section*{mdt data}

To specify a range of addresses to be used in the data multicast distribution tree (MDT) pool, use the mdt data command in VRF configuration or VRF address family configuration mode. To disable this function, use the no form of this command.
mdt data threshold \(k b / s\)
no mdt data threshold \(\mathrm{kb} / \mathrm{s}\)

Syntax Description

Command Default

Command Modes
threshold \(k b / s\) (Optional) Defines the bandwidth threshold value in kilobits per second (kb/s). The range is from 1 to 4294967.

A data MDT pool is not configured.
VRF address family configuration (config-vrf-af)
VRF configuration (config-vrf)

Command History

\section*{Usage Guidelines}

A data MDT can include a maximum of 256 multicast groups per MVPN. Multicast groups used to create the data MDT are dynamically chosen from a pool of configured IP addresses.

Use the mdt data command to specify a range of addresses to be used in the data MDT pool. The threshold is specified in \(\mathrm{kb} / \mathrm{s}\). Using the optional list keyword and access-list argument, you can define the (S, G) MVPN entries to be used in a data MDT pool, which would further limit the creation of a data MDT pool to the particular (S, G) MVPN entries defined in the access list specified for the access-listargument.

You can access the mdt datacommand by using the ip vrf global configuration command. You can also access the mdt datacommand by using the vrf definitionglobal configuration command followed by the address-family ipv4VRF configuration command.

\section*{Examples}

The following example shows how to configure the range of group addresses for the MDT data pool. A threshold of \(500 \mathrm{~kb} / \mathrm{s}\) has been set, which means that if a multicast stream exceeds \(1 \mathrm{~kb} / \mathrm{s}\), then a data MDT is created.
```

ip vrf vrf1
rd 1000:1
route-target export 10:27
route-target import 10:27
mdt default 236.1.1.1
mdt data 228.0.0.0 0.0.0.127 threshold 500 list 101
!
.
i
ip pim ssm default

```
```

ip pim vrf vrf1 accept-rp auto-rp

```
!
\begin{tabular}{l|l|l|}
\hline Related Commands & Command & Description \\
\hline mdt default & Configures a default MDT group for a VPN VRF. \\
\hline
\end{tabular}

\section*{member (I2vpn vfi)}

To specify the devices that form a point-to-point Layer 2 VPN virtual forwarding interface (VFI) connection, use the member command in Layer 2 VFI configuration mode. To disconnect the devices, use the no form of this command.
member \(\{\) ip-address \([\{v c\)-id \(\}]\{\) encapsulation mpls \(\mid\) template name \(\} \mid\) pseudowire \(p\) w-int-number [ip-address [\{vc-id \(\}]\{\) encapsulation mpls | template name \(\}]\}\)
no member \(\{\) ip-address \([\{v c\)-id \(\}]\{\) encapsulation mpls | template name \(\} \mid\) pseudowire pw-int-number [ip-address \([\{v c-i d\}]\{\) encapsulation mpls \(\mid\) template name \(\}]\}\)

\section*{Syntax Description}
\begin{tabular}{ll}
\hline ip-address & IP address of the VFI neighbor. \\
\hline\(v c\)-id & (Optional) Virtual circuit (VC) identifier. \\
\hline encapsulation mpls & \begin{tabular}{l}
Specifies Multiprotocol Label Switching (MPLS) \\
as the encapsulation type.
\end{tabular} \\
\hline template name & Specifies the template name. \\
\hline pseudowire pw-int-number & Specifies the pseudowire interface number.
\end{tabular}

Command Default
Devices that form a point-to-point Layer 2 VPN VFI connection are not specified.

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
This instance of the member command is used as part of the protocol-CLI mode for configuring Virtual Private LAN Service (VPLS).

Examples
The following example shows how to configure an Layer 2 VPN VFI connection as part of the protocol-CLI mode for configuring Virtual Private LAN Service (VPLS). :

Device> enable
Device\# configure terminal
Device(config) \# l2vpn vfi context vfil
Device(config-vfi) \# member 10.10.10.10 1 encapsulation mpls

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline neighbor (VPLS) & \begin{tabular}{l}
Specifies the type of tunnel signaling and encapsulation \\
mechanism for each VPLS peer.
\end{tabular} \\
\hline
\end{tabular}

\section*{member pseudowire}

To specify a pseudowire interface that forms a Layer 2 VPN (L2VPN) cross connect, use the member pseudowire command in Xconnect configuration mode. To disconnect the pseudowire interface, use the no form of this command.
member pseudowire interface-number [ip-address vc-id \{encapsulation mpls | template template-name\}] [group group-name [priority number]]
no member pseudowire interface-number

\section*{Syntax Description}
\begin{tabular}{ll}
\hline interface-number & Interface number. \\
\hline ip-address & IP address of the peer. \\
\hline vcid & The virtual circuit (VC) ID. The range is from 1 to 4294967295. \\
\hline encapsulation mpls & Specifies Multiprotocol Label Switching (MPLS) as the data encapsulation method. \\
\hline template template-name & \begin{tabular}{ll}
(Optional) Specifies the template to be used for encapsulation and protocol \\
configuration. The maximum size is 32 characters.
\end{tabular} \\
\hline group group-name & (Optional) Specifies the cross-connect member redundancy group name. \\
\hline priority number & \begin{tabular}{l}
(Optional) Specifies the cross-connect member priority. The range is from 0 to \\
16. The highest priority is 0. The lowest priority is 16.
\end{tabular}
\end{tabular}

\section*{\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}}

Devices that form an L2VPN cross connect are not specified.
Xconnect configuration (config-xconnect)

\section*{Usage Guidelines}

The member command specifies the two members of the Virtual Private Wired Service (VPWS), multisegment pseudowire or local connect services. For VPWS, one member is an attachment circuit and the other member is a pseudowire interface. For a multisegment pseudowire, both members are pseudowire interfaces. For local connect, both members are active interfaces.

When both the pseudowire interface and the peer information are specified, an interface is dynamically created by using the interface-number argument specified in the pseudowire command.
Configure the group name to specify which of the two possible groups a member belongs to.
Configure a priority for each member so that the active members can be chosen based on priority when there are multiple redundant members. The default priority for a member is 0 (highest).

There can only be two groups, with a maximum of four members in one group and only one member in the other group (the lone member is for active redundancy and the other three are for backup redundancy). If a group name is not specified, only two members can be configured in the L2VPN cross-connect context.

\section*{Examples}

The following example shows how to specify pseudowire as the attachment circuit type:
```

Device> enable
Device\# configure terminal
Device(config)\# l2vpn xconnect context con1
Device(config-xconnect) \# member pseudowire 17

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l}
12vpn xconnect \\
context
\end{tabular} & Creates a Layer 2 VPN (L2VPN) cross-connect context. \\
\hline xconnect & \begin{tabular}{l}
Binds an attachment circuit to a pseudowire for Xconnect service, and enters \\
Xconnect configuration mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{mpls label range}

To configure the range of local labels available for use with Multiprotocol Label Switching (MPLS) applications on packet interfaces, use the mpls label range command in global configuration mode. To revert to the platform defaults, use the no form of this command.
mpls label range minimum-value maximum-value [static minimum-static-value maximum-static-value] no mpls label range

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline minimum-value & The value of the smallest label allowed in the label space. The default is 16. \\
\hline maximum-value & \begin{tabular}{l}
The value of the largest label allowed in the label space. The default is \\
platform-dependent.
\end{tabular} \\
\hline static & \begin{tabular}{l}
(Optional) Reserves a block of local labels for static label assignments. If you omit \\
the static keyword and the minimum-static-value maximum-static-value arguments, \\
no labels are reserved for static assignment.
\end{tabular} \\
\hline minimum-static-value & \begin{tabular}{l}
(Optional) The minimum value for static label assignments. There is no default \\
value.
\end{tabular} \\
\hline maximum-static-value & \begin{tabular}{l}
(Optional) The maximum value for static label assignments. There is no default \\
value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

The labels 0 through 15 are reserved by the IETF (see RFC 3032, MPLS Label Stack Encoding, for details) and cannot be included in the range specified in the mpls label range command. If you enter a 0 in the command, you will get a message that indicates that the command is an unrecognized command.

The label range defined by the mpls label range command is used by all MPLS applications that allocate local labels (for dynamic label switching, MPLS traffic engineering, MPLS Virtual Private Networks (VPNs), and so on).

You can use label distribution protocols, such as Label Distribution Protocol (LDP), to reserve a generic range of labels from 16 through 1048575 for dynamic assignment.

You specify the optional static keyword, to reserve labels for static assignment. The MPLS Static Labels feature requires that you configure a range of labels for static assignment. You can configure static bindings only from the current static range. If the static range is not configured or is exhausted, then you cannot configure static bindings.

The range of label values is 16 to 4096. The maximum value defaults to 4096 . You can split for static label space between say 16 to 100 and for dynamic label space between 101 to 4096 .

The upper and lower minimum static label values are displayed in the help line.

\section*{Examples}

The following example displays the help lines when you configure the dynamic label with a minimum value of 16 and a maximum value of 100 :
```

Device(config)\# mpls label range 16 100 static ?
<100> Upper Minimum static label value
<16> Lower Minimum static label value
Reserved Label Range --> 0 to 15
Available Label Range --> 16 to 4096
Static Label Range --> 16 to 100
Dynamic Label Range --> 101 to 4096

```

The following example shows how to configure a static range from 16 to 100 . If the lower minimum static label space is not available, the lower minimum is not displayed in the help line.
```

Device(config)\# mpls label range 16 100 static ?
<16-100> static label value range

```

The following example shows how to configure the size of the local label space. In this example, the minimum static value is set to 200 , and the maximum static value is set to 4000 .
```

Device\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)\# mpls label range 200 4000
Device(config)\#

```

If you had specified a new range that overlaps the current range (for example, the new range of the minimum static value set to 16 and the maximum static value set to 1000), then the new range takes effect immediately.
The following example show how to configure a dynamic local label space with a minimum static value set to 100 and the maximum static value set to 1000 and a static label space with a minimum static value set to 16 and a maximum static value set to 99 :
```

Device(config)\# mpls label range 100 1000 static 16 99
Device(config)\#

```

In the following output, the show mpls label range command, executed after a reload, shows that the configured range is now in effect:
```

Device\# show mpls label range
Downstream label pool: Min/Max label: 100/1000
Range for static labels: Min/Max/Number: 16/99

```

The following example shows how to restore the label range to its default value:
```

Device\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)\# no mpls label range
Device(config)\# end

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show mpls label range & Displays the range of the MPLS local label space. \\
\hline
\end{tabular}

\section*{mpls label protocol (interface configuration)}

To specify the label distribution protocol for an interface, use the mpls label protocol command in interface configuration mode. To remove the label distribution protocol from the interface, use the no form of this command.
mpls label protocol ldp no mpls label protocol ldp

Syntax Description

Command Default

Usage Guidelines
To successfully establish a session for label distribution for a link connecting two label switch routers (LSRs), the link interfaces on the LSRs must be configured to use the same label distribution protocol. If there are multiple links connecting two LSRs, all of the link interfaces connecting the two LSRs must be configured to use the same protocol.

Examples The following example shows how to establish LDP as the label distribution protocol for the interface:
```

Device(config-if)\# mpls label protocol ldp

```

\section*{mpls label protocol (global configuration)}

To specify the Label Distribution Protocol (LDP) for a platform, use the mpls label protocol command in global configuration mode. To restore the default LDP, use the no form of this command.
mpls label protocol ldp no mpls label protocol ldp
\begin{tabular}{|l|l|}
\(\mathbf{l d p}\) & Specifies that LDP is the default label distribution protocol. \\
\hline
\end{tabular}

Command Default
Command Modes

Command History
LDP is the default label distribution protocol.
Global configuration
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5 .1 a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines If neither the global mpls label protocol ldp command nor the interface mpls label protocol ldp command is used, all label distribution sessions use LDP.

Examples
The following command establishes LDP as the label distribution protocol for the platform:

Device(config) \# mpls label protocol ldp

\section*{mpls Idp logging neighbor-changes}

To generate system error logging (syslog) messages when Label Distribution Protocol (LDP) sessions go down, use the mpls ldp logging neighbor-changes command in global configuration mode. To disable generating syslog messages, use the no form of this command.
mpls ldp logging neighbor-changes no mpls ldp logging neighbor-changes

Syntax Description
Command Default
Logging is enabled by default.

Command Modes
Global configuration (config)

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
Use the mpls ldp logging neighbor-changes command to generate syslog messages when an LDP session goes down. The command also provides VRF information about the LDP neighbor and the reason for the LDP session going down. Some of the reasons for an LDP session going down are the following:
- An LDP was disabled globally by configuration.
- An LDP was disabled on an interface.

\section*{Examples}

The following example generates syslog messages when LDP sessions go down:
```

Device> enable
Device\# configure terminal
Device(config) \# mpls ldp logging neighbor-changes

```

The following output shows the log entries when an LDP session with neighbor 192.168.1.100:0 goes down and comes up. The session went down because the discovery hold timer expired. The VRF table identifier for the neighbor is 1 .
```

2dOOh: %LDP-5-NBRCHG: LDP Neighbor 192.168.1.100:0 (1) is DOWN (Disc hold timer expired)
2d00h: %LDP-5-NBRCHG: LDP Neighbor 192.168.1.100:0 (1) is UP

```

\section*{mpls ip (interface configuration)}

To enable Multiprotocol Label Switching (MPLS) forwarding of IPv4 and IPv6 packets along normally routed paths for a particular interface, use the mpls ip command in interface configuration mode. To disable this configuration, use the no form of this command.
mpls ip
no mpls ip

Syntax Description
Command Default

\section*{Command Modes}

This command has no arguments or keywords.
MPLS forwarding of IPv4 and IPv6 packets along normally routed paths for the interface is disabled.
Interface configuration (config-if)

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

MPLS forwarding of IPv4 and IPv6 packets along normally routed paths is sometimes called dynamic label switching. If dynamic label switching has been enabled for the platform when this command is issued on an interface, label distribution for the interface begins with the periodic transmission of neighbor discovery Hello messages on the interface. When the outgoing label for a destination routed through the interface is known, packets for the destination are labeled with that outgoing label and forwarded through the interface.
The no form of this command causes packets routed out through the interface to be sent unlabeled; this form of the command also terminates label distribution for the interface. However, the no form of the command does not affect the sending of labeled packets through any link-state packet (LSP) tunnels that might use the interface.

The following example shows how to enable label switching on the specified Ethernet interface:
```

Device(config)\# configure terminal
Device(config-if) \# interface TenGigabitEthernet1/0/3
Device(config-if)\# mpls ip

```

The following example shows that label switching is enabled on the specified vlan interface (SVI) on a Cisco Catalyst switch:
```

Device(config)\# configure terminal

```
Device(config-if) \# interface vlan 1
Device(config-if) \# mpls ip

\section*{mpls ip (global configuration)}

To enable Multiprotocol Label Switching (MPLS) forwarding of IPv4 and IPv6 packets along normally routed paths for the platform, use the mpls ip command in global configuration mode. To disable this feature, use the no form of this command.
mpls ip no mpls ip

Syntax Description
This command has no arguments or keywords.

\section*{Command Default}

Label switching of IPv4 and IPv6 packets along normally routed paths is enabled for the platform.

Command Modes
Global configuration

\section*{Command History}

Usage Guidelines
MPLS forwarding of IPv4 and IPv6 packets along normally routed paths (sometimes called dynamic label switching) is enabled by this command. For a given interface to perform dynamic label switching, this switching function must be enabled for the interface and for the platform.
The no form of this command stops dynamic label switching for all platform interfaces regardless of the interface configuration; it also stops distribution of labels for dynamic label switching. However, the no form of this command does not affect the sending of labeled packets through label switch path (LSP) tunnels.

\section*{Examples}

The following example shows that dynamic label switching is disabled for the platform, and all label distribution is terminated for the platform:

Device(config) \# no mpls ip

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mpls ip (interface configuration) & \begin{tabular}{l}
Enables MPLS forwarding of IPv4 and IPv6 packets along normally \\
routed paths for the associated interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{mpls ip default-route}

To enable the distribution of labels associated with the IP default route, use the mpls ip default-route command in global configuration mode.
mpls ip default-route
\begin{tabular}{ll|l|}
\hline\(\overline{\text { Syntax Description }}\) & & This command has no arguments or keywords. \\
\(\overline{\text { Command Default }}\) & No distribution of labels for the IP default route. \\
\(\overline{\text { Command Modes }}\) & Global configuration & \\
\hline Command History & Release & Modification \\
\hline & \begin{tabular}{l}
Cisco IOS XE Everest \\
\(16.5 .1 a\)
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Dynamic label switching (that is, distribution of labels based on routing protocols) must be enabled before you can use the mpls ip default-route command.

\section*{Examples The following example shows how to enable the distribution of labels associated with the IP default} route:
```

Device\# configure terminal
Device(config)\# mpls ip
Device(config)\# mpls ip default-route

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mpls ip (global configuration) & \begin{tabular}{l}
Enables MPLS forwarding of IPv4 packets along normally routed paths \\
for the platform.
\end{tabular} \\
\hline mpls ip (interface configuration) & \begin{tabular}{l}
Enables MPLS forwarding of IPv4 packets along normally routed paths \\
for a particular interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{neighbor (MPLS)}

To specify the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire, use the neighbor command in interface configuration mode. To remove the peer IP address and VC ID value of an L2VPN pseudowire, use the no form of this command.
neighbor peer-address vcid-value
no neighbor

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
You must configure the neighbor command for the pseudowire to be functional.

\section*{Examples}
peer-address IP address of the provider edge (PE) peer.
vcid-value VC ID value. The range is from 1 to 4294967295.

Peer address and VC ID value of a pseudowire are not specified.
Interface configuration (config-if)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced.
\end{tabular}

The following example shows how to specify a peer IP address of 10.1.2.3 and a VC ID value of 100:
Device> enable
Device\# configure terminal
Device(config) \# interface pseudowire 100
Device(config-if) \# neighbor 10.1.2.3 100

\section*{show ip pim mdt send}

To display the data multicast distribution tree (MDT) groups in use, use the show ip pim mdt send command in privileged EXEC mode.
show ip pim vrf vrf-name mdt send

\section*{Syntax Description}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{|l|l|}
\hline vrf vrf-name & \begin{tabular}{l}
Displays the data MDT groups in use by the Multicast VPN (MVPN) routing and forwarding \\
(MVRF) instance specified for the \(v r f\)-name argument.
\end{tabular} \\
\hline
\end{tabular}

Privileged EXEC
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Use this command to show the data MDT groups in use by a specified MVRF.

The following is sample output from the show ip pim mdt send command:
Device\# show ip pim vrf vpn8 mdt send
MDT-data send list for VRF:vpn8 \(\quad\)\begin{tabular}{l}
(source, group)
\end{tabular}

The table below describes the significant fields shown in the display.
Table 115: show ip pim mdt send Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline source, group & Source and group addresses that this router has switched over to data MDTs. \\
\hline MDT-data group & Multicast address over which these data MDTs are being sent. \\
\hline ref_count & Number of (S, G) pairs that are reusing this data MDT. \\
\hline
\end{tabular}

\section*{show ip pim mdt receive}

To display the data multicast distribution tree (MDT) group mappings received from other provider edge (PE) routers, use the show ip pim mdt receivecommand in privileged EXEC mode.
show ip pim vrf vrf-name mdt receive [detail]

Syntax Description

\section*{Command Modes}

Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Usage Guidelines
When a router wants to switch over from the default MDT to a data MDT, it advertises the VRF source, the group pair, and the global multicast address over which the traffic will be sent. If the remote router wants to receive this data, then it will join this global address multicast group.

\section*{\(\overline{\text { Examples }}\)}
\begin{tabular}{|l|l|}
\hline vrf vrf-name & \begin{tabular}{l}
Displays the data MDT group mappings for the Multicast VPN (MVPN) routing and \\
forwarding (MVRF) instance specified for the \(v r f\)-name argument.
\end{tabular} \\
\hline detail & (Optional) Provides a detailed description of the data MDT advertisements received. \\
\hline
\end{tabular}

Privileged EXEC

The following is sample output from the show ip pim mdt receivecommand using the detail keyword
for further information:
```

Device\# show ip pim vrf vpn8 mdt receive detail
Joined MDT-data groups for VRF:vpn8
group:172.16.8.0 source:10.0.0.100 ref_count:13
(10.101.8.10, 225.1.8.1), 1d13h/00:03:28/00:02:26, OIF count:1, flags:TY
(10.102.8.10, 225.1.8.1), 1d13h/00:03:28/00:02:27, OIF count:1, flags:TY

```

The table below describes the significant fields shown in the display.
Table 116: show ip pim mdt receive Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline group:172.16.8.0 & Group that caused the data MDT to be built. \\
\hline source:10.0.0.100 & VRF source that caused the data MDT to be built. \\
\hline ref_count:13 & Number of (S, G) pairs that are reusing this data MDT. \\
\hline OIF count:1 & Number of interfaces out of which this multicast data is being forwarded. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline flags: & \begin{tabular}{l}
Information about the entry. \\
- A--candidate Multicast Source Discovery Protocol (MSDP) advertisement \\
- B--bidirectional group \\
- D--dense \\
- C--connected \\
- F--register flag \\
- I--received source-specific host report \\
- J--join shortest path source tree (SPT) \\
- L--local \\
- M--MSDP created entry \\
- P--pruned \\
- R--RP bit set \\
- S--sparse \\
- s--Source Specific Multicast (SSM) group \\
- T--SPT bit set \\
- X--proxy join timer running \\
- U--URL Rendezvous Directory (URD) \\
- Y--joined MDT data group \\
- y--sending to MDT data group \\
- Z--multicast tunnel
\end{tabular} \\
\hline
\end{tabular}

\section*{show ip pim mdt history}

To display information about the history of data multicast distribution tree (MDT) groups that have been reused, use the show ip pim mdt historycommand in privileged EXEC mode.
show ip pim vrf vrf-name mdt history interval minutes
Syntax Description

Command Modes
Command History

Usage Guidelines
The output of the show ip pim mdt history command displays the history of reused MDT data groups for the interval specified with the interval keyword and minutes argument. The interval is from the past to the present, that is, from the time specified for the minutes argument to the time at which the command is issued.

Examples
The following is sample output from the show ip pim mdt historycommand:
```

Device\# show ip pim vrf vrf1 mdt history interval }2
MDT-data send history for VRF - vrf1 for the past }20\mathrm{ minutes
MDT-data group Number of reuse
10.9.9.8 3
10.9.9.9 2

```

The table below describes the significant fields shown in the display.

\section*{Table 117: show ip pim mdt history Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline MDT-data group & The MDT data group for which information is being shown. \\
\hline Number of reuse & The number of data MDTs that have been reused in this group. \\
\hline
\end{tabular}

\section*{show ip pim mdt bgp}

To show details about the Border Gateway Protocol (BGP) advertisement of the route distinguisher (RD) for the multicast distribution tree (MDT) default group, use the show ip pim mdt bgp command in user EXEC or privileged EXEC mode.
show ip pim [vrf vrf-name] mdt bgp

Syntax Description

\section*{Command Modes}

User EXEC
Privileged EXEC
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{|l|l}
\hline vrf vrf-name & \\
& (Op \\
f
\end{tabular}
User EXEC
Privileged EXEC forwarding (MVRF) instance specified for the vrf-name argument.

Use this command to show detailed BGP advertisement of the RD for the MDT default group.

The following is sample output from the show ip pim mdt bgpcommand:
(Optional) Displays information about the BGP advertisement of the RD for the MDT default group associated with Multicast Virtual Private Network (MVPN) routing and
```

Device\# show ip pim mdt bgp
MDT-default group 232.2.1.4
rid:10.1.1.1 next_hop:10.1.1.1

```

The table below describes the significant fields shown in the display.
Table 118: show ip pim mdt hgp Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline MDT-default group & The MDT default groups that have been advertised to this router. \\
\hline rid:10.1.1.1 & The BGP router ID of the advertising router. \\
\hline next_hop:10.1.1.1 & The BGP next hop address that was contained in the advertisement. \\
\hline
\end{tabular}

\section*{show mpls label range}

To display the range of local labels available for use on packet interfaces, use the show show mpls label range command in privileged EXEC mode.
show mpls label range
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
Command Modes
Privileged EXEC
Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
You can use the mpls label range command to configure a range for local labels that is different from the default range. The show mpls label range command displays both the label range currently in use and the label range that will be in use following the next switch reload.

Examples In the following example, the use of the show mpls label range command is shown before and after the mpls label range command is used to configure a label range that does not overlap the starting label range:
```

Device\# show mpls label range
Downstream label pool: Min/Max label: 16/100
Device\# configure terminal
Device(config) \# mpls label range 101 4000
Device(config)\# exit
Device\# show mpls label range
Downstream label pool: Min/Max label: 101/4000

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mpls label range & Configures a range of values for use as local labels. \\
\hline
\end{tabular}

\section*{show mpls Idp bindings}

The show mpls ldp bindings command was introduced. It displays the contents of the Label Information Base (LIB).
show mpls ldp bindings [all|vrf vrf-name] [brief] [summary]
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Modes
\end{tabular}
\begin{tabular}{ll}
\hline all & Displays all LDP configured VRFs. \\
\hline vrf vrf-name & Displays the VRF information for the specified VRF. \\
\hline brief & Displays concise information about a specified LDP-enabled interface. \\
\hline summary & Displays summarized information for LDP discovery.
\end{tabular}

\section*{Command History}

Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & This command was introduced. \\
\hline
\end{tabular}
\(\overline{\text { Examples }}\)
The following is a sample output of the show mpls ldp bindings brief command:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Device\# show mpls ldp bindings brief} \\
\hline \multicolumn{4}{|l|}{Fri Mar 9 17:39:27.358 UTCs} \\
\hline Prefix & \begin{tabular}{l}
Local \\
Label
\end{tabular} & Advertised (peers) & Remote Bindings (peers) \\
\hline 0.0.0.0/0 & ImpNull & 2 & 0 \\
\hline 1.1.1.1/32 & ImpNull & 2 & 2 \\
\hline 1.2.3.0/24 & - & 0 & 2 \\
\hline 3.3.3.3/32 & 24054 & 2 & 2 \\
\hline 4.4.4.4/32 & 24050 & 2 & 2 \\
\hline 5.5.5.5/32 & 24051 & 2 & 2 \\
\hline 5.7.0.0/16 & ImpNull & 2 & 0 \\
\hline \(5.8 .0 .0 / 16\) & - & 0 & 2 \\
\hline \(5.11 .0 .0 / 16\) & 24002 & 2 & 0 \\
\hline 6.6.6.6/32 & 24055 & 2 & 2 \\
\hline 10.5.1.0/24 & ImpNull & 2 & 0 \\
\hline 10.105.0.0/16 & 24003 & 2 & 0 \\
\hline 11.11.11.0/24 & ImpNull & 2 & 0 \\
\hline 12.12.12.2/32 & ImpNull & 2 & 0 \\
\hline 14.0.0.0/16 & - & 0 & 2 \\
\hline 20.20.20.0/24 & ImpNull & 2 & 2 \\
\hline \(30.30 .30 .0 / 24\) & ImpNull & 2 & 2 \\
\hline 56.2.1.0/24 & ImpNull & 2 & 0 \\
\hline 86.0.0.1/32 & ImpNull & 2 & 0 \\
\hline 100.0.0.0/16 & ImpNull & 2 & 0 \\
\hline 100.0.0.1/32 & ImpNull & 2 & 0 \\
\hline 110.1.1.1/32 & - & 0 & 2 \\
\hline 120.1.1.1/32 & - & 0 & 2 \\
\hline 202.153.0.0/16 & 24005 & 2 & 0 \\
\hline 202.153.144.25/32 & 24004 & 2 & 2 \\
\hline
\end{tabular}

The following is a sample output of the show mpls ldp bindings summary command:
```

Device\# show mpls ldp bindings summary
Fri Mar 9 17:39:22.572 UTC
LIB Summary:
Total Prefix : 25
Revision No : Current:92, Advertised:92
Local Bindings : 20
NULL : }12\mathrm{ (implicit:12, explicit:0)
Non-NULL: 8 (lowest:24002, highest:24055)
Remote Bindings: 26

```

\section*{show mpls Idp discovery}

The show mpls ldp discovery command was introduced. It displays the status of the LDP discovery process.
show mpls ldp discovery [all | vrf vrf-name] [brief] [summary]
\begin{tabular}{lll}
\hline Syntax Description & \multicolumn{1}{l}{ all } & Displays all LDP configured VRFs. \\
& \begin{tabular}{ll}
vrf vrf-name & Displays the VRF information for the specified VRF. \\
& \begin{tabular}{ll}
brief & Displays concise information about a specified LDP-enabled interface. \\
\hline summary & Displays summarized information for LDP discovery. \\
\hline Command Modes & Privileged EXEC (\#) \\
\hline Command History & Release \\
& Cisco IOS XE Amsterdam 17.3.1
\end{tabular} \\
\hline
\end{tabular} & Modification \\
\hline
\end{tabular}

\section*{Examples}

The following is a sample output of the show mpls ldp discovery brief command:
```

Device\# show mpls ldp discovery brief
Fri Mar 9 17:39:00.536 UTC
Local LDP Identifier: 1.1.1.1:0

| Discovery Source | VRF Name | Peer LDP Id | Holdti | s |
| :---: | :---: | :---: | :---: | :---: |
| Te0/1/1/10 | default | 4.4.4.4:0 | 15 | Y |
| Te0/1/1/12 | default | 3.3.3.3:0 | 15 | Y |
| Tgt: 87.0.0.1 | default | - | - | N |

```

The following is a sample output of the show mpls ldp discovery summary command:
```

```
Device# show mpls ldp discovery summary
```

```
Device# show mpls ldp discovery summary
Fri Mar 9 17:38:55.977 UTC
Fri Mar 9 17:38:55.977 UTC
LDP Identifier: 1.1.1.1:0
LDP Identifier: 1.1.1.1:0
Interfaces:
Interfaces:
 Configured: 2
 Configured: 2
 Enabled : 2
 Enabled : 2
Discovery:
Discovery:
 Hello xmit: 3 (2 link, 1 targeted)
 Hello xmit: 3 (2 link, 1 targeted)
 Hello recv: 2 (2 link)
 Hello recv: 2 (2 link)
 Hello Errors Received:
 Hello Errors Received:
 Bad Source Address: 0
 Bad Source Address: 0
 Bad Hello PDU: 0
 Bad Hello PDU: 0
 Bad Xport Address: 0
 Bad Xport Address: 0
 Same Router ID: 0
 Same Router ID: 0
 Wrong Router ID: 0
```

```
 Wrong Router ID: 0
```

```

\section*{show mpls Idp neighbor}

The show mpls ldp neighbor command was introduced. It displays the status of LDP sessions.
show mpls ldp neighbor [all|vrf vrf-name] [brief] [summary]

Syntax Description

Command Modes
Command History
\begin{tabular}{lll}
\hline all & Displays all LDP configured VRFs. \\
\hline vrf & vrf-name & Displays the VRF information for the specified VRF. \\
\hline brief & Displays concise information about a specified LDP-enabled interface. \\
\hline summary & Displays summarized information for LDP discovery. \\
\hline Privileged EXEC (\#) & \\
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following is a sample output of the show mpls ldp neighbor brief command:

The following is a sample output of the show mpls ldp neighbor summary command:
```

Device\# show mpls ldp neighbor summary
Fri Mar 9 17:38:55.977 UTC
VRF vrf1
Local LDP Identifier: 16.0.0.3:0
Sessions: 2 operational
1 directly connected
0 graceful restart

```

\section*{show mpls forwarding-table}

To display the contents of the Multiprotocol Label Switching (MPLS) Label Forwarding Information Base (LFIB), use the show mpls forwarding-table command in user EXEC or privileged EXEC mode.

Note
When a local label is present, the forwarding entry for IP imposition will not be showed; if you want to see the IP imposition information, use show ip cef.
show mpls forwarding-table [\{network \{masklength \(\} \mid\) interface interface |labels label [dash label] |lcatm atm atm-interface-number|next-hop address|lsp-tunnel [tunnel-id]\}] [vrf vrf-name] [detail slot slot-number]
\begin{tabular}{|l|l|}
\hline network & (Optional) Destination network number. \\
\hline mask & IP address of the destination mask whose entry is to be shown. \\
\hline length & Number of bits in the mask of the destination. \\
\hline interface interface & (Optional) Displays entries with the outgoing interface specified. \\
\hline labels label-label & (Optional) Displays entries with the local labels specified. \\
\hline lcatm atm atm-interface-number & \begin{tabular}{l}
Displays ATM entries with the specified Label Controlled Asynchronous \\
Transfer Mode (LCATM).
\end{tabular} \\
\hline next-hop address & \begin{tabular}{l}
(Optional) Displays only entries with the specified neighbor as the next \\
hop.
\end{tabular} \\
\hline lsp-tunnel & \begin{tabular}{l}
(Optional) Displays only entries with the specified label switched path \\
(LSP) tunnel, or with all LSP tunnel entries.
\end{tabular} \\
\hline tunnel-id & (Optional) Specifies the LSP tunnel for which to display entries. \\
\hline vrf vrf-name & \begin{tabular}{l}
(Optional) Displays entries with the specified VPN routing and forwarding \\
(VRF) instance.
\end{tabular} \\
\hline detail & \begin{tabular}{l}
(Optional) Displays information in long form (includes length of \\
encapsulation, length of MAC string, maximum transmission unit [MTU], \\
and all labels).
\end{tabular} \\
\hline slot slot-number & (Optional) Specifies the slot number, which is always 0. \\
\hline
\end{tabular}

\section*{Command Modes}

\footnotetext{
User EXEC (>)
Privileged EXEC (\#)
}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular}
\end{tabular}

\section*{Examples}

The following is sample output from the show mpls forwarding-table command:

The following is sample output from the show mpls forwarding-table command when the IPv6 Provider Edge Router over MPLS feature is configured to allow IPv6 traffic to be transported across an IPv4 MPLS backbone. The labels are aggregated because there are several prefixes for one local label, and the prefix column contains "IPv6" instead of a target prefix.
\begin{tabular}{lllll}
Device\# show mpls \\
Lorwarding-table \\
Local & Outgoing & Prefix & & \\
Label & Label or VC & or Tunnel Id & Bytes label Outgoing & Switched interface
\end{tabular}

The following is sample output from the show mpls forwarding-table detail command. If the MPLS EXP level is used as a selection criterion for packet forwarding, a bundle adjacency exp (vcd) field is included in the display. This field includes the EXP value and the corresponding virtual circuit descriptor (VCD) in parentheses. The line in the output that reads "No output feature configured" indicates that the MPLS egress NetFlow accounting feature is not enabled on the outgoing interface for this prefix.
```

Device\# show mpls forwarding-table detail
Local Outgoing Prefix Bytes label Outgoing Next Hop
label label or VC or Tunnel Id switched interface
1 6 ~ P o p ~ l a b e l ~ 1 0 . 0 . 0 . 6 / 3 2 ~ 0 ~ A T 1 / 0 . 1 ~ p o i n t 2 p o i n t ~
Bundle adjacency exp(vcd)
0(1) 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1)
MAC/Encaps=12/12, MTU=4474, label Stack{}
00010000AAAA030000008847
No output feature configured

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 17 & 18 & 10.0.0.9/32 & 0 & AT1/0.1 & point2point \\
\hline \multicolumn{6}{|c|}{Bundle adjacency exp (vcd)} \\
\hline \multicolumn{6}{|c|}{\(0(1) 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1)\)} \\
\hline \multicolumn{6}{|c|}{\[
\begin{gathered}
\text { MAC/Encaps }=12 / 16, \quad \text { MTU }=4470, \text { label Stack }\{18\} \\
00010000 \text { AAAA030000008847 } 00012000
\end{gathered}
\]} \\
\hline \multicolumn{6}{|c|}{No output feature configured} \\
\hline 18 & 19 & 10.0.0.10/32 & 0 & AT1/0.1 & point2point \\
\hline \multicolumn{6}{|c|}{Bundle adjacency exp (vcd)} \\
\hline \multicolumn{6}{|c|}{\(0(1) 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1)\)} \\
\hline \multicolumn{6}{|c|}{\[
\begin{aligned}
& \text { MAC } / \text { Encaps }=12 / 16, \text { MTU=4470, label Stack }\{19\} \\
& 00010000 \text { AAAA030000008847 } 00013000
\end{aligned}
\]} \\
\hline \multicolumn{6}{|c|}{No output feature configured} \\
\hline 19 & 17 & 10.0.0.0/8 & 0 & AT1/0.1 & point2point \\
\hline \multicolumn{6}{|c|}{Bundle adjacency exp (vcd)} \\
\hline & (1) 1(1) 2(1) & 1) 4 (1) 5(1) 6 & & & \\
\hline \multicolumn{6}{|c|}{MAC/Encaps=12/16, MTU=4470, label Stack\{17\} 00010000 AAAA030000008847 00011000} \\
\hline \multicolumn{6}{|c|}{No output feature configured} \\
\hline 20 & 20 & 10.0.0.0/8 & 0 & AT1/0.1 & point2point \\
\hline \multicolumn{6}{|c|}{Bundle adjacency exp(vcd)} \\
\hline & (1) 1(1) 2(1) & 1) \(4(1) 5(1) 6\) & & & \\
\hline \multicolumn{6}{|c|}{\[
\begin{aligned}
& \text { MAC } / \text { Encaps }=12 / 16, \text { MTU }=4470 \text {, label Stack }\{20\} \\
& 00010000 \text { AAAA030000008847 } 00014000
\end{aligned}
\]} \\
\hline \multicolumn{6}{|c|}{No output feature configured} \\
\hline 21 & Pop label & 10.0.0.0/24 & & AT1/0.1 & point2point \\
\hline \multicolumn{6}{|c|}{Bundle adjacency exp (vcd)} \\
\hline \multicolumn{6}{|c|}{0 (1) 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1)} \\
\hline \multicolumn{6}{|c|}{\[
\begin{aligned}
& \text { MAC/Encaps=12/12, MTU=4474, label Stack\{\} } \\
& 00010000 \text { AAAA030000008847 }
\end{aligned}
\]} \\
\hline \multicolumn{6}{|c|}{No output feature configured} \\
\hline 22 & Pop label & 10.0.0.4/32 & & Et2/3 & 10.0.0.4 \\
\hline \multicolumn{6}{|c|}{MAC/Encaps=14/14, MTU=1504, label Stack\{\} 000427 AD10430005DDFE043B8847} \\
\hline & output feat & configured & & & \\
\hline
\end{tabular}

The following is sample output from the show mpls forwarding-table detail command. In this example, the MPLS egress NetFlow accounting feature is enabled on the first three prefixes, as indicated by the line in the output that reads "Feature Quick flag set."
```

Device\# show mpls forwarding-table detail
Local Outgoing Prefix Bytes label Outgoing Next Hop
label label or VC or Tunnel Id switched interface
16 Aggregate 10.0.0.0/8[V] 0
MAC/Encaps=0/0, MTU=0, label Stack{}
VPN route: vpn1
Feature Quick flag set
Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17 No label 10.0.0.0/8[V] 0 Et0/0/2 10.0.0.1
MAC/Encaps=0/0, MTU=1500, label Stack{}
VPN route: vpn1
Feature Quick flag set
Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
18 No label 10.42.42.42/32[V] 4185 Et0/0/2 10.0.0.1
MAC/Encaps=0/0, MTU=1500, label Stack{}
VPN route: vpn1
Feature Quick flag set
Per-packet load-sharing, slots: 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15
19 2/33 10.41.41.41/32 0 AT1/0/0.1 point2point
MAC/Encaps=4/8, MTU=4470, label Stack{2/33(vcd=2)}
00028847 00002000
No output feature configured

```

The table below describes the significant fields shown in the displays.
Table 119: show mpls forwarding-table Field Descriptions
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Local label & Label assigned by this device. \\
\hline \begin{tabular}{l}
Outgoing Label or VC \\
Note \\
This field is not supported on the Cisco 10000 series routers.
\end{tabular} & \begin{tabular}{l}
Label assigned by the next hop or the virtual path identifier (VPI)/virtual channel identifier (VCI) used to get to next hop. The entries in this column are the following: \\
- [T]--Forwarding is through an LSP tunnel. \\
- No Label--There is no label for the destination from the next hop or label switching is not enabled on the outgoing interface. \\
- Pop Label--The next hop advertised an implicit NULL label for the destination and the device removed the top label. \\
- Aggregate--There are several prefixes for one local label. This entry is used when IPv6 is configured on edge devices to transport IPv6 traffic over an IPv4 MPLS network.
\end{tabular} \\
\hline Prefix or Tunnel Id & \begin{tabular}{l}
Address or tunnel to which packets with this label are sent. \\
Note If IPv6 is configured on edge devices to transport IPv6 traffic over an IPv4 MPLS network, "IPv6" is displayed here. \\
- [V]--The corresponding prefix is in a VRF.
\end{tabular} \\
\hline Bytes label switched & Number of bytes switched with this incoming label. This includes the outgoing label and Layer 2 header. \\
\hline Outgoing interface & Interface through which packets with this label are sent. \\
\hline Next Hop & IP address of the neighbor that assigned the outgoing label. \\
\hline Bundle adjacency \(\exp (\mathrm{vcd})\) & Bundle adjacency information. Includes the MPLS EXP value and the corresponding VCD. \\
\hline MAC/Encaps & Length in bytes of the Layer 2 header and length in bytes of the packet encapsulation, including the Layer 2 header and label header. \\
\hline MTU & MTU of the labeled packet. \\
\hline label Stack & \begin{tabular}{l}
All the outgoing labels. If the outgoing interface is transmission convergence (TC)-ATM, the VCD is also shown. \\
Note TC-ATM is not supported on Cisco 10000 series routers.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 00010000AAAA030000008847 } \\
& 00013000
\end{aligned}
\] & The actual encapsulation in hexadecimal form. A space is shown between Layer 2 and the label header. \\
\hline
\end{tabular}

\section*{Explicit-Null Label Example}

The following is sample output, including the explicit-null label \(=0\) (commented in bold), for the show mpls forwarding-table command on a CSC-PE device:

The table below describes the significant fields shown in the display.
Table 120: show mpls forwarding-table Field Descriptions
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Local label & Label assigned by this device. \\
\hline Outgoing label or VC & \begin{tabular}{l}
Label assigned by the next hop or VPI/VCI used to get to the next hop. The entries in this column are the following: \\
- [T]--Forwarding is through an LSP tunnel. \\
- No label--There is no label for the destination from the next hop or that label switching is not enabled on the outgoing interface. \\
- Pop label--The next hop advertised an implicit NULL label for the destination and that this device popped the top label. \\
- Aggregate--There are several prefixes for one local label. This entry is used when IPv6 is configured on edge devices to transport IPv6 traffic over an IPv4 MPLS network. \\
- 0 --The explicit null label value \(=0\).
\end{tabular} \\
\hline Prefix or Tunnel Id & \begin{tabular}{l}
Address or tunnel to which packets with this label are sent. \\
Note If IPv6 is configured on edge devices to transport IPv6 traffic over an IPv4 MPLS network, IPv6 is displayed here. \\
- [V]--Means that the corresponding prefix is in a VRF.
\end{tabular} \\
\hline Bytes label switched & Number of bytes switched with this incoming label. This includes the outgoing label and Layer 2 header. \\
\hline Outgoing interface & Interface through which packets with this label are sent. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Next Hop & IP address of the neighbor that assigned the outgoing label. \\
\hline
\end{tabular}

\section*{Cisco IOS Software Modularity: MPLS Layer 3 VPNs Example}

The following is sample output from the show mpls forwarding-table command:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Device\# show mpls forwarding-table} \\
\hline Local & & Outgoing & Prefix & Bytes Label & Outgoing Next Hop \\
\hline Label & & Label & or Tunnel Id & Switched & interface \\
\hline 16 & & Pop Label & IPv4 VRF[V] & 62951000 & aggregate/v1 \\
\hline \multirow[t]{3}{*}{17} & \multirow[t]{2}{*}{[H]} & No Label & 10.1.1.0/24 & 0 & AT1/0/0.1 point2point \\
\hline & & No Label & 10.1.1.0/24 & 0 & PO3/1/0 point2point \\
\hline & [T] & No Label & 10.1.1.0/24 & 0 & Tu1 point2point \\
\hline 18 & [HT] & Pop Label & 10.0.0.3/32 & 0 & Tu1 point2point \\
\hline \multirow[t]{2}{*}{19} & \multirow[t]{2}{*}{[H]} & No Label & 10.0.0.0/8 & 0 & AT1/0/0.1 point2point \\
\hline & & No Label & 10.0.0.0/8 & 0 & PO3/1/0 point2point \\
\hline \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{[H]} & No Label & 10.0.0.0/8 & 0 & AT1/0/0.1 point2point \\
\hline & & No Label & 10.0.0.0/8 & 0 & PO3/1/0 point2point \\
\hline \multirow[t]{2}{*}{21} & \multirow[t]{2}{*}{[H]} & No Label & 10.0.0.1/32 & 812 & AT1/0/0.1 point2point \\
\hline & & No Label & 10.0.0.1/32 & 0 & PO3/1/0 point2point \\
\hline \multirow[t]{2}{*}{22} & \multirow[t]{2}{*}{[H]} & No Label & 10.1.14.0/24 & 0 & AT1/0/0.1 point2point \\
\hline & & No Label & 10.1.14.0/24 & 0 & PO3/1/0 point2point \\
\hline 23 & [HT] & 16 & 172.1.1.0/24[V] & 0 & Tu1 point2point \\
\hline 24 & [HT] & 24 & 10.0.0.1/32[V] & 0 & Tu1 point2point \\
\hline 25 & [H] & No Label & 10.0.0.0/8[V] & 0 & AT1/1/0.1 point2point \\
\hline 26 & [HT] & 16 & 10.0.0.3/32[V] & 0 & Tu1 point2point \\
\hline 27 & & No Label & 10.0.0.1/32[V] & 0 & AT1/1/0.1 point2point \\
\hline \multirow[t]{2}{*}{[T]} & \multicolumn{5}{|c|}{Forwarding through a TSP tunnel.} \\
\hline & \multicolumn{5}{|r|}{View additional labelling info with the 'detail' option} \\
\hline [H] & \multicolumn{5}{|c|}{Local label is being held down temporarily.} \\
\hline
\end{tabular}

The table below describes the Local Label fields relating to the Cisco IOS Software Modularity: MPLS Layer 3 VPNs feature.

\section*{Table 121: show mpls forwarding-table Field Descriptions}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Local Label & \begin{tabular}{l}
Label assigned by this device. \\
- [H]--Local labels are in holddown, which means that the application that requested the labels no longer needs them and stops advertising them to its labeling peers. \\
The label's forwarding-table entry is deleted after a short, application-specific time. \\
If any application starts advertising a held-down label to its labeling peers, the label could come out of holddown. \\
Note \\
\([\mathrm{H}]\) is not shown if labels are held down globally. \\
A label enters global holddown after a stateful switchover or a restart of certain processes in a Cisco IOS modularity environment. \\
- [T]--The label is forwarded through an LSP tunnel. \\
Note \\
Although [T] is still a property of the outgoing interface, it is shown in the Local Label column. \\
- [HT]--Both conditions apply.
\end{tabular} \\
\hline
\end{tabular}

\section*{L2VPN Inter-AS Option B: Example}

The following is sample output from the show mpls forwarding-table interface command. In this example, the pseudowire identifier (that is, 4096) is displayed in the Prefix or Tunnel Id column. The show mpls \(\mathbf{2}\) transport ve detail command can be used to obtain more information about the specific pseudowire displayed.
\begin{tabular}{lcllll}
Device\# show mpls forwarding-table & & & \\
Local & Outgoing & Prefix & Bytes Label & Outgoing & Next Hop \\
Label & Label & or Tunnel Id & Switched & interface & \\
1011 & No Label & l2ckt \((4096)\) & 0 & none & point2point
\end{tabular}

The table below describes the fields shown in the display.
Table 122: show mpls forwarding-table interface Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Local Label & Label assigned by this device. \\
\hline Outgoing Label & \begin{tabular}{l}
Label assigned by the next hop or virtual path identifier (VPI)/virtual channel identifier \\
(VCI) used to get to the next hop.
\end{tabular} \\
\hline Prefix or Tunnel Id & Address or tunnel to which packets with this label are going. \\
\hline Bytes Label Switched & \begin{tabular}{l}
Number of bytes switched with this incoming label. This includes the outgoing label \\
and Layer 2 header.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Outgoing interface & Interface through which packets with this label are sent. \\
\hline Next Hop & IP address of the neighbor that assigned the outgoing label. \\
\hline
\end{tabular}

\section*{show mpls static binding}

To display Multiprotocol Label Switching (MPLS) static label bindings, use the show mpls static binding command in privileged EXEC mode.
show mpls static binding \([\{\mathbf{i p v 4} 4[\{\) vrf vrf-name \(\}]\}][\{\) prefix \(\{\) mask-lengthmask \(\}\}][\{\) local \(\mid\) remote \(\}][\{\) nexthop address\}]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline ipv4 & (Optional) Displays IPv4 static label bindings. \\
\hline vrf \(v r f\)-name & \begin{tabular}{l}
(Optional) The static label bindings for a specified VPN routing and \\
forwarding instance.
\end{tabular} \\
\hline prefix \(\{\) mask-length \(\mid\) mask \(\}\) & (Optional) Labels for a specific prefix. \\
\hline local & (Optional) Displays the incoming (local) static label bindings. \\
\hline remote & (Optional) Displays the outgoing (remote) static label bindings. \\
\hline nexthop address & \begin{tabular}{l}
(Optional) Displays the label bindings for prefixes with outgoing labels for \\
which the specified next hop is to be displayed.
\end{tabular} \\
\hline
\end{tabular}

Command Modes
Privileged EXEC (\#)

\section*{Command History Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was \\
& introduced. \\
\hline
\end{tabular}

If you do not specify any optional arguments, the show mpls static binding command displays information about all static label bindings. Or the information can be limited to any of the following:
- Bindings for a specific prefix or mask
- Local (incoming) labels
- Remote (outgoing) labels
- Outgoing labels for a specific next hop router

\section*{Examples}

In the following output, the show mpls static binding ipv4 command with no optional arguments displays all static label bindings:
```

Device\# show mpls static binding ipv4
10.0.0.0/8: Incoming label: none;
Outgoing labels:
10.13.0.8 explicit-null
10.0.0.0/8: Incoming label: 55 (in LIB)
Outgoing labels:

```
```

        10.0.0.66 2607
    10.66.0.0/16: Incoming label: 17 (in LIB)
Outgoing labels: None

```

In the following output, the show mpls static binding ipv4 command displays remote (outgoing) statically assigned labels only:
```

Device\# show mpls static binding ipv4 remote
10.0.0.0/8:
Outgoing labels:
10.13.0.8 explicit-null
10.0.0.0/8:
Outgoing labels:
10.0.0.66 2607

```

In the following output, the show mpls static binding ipv4 command displays local (incoming) statically assigned labels only:
```

Device\# show mpls static binding ipv4 local
10.0.0.0/8: Incoming label: 55 (in LIB)
10.66.0.0/16: Incoming label: 17 (in LIB)

```

In the following output, theshow mpls static binding ipv4 command displays statically assigned labels for prefix 10.0.0.0 / 8 only:
```

Device\# show mpls static binding ipv4 10.0.0.0/8
10.0.0.0/8: Incoming label: 55 (in LIB)
Outgoing labels:
10.0.0.66 2607

```

In the following output, the show mpls static binding ipv4 command displays prefixes with statically assigned outgoing labels for next hop 10.0.0.66:
```

Device\# show mpls static binding ipv4 10.0.0.0 8 nexthop 10.0.0.66
10.0.0.0/8: Incoming label: 55 (in LIB)
Outgoing labels:
10.0.0.66 2607

```

The following output, the show mpls static binding ipv4 vrf command displays static label bindings for a VPN routing and forwarding instance vpn100:
```

Device\# show mpls static binding ipv4 vrf vpn100
192.168.2.2/32: (vrf: vpn100) Incoming label: 100020
Outgoing labels: None
192.168.0.29/32: Incoming label: 100003 (in LIB)
Outgoing labels: None

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mpls static binding ipv4 & Binds an IPv4 prefix or mask to a local or remote label. \\
\hline
\end{tabular}

\section*{show mpls static crossconnect}

To display statically configured Label Forwarding Information Database (LFIB) entries, use the show mpls static crossconnect command in privileged EXEC mode.
show mpls static crossconnect [low label [high label]]
\begin{tabular}{|l|l|}
\hline low label high label & (Optional) The statically configured LFIB entries. \\
\hline
\end{tabular}

\section*{Command Modes}

Privileged EXEC (\#)

\section*{Command History \\ Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a \begin{tabular}{l}
This command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

If you do not specify any label arguments, then all the configured static cross-connects are displayed.

The following sample output from the show mpls static crossconnect command shows the local and remote labels:
\begin{tabular}{llll}
Device\# show mpls static crossconnect \\
Local Outgoing & Outgoing & Next Hop \\
label label & interface & \\
45 & 46 & pos5/0 & point2point
\end{tabular}

The table below describes the significant fields shown in the display.

\section*{Table 123: show mpls static crossconnect Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Local label & Label assigned by this router. \\
\hline Outgoing label & Label assigned by the next hop. \\
\hline Outgoing interface & Interface through which packets with this label are sent. \\
\hline Next Hop & \begin{tabular}{l}
IP address of the next hop router's interface that is connected to this router's outgoing \\
interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline mpls static crossconnect & Configures an LFIB entry for the specified incoming label and outgoing interface. \\
\hline
\end{tabular}

\section*{mpls static binding ipv4}

To bind a prefix to a local or remote label, use the mpls static binding ipv4 command in global configuration mode. To remove the binding between the prefix and label, use the no form of this command.
mpls static binding ipv4 prefix mask \(\{\) label \(\mid\) input label \(\mid\) output nexthop \{explicit-null \(\mid\) implicit-nulllabel\} \}
no mpls static binding ipv4 prefix mask \{label|input label| output nexthop \{explicit-null| implicit-nulllabel\} \}
\begin{tabular}{|c|c|}
\hline prefix mask & \begin{tabular}{l}
Specifies the prefix and mask to bind to a label. (When you do not use the input or output keyword, the specified label is an incoming label.) \\
Note \\
Without the arguments, the no form of the command removes all static bindings.
\end{tabular} \\
\hline label & Binds a prefix or a mask to a local (incoming) label. (When you do not use the input or output keyword, the specified label is an incoming label.) \\
\hline input label & Binds the specified label to the prefix and mask as a local (incoming) label. \\
\hline output nexthop explicit-null & Binds the Internet Engineering Task Force (IETF) Multiprotocol Label Switching (MPLS) IPv4 explicit null label (0) as a remote (outgoing) label. \\
\hline output nexthop implicit-null & Binds the IETF MPLS implicit null label (3) as a remote (outgoing) label. \\
\hline output nexthop label & Binds the specified label to the prefix/mask as a remote (outgoing) label. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & Prefixes are not bound to local or remote labels. \\
\(\overline{\text { Command Modes }}\) & & Global configuration (config) \\
& & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & &
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

The mpls static binding ipv4 command pushes bindings into Label Distribution Protocol (LDP). LDP then needs to match the binding with a route in the Routing Information Base (RIB) or Forwarding Information Base (FIB) before installing forwarding information.

The mpls static binding ipv4 command installs the specified bindings into the LDP Label Information Base (LIB). LDP will install the binding labels for forwarding use if or when the binding prefix or mask matches a known route.

Static label bindings are not supported for local prefixes, which are connected networks, summarized routes, default routes, and supernets. These prefixes use implicit-null or explicit-null as the local label.
If you do not specify the input or the output keyword, input (local label) is assumed.
For the no form of the command:
- If you specify the command name without any keywords or arguments, all static bindings are removed.
- Specifying the prefix and mask but no label parameters removes all static bindings for that prefix or mask.

\section*{Examples}

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show mpls forwarding-table & Displays labels currently being used for MPLS forwarding. \\
\hline show mpls label range & Displays statically configured label bindings. \\
\hline
\end{tabular}

\section*{show platform hardware fed (TCAM utilization)}

To display Ternary Content Addressable Memory (TCAM) utilization information, use the show platform hardware fed switch command in privileged EXEC mode.
show platform hardware fed switch \(\{\) switch_number \(\mid\) active \(\mid\) standby \(\}\) fwd-asic resource tcam utilization [asic_number \(\mid\) detail]

Syntax Description switch \(\{\) switch_number \(\mid\) active | standby \(\}\)

Selects the switch which you want to display information.
- switch_number-ID of the switch.
- active-Displays information related to the active switch.
- standby-Displays information relating to standby switch.
\begin{tabular}{|c|c|}
\hline fwd-asic & Displays ASIC information for each ASIC. \\
\hline resource & Displays all ASIC resources. \\
\hline tcam & Displays TCAM resource information. \\
\hline \multirow[t]{3}{*}{utilization [asic_number | detail]} & Displays the current Content Addressable Memory (CAM) utilization. \\
\hline & - asic_number-ASIC number. The range is from 0 to 7 . \\
\hline & - detail-Displays detailed CAM utilization information. This option is available if the service internal command is configured on the device. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Command Modes} & \multicolumn{2}{|l|}{User EXEC (\(>\))} \\
\hline & Privileged EXEC (\#) & \\
\hline \multirow[t]{3}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline & Cisco IOS XE Amsterdam 17.2.1 & The command output was enhanced to display TCAM utilization categorised by IPv4, IPv6, MPLS and other protocols. \\
\hline
\end{tabular}

Usage Guidelines The output displayed is for each ASIC on the device which includes the sum of two cores of the ASIC.

\section*{Example}

The following is sample output from the show platform hardware fed switch active fwd-asic resource tcam utilization command:
Device> enable
Device\# show platform software fed switch active fwd-asic resource tcam utilization
Codes: EM - Exact_Match, I - Input, O - Output, IO - Input \& Output, NA - Not Applicable
CAM Utilization for ASIC [0]
Table Subtype Dir \(\quad\) Max
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Mac Address Table & EM & I & 81920 & 23 & 0\% & 0 & 0 & 0 & 23 \\
\hline Mac Address Table & TCAM & I & 768 & 21 & 2\% & 0 & 0 & 0 & 21 \\
\hline L3 Multicast & EM & I & 16384 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline L3 Multicast & TCAM & I & 768 & 35 & 4\% & 3 & 32 & 0 & 0 \\
\hline L2 Multicast & TCAM & I & 2304 & 7 & 0\% & 3 & 4 & 0 & 0 \\
\hline IP Route Table & EM/LPM & I & 114688 & 18 & 0\% & 18 & 0 & 0 & 0 \\
\hline IP Route Table & TCAM & I & 1536 & 13 & 0\% & 10 & 3 & 0 & 0 \\
\hline QOS ACL Ipv4 & TCAM & I & 5632 & 15 & 0\% & 15 & 0 & 0 & 0 \\
\hline QOS ACL Non Ipv4 & TCAM & I & 2560 & 30 & 1\% & 0 & 20 & 0 & 10 \\
\hline QOS ACL Ipv4 & TCAM & 0 & 6144 & 13 & 0\% & 13 & 0 & 0 & 0 \\
\hline QOS ACL Non Ipv4 & TCAM & 0 & 2048 & 27 & 1\% & 0 & 18 & 0 & 9 \\
\hline Security ACL Ipv4 & TCAM & I & 7168 & 12 & 0\% & 12 & 0 & 0 & 0 \\
\hline \multicolumn{10}{|l|}{Security ACL Non} \\
\hline Ipv4 & TCAM & I & 5120 & 76 & 1\% & 0 & 36 & 0 & 40 \\
\hline Security ACL Ipv4 & TCAM & 0 & 7168 & 13 & 0\% & 13 & 0 & 0 & 0 \\
\hline \multicolumn{10}{|l|}{Security ACL Non} \\
\hline Ipv4 & TCAM & 0 & 8192 & 27 & 0\% & 0 & 22 & 0 & 5 \\
\hline Netflow ACL & TCAM & I & 1024 & 6 & 0\% & 2 & 2 & 0 & 2 \\
\hline PBR ACL & TCAM & I & 3072 & 22 & 0\% & 16 & 6 & 0 & 0 \\
\hline Netflow ACL & TCAM & 0 & 1024 & 6 & 0\% & 2 & 2 & 0 & 2 \\
\hline Flow SPAN ACL & TCAM & I & 512 & 5 & 0\% & 1 & 2 & 0 & 2 \\
\hline Flow SPAN ACL & TCAM & 0 & 512 & 8 & 1\% & 2 & 4 & 0 & 2 \\
\hline Control Plane & TCAM & I & 1024 & 256 & 25\% & 110 & 104 & 0 & 42 \\
\hline Tunnel Termination & TCAM & I & 2816 & 26 & 0\% & 10 & 16 & 0 & 0 \\
\hline Lisp Inst Mapping & TCAM & I & 1024 & 1 & 0\% & 0 & 0 & 0 & 1 \\
\hline \multicolumn{10}{|l|}{CTS Cell Matrix/VPN} \\
\hline Label & EM & 0 & 32768 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline \multicolumn{10}{|l|}{CTS Cell Matrix/VPN} \\
\hline Label & TCAM & 0 & 768 & 1 & 0\% & 0 & 0 & 0 & 1 \\
\hline Client Table & EM & I & 8192 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Client Table & TCAM & I & 512 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Input Group LE & TCAM & I & 1024 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Output Group LE & TCAM & 0 & 1024 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Macsec SPD & TCAM & I & 256 & 2 & 0\% & 0 & 0 & 0 & 2 \\
\hline CAM Utilization for Table & SIC [1] & Dir & Max & Used & \%Used & V4 & V6 & MPLS & er \\
\hline
\end{tabular}
\begin{tabular}{lllrrrrrrr}
Mac Address Table & EM & I & 81920 & 23 & \(0 \%\) & 0 & 0 & 0 & 23 \\
Mac Address Table & TCAM & I & 768 & 21 & \(2 \%\) & 0 & 0 & 0 & 21 \\
L3 Multicast & EM & I & 16384 & 0 & \(0 \%\) & 0 & 0 & 0 & 0 \\
L3 Multicast & TCAM & I & 768 & 35 & \(4 \%\) & 3 & 32 & 0 & 0 \\
L2 Multicast & TCAM & I & 2304 & 7 & \(0 \%\) & 3 & 4 & 0 & 0 \\
IP Route Table & EM/LPM & I & 114688 & 18 & \(0 \%\) & 18 & 0 & 0 & 0 \\
IP Route Table & TCAM & I & 1536 & 13 & \(0 \%\) & 10 & 3 & 0 & 0 \\
QOS ACL Ipv4 & TCAM & I & 5632 & 15 & \(0 \%\) & 15 & 0 & 0 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline QOS ACL Non Ipv4 & TCAM & I & 2560 & 30 & 1\% & 0 & 20 & 0 & 10 \\
\hline QOS ACL Ipv4 & TCAM & 0 & 6144 & 12 & 0\% & 12 & 0 & 0 & 0 \\
\hline QOS ACL Non Ipv4 & TCAM & 0 & 2048 & 24 & 1\% & 0 & 16 & 0 & 8 \\
\hline Security ACL Ipv4 & TCAM & I & 7168 & 12 & 0\% & 12 & 0 & 0 & 0 \\
\hline Security ACL Non & & & & & & & & & \\
\hline Ipv4 & TCAM & I & 5120 & 76 & 1\% & 0 & 36 & 0 & 40 \\
\hline Security ACL Ipv4 & TCAM & 0 & 7168 & 13 & 0\% & 13 & 0 & 0 & 0 \\
\hline Security ACL Non & & & & & & & & & \\
\hline Ipv4 & TCAM & 0 & 8192 & 27 & 0\% & 0 & 22 & 0 & 5 \\
\hline Netflow ACL & TCAM & I & 1024 & 6 & 0\% & 2 & 2 & 0 & 2 \\
\hline PBR ACL & TCAM & I & 3072 & 22 & 0\% & 16 & 6 & 0 & 0 \\
\hline Netflow ACL & TCAM & 0 & 1024 & 6 & 0\% & 2 & 2 & 0 & 2 \\
\hline Flow SPAN ACL & TCAM & I & 512 & 5 & 0\% & 1 & 2 & 0 & 2 \\
\hline Flow SPAN ACL & TCAM & 0 & 512 & 8 & 1\% & 2 & 4 & 0 & 2 \\
\hline Control Plane & TCAM & I & 1024 & 256 & 25\% & 110 & 104 & 0 & 42 \\
\hline Tunnel Termination & TCAM & I & 2816 & 26 & 0\% & 10 & 16 & 0 & 0 \\
\hline Lisp Inst Mapping & TCAM & I & 1024 & 1 & 0\% & 0 & 0 & 0 & 1 \\
\hline CTS Cell Matrix/VPN & & & & & & & & & \\
\hline Label & EM & 0 & 32768 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline CTS Cell Matrix/VPN & & & & & & & & & \\
\hline Label & TCAM & 0 & 768 & 1 & 0\% & 0 & 0 & 0 & 1 \\
\hline Client Table & EM & I & 8192 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Client Table & TCAM & I & 512 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Input Group LE & TCAM & I & 1024 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Output Group LE & TCAM & 0 & 1024 & 0 & 0\% & 0 & 0 & 0 & 0 \\
\hline Macsec SPD & TCAM & I & 256 & 2 & 0\% & 0 & 0 & 0 & 2 \\
\hline
\end{tabular}

Table 124: show platform hardware fed (TCAM utilization) Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Table & Displays the feature configured on the device. \\
\hline Subtype & Displays resource type. \\
\hline Dir & Displays direction of traffic. \\
\hline Max & Displays maximum number of entries allocated. \\
\hline Used & Displays number of entries used. \\
\hline ¿Used & Displays percentage of entries used. \\
\hline V4 & Displays number of entries used by IPv4 protocol. \\
\hline V6 & Displays number of entries used by IPv6 protocol. \\
\hline MPLS & Displays number of entries used by MPLS protocol. \\
\hline Other & Displays number of entries used by other protocols. \\
\hline
\end{tabular}

\section*{show platform software fed switch I2vpn}

To display device-specific software information, use the show platform software fed switch command.
show platform software fed switch \{switch number | active | standby\} 2vpn \{atom-disposition | atom-imposition | summary | vfi-segment |xconnect \}
Note \begin{tabular}{l}
This topic elaborates on only the Layer 2 VPN-specific (L2VPN-specific) options available with the show \\
platform software fed switch l2vpn command.
\end{tabular}

\section*{Syntax Description}

\section*{Command Modes}

\section*{Command History}
switch \{switch Specifies the device for which you want to display information. number | active | standby \}
- switch number: Switch ID. Displays information about the specified switch.
- active: Displays information about the active switch.
- standby: Displays information about the standby switch, if available.
12vpn Displays L2VPN information. Choose one of the following options:
- atom-disposition: Displays L2VPN atom disposition information.
- atom-imposition: Displays L2VPN atom imposition information.
- summary: Displays L2VPN summary.
- vfi-segment: Displays L2VPN Virtual Forwarder Interface (VFI) segment information.
- xconnect: Displays L2VPN Xconnect information.

User EXEC (\(>\))
Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced. \\
\hline
\end{tabular}

Examples
The following is a sample output of the show platform software fed switch \(\mathbf{1 2 v p n}\) command:
```

Device\# show platform software fed switch 1 l2vpn atom-disposition all
Number of disp entries:25
ATOM_DISP:6682 ac_ifhdl:4325527 xconid:0 dot1q_etype:0
disp_flags:0x111 pdflags:0 hw_handle:0x4b010118
disp flags (FED) in detail CW IN USE VCCV L2L
AAL: id:1258357016 , port_id:4325527, adj_flags:0x4 pw_id:1074 ref_cnt:1
adj_flags in detail: PORT MODE VC CW Enabled
port_hdl:0x5c01020f, dot1q:0 , is_vfi_seg;1 vfi_seg_hdl:0 stats_valid:1

```
```

        drop_adj_flag:0 unsupported_feature:0
        sih:0x7f1c6ce84b58(18438) di__id:23713 rih:0x7f1c6ce845a8(5154)
    ATOM DISP:12654 ac ifhdl:311 xconid:1104 dotlq etype:0
\overline{disp_flags:0x2\overline{1}}\mathrm{ pdflags:0 hw_handle:0xad000139}
disp flags (FED) in detail CW IN USE VCCV ETHERNET ITW
AAL: id:2902458681 , port_id:311, adj_flags:0xc pw_id:54 ref_cnt:1
adj_flags in detail: TYPE5 VC CW Enabled
port_hdl:0xe1000254, dot1q:0 , is_vfi_seg;0 vfi_seg_hdl:0 stats_valid:1
drop_adj_flag:0 unsupported_feature:0
sih:0}0\times7f1\mp@code{C6a6b5078(17152) d\overline{i}}\mathrm{ id:24265 rih:0x7f1c6a6b4ac8(3678)
ATOM_DISP:17319 ac_ifhdl:1248 xconid:3500 dot1q_etype:0
disp_flags:0x211 pdflags:0 hw_handle:0x8c000185
disp flags (FED) in detail CW_IN_USE VCCV ETHERNET_ITW
AAL: id:2348810629, port_id:1248, adj_flags:0xc pw_id:991 ref_cnt:1
adj_flags in detail: TYPE5 VC CW Enabled
port_hdl:0x8d0101fd, dot1q:0 , is_vfi_seg;0 vfi_seg_hdl:0 stats_valid:1
drop_adj_flag:0 unsupported_feature:0
sih:0x7f1c6ad17288(16884) di id:24265 rih:0x7f1c6ad16d48(518)
ATOM_DISP:17325 ac_ifhdl:1249 xconid:3201 dot1q_etype:0
disp_flags:0x211 pdflags:0 hw_handle:0xdd000184
disp flags (FED) in detail CW_IN_USE VCCV ETHERNET_ITW
AAL: id:3707765124 , port_id:1249, adj_flags:0xc pw_id:993 ref_cnt:1
adj_flags in detail: TYPE5 VC CW Enabled
port_hdl:0x10101fe, dot1q:0 , is_vfi_seg;0 vfi_seg_hdl:0 stats_valid:1
drop_adj_flag:0 unsupported_feature:0
sih:0}0\times7f\overline{1}c6ad1cb58(16885) d\overline{i}_id:24265 rih:0x7f1c6ad17858(520)
ATOM DISP:17330 ac ifhdl:1249 xconid:3201 dot1q etype:0
disp_flags:0x1211 pdflags:0 hw_handle:0x37000183
disp flags (FED) in detail CW IN USE VCCV ETHERNET ITW PW STANDBY
AAL: id:922747267, port_id:1249, \overline{adj_flags:0xc pw_id:994 ref_cnt:1}
adj_flags in detail: TYPE5 VC CW Enabled
port_hdl:0x10101fe, dot1q:0 , is_vfi_seg;0 vfi_seg_hdl:0 stats_valid:1
drop_adj_flag:1 unsupported_feature:0
sih:0}0\times7\textrm{f}1\textrm{c}6\textrm{b}88f0e8(16886) d\overline{i}_id:3212 rih:0x7f1c6ad1d798(522
ATOM_DISP:17335 ac_ifhdl:1250 xconid:3202 dot1q_etype:0
disp_flags:0x411 pdflags:0 hw_handle:0xb1000182
disp flags (FED) in detail CW_IN_USE VCCV VLAN_ITW
AAL: id:2969567618 , port_id:1250, _adj_flags:0x5 pw_i\overline{d}:995 ref_cnt:1
adj_flags in detail: TYPE4 VC/PORT MODE CW Enabled
port_hdl:0x500101ff, dot1q:0 , is_vfi_seg;0 vfi_seg_hdl:0 stats_valid:1
drop_adj_flag:0 unsupported_feature:0
sih:0x7f1c6b893b38(16887) di id:24265 rih:0x7f1c6b893588(526)
ATOM_DISP:17340 ac_ifhdl:1250 xconíd:3202 dot1q_etype:0
disp flags:0x1411 pdflags:0 hw handle:0x3e000181
disp flags (FED) in detail CW_IN_USE VCCV VLAN_ITW PW_STANDBY
AAL: id:1040187777 , port_id:1250, adj_flags:0x5 pw_id:996 ref_cnt:1
adj_flags in detail:- TYPE4 VC/PORT MODE CW Eñabled
port_hdl:0x500101ff, dot1q:0 , is_vfi_seg;0 vfi_seg_hdl:0 stats_valid:1
drop_adj_flag:1 unsupported_feature:0
sih:0x7f1c6bd6b7d8(16888) di_id:3212 rih:0x7f1c6bd6b298(528)

```

\section*{show platform software fed switch mpls}

To display device-specific software information, use the show platform software fed switch command.
show platform software fed switch \(\{\) switch number | active \| standby \(\}\) mpls \(\{\) eos \(\mid\) forwarding | label_oce | lookup | summary \}

Note This topic elaborates only the Multiprotocol Label Switching-specific options available with the show platform software fed switch mpls command.

\section*{Syntax Description}

\section*{Command Modes}

Command History
switch \{switch number | Specifies the device for which you want to display information. active | standby \}
- switch number: Switch ID. Displays information about the specified switch.
- active: Displays information about the active switch.
- standby: Displays information about the standby switch, if available.
mpls
Displays MPLS information. Choose one of the following options:
- eos: Displays MPLS end of stack (EOS) information.
- forwarding: Displays MPLS forwarding information.
- label_oce: Displays MPLS label output chain element (OCE) information.
- lookup: Displays MPLS lookup information.
- summary: Displays the summary of the MPLS configuration.

User EXEC (>)
Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced. \\
\hline
\end{tabular}
\(\overline{\text { Examples }} \quad\) The following is a sample output of the show platform software fed switch mpls command:

Device\# show platform software fed switch 1 mpls summary
Number of lentries: 2024
\# of create/modify/delete msgs: 3595/15390/1571
LENTRY create paused: 0
LENTRY Number of create paused: 0
LENTRY Number of add after create paused: 3595
LENTRY Number of out-of-resource: 0
```

Number of lable oce entries: 4015
\# of create/modify/delete msgs: 21165/2993/17150
\# of unsupported_recursive_lbls: 0
\# of AAL mpls adj deleted and recreated: 0
\# of AAL local mpls adj deleted and recreated: 0
\# of changes from mpls-adj -> mpls-local-adj: 0
\# of changes from local-mpls-adj -> mpls-adj: 0
\# of out label changes in lbl_oce 0
\# of collapsed oce 0
\# of unsuppoted_nh 0
Number of EOS oce entries: 1991
\# of create/modify/delete msgs: 6303/7/4312
Number of ECR bwalk apply skipped: 0
Number of ECR entries: ipv4/ipv6: 22/0
\# of create/modify/delete msgs: 5196/1/5174
\# of ECR nested backwalks ignore:0
ECR OOR Retry queue size:0
AAL L3 ECR summary:
\# of ecr add/modify/delete ::6/4/3
\# of modify from level-1 to level-2:0
\# of modify from level-2 to level-1:0
\# of ecr delete errs::0
\# of ecr create skip refcnt::0
\# of ecr modify inuse: 1 nochange:3 inplace:0
MPLS Summary: Info at AAL layers:
General info:
Number of Physical ASICs:2
Number of ASIC Instances:4
num_modify_stack_in_use: 0
num_modify_ri_in_use: 0
Feature IDs:{l2_fid:57 mpls_fid:152 vpws_fid:153 vpls_fid:154}
MAX values from selected SDM template:
MAX label entries: 45056
MAX LSPA entries: 32768
MAX L3VPN VRF(rc:0): 1024
MAX L3VPN Routes PerVrF Mode(rc:0): 209920
MAX L3VPN Routes PerPrefix Mode(rc:0): 32768
MAX ADJ stats counters: 49152
Resource sharing info:
SI: 1133/131072
RI: 4943/98304
Well Known Index: 8024/2048
Tcam: 4962/245760
lv1_ecr: 0/64
lv2_ecr: 3/256
lspa: 0/32769
label_stack_id: 26/65537

```

\section*{show platform software I2vpn switch}

To display the software information of Layer 2 VPN (L2VPN), use the show platform software l2vpn switch command.
show platform software fed switch \(\{\) switch number \(\mid\) active \(\mid\) standby \(\}\{\mathbf{F} 0|\mathbf{F} 1| \mathbf{R 0}|\mathbf{R 1}| \mathbf{R P} \mid\) \{active | standby \}\} \{atom \(\mid\) disposition \(\mid\) imposition | internal\}

\section*{Syntax Description}
switch \{switch number The device for which you want to display information.
\(\mid\) active | standby \}
- switch number: Switch ID. Displays information for the specified switch.
- active: Displays information for the active switch.
- standby: Displays information for the standby switch, if available.
\begin{tabular}{ll}
\hline F0 & Displays information about the Embedded Service Processor (ESP) slot 0. \\
\hline F1 & Displays information about the ESP slot 1. \\
\hline \(\mathbf{R 0}\) & Displays information about the Route Processor (RP) slot 0. \\
\hline \(\mathbf{R 1}\) & Displays information about the RP slot 1. \\
\hline \(\mathbf{R P}\) & Displays information about the RP. Choose one of the following options: \\
& \(\bullet\) active: Displays information about the active RP. \\
& \(\bullet\) standby: Displays information about the standby RP.
\end{tabular}
\begin{tabular}{ll}
\hline atom & \begin{tabular}{l}
Displays information about the Any Transport over MPLS (AToM) cross-connect \\
table.
\end{tabular} \\
\hline disposition & Displays information about the disposition output chain element (OCE). \\
\hline imposition & Displays information about the imposition OCE. \\
\hline internal & Displays information about AToM's internal state and statistics. \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

User EXEC (\(>\))
Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following is a sample output of the show platform software \(\mathbf{l} 2 \mathrm{vpn}\) switch command:
```

Device\# show platform software l2vpn switch 1 RO atom
Number of xconnect entries: 24

```
```

AToM Cross-Connect xid 0x137, ifnumber 0x137
AC VLAN(IW:ETHERNET) -> Imp 0x316d(ATOM IMP), OM handle: 0x3480fb3268
VLAN Info: outVlan id: 1104, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e0, ifnumber 0x4e0
AC VLAN(IW:ETHERNET) -> Imp 0x43a6(ATOM IMP), OM handle: 0x348118f120
VLAN Info: outVlan id: 3500, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e1, ifnumber 0x4e1
AC VLAN(IW:ETHERNET) -> Imp 0x43ac(ATOM_IMP), OM handle: 0x348118f348
VLAN Info: outVlan id: 3201, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e1, ifnumber 0x4e1
AC VLAN(IW:ETHERNET) -> Imp 0x43b1(ATOM_IMP), OM handle: 0x348118f570
VLAN Info: outVlan id: 3201, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e2, ifnumber 0x4e2
AC VLAN(IW:VLAN) -> Imp 0x43b6(ATOM_IMP), OM handle: 0x348118f798
VLAN Info: outVlan id: 3202, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e2, ifnumber 0x4e2
AC VLAN(IW:VLAN) -> Imp 0x43bb(ATOM_IMP), OM handle: 0x348118f9c0
VLAN Info: outVlan id: 3202, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e3, ifnumber 0x4e3
AC VLAN(IW:VLAN) -> Imp 0x43c0(ATOM_IMP), OM handle: 0x348118fbe8
VLAN Info: outVlan id: 3203, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e3, ifnumber 0x4e3
AC VLAN(IW:VLAN) -> Imp 0x43c5(ATOM IMP), OM handle: 0x348118fe10
VLAN Info: outVlan id: 3203, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0
AToM Cross-Connect xid 0x4e4, ifnumber 0x4e4
AC VLAN(IW:ETHERNET) -> Imp 0x43ca(ATOM IMP), OM handle: 0x3481189e20
VLAN Info: outVlan id: 3204, inVlan id: 0, outEther: 0x8100, peerVlan id: 0, dot1qAny: 0

```

\section*{source template type pseudowire}

To configure the name of a source template of type pseudowire, use the source template type pseudowire command in interface configuration mode. To remove a source template of type pseudowire, use the no form of this command.
source template type pseudowire template-name no source template type pseudowire

\section*{Syntax Description}
template-name
The name of source template of type pseudowire.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

The source template type pseudowire command applies a source template of type pseudowire that consists of configuration settings used by all pseudowires bound to the template.

\section*{Examples}

The following example shows how to configure the source template of type pseudowire named ether-pw:
```

Device> enable

```

Device\# configure terminal
Device(config) \# interface pseudowire 100
Device(config-if) \# source template type pseudowire ether-pw

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline xconnect & \begin{tabular}{l}
Binds an attachment circuit to a pseudowire and configures an \\
AToM static pseudowire.
\end{tabular} \\
\hline
\end{tabular}

\section*{tunnel destination}

To specify the destination for a tunnel interface, use the tunnel destination command in interface configuration mode. To remove the destination, use the no form of this command.
tunnel destination \{host-name ip-address ipv6-address | dynamic\} no tunnel destination

\section*{Syntax Description}
host-name Name of the host destination.
ip-address IP address of the host destination expressed in dotted decimal notation.
ipv6-address IPv6 address of the host destination expressed in IPv6 address format.
dynamic Applies the tunnel destination address dynamically to the tunnel interface.
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline
\end{tabular}

\section*{Command History}

No tunnel interface destination is specified.

Interface configuration (config-if)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.11.1 & This command was introduced.
\end{tabular}

Usage Guidelines
You cannot configure two tunnels to use the same encapsulation mode with exactly the same source and destination addresses. The workaround is to create a loopback interface and configure the packet source off of the loopback interface.

\section*{Examples}

The following example shows how to configure the logical Layer 3 GRE tunnel interface tunnel 2 in a global or non-VRF environment:
```

Device> enable
Device\# configure terminal
Device(config)\# interface tunnel 2
Device(config-if)\# ip address 100.1.1.1 255.255.255.0
Device(config-if)\# tunnel source 10.10.10.1
Device(config-if)\# tunnel destination 10.10.10.2
Device(config-if)\# tunnel mode gre ip
Device(config-if)\# end

```

The following example shows how to configure the logical Layer 3 GRE tunnel interface tunnel 2 in a VRF environment. Use the vrf definition vrf-name and the vrf forwarding vrf-name commands to configure and apply VRF.
```

Device> enable
Device\# configure terminal
Device(config)\# interface tunnel 2
Device(config-if)\# ip address 100.1.1.1 255.255.255.0
Device(config-if)\# tunnel source 10.10.10.1
Device(config-if)\# tunnel destination 10.10.10.2
Device(config-if)\# tunnel mode gre ip
Device(config-if)\# end

```

\section*{tunnel source}

To set the source address for a tunnel interface, use the tunnel source command in interface configuration mode. To remove the source address, use the no form of this command.
tunnel source \{ip-address |ipv6-address |interface-type interface-number | dynamic\} no tunnel source

\section*{Syntax Description}

\section*{Command Default \\ Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{\(\overline{\text { Examples }}\)}
\begin{tabular}{ll}
\hline ip-address & Source IP address of the packets in the tunnel. \\
\hline ipv6-address & Source IPv6 address of the packets in the tunnel. \\
\hline interface-type & Interface type. \\
\hline \begin{tabular}{l}
interface-number
\end{tabular} & \begin{tabular}{l}
Port, connector, or interface card number. The numbers are assigned at the factory at the \\
time of installation or when added to a system. This number can be displayed with the \\
show interfaces command.
\end{tabular} \\
\hline dynamic & Applies the tunnel source address dynamically to the tunnel interface. \\
\hline
\end{tabular}

No tunnel interface source address is set.
Interface configuration (config-if)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.11.1 & This command was introduced.
\end{tabular}

The source address is either an explicitly defined IP address or the IP address assigned to specified interface. You cannot have two tunnels using the same encapsulation mode with exactly the same source and destination addresses. The workaround is to create a loopback interface and source packets from the loopback interface.

The following example shows how to configure the logical Layer 3 GRE tunnel interface tunnel 2 in a global or non-VRF environment:
```

Device> enable
Device\# configure terminal
Device(config)\# interface tunnel 2
Device(config-if)\# ip address 100.1.1.1 255.255.255.0
Device(config-if)\# tunnel source 10.10.10.1
Device(config-if)\# tunnel destination 10.10.10.2
Device(config-if) \# tunnel mode gre ip
Device(config-if)\# end

```

The following example shows how to configure the logical Layer 3 GRE tunnel interface tunnel 2 in a VRF environment. Use the vrf definition \(v r f\)-name and the vrf forwarding vrf-name commands to configure and apply VRF.

\section*{Device> enable}

Device\# configure terminal
Device(config) \# interface tunnel 2
Device(config-if) \# ip address 100.1.1.1 255.255.255.0
```

Device(config-if)\# tunnel source 10.10.10.1
Device(config-if)\# tunnel destination 10.10.10.2
Device(config-if)\# tunnel mode gre ip
Device(config-if)\# end

```

\section*{xconnect}

To bind an attachment circuit to a pseudowire, and to configure an Any Transport over MPLS (AToM) static pseudowire, use the xconnect command in interface configuration mode. To restore the default values, use the no form of this command.
xconnect peer-ip-address \(v c\)-id encapsulation mpls [pw-type]
no xconnect peer-ip-address \(v c\)-id encapsulation mpls [pw-type]

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline
\end{tabular}

\section*{Command History}

\section*{Usage Guidelines}
peer-ip-address IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable.
vc-id The 32-bit identifier of the virtual circuit (VC) between PE devices.
encapsulation mpls Specifies Multiprotocol Label Switching (MPLS) as the tunneling method.
pw-type (Optional) Pseudowire type. You can specify one of the following types:
- 4: Specifies Ethernet VLAN.
- 5: Specifies Ethernet port.

The attachment circuit is not bound to the pseudowire.
Interface configuration (config-if)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & This command was introduced.
\end{tabular}

The use of the xconnect command and the interface configuration mode bridge-group command is not supported on the same physical interface.
The combination of the peer-ip-address and vcid arguments must be unique on the device. Each Xconnect configuration must have a unique combination of peer-ip-address and vcid configuration.
The same \(v\) cid value that identifies the attachment circuit must be configured using the xconnect command on the local and remote PE device. The VC ID creates the binding between a pseudowire and an attachment circuit.

\section*{Examples}

The following example shows how to enter Xconnect configuration mode and bind the attachment circuit to a pseudowire VC:
```

Device\# configure terminal
Device(config)\# interface TenGigabitEthernet1/0/36
Device(config-if)\# no ip address
Device(config-if)\# xconnect 10.1.10.1 962 encapsulation mpls

```
\begin{tabular}{l|l|l|}
\hline Related Commands & \begin{tabular}{ll}
Command & Description \\
\hline encapsulation mpls & Specifies MPLS as the data encapsulation method. \\
\hline
\end{tabular} &
\end{tabular}

\section*{pasi VIII}

\section*{Network Management}
- Network Management Commands, on page 1063

\section*{Network Management Commands}
- cache, on page 1067
- clear flow exporter, on page 1069
- clear flow monitor, on page 1070
- clear snmp stats hosts, on page 1072
- collect, on page 1073
- collect counter, on page 1074
- collect flow sampler, on page 1075
- collect interface, on page 1076
- collect ipv4 destination, on page 1077
- collect ipv6 destination, on page 1078
- collect ipv4 source, on page 1079
- collect ipv6 source, on page 1081
- collect timestamp absolute, on page 1083
- collect transport tcp flags, on page 1084
- collect routing next-hop address, on page 1085
- datalink flow monitor, on page 1086
- debug flow exporter, on page 1087
- debug flow monitor, on page 1088
- debug flow record, on page 1089
- debug sampler, on page 1090
- description, on page 1091
- description (ERSPAN), on page 1092
- destination (ERSPAN), on page 1093
- destination, on page 1098
- dscp, on page 1099
- et-analytics, on page 1100
- et-analytics enable, on page 1101
- event manager applet, on page 1102
- export-protocol netflow-v9, on page 1105
- export-protocol netflow-v5, on page 1106
- exporter, on page 1107
- fconfigure, on page 1108
- filter (ERSPAN), on page 1109
- flow exporter, on page 1111
- flow monitor, on page 1112
- flow record, on page 1113
- header-type, on page 1114
- inactive time, on page 1115
- ip flow-export destination, on page 1116
- ip wccp, on page 1117
- ip flow monitor, on page 1119
- ipv6 flow monitor, on page 1121
- ipv6 deny echo reply, on page 1123
- match datalink ethertype, on page 1124
- match datalink mac, on page 1125
- match datalink vlan, on page 1126
- match flow cts, on page 1127
- match flow direction, on page 1128
- match interface, on page 1129
- match ipv4, on page 1130
- match ipv4 destination address, on page 1131
- match ipv4 source address, on page 1132
- match ipv4 ttl, on page 1133
- match ipv6, on page 1134
- match ipv6 destination address, on page 1135
- match ipv6 hop-limit, on page 1136
- match ipv6 source address, on page 1137
- map platform-type, on page 1138
- match transport, on page 1139
- match transport icmp ipv4, on page 1140
- match transport icmp ipv6, on page 1141
- match platform-type, on page 1142
- mode random 1 out-of, on page 1143
- monitor capture (interface/control plane), on page 1144
- monitor capture buffer, on page 1146
- monitor capture clear, on page 1147
- monitor capture export, on page 1148
- monitor capture file, on page 1149
- monitor capture limit, on page 1151
- monitor capture match, on page 1152
- monitor capture pktlen-range, on page 1153
- monitor capture start, on page 1154
- monitor capture stop, on page 1155
- monitor session, on page 1156
- monitor session destination, on page 1158
- monitor session filter, on page 1162
- monitor session source, on page 1164
- monitor session type, on page 1166
- option, on page 1168
- record, on page 1170
- show flow monitor etta-mon cache, on page 1171
- show platform software et-analytics, on page 1172
- show platform software fed switch active fnf et-analytics-flow-dump, on page 1173
- sampler, on page 1174
- show capability feature monitor, on page 1175
- show class-map type control subscriber, on page 1176
- show ip sla statistics, on page 1177
- show monitor, on page 1179
- show monitor capture, on page 1181
- show monitor session, on page 1183
- show parameter-map type subscriber attribute-to-service, on page 1185
- show platform software fed switch ip wcep, on page 1186
- show platform software swspan, on page 1188
- show flow exporter, on page 1190
- show flow interface, on page 1192
- show flow monitor, on page 1194
- show flow record, on page 1196
- show sampler, on page 1197
- show snmp stats, on page 1199
- shutdown (monitor session), on page 1201
- snmp ifmib ifindex persist, on page 1202
- snmp-server community, on page 1203
- snmp-server enable traps, on page 1205
- snmp-server enable traps bridge, on page 1208
- snmp-server enable traps bulkstat, on page 1209
- snmp-server enable traps call-home, on page 1210
- snmp-server enable traps cef, on page 1211
- snmp-server enable traps cpu, on page 1212
- snmp-server enable traps envmon, on page 1213
- snmp-server enable traps errdisable, on page 1214
- snmp-server enable traps flash, on page 1215
- snmp-server enable traps isis, on page 1216
- snmp-server enable traps license, on page 1217
- snmp-server enable traps mac-notification, on page 1218
- snmp-server enable traps ospf, on page 1219
- snmp-server enable traps pim, on page 1220
- snmp-server enable traps port-security, on page 1221
- snmp-server enable traps power-ethernet, on page 1222
- snmp-server enable traps snmp, on page 1223
- snmp-server enable traps stackwise, on page 1224
- snmp-server enable traps storm-control, on page 1226
- snmp-server enable traps stpx, on page 1227
- snmp-server enable traps transceiver, on page 1228
- snmp-server enable traps vrfmib, on page 1229
- snmp-server enable traps vstack, on page 1230
- snmp-server engineID, on page 1231
- snmp-server group, on page 1232
- snmp-server host, on page 1236
- snmp-server manager, on page 1241
- snmp-server user, on page 1242
- snmp-server view, on page 1246
- source, on page 1248
- source (ERSPAN), on page 1250
- socket, on page 1251
- switchport mode access, on page 1252
- switchport voice vlan, on page 1253
- ttl, on page 1254
- transport, on page 1255
- template data timeout, on page 1256
- udp peek, on page 1257

\section*{cache}

Syntax Description

Command Default

Command Modes
Command History

To configure a flow cache parameter for a flow monitor, use the cache command in flow monitor configuration mode. To remove a flow cache parameter for a flow monitor, use the no form of this command.
cache \{timeout \{active \(\mid\) inactive \(\mid\) rate-limit \(\mid\) update\} seconds \(\mid\) type normal\} no cache \(\{\) timeout \(\{\) active | inactive | rate-limit | update\} |type\}
\begin{tabular}{ll}
\hline timeout & Specifies the flow timeout. \\
\hline active & Specifies the active flow timeout. \\
\hline inactive & Specifies the inactive flow timeout. \\
\hline update & Specifies the update timeout for a permanent flow cache. \\
\hline seconds & \begin{tabular}{l}
The timeout value in seconds. The range is 30 to \(604800(7\) days \()\) \\
for a normal flow cache. For a permanent flow cache the range is 1 \\
to \(604800(7\) days).
\end{tabular} \\
\hline type & \begin{tabular}{l}
Specifies the type of the flow cache.
\end{tabular} \\
\hline normal & \begin{tabular}{l}
Configures a normal cache type. The entries in the flow cache will \\
be aged out according to the timeout active seconds and timeout \\
inactive seconds settings. This is the default cache type.
\end{tabular} \\
\hline
\end{tabular}

The default flow monitor flow cache parameters are used.
The following flow cache parameters for a flow monitor are enabled:
- Cache type: normal
- Active flow timeout: 1800 seconds

Flow monitor configuration
Release \(\quad\) Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Each flow monitor has a cache that it uses to store all the flows it monitors. Each cache has various configurable elements, such as the time that a flow is allowed to remain in it. When a flow times out, it is removed from the cache and sent to any exporters that are configured for the corresponding flow monitor.

The cache timeout active command controls the aging behavior of the normal type of cache. If a flow has been active for a long time, it is usually desirable to age it out (starting a new flow for any subsequent packets in the flow). This age out process allows the monitoring application that is receiving the exports to remain up to date. By default, this timeout is 1800 seconds (30 minutes), but it can be adjusted according to system requirements. A larger value ensures that long-lived flows are accounted for in a single flow record; a smaller value results in a shorter delay between starting a new long-lived flow and exporting some data for it. When you change the active flow timeout, the new timeout value takes effect immediately.

The cache timeout inactive command also controls the aging behavior of the normal type of cache. If a flow has not seen any activity for a specified amount of time, that flow will be aged out. By default, this timeout is 15 seconds, but this value can be adjusted depending on the type of traffic expected. If a large number of short-lived flows is consuming many cache entries, reducing the inactive timeout can reduce this overhead. If a large number of flows frequently get aged out before they have finished collecting their data, increasing this timeout can result in better flow correlation. When you change the inactive flow timeout, the new timeout value takes effect immediately.

The cache timeout update command controls the periodic updates sent by the permanent type of cache. This behavior is similar to the active timeout, except that it does not result in the removal of the cache entry from the cache. By default, this timer value is 1800 seconds (30 minutes).

The cache type normal command specifies the normal cache type. This is the default cache type. The entries in the cache will be aged out according to the timeout active seconds and timeout inactive seconds settings. When a cache entry is aged out, it is removed from the cache and exported via any exporters configured for the monitor associated with the cache.

To return a cache to its default settings, use the default cache flow monitor configuration command.

Note When a cache becomes full, new flows will not be monitored.

The following example shows how to configure the active timeout for the flow monitor cache:
```

Device(config) \# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)\# cache timeout active 4800

```

The following example shows how to configure the inactive timer for the flow monitor cache:
```

Device(config) \# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor) \# cache timeout inactive 30

```

The following example shows how to configure the permanent cache update timeout:
```

Device(config) \# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)\# cache timeout update 5000

```

The following example shows how to configure a normal cache:
```

Device(config) \# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)\# cache type normal

```

\section*{clear flow exporter}

To clear the statistics for a Flexible Netflow flow exporter, use the clear flow exporter command in privileged EXEC mode.
clear flow exporter [[name] exporter-name] statistics
Syntax Description
\begin{tabular}{ll}
\hline name & (Optional) Specifies the name of a flow exporter. \\
\hline exporter-name & (Optional) Name of a flow exporter that was previously configured. \\
\hline statistics & Clears the flow exporter statistics. \\
\hline
\end{tabular}

\section*{Command Modes}

Command History
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Usage Guidelines
The clear flow exporter command removes all statistics from the flow exporter. These statistics will not be exported and the data gathered in the cache will be lost.

You can view the flow exporter statistics by using the show flow exporter statistics privileged EXEC command.

\section*{Examples}

The following example clears the statistics for all of the flow exporters configured on the device:
```

Device\# clear flow exporter statistics

```

The following example clears the statistics for the flow exporter named FLOW-EXPORTER-1:
```

Device\# clear flow exporter FLOW-EXPORTER-1 statistics

```

\section*{clear flow monitor}

To clear a flow monitor cache or flow monitor statistics and to force the export of the data in the flow monitor cache, use the clear flow monitor command in privileged EXEC mode.
clear flow monitor [name] monitor-name [\{[cache] force-export| statistics \(\}\)]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline name & Specifies the name of a flow monitor. \\
\hline monitor-name & Name of a flow monitor that was previously configured. \\
\hline cache & (Optional) Clears the flow monitor cache information. \\
\hline force-export & (Optional) Forces the export of the flow monitor cache statistics. \\
\hline statistics & (Optional) Clears the flow monitor statistics. \\
\hline
\end{tabular}

\section*{\begin{tabular}{l}
\hline Command Modes \\
\hline Command History
\end{tabular}}

\section*{Usage Guidelines}

Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a &
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

The clear flow monitor cache command removes all entries from the flow monitor cache. These entries will not be exported and the data gathered in the cache will be lost.

Note The statistics for the cleared cache entries are maintained.

The clear flow monitor force-export command removes all entries from the flow monitor cache and exports them using all flow exporters assigned to the flow monitor. This action can result in a short-term increase in CPU usage. Use this command with caution.

The clear flow monitor statistics command clears the statistics for this flow monitor.

The current entries statistic will not be cleared by the clear flow monitor statistics command because this is an indicator of how many entries are in the cache and the cache is not cleared with this command.

You can view the flow monitor statistics by using the show flow monitor statistics privileged EXEC command.

\section*{Examples}

The following example clears the statistics and cache entries for the flow monitor named FLOW-MONITOR-1:

Device\# clear flow monitor name FLOW-MONITOR-1

The following example clears the statistics and cache entries for the flow monitor named FLOW-MONITOR-1 and forces an export:

The following example clears the cache for the flow monitor named FLOW-MONITOR-1 and forces an export:
```

Device\# clear flow monitor name FLOW-MONITOR-1 cache force-export

```

The following example clears the statistics for the flow monitor named FLOW-MONITOR-1:
```

Device\# clear flow monitor name FLOW-MONITOR-1 statistics

```

\section*{clear snmp stats hosts}

To clear the NMS IP address, the number of times an NMS polls the agent, and the timestamp of polling, use the clear snmp stats hosts command in privileged EXEC mode.
clear snmp stats hosts
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
Command Default
Command Modes Privileged EXEC (\#)
Command History

Usage Guidelines
Use the clear snmp stats hosts command to delete all the entries polled to the SNMP agent.

The following is sample output of the clear snmp stats hosts command.
```

Device\# clear snmp stats hosts

```

Request Count Last Timestamp Address

\section*{collect}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{collect \(\{\) counter | interface | timestamp| transport \(\}\)} \\
\hline \multirow[t]{4}{*}{Syntax Description} & counter & Configures the number of bytes or packets in a flow as a non-key field for a flow record. For more information, see collect counter. \\
\hline & interface & Configures the input and output interface name as a non-key field for a flow record. For more information, see collect interface. \\
\hline & timestamp & Configures the absolute time of the first seen or last seen packet in a flow as a non-key field for a flow record. For more information, see collect timestamp absolute. \\
\hline & transport & Enables the collecting of transport TCP flags from a flow record. For more information, see collect transport tcp flags. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Default & Non-key fields are not configured for the flow monitor record. \\
\hline Command Modes & Flow record configuration \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases, the values for non-key fields are taken from only the first packet in the flow.
The collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

Although it is visible in the command-line help string, the flow username keyword is not supported.

The following example configures the total number of bytes in the flows as a non-key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record)\# collect counter bytes long

```

\section*{collect counter}

To configure the number of bytes or packets in a flow as a non-key field for a flow record, use the collect counter command in flow record configuration mode. To disable the use of the number of bytes or packets in a flow (counters) as a non-key field for a flow record, use the no form of this command.
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & The number of bytes or packets in a flow is not configured as a non-key field. \\
\(\overline{\text { Command Modes }}\) & & Flow record configuration \\
\(\overline{\text { Command History }}\) & & Release \\
& & \multicolumn{3}{c}{ Cisco IOS XE Everest 16.5.1a This command was introduced. } \\
&
\end{tabular}

\section*{Usage Guidelines}

To return this command to its default settings, use the no collect counter or default collect counter flow record configuration command.

The following example configures the total number of bytes in the flows as a non-key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \#collect counter bytes long

```

The following example configures the total number of packets from the flows as a non-key field:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record)\# collect counter packets long

```

\section*{collect flow sampler}

To configure a flow sampler ID as a non-key field for the record, use the collect flow sampler command in flow record configuration mode. To disable the use of the flow sampler ID number as a non-key field for a flow record, use the no form of this command.
collect flow sampler
no collect flow sampler
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

The collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.
The collect flow sampler command is useful when more than one flow sampler is being used with different sampling rates. The non-key field contains the ID of the flow sampler used to monitor the flow.

\section*{Examples \\ Related Commands}

The following example shows how to configure the ID of the flow sampler that is assigned to the flow as a non-key field:
```

Device> enable
Device\# confgure terminal
Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# collect flow sampler

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline flow exporter & Creates a flow exporter \\
\hline flow record & Creates a flow record for Flexible NetFlow. \\
\hline
\end{tabular}

\section*{collect interface}

To configure the input interface name as a non-key field for a flow record, use the collect interface command in flow record configuration mode. To disable the use of the input interface as a non-key field for a flow record, use the no form of this command.
collect interface input no collect interface input

Syntax Description

\section*{Command Default}

Command Modes
Command History
input Configures the input interface name as a non-key field and enables collecting the input interface from the flows.

The input interface name is not configured as a non-key field.
Flow record configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

The Flexible NetFlow collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases, the values for non-key fields are taken from only the first packet in the flow.

To return this command to its default settings, use the no collect interface or default collect interface flow record configuration command.

The following example configures the input interface as a non-key field:
Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# collect interface input

\section*{collect ipv4 destination}

To configure the IPv4 destination as a non-key field for a flow record, use the collect ipv4 destination command in flow record configuration mode. To disable the use of an IPv4 destination field as a non-key field for a flow record, use the no form of this command.
collect ipv4 destination \{mask |prefix\} [minimum-mask mask] no collect ipv4 destination \(\{\) mask \(\mid\) prefix\} [minimum-mask mask]

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines

Examples
\begin{tabular}{|l|l|}
\hline mask & \begin{tabular}{l}
Configures the IPv4 destination mask as a non-key field and enables collecting \\
the value of the IPv4 destination mask from the flows.
\end{tabular} \\
\hline prefix & \begin{tabular}{l}
Configures the prefix for the IPv4 destination as a non-key field and enables \\
collecting the value of the IPv4 destination prefix from the flows.
\end{tabular} \\
\hline minimum-mask mask & (Optional) Specifies the size, in bits, of the minimum mask. Range: 1 to 32. \\
\hline
\end{tabular}

The IPv4 destination is not configured as a non-key field.
Flow record configuration (config-flow-record)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.2.1 & This command was introduced. \\
\hline
\end{tabular}

The Flexible NetFlow collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

The following example shows how to configure the IPv4 destination prefix from the flows that have a prefix of 16 bits as a non-key field:
```

Device> enable
Device> configure terminal
Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record)\# collect ipv4 destination prefix minimum-mask 16

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline flow record & Creates a flow record for Flexible NetFlow. \\
\hline
\end{tabular}

\section*{collect ipv6 destination}

To configure the IPv6 destination as a non-key field for a flow record, use the collect ipv6 destination command in flow record configuration mode. To disable the use of an IPv6 destination field as a non-key field for a flow record, use the no form of this command.
collect ipv6 destination \{mask|prefix \} [minimum-mask mask] no collect ipv6 destination \{mask|prefix \} [minimum-mask mask]

Syntax Description

\section*{Command Default}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
mask Configures the IPv6 destination mask as a non-key field and enables collecting the value of the IPv6 destination mask from the flows.
prefix Configures the prefix for the IPv6 destination as a non-key field and enables collecting the value of the IPv6 destination prefix from the flows.
minimum-mask mask (Optional) Specifies the size, in bits, of the minimum mask. Range: 1 to 32.

The IPv6 destination is not configured as a non-key field.
Flow record configuration (config-flow-record)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & This command was introduced. \\
\hline
\end{tabular}

The Flexible NetFlow collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

The following example shows how to configure the IPv6 destination prefix from the flows that have a prefix of 16 bits as a non-key field:
```

Device> enable
Device> configure terminal
Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# collect ipv6 destination prefix minimum-mask 16

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline flow record & Creates a flow record for Flexible NetFlow. \\
\hline
\end{tabular}

\section*{collect ipv4 source}

To configure the IPv4 source as a non-key field for a flow record, use the collect ipv4 source command in flow record configuration mode. To disable the use of the IPv4 source field as a non-key field for a flow record, use the no form of this command.
collect ipv4 source \(\{\) mask |prefix\} [minimum-mask mask] no collect ipv4 source \(\{\) mask \(\mid\) prefix \(\}\) [minimum-mask mask]

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines
\begin{tabular}{|l|l|}
\hline mask & \begin{tabular}{l}
Configures the mask for the IPv4 source as a non-key field and enables collecting \\
the value of the IPv4 source mask from the flows.
\end{tabular} \\
\hline prefix & \begin{tabular}{l}
Configures the prefix for the IPv4 source as a non-key field and enables collecting \\
the value of the IPv4 source prefix from the flows.
\end{tabular} \\
\hline minimum-mask mask & (Optional) Specifies the size, in bits, of the minimum mask. Range: 1 to 32. \\
\hline
\end{tabular}

The \(\operatorname{IPv} 4\) source is not configured as a non-key field.
Flow record configuration (config-flow-record)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.2.1 & This command was introduced. \\
\hline
\end{tabular}

The collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

\section*{collect ipv4 source prefix minimum-mask}

The source prefix is the network part of an IPv4 source. The optional minimum mask allows more information to be gathered about large networks.

\section*{collect ipv4 source mask minimum-mask}

The source mask is the number of bits that make up the network part of the source. The optional minimum mask allows a minimum value to be configured. This command is useful when there is a minimum mask configured for the source prefix field and the mask is to be used with the prefix. In this case, the values configured for the minimum mask should be the same for the prefix and mask fields.

Alternatively, if the collector is aware of the minimum mask configuration of the prefix field, the mask field can be configured without a minimum mask so that the true mask and prefix can be calculated.

\section*{Examples}

The following example shows how to configure the \(\operatorname{IPv} 4\) source prefix from flows that have a prefix of 16 bits as a non-key field:
```

Device> enable
Device\# conigure terminal
Device(config)\# flow record FLOW-RECORD-1

```

Device(config-flow-record) \# collect ipv4 source prefix minimum-mask 16
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & flow record & Creates a flow record for Flexible NetFlow. \\
\hline
\end{tabular}

\section*{collect ipv6 source}

To configure the IPv6 source as a non-key field for a flow record, use the collect ipv6 source command in flow record configuration mode. To disable the use of the IPv6 source field as a non-key field for a flow record, use the no form of this command.
collect ipv6 source \{mask|prefix \} [minimum-mask mask] no collect ipv6 source \{mask | prefix \} [minimum-mask mask]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline mask & \begin{tabular}{l}
Configures the mask for the IPv6 source as a non-key field and enables collecting \\
the value of the IPv6 source mask from the flows.
\end{tabular} \\
\hline prefix & \begin{tabular}{l}
Configures the prefix for the IPv6 source as a non-key field and enables collecting \\
the value of the IPv6 source prefix from the flows.
\end{tabular} \\
\hline minimum-mask mask & (Optional) Specifies the size, in bits, of the minimum mask. Range: 1 to 32. \\
\hline The IPv6 source is not configured as a non-key field. \\
Flow record configuration (config-flow-record)
\end{tabular}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
The collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

\section*{collect ipv6 source prefix minimum-mask}

The source prefix is the network part of an IPv6 source. The optional minimum mask allows more information to be gathered about large networks.

\section*{collect ipv6 source mask minimum-mask}

The source mask is the number of bits that make up the network part of the source. The optional minimum mask allows a minimum value to be configured. This command is useful when there is a minimum mask configured for the source prefix field and the mask is to be used with the prefix. In this case, the values configured for the minimum mask should be the same for the prefix and mask fields.

Alternatively, if the collector is aware of the minimum mask configuration of the prefix field, the mask field can be configured without a minimum mask so that the true mask and prefix can be calculated.

\section*{Examples}

The following example shows how to configure the IPv6 source prefix from flows that have a prefix of 16 bits as a non-key field:
```

Device> enable
Device\# conigure terminal
Device(config) \# flow record FLOW-RECORD-1

```

\section*{collect timestamp absolute}

To configure the absolute time of the first seen or last seen packet in a flow as a non-key field for a flow record, use the collect timestamp absolute command in flow record configuration mode. To disable the use of the first seen or last seen packet in a flow as a non-key field for a flow record, use the no form of this command.
collect timestamp absolute \{first | last \}
no collect timestamp absolute \{first | last\}

Syntax Description

\section*{Command Default \\ Command Modes \\ Command History \\ Usage Guidelines}
first Configures the absolute time of the first seen packet in a flow as a non-key field and enables collecting time stamps from the flows.
last Configures the absolute time of the last seen packet in a flow as a non-key field and enables collecting time stamps from the flows.

The absolute time field is not configured as a non-key field.
Flow record configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

The collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

The following example configures time stamps based on the absolute time of the first seen packet in a flow as a non-key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# collect timestamp absolute first

```

The following example configures time stamps based on the absolute time of the last seen packet in a flow as a non-key field:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record)\# collect timestamp absolute last

```

\section*{collect transport tcp flags}

To enable the collecting of transport TCP flags from a flow, use the collect transport tep flags command in flow record configuration mode. To disable the collecting of transport TCP flags from the flow, use the no form of this command.
collect transport tcp flags
no collect transport tep flags

Syntax Description
\begin{tabular}{lll}
\hline Command Default & & The transport layer fields are not configured as a non-key field. \\
\(\overline{\text { Command Modes }}\) & & Flow record configuration \\
\hline Command History & & Release
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

The values of the transport layer fields are taken from all packets in the flow. You cannot specify which TCP flag to collect. You can only specify to collect transport TCP flags. All TCP flags will be collected with this command. The following transport TCP flags are collected:
- ack-TCP acknowledgement flag
- cwr-TCP congestion window reduced flag
- ece-TCP ECN echo flag
- fin-TCP finish flag
- psh—TCP push flag
- rst—TCP reset flag
- syn—TCP synchronize flag
- urg-TCP urgent flag

To return this command to its default settings, use the no collect collect transport tcp flags or default collect collect transport tep flags flow record configuration command.

The following example collects the TCP flags from a flow:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# collect transport tcp flags

```

\section*{collect routing next-hop address}

To configure the next-hop address value as a non-key field and enable collecting information regarding the next hop from the flows, use the collect routing next-hop address command in flow record configuration mode. To disable the use of one or more of the routing attributes as a non-key field for a flow record, use the no form of this command.
collect routing next-hop address ipv4 no collect routing next-hop address ipv4

Syntax Description

Command Default
Command Modes
Command History

\section*{Usage Guidelines}

Specifies that the next-hop address value is an IPv4 address.

Next hop address value is not configured as a non-key field.
Flow record configuration (config-flow-record)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.2.1 & This command was introduced. \\
\hline
\end{tabular}

The collect commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

The following example shows how to configure the next-hop address value as a non-key field:
```

Device> enable
Device\# configure terminal
Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# collect routing next-hop address ipv4

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline flow record & \begin{tabular}{l}
Creates a flow record, and enters Flexible NetFlow flow \\
record configuration mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{datalink flow monitor}

To apply a Flexible NetFlow flow monitor to an interface, use the datalink flow monitor command in interface configuration mode. To disable a Flexible NetFlow flow monitor, use the no form of this command.
datalink flow monitor monitor-name sampler sampler-name input no datalink flow monitor monitor-name sampler sampler-name input
Syntax Description
\begin{tabular}{ll}
\hline monitor-name & Name of the flow monitor to apply to the interface. \\
\hline sampler sampler-name & Enables the specified flow sampler for the flow monitor. \\
\hline input & Monitors traffic that the switch receives on the interface. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

Before you apply a flow monitor to an interface with the datalink flow monitor command, you must have already created the flow monitor using the flow monitor global configuration command and the flow sampler using the sampler global configuration command.

To enable a flow sampler for the flow monitor, you must have already created the sampler.

Note The datalink flow monitor command only monitors non-IPv4 and non-IPv6 traffic. To monitor IPv4 traffic, use the ip flow monitor command. To monitor IPv6 traffic, use the ipv6 flow monitor command.

This example shows how to enable Flexible NetFlow datalink monitoring on an interface:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# datalink flow monitor FLOW-MONITOR-1 sampler FLOW-SAMPLER-1 input

```

\section*{debug flow exporter}

To enable debugging output for Flexible Netflow flow exporters, use the debug flow exporter command in privileged EXEC mode. To disable debugging output, use the no form of this command.
debug flow exporter [[name] exporter-name] [\{error |event |packets number\}] no debug flow exporter [[name] exporter-name] [\{error |event |packets number\}]

Syntax Description
\begin{tabular}{ll}
\hline name & (Optional) Specifies the name of a flow exporter. \\
\hline exporter-name & (Optional) The name of a flow exporter that was previously configured. \\
\hline error & (Optional) Enables debugging for flow exporter errors. \\
\hline event & (Optional) Enables debugging for flow exporter events. \\
\hline packets & (Optional) Enables packet-level debugging for flow exporters. \\
\hline number & (Optional) The number of packets to debug for packet-level debugging of flow exporters. \\
& The range is 1 to 65535.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Command Modes & \multicolumn{2}{|l|}{Privileged EXEC} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IO & This command \\
\hline
\end{tabular}
\(\overline{\text { Examples }} \quad\) The following example indicates that a flow exporter packet has been queued for process send:
Device\# debug flow exporter
May 21 21:29:12.603: FLOW EXP: Packet queued for process send

\section*{debug flow monitor}

To enable debugging output for Flexible NetFlow flow monitors, use the debug flow monitor command in privileged EXEC mode. To disable debugging output, use the no form of this command.
debug flow monitor [\{error |[name] monitor-name [\{cache [error]|error|packets packets \(\}\)]\}] no debug flow monitor [\{error|[name] monitor-name [\{cache [error]|error|packets packets \(\}]\}]\)

\section*{Syntax Description}
error (Optional) Enables debugging for flow monitor errors for all flow monitors or for the specified flow monitor.
\begin{tabular}{ll}
\hline name & (Optional) Specifies the name of a flow monitor. \\
\hline monitor-name & (Optional) Name of a flow monitor that was previously configured. \\
\hline cache & (Optional) Enables debugging for the flow monitor cache. \\
\hline cache error & (Optional) Enables debugging for flow monitor cache errors. \\
\hline packets & (Optional) Enables packet-level debugging for flow monitors. \\
\hline packets & \begin{tabular}{l}
(Optional) Number of packets to debug for packet-level debugging of flow monitors. The \\
range is 1 to 65535.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

\section*{Privileged EXEC}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following example shows that the cache for FLOW-MONITOR-1 was deleted:
```

Device\# debug flow monitor FLOW-MONITOR-1 cache
May 21 21:53:02.839: FLOW MON: 'FLOW-MONITOR-1' deleted cache

```

\section*{debug flow record}

To enable debugging output for Flexible NetFlow flow records, use the debug flow record command in privileged EXEC mode. To disable debugging output, use the no form of this command.
debug flow record [\{[name] record-name \(\mid\) options \(\{\) sampler-table \(\} \mid[\{\) detailed \(\mid\) error \(\}]\}]\) no debug flow record [\{[name] record-name \(\mid\) options \(\{\) sampler-table \(\} \mid[\{\) detailed \(\mid\) error \(\}]\}]\)

Syntax Description
\begin{tabular}{ll}
\hline name & (Optional) Specifies the name of a flow record. \\
\hline record-name & (Optional) Name of a user-defined flow record that was previously configured. \\
\hline options & (Optional) Includes information on other flow record options. \\
\hline sampler-table & (Optional) Includes information on the sampler tables. \\
\hline detailed & (Optional) Displays detailed information. \\
\hline error & (Optional) Displays errors only.
\end{tabular}
\begin{tabular}{lll}
\(\overline{\text { Command Modes }}\) & & \\
\(\overline{\text { Command History }}\) & Release & Modification \\
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

Examples
The following example enables debugging for the flow record:

\footnotetext{
Device\# debug flow record FLOW-record-1
}

\section*{debug sampler}

To enable debugging output for Flexible NetFlow samplers, use the debug sampler command in privileged EXEC mode. To disable debugging output, use the no form of this command.
debug sampler [\{detailed \(\mid\) error \(\mid\) [name] sampler-name [\{detailed \(\mid\) error \(\mid\) sampling samples \(\}]\}\)] no debug sampler [\{detailed \(\mid\) error \(\mid\) [name] sampler-name [\{detailed \(\mid\) error \(\mid\) sampling \(\}]\}]\)

\section*{Syntax Description}
\begin{tabular}{ll}
\hline detailed & (Optional) Enables detailed debugging for sampler elements. \\
\hline error & (Optional) Enables debugging for sampler errors. \\
\hline name & (Optional) Specifies the name of a sampler. \\
\hline sampler-name & (Optional) Name of a sampler that was previously configured. \\
\hline sampling samples & \begin{tabular}{l}
(Optional) Enables debugging for sampling and specifies the number of samples to \\
debug.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes}

Command History
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following sample output shows that the debug process has obtained the ID for the sampler named SAMPLER-1:
```

Device\# debug sampler detailed
*May 28 04:14:30.883: Sampler: Sampler(SAMPLER-1: flow monitor FLOW-MONITOR-1 (ip,Et1/0,O)
get ID succeeded:1
*May 28 04:14:30.971: Sampler: Sampler(SAMPLER-1: flow monitor FLOW-MONITOR-1 (ip,Et0/0,I)
get ID succeeded:1

```

\section*{description}

To configure a description for a flow monitor, flow exporter, or flow record, use the description command in the appropriate configuration mode. To remove a description, use the no form of this command.
description description
no description description
Syntax Description
\begin{tabular}{lll}
\hline Command Default & & The default description for a flow sampler, flow monitor, flow e \\
\cline { 1 - 1 } Command Modes & The following command modes are supported: \\
& \begin{tabular}{l}
Flow exporter configuration
\end{tabular} \\
& Flow monitor configuration \\
& Flow record configuration \\
\hline Command History & Release & Modification
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.
\(\overline{\text { Usage Guidelines }}\) To return this command to its default setting, use the no description or default description command in the appropriate configuration mode.

The following example configures a description for a flow monitor:
```

Device(config) \# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)\# description Monitors traffic to 172.16.0.1 255.255.0.0

```

\section*{description (ERSPAN)}

To describe an Encapsulated Remote Switched Port Analyzer (ERSPAN) source session, use the description command in ERSPAN monitor source session configuration mode. To remove a description, use the no form of this command.
description description
no description

Syntax Description

Command History
description Describes the properties for this session.
Description is not configured.
ERSPAN monitor source session configuration mode (config-mon-erspan-src)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

The description argument can be up to 240 characters.
The following example shows how to describe an ERSPAN source session:

Device(config) \# monitor session 2 type erspan-source
Device(config-mon-erspan-src) \# description source1

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline monitor session type & Configures a local ERSPAN source or destination session. \\
\hline
\end{tabular}

\section*{destination (ERSPAN)}

To configure an Encapsulated Remote Switched Port Analyzer (ERSPAN) source session destination and specify destination properties, use the destination command in ERSPAN monitor source session configuration mode. To remove a destination session, use the no form of this command.

\section*{destination}
no destination

Syntax Description
Command Default
Command Modes

\section*{Command History}

This command has no arguments or keywords.
A source session destination is not configured.
ERSPAN monitor source session configuration mode (config-mon-erspan-src)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.
Cisco IOS XE Amsterdam 17.1.1 The ipv6 keyword was added in the source session destination configuration mode, for IPv6 ERSPAN support.

ERSPAN traffic is GRE-encapsulated SPAN traffic that can only be processed by an ERSPAN destination session.

After you enter destination command, the command mode changes from monitor source session configuration mode (config-mon-erspan-src) to source session destination configuration mode (config-mon-erspan-src-dst). In this mode, enter a question mark (?) at the system prompt to see the list of commands that are available:
\begin{tabular}{|l|l|}
\hline erspan-id erspan-ID & \begin{tabular}{l}
Configures the ID used by the destination session to identify the \\
ERSPAN traffic. Valid values range from 1 to 1023.
\end{tabular} \\
\hline exit & Exits monitor ERSPAN destination session source property mode. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { ip \{ address ipv4-address | } \\
& \text { dscp } \text { dscp-value | ttl ttl-value \} }
\end{aligned}
\] & \begin{tabular}{l}
Specifies IP properties. You can configure the following options: \\
- address ipv4-address: Configures the IP address for the ERSPAN destination sessions. All ERSPAN source session (maximum 8) destination IP addresses need not be same. \\
The ERSPAN source session destination IP address, which is configured on an interface on the destination switch, is the source of traffic that an ERSPAN destination session sends to destination ports. Configure the same address in both the source and destination sessions. \\
- dscp dscp-value: Configures the Differentiated Services Code Point (DSCP) values for packets in the ERSPAN traffic. Valid values are from 0 to 63 . \\
To remove the dscp values, use the no form of this command. \\
- ttl ttl-value: Configures the Time to Live (TTL) values for packets in the ERSPAN traffic. Valid values are from 2 to 255. \\
To remove the TTL values, use the no form of this command.
\end{tabular} \\
\hline ipv6 \{ address ipv6-address dscp \(d s c p\)-value | flow-label ttl ttl-value \} & \begin{tabular}{l}
Specifies IPv6 properties. You can configure the following options: \\
- address ipv6-address: Configures the IPv6 address for the ERSPAN destination sessions. All ERSPAN source session (maximum 8) destination IPv6 address need not be same. \\
The ERSPAN source session destination IPv6 address, which is configured on an interface on the destination switch, is the source of traffic that an ERSPAN destination session sends to destination ports. Configure the same address in both the source and destination sessions. \\
- dscp dscp-value: Configures the Differentiated Services Code Point (DSCP) values for packets in the ERSPAN traffic. Valid values are from 0 to 63 . \\
To remove the dscp values, use the no form of this command. \\
- flow-label: Configures the flow-label. Valid values are from 0 to 1048575. \\
- ttl ttl-value: Configures the Time to Live (TTL) values for packets in the ERSPAN traffic. Valid values are from 2 to 255 . \\
To remove the TTL values, use the no form of this command.
\end{tabular} \\
\hline mtu bytes & Specifies the maximum transmission unit (MTU) size for ERSPAN truncation. The default value is 9000 bytes. \\
\hline origin \{ ip address ip-address | ipv6 addressipv6-address \} & Configures the source of the ERSPAN traffic. You can enter an IPv4 address or an IPv6 address. \\
\hline vrf \(v\) rf-id & Configures virtual routing and forwarding (VRF) in the destination session. Enter the VRF ID. \\
\hline
\end{tabular}

ERSPAN traffic is GRE-encapsulated SPAN traffic that can only be processed by an ERSPAN destination session.

\section*{Examples}

The following examples show how to configure an ERSPAN source session destination, enter the ERSPAN monitor destination session configuration mode, and configure the various properties.

The following example specifies the destination property ip:
```

Device(config)\# monitor session 2 type erspan-source
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst)\#ip address 10.1.1.1
Device(config-mon-erspan-src-dst)\#

```

The following example shows how to configure an ERSPAN ID for a destination session:
```

Device(config)\# monitor session 2 type erspan-source
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst) \# erspan-id 3

```

The following example shows how to configure DSCP value for ERSPAN traffic:
```

Device(config)\# monitor session 2 type erspan-source
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst) \# ip dscp 15

```

The following example shows how to configure TTL value for ERSPAN traffic:
```

Device(config)\# monitor session 2 type erspan-source
Device(config-mon-erspan-src) \# destination
Device(config-mon-erspan-src-dst)\# ip ttl 32

```

The following example specifies the destination property ipv6:
```

Device(config)\# monitor session 3 type erspan-source
Device(config-mon-erspan-src) \# destination
Device(config-mon-erspan-src-dst) \#ipv6 address 2001:DB8::1
Device(config-mon-erspan-src-dst)\#

```

The following example shows how to configure DSCP value for ERSPAN traffic IPv6:
```

Device(config)\# monitor session 3 type erspan-source
Device(config-mon-erspan-src) \# destination
Device(config-mon-erspan-src-dst) \# ipv6 dscp 10

```

The following example shows how to configure flow-label value for ERSPAN traffic IPv6:
```

Device(config)\# monitor session 3 type erspan-source
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst) \# ipv6 flow-label 6

```

The following example shows how to configure TTL value for ERSPAN traffic IPv6:
```

Device(config)\# monitor session 3 type erspan-source
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst)\# ipv6 ttl 32

```

The following example shows how to specify an MTU of 1000 bytes:
```

Device(config)\# monitor session 2 type erspan-source
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst) \# mtu 1000

```

The following example shows how to configure an IP address for an ERSPAN source session:
```

Switch(config)\# monitor session 2 type erspan-source
Switch(config-mon-erspan-src)\# destination
Switch(config-mon-erspan-src-dst)\# origin ip address 192.0.2.1

```

The following example shows how to configure an IPv6 address for an ERSPAN source session:
```

Switch(config)\# monitor session 3 type erspan-source
Switch(config-mon-erspan-src)\# destination
Switch(config-mon-erspan-src-dst)\# origin ipv6 address 2001:DB8:1::1

```

The following example shows how to configure VRF in the destination session:
```

Switch(config)\# monitor session 3 type erspan-source
Switch(config-mon-erspan-src)\# destination
Switch(config-mon-erspan-src-dst) \# vrf vrfexample

```

The following sample output from the show monitor session all displays different IP addresses for source session destinations:
```

Device\# show monitor session all
Session 1
---------
Type : ERSPAN Source Session
Status : Admin Disabled
Description : session1
Destination IP Address : 10.1.1.1
Session 2
---------
Type : ERSPAN Source Session
Status : Admin Disabled
Description : session2
Destination IP Address : 192.0.2.1
Session 3
---------
Type : ERSPAN Source Session
Status : Admin Disabled
Description : session3
Destination IP Address : 198.51.100.1
Session 4
Session 4

```
```

Type : ERSPAN Source Session
Status : Admin Disabled
Description : session4
Destination IP Address : 203.0.113.1
Session 5
---------
Type : ERSPAN Source Session
Status : Admin Disabled
Description : session5
Destination IP Address : 209.165.200.225

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & monitorsession type & Configures a local ERSPAN source or destination session. \\
\hline
\end{tabular}

\section*{destination}

To configure an export destination for a flow exporter, use the destination command in flow exporter configuration mode. To remove an export destination for a flow exporter, use the no form of this command.
destination \{hostnameip-address\}
no destination \{hostnameip-address\}

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}
Command History

\section*{Usage Guidelines}
hostname Hostname of the device to which you want to send the NetFlow information.
ip-address \(\operatorname{IPv} 4\) address of the workstation to which you want to send the NetFlow information.

An export destination is not configured.
Flow exporter configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Each flow exporter can have only one destination address or hostname.
When you configure a hostname instead of the IP address for the device, the hostname is resolved immediately and the IPv4 address is stored in the running configuration. If the hostname-to-IP-address mapping that was used for the original Domain Name System (DNS) name resolution changes dynamically on the DNS server, the device does not detect this, and the exported data continues to be sent to the original IP address, resulting in a loss of data.

To return this command to its default setting, use the no destination or default destination command in flow exporter configuration mode.

The following example shows how to configure the networking device to export the Flexible NetFlow cache entry to a destination system:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)\# destination 10.0.0.4

```
dscp
To configure a differentiated services code point (DSCP) value for flow exporter datagrams, use the dscp command in flow exporter configuration mode. To remove a DSCP value for flow exporter datagrams, use the no form of this command.
dscp \(d s c p\)
no dscp \(d s c p\)

Syntax Description

Command Default
Command Modes Flow exporter configuration
Command History

Usage Guidelines
\(d s c p \quad \mathrm{DSCP}\) to be used in the DSCP field in exported datagrams. The range is 0 to 63 . The default is 0 .

The differentiated services code point (DSCP) value is 0 .
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

To return this command to its default setting, use the no dscp or default dscp flow exporter configuration command.

The following example sets 22 as the value of the DSCP field in exported datagrams:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter) \# dscp 22

```

\section*{et-analytics}

To enter the global et-analytics configuration mode, use the et-analytics command in the global configuration mode.
et-analytics
Syntax Description
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{Disabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Global configuration (config)} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Example:}

The following example shows how to enter the et-analytics configuration mode:
```

Device>enable
Device\#configure terminal
Device(config)\# et-analytics

```

\section*{et-analytics enable}

To enable et-analytics configuration on a particular interface, use the et-analytics enablecommand in the interface configuration mode. To disable et-analytics, use the no form of the command.
et-analytics enable
no et-analytics enable

Syntax Description

\section*{Command Default}
\begin{tabular}{|c|c|c|}
\hline Command Modes & \multicolumn{2}{|l|}{Interface configuration (config-if)} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Example:}

The following example shows how to enable et-analytics on interface GigabitEthernet1/0/2.:
```

Device>enable
Device\#configure terminal
Device(config)\# interface gil/0/2
Device(config-if)\# et-analytics enable

```

\section*{event manager applet}

To register an applet with the Embedded Event Manager (EEM) and to enter applet configuration mode, use the event manager applet command in global configuration mode. To unregister the applet, use the no form of this command.
event manager applet applet-name [authorization bypass] [class class-options] [trap] no event manager applet applet-name [authorization bypass] [class class-options] [trap]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline applet-name & Name of the applet file. \\
\hline authorization & (Optional) Specifies AAA authorization type for applet. \\
\hline bypass & (Optional) Specifies EEM AAA authorization type bypass. \\
\hline class & \begin{tabular}{c}
(Optional) Specifies the EEM policy class. \\
• class-letter-- Letter from A to Z that identifies each policy class. You can specify any \\
one class-letter.
\end{tabular} \\
\hline trap & \begin{tabular}{l}
(Optional) The EEM policy class. You can specify either one of the following: \\
(Optional) Generates a Simple Network Management Protocol (SNMP) trap when the policies registered with the default class. \\
\hline
\end{tabular} \\
\hline
\end{tabular}
Command Default

No EEM applets are registered.

\section*{Command Modes}

Global configuration (config)

\section*{Command History} Command History

\section*{Usage Guidelines}

An EEM applet is a concise method for defining event screening criteria and the actions to be taken when that event occurs.

Only one event configuration command is allowed within an applet configuration. When applet configuration submode is exited and no event command is present, a warning is displayed stating that no event is associated with this applet. If no event is specified, this applet is not considered registered and the applet is not displayed. When no action is associated with this applet, events are still triggered but no actions are performed. Multiple action applet configuration commands are allowed within an applet configuration. Use the show event manager policy registered command to display a list of registered applets.

Before modifying an EEM applet, use the no form of this command to unregister the applet because the existing applet is not replaced until you exit applet configuration mode. While you are in applet configuration mode modifying the applet, the existing applet may be executing. When you exit applet configuration mode, the old applet is unregistered and the new version is registered.

Note Do not attempt making any partial modification. EEM does not support partial changes to already registered policies. EEM policy has to be always unregistered before registering again with changes.

Action configuration commands are uniquely identified using the label argument, which can be any string value. Actions are sorted in ascending alphanumeric key sequence using the label argument as the sort key and are run using this sequence.

The EEM schedules and runs policies on the basis of an event specification that is contained within the policy itself. When applet configuration mode is exited, EEM examines the event and action commands that are entered and registers the applet to be run when a specified event occurs.

The EEM policies will be assigned a class when class class-letter is specified when they are registered. EEM policies registered without a class will be assigned to the default class. Threads that have default as the class will service the default class when the thread is available for work. Threads that are assigned specific class letters will service any policy with a matching class letter when the thread is available for work.

If there is no EEM execution thread available to run the policy in the specified class and a scheduler rule for the class is configured, the policy will wait until a thread of that class is available for execution. Synchronous policies that are triggered from the same input event should be scheduled in the same execution thread. Policies will be queued in a separate queue for each class using the queue_priority as the queuing order.

When a policy is triggered and if AAA is configured it will contact the AAA server for authorization. Using the authorization bypass keyword combination, you can skip to contact the AAA server and run the policy immediately. EEM stores AAA bypassed policy names in a list. This list is checked when policies are triggered. If a match is found, AAA authorization is bypassed.

To avoid authorization for commands configured through the EEM policy, EEM will use named method lists, which AAA provides. These named method lists can be configured to have no command authorization.

The following is a sample AAA configuration.
This configuration assumes a TACACS+ server at 192.168.10.1 port 10000. If the TACACS+ server is not enabled, configuration commands are permitted on the console; however, EEM policy and applet CLI interactions will fail.
```

enable password lab
aaa new-model
tacacs-server host 128.107.164.152 port 10000
tacacs-server key cisco
aaa authentication login consoleline none
aaa authorization exec consoleline none
aaa authorization commands 1 consoleline none
aaa authorization commands 15 consoleline none
line con 0
exec-timeout 0 0
login authentication consoleline
aaa authentication login default group tacacs+ enable
aaa authorization exec default group tacacs+
aaa authorization commands 1 default group tacacs+
aaa authorization commands }15\mathrm{ default group tacacs+

```

The authorization, class and trap keywords can be used in any combination.

The following example shows an EEM applet called IPSLAping1 being registered to run when there is an exact match on the value of a specified SNMP object ID that represents a successful IP SLA

ICMP echo operation (this is equivalent to a ping command). Four actions are triggered when the echo operation fails, and event monitoring is disabled until after the second failure. A message that the ICMP echo operation to a server failed is sent to syslog, an SNMP trap is generated, EEM publishes an application-specific event, and a counter called IPSLA1F is incremented by a value of one.
```

Router(config)\# event manager applet IPSLAping1
Router(config-applet)\# event snmp oid 1.3.6.1.4.1.9.9.42.1.2.9.1.6.4 get-type exact
entry-op eq entry-val 1 exit-op eq exit-val 2 poll-interval 5
Router(config-applet)\# action 1.0 syslog priority critical msg "Server IP echo failed:
OID=\$_snmp_oid_val"
Router(config-applet)\# action 1.1 snmp-trap strdata "EEM detected server reachability
failure to 10.1.88.9"
Router(config-applet)\# action 1.2 publish-event sub-system 88000101 type 1 arg1 10.1.88.9
arg2 IPSLAEcho arg3 fail
Router(config-applet)\# action 1.3 counter name _IPSLA1F value 1 op inc

```

The following example shows how to register an applet with the name one and class A and enter applet configuration mode where the timer event detector is set to trigger an event every 10 seconds. When the event is triggered, the action syslog command writes the message "hello world" to syslog.
```

Router(config)\# event manager applet one class A
Router(config-applet)\# event timer watchdog time 10
Router(config-applet)\# action syslog syslog msg "hello world"
Router(config-applet)\# exit

```

The following example shows how to bypass the AAA authorization when registering an applet with the name one and class A.
```

Router(config)\# event manager applet one class A authorization bypass
Router(config-applet)\#

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show event manager policy registered & Displays registered EEM policies. \\
\hline
\end{tabular}

\section*{export-protocol netflow-v9}

To configure NetFlow Version 9 export as the export protocol for a Flexible NetFlow exporter, use the export-protocol netflow-v9 command in flow exporter configuration mode.
export-protocol netflow-v9
Syntax Description This command has no arguments or keywords.
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & NetFlow Version 9 is enabled. \\
\(\overline{\text { Command Modes }}\) & Flow exporter configuration & \\
Command History & Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.
\(\overline{\text { Usage Guidelines }}\) The device does not support NetFlow v5 export format, only NetFlow v9 export format is supported.
The following example configures NetFlow Version 9 export as the export protocol for a NetFlow exporter:

Device(config) \# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter) \# export-protocol netflow-v9

\section*{export-protocol netflow-v5}

To configure NetFlow Version 5 export as the export protocol for a Flexible NetFlow exporter, use the export-protocol netflow-v5 command in flow exporter configuration mode.
export-protocol netflow-v5
Syntax Description This command has no arguments or keywords.
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{NetFlow Version 5 is enabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Flow exporter configuration} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{exporter}

To add a flow exporter for a flow monitor, use the exporter command in the appropriate configuration mode.
To remove a flow exporter for a flow monitor, use the no form of this command.
```

exporter exporter-name
no exporter exporter-name

```

Syntax Description

Command Default
Command Modes
Command History
exporter-name Name of a flow exporter that was previously configured.

An exporter is not configured.
Flow monitor configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

You must have already created a flow exporter by using the flow exporter command before you can apply the flow exporter to a flow monitor with the exporter command.

To return this command to its default settings, use the no exporter or default exporter flow monitor configuration command.

The following example configures an exporter for a flow monitor:
```

Device(config)\# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor) \# exporter EXPORTER-1

```

\section*{fconfigure}

To specify the options in a channel use the fconfigure command in the TCL configuration mode.
fconfigure channel-name remote [host port] broadcast boolean vrf vrf-table-name
\begin{tabular}{lll}
\hline Syntax Description & remote & Configures a remote session. It supports both IPv4 and IPv6 addresses. \\
\cline { 2 - 3 } & \begin{tabular}{ll}
broadcast & Enables or disables broadcasting. The value of the option must be a proper boolean value. \\
\hline vrf & \begin{tabular}{l}
Returns the local VRF table name for the specified socket. If no VRF Table has been configured \\
for the given socket, TCL_ERROR will be returned and "No VRF table configured" will be \\
appended to the interpreter result.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}

\section*{Command Default \\ Command Modes} Command History

TCL configuration mode
Release Modification

Cisco IOS XE Amsterdam 17.2.1 The myvrf keyword was introduced.

\section*{filter (ERSPAN)}

To configure the Encapsulated Remote Switched Port Analyzer (ERSPAN) source VLAN filtering when the ERSPAN source is a trunk port, use the filter command in ERSPAN monitor source session configuration mode. To remove the configuration, use the no form of this command.
filter \{ip access-group \{standard-access-list extended-access-list acl-name\} |ipv6 access-group acl-name | mac access-group acl-name | sgt sgt-id \([\{\}],[\{-\}] \mid\) vlan vlan-id \([\{\}],[\{-\}]\}\) no filter \{ip [\{access-group | [\{ standard-access-list extended-access-list acl-name\}]\}] | ipv6 [\{access-group \(\}] \mid \operatorname{mac}[\{\) access-group \(\}] \mid\) sgt \(\operatorname{sgt}\)-id \([\{\}],[\{-\}] \mid\) vlan vlan-id \([\{\}],[\{-\}]\}\)

\section*{Syntax Description}

\section*{Command Default \\ Command Modes \\ Command History}
\begin{tabular}{ll}
\hline ip & Specifies the IP access control rules. \\
\hline access-group & Specifies an access control group. \\
\hline standard-access-list & Standard IP access list. \\
\hline extended-access-list & Extended IP access list. \\
\hline acl-name & Access list name. \\
\hline ipv6 & Specifies the IPv6 access control rules. \\
\hline mac & Specifies the media access control (MAC) rules. \\
\hline sgt sgt-ID & Specifies the Security Group Tag (SGT). Valid values are from 1 to 65535. \\
\hline vlan vlan-ID & Specifies the ERSPAN source VLAN. Valid values are from 1 to 4094. \\
\hline, & (Optional) Specifies another VLAN. \\
\hline (Optional) Specifies a range of VLANs. \\
\hline
\end{tabular}

Source VLAN filtering is not configured.
ERSPAN monitor source session configuration mode (config-mon-erspan-src)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.
Cisco IOS XE Gibraltar 16.11.1 The sgt keyword was introduced.

\section*{Usage Guidelines}

You cannot include source VLANs and filter VLANs in the same session.
When you configure the filter command on a monitored trunk interface, only traffic on that set of specified VLANs is monitored.

Examples The following example shows how to configure source VLAN filtering:

Device(config) \# monitor session 2 type erspan-source
Device(config-mon-erspan-src) \# filter vlan 3
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & monitor session type & Configures a local ERSPAN source or destination session. \\
\hline
\end{tabular}

\section*{flow exporter}

To create a Flexible NetFlow flow exporter, or to modify an existing Flexible NetFlow flow exporter, and enter Flexible NetFlow flow exporter configuration mode, use the flow exporter command in global configuration mode. To remove a Flexible NetFlow flow exporter, use the no form of this command.
flow exporter exporter-name
no flow exporter exporter-name

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

Command History
exporter-name Name of the flow exporter that is being created or modified.

Flexible NetFlow flow exporters are not present in the configuration.
Global configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Flow exporters export the data in the flow monitor cache to a remote system, such as a server running NetFlow collector, for analysis and storage. Flow exporters are created as separate entities in the configuration. Flow exporters are assigned to flow monitors to provide data export capability for the flow monitors. You can create several flow exporters and assign them to one or more flow monitors to provide several export destinations. You can create one flow exporter and apply it to several flow monitors.

The following example creates a flow exporter named FLOW-EXPORTER-1 and enters Flexible NetFlow flow exporter configuration mode:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)\#

```

\section*{flow monitor}

To create a flow monitor, or to modify an existing flow monitor, and enter flow monitor configuration mode, use the flow monitor command in global configuration mode. To remove a flow monitor, use the no form of this command.
flow monitor monitor-name
no flow monitor monitor-name

Syntax Description
monitor-name Name of the flow monitor that is being created or modified.
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & Flexible NetFlow flow monitors are not present in the configuration. \\
\(\overline{\text { Command Modes }}\) & Global configuration & \\
\(\overline{\text { Command History }}\) & \begin{tabular}{ll}
Release & Modification \\
& Cisco IOS XE Everest 16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Flow monitors are the Flexible NetFlow component that is applied to interfaces to perform network traffic monitoring. Flow monitors consist of a flow record and a cache. You add the record to the flow monitor after you create the flow monitor. The flow monitor cache is automatically created at the time the flow monitor is applied to the first interface. Flow data is collected from the network traffic during the monitoring process based on the key and nonkey fields in the flow monitor's record and stored in the flow monitor cache.

\section*{Examples}

The following example creates a flow monitor named FLOW-MONITOR-1 and enters flow monitor configuration mode:
```

Device(config) \# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)\#

```

\section*{flow record}

To create a Flexible NetFlow flow record, or to modify an existing Flexible NetFlow flow record, and enter Flexible NetFlow flow record configuration mode, use the flow record command in global configuration mode. To remove a Flexible NetFlow record, use the no form of this command.
flow record record-name
no flow record record-name

Syntax Description
record-name Name of the flow record that is being created or modified.

Command Default
Command Modes
Command History

A Flexible NetFlow flow record is not configured.
Global configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record defines the keys that Flexible NetFlow uses to identify packets in the flow, as well as other fields of interest that Flexible NetFlow gathers for the flow. You can define a flow record with any combination of keys and fields of interest. The device supports a rich set of keys. A flow record also defines the types of counters gathered per flow. You can configure 64-bit packet or byte counters.

The following example creates a flow record named FLOW-RECORD-1, and enters Flexible NetFlow flow record configuration mode:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record)\#

```

\section*{header-type}

To configure the ERSPAN header type for encapsulation, use the header-type command in ERSPAN monitor source session configuration mode. To remove the configuration, use the no form of this command.
header-type header-type
no header-type header-type

\section*{Syntax Description}
header-type ERSPAN header type. Valid header types are 2 and 3.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Examples}

The following example shows how to change the ERSPAN header type to 3:

Device(config) \# monitor session 2 type erspan-source
Device(config-mon-erspan-src) \# header-type 3

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline monitor session type & Configures a local ERSPAN source or destination session. \\
\hline
\end{tabular}

\section*{inactive time}

To configure et-analytics inactive timer value, use the inactive time secondscommand in the et-analytics configuration mode. To disable the timer settings, use the no form of the command.
inactive time seconds
no inactive time seconds
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline inactive time & Configures the inactive timer value. \\
\hline seconds & Timer value in seconds. The range \\
& \begin{tabular}{l}
is from 1 to 604800 and the default \\
value is 60 seconds.
\end{tabular} \\
&
\end{tabular}
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & Disabled. \\
\(\overline{\text { Command Modes }}\) & & et-analytics configuration (config-et-analytics) \\
\hline Command History & & \\
& Release & Modification \\
& Cisco IOS XE Everest & This command was introduced. \\
& & \\
& &
\end{tabular}

\section*{Example:}

The following example shows how to configure an inactive timer of 10 seconds:
```

Device>enable
Device\#configure terminal
Device(config)\# et-analytics
Device(config-et-analytics) \# inactive time 10

```

\section*{ip flow-export destination}

To configure the global collector destination IP address, use the ip flow-export destination ip_address portcommand in the et-analytics configuration mode. To remove the collector destination IP address, use the no form of the command.
ip flow-export destination ip_address port no ip flow-export destination ip_address port

Syntax Description
Command Default
Command Modes

Command History
\begin{tabular}{ll}
\hline ip flow-export destination & \begin{tabular}{l}
Configures the global collector \\
destination IP address and port.
\end{tabular} \\
\hline ip_address & Destination IP address. \\
\hline port & Destination port. \\
\hline
\end{tabular}

Disabled.
et-analytics configuration (config-et-analytics)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Example:}

The following example shows how to configure a flow-exporter destination IP address of 10.1.1.1 and port 2055:
```

Device>enable
Device\#configure terminal
Device(config)\# et-analytics
Device(config-et) \# ip flow-export destination 10.1.1.1 2055

```

\section*{ip wccp}

Syntax Description
\begin{tabular}{ll}
\hline web-cache & Specifies the web-cache service (WCCP Version 1 and Version 2). \\
\hline service-number & \begin{tabular}{l}
Dynamic service identifier, which means the service definition is \\
dictated by the cache. The dynamic service number can be from 0 to
\end{tabular} \\
\begin{tabular}{l}
254. The maximum number of services is 256, which includes the \\
web-cache service specified with the web-cache keyword.
\end{tabular}
\end{tabular}
group-address groupaddress (Optional) Specifies the multicast group address used by the device and the application engines to participate in the service group.
group-list access-list
(Optional) If a multicast group address is not used, specifies a list of valid IP addresses that correspond to the application engines that are participating in the service group.
redirect-list access-list
(Optional) Specifies the redirect service for specific hosts or specific packets from hosts.
password encryption-number password
(Optional) Specifies an encryption number. The range is 0 to 7 . Use 0 for not encrypted, and use 7 for proprietary. Also, specifies a password name up to seven characters in length. The device combines the password with the MD5 authentication value to create security for the connection between the device and the application engine. By default, no password is configured, and no authentication is performed.

\section*{Command Default}

Command Modes

\section*{Command History}

To enable the web cache service, and specify the service number that corresponds to a dynamic service that is defined by the application engine, use the ip wcep global configuration command on the device. Use the no form of this command to disable the service.
ip wecp \{web-cache | service-number\} [group-address groupaddress] [group-list access-list] [redirect-list access-list] [password encryption-number password] no ip wecp \{web-cache | service-number\} [group-address groupaddress] [group-list access-list] [redirect-list access-list] [password encryption-number password]
\[
4
\]

WCCP services are not enabled on the device.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
WCCP transparent caching bypasses Network Address Translation (NAT) when Cisco Express Forwarding switching is enabled. To work around this situation, configure WCCP transparent caching in the outgoing direction, enable Cisco Express Forwarding switching on the content engine interface, and specify the ip wccp web-cache redirect out command. Configure WCCP in the incoming direction on the inside interface by
specifying the ip wecp redirect exclude in command on the router interface facing the cache. This configuration prevents the redirection of any packets arriving on that interface.
You can also include a redirect list when configuring a service group. The specified redirect list will deny packets with a NAT (source) IP address and prevent redirection.

This command instructs a device to enable or disable support for the specified service number or the web-cache service name. A service number can be from 0 to 254 . Once the service number or name is enabled, the router can participate in the establishment of a service group.

When the no ip wecp command is entered, the device terminates participation in the service group, deallocates space if none of the interfaces still have the service configured, and terminates the WCCP task if no other services are configured.
The keywords following the web-cache keyword and the service-number argument are optional and may be specified in any order, but only may be specified once.

\section*{Example}

The following example configures a web cache, the interface connected to the application engine or the server, and the interface connected to the client:
```

Device(config)\# ip wccp web-cache
Device(config)\# interface gigabitethernet1/0/1
Device(config-if) \# no switchport
Device(config-if)\# ip address 172.20.10.30 255.255.255.0
Device(config-if) \# no shutdown
Device(config-if) \# exit
Device(config)\# interface gigabitethernet1/0/2
Device(config-if) \# no switchport
Device(config-if)\#
*Dec 6 13:11:29.507: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/3, changed state to down
Device(config-if)\# ip address 175.20.20.10 255.255.255.0
Device(config-if) \# no shutdown
Device(config-if)\# ip wccp web-cache redirect in
Device(config-if)\# ip wccp web-cache group-listen
Device(config-if) \# exit

```

\section*{ip flow monitor}

To enable a Flexible NetFlow flow monitor for IPv4 traffic that the device is receiving, use the ip flow monitor command in interface configuration mode. To disable a flow monitor, use the no form of this command.
ip flow monitor monitor-name [sampler sampler-name] input no ip flow monitor monitor-name [sampler sampler-name] input

Syntax Description
\begin{tabular}{ll}
\hline monitor-name & Name of the flow monitor to apply to the interface. \\
\hline sampler sampler-name & (Optional) Enables the specified flow sampler for the flow monitor. \\
\hline input & Monitors IPv4 traffic that the device receives on the interface. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Default & A flow monitor is not enabled. \\
\hline Command Modes & Interface configuration \\
\hline \multirow[t]{2}{*}{Command History} & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Before you can apply a flow monitor to an interface with the ip flow monitor command, you must have already created the flow monitor using the flow monitor global configuration command.
When you add a sampler to a flow monitor, only packets that are selected by the named sampler will be entered into the cache to form flows. Each use of a sampler causes separate statistics to be stored for that usage.
You cannot add a sampler to a flow monitor after the flow monitor has been enabled on the interface. You must first remove the flow monitor from the interface and then enable the same flow monitor with a sampler.

Note The statistics for each flow must be scaled to give the expected true usage. For example, with a 1 in 100 sampler it is expected that the packet and byte counters will have to be multiplied by 100 .

The following example enables a flow monitor for monitoring input traffic:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# ip flow monitor FLOW-MONITOR-1 input

```

The following example enables a flow monitor for monitoring input traffic, with a sampler to limit the input packets that are sampled:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# ip flow monitor FLOW-MONITOR-1 sampler SAMPLER-1 input

```

The following example shows what happens when you try to add a sampler to a flow monitor that has already been enabled on an interface without a sampler:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# ip flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input
% Flow Monitor: Flow Monitor 'FLOW-MONITOR-1' is already on in full mode and cannot be
enabled with a sampler.

```

The following example shows how to remove a flow monitor from an interface so that it can be enabled with the sampler:
```

Device(config) \# interface gigabitethernet1/0/1
Device(config-if)\# no ip flow monitor FLOW-MONITOR-1 input
Device(config-if)\# ip flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input

```

\section*{ipv6 flow monitor}

To enable a flow monitor for IPv6 traffic that the device is receiving, use the ipv6 flow monitor command in interface configuration mode. To disable a flow monitor, use the no form of this command.
ipv6 flow monitor monitor-name [sampler sampler-name] input no ipv6 flow monitor monitor-name [sampler sampler-name] input

\section*{Syntax Description}
\begin{tabular}{ll}
\hline monitor-name & Name of the flow monitor to apply to the interface. \\
\hline sampler sampler-name & (Optional) Enables the specified flow sampler for the flow monitor. \\
\hline input & Monitors IPv6 traffic that the device receives on the interface. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Default & A flow monitor is not enabled. \\
\hline Command Modes & Interface configuration \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Before you can apply a flow monitor to the interface with the ipv6 flow monitor command, you must have already created the flow monitor using the flow monitor global configuration command.
When you add a sampler to a flow monitor, only packets that are selected by the named sampler will be entered into the cache to form flows. Each use of a sampler causes separate statistics to be stored for that usage.

You cannot add a sampler to a flow monitor after the flow monitor has been enabled on the interface. You must first remove the flow monitor from the interface and then enable the same flow monitor with a sampler.

Note The statistics for each flow must be scaled to give the expected true usage. For example, with a 1 in 100 sampler it is expected that the packet and byte counters will have to be multiplied by 100 .

The following example enables a flow monitor for monitoring input traffic:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if) \# ipv6 flow monitor FLOW-MONITOR-1 input

```

The following example enables a flow monitor for monitoring input traffic, with a sampler to limit the input packets that are sampled:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-1 input

```

The following example shows what happens when you try to add a sampler to a flow monitor that has already been enabled on an interface without a sampler:
```

Device(config)\# interface gigabitethernet1/0/1
Device(config-if)\# ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input
% Flow Monitor: Flow Monitor 'FLOW-MONITOR-1' is already on in full mode and cannot be
enabled with a sampler.

```

The following example shows how to remove a flow monitor from an interface so that it can be enabled with the sampler:
```

Device(config) \# interface gigabitethernet1/0/1
Device(config-if)\# no ipv6 flow monitor FLOW-MONITOR-1 input
Device(config-if)\# ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input

```

\section*{ipv6 deny echo reply}

To disable the generation of ICMP IPv6 echo reply message to an IPv6 multicast address or anycast address, use the ipv6 deny-echo-reply command in the global configuration mode. To enable the generation of ICMP IPv6 echo reply message, use the no form of the command.
ipv6 deny-echo-reply
no ipv6 deny-echo-reply
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

ICMPv6 Echo Reply messages are sent from the device.
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & The command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
The ipv6 deny-echo-reply command works only for an IPv6 multicast or anycast address. It does not suppress an echo reply message for an IPv6 unicast address.

The following example shows how to configure a device to stop sending a response to an ICMPv6 echo message:
```

Device\# configure terminal
Device(config) \#ipv6 deny-echo-reply
Router(config) \#end

```

The following example shows how to remove the ipv6 deny-echo-reply configuration:
```

Device\# configure terminal
Device(config) \#no ipv6 deny-echo-reply
Router(config) \#end

```

\section*{match datalink ethertype}

To configure the EtherType of the packet as a key field for a flow record, use the match datalink ethertype command in flow record configuration mode. To disable the EtherType of the packet as a key field for a flow record, use the no form of this command.
match datalink ethertype no match datalink ethertype
\begin{tabular}{lll}
\(\overline{\text { Syntax Description }}\) & This command has no arguments or keywords. \\
\(\overline{\text { Command Default }}\) & The EtherType of the packet is not configured as a key field. \\
\(\overline{\text { Command Modes }}\) & Flow record configuration \\
\hline Command History & Release & \\
& &
\end{tabular}

\section*{Usage Guidelines}

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

When you configure the EtherType of the packet as a key field for a flow record using the match datalink ethertype command, the traffic flow that is created is based on the type of flow monitor that is assigned to the interface:
- When a datalink flow monitor is assigned to an interface using the datalink flow monitor interface configuration command, it creates unique flows for different Layer 2 protocols.
- When an IP flow monitor is assigned to an interface using the ip flow monitor interface configuration command, it creates unique flows for different IPv4 protocols.
- When an IPv6 flow monitor is assigned to an interface using the ipv6 flow monitor interface configuration command, it creates unique flows for different IPv6 protocols.

To return this command to its default settings, use the no match datalink ethertype or default match datalink ethertype flow record configuration command.

The following example configures the EtherType of the packet as a key field for a Flexible NetFlow flow record:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record) \# match datalink ethertype

```

\section*{match datalink mac}

To configure the use of MAC addresses as a key field for a flow record, use the match datalink mac command in flow record configuration mode. To disable the use of MAC addresses as a key field for a flow record, use the no form of this command.
match datalink mac \{destination address input | source address input\} no match datalink mac \{destination address input |source address input\}

Syntax Description

Command Default

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline destination address & Configures the use of the destination MAC address as a key field. \\
\hline input & Specifies the MAC address of input packets. \\
\hline source address & Configures the use of the source MAC address as a key field. \\
\hline
\end{tabular}

MAC addresses are not configured as a key field.
Flow record configuration

\section*{Release Modification}

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The input keyword is used to specify the observation point that is used by the match datalink mac command to create flows based on the unique MAC addresses in the network traffic.

Note
When a datalink flow monitor is assigned to an interface or VLAN record, it creates flows only for non-IPv6 or non-IPv4 traffic.

To return this command to its default settings, use the no match datalink mac or default match datalink mac flow record configuration command.

The following example configures the use of the destination MAC address of packets that are received by the device as a key field for a flow record:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record) \# match datalink mac destination address input

```

\section*{match datalink vlan}

To configure the VLAN ID as a key field for a flow record, use the match datalink vlan command in flow record configuration mode. To disable the use of the VLAN ID value as a key field for a flow record, use the no form of this command.
match datalink van input
no match datalink vlan input

Syntax Description
Command Default

Command Modes
Command History

\section*{Usage Guidelines}
input Configures the VLAN ID of traffic being received by the device as a key field.
The VLAN ID is not configured as a key field.
Flow record configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.
The input keyword is used to specify the observation point that is used by the match datalink vlan command to create flows based on the unique VLAN IDs in the network traffic.

The following example configures the VLAN ID of traffic being received by the device as a key field for a flow record:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record) \# match datalink vlan input

```

\section*{match flow cts}

To configure CTS source group tag and destination group tag for a flow record, use thematch flow cts command in flow record configuration mode. To disable the group tag as key field for a flow record, use the no form of this command.
match flow cts \{source | destination\} group-tag no match flow cts \{source | destination\} group-tag

Syntax Description
\begin{tabular}{ll}
\hline cts destination group-tag & Configures the CTS destination field group as a key field. \\
\hline cts source group-tag & Configures the CTS source field group as a key field.
\end{tabular}

\section*{Command Default}
Command Modes

\section*{Command History}

Usage Guidelines

Flexible NetFlow flow record configuration (config-flow-record)
Policy inline configuration (config-if-policy-inline)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \hline Cisco IOS XE Everest 16.5.1a & The command was introduced. \\
\hline
\end{tabular}

The CTS destination or source field group, flow direction and the flow sampler ID are not configured as key fields.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the source group-tag as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match flow cts source group-tag

```

\section*{match flow direction}

To configure the flow direction as key fields for a flow record, use the match flow direction command in flow record configuration mode. To disable the use of the flow direction as key fields for a flow record, use the no form of this command.
match flow direction
no match flow direction
\begin{tabular}{lll}
\(\overline{\text { Syntax Description }}\) & This command has no arguments or keywords. \\
\(\overline{\text { Command Default }}\) & & The flow direction is not configured as key fields. \\
\hline Command Modes & Flow record configuration \\
\hline Command History & Release &
\end{tabular}

\section*{Usage Guidelines}

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The match flow direction command captures the direction of the flow as a key field. This feature is most useful when a single flow monitor is configured for input and output flows. It can be used to find and eliminate flows that are being monitored twice, once on input and once on output. This command can help to match up pairs of flows in the exported data when the two flows are flowing in opposite directions.

The following example configures the direction the flow was monitored in as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record)\# match flow direction

```

\section*{match interface}

To configure the input and output interfaces as key fields for a flow record, use the match interface command in flow record configuration mode. To disable the use of the input and output interfaces as key fields for a flow record, use the no form of this command.
match interface \{input | output \} no match interface \(\{\) input \(\mid\) output \(\}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Syntax Description} & input & Configures the input interface as a key field. \\
\hline & output & Configures the output interface as a key field. \\
\hline Command Default & \multicolumn{2}{|l|}{The input and output interfaces are not configured as key fields.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Flow record configuration} \\
\hline Command History & Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the input interface as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match interface input

```

The following example configures the output interface as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match interface output

```

\section*{match ipv4}

To configure one or more of the IPv4 fields as a key field for a flow record, use the match ipv4 command in flow record configuration mode. To disable the use of one or more of the IPv4 fields as a key field for a flow record, use the no form of this command.
match ipv4 \{destination address | protocol | source address | tos | version\} no match ipv4 \{destination address | protocol | source address | tos | version\}

\section*{Syntax Description}
destination address Configures the IPv4 destination address as a key field. For more information see match ipv4 destination address.
\begin{tabular}{ll}
\hline protocol & Configures the IPv4 protocol as a key field. \\
\hline source address & \begin{tabular}{l}
Configures the IPv4 destination address as a key field. For more information see \\
match ipv4 source address.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline tos & Configures the IPv4 ToS as a key field. \\
\hline version & Configures the IP version from IPv4 header as a key field. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\hline Usage Guidelines
\end{tabular}

The use of one or more of the IPv4 fields as a key field for a user-defined flow record is not enabled.
Flow record configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the IPv4 protocol as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record)\# match ipv4 protocol

```

\section*{match ipv4 destination address}

To configure the IPv 4 destination address as a key field for a flow record, use the match ipv4 destination address command in flow record configuration mode. To disable the IPv4 destination address as a key field for a flow record, use the no form of this command.
match ipv4 destination address no match ipv4 destination address
\begin{tabular}{lll}
\(\overline{\text { Syntax Description }}\) & This command has no arguments or keywords. \\
\(\overline{\text { Command Default }}\) & & The IPv4 destination address is not configured as a key field. \\
\(\overline{\text { Command Modes }}\) & Flow record configuration \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & & Cisco IOS XE Everest 16.5.1a
\end{tabular}

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

To return this command to its default settings, use the no match ipv4 destination address or default match ipv4 destination address flow record configuration command.

The following example configures the \(\operatorname{IPv} 4\) destination address as a key field for a flow record:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match ipv4 destination address

```

\section*{match ipv4 source address}

To configure the \(\operatorname{IPv} 4\) source address as a key field for a flow record, use the match ipv4 source address command in flow record configuration mode. To disable the use of the IPv4 source address as a key field for a flow record, use the no form of this command.
match ipv4 source address
no match ipv4 source address
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\hline \\
\hline Usage Guidelines
\end{tabular}

This command has no arguments or keywords.
The \(\operatorname{IPv} 4\) source address is not configured as a key field.
Flow record configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

To return this command to its default settings, use the no match ipv4 source address or default match ipv4 source address flow record configuration command.

The following example configures the IPv4 source address as a key field:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record)\# match ipv4 source address

```

\section*{match ipv4 ttl}

To configure the IPv4 time-to-live (TTL) field as a key field for a flow record, use the match ipv4 ttl command in flow record configuration mode. To disable the use of the IPv4 TTL field as a key field for a flow record, use the no form of this command.
match ipv4 ttl
no match ipv4 ttl
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\begin{tabular}{lll}
\hline \begin{tabular}{lll}
Command Default & & The IPv4 time-to-live (TTL) field is not configured as a key field. \\
\hline Command Modes & Flow record configuration \\
\hline Command History & & Release
\end{tabular} \\
& Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match ipv4 ttl command.

The following example configures IPv4 TTL as a key field:
Device (config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match ipv4 ttl

\section*{match ipv6}

To configure one or more of the IPv6 fields as a key field for a flow record, use the match ipv6 command in flow record configuration mode. To disable the use of one or more of the IPv6 fields as a key field for a flow record, use the no form of this command.
match ipv6 \{destination address | protocol | source address | traffic-class | version\} no match ipv6 \{destination address | protocol | source address | traffic-class | version\}

\section*{Syntax Description}
destination address
\begin{tabular}{ll}
\hline protocol & Configures the IPv6 protocol as a key field. \\
\hline source address & \begin{tabular}{l}
Configures the IPv4 destination address as a key field. For more \\
information see match ipv6 source address.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Default & The IPv6 fields are not configured as a key field. \\
\hline Command Modes & Flow record configuration \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the IPv6 protocol field as a key field:
Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match ipv6 protocol

\section*{match ipv6 destination address}

To configure the IPv6 destination address as a key field for a flow record, use the match ipv6 destination address command in flow record configuration mode. To disable the IPv6 destination address as a key field for a flow record, use the no form of this command.
match ipv6 destination address
no match ipv6 destination address

\section*{Syntax Description}

Command Default
Command Modes
Command History

Usage Guidelines
This command has no arguments or keywords.
The IPv6 destination address is not configured as a key field.
Flow record configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

To return this command to its default settings, use the no match ipv6 destination address or default match ipv6 destination address flow record configuration command.

The following example configures the IPv6 destination address as a key field:
```

Device(config)\# flow record FLOW-RECORD-1
Device(config-flow-record) \# match ipv6 destination address

```

\section*{match ipv6 hop-limit}

To configure the IPv6 hop limit as a key field for a flow record, use the match ipv6 hop-limit command in flow record configuration mode. To disable the use of a section of an IPv6 packet as a key field for a flow record, use the no form of this command.
match ipv6 hop-limit
no match ipv6 hop-limit
\begin{tabular}{l}
\(\overline{\text { Syntax Description }}\) \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\hline Usage Guidelines
\end{tabular}

This command has no arguments or keywords.
The use of the IPv 6 hop limit as a key field for a user-defined flow record is not enabled by default.
Flow record configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the hop limit of the packets in the flow as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match ipv6 hop-limit

```

\section*{match ipv6 source address}

To configure the IPv6 source address as a key field for a flow record, use the match ipv6 source address command in flow record configuration mode. To disable the use of the IPv6 source address as a key field for a flow record, use the no form of this command.
match ipv6 source address no match ipv6 source address
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\begin{tabular}{lll}
\hline \begin{tabular}{ll}
Command Default & \\
& \\
\hline Command Modes & Flow record configuration source address is not configured as a key field. \\
\hline Command History & \\
& Release \\
& Cisco IOS XE Everest 16.5.1a
\end{tabular} & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

To return this command to its default settings, use the no match ipv6 source address or default match ipv6 source address flow record configuration command.

The following example configures a IPv6 source address as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match ipv6 source address

```

\section*{map platform-type}

To set the parameter map attribute filter criteria to platform type, use the map platform-type command in parameter-map filter mode. To remove this criteria, use the no form of this command.
map-number map platform-type \(\{\) \{eq | not-eq | regex \(\}\) platform-type \(\}\) no map-number map platform-type \(\{\{\mathbf{e q} \mid\) not-eq \(\mid\) regex \(\}\) platform-type \(\}\)

\section*{Syntax Description}
\begin{tabular}{ll}
\hline map-number & Parameter map number. \\
\hline eq & Specifies that the filter type name is equal to the platform type name. \\
\hline not-eq & Specifies that the filter type name is not equal to the platform type name. \\
\hline regex & Specifies that the filter type name is a regular expression. \\
\hline platform-type & Platform type for the parameter map attribute filter criteria. \\
\hline
\end{tabular}
\(\overline{\overline{\text { Command Default }}} \overline{\overline{\text { Command Modes }}}\)

No default behavior or values.
Parameter-map filter (config-parameter-map-filter)

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.12.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following example shows how to set the parameter map attribute filter criteria to platform type:
```

Device> enable
Device\# configure terminal
Device(config)\# parameter-map type subscriber attribute-to-service Aironet-Policy-para
Device(config-parameter-map-filter)\# 10 map platform-type eq C9xxx

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l}
parameter-map type subscriber \\
attribute-to-service
\end{tabular} & \begin{tabular}{l}
Configures a subscriber parameter map and enters \\
parameter-map filter configuration mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{match transport}

To configure one or more of the transport fields as a key field for a flow record, use the match transport command in flow record configuration mode. To disable the use of one or more of the transport fields as a key field for a flow record, use the no form of this command.

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
\begin{tabular}{ll}
\hline destination-port & Configures the transport destination port as a key field. \\
\hline source-port & Configures the transport source port as a key field. \\
\hline The transport fields are not configured as a key field. \\
Flow record configuration \\
\hline Release & \\
\hline
\end{tabular}

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the destination port as a key field:
```

(config)\# flow record FLOW-RECORD-1
(config-flow-record) \# match transport destination-port

```

The following example configures the source port as a key field:
```

(config)\# flow record FLOW-RECORD-1
(config-flow-record) \# match transport source-port

```

\section*{match transport icmp ipv4}

To configure the ICMP IPv4 type field and the code field as key fields for a flow record, use the match transport icmp ipv4 command in flow record configuration mode. To disable the use of the ICMP IPv4 type field and code field as key fields for a flow record, use the no form of this command.
match transport icmp ipv4 \{code |type\} no match transport icmp ipv4 \{code | type\}
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\hline Usage Guidelines
\end{tabular}
code Configures the IPv4 ICMP code as a key field.
type Configures the IPv4 ICMP type as a key field.

The ICMP IPv4 type field and the code field are not configured as key fields.
Flow record configuration
Release \(\quad\) Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the IPv4 ICMP code field as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match transport icmp ipv4 code

```

The following example configures the IPv4 ICMP type field as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match transport icmp ipv4 type

```

\section*{match transport icmp ipv6}

To configure the ICMP IPv6 type field and the code field as key fields for a flow record, use the match transport icmp ipv6 command in flow record configuration mode. To disable the use of the ICMP IPv6 type field and code field as key fields for a flow record, use the no form of this command.
match transport icmp ipv6 \{code |type\} no match transport icmp ipv6 \{code | type\}

Syntax Description

Command Default
Command Modes

\section*{Command History}

Usage Guidelines
code Configures the IPv6 ICMP code as a key field.
type Configures the IPv6 ICMP type as a key field.

The ICMP IPv6 type field and the code field are not configured as key fields.
Flow record configuration
Release \(\quad\) Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the match command.

The following example configures the IPv6 ICMP code field as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record) \# match transport icmp ipv6 code

```

The following example configures the IPv6 ICMP type field as a key field:
```

Device(config) \# flow record FLOW-RECORD-1
Device(config-flow-record)\# match transport icmp ipv6 type

```

\section*{match platform-type}

To evaluate control classes based on the platform type, use the match platform-type command in control class-map filter mode. To remove this condition, use the no form of this command.
match platform-type platform-name
no match platform-type platform-name
Syntax Description
\begin{tabular}{llll}
\(\overline{\text { Command Default }}\) & & \\
\(\overline{\text { Command Modes }}\) & & Control class-map filter (config-filter-control-classmap) & \\
\cline { 1 - 1 } Command History & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Gibraltar 16.12.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

The following example shows how to set a class map filter to match a platform type:
```

Device> enable
Device\# configure terminal
Device(config) \# class-map type control subscriber match-all DOT1X_NO_AGENT
Device(config-filter-control-classmap) \# match platform-type c9xxx

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline class-map type control subscriber & Creates a control class and enters control class-map filter mode. \\
\hline
\end{tabular}

\section*{mode random 1 out-of}

To enable random sampling and to specify the packet interval for a Flexible NetFlow sampler, use the mode random 1 out-of command in sampler configuration mode. To remove the packet interval information for a Flexible NetFlow sampler, use the no form of this command.
mode random 1 out-of window-size no mode
\begin{tabular}{|c|c|}
\hline Syntax Description & window-size Specifies the window size from which to select packets. The range is 2 to 1024. \\
\hline Command Default & The mode and the packet interval for a sampler are not configured. \\
\hline Command Modes & Sampler configuration \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline Usage Guidelines & A total of four unique samplers are supported on the device. Packets are chosen in a manner that should eliminate any bias from traffic patterns and counter any attempt by users to avoid monitoring. \\
\hline
\end{tabular}

Note The deterministic keyword is not supported, even though it is visible in the command-line help string.

\footnotetext{
Examples
The following example enables random sampling with a window size of 1000 :
Device(config) \# sampler SAMPLER-1
Device(config-sampler) \# mode random 1 out-of 1000
}

\section*{monitor capture (interface/control plane)}

To configure monitor capture points specifying an attachment point and the packet flow direction or add more attachment points to a capture point, use the monitor capture command in privileged EXEC mode. To disable the monitor capture with the specified attachment point and the packet flow direction or disable one of multiple attachment points on a capture point, use the no form of this command.
monitor capture \{capture-name \} \{interface interface-type interface-id | control-plane \} \{in | out | both \} no monitor capture \{capture-name \} \{interface interface-type interface-id | control-plane \} in | out | both \}

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
capture-name The name of the capture to be defined.
interface interface-type Specifies an interface with interface-type and interface-id as an attachment
interface-id
point. The arguments have these meanings:
- GigabitEthernet interface-id-A Gigabit Ethernet IEEE 802.3z interface.
- vlan vlan-id—A VLAN. The range for vlan-id is 1 to 4095.
\begin{tabular}{ll}
\hline control-plane & Specifies the control plane as an attachment point. \\
\hline in | out | both & Specifies the traffic direction to be captured. \\
\hline
\end{tabular}

A Wireshark capture is not configured.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Once an attachment point has been associated with a capture point using this command, the only way to change its direction is to remove the attachment point using the no form of the command and reattach the attachment point with the new direction. An attachment point's direction cannot be overridden.

If an attachment point is removed from a capture point and only one attachment point is associated with it, the capture point is effectively deleted.
Multiple attachment points can be associated with a capture point by re-running this command with another attachment point. An example is provided below.
Packets captured in the output direction of an interface might not reflect the changes made by switch rewrite (includes TTL, VLAN tag, CoS, checksum, MAC addresses, DSCP, precedent, UP, etc.).

No specific order applies when defining a capture point; you can define capture point parameters in any order. The Wireshark CLI allows as many parameters as possible on a single line. This limits the number of commands required to define a capture point.

Neither VRFs, management ports, nor private VLANs can be used as attachment points.

Wireshark cannot capture packets on a destination SPAN port.
When a VLAN is used as a Wireshark attachment point, packets are captured in the input direction only.

\section*{Examples}

To define a capture point using a physical interface as an attachment point:
```

Device\# monitor capture mycap interface GigabitEthernet1/0/1 in
Device\# monitor capture mycap match ipv4 any any

```

Note The second command defines the core filter for the capture point. This is required for a functioning capture point.

To define a capture point with multiple attachment points:
```

Device\# monitor capture mycap interface GigabitEthernet1/0/1 in
Device\# monitor capture mycap match ipv4 any any
Device\# monitor capture mycap control-plane in
Device\# show monitor capture mycap parameter
monitor capture mycap interface GigabitEthernet1/0/1 in
monitor capture mycap control-plane in

```

To remove an attachment point from a capture point defined with multiple attachment points:
```

Device\# show monitor capture mycap parameter
monitor capture mycap interface GigabitEthernet1/0/1 in
monitor capture mycap control-plane in
Device\# no monitor capture mycap control-plane
Device\# show monitor capture mycap parameter
monitor capture mycap interface GigabitEthernet1/0/1 in

```

\section*{monitor capture buffer}

To configure the buffer for monitor capture (WireShark), use the monitor capture buffer command in privileged EXEC mode. To disable the monitor capture buffer or change the buffer back to a default linear buffer from a circular buffer, use the no form of this command.
monitor capture \{capture-name\} buffer \{circular [size buffer-size] | size buffer-size \} no monitor capture \{capture-name\} buffer [circular]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline capture-name & The name of the capture whose buffer is to be configured. \\
\hline circular & \begin{tabular}{l}
Specifies that the buffer is of a circular type. The circular type of buffer continues to capture \\
data, even after the buffer is consumed, by overwriting the data captured previously.
\end{tabular}
\end{tabular}
size buffer-size (Optional) Specifies the size of the buffer. The range is from 1 MB to 100 MB .
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History
A linear buffer is configured.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

When you first configure a WireShark capture, a circular buffer of a small size is suggested.

\section*{Example}

To configure a circular buffer with a size of 1 MB :

\footnotetext{
Device\# monitor capture mycap buffer circular size 1
}

\section*{monitor capture clear}

To clears the monitor capture (WireShark) buffer, use the monitor capture clear command in privileged EXEC mode.
monitor capture \(\{\) capture-name \(\}\) clear

Syntax Description

Command Default
Command Modes
Command History
capture-name The name of the capture whose buffer is to be cleared.

The buffer content is not cleared.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines Use the monitor capture clear command either during capture or after the capture has stopped either because one or more end conditions has been met, or you entered the monitor capture stop command. If you enter the monitor capture clear command after the capture has stopped, the monitor capture export command that is used to store the contents of the captured packets in a file will have no impact because the buffer has no captured packets.

If you have more than one capture that is storing packets in a buffer, clear the buffer before starting a new capture to avoid memory loss.

\section*{Example}

To clear the buffer contents for capture mycap:
```

Device\# monitor capture mycap clear

```

\section*{monitor capture export}

To export a monitor capture (WireShark) to a file, use the monitor capture export command in privileged EXEC mode.
monitor capture \{capture-name\} export file-location : file-name

\section*{Syntax Description}
capture-name The name of the capture to be exported.
file-location: file-name (Optional) Specifies the location and file name of the capture storage file.
Acceptable values for file-location :
- flash-On-board flash storage
- - USB drive

\section*{Usage Guidelines}

Use the monitor capture export command only when the storage destination is a capture buffer. The file may be stored either remotely or locally. Use this command either during capture or after the packet capture has stopped. The packet capture is stopped when one or more end conditions have been met or you entered the monitor capture stop command.
When WireShark is used on switches in a stack, packet captures can be stored only on the devices specified for file-location above that are connected to the active switch. Example: flash1 is connected to the active switch. flash2 is connected to the secondary switch. Only flash1 can be used to store packet captures.

Note Attempts to store packet captures on unsupported devices or devices not connected to the active switch will probably result in errors.

\section*{Example}

To export the capture buffer contents to mycap.pcap on a flash drive:

\section*{monitor capture file}

To configure monitor capture (WireShark) storage file attributes, use the monitor capture file command in privileged EXEC mode. To remove a storage file attribute, use the no form of this command.
monitor capture \{capture-name\} file\{[buffer-size temp-buffer-size] [location file-location : file-name] [ring number-of-ring-files] [size total-size]\}
no monitor capture \{capture-name \} file \{ [buffer-size] [location] [ring] [size] \}

Syntax Description
\begin{tabular}{ll}
\hline capture-name & The name of the capture to be modified. \\
\hline buffer-size temp-buffer-size & \begin{tabular}{l}
(Optional) Specifies the size of the temporary buffer. The range for \\
temp-buffer-size is 1 to 100 MB. This is specified to reduce packet loss.
\end{tabular} \\
\hline location file-location : file-name & (Optional) Specifies the location and file name of the capture storage \\
& file. Acceptable values for file-location: \\
& • flash-On-board flash storage \\
& •- USB drive
\end{tabular}
ring number-of-ring-files
(Optional) Specifies that the capture is to be stored in a circular file chain and the number of files in the file ring.
size total-size (Optional) Specifies the total size of the capture files.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use the monitor capture file command only when the storage destination is a file. The file may be stored either remotely or locally. Use this command after the packet capture has stopped. The packet capture is stopped when one or more end conditions have been met or you entered the monitor capture stop command.
When WireShark is used on switches in a stack, packet captures can be stored only on the devices specified for file-location above that are connected to the active switch. Example: flash1 is connected to the active switch. flash2 is connected to the secondary switch. Only flash1 can be used to store packet captures.

Note Attempts to store packet captures on unsupported devices or devices not connected to the active switch will probably result in errors.

\section*{Example}

To specify that the storage file name is mycap.pcap, stored on a flash drive:
Device\# monitor capture mycap file location flash:mycap.pcap

\section*{monitor capture limit}

To configure capture limits, use the monitor capture limit command in privileged EXEC mode. To remove the capture limits, use the no form of this command.
monitor capture \{capture-name\} limit \{[duration seconds] [packet-length size] [packets num] \} no monitor capture \{capture-name\} limit [duration] [packet-length] [packets]

Syntax Description
capture-name The name of the capture to be assigned capture limits.
duration seconds (Optional) Specifies the duration of the capture, in seconds. The range is from 1 to 1000000.
packet-length size (Optional) Specifies the packet length, in bytes. If the actual packet is longer than the specified length, only the first set of bytes whose number is denoted by the bytes argument is stored.
packets num (Optional) Specifies the number of packets to be processed for capture.
\begin{tabular}{l}
\hline\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Capture limits are not configured.
Privileged EXEC
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Example}

To configure a session limit of 60 seconds and a packet segment length of 400 bytes:
Device\# monitor capture mycap limit duration 60 packet-len 400

\section*{monitor capture match}

To define an explicit inline core filter for a monitor (Wireshark) capture, use the monitor capture match command in privileged EXEC mode. To remove this filter, use the no form of this command.
monitor capture \{capture-name\} match \{any | mac mac-match-string | ipv4 \{any | host | protocol \(\}\{\) any | host \(\} \mid\) ipv6 \(\{\) any | host | protocol \(\}\{\) any | host \(\}\}\) no monitor capture \{capture-name\} match
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline capture-name & The name of the capture to be assigned a core filter. \\
\hline any & Specifies all packets. \\
\hline mac mac-match-string & Specifies a Layer 2 packet. \\
\hline ipv4 & Specifies IPv4 packets. \\
\hline host & Specifies the host. \\
\hline protocol & Specifies the protocol. \\
\hline ipv6 & Specifies IPv6 packets. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

\section*{Command History}

A core filter is not configured.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

To define a capture point and the core filter for the capture point that matches to any IP version 4 packets on the source or destination:
```

Device\# monitor capture mycap interface GigabitEthernet1/0/1 in
Device\# monitor capture mycap match ipv4 any any

```

\section*{monitor capture pktlen-range}

To specify a range of packet lengths for packet capture, use the monitor capture pktlen-range command in the EXEC configuration mode. To remove the packet length range filter, use the no form of this command
monitor capture capture-name interface interface-id \{in |out|both \} match pktlen-range [max packet-length-in bytes] [min packet-length-in bytes]
no monitor capture capture-name interface interface-id \{in |out | both \} match pktlen-range [max packet-length-in bytes] [min packet-length-in bytes]

\section*{Syntax Description}
packet-length-in bytes Defines the length of the packet to be captured.The range is from 1-9216.

Command Default The default action is to have no packet length range for packet capture.
Command Modes

Global configuration mode.

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & \begin{tabular}{l}
The command was \\
introduced.
\end{tabular} \\
\hline
\end{tabular}

This example shows how to define a range of packet lengths for packet capture. In this example the maximum length of packet is set to 100 bytes and the minimum length of packet is set to 50 bytes.

Device (config) \#mon cap cap1 int FortyGigabitEthernet 1/0/1 in match pktlen-range max 100 \(\min 50\)

\section*{monitor capture start}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
To start the capture of packet data at a traffic trace point into a buffer, use the monitor capture start command in privileged EXEC mode. \\
monitor capture \{capture-name\} start
\end{tabular} \\
\hline Syntax Description & capture-name The name of the capture to be started. \\
\hline Command Default & The buffer content is not cleared. \\
\hline Command Modes & Privileged EXEC \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline Usage Guidelines & Use the monitor capture clear command to enable the packet data capture after the capture point is defined. To stop the capture of packet data, use the monitor capture stop command. \\
\hline & Ensure that system resources such as CPU and memory are available before starting a capture. \\
\hline & Example \\
\hline & To start capturing buffer contents: \\
\hline & Device\# monitor capture mycap start \\
\hline
\end{tabular}

\section*{monitor capture stop}

To stop the capture of packet data at a traffic trace point, use the monitor capture stop command in privileged EXEC mode.
monitor capture \{capture-name\} stop

Syntax Description

Command Default
Command Modes
Command History
capture-name The name of the capture to be stopped.

The packet data capture is ongoing.
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines Use the monitor capture stop command to stop the capture of packet data that you started using the monitor capture start command. You can configure two types of capture buffers: linear and circular. When the linear buffer is full, data capture stops automatically. When the circular buffer is full, data capture starts from the beginning and the data is overwritten.

\section*{Example}

To stop capturing buffer contents:
```

Device\# monitor capture mycap stop

```

\section*{monitor session}

To create a new Ethernet Switched Port Analyzer (SPAN) or a Remote Switched Port Analyzer (RSPAN) or Encapsulated Remote Switched Port Analyzer (ERSPAN) session configuration for analyzing traffic between ports or add to an existing session configuration, use the monitor session global configuration command. To clear sessions, use the no form of this command.
monitor session session-number \(\{\) destination \(\mid\) filter \(\mid\) source \(\mid\) type \(\{\) erspan-destination |
erspan-source \(\}\}\)

no monitor session

\(\mid\) | erspan-source \(\}]\)

\section*{Syntax Description}
\begin{tabular}{ll}
\hline session-number & The session number identified with the sessic \\
\hline all & Clears all monitor sessions. \\
\hline local & Clears all local monitor sessions. \\
\hline range session-range & Clears monitor sessions in the specified rang \\
\hline remote & Clears all remote monitor sessions. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Command Default & No monitor sessions are configured. & \\
\hline \begin{tabular}{lll}
Command Modes & Global configuration & Modification \\
\hline Command History & Release & This command was introduced. \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & \begin{tabular}{l}
The type \{erspan-destination । \\
erspan-source \} keywords were \\
introduced.
\end{tabular} \\
\cline { 2 - 3 } & Cisco IOS XE Gibraltar 16.11.1 &
\end{tabular}
\end{tabular}

\section*{Usage Guidelines}

You can set a combined maximum of two local SPAN sessions and RSPAN source sessions. You can have a total of 66 SPAN, RSPAN, and ERSPAN sessions on a switch or switch stack.

You can verify your settings by entering the show monitor privileged EXEC command. You can display SPAN, RSPAN, FSPAN, FRSPAN, and ERSPAN configuration on the switch by entering the show running-config privileged EXEC command. SPAN information appears near the end of the output.

\section*{Example}

This example shows how to create a local SPAN session 1 to monitor traffic on Po13 (an EtherChannel port) and limit SPAN traffic in the session only to VLAN 1281. Egress traffic replicates the source; ingress forwarding is not enabled.
```

Device(config) \# monitor session 1 source interface Po13
Device(config) \# monitor session 1 filter vlan }128
Device(config)\# monitor session 1 destination interface GigabitEthernet2/0/36 encapsulation

```
```

replicate
Device(config)\# monitor session 1 destination interface GigabitEthernet3/0/36 encapsulation
replicate

```

The following is the output of a show monitor session all command after completing these setup instructions:
```

Device\# show monitor session all
Session 1
---------
Type : Local Session
Source Ports
Both
Destination Ports: Gi2/0/36,Gi3/0/36
Encapsulation : Replicate
Ingress : Disabled
Filter VLANs : }128

```

\section*{monitor session destination}

To start a new Switched Port Analyzer (SPAN) session or Remote SPAN (RSPAN) destination session, to enable ingress traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance), and to add or delete interfaces or VLANs to or from an existing SPAN or RSPAN session, use the monitor session destination global configuration command. To remove the SPAN or RSPAN session or to remove destination interfaces from the SPAN or RSPAN session, use the no form of this command.

\section*{Syntax Description}
\begin{tabular}{|c|c|}
\hline session-number & The session number identified with the SPAD \\
\hline interface interface-id & Specifies the destination or source interface physical ports (including type, stack member channel is also a valid interface type, and the \\
\hline , & (Optional) Specifies a series of interfaces or from a previous range. Enter a space before \\
\hline - & (Optional) Specifies a range of interfaces or \\
\hline encapsulation replicate & \begin{tabular}{l}
(Optional) Specifies that the destination interfa \\
If not selected, the default is to send packets
\end{tabular} \\
\hline & These keywords are valid only for local SPA original VLAN ID; therefore, packets are aly ignored with the no form of the command. \\
\hline encapsulation dot1q & (Optional) Specifies that the destination interf IEEE 802.1Q encapsulation. \\
\hline & These keywords are valid only for local SPA original VLAN ID; therefore, packets are aly ignored with the no form of the command. \\
\hline ingress & Enables ingress traffic forwarding. \\
\hline \(\operatorname{dot} 1 \mathrm{q}\) & (Optional) Accepts incoming packets with IE the default VLAN. \\
\hline untagged & (Optional) Accepts incoming packets with un default VLAN. \\
\hline isl & Specifies ingress forwarding using ISL encap \\
\hline \multirow[t]{2}{*}{remote} & Specifies the remote VLAN for an RSPAN so 1006 to 4094. \\
\hline & The RSPAN VLAN cannot be VLAN 1 (the for Token Ring and FDDI VLANs). \\
\hline
\end{tabular}
vlan vlan-id
Sets the default VLAN for ingress traffic

Command Default
No monitor sessions are configured.
If encapsulation replicate is not specified on a local SPAN destination port, packets are sent in native form with no encapsulation tag.

Ingress forwarding is disabled on destination ports.
You can specify all, local, range session-range, or remote with the no monitor session command to clear all SPAN and RSPAN, all local SPAN, a range, or all RSPAN sessions.

\section*{Command Modes}

Global configuration

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Usage Guidelines
You can set a combined maximum of 8 local SPAN sessions and RSPAN source sessions. You can have a total of 66 SPAN and RSPAN sessions on a switch or switch stack.

A SPAN or RSPAN destination must be a physical port.
You can have a maximum of 64 destination ports on a switch or a switch stack.
Each session can include multiple ingress or egress source ports or VLANs, but you cannot combine source ports and source VLANs in a single session. Each session can include multiple destination ports.
When you use VLAN-based SPAN (VSPAN) to analyze network traffic in a VLAN or set of VLANs, all active ports in the source VLANs become source ports for the SPAN or RSPAN session. Trunk ports are included as source ports for VSPAN, and only packets with the monitored VLAN ID are sent to the destination port.

You can monitor traffic on a single port or VLAN or on a series or range of ports or VLANs. You select a series or range of interfaces or VLANs by using the [, | -] options.

If you specify a series of VLANs or interfaces, you must enter a space before and after the comma. If you specify a range of VLANs or interfaces, you must enter a space before and after the hyphen (-).
EtherChannel ports can be configured as SPAN or RSPAN destination ports. A physical port that is a member of an EtherChannel group can be used as a destination port, but it cannot participate in the EtherChannel group while it is as a SPAN destination.

A port used as a destination port cannot be a SPAN or RSPAN source, nor can a port be a destination port for more than one session at a time.

You can enable IEEE 802.1x authentication on a port that is a SPAN or RSPAN destination port; however, IEEE 802.1x authentication is disabled until the port is removed as a SPAN destination. If IEEE 802.1x authentication is not available on the port, the switch returns an error message. You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.

Destination ports can be configured to function in these ways:
- When you enter monitor session session_number destination interface interface-id with no other keywords, egress encapsulation is untagged, and ingress forwarding is not enabled.
- When you enter monitor session session_number destination interface interface-id ingress, egress encapsulation is untagged; ingress encapsulation depends on the keywords that follow- \(\operatorname{dot} \mathbf{1 q}\) or untagged.
- When you enter monitor session session_number destination interface interface-id encapsulation replicate with no other keywords, egress encapsulation replicates the source interface encapsulation; ingress forwarding is not enabled. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)
- When you enter monitor session session_number destination interface interface-id encapsulation replicate ingress, egress encapsulation replicates the source interface encapsulation; ingress encapsulation depends on the keywords that follow-dot1q or untagged. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)

You can verify your settings by entering the show monitor privileged EXEC command. You can display SPAN, RSPAN, FSPAN, and FRSPAN configuration on the switch by entering the show running-config privileged EXEC command. SPAN information appears near the end of the output.

\section*{Examples}

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2 :
```

Device(config)\# monitor session 1 source interface gigabitethernet1/0/1 both
Device(config)\# monitor session 1 destination interface gigabitethernet1/0/2

```

This example shows how to delete a destination port from an existing local SPAN session:

Device(config) \# no monitor session 2 destination interface gigabitethernet1/0/2

This example shows how to configure RSPAN source session 1 to monitor a source interface and to configure the destination RSPAN VLAN 900:
```

Device(config)\# monitor session 1 source interface gigabitethernet1/0/1
Device(config)\# monitor session 1 destination remote vlan 900
Device(config)\# end

```

This example shows how to configure an RSPAN destination session 10 in the switch receiving the monitored traffic:
```

Device(config)\# monitor session 10 source remote vlan 900
Device(config) \# monitor session 10 destination interface gigabitethernet1/0/2

```

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that supports IEEE 802.1Q encapsulation. Egress traffic replicates the source; ingress traffic uses IEEE 802.1Q encapsulation.

Device(config) \# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation
```

dot1q ingress dot1q vlan 5

```

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that does not support encapsulation. Egress traffic and ingress traffic are untagged.

Device(config) \# monitor session 2 destination interface gigabitethernet1/0/2 ingress untagged vlan 5

\section*{monitor session filter}

To start a new flow-based SPAN (FSPAN) session or flow-based RSPAN (FRSPAN) source or destination session, or to limit (filter) SPAN source traffic to specific VLANs, use the monitor session filter global configuration command. To remove filters from the SPAN or RSPAN session, use the no form of this command.
monitor session session-number filter \{vlan vlan-id [, | -] \}
no monitor session session-number filter \{vlan vlan-id [, | -] \}

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline session-number & The session number identified with the SPAN or RSPAN ses \\
\hline vlan vlan-id & Specifies a list of VLANs as filters on trunk source ports to li \\
& VLANs. The vlan-id range is 1 to 4094. \\
\hline, & (Optional) Specifies a series of VLANs, or separates a range \\
\hline- & Enter a space before and after the comma. \\
\hline & (Optional) Specifies a range of VLANs. Enter a space befor
\end{tabular}

No monitor sessions are configured.
Global configuration

\section*{Release}

\section*{Modification}

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

You can set a combined maximum of two local SPAN sessions and RSPAN source sessions. You can have a total of 66 SPAN and RSPAN sessions on a switch or switch stack.
You can monitor traffic on a single VLAN or on a series or range of ports or VLANs. You select a series or range of VLANs by using the [, \(\mid-]\) options.

If you specify a series of VLANs, you must enter a space before and after the comma. If you specify a range of VLANs, you must enter a space before and after the hyphen (-).

VLAN filtering refers to analyzing network traffic on a selected set of VLANs on trunk source ports. By default, all VLANs are monitored on trunk source ports. You can use the monitor session session_number filter vlan vlan-id command to limit SPAN traffic on trunk source ports to only the specified VLANs.
VLAN monitoring and VLAN filtering are mutually exclusive. If a VLAN is a source, VLAN filtering cannot be enabled. If VLAN filtering is configured, a VLAN cannot become a source.
You can verify your settings by entering the show monitor privileged EXEC command. You can display SPAN, RSPAN, FSPAN, and FRSPAN configuration on the switch by entering the show running-config privileged EXEC command. SPAN information appears near the end of the output.

\section*{Examples}

This example shows how to limit SPAN traffic in an existing session only to specific VLANs:

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2 and to filter \(\operatorname{IPv} 4\) traffic using access list number 122 in an FSPAN session:
```

Device(config)\# monitor session 1 source interface gigabitethernet1/0/1 both
Device(config)\# monitor session 1 destination interface gigabitethernet1/0/2
Device(config) \# monitor session 1 filter ip access-group 122

```

\section*{monitor session source}

To start a new Switched Port Analyzer (SPAN) session or Remote SPAN (RSPAN) source session, or to add or delete interfaces or VLANs to or from an existing SPAN or RSPAN session, use the monitor session source global configuration command. To remove the SPAN or RSPAN session or to remove source interfaces from the SPAN or RSPAN session, use the no form of this command.

\section*{Syntax Description}

\section*{Command Default}

No monitor sessions are configured.
On a source interface, the default is to monitor both received and transmitted traffic.
On a trunk interface used as a source port, all VLANs are monitored.

\section*{Command Modes}
\begin{tabular}{ll}
\hline session_number & \begin{tabular}{l}
The session number identified with the SPAN or RSPAN session. The range \\
is 1 to 66.
\end{tabular} \\
\hline interface interface-id & \begin{tabular}{l}
Specifies the source interface for a SPAN or RSPAN session. Valid \\
interfaces are physical ports (including type, stack member, module, and \\
port number). For source interface, port channel is also a valid interface \\
type, and the valid range is 1 to 48.
\end{tabular} \\
\hline, & \begin{tabular}{l}
(Optional) Specifies a series of interfaces or VLANs, or separates a range \\
of interfaces or VLANs from a previous range. Enter a space before and \\
after the comma.
\end{tabular} \\
\hline both \(|\mathbf{r x}| \mathbf{t x}\) & \begin{tabular}{l}
(Optional) Specifies a range of interfaces or VLANs. Enter a space before \\
and after the hyphen.
\end{tabular} \\
\hline (Optional) Specifies the traffic direction to monitor. If you do not specify \\
a traffic direction, the source interface sends both transmitted and received \\
traffic.
\end{tabular} \begin{tabular}{l}
(Optional) Specifies the remote VLAN for an RSPAN source or destination \\
session. The range is 2 to 1001 and 1006 to 4094.
\end{tabular} traffic.

Global configuration

\section*{Command History}
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a &
\end{tabular}

Usage Guidelines
Traffic that enters or leaves source ports or source VLANs can be monitored by using SPAN or RSPAN. Traffic routed to source ports or source VLANs cannot be monitored.

You can set a combined maximum of two local SPAN sessions and RSPAN source sessions. You can have a total of 66 SPAN and RSPAN sessions on a switch or switch stack.

A source can be a physical port, a port channel, or a VLAN.
Each session can include multiple ingress or egress source ports or VLANs, but you cannot combine source ports and source VLANs in a single session. Each session can include multiple destination ports.
When you use VLAN-based SPAN (VSPAN) to analyze network traffic in a VLAN or set of VLANs, all active ports in the source VLANs become source ports for the SPAN or RSPAN session. Trunk ports are included as source ports for VSPAN, and only packets with the monitored VLAN ID are sent to the destination port.
You can monitor traffic on a single port or VLAN or on a series or range of ports or VLANs. You select a series or range of interfaces or VLANs by using the \([, \mid-]\) options.

If you specify a series of VLANs or interfaces, you must enter a space before and after the comma. If you specify a range of VLANs or interfaces, you must enter a space before and after the hyphen (-).

You can monitor individual ports while they participate in an EtherChannel, or you can monitor the entire EtherChannel bundle by specifying the port-channel number as the RSPAN source interface.

A port used as a destination port cannot be a SPAN or RSPAN source, nor can a port be a destination port for more than one session at a time.

You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.
You can verify your settings by entering the show monitor privileged EXEC command. You can display SPAN, RSPAN, FSPAN, and FRSPAN configuration on the switch by entering the show running-config privileged EXEC command. SPAN information appears near the end of the output.

\section*{Examples}

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2 :

Switch (config) \# monitor session 1 source interface gigabitethernet1/0/1 both
Switch (config) \# monitor session 1 destination interface gigabitethernet1/0/2

This example shows how to configure RSPAN source session 1 to monitor multiple source interfaces and to configure the destination RSPAN VLAN 900.
```

Switch(config)\# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)\# monitor session 1 source interface port-channel 2 tx
Switch(config)\# monitor session 1 destination remote vlan 900
Switch(config)\# end

```

\section*{monitor session type}

To configure a local Encapsulated Remote Switched Port Analyzer (ERSPAN) session, use the monitor session type command in global configuration mode. To remove the ERSPAN configuration, use the no form of this command.
monitor session span-session-number type \{erspan-destination | erspan-source\} no monitor session span-session-number type \{erspan-destination | erspan-source\}

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline span-session-number & Number of the local ERSPAN session. Valid values are from 1 to 66. \\
\hline
\end{tabular}
ERSPAN source or destination session is not configured.
Global configuration (config)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Cisco IOS XE Gibraltar 16.11.1 & The erspan-destination keyword was introduced. \\
\hline
\end{tabular}

The span-session-number and the session type cannot be changed once configured. Use the no form of this command to remove the session and then re-create the session with a new session ID or a new session type.
The ERSPAN source session destination IP address, which must be configured on an interface on the destination switch, is the source of traffic that an ERSPAN destination session sends to the destination ports. You can configure the same address in both the source and destination sessions with the ip address command in ERSPAN monitor destination session configuration mode.

A newly configured ERSPAN session will be in the shutdown state by default. The ERSPAN session remains inactive until the no shutdown command is configured along with other mandatory configurations such as source interface, ERSPAN ID, ERSPAN IP address, and so on.

The ERSPAN ID differentiates the ERSPAN traffic arriving at the same destination IP address from different ERSPAN source sessions.

The maximum local ERSPAN source session limit is 8 .

The following example shows how to configure an ERSPAN source session number:

Device (config) \# monitor session 55 type erspan-source
Device(config-mon-erspan-src) \#

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline monitor session type & \begin{tabular}{l}
Creates an ERSPAN source or destination session number or enters the \\
ERSPAN session configuration mode for the session.
\end{tabular} \\
\hline show capability feature monitor & Displays information about monitor features. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show monitor session & Displays information about the ERSPAN, SPAN, and RSPAN sessions. \\
\hline
\end{tabular}

To configure optional data parameters for a flow exporter for Flexible NetFlow, use the option command in flow exporter configuration mode. To remove optional data parameters for a flow exporter, use the no form of this command.
option \{exporter-stats | interface-table | sampler-table\} [\{timeout seconds \(\}\)] no option \(\{\) exporter-stats \(\mid\) interface-table \(\mid\) sampler-table\}

Syntax Description

\section*{Command Default}
Command Modes

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline exporter-stats & Configures the exporter statistics option for flow exporters. \\
\hline interface-table & Configures the interface table option for flow exporters. \\
\hline sampler-table & Configures the export sampler table option for flow exporters. \\
\hline timeout seconds & \begin{tabular}{l}
(Optional) Configures the option resend time in seconds for flow \\
exporters. The range is 1 to 86400. The default is 600.
\end{tabular} \\
\hline
\end{tabular}

The timeout is 600 seconds. All other optional data parameters are not configured.
Flow exporter configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

The option exporter-stats command causes the periodic sending of the exporter statistics, including the number of records, bytes, and packets sent. This command allows the collector to estimate packet loss for the export records it receives. The optional timeout alters the frequency at which the reports are sent.
The option interface-table command causes the periodic sending of an options table, which allows the collector to map the interface SNMP indexes provided in the flow records to interface names. The optional timeout can alter the frequency at which the reports are sent.
The option sampler-table command causes the periodic sending of an options table, which details the configuration of each sampler and allows the collector to map the sampler ID provided in any flow record to a configuration that it can use to scale up the flow statistics. The optional timeout can alter the frequency at which the reports are sent.

To return this command to its default settings, use the no option or default option flow exporter configuration command.

The following example shows how to enable the periodic sending of the sampler option table, which allows the collector to map the sampler ID to the sampler type and rate:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter) \# option sampler-table

```

The following example shows how to enable the periodic sending of the exporter statistics, including the number of records, bytes, and packets sent:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)\# option exporter-stats

```

The following example shows how to enable the periodic sending of an options table, which allows the collector to map the interface SNMP indexes provided in the flow records to interface names:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter) \# option interface-table

```

\section*{record}

To add a flow record for a Flexible NetFlow flow monitor, use the record command in flow monitor configuration mode. To remove a flow record for a Flexible NetFlow flow monitor, use the no form of this command.
record record-name no record

Syntax Description
record-name Name of a user-defined flow record that was previously configured.
\begin{tabular}{|c|c|}
\hline Command Default & A flow record is not configured. \\
\hline Command Modes & Flow monitor configuration \\
\hline \multirow[t]{2}{*}{Command History} & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines Each flow monitor requires a record to define the contents and layout of its cache entries. The flow monitor can use one of the wide range of predefined record formats, or advanced users may create their own record formats.

Note You must use the no ip flow monitor command to remove a flow monitor from all of the interfaces to which you have applied it before you can modify the parameters for the record command for the flow monitor.

\section*{Examples}

The following example configures the flow monitor to use FLOW-RECORD-1:
```

Device(config)\# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor) \# record FLOW-RECORD-1

```

\section*{show flow monitor etta-mon cache}

To display ETA monitor cache details, use the show flow monitor etta-mon cache command in privileged EXEC mode.
show flow monitor etta-mon cache
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Command Default
\end{tabular} & None & \\
\hline Command Modes & Privileged EXEC & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest & This command was introduced. \\
& 16.5 .1 a & \\
& &
\end{tabular}

\section*{Example:}

The following example shows how to display ETA flow monitor cache details:
```

Device>enable
Device\#configure terminal
Device\# show flow monitor etta-mon cache
Cache type: Normal (Platform cache)
Cache size: 10000
Current entries: 4
Flows added: 6
Flows aged: 2

- Inactive timeout ( }15\mathrm{ secs) 2
IPV4 DESTINATION ADDRESS: 15.15.15.35
IPV4 SOURCE ADDRESS: 72.163.128.140
IP PROTOCOL: 17
TRNS SOURCE PORT: 53
TRNS DESTINATION PORT: 12032
counter bytes long: }12
counter packets long: 1
timestamp abs first: 06:23:24.799
timestamp abs last: 06:23:24.799
interface input: Null
interface output: Null

```

\section*{show platform software et-analytics}

To display et-analytics configuration, use the show platform software et-analytics command in privileged EXEC mode.
show platform software et-analytics \{global |interfaces\}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Syntax Description} & \multicolumn{2}{|l|}{global Displays global et-analytics configuration.} \\
\hline & \multicolumn{2}{|l|}{interfaces Displays interface et-analytics configuration.} \\
\hline Command Default & \multicolumn{2}{|l|}{None} \\
\hline Command Modes & \multicolumn{2}{|l|}{Privileged EXEC} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Example:}

The following example shows how to display global et-analytics configuration:
```

Device>enable
Device\#configure terminal
Device\# show platform software et-analytics global
ET-Analytics Global state
==========================
All Interfaces : Off
IP Flow-record Destination: 10.126.71.20 : 2055
Inactive timer: 0
ET-Analytics interfaces
GigabitEthernet1/0/3

```

The following example shows how to display global et-analytics configuration:
```

Device>enable
Device\#configure terminal
Device\# show platform software et-analytics interfaces
ET-Analytics interfaces
GigabitEthernet1/0/3

```

\section*{show platform software fed switch active fnf et-analytics-flow-dump}

To display interface et-analytics flow dump, use the show platform software fed switch active fnf et-analytics-flow-dump command in privileged EXEC mode.
show platform software fed switch active fnf et-analytics-flow-dump
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Command Default
\end{tabular} & None & \\
\hline Command Modes & Privileged EXEC & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest & This command was introduced. \\
& 16.5 .1 a & \\
\hline
\end{tabular}

\section*{Example:}

The following example shows how to display interface et-analytics flow dump.:
```

Device>enable
Device\#configure terminal
Device\# show platform software fed switch active fnf et-analytics-flow-dump
ET Analytics Flow dump
=================
Total packets received (27)
Excess packets received (0)
(Index:0) 72.163.128.140, 15.15.15.35, protocol=17, source port=53, dest port=12032, flow
done=u
SPLT: len = 2, value = (25600,0) (128,0)
IDP: len = 128, value = 45:0:0:80:f0:6c:0:0:f9:11:
(Index:1) 72.163.128.140, 15.15.15.35, protocol=17, source port=53, dest port=32356, flow
done=u
SPLT: len = 2, value = (59649,0) (128,0)
IDP: len = 517, value = 45:0:2:5:c3:1:0:0:f9:11:
(Index:2) 15.15.15.35, 72.163.128.140, protocol=17, source port=12032, dest port=53, flow
done=u
SPLT: len = 2, value = (10496,0) (128,0)
IDP: len = 69, value = 45:0:0:45:62:ae:40:0:40:11:
(Index:3) 15.15.15.35, 72.163.128.140, protocol=17, source port=32356, dest port=53, flow
done=u
SPLT: len = 2, value = (10496,0) (128,0)
IDP: len = 69, value = 45:0:0:45:62:ad:40:0:40:11:

```

\section*{sampler}

\section*{Syntax Description}

To create a Flexible Netflow flow sampler, or to modify an existing Flexible Netflow flow sampler, and to enter Flexible Netflow sampler configuration mode, use the sampler command in global configuration mode. To remove a sampler, use the no form of this command.
sampler sampler-name
no sampler sampler-name
sampler-name Name of the flow sampler that is being created or modified.
\begin{tabular}{lll}
\hline Command Default & & Flexible Netflow flow samplers are not configured. \\
\(\overline{\text { Command Modes }}\) & Global configuration \\
\cline { 3 - 3 } Command History & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

Flow samplers are used to reduce the load placed by Flexible Netflow on the networking device to monitor traffic by limiting the number of packets that are analyzed. You configure a rate of sampling that is 1 out of a range of packets. Flow samplers are applied to interfaces in conjunction with a flow monitor to implement sampled Flexible Netflow.
To enable flow sampling, you configure the record that you want to use for traffic analysis and assign it to a flow monitor. When you apply a flow monitor with a sampler to an interface, the sampled packets are analyzed at the rate specified by the sampler and compared with the flow record associated with the flow monitor. If the analyzed packets meet the criteria specified by the flow record, they are added to the flow monitor cache.

\section*{Examples}

The following example creates a flow sampler name SAMPLER-1:
```

Device(config)\# sampler SAMPLER-1
Device(config-sampler)\#

```

\section*{show capability feature monitor}

To display information about monitor features, use the show capability feature monitor command in privileged EXEC mode.
show capability feature monitor \{erspan-destination |erspan-source\}

Syntax Description

Command Modes
Command History
erspan-destination Displays information about the configured Encapsulated Remote Switched Port Analyzer (ERSPAN) source sessions.
erspan-source Displays all the configured global built-in templates.

Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Examples
The following is sample output from the show capability feature monitor erspan-source command:
```

Switch\# show capability feature monitor erspan-source
ERSPAN Source Session Supported: true
No of Rx ERSPAN source session: 8
No of Tx ERSPAN source session: 8
ERSPAN Header Type supported: II
ACL filter Supported: true
Fragmentation Supported: true
Truncation Supported: false
Sequence number Supported: false
QOS Supported: true

```

The following is sample output from the show capability feature monitor erspan-destination command:

Switch\# show capability feature monitor erspan-destination
ERSPAN Destination Session Supported: false

Related Commands
\begin{tabular}{|l|}
\hline Command \\
\hline monitor session type erspan-source \\
\hline
\end{tabular}

Description
Creates an ERSPAN source session number or enters the ERSPAN session configuration mode for the session.

\section*{show class-map type control subscriber}

To display the class map statistics for the configured control policies, use the show class-map type control subscriber command in privileged EXEC mode.
show class-map type control subscriber \{all | name control-class-name\}

\section*{Syntax Description}
\begin{tabular}{ll}
\hline all & \begin{tabular}{l}
Displays class map statistics for all \\
control policies.
\end{tabular} \\
\hline name control-class-name & \begin{tabular}{l}
Displays class map statistics for the \\
specified control policy.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes}

Privileged EXEC (\#)
\begin{tabular}{llll}
\hline Command History & Release & Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.6.1 & This command was introduced. \\
\hline
\end{tabular}
\(\overline{\text { Examples }}\)
The following is a sample output of the show class-map type control subscriber name control-class-name command:
```

Device\# show class-map type control subscriber name platform
Class-map
Key:
"Exec" - The number of times this line was executed
"Hit" - The number of times this line evaluated to TRUE
"Miss" - The number of times this line evaluated to FALSE
"Comp" - The number of times this line completed the execution of its
condition without a need to continue on to the end

```

\section*{show ip sla statistics}

To display current or aggregated operational status and statistics of all Cisco IOS IP Service Level Agreement (SLA) operations or a specified operation, use the show ip sla statistics command in user EXEC or privileged EXEC mode.
show ip sla statistics [operation-number [details] | aggregated [operation-number | details] details]

Syntax Description operation-number
\begin{tabular}{ll}
\hline details & (Optional) Specifies detailed output. \\
\hline aggregated & (Optional) Specifies the IP SLA aggregated statistics. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline\(\overline{\text { Command Default }}\) & Displays output for all running IP SLA operations. \\
\(\overline{\text { Command Modes }}\) & User EXEC \\
& Privileged EXEC & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}
(Optional) Number of the operation for which operational status and statistics are displayed. Accepted values are from 1 to 2147483647.
(Optional) Specifies detailed output.
(Optional) Specifies the IP SLA aggregated statistics.

Displays output for all running IP SLA operations.
User EXEC
Privileged EXEC

Use the show ip sla statistics to display the current state of IP SLA operations, including how much life the operation has left, whether the operation is active, and the completion time. The output also includes the monitoring data returned for the last (most recently completed) operation. This generated operation ID is displayed when you use the show ip sla configuration command for the base multicast operation, and as part of the summary statistics for the entire operation.

Enter the show command for a specific operation ID to display details for that one responder.

\section*{Examples}

The following is sample output from the show ip sla statistics command:
```

Device\# show ip sla statistics
Current Operational State
Entry Number: 3
Modification Time: *22:15:43.000 UTC Sun Feb 11 }200
Diagnostics Text:
Last Time this Entry was Reset: Never
Number of Octets in use by this Entry: 1332
Number of Operations Attempted: 2
Current Seconds Left in Life: 3511
Operational State of Entry: active
Latest Completion Time (milliseconds): 544
Latest Operation Start Time: *22:16:43.000 UTC Sun Feb 11 2001
Latest Oper Sense: ok
Latest Sense Description: 200 OK

```
```

Total RTT: 544
DNS RTT: }1
TCP Connection RTT: 28
HTTP Transaction RTT: 504
HTTP Message Size: 9707

```

\section*{show monitor}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
To display information about all Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) sessions, use the show monitor command in EXEC mode. \\
show monitor [session \{session_number | all | local | range list | remote\} [detail]]
\end{tabular}} \\
\hline \multirow[t]{8}{*}{Syntax Description} & session & & Optional) Displays information about specified SPAN sessions. \\
\hline & session_number & & The session number identified with the SPAN or RSPAN session. The range is 1 to 66 . \\
\hline & all & & Optional) Displays all SPAN sessions. \\
\hline & local & & Optional) Displays only local SPAN sessions. \\
\hline & range list & & Optional) Displays a range of SPAN sessions, where list is the range of valid sessions. The range is either a single session or a range of sessions described by two numbers, he lower one first, separated by a hyphen. Do not enter any spaces between comma-separated parameters or in hyphen-specified ranges. \\
\hline & & & Note This keyword is available only in privileged EXEC mode. \\
\hline & remote & & Optional) Displays only remote SPAN sessions. \\
\hline & detail & & Optional) Displays detailed information about the specified sessions. \\
\hline Command Modes & \multicolumn{3}{|l|}{User EXEC} \\
\hline & \multicolumn{3}{|l|}{Privileged EXEC} \\
\hline \multirow[t]{2}{*}{Command History} & \multicolumn{3}{|l|}{Release Modification} \\
\hline & \multicolumn{3}{|l|}{Cisco IOS XE Everest 16.5.1a This command was introduced.} \\
\hline
\end{tabular}

Usage Guidelines The output is the same for the show monitor command and the show monitor session all command. Maximum number of SPAN source sessions: 2 (applies to source and local sessions)

\section*{Examples}

This is an example of output for the show monitor user EXEC command:
```

Device\# show monitor
Session 1

```
```

Type : Local Session
Source Ports :
RX Only : Gi4/0/1
Both : Gi4/0/2-3,Gi4/0/5-6
Destination Ports : Gi4/0/20
Encapsulation : Replicate
Ingress : Disabled
Session 2
--------
Type : Remote Source Session
Source VLANs :
TX Only : 10
Both : 1-9
Dest RSPAN VLAN : 105

```

This is an example of output for the show monitor user EXEC command for local SPAN source session 1:
```

Device\# show monitor session 1
Session 1
-----
Type : Local Session
Source Ports :
RX Only : Gi4/0/1
Both : Gi4/0/2-3,Gi4/0/5-6
Destination Ports : Gi4/0/20
Encapsulation : Replicate
Ingress : Disabled

```

This is an example of output for the show monitor session all user EXEC command when ingress traffic forwarding is enabled:
```

Device\# show monitor session all
Session 1
Type : Local Session
Source Ports :
Both : Gi4/0/2
Destination Ports : Gi4/0/3
Encapsulation : Native
Ingress : Enabled, default VLAN = 5
Ingress encap : DOT1Q
Session 2
Type : Local Session
Source Ports :
Both : Gi4/0/8
Destination Ports : Gi4/012
Encapsulation : Replicate
Ingress : Enabled, default VLAN = 4
Ingress encap : Untagged

```

\section*{show monitor capture}

To display monitor capture (WireShark) content, use the show monitor capture command in privileged EXEC mode.
show monitor capture [capture-name [buffer] | file file-location : file-name] [brief | detailed | display-filter display-filter-string]
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Syntax Description} & capture-name & (Optional) Specifies the name of the capture to be displayed. \\
\hline & buffer & (Optional) Specifies that a buffer associated with the named capture is to be displayed. \\
\hline & file file-location : file-name & (Optional) Specifies the file location and name of the capture storage file to be displayed. \\
\hline & brief & (Optional) Specifies the display content in brief. \\
\hline & detailed & (Optional) Specifies detailed display content. \\
\hline & display-filter display-filter-string & Filters the display content according to the display-filter-string. \\
\hline Command Default & Displays all capture content. & \\
\hline Command Modes & Privileged EXEC & \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Example}

The following is sample output from the show monitor capture command:
```

Device\# show monitor capture mycap
Status Information for Capture mycap
Target Type:
Interface: CAPWAP,
Ingress:
0
Egress:
0
Status : Active
Filter Details:
Capture all packets
Buffer Details:
Buffer Type: LINEAR (default)
File Details:
Associated file name: flash:mycap.pcap
Size of buffer(in MB): 1
Limit Details:
Number of Packets to capture: 0 (no limit)

```
```

Packet Capture duration: 0 (no limit)
Packet Size to capture: 0 (no limit)
Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

```

\section*{show monitor session}

To display information about Switched Port Analyzer (SPAN), Remote SPAN (RSPAN), and Encapsulated Remote Switched Port Analyzer (ERSPAN) sessions, use the show monitor session command in EXEC mode.
```

show monitor session {session_number | all | erspan-destination | erspan-source | local |
range list | remote} [detail]

```

Syntax Description
\begin{tabular}{ll}
\hline session_number & The session number identified wit \\
\hline all & Displays all SPAN sessions. \\
\hline erspan-source & Displays only source ERSPAN se \\
\hline erspan-destination & Displays only destination ERSPA \\
\hline local & Displays only local SPAN session \\
\hline range list & \begin{tabular}{l}
Displays a range of SPAN session \\
of sessions described by two num \\
comma-separated parameters or in \\
This keyword is avail
\end{tabular} \\
\hline remote & Note \\
\hline detail & Displays only remote SPAN sessi \\
\hline
\end{tabular}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

The maximum local ERSPAN source session limit is 8 .

\section*{Examples}

The following is sample output from the show monitor session command for local SPAN source session 1:
```

Device\# show monitor session 1
Session 1
---------
Type : Local Session
Source Ports :

```
```

RX Only : Gi4/0/1
Both : Gi4/0/2-3,Gi4/0/5-6
Destination Ports : Gi4/0/20
Encapsulation : Replicate
Ingress : Disabled

```

The following is sample output from the show monitor session all command when ingress traffic forwarding is enabled:
```

Device\# show monitor session all
Session 1
---------
Type : Local Session
Source Ports :
Both : Gi4/0/2
Destination Ports : Gi4/0/3
Encapsulation : Native
Ingress : Enabled, default VLAN = 5
Ingress encap : DOT1Q
Session 2
---------
Type : Local Session
Source Ports :
Both : Gi4/0/8
Destination Ports : Gi4/012
Encapsulation : Replicate
Ingress : Enabled, default VLAN = 4
Ingress encap : Untagged

```

The following is sample output from the show monitor session erspan-source command:
```

Device\# show monitor session erspan-source
Type : ERSPAN Source Session
Status : Admin Enabled
Source Ports :
RX Only : Gil/4/33
Destination IP Address : 20.20.163.20
Destination ERSPAN ID : 110
Origin IP Address : 10.10.10.216
IPv6 Flow Label : None

```

The following is sample output from the show monitor session erspan-destination command:
```

Device\# show monitor session erspan-destination
Type : ERSPAN Destination Session
Status : Admin Enabled
Source IP Address : 10.10.10.210
Source ERSPAN ID : 40

```

\section*{show parameter-map type subscriber attribute-to-service}

To display parameter map statistics, use the show parameter-map type subscriber attribute-to-service command in privileged EXEC mode.
show parameter-map type subscriber attribute-to-service \{all| name parameter-map-name\}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Syntax Description} & all & Displays statistics for all parameter maps. \\
\hline & name parameter-map-name & Displays statistics for the specified parameter map. \\
\hline Command Modes & \multicolumn{2}{|l|}{Privileged EXEC (\#)} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.6.1 & This command was introduced. \\
\hline \(\overline{\text { Examples }}\) & \multicolumn{2}{|l|}{The following is a sample output of the show parameter-map type subscriber attribute-to-service name parameter-map-name command:} \\
\hline \multicolumn{3}{|r|}{Device\# show parameter-map type subscriber attribute-to-service name platform} \\
\hline \multicolumn{3}{|c|}{```
Parameter-map name: platform
 Map: 10 platform-type regex "C9xxx"
 Action(s):
 10 interface-template critical
```} \\
\hline
\end{tabular}

\section*{show platform software fed switch ip wcep}

To display platform-dependent Web Cache Communication Protocol (WCCP) information, use the show platform software fed switch ip wecp privileged EXEC command.
```

show platform software fed switch{switch-number|active|standby}ip
wccp{cache-engines |interfaces |service-groups}

```

\section*{Syntax Description}
switch \(\{\) switch_num \(\mid\) active | standby \(\}\) The device for which you want to display information.
- switch_num-Enter the switch ID. Displays information for the specified switch.
- active-Displays information for the active switch.
- standby-Displays information for the standby switch, if available.

\section*{Command Modes \\ Command History}

Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.
This command is available only if your device is running the IP Services feature set.
The following example displays WCCP interfaces:
```

Device\# show platform software fed switch 1 ip wccp interfaces
WCCP Interface Info
====================
**** WCCP Interface: Port-channel13 iif_id: 000000000000007c (\#SG:3), VRF: 0 Ingress WCCP

port_handle:0x20000f9
List of Service Groups on this interface:

* Service group id:90 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).

```
```

* Service group id:70 vrf id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).
* Service group id:60 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).
**** WCCP Interface: Port-channel14 iif_id: 000000000000007e (\#SG:3), VRF: 0 Ingress WCCP

port_handle:0x880000fa
List of Service Groups on this interface:
* Service group id:90 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).
* Service group id:70 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).
<output truncated>

```

\section*{show platform software swspan}

To display switched port analyzer (SPAN) information, use the show platform software swspan command in privileged EXEC mode.
show platform software swspan \(\{\) switch \(\}\{\{\{\mathbf{F} 0 \mid F P\) active \(\}\) counters \(\}|\mathbf{R 0}| \mathbf{R P}\) active \(\}\) \{destination sess-id session-ID | source sess-id session-ID \(\}\)

\section*{Syntax Description}
\begin{tabular}{ll}
\hline switch & Displays information about the switch. \\
\hline F0 & Displays information about the Embedded Service Processor (ESP) slot 0. \\
\hline FP & Displays information about the ESP. \\
\hline active & \begin{tabular}{l} 
Displays information about the active instance of the ESP or the Route \\
Processor (RP).
\end{tabular} \\
\hline counters & Displays the SWSPAN message counters. \\
\hline R0 & Displays information about the RP slot 0. \\
\hline RP & Displays information the RP. \\
\hline
\end{tabular}
destination sess-id session-ID Displays information about the specified destination session.
source sess-id session-ID Displays information about the specified source session.

\section*{Command Modes \\ Command History \\ Usage Guidelines}

Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced in a release prior to Cisco IOS XE Denali \\
16.5.1a & 16.1 .1.
\end{tabular}

If the session number does not exist or if the SPAN session is a remote destination session, the command output will display the following message "\% Error: No Information Available."

\section*{\(\overline{\text { Examples }}\)}

The following is sample output from the show platform software swspan FP active source command:
```

Switch\# show platform software swspan FP active source sess-id 0
Showing SPAN source detail info
Session ID : 0
Intf Type : PORT
Port dpidx : 30
PD Sess ID : 1
Session Type : Local
Direction : Ingress
Filter Enabled : No
ACL Configured : No
AOM Object id : 579

```
```

AOM Object Status : Done
Parent AOM object Id : 118
Parent AOM object Status : Done
Session ID : 9
Intf Type : PORT
Port dpidx : 8
PD Sess ID : 0
Session Type : Local
Direction : Ingress
Filter Enabled : No
ACL Configured : No
AOM Object id : 578
AOM Object Status : Done
Parent AOM object Id : 70
Parent AOM object Status : Done

```

The following is sample output from the show platform software swspan RP active destination command:
```

Switch\# show platform software swspan RP active destination
Showing SPAN destination table summary info
Sess-id IF-type IF-id Sess-type
1 PORT 19 Remote

```

\section*{show flow exporter}

To display flow exporter status and statistics, use the show flow exporter command in privileged EXEC mode.
show flow exporter [\{export-ids netflow-v9|[name] exporter-name [\{statistics |templates \(\}\) ] |statistics | templates\}]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
export-ids netflow-v9 \\
(Optional) Displays the NetFlow Version 9 export fields that can be exported and \\
their IDs.
\end{tabular} \\
\hline name & (Optional) Specifies the name of a flow exporter. \\
\hline exporter-name & (Optional) Name of a flow exporter that was previously configured. \\
\hline statistics & (Optional) Displays statistics for all flow exporters or for the specified flow exporter. \\
templates & \begin{tabular}{l} 
(Optional) Displays template information for all flow exporters or for the specified \\
flow exporter.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{None} \\
\hline Command Modes & \multicolumn{2}{|l|}{Privileged EXEC} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

The following example displays the status and statistics for all of the flow exporters configured on a device:
```

Device\# show flow exporter
Flow Exporter FLOW-EXPORTER-1:
Description: Exports to the datacenter
Export protocol: NetFlow Version 9
Transport Configuration:
Destination IP address: 192.168.0.1
Source IP address: 192.168.0.2
Transport Protocol: UDP
Destination Port: 9995
Source Port: 55864
DSCP: 0x0
TTL: 255
Output Features: Used

```

This table describes the significant fields shown in the display:

\section*{Table 125: show flow exporter Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Flow Exporter & The name of the flow exporter that you configured. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Description & \begin{tabular}{l} 
The description that you configured for the exporter, \\
or the default description User defined.
\end{tabular} \\
\hline Transport Configuration & The transport configuration fields for this exporter. \\
\hline Destination IP address & The IP address of the destination host. \\
\hline Source IP address & \begin{tabular}{l} 
The source IP address used by the exported packets. \\
packets.
\end{tabular} \\
\hline Transport Protocol & \begin{tabular}{l} 
The destination UDP port to which the exported \\
packets are sent.
\end{tabular} \\
\hline Destination Port & \begin{tabular}{l} 
The source UDP port from which the exported packets \\
are sent.
\end{tabular} \\
\hline Source Port & The differentiated services code point (DSCP) value. \\
\hline DSCP & The time-to-live value. \\
\hline TTL & \begin{tabular}{l} 
Specifies whether the output-features command, \\
which causes the output features to be run on Flexible \\
NetFlow export packets, has been used or not.
\end{tabular} \\
\hline Output Features &
\end{tabular}

The following example displays the status and statistics for all of the flow exporters configured on a device:
```

Device\# show flow exporter name FLOW-EXPORTER-1 statistics
Flow Exporter FLOW-EXPORTER-1:
Packet send statistics (last cleared 2w6d ago):
Successfully sent: 0 (0 bytes)

```

\section*{show flow interface}

To display the Flexible Netflow configuration and status for an interface, use the show flow interface command in privileged EXEC mode.
show flow interface [type number]

\section*{Syntax Description}
type (Optional) The type of interface on which you want to display Flexible Netflow accounting configuration information.
number (Optional) The number of the interface on which you want to display Flexible Netflow accounting configuration information.
\begin{tabular}{|c|c|c|}
\hline Command Modes & \multicolumn{2}{|l|}{Privileged EXEC} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\(\overline{\text { Examples }}\)
The following example displays the Flexible Netflow accounting configuration on Ethernet interfaces \(0 / 0\) and \(0 / 1\) :
```

Device\# show flow interface gigabitethernet1/0/1
Interface Ethernet1/0
monitor: FLOW-MONITOR-1
direction: Output
traffic(ip): on
Device\# show flow interface gigabitethernet1/0/2
Interface Ethernet0/0
monitor: FLOW-MONITOR-1
direction: Input
traffic(ip): sampler SAMPLER-2\#

```

The table below describes the significant fields shown in the display.
Table 126: show flow interface Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Interface & The interface to which the information applies. \\
\hline monitor & The name of the flow monitor that is configured on the interface. \\
\hline direction: & \begin{tabular}{l} 
The direction of traffic that is being monitored by the flow monitor. \\
The possible values are: \\
\(\bullet\) Input-Traffic is being received by the interface. \\
\(\bullet\) Output—Traffic is being transmitted by the interface.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline traffic(ip) & \begin{tabular}{l} 
Indicates if the flow monitor is in normal mode or sampler mode. \\
\\
\\
\\
\\
\\
\\
\begin{tabular}{l} 
• on- possible values are: \\
• sampler-The flow monitor is in normal mode. \\
in the display).
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{show flow monitor}

To display the status and statistics for a Flexible NetFlow flow monitor, use the show flow monitor command in privileged EXEC mode.

\section*{Syntax Description}
\begin{tabular}{ll} 
name & (Optional) Specifies the name of a flow monitor. \\
\hline monitor-name & (Optional) Name of a flow monitor that was previously configured. \\
\hline cache & (Optional) Displays the contents of the cache for the flow monitor. \\
\hline format & (Optional) Specifies the use of one of the format options for formatting the display output. \\
\hline csv & \begin{tabular}{l} 
(Optional) Displays the flow monitor cache contents in comma-separated variables (CSV) \\
format.
\end{tabular} \\
\hline record & (Optional) Displays the flow monitor cache contents in record format. \\
\hline table & (Optional) Displays the flow monitor cache contents in table format. \\
\hline statistics & (Optional) Displays the statistics for the flow monitor.
\end{tabular}

\section*{Command Modes \\ Command History}

Privileged EXEC
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

The cache keyword uses the record format by default.
The uppercase field names in the display output of the show flowmonitor monitor-name cache command are key fields that Flexible netFlow uses to differentiate flows. The lowercase field names in the display output of the show flow monitor monitor-name cache command are nonkey fields from which Flexible NetFlow collects values as additional data for the cache.

\section*{Examples}

The following example displays the status for a flow monitor:
```

Device\# show flow monitor FLOW-MONITOR-1
Flow Monitor FLOW-MONITOR-1:
Description: Used for basic traffic analysis
Flow Record: flow-record-1
Flow Exporter: flow-exporter-1
flow-exporter-2
Cache:
Type: normal
Status: allocated
Size: 4096 entries / 311316 bytes
Inactive Timeout: }15\mathrm{ secs
Active Timeout: 1800 secs

```

This table describes the significant fields shown in the display.

Table 127: show flow monitor monitor-name Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Flow Monitor & Name of the flow monitor that you configured. \\
\hline Description & Description that you configured or the monitor, or the default description User defined. \\
\hline Flow Record & Flow record assigned to the flow monitor. \\
\hline Flow Exporter & Exporters that are assigned to the flow monitor. \\
\hline Cache & \begin{tabular}{l} 
Information about the cache for the flow monitor.
\end{tabular} \\
\hline Type & \begin{tabular}{l} 
Flow monitor cache type. The value is always normal, as it is the only supported cache \\
type.
\end{tabular} \\
\hline Status & \begin{tabular}{l} 
Status of the flow monitor cache. \\
- allocated-The cache is allocated. \\
\(\bullet\) \\
\(\bullet\) \\
• being deleted-The allocated-The cache is being deleted.
\end{tabular} \\
\hline Size allocated.
\end{tabular}

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1:

This table describes the significant fields shown in the display.
The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1 in a table format:

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-IPv6 (the cache contains IPv6 data) in record format:

The following example displays the status and statistics for a flow monitor:

\section*{show flow record}

To display the status and statistics for a Flexible Netflow flow record, use the show flow record command in privileged EXEC mode.
show flow record [\{[name] record-name \(\}\) ]

\section*{Syntax Description}
name (Optional) Specifies the name of a flow record.
record-name (Optional) Name of a user-defined flow record that was previously configured.
\(\overline{\text { Command Default }}\) None
Command Modes Privileged EXEC
\begin{tabular}{lll}
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest & This command was introduced. \\
& 16.5 .1 a & \\
\hline
\end{tabular}

The following example displays the status and statistics for FLOW-RECORD-1:
```

Device\# show flow record FLOW-RECORD-1
flow record FLOW-RECORD-1:
Description: User defined
No. of users: 0
Total field space: 24 bytes
Fields:
match ipv6 destination address
match transport source-port
collect interface input

```

\section*{show sampler}

To display the status and statistics for a Flexible NetFlow sampler, use the show sampler command in privileged EXEC mode.
show sampler [\{[name] sampler-name \(\}\) ]
Syntax Description
\begin{tabular}{ll}
\hline name \(\quad\) (Optional) Specifies the name of a sampler. \\
\hline sampler-name (Optional) Name of a sampler that was previously configured.
\end{tabular}

None
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

The following example displays the status and statistics for all of the flow samplers configured:
```

Device\# show sampler
Sampler SAMPLER-1:
ID: 2083940135
export ID: 0
Description: User defined
Type: Invalid (not in use)
Rate: 1 out of }3
Samples: 0
Requests: 0
Users (0):
Sampler SAMPLER-2:
ID: 3800923489
export ID: 1
Description: User defined
Type: random
Rate: 1 out of 100
Samples: 1
Requests: 124
Users (1):
flow monitor FLOW-MONITOR-1 (datalink,vlan1) 0 out of 0

```

This table describes the significant fields shown in the display.
Table 128: show sampler Field Descriptions
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline ID & ID number of the flow sampler. \\
\hline Export ID & ID of the flow sampler export. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Description & \begin{tabular}{l} 
Description that you configured for the flow sampler, \\
or the default description User defined.
\end{tabular} \\
\hline Type & \begin{tabular}{l} 
Sampling mode that you configured for the flow \\
sampler.
\end{tabular} \\
\hline Rate & \begin{tabular}{l} 
Window size (for packet selection) that you \\
configured for the flow sampler. The range is 2 to \\
32768.
\end{tabular} \\
\hline Samples & \begin{tabular}{l} 
Number of packets sampled since the flow sampler \\
was configured or the device was restarted. This is \\
equivalent to the number of times a positive response \\
was received when the sampler was queried to \\
determine if the traffic needed to be sampled. See the \\
explanation of the Requests field in this table.
\end{tabular} \\
\hline Requests & \begin{tabular}{l} 
Number of times the flow sampler was queried to \\
determine if the traffic needed to be sampled.
\end{tabular} \\
\hline Users & Interfaces on which the flow sampler is configured. \\
\hline
\end{tabular}

\section*{show snmp stats}

To display the SNMP statistics, use the show snmp stats command in privileged EXEC mode.
\begin{tabular}{|c|c|}
\hline & show snmp stats \(\{\) hosts | oid \} \\
\hline \multirow[t]{2}{*}{Syntax Description} & hosts Displays the details of the SNMP servers polled to the SNMP agent. \\
\hline & oid Displays recently requested object identifiers (OIDs). \\
\hline Command Default & Displays the SNMP manager entries polled to the SNMP agent. \\
\hline Command Modes & Privileged EXEC (\#) \\
\hline \multirow[t]{2}{*}{Command History} & Release Modification \\
\hline & Cisco IOS XE Amsterdam 17.1.1 \(\begin{aligned} & \text { This command was } \\ & \text { introduced. }\end{aligned}\) \\
\hline
\end{tabular}

Usage Guidelines Use the show snmp stats hosts command to list the NMS IP address, the number of times an NMS polls the agent, and the timestamp of polling. To delete the entries polled to the SNMP agent, use the clear snmp stats hosts command.

Before running the show snmp stats oid command, connect the device to the NMS. The command output displays the list of OIDs recently requested by the NMS. It also displays the number of times an object identifier is requested by the NMS. This information is useful for troubleshooting memory leaks and network failures when little information is available about the MIBs that the NMS is querying. You can use the show snmp stats oid command at any time to view OIDs recently requested by the NMS.

The following is sample output of the show snmp stats hosts command.
```

Device\# show snmp stats hosts
Request Count Last Timestamp Address
2 00:00:01 ago 3.3.3.3
1 1w2d ago 2.2.2.2

```

The table below describes the significant fields shown in the display:

\section*{Table 129: show snmp stats hosts Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Request count & Displays the number of times an SNMP Manager has sent requests to the SNMP Agent. \\
\hline \begin{tabular}{l} 
Last \\
Timestamp
\end{tabular} & Displays the time at which the request was sent to the SNMP Agent by the SNMP Manager. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Address & Displays the IP Address of the SNMP Manager that has sent the request. \\
\hline
\end{tabular}

The following is sample output of the show snmp stats oid command.


The table below describes the significant fields shown in the display.

\section*{Table 130: show snmp stats oid Field Descriptions}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline time-stamp & Displays the time and date when the object identifiers is requested by the NMS. \\
\hline \begin{tabular}{l} 
\#of times \\
requested
\end{tabular} & Displays the number of times an object identifier is requested. \\
\hline OID & Displays the object identifiers recently requested by the NMS. \\
\hline
\end{tabular}

\section*{shutdown (monitor session)}

To disable a configured ERSPAN session, use the shutdown command in ERSPAN monitor source session configuration mode. To enable configured ERSPAN session, use the no form of this command.
shutdown
no shutdown

Syntax Description
This command has no arguments or keywords.
A newly configured ERSPAN session will be in the shutdown state.

ERSPAN monitor source session configuration mode (config-mon-erspan-src)

Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}

The ERSPAN session remains inactive until the no shutdown command is configured.

The following example shows how to activate an ERSPAN session using the no shutdown command:
```

Device> enable
Device\# configure terminal
Device(config)\# monitor session 1 type erspan-source
Device(config-mon-erspan-src) \# description sourcel
Device(config-mon-erspan-src) \# source interface GigabitEthernet1/0/1 rx
Device(config-mon-erspan-src)\# destination
Device(config-mon-erspan-src-dst) \# erspan-id 100
Device(config-mon-erspan-src-dst) \# origin ip address 10.10.0.1
Device(config-mon-erspan-src-dst)\# ip address 10.1.0.2
Device(config-mon-erspan-src-dst) \# ip dscp 10
Device(config-mon-erspan-src-dst)\# ip ttl 32
Device(config-mon-erspan-src-dst) \# mtu 512
Device(config-mon-erspan-src-dst) \# vrf monitoring
Device(config-mon-erspan-src-dst) \# exit
Device(config-mon-erspan-src) \# no shutdown
Device(config-mon-erspan-src) \# end

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline monitor session type & \begin{tabular}{l} 
Creates an ERSPAN source and destination session number or enters the ERSPAN \\
session configuration mode for the session.
\end{tabular} \\
\hline
\end{tabular}

\section*{snmp ifmib ifindex persist}

To globally enable ifIndex values to persist, which will remain constant across reboots, for use by the Simple Network Management Protocol (SNMP), use the snmp ifmib ifindex persist command in global configuration mode. To globally disable ifIndex persistence, use the no form of this command.
snmp ifmib ifindex persist
no snmp ifmib ifindex persist

Syntax Description
This command has no arguments or keywords.

\section*{Command Default}

The ifIndex persistence on a device is disabled.

\section*{Command Modes}

Global configuration (config)

\section*{Usage Guidelines}

The snmp ifmib ifindex persist command does not override an interface-specific configuration. The interface-specific configuration of ifIndex persistence is configured with the snmp ifindex persist and snmp ifindex clear commands in interface configuration mode.
The snmp ifmib ifindex persist command enables ifIndex persistence for all interfaces on a routing device by using the ifDescr and ifIndex entries in the ifIndex table of interface MIB (IF-MIB).
ifIndex persistence means that the ifIndex values in the IF-MIB persist across reboots, allowing for the consistent identification of specific interfaces that use SNMP.

If ifIndex persistence was previously disabled for a specific interface by using the no snmp ifindex persist command, ifIndex persistence will remain disabled for that interface.
\(\overline{\text { Examples }}\) The following example shows how to enable ifIndex persistence for all interfaces:

Device(config) \# snmp ifmib ifindex persist

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline snmp ifindex clear & \begin{tabular}{l} 
Clears any previously configured snmp ifIndex commands issued in interface \\
configuration mode for a specific interface.
\end{tabular} \\
\hline snmp ifindex persist & Enables ifIndex values that persist across reboots (ifIndex persistence) in the IF-MIB. \\
\hline
\end{tabular}

\section*{snmp-server community}

To configure the community access string to permit access to the Simple Network Management Protocol (SNMP), use the snmp-server community command in global configuration mode. To remove the specified community string, use the no form of this command.
snmp-server community [clear | encrypted] community-string [view view-name] [RO|RW] [SDROwner |SystemOwner] [access-list-name] no snmp-server community community-string

\section*{Syntax Description}
\begin{tabular}{ll} 
clear & \begin{tabular}{l} 
(Optional) Specifies that the entered community-string is clear text and should be encrypted \\
when displayed by the show running command.
\end{tabular} \\
\hline encrypted & \begin{tabular}{l} 
(Optional) Specifies that the entered community-string is encrypted text and should be \\
displayed as such by the show running command.
\end{tabular} \\
\hline community-string & \begin{tabular}{l} 
Community string that acts like a password and permits access to the SNMP protocol. The \\
maximum length of the community-string argument is 32 alphabetic characters.
\end{tabular} \\
& \begin{tabular}{l} 
If the clear keyword was used, community-string is assumed to be clear text. If the \\
encrypted keyword was used, community-string is assumed to be encrypted. If neither \\
was used, community-string is assumed to be clear text.
\end{tabular} \\
\hline viewview-name \begin{tabular}{ll} 
(Optional) Specifies the name of a previously defined view. The view defines the objects \\
available to the community.
\end{tabular} \\
\hline RO \begin{tabular}{ll} 
(Optional) Specifies read-only access. Authorized management stations are able only to \\
retrieve MIB objects.
\end{tabular} \\
\hline (Optional) Specifies read-write access. Authorized management stations are able both to \\
retrieve and to modify MIB objects.
\end{tabular}
\begin{tabular}{lll}
\hline Command Default & \begin{tabular}{l} 
By default, an SNMP community string permits read-only access to all MIB objects. By default, a community \\
string is assigned to the SDR owner.
\end{tabular} \\
\hline Command Modes & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & The command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

To use this command, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Use the snmp-server community command to configure the community access string to permit access to SNMP.

To remove the specified community string, use the no form of this command.
Use the clear keyword to specify that the clear text community string you enter is displayed encrypted in the show running command output. To enter an encrypted string, use the encrypted keyword. To enter a clear text community string that is not encrypted by the system, use neither of these keywords.

When the snmp-server community command is entered with the SDROwner keyword, SNMP access is granted only to the MIB object instances in the owner SDR. When the snmp-server community command is entered with the SystemOwner keyword, SNMP access is granted to all SDRs in the system.

Note In a non-owner SDR, a community name provides access only to the object instances that belong to that SDR, regardless of the access privilege assigned to the community name. Access to the owner SDR and system-wide access privileges are available only from the owner SDR.

\section*{Examples}

This example shows how to assign the string comaccess to SNMP, allowing read-only access, and to specify that IP access list 4 can use the community string:

RP/0/RPO/CPU0:router(config) \# snmp-server community comaccess ro 4
The following example shows how to assign the string mgr to SNMP, allowing read-write access to the objects in the restricted view:

RP/O/RPO/CPUO:router(config) \# snmp-server community mgr view restricted rw
This example shows how to remove the community comaccess:
```

RP/O/RPO/CPUO:router(config)\# no snmp-server community comaccess

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l} 
snmp-server \\
view
\end{tabular} & Creates or updates an SNMP view entry. \\
\hline
\end{tabular}

\section*{snmp-server enable traps}

To enable the device to send Simple Network Management Protocol (SNMP) notifications for various traps or inform requests to the network management system (NMS), use the snmp-server enable traps command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps [ auth-framework [sec-violation] | bridge | call-home | config | config-copy | config-ctid | copy-config | cpu | dot1x | energywise | entity | envmon | errdisable | event-manager | flash | fru-ctrl | license | mac-notification | port-security | power-ethernet | rep | snmp | stackwise | storm-control | stpx | syslog | transceiver | tty | vlan-membership | vlancreate | vlandelete | vstack | \(\mathbf{v t p}\) ]
no snmp-server enable traps [auth-framework [sec-violation] | bridge | call-home | config | config-copy | config-ctid | copy-config | cpu | dot1x | energywise | entity | envmon | errdisable | event-manager | flash | fru-ctrl | license | mac-notification | port-security | power-ethernet | rep | snmp | stackwise | storm-control | stpx | syslog | transceiver | tty | vlan-membership | vlancreate | vlandelete | vstack | vtp ]

\section*{Syntax Description}
auth-framework (Optional) Enables SNMP CISCO-AUTH-FRAMEWORK-MIB traps.
\begin{tabular}{ll}
\hline sec-violation & (Optional) Enables SNMP camSecurityViolationNotif notifications. \\
\hline bridge & (Optional) Enables SNMP STP Bridge MIB traps.* \\
\hline call-home & (Optional) Enables SNMP CISCO-CALLHOME-MIB traps.* \\
\hline config & (Optional) Enables SNMP configuration traps. \\
\hline config-copy & (Optional) Enables SNMP configuration copy traps. \\
\hline config-ctid & (Optional) Enables SNMP configuration CTID traps. \\
\hline copy-config & (Optional) Enables SNMP copy-configuration traps. \\
\hline cpu & (Optional) Enables CPU notification traps.* \\
\hline dot1x & (Optional) Enables SNMP dot1x traps.* \\
\hline energywise & (Optional) Enables SNMP energywise traps.* \\
\hline entity & (Optional) Enables SNMP entity traps. \\
\hline envmon & (Optional) Enables SNMP environmental monitor traps.* \\
\hline errdisable & (Optional) Enables SNMP errdisable notification traps.* \\
\hline event-manager & (Optional) Enables SNMP Embedded Event Manager traps. \\
\hline flash & (Optional) Enables SNMP FLASH notification traps.* \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline fru-ctrl & (Optional) Generates entity field-replaceable unit (FRU) control traps. In a device stack, this trap refers to the insertion or removal of a device in the stack. \\
\hline license & (Optional) Enables license traps.* \\
\hline mac-notification & (Optional) Enables SNMP MAC Notification traps.* \\
\hline port-security & (Optional) Enables SNMP port security traps.* \\
\hline power-ethernet & (Optional) Enables SNMP power Ethernet traps.* \\
\hline rep & (Optional) Enables SNMP Resilient Ethernet Protocol traps. \\
\hline snmp & (Optional) Enables SNMP traps.* \\
\hline stackwise & (Optional) Enables SNMP stackwise traps.* \\
\hline storm-control & (Optional) Enables SNMP storm-control trap parameters.* \\
\hline stpx & (Optional) Enables SNMP STPX MIB traps.* \\
\hline syslog & (Optional) Enables SNMP syslog traps. \\
\hline transceiver & (Optional) Enables SNMP transceiver traps.* \\
\hline tty & (Optional) Sends TCP connection traps. This is enabled by default. \\
\hline vlan-membership & (Optional) Enables SNMP VLAN membership traps. \\
\hline vlancreate & (Optional) Enables SNMP VLAN-created traps. \\
\hline vlandelete & (Optional) Enables SNMP VLAN-deleted traps. \\
\hline vstack & (Optional) Enables SNMP Smart Install traps.* \\
\hline vtp & (Optional) Enables VLAN Trunking Protocol (VTP) traps. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Default & The sending of SNMP traps is disabled. \\
\hline Command Modes & Global configuration \\
\hline \multirow[t]{2}{*}{Command History} & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline \multirow[t]{3}{*}{Usage Guidelines} & The command options marked with an asterisk in the table above have subcommands. For more information on these subcommands, see the Related Commands section below. \\
\hline & Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent. \\
\hline & When supported, use the snmp-server enable traps command to enable sending of traps or informs. \\
\hline
\end{tabular}

Note Though visible in the command-line help strings, the fru-ctrl, insertion, and removal keywords are not supported on the device. The snmp-server enable informs global configuration command is not supported. To enable the sending of SNMP inform notifications, use the snmp-server enable traps global configuration command combined with the snmp-server host host-addr informs global configuration command.

Note Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{Examples \\ This example shows how to enable more than one type of SNMP trap:}
```

Device(config)\# snmp-server enable traps config
Device(config)\# snmp-server enable traps vtp

```

\section*{snmp-server enable traps bridge}

To generate STP bridge MIB traps, use the snmp-server enable traps bridge command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps bridge [newroot] [topologychange]
no snmp-server enable traps bridge [newroot] [topologychange]
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{l} 
newroot (Optional) Enables SNMP STP bridge MIB new root traps. \\
\\
\end{tabular} \begin{tabular}{lll} 
topologychange (Optional) Enables SNMP STP bridge MIB topology change traps.
\end{tabular} \\
\hline Command Default & The sending of bridge SNMP traps is disabled. \\
\hline Command Modes & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to send bridge new root traps to the NMS:

Device(config) \# snmp-server enable traps bridge newroot

\section*{snmp-server enable traps bulkstat}

To enable data-collection-MIB traps, use the snmp-server enable traps bulkstat command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps bulkstat [collection | transfer] no snmp-server enable traps bulkstat [collection | transfer]

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
collection (Optional) Enables data-collection-MIB collection traps.
transfer (Optional) Enables data-collection-MIB transfer traps.

The sending of data-collection-MIB traps is disabled.

Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples

This example shows how to generate data-collection-MIB collection traps:

Device(config) \# snmp-server enable traps bulkstat collection

\section*{snmp-server enable traps call-home}

To enable SNMP CISCO-CALLHOME-MIB traps, use the snmp-server enable traps call-home command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps call-home [message-send-fail | server-fail] no snmp-server enable traps call-home [message-send-fail | server-fail]
Syntax Description message-send-fail (Optional) Enables SNMP message-send-fail traps. server-fail (Optional) Enables SNMP server-fail traps.
\begin{tabular}{lll}
\hline Command Default & & The sending of SNMP CISCO-CALLHOME-MIB traps is disabled. \\
\(\overline{\text { Command Modes }}\) & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to generate SNMP message-send-fail traps:

Device(config) \# snmp-server enable traps call-home message-send-fail

\section*{snmp-server enable traps cef}

To enable SNMP Cisco Express Forwarding (CEF) traps, use the snmp-server enable traps cef command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps cef [inconsistency | peer-fib-state-change | peer-state-change | resource-failure ]
no snmp-server enable traps cef [inconsistency | peer-fib-state-change | peer-state-change | resource-failure ]

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
inconsistency (Optional) Enables SNMP CEF Inconsistency traps.
peer-fib-state-change (Optional) Enables SNMP CEF Peer FIB State change traps.
peer-state-change (Optional) Enables SNMP CEF Peer state change traps.
resource-failure (Optional) Enables SNMP CEF Resource Failure traps.

The sending of SNMP CEF traps is disabled.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{Examples}

This example shows how to generate SNMP CEF inconsistency traps:

Device(config) \# snmp-server enable traps cef inconsistency

\section*{snmp-server enable traps cpu}

To enable CPU notifications, use the snmp-server enable traps cpu command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps cpu [threshold]
no snmp-server enable traps cpu [threshold]
\begin{tabular}{|c|c|}
\hline Syntax Description & threshold (Optional) Enables CPU threshold notification. \\
\hline Command Default & The sending of CPU notifications is disabled. \\
\hline Command Modes & Global configuration \\
\hline Command History & Release Modification \\
\hline & Cisco IOS XE Everest 16.5.1a This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command.
If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples This example shows how to generate CPU threshold notifications:

Device(config) \# snmp-server enable traps cpu threshold

\section*{snmp-server enable traps envmon}

To enable SNMP environmental traps, use the snmp-server enable traps envmon command in global configuration mode. Use the no form of this command to return to the default setting.
```

snmp-server enable traps envmon [fan] [shutdown] [status] [supply] [temperature
]
no snmp-server enable traps envmon [fan] [shutdown] [status] [supply] [
temperature]

```
Syntax Description
\begin{tabular}{ll}
\hline fan & (Optional) Enables fan traps. \\
\hline shutdown & (Optional) Enables environmental monitor shutdown traps. \\
\hline status & (Optional) Enables SNMP environmental status-change traps. \\
\hline supply & (Optional) Enables environmental monitor power-supply traps. \\
\hline temperature & (Optional) Enables environmental monitor temperature traps. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

The sending of environmental SNMP traps is disabled.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{Examples}

This example shows how to generate fan traps:

Device(config) \# snmp-server enable traps envmon fan

\section*{Examples \\ This example shows how to generate status-change traps:}

Device(config)\# snmp-server enable traps envmon status

\section*{snmp-server enable traps errdisable}

To enable SNMP notifications of error-disabling, use the snmp-server enable traps errdisable command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps errdisable [notification-rate number-of-notifications] no snmp-server enable traps errdisable [notification-rate number-of-notifications]
\begin{tabular}{|c|c|c|}
\hline Syntax Description & notification-rate number-of-notifications & (Optional) Specifies number of notifications per minute as the notification rate. Accepted values are from 0 to 10000 . \\
\hline Command Default & \multicolumn{2}{|l|}{The sending of SNMP notifications of error-disabling is disabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Global configuration} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & Specify the host (NMS) that rece If no trap types are specified, al & raps by using the snmp-server host global configuration comm es are sent. \\
\hline
\end{tabular}

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to set the number SNMP notifications of error-disabling to 2 :

Device(config) \# snmp-server enable traps errdisable notification-rate 2

\section*{snmp-server enable traps flash}

To enable SNMP flash notifications, use the snmp-server enable traps flash command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps flash [insertion] [removal] no snmp-server enable traps flash [insertion] [removal]
\begin{tabular}{l}
\hline Syntax Description \\
\\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}
insertion (Optional) Enables SNMP flash insertion notifications.
removal (Optional) Enables SNMP flash removal notifications.

The sending of SNMP flash notifications is disabled.

Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{Examples}

This example shows how to generate SNMP flash insertion notifications:

Device(config) \# snmp-server enable traps flash insertion

\section*{snmp-server enable traps isis}

To enable intermediate system-to-intermediate system (IS-IS) link-state routing protocol traps, use the snmp-server enable traps isis command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps isis [errors | state-change]
no snmp-server enable traps isis [errors | state-change]
\begin{tabular}{lll}
\hline \begin{tabular}{ll} 
Syntax Description & errors (Optional) Enables IS-IS error traps. \\
& state-change (Optional) Enables IS-IS state change traps. \\
\hline Command Default & The sending of IS-IS traps is disabled. \\
\hline Command Modes & Global configuration \\
\hline Command History & Release \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.


Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples This example shows how to generate IS-IS error traps:

Device(config) \# snmp-server enable traps isis errors

\section*{snmp-server enable traps license}

To enable license traps, use the snmp-server enable traps license command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps license [deploy] [error] [usage] no snmp-server enable traps license [deploy] [error][usage]
\begin{tabular}{ll}
\hline Syntax Description & \begin{tabular}{l} 
deploy (Optional) Enables license deployment traps. \\
\\
\\
\\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{The sending of license traps is disabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Global configuration} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & \multicolumn{2}{|l|}{Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.} \\
\hline
\end{tabular}

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples This example shows how to generate license deployment traps:

Device(config) \# snmp-server enable traps license deploy

\section*{snmp-server enable traps mac-notification}

To enable SNMP MAC notification traps, use the snmp-server enable traps mac-notification command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps mac-notification [change] [move] [threshold] no snmp-server enable traps mac-notification [change] [move] [threshold]
Syntax Description
\begin{tabular}{ll}
\hline change & (Optional) Enables SNMP MAC change traps. \\
\hline move & (Optional) Enables SNMP MAC move traps. \\
\hline threshold (Optional) Enables SNMP MAC threshold traps.
\end{tabular}
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & The sending of SNMP MAC notification traps is disabled. \\
\(\overline{\text { Command Modes }}\) & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.
\(\overline{\text { Examples }}\)
This example shows how to generate SNMP MAC notification change traps:

Device(config)\# snmp-server enable traps mac-notification change

\section*{snmp-server enable traps ospf}

To enable SNMP Open Shortest Path First (OSPF) traps, use the snmp-server enable traps ospf command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps ospf \([\) cisco-specific | errors | lsa | rate-limit rate-limit-time
max-number-of-traps | retransmit | \(\quad\) state-change \(]\)
no snmp-server enable traps ospf \(\quad[\) cisco-specific | errors | lsa | rate-limit rate-limit-time
max-number-of-traps | retransmit | state-change]

\section*{Syntax Description}
\begin{tabular}{ll} 
cisco-specific & (Optional) Enables Cisco-specific traps. \\
\hline errors & (Optional) Enables error traps. \\
\hline Isa & (Optional) Enables link-state advertisement (LSA) traps. \\
\hline rate-limit & (Optional) Enables rate-limit traps. \\
\hline rate-limit-time & \begin{tabular}{l} 
(Optional) Specifies window of time in seconds for rate-limit traps. Accepted values \\
are 2 to 60.
\end{tabular} \\
\hline max-number-of-traps & (Optional) Specifies maximum number of rate-limit traps to be sent in window time. \\
\hline retransmit & (Optional) Enables packet-retransmit traps. \\
\hline state-change & (Optional) Enables state-change traps. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{The sending of OSPF SNMP traps is disabled.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Global configuration} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & Specify the host (NMS) that rec If no trap types are specified, all & host global configuration comm \\
\hline
\end{tabular}

Note Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to enable LSA traps:

Device(config) \# snmp-server enable traps ospf lsa

\section*{snmp-server enable traps pim}

To enable SNMP Protocol-Independent Multicast (PIM) traps, use the snmp-server enable traps pim command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps pim [invalid-pim-message] [neighbor-change] [rp-mapping-change] no snmp-server enable traps pim [invalid-pim-message] [neighbor-change] [rp-mapping-change]
\begin{tabular}{lll}
\hline Syntax Description & invalid-pim-message (Optional) Enables invalid PIM message traps. \\
& \begin{tabular}{ll} 
neighbor-change (Optional) Enables PIM neighbor-change traps. \\
& \begin{tabular}{ll} 
rp-mapping-change (Optional) Enables rendezvous point (RP)-mapping change traps. \\
\hline Command Default & The sending of PIM SNMP traps is disabled. \\
\hline Command Modes & Global configuration \\
\hline Command History & Release \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a \\
&
\end{tabular} \\
\hline
\end{tabular} & Modification \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{Examples}

This example shows how to enable invalid PIM message traps:

Device(config) \# snmp-server enable traps pim invalid-pim-message

\section*{snmp-server enable traps port-security}

To enable SNMP port security traps, use the snmp-server enable traps port-security command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps port-security [trap-rate value]
no snmp-server enable traps port-security [trap-rate value]
\begin{tabular}{|c|c|c|}
\hline Syntax Description & \begin{tabular}{ll} 
trap-rate & (Optional) Sets \\
value & from 0 to 1000
\end{tabular} & of port-security traps sent per second. The range is mit imposed; a trap is sent at every occurrence). \\
\hline Command Default & The sending of port security SN & \\
\hline Command Modes & Global configuration & \\
\hline Command History & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & Specify the host (NMS) that re If no trap types are specified, & the snmp-server host global configuration comman \\
\hline
\end{tabular}

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to enable port-security traps at a rate of 200 per second:

Device(config) \# snmp-server enable traps port-security trap-rate 200

\section*{snmp-server enable traps power-ethernet}

To enable SNMP power-over-Ethernet (PoE) traps, use the snmp-server enable traps power-ethernet command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps power-ethernet \{group number |police\} no snmp-server enable traps power-ethernet \{group number |police\}
\begin{tabular}{lll}
\hline \begin{tabular}{lll} 
Syntax Description & \begin{tabular}{l} 
group \\
number
\end{tabular} & \begin{tabular}{l} 
Enables inline power group-based traps for the specified group number. Accepted values are \\
from 1 to 9.
\end{tabular} \\
& police & Enables inline power policing traps.
\end{tabular} \\
\begin{tabular}{lll} 
Command Default & The sending of power-over-Ethernet SNMP traps is disabled. \\
\hline Command Modes & Global configuration & Modification \\
\hline Command History & & Release \\
& Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\end{tabular}

Usage Guidelines Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.


Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples This example shows how to enable power-over-Ethernet traps for group 1:

Device(config) \# snmp-server enable traps poower-over-ethernet group 1

\section*{snmp-server enable traps snmp}

To enable SNMP traps, use the snmp-server enable traps snmp command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps snmp [authentication] [coldstart ] [linkdown ] [linkup ] [warmstart] no snmp-server enable traps snmp [authentication] [coldstart] [linkdown] [linkup ] [warmstart]

Syntax Description
\begin{tabular}{ll}
\hline authentication & (Optional) Enables authentication traps. \\
\hline coldstart & (Optional) Enables cold start traps. \\
\hline linkdown & (Optional) Enables linkdown traps. \\
\hline linkup & (Optional) Enables linkup traps. \\
\hline warmstart & (Optional) Enables warmstart traps. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
The sending of SNMP traps is disabled.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.
\(\overline{\text { Examples }} \quad\) This example shows how to enable a warmstart SNMP trap:

Device(config) \# snmp-server enable traps snmp warmstart

\section*{snmp-server enable traps stackwise}

To enable SNMP StackWise traps, use the snmp-server enable traps stackwise command in global configuration mode. Use the no form of this command to return to the default setting.
```

snmp-server enable traps stackwise [GLS] [ILS] [SRLS]
[insufficient-power] [invalid-input-current]
[invalid-output-current] [member-removed] [member-upgrade-notification]
[new-master] [new-member] [port-change] [power-budget-warning][power-invalid-topology]
[power-link-status-changed] [power-oper-status-changed]
[power-priority-conflict] [power-version-mismatch] [ring-redundant]
[stack-mismatch] [unbalanced-power-supplies] [under-budget [under-voltage]
no snmp-server enable traps stackwise [GLS] [ILS] [SRLS]
[insufficient-power] [invalid-input-current]
[invalid-output-current] [member-removed] [member-upgrade-notification]
[new-master] [new-member] [port-change] [power-budget-warning][power-invalid-topology]
[power-link-status-changed] [power-oper-status-changed]
[power-priority-conflict] [power-version-mismatch] [ring-redundant]
[stack-mismatch] [unbalanced-power-supplies] [under-budget] [under-voltage]

```
    Syntax Description
\begin{tabular}{ll} 
GLS & (Optional) Enables StackWise stack power GLS trap. \\
\hline ILS & (Optional) Enables StackWise stack power ILS trap. \\
\hline SRLS & (Optional) Enables StackWise stack power SRLS trap. \\
\hline insufficient-power & (Optional) Enables StackWise stack power unbalanced power supplies trap. \\
\hline invalid-input-current & (Optional) Enables StackWise stack power invalid input current trap. \\
\hline invalid-output-current & (Optional) Enables StackWise stack power invalid output current trap. \\
\hline member-removed & (Optional) Enables StackWise stack member removed trap. \\
\hline member-upgrade-notification & (Optional) Enables StackWise member to be reloaded for upgrade trap. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline new-master & (Optional) Enables StackWise new primary trap. \\
\hline new-member & (Optional) Enables StackWise stack new member trap. \\
\hline port-change & (Optional) Enables StackWise stack port change trap. \\
\hline power-budget-warning & (Optional) Enables StackWise stack power budget warning trap. \\
\hline power-invalid-topology & (Optional) Enables StackWise stack power invalid topology trap. \\
\hline power-link-status-changed & (Optional) Enables StackWise stack power link status changed trap. \\
\hline power-oper-status-changed & (Optional) Enables StackWise stack power port oper status changed trap. \\
\hline power-priority-conflict & (Optional) Enables StackWise stack power priority conflict trap.
\end{tabular}
\begin{tabular}{ll}
\hline power-version-mismatch & \begin{tabular}{l} 
(Optional) Enables StackWise stack power version mismatch discovered \\
trap.
\end{tabular} \\
\hline ring-redundant & (Optional) Enables StackWise stack ring redundant trap. \\
\hline stack-mismatch & (Optional) Enables StackWise stack mismatch trap. \\
\hline unbalanced-power-supplies & (Optional) Enables StackWise stack power unbalanced power supplies trap. \\
\hline under-budget & (Optional) Enables StackWise stack power under budget trap. \\
\hline under-voltage & (Optional) Enables StackWise stack power under voltage trap. \\
\hline The sending of SNMP StackWise traps is disabled. \\
Global configuration & \\
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to generate StackWise stack power GLS traps:

\footnotetext{
Device(config) \# snmp-server enable traps stackwise GLS
}

\section*{snmp-server enable traps storm-control}

To enable SNMP storm-control trap parameters, use the snmp-server enable traps storm-control command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps storm-control \{ trap-rate number-of-minutes \} no snmp-server enable traps storm-control \{ trap-rate \}
\(\overline{\text { Syntax Description }} \quad\)\begin{tabular}{l} 
trap-rate \\
number-of-minutes
\end{tabular}
(Optional) Specifies the SNMP storm-control trap rate in minutes. Accepted values are from 0 to 1000 . The default is 0 .

Value 0 indicates that no limit is imposed and a trap is sent at every occurrence. When configured, show run all command output displays no snmp-server enable traps storm-control.
\begin{tabular}{lll}
\hline \begin{tabular}{lll} 
Command Default & & The sending of SNMP storm-control trap parameters is disabled. \\
\hline Command Modes & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular} &
\end{tabular}

\section*{Usage Guidelines \\ Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command.} If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{\(\overline{\text { Examples }}\)}

This example shows how to set the SNMP storm-control trap rate to 10 traps per minute:

Device(config) \# snmp-server enable traps storm-control trap-rate 10

\section*{snmp-server enable traps stpx}

To enable SNMP STPX MIB traps, use the snmp-server enable traps stpx command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps stpx [inconsistency] [loop-inconsistency] [root-inconsistency] no snmp-server enable traps stpx [inconsistency] [loop-inconsistency] [root-inconsistency]
Syntax Description
\begin{tabular}{l} 
inconsistency (Optional) Enables SNMP STPX MIB inconsistency update traps. \\
\hline loop-inconsistency (Optional) Enables SNMP STPX MIB loop inconsistency update traps. \\
\hline root-inconsistency (Optional) Enables SNMP STPX MIB root inconsistency update traps.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{The sending of SNMP STPX MIB traps is disabled.} \\
\hline Command Modes & Global configuration & \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Usage Guidelines & Specify the host (NMS) that rec If no trap types are specified, al & the snmp-server host global con \\
\hline
\end{tabular}

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples This example shows how to generate SNMP STPX MIB inconsistency update traps:

Device(config) \# snmp-server enable traps stpx inconsistency

\section*{snmp-server enable traps transceiver}

To enable SNMP transceiver traps, use the snmp-server enable traps transceiver command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps transceiver \{all \} no snmp-server enable traps transceiver \{all\}
Syntax Description
\begin{tabular}{ll}
\hline Command Default & The sending of SNMP transceiver traps is disabled. \\
\cline { 1 - 1 } Command Modes & Global configuration
\end{tabular}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command.
If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.
\(\overline{\text { Examples }} \quad\) This example shows how to set all SNMP transceiver traps:

Device(config) \# snmp-server enable traps transceiver all

\section*{snmp-server enable traps vrfmib}

To allow SNMP vrfmib traps, use the snmp-server enable traps vrfmib command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps vrfmib [vnet-trunk-down | vnet-trunk-up | vrf-down | vrf-up] no snmp-server enable traps vrfmib [vnet-trunk-down | vnet-trunk-up | vrf-down | vrf-up]

Syntax Description

\section*{Command Default \\ Command Modes \\ Command History}
\begin{tabular}{ll}
\hline vnet-trunk-down (Optional) Enables vrfmib trunk down traps. \\
\hline vnet-trunk-up & (Optional) Enables vrfmib trunk up traps. \\
\hline vrf-down & (Optional) Enables vrfmib vrf down traps. \\
\hline vrf-up & (Optional) Enables vrfmib vrf up traps. \\
\hline
\end{tabular}

The sending of SNMP vrfmib traps is disabled.
Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.
\(\qquad\)
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

\section*{Examples}

This example shows how to generate vrfmib trunk down traps:

Device(config) \# snmp-server enable traps vrfmib vnet-trunk-down

\section*{snmp-server enable traps vstack}

To enable SNMP smart install traps, use the snmp-server enable traps vstack command in global configuration mode. Use the no form of this command to return to the default setting.
snmp-server enable traps vstack [addition] [failure] [lost] [operation] no snmp-server enable traps vstack [addition] [failure] [lost] [operation]

\begin{tabular}{llll}
\hline Command Default & & The sending of SNMP smart install traps is disabled. & \\
\cline { 1 - 1 } Command Modes & Global configuration & \\
\hline Command History & Release & Modification \\
\cline { 3 - 4 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples
This example shows how to generate SNMP Smart Install client-added traps:

Device(config) \# snmp-server enable traps vstack addition

\section*{snmp-server enginelD}

To configure a name for either the local or remote copy of SNMP, use the snmp-server engineID command in global configuration mode.
snmp-server engineID \{local engineid-string | remote ip-address [udp-port port-number] engineid-string \}

Syntax Description

\section*{Command Modes}

Command History
local engineid-string \(\quad\) Specifies a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it has trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value.
remote ip-address Specifies the remote SNMP copy. Specify the ip-address of the device that contains the remote copy of SNMP.
udp-port port-number (Optional) Specifies the User Datagram Protocol (UDP) port on the remote device. The default is 162 .

Global configuration
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

None

\section*{Examples}

The following example configures a local engine ID of 123400000000000000000000 :

\section*{snmp-server group}

To configure a new Simple Network Management Protocol (SNMP) group, use the snmp-server group command in global configuration mode. To remove a specified SNMP group, use the no form of this command.
snmp-server group group-name \(\{\mathbf{v} 1|\mathbf{v 2 c}| \mathbf{v 3}\) \{auth \(\mid\) noauth \(\mid\) priv \(\}\}\) [context context-name] [match \{exact |prefix\}] [read read-view] [write write-view] [notify notify-view] [access [ipv6 named-access-list] [\{acl-numberacl-name \(\}]]\)
no snmp-server group group-name \(\{\mathbf{v} 1|\mathbf{v 2}| \mathbf{v 3}\{\) auth \(\mid\) noauth \(\mid\) priv\} \(\}\) [context context-name]

Syntax Description
\begin{tabular}{|l|l|}
\hline group-name & Name of the group. \\
\hline v1 & \begin{tabular}{l} 
Specifies that the group is using the SNMPv1 security model. SNMPv1 is the least \\
secure of the possible SNMP security models.
\end{tabular} \\
\hline v2c & \begin{tabular}{l} 
Specifies that the group is using the SNMPv2c security model. \\
The SNMPv2c security model allows informs to be transmitted and supports 64-character \\
strings.
\end{tabular} \\
\hline v3 & \begin{tabular}{l} 
Specifies that the group is using the SNMPv3 security model. \\
SMNPv3 is the most secure of the supported security models. It allows you to explicitly \\
configure authentication characteristics.
\end{tabular} \\
\hline auth & Specifies authentication of a packet without encrypting it. \\
\hline noauth & Specifies no authentication of a packet. \\
\hline priv & Specifies authentication of a packet with encryption. \\
\hline context & (Optional) Specifies the SNMP context to associate with this SNMP group and its views. \\
\hline context-name & (Optional) Context name. \\
\hline match & (Optional) Specifies an exact context match or matches only the context prefix. \\
\hline exact & (Optional) Matches the exact context. \\
\hline prefix & (Optional) Matches only the context prefix. \\
\hline read & \begin{tabular}{l} 
(Optional) Specifies a read view for the SNMP group. This view enables you to view \\
only the contents of the agent.
\end{tabular} \\
\hline read-view & \begin{tabular}{l} 
(Optional) String of a maximum of 64 characters that is the name of the view. \\
The default is that the read-view is assumed to be every object belonging to the Internet \\
object identifier (OID) space (1.3.6.1), unless the read option is used to override this \\
state.
\end{tabular} \\
\hline write & \begin{tabular}{l} 
(Optional) Specifies a write view for the SNMP group. This view enables you to enter \\
data and configure the contents of the agent.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline write-view & \begin{tabular}{l} 
(Optional) String of a maximum of 64 characters that is the name of the view. \\
The default is that nothing is defined for the write view (that is, the null OID). You must \\
configure write access.
\end{tabular} \\
\hline notify & \begin{tabular}{l} 
(Optional) Specifies a notify view for the SNMP group. This view enables you to specify \\
a notify, inform, or trap.
\end{tabular} \\
\hline notify-view & \begin{tabular}{l} 
(Optional) String of a maximum of 64 characters that is the name of the view. \\
By default, nothing is defined for the notify view (that is, the null OID) until the \\
snmp-server host command is configured. If a view is specified in the snmp-server \\
group command, any notifications in that view that are generated will be sent to all \\
users associated with the group (provided a SNMP server host configuration exists for \\
the user). \\
Cisco recommends that you let the software autogenerate the notify view. See the \\
"Configuring Notify Views" section in this document.
\end{tabular} \\
\hline access & \begin{tabular}{l} 
(Optional) Specifies a standard access control list (ACL) to associate with the group.
\end{tabular} \\
\hline ipv6 & \begin{tabular}{l} 
(Optional) Specifies an IPv6 named access list. If both IPv6 and IPv4 access lists are \\
indicated, the IPv6 named access list must appear first in the list.
\end{tabular} \\
\hline named-access-list & (Optional) Name of the IPv6 access list. \\
\hline acl-number & \begin{tabular}{l} 
(Optional) The acl-numberargument is an integer from 1 to 99 that identifies a previously \\
configured standard access list.
\end{tabular} \\
\hline acl-name & \begin{tabular}{l} 
(Optional) The acl-name argument is a string of a maximum of 64 characters that is the \\
name of a previously configured standard access list.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes

No SNMP server groups are configured.

\section*{Global configuration (config)}

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Fuji \\
16.8.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
When a community string is configured internally, two groups with the name public are autogenerated, one for the v1 security model and the other for the v2c security model. Similarly, deleting a community string will delete a v 1 group with the name public and a v2c group with the name public.

No default values exist for authentication or privacy algorithms when you configure the snmp-server group command. Also, no default passwords exist. For information about specifying a Message Digest 5 (MD5) password, see the documentation of the snmp-server user command.

\section*{Configuring Notify Views}

The notify-view option is available for two reasons:
- If a group has a notify view that is set using SNMP, you may need to change the notify view.
- The snmp-server host command may have been configured before the snmp-server group command. In this case, you must either reconfigure the snmp-server host command, or specify the appropriate notify view.

Specifying a notify view when configuring an SNMP group is not recommended, for the following reasons:
- The snmp-server host command autogenerates a notify view for the user, and then adds it to the group associated with that user.
- Modifying the group's notify view will affect all users associated with that group.

Instead of specifying the notify view for a group as part of the snmp-server group command, use the following commands in the order specified:
1. snmp-server user-Configures an SNMP user.
2. snmp-server group-Configures an SNMP group, without adding a notify view .
3. snmp-server host-Autogenerates the notify view by specifying the recipient of a trap operation.

\section*{SNMP Contexts}

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.
Use this command with the context context-name keyword and argument to associate a read, write, or notify SNMP view with an SNMP context.

\section*{Create an SNMP Group}

The following example shows how to create the SNMP server group "public," allowing read-only access for all objects to members of the standard named access list "lmnop":

Device(config) \# snmp-server group public v2c access lmnop

\section*{Remove an SNMP Server Group}

The following example shows how to remove the SNMP server group "public" from the configuration:

Device(config) \# no snmp-server group public v2c

\section*{Associate an SNMP Server Group with Specified Views}

The following example shows SNMP context "A" associated with the views in SNMPv2c group "GROUP1":

Device (config) \# snmp-server context A
Device (config) \# snmp mib community commA
```

Device(config)\# snmp mib community-map commA context A target-list commAVpn
Device(config) \# snmp-server group GROUP1 v2c context A read viewA write viewA notify viewB

```
\begin{tabular}{l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show snmp group & \begin{tabular}{l} 
Displays the names of groups on the device and the security model, the status \\
of the different views, and the storage type of each group.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Associates a SNMP community with an SNMP context, engine ID, security \\
name, or VPN target list.
\end{tabular} \\
\hline snmp-server host & Specifies the recipient of a SNMP notification operation. \\
\hline snmp-server user & Configures a new user to a SNMP group. \\
\hline
\end{tabular}

\section*{snmp-server host}

To specify the recipient (host) of a Simple Network Management Protocol (SNMP) notification operation, use the snmp-server host global configuration command on the device. Use the no form of this command to remove the specified host.
snmp-server host \(\{\) host-addr \(\}\) [ vrf vrf-instance ] [informs | traps] [version \(\{\mathbf{1}|2 c| 3\) \{auth | noauth | priv\} \} ] \{community-string [notification-type] \} no snmp-server host \{host-addr\} [vrf vrf-instance] [informs | traps] [version \{1 | 2c | 3 \{auth | noauth | priv\} \} ] \{community-string [notification-type] \}
\begin{tabular}{|c|c|}
\hline host-addr & Name or Internet address of the host (the targeted recipient). \\
\hline vrf vrf -instance & (Optional) Specifies the virtual private network (VPN) routing instance and name for this host. \\
\hline informs | traps & (Optional) Sends SNMP traps or informs to this host. \\
\hline \[
\begin{aligned}
& \text { version } 1|2 \mathrm{c}| \\
& \mathbf{3}
\end{aligned}
\] & \begin{tabular}{l}
(Optional) Specifies the version of the SNMP used to send the traps. \\
1-SNMPv1. This option is not available with informs. \\
2c-SNMPv2C. \\
3-SNMPv3. One of the authorization keywords (see next table row) must follow the Version 3 keyword.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { auth | noauth } \\
& \text { | priv }
\end{aligned}
\] & \begin{tabular}{l}
auth (Optional)—Enables Message Digest 5 (MD5) and Secure Hash Algorithm (SHA) packet authentication. \\
noauth (Default)—The noAuthNoPriv security level. This is the default if the auth | noauth \(\mid\) priv keyword choice is not specified. \\
priv (Optional)-Enables Data Encryption Standard (DES) packet encryption (also called privacy).
\end{tabular} \\
\hline
\end{tabular}
community-string Password-like community string sent with the notification operation. Though you can set this string by using the snmp-server host command, we recommend that you define this string by using the snmp-server community global configuration command before using the snmp-server host command.
Note The @ symbol is used for delimiting the context information. Avoid using the @ symbol as part of the SNMP community string when configuring this command.
notification-type (Optional) Type of notification to be sent to the host. If no type is specified, all notifications are sent. The notification type can be one or more of the these keywords:
- auth-framework-Sends SNMP CISCO-AUTH-FRAMEWORK-MIB traps.
- bridge-Sends SNMP Spanning Tree Protocol (STP) bridge MIB traps.
- bulkstat-Sends Data-Collection-MIB Collection notification traps.
- call-home-Sends SNMP CISCO-CALLHOME-MIB traps.
- cef-Sends SNMP CEF traps.
- config-Sends SNMP configuration traps.
- config-copy-Sends SNMP config-copy traps.
- config-ctid-Sends SNMP config-ctid traps.
- copy-config-Sends SNMP copy configuration traps.
- cpu-Sends CPU notification traps.
- cpu threshold-Sends CPU threshold notification traps.
- eigrp-Sends SNMP EIGRP traps.
- entity-Sends SNMP entity traps.
- envmon-Sends environmental monitor traps.
- errdisable-Sends SNMP errdisable notification traps.
- event-manager-Sends SNMP Embedded Event Manager traps.
- flash-Sends SNMP FLASH notifications.
- flowmon-Sends SNMP flowmon notification traps.
- ipmulticast-Sends SNMP IP multicast routing traps.
- ipsla—Sends SNMP IP SLA traps.
- isis-Sends IS-IS traps.
- license-Sends license traps.
- local-auth—Sends SNMP local auth traps.
- mac-notification-Sends SNMP MAC notification traps.
- ospf—Sends Open Shortest Path First (OSPF) traps.
- pim-Sends SNMP Protocol-Independent Multicast (PIM) traps.
- port-security-Sends SNMP port-security traps.
- power-ethernet-Sends SNMP power Ethernet traps.
- snmp-Sends SNMP-type traps.
- storm-control-Sends SNMP storm-control traps.
- stpx—Sends SNMP STP extended MIB traps.
- syslog—Sends SNMP syslog traps.
- transceiver-Sends SNMP transceiver traps.
- tty-Sends TCP connection traps.
- vlan-membership- Sends SNMP VLAN membership traps.
- vlancreate-Sends SNMP VLAN-created traps.
- vlandelete-Sends SNMP VLAN-deleted traps.
- vrfmib-Sends SNMP vrfmib traps.
- vstack—Sends SNMP Smart Install traps.
- vtp-Sends SNMP VLAN Trunking Protocol (VTP) traps.
- wireless-Sends wireless traps.

\section*{Command Default}

This command is disabled by default. No notifications are sent.
If you enter this command with no keywords, the default is to send all trap types to the host. No informs are sent to this host.

If no version keyword is present, the default is Version 1.
If Version 3 is selected and no authentication keyword is entered, the default is the noauth (noAuthNoPriv) security level.

Note Though visible in the command-line help strings, the fru-ctrl keyword is not supported.

\section*{Command Modes} Command History

Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

SNMP notifications can be sent as traps or inform requests. Traps are unreliable because the receiver does not send acknowledgments when it receives traps. The sender cannot determine if the traps were received. However, an SNMP entity that receives an inform request acknowledges the message with an SNMP response PDU. If the sender never receives the response, the inform request can be sent again, so that informs are more likely to reach their intended destinations.

However, informs consume more resources in the agent and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request must be held in memory until a response is received or the request times out. Traps are also sent only once, but an inform might be retried several times. The retries increase traffic and contribute to a higher overhead on the network.
If you do not enter an snmp-server host command, no notifications are sent. To configure the device to send SNMP notifications, you must enter at least one snmp-server host command. If you enter the command with no keywords, all trap types are enabled for the host. To enable multiple hosts, you must enter a separate snmp-server host command for each host. You can specify multiple notification types in the command for each host.

If a local user is not associated with a remote host, the device does not send informs for the auth (authNoPriv) and the priv (authPriv) authentication levels.

When multiple snmp-server host commands are given for the same host and kind of notification (trap or inform), each succeeding command overwrites the previous command. Only the last snmp-server host command is in effect. For example, if you enter an snmp-server host inform command for a host and then enter another snmp-server host inform command for the same host, the second command replaces the first.
The snmp-server host command is used with the snmp-server enable traps global configuration command. Use the snmp-server enable traps command to specify which SNMP notifications are sent globally. For a host to receive most notifications, at least one snmp-server enable traps command and the snmp-server host command for that host must be enabled. Some notification types cannot be controlled with the snmp-server enable traps command. For example, some notification types are always enabled. Other notification types are enabled by a different command.
The no snmp-server host command with no keywords disables traps, but not informs, to the host. To disable informs, use the no snmp-server host informs command.
\(\overline{\text { Examples }} \quad\) This example shows how to configure a unique SNMP community string named comaccess for traps and prevent SNMP polling access with this string through access-list 10:
```

Device(config)\# snmp-server community comaccess ro 10
Device(config)\# snmp-server host 172.20.2.160 comaccess
Device(config)\# access-list 10 deny any

```

This example shows how to send the SNMP traps to the host specified by the name myhost.cisco.com. The community string is defined as comaccess:
```

Device(config)\# snmp-server enable traps
Device(config)\# snmp-server host myhost.cisco.com comaccess snmp

```

This example shows how to enable the device to send all traps to the host myhost.cisco.com by using the community string public:
```

Device(config)\# snmp-server enable traps
Device(config)\# snmp-server host myhost.cisco.com public

```

You can verify your settings by entering the show running-config privileged EXEC command.

\section*{snmp-server manager}

To start the Simple Network Management Protocol (SNMP) manager process, use the snmp-server manager command in global configuration mode. To stop the SNMP manager process, use the no form of this command.
snmp-server manager no snmp-server manager

\section*{Command Default \\ Command Modes \\ Usage Guidelines}

Global configuration (config)
Release Modification

Cisco IOS XE Everest 16.5.1a The command was introduced.

The SNMP manager process sends SNMP requests to agents and receives SNMP responses and notifications from agents. When the SNMP manager process is enabled, the router can query other SNMP agents and process incoming SNMP traps.
Most network security policies assume that routers will be accepting SNMP requests, sending SNMP responses, and sending SNMP notifications. With the SNMP manager functionality enabled, the router may also be sending SNMP requests, receiving SNMP responses, and receiving SNMP notifications. The security policy implementation may need to be updated prior to enabling this functionality.

SNMP requests are typically sent to UDP port 161. SNMP responses are typically sent from UDP port 161. SNMP notifications are typically sent to UDP port 162.

The following example shows how to enable the SNMP manager process:
Router(config) \# snmp-server manager

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show running-config & \begin{tabular}{l} 
Displays the contents of the currently running configuration file or the \\
configuration for a specific interface, or map class information.
\end{tabular} \\
\hline show snmp user & Displays information on each SNMP username in the group username table. \\
\hline snmp-server engineID & \begin{tabular}{l} 
Displays the identification of the local SNMP engine and all remote engines that \\
have been configured on the device.
\end{tabular} \\
\hline
\end{tabular}

\section*{snmp-server user}

To configure a new user to a Simple Network Management Protocol (SNMP) group, use the snmp-server user command in global configuration mode. To remove a user from an SNMP group, use the no form of this command.
snmp-server user username group-name [remote host [udp-port port] [vrf vrf-name]] \{v1|v2c| v3 [encrypted] [auth \(\{\mathbf{m d 5} \mid\) sha \(\}\) auth-password]\} [access [ipv6 nacl] [priv \{des |3des |aes \{128 | \(\mathbf{1 9 2} \mid \mathbf{2 5 6}\}\}\) privpassword] \{acl-numberacl-name\}]
no snmp-server user username group-name [remote host [udp-port port] [vrf vrf-name]] \{v1| \(\mathbf{v 2 c} \mid \mathbf{v 3}\) [encrypted] [auth \{md5|sha\} auth-password]\} [access [ipv6 nacl] [priv \{des |3des |aes \(\{\mathbf{1 2 8}|\mathbf{1 9 2}| \mathbf{2 5 6}\}\}\) privpassword] \{acl-numberacl-name\}]

\section*{Syntax Description}
\begin{tabular}{|c|c|}
\hline username & Name of the user on the host that connects to the agent. \\
\hline group-name & Name of the group to which the user belongs. \\
\hline remote & (Optional) Specifies a remote SNMP entity to which the user belongs, and the hostname or IPv6 address or IPv4 IP address of that entity. If both an IPv6 address and IPv4 IP address are being specified, the IPv6 host must be listed first. \\
\hline host & (Optional) Name or IP address of the remote SNMP host. \\
\hline udp-port & (Optional) Specifies the User Datagram Protocol (UDP) port number of the remote host. \\
\hline port & (Optional) Integer value that identifies the UDP port. The default is 162 . \\
\hline vrf & (Optional) Specifies an instance of a routing table. \\
\hline vrf-name & (Optional) Name of the Virtual Private Network (VPN) routing and forwarding (VRF) table to use for storing data. \\
\hline v1 & Specifies that SNMPv1 should be used. \\
\hline v2c & Specifies that SNMPv2c should be used. \\
\hline v3 & Specifies that the SNMPv3 security model should be used. Allows the use of the encrypted keyword or auth keyword or both. \\
\hline encrypted & (Optional) Specifies whether the password appears in encrypted format. \\
\hline auth & (Optional) Specifies which authentication level should be used. \\
\hline md5 & (Optional) Specifies the HMAC-MD5-96 authentication level. \\
\hline sha & (Optional) Specifies the HMAC-SHA-96 authentication level. \\
\hline auth-password & (Optional) String (not to exceed 64 characters) that enables the agent to receive packets from the host. \\
\hline access & (Optional) Specifies an Access Control List (ACL) to be associated with this SNMP user. \\
\hline ipv6 & (Optional) Specifies an IPv6 named access list to be associated with this SNMP user. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline nacl & \begin{tabular}{l} 
(Optional) Name of the ACL. IPv4, IPv6, or both IPv4 and IPv6 access lists may be \\
specified. If both are specified, the IPv6 named access list must appear first in the statement.
\end{tabular} \\
\hline priv & \begin{tabular}{l} 
(Optional) Specifies the use of the User-based Security Model (USM) for SNMP version \\
3 for SNMP message level security.
\end{tabular} \\
\hline des & \begin{tabular}{l} 
(Optional) Specifies the use of the 56-bit Digital Encryption Standard (DES) algorithm for \\
encryption.
\end{tabular} \\
\hline \(\mathbf{3 d e s}\) & \begin{tabular}{l} 
(Optional) Specifies the use of the 168-bit 3DES algorithm for encryption. \\
encryption.
\end{tabular} \\
\hline \(\mathbf{a e s}\) & (Optional) Specifies the use of a 128-bit AES algorithm for encryption. \\
\hline \(\mathbf{1 2 8}\) & (Optional) Specifies the use of a 192-bit AES algorithm for encryption. \\
\hline \(\mathbf{1 9 2}\) & (Optional) Specifies the use of a 256-bit AES algorithm for encryption. \\
\hline \(\mathbf{2 5 6}\) & (Optional) String (not to exceed 64 characters) that specifies the privacy user password. \\
\hline privpassword & \begin{tabular}{l} 
(Optional) Integer in the range from 1 to 99 that specifies a standard access list of IP \\
addresses.
\end{tabular} \\
\hline acl-number & \begin{tabular}{l} 
(Optional) String (not to exceed 64 characters) that is the name of a standard access list of \\
IP addresses.
\end{tabular} \\
\hline acl-name & \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes
Global configuration (config)

\section*{Command History}

\section*{Usage Guidelines} lists.

See the table in the "Usage Guidelines" section for default behaviors for encryption, passwords, and access
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Fuji \\
16.8.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the snmp-server engineID command with the remote keyword. The remote agent's SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command will fail.

For the privpassword and auth-passwordarguments, the minimum length is one character; the recommended length is at least eight characters, and should include both letters and numbers. The recommended maximum length is 64 characters.

The table below describes the default user characteristics for encryption, passwords, and access lists.

Table 131: snmp-server user Default Descriptions
\begin{tabular}{|l|l|}
\hline Characteristic & Default \\
\hline Access lists & Access from all IP access lists is permitted. \\
\hline Encryption & \begin{tabular}{l} 
Not present by default. The encrypted keyword is used to specify that the passwords are \\
message digest algorithm 5 (MD5)digests and not text passwords.
\end{tabular} \\
\hline Passwords & Assumed to be text strings. \\
\hline Remote users & \begin{tabular}{l} 
All users are assumed to be local to this SNMP engine unless you specify they are remote \\
with the remote keyword.
\end{tabular} \\
\hline
\end{tabular}

SNMP passwords are localized using the SNMP engine ID of the authoritative SNMP engine. For informs, the authoritative SNMP agent is the remote agent. You need to configure the remote agent's SNMP engine ID in the SNMP database before you can send proxy requests or informs to it.

Changing the engine ID after configuring the SNMP user, does not allow to remove the user. To remove the user, you need to first reconfigure the SNMP user.

\section*{Working with Passwords and Digests}

No default values exist for authentication or privacy algorithms when you configure the command. Also, no default passwords exist. The minimum length for a password is one character, although Cisco recommends using at least eight characters for security. The recommended maximum length of a password is 64 characters. If you forget a password, you cannot recover it and will need to reconfigure the user. You can specify either a plain-text password or a localized MD5 digest.
If you have the localized MD5 or Secure Hash Algorithm (SHA) digest, you can specify that string instead of the plain-text password. The digest should be formatted as aa:bb:cc:dd where aa, bb, and cc are hexadecimal values. Also, the digest should be exactly 16 octets long.

\section*{Examples}

The following example shows how to add the user abcd to the SNMP server group named public. In this example, no access list is specified for the user, so the standard named access list applied to the group applies to the user.

Device(config)\# snmp-server user abcd public v2c
The following example shows how to add the user abcd to the SNMP server group named public. In this example, access rules from the standard named access list qrst apply to the user.

Device(config) \# snmp-server user abcd public v2c access qrst
In the following example, the plain-text password cisco123 is configured for the user abcd in the SNMP server group named public:

Device(config) \# snmp-server user abcd public v3 auth md5 cisco123

When you enter a show running-config command, a line for this user will be displayed. To learn if this user has been added to the configuration, use the show snmp user command.

The show running-config command does not display any of the active SNMP users created in authPriv or authNoPriv mode, though it does display the users created in noAuthNoPriv mode. To display any active SNMPv3 users created in authPriv, authNoPrv, or noAuthNoPriv mode, use the show snmp user command.

If you have the localized MD5 or SHA digest, you can specify that string instead of the plain-text password. The digest should be formatted as aa:bb:cc:dd where \(\mathrm{aa}, \mathrm{bb}\), and cc are hexadecimal values. Also, the digest should be exactly 16 octets long.
In the following example, the MD5 digest string is used instead of the plain-text password:
```

Device(config)\# snmp-server user abcd public v3 encrypted auth md5
00:11:22:33:44:55:66:77:88:99:AA:BB:CC:DD : EE : FF

```

In the following example, the user abcd is removed from the SNMP server group named public:

Device(config) \# no snmp-server user abcd public v2c

In the following example, the user abcd from the SNMP server group named public specifies the use of the 168-bit 3DES algorithm for privacy encryption with secure3des as the password.

Device(config) \# snmp-server user abcd public priv v2c 3des secure3des

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show running-config & \begin{tabular}{l} 
Displays the contents of the currently running configuration file or the \\
configuration for a specific interface, or map class information.
\end{tabular} \\
\hline show snmp user & Displays information on each SNMP username in the group username table. \\
\hline snmp-server engineID & \begin{tabular}{l} 
Displays the identification of the local SNMP engine and all remote engines that \\
have been configured on the device.
\end{tabular} \\
\hline
\end{tabular}

\section*{snmp-server view}

To create or update a view entry, use the snmp-server view command in global configuration mode. To remove the specified Simple Network Management Protocol (SNMP) server view entry, use the noform of this command.
snmp-server view view-name oid-tree \(\{\) included \(\mid\) excluded \(\}\)
no smmp-server view view-name

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline view-name & \begin{tabular}{l} 
Label for the view record that you are updating or creating. The name is used to reference the \\
record.
\end{tabular} \\
\hline oid-tree & \begin{tabular}{l} 
Object identifier of the ASN.1 subtree to be included or excluded from the view. To identify \\
the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as \\
system. Replace a single subidentifier with the asterisk \(\left(^{*}\right.\) ) wildcard to specify a subtree family; \\
for example 1.3.*.4.
\end{tabular} \\
\hline included & \begin{tabular}{l} 
Configures the OID (and subtree OIDs) specified in oid-tree argument to be included in the \\
SNMP view.
\end{tabular} \\
\hline excluded & \begin{tabular}{l} 
Configures the OID (and subtree OIDs) specified in oid-tree argument to be explicitly excluded \\
from the SNMP view.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History

\section*{Usage Guidelines}

Other SNMP commands require an SMP view as an argument. You use this command to create a view to be used as arguments for other commands.

Two standard predefined views can be used when a view is required, instead of defining a view. One is everything, which indicates that the user can see all objects. The other is restricted, which indicates that the user can see three groups: system, snmpStats, and snmpParties. The predefined views are described in RFC 1447.

The first snmp-server command that you enter enables SNMP on your routing device.

\section*{Examples}

The following example creates a view that includes all objects in the MIB-II subtree:
snmp-server view mib2 mib-2 included

The following example creates a view that includes all objects in the MIB-II system group and all objects in the Cisco enterprise MIB:
```

snmp-server view root_view system included
snmp-server view root_view cisco included

```

The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group:
```

snmp-server view agon system included
snmp-server view agon system.7 excluded
snmp-server view agon ifEntry.*.1 included

```

In the following example, the USM, VACM, and Community MIBs are explicitly included in the view "test" with all other MIBs under the root parent "internet":
```

! -- include all MIBs under the parent tree "internet"
snmp-server view test internet included
! -- include snmpUsmMIB
snmp-server view test 1.3.6.1.6.3.15 included
! -- include snmpVacmMIB
snmp-server view test 1.3.6.1.6.3.16 included
! -- exclude snmpCommunityMIB
snmp-server view test 1.3.6.1.6.3.18 excluded

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline snmp-server community & Sets up the community access string to permit access to the SNMP protocol. \\
\hline snmp-server manager & Starts the SNMP manager process. \\
\hline
\end{tabular}

\section*{source}

Syntax Description

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

To configure the source IP address interface for all of the packets sent by a Flexible Netflow flow exporter, use the source command in flow exporter configuration mode. To remove the source IP address interface for all of the packets sent by a Flexible Netflow flow exporter, use the no form of this command.
source interface-type interface-number
no source
interface-type Type of interface whose IP address you want to use for the source IP address of the packets sent by a Flexible Netflow flow exporter.
interface-number Interface number whose IP address you want to use for the source IP address of the packets sent by a Flexible Netflow flow exporter.

The IP address of the interface over which the Flexible Netflow datagram is transmitted is used as the source IP address.

Flow exporter configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

The benefits of using a consistent IP source address for the datagrams that Flexible Netflow sends include the following:
- The source IP address of the datagrams exported by Flexible Netflow is used by the destination system to determine from which device the Flexible Netflow data is arriving. If your network has two or more paths that can be used to send Flexible Netflow datagrams from the device to the destination system and you do not specify the source interface from which the source IP address is to be obtained, the device uses the IP address of the interface over which the datagram is transmitted as the source IP address of the datagram. In this situation the destination system might receive Flexible Netflow datagrams from the same device, but with different source IP addresses. When the destination system receives Flexible Netflow datagrams from the same device with different source IP addresses, the destination system treats the Flexible Netflow datagrams as if they were being sent from different devices . To avoid having the destination system treat the Flexible Netflow datagrams as if they were being sent from different devices, you must configure the destination system to aggregate the Flexible Netflow datagrams it receives from all of the possible source IP addresses in the device into a single Flexible Netflow flow.
- If your device has multiple interfaces that can be used to transmit datagrams to the destination system, and you do not configure the source command, you will have to add an entry for the IP address of each interface into any access lists that you create for permitting Flexible Netflow traffic. Creating and maintaining access lists for permitting Flexible Netflow traffic from known sources and blocking it from unknown sources is easier when you limit the source IP address for Flexible Netflow datagrams to a single IP address for each device that is exporting Flexible Netflow traffic.

\section*{\(\triangle\)}

The interface that you configure as the source interface must have an IP address configured, and it must be up.

\section*{Examples}

The following example shows how to configure Flexible Netflow to use a loopback interface as the source interface for NetFlow traffic:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)\# source loopback 0

```

\section*{source (ERSPAN)}

To configure the Encapsulated Remote Switched Port Analyzer (ERSPAN) source interface or VLAN, and the traffic direction to be monitored, use the source command in ERSPAN monitor source session configuration mode. To disable the configuration, use the no form of this command.
source \(\{\) interface type number | vlan vlan-ID \(\}[\{,|-|\) both \(|\mathbf{r x}| \mathbf{t x}\}]\)

\section*{Syntax Description}
\begin{tabular}{ll}
\hline interface type number & Specifies an interface type and number. \\
\hline vlan vlan-ID & \begin{tabular}{l} 
Associates the ERSPAN source session number with VLANs. Valid values are \\
from 1 to 4094.
\end{tabular} \\
\hline, & (Optional) Specifies another interface. \\
\hline- & (Optional) Specifies a range of interfaces. \\
\hline \(\mathbf{b o t h}\) & (Optional) Monitors both received and transmitted ERSPAN traffic. \\
\hline \(\mathbf{r x}\) & (Optional) Monitors only received traffic. \\
\hline \(\mathbf{t x}\) & (Optional) Monitors only transmitted traffic. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Source interface or VLAN is not configured.

ERSPAN monitor source session configuration mode (config-mon-erspan-src)

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}

You cannot include source VLANs and filter VLANs in the same session.

The following example shows how to configure ERSPAN source session properties:

Device(config) \# monitor session 2 type erspan-source
Device(config-mon-erspan-src) \# source interface fastethernet 0/1 rx

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline monitor session type & Configures a local ERSPAN source or destination session. \\
\hline
\end{tabular}

\section*{socket}

To specify the client socket and allow a TCL interpreter to connect via TCP over IPv4/IPv6 and open a TCP network connection use the socket comand in the TCL configuration mode.
socket myaddr address myport port myvrf vrf-table-name host port

\section*{Syntax Description}
myaddr Specifies domain name or numerical IP address of the client-side network interface required for the connection. Use this option especially if the client machine has multiple network interfaces.
myport Specifies port number that is required for the client's connection.
myvrf Specifies the vrf table name. If the vrf table is not configured, then the command will return a TCL_ERROR.
\begin{tabular}{llll}
\(\overline{\text { Command Default }}\) & & \\
\cline { 1 - 1 } Command Modes & & TCL configuration mode & \\
& & Release & Modification \\
& & Cisco IOS XE Amsterdam 17.2.1 & The myvrf keyword was introduced. \\
\hline
\end{tabular}

\section*{switchport mode access}

To sets the interface as a nontrunking nontagged single-VLAN Ethernet interface, use the switchport mode access command in template configuration mode. Use the no form of this command to return to the default setting.
switchport mode access
no switchport mode access

\section*{Syntax Description}
switchport mode access Sets the interface as a nontrunking nontagged single-VLAN Ethernet interface.

\section*{Command Default}
Command Modes

Command History
An access port can carry traffic in one VLAN only. By default, an access port carries traffic for VLAN1.
Template configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\(\overline{\text { Examples }}\)
This example shows how to set a single-VLAN interface

Device(config-template) \# switchport mode access

\section*{switchport voice vlan}

To specify to forward all voice traffic through the specified VLAN, use the switchport voice vlan command in template configuration mode. Use the no form of this command to return to the default setting.
switchport voice vlanvlan_id
no switchport voice vlan

Syntax Description


Command Modes
Command History
switchport voice vlanvlan_id Specifies to forward all voice traffic through the specified VLAN.

You can specify a value from 1 to 4094.
Template configuration
Release \(\quad\) Modification

Cisco IOS XE Everest 16.5.1a Cisco IOS XE Fuji This command was introduced. 16.9.1

Examples
This example shows how to specify to forward all voice traffic through the specified VLAN.

Device(config-template)\# switchport voice vlan 20

To configure the time-to-live (TTL) value, use the ttl command in flow exporter configuration mode. To remove the TTL value, use the no form of this command.
ttl ttl
no ttl \(t t l\)

Syntax Description
Command Default
Command Modes

Command History
\(t t l\) Time-to-live (TTL) value for exported datagrams. The range is 1 to 255 . The default is 255 .

Flow exporters use a TTL of 255.
Flow exporter configuration
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

To return this command to its default settings, use the no ttl or default ttl flow exporter configuration command.
The following example specifies a TTL of 15 :
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)\# ttl 15

```

\section*{transport}

To configure the transport protocol for a flow exporter for Flexible Netflow, use the transport command in flow exporter configuration mode. To remove the transport protocol for a flow exporter, use the no form of this command.
transport udp udp-port
no transport udp udp-port

Syntax Description

Command Default
Command Modes Flow exporter configuration
Command History

Usage Guidelines
Flow exporters use UDP on port 9995.
udp udp-port Specifies User Datagram Protocol (UDP) as the transport protocol and the UDP port number.
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

To return this command to its default settings, use the no transport or default transport flow exporter configuration command.

The following example configures UDP as the transport protocol and a UDP port number of 250:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter) \# transport udp 250

```

\section*{template data timeout}

To specify a timeout period for resending flow exporter template data, use the template data timeout command in flow exporter configuration mode. To remove the template resend timeout for a flow exporter, use the no form of this command.
template data timeout seconds no template data timeout seconds

Syntax Description
Command Default

Command Modes
Command History

\section*{Usage Guidelines}
seconds Timeout value in seconds. The range is 1 to 86400 . The default is 600 .

The default template resend timeout for a flow exporter is 600 seconds.
Flow exporter configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Flow exporter template data describes the exported data records. Data records cannot be decoded without the corresponding template. The template data timeout command controls how often those templates are exported.
To return this command to its default settings, use the no template data timeout or default template data timeout flow record exporter command.

The following example configures resending templates based on a timeout of 1000 seconds:
```

Device(config)\# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter) \# template data timeout 1000

```

\section*{udp peek}

To enable peeking into a UDP socket use the udp_peek command in the TCL configuration mode.
udp_peek socket buffersize buffer-size
\begin{tabular}{|c|c|c|}
\hline Syntax Description & buffersize Specifies the buffer size. & \\
\hline Command Default & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TCL configuration mode}} \\
\hline Command Modes & & \\
\hline Command History & Release & Modification \\
\hline
\end{tabular}

Cisco IOS XE Amsterdam 17.2.1 This command was introduced.


\section*{pari IX}

\section*{OoS}
- QoS Commands, on page 1261


\section*{OoS Commands}
- auto qos classify, on page 1262
- auto qos trust, on page 1264
- auto qos video, on page 1271
- auto qos voip , on page 1281
- class, on page 1295
- class-map, on page 1297
- debug auto qos, on page 1299
- match (class-map configuration), on page 1300
- policy-map, on page 1303
- priority, on page 1305
- qos stack-buffer, on page 1307
- qos queue-softmax-multiplier, on page 1308
- queue-buffers ratio, on page 1309
- queue-limit, on page 1310
- random-detect cos, on page 1312
- random-detect cos-based, on page 1313
- random-detect dscp, on page 1314
- random-detect dscp-based, on page 1316
- random-detect precedence, on page 1317
- random-detect precedence-based, on page 1319
- service-policy (Wired), on page 1320
- set, on page 1322
- show auto qos, on page 1328
- show class-map, on page 1330
- show platform hardware fed switch, on page 1331
- show platform software fed switch qos, on page 1334
- show platform software fed switch qos qsb, on page 1335
- show policy-map, on page 1338
- show tech-support qos, on page 1340
- trust device, on page 1342

\section*{auto qos classify}

To automatically configure quality of service ( QoS ) classification for untrusted devices within a QoS domain, use the auto qos classify command in interface configuration mode. To return to the default setting, use the no form of this command.
auto qos classify [police] no auto qos classify [police]

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
police (Optional) Configure QoS policing for untrusted devices.

Auto-QoS classify is disabled on the port.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Use this command to configure the QoS for trusted interfaces within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS.
When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.
Auto-QoS configures the device for connectivity with a trusted interface. The QoS labels of incoming packets are trusted. For nonrouted ports, the CoS value of the incoming packets is trusted. For routed ports, the DSCP value of the incoming packet is trusted.
To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.

The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the debug auto qos privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the auto qos classify and auto qos classify police commands:

Policy maps (For the auto qos classify policecommand):
- AutoQos-4.0-Classify-Police-Input-Policy
- AutoQos-4.0-Output-Policy

\section*{Class maps:}
- AutoQos-4.0-Multimedia-Conf-Class (match-any)
- AutoQos-4.0-Bulk-Data-Class (match-any)
- AutoQos-4.0-Transaction-Class (match-any)
- AutoQos-4.0-Scavanger-Class (match-any)
- AutoQos-4.0-Signaling-Class (match-any)
- AutoQos-4.0-Default-Class (match-any)
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

To disable auto-QoS on a port, use the no auto qos classify interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the no auto qos classify command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

\section*{Examples}

This example shows how to enable auto-QoS classification of an untrusted device and police traffic:
You can verify your settings by entering the show auto qos interface interface-id privileged EXEC command.

\section*{auto qos trust}

To automatically configure quality of service ( QoS ) for trusted interfaces within a QoS domain, use the auto qos trust command in interface configuration mode. To return to the default setting, use the no form of this command.
auto qos trust \(\{\cos \mid\) dscp \(\}\)
no auto qos trust \(\{\cos \mid\) dscp \(\}\)

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}
cos Trusts the CoS packet classification.
dscp Trusts the DSCP packet classification.

Auto-QoS trust is disabled on the port.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Use this command to configure the QoS for trusted interfaces within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS. When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.

Table 132: Traffic Types, Packet Labels, and Queues
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
VOIP Data \\
Traffic
\end{tabular} & \begin{tabular}{l} 
VOIP \\
Control \\
Traffic
\end{tabular} & \begin{tabular}{l} 
Routing \\
Protocol \\
Traffic
\end{tabular} & \begin{tabular}{l} 
STP \(^{4}\) BPDU \(^{\text { }}\) \\
Traffic
\end{tabular} & \begin{tabular}{l} 
Real-Time \\
Video Traffic
\end{tabular} & All Other Traffic \\
\hline DSCP \(^{6}\) & 46 & 24,26 & 48 & 56 & 34 & - \\
\hline \(\operatorname{CoS}^{7}\) & 5 & 3 & 6 & 7 & 3 & - \\
\hline
\end{tabular}
\({ }_{5}^{4}\) STP \(=\) Spanning Tree Protocol
5 BPDU \(=\) bridge protocol data unit
\({ }^{6}\) DSCP = Differentiated Services Code Point
\({ }^{7} \mathrm{CoS}=\) class of service

Note The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the debug auto qos privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the auto qos trust cos command.

Policy maps:
- AutoQos-4.0-Trust-Cos-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the auto qos trust dscp command:

\section*{Policy maps:}
- AutoQos-4.0-Trust-Dscp-Input-Policy
- AutoQos-4.0-Output-Policy

\section*{Class maps:}
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

To disable auto-QoS on a port, use the no auto qos trust interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the no auto qos trust command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

\section*{Examples}

This example shows how to enable auto-QoS for a trusted interface with specific CoS classification.
```

Device(config)\# interface gigabitethernet1/0/17
Device(config-if)\# auto qos trust cos
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/17
Gigabitethernet1/0/17
Service-policy input: AutoQos-4.0-Trust-Cos-Input-Policy
Class-map: class-default (match-any)
O packets
Match: any
O packets, 0 bytes
5 minute rate 0 bps
QoS Set
cos cos table AutoQos-4.0-Trust-Cos-Table
Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
O packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1

```
```

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent }8
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
O packets
Match: dscp af21 (18) af22 (20) af23 (22)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10

```
```

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
O packets
Match: dscp cs1 (8)
O packets, O bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
0 packets
Match: any
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio }2

```

This example shows how to enable auto-QoS for a trusted interface with specific DSCP classification.
```

Device(config)\# interface gigabitethernet1/0/18
Device(config-if)\# auto qos trust dscp
Device(config-if)\# end
Device\#show policy-map interface gigabitethernet1/0/18
Gigabitethernet1/0/18

```
```

Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy

```
Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy
    Class-map: class-default (match-any)
    Class-map: class-default (match-any)
        0 packets
        0 packets
        Match: any
        Match: any
            O packets, 0 bytes
            O packets, 0 bytes
            5 minute rate 0 bps
            5 minute rate 0 bps
        QoS Set
        QoS Set
            dscp dscp table AutoQos-4.0-Trust-Dscp-Table
            dscp dscp table AutoQos-4.0-Trust-Dscp-Table
Service-policy output: AutoQos-4.0-Output-Policy
Service-policy output: AutoQos-4.0-Output-Policy
        queue stats for all priority classes:
        queue stats for all priority classes:
            Queueing
            Queueing
            priority level 1
            priority level 1
            (total drops) 0
```

 (total drops) 0
    ```
(bytes output) 0
```

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp }16\mathrm{ percent }8
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
O packets
Match: dscp af41 (34) af42 (36) af43 (38)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing

```
    (total drops) 0
    (bytes output) 0
    bandwidth remaining 10\%
    queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
    o packets
    Match: dscp af21 (18) af22 (20) af23 (22)
        0 packets, 0 bytes
        5 minute rate 0 bps
    Match: cos 2
        0 packets, 0 bytes
        5 minute rate 0 bps
    Queueing
    (total drops) 0
    (bytes output) 0
    bandwidth remaining 10\%
    queue-buffers ratio 10
```

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

You can verify your settings by entering the show auto qos interface interface-id privileged EXEC command.

\section*{auto qos video}

To automatically configure quality of service ( QoS ) for video within a QoS domain, use the auto qos video command in interface configuration mode. Use the no form of this command to return to the default setting.
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[b]{7}{*}{}} \\
\hline & & \\
\hline
\end{tabular}

Syntax Description

\section*{Command Default}

Command Modes
Command History

Usage Guidelines
cts Specifies a port connected to a Cisco TelePresence System and automatically configures QoS for video.
ip-camera Specifies a port connected to a Cisco IP camera and automatically configures QoS for video.
media-player Specifies a port connected to a CDP-capable Cisco digital media player and automatically configures QoS for video.

Auto-QoS video is disabled on the port.
Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced.
\end{tabular}
16.5.1a

Use this command to configure the QoS appropriate for video traffic within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS . When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues. For more information, see the queue tables at the end of this section.

Auto-QoS configures the device for video connectivity to a Cisco TelePresence system, a Cisco IP camera, or a Cisco digital media player.
To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.

The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

If this is the first port on which you have enabled auto-QoS, the auto- QoS -generated global configuration commands are executed followed by the interface configuration commands. If you enable auto-QoS on another port, only the auto-QoS-generated interface configuration commands for that port are executed.
After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy
map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the debug auto qos privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the auto qos video cts command:

Policy maps:
- AutoQos-4.0-Trust-Cos-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the auto qos video ip-camera command:

Policy maps:
- AutoQos-4.0-Trust-Dscp-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the auto qos video media-player command:
Policy maps:
- AutoQos-4.0-Trust-Dscp-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

To disable auto-QoS on a port, use the no auto qos video interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled, and you enter the no auto qos video command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

Table 133: Traffic Types, Packet Labels, and Queues
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
VOIP Data \\
Traffic
\end{tabular} & \begin{tabular}{l} 
VOIP \\
Control \\
Traffic
\end{tabular} & \begin{tabular}{l} 
Routing \\
Protocol \\
Traffic
\end{tabular} & \begin{tabular}{l} 
STP \(^{\mathbf{8}}\) BPDU \(^{\mathbf{9}}\) \\
Traffic
\end{tabular} & \begin{tabular}{l} 
Real-Time \\
Video \\
Traffic
\end{tabular} & All Other Traffic \\
\hline DSCP \(^{10}\) & 46 & 24,26 & 48 & 56 & 34 & - \\
\hline CoS \(^{11}\) & 5 & 3 & 6 & 7 & 3 & - \\
\hline
\end{tabular}
\({ }^{8}\) STP \(=\) Spanning Tree Protocol
\({ }^{9}\) BPDU \(=\) bridge protocol data unit
\({ }^{10}\) DSCP = Differentiated Services Code Point
\({ }^{11} \operatorname{CoS}=\) class of service

Examples The following is an example of the auto qos video cts command and the applied policies and class maps:
```

Device(config)\# interface gigabitethernet1/0/12
Device(config-if)\# auto qos video cts
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/12
Gigabitethernet1/0/12

```
```

Service-policy input: AutoQos-4.0-Trust-Cos-Input-Policy
Class-map: class-default (match-any)
0 packets
Match: any
O packets, 0 bytes
5 minute rate 0 bps
QoS Set
cos cos table AutoQos-4.0-Trust-Cos-Table
Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
O packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
O packets, O bytes
5 minute rate 0 bps
Match: cos 3
O packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp }16\mathrm{ percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent }10
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%

```
```

 queue-buffers ratio 10
 Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
0 packets
Match: any
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0

```
```

(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

The following is an example of the auto qos video ip-camera command and the applied policies and class maps:
```

Device(config)\# interface gigabitethernet1/0/9
Device(config-if)\# auto qos video ip-camera
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/9
Gigabitethernet1/0/9
Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy
Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp dscp table AutoQos-4.0-Trust-Dscp-Table
Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
O packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
O packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent }10
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0

```
```

 bandwidth remaining 10%
 queue-buffers ratio 10
 Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
O packets
Match: dscp cs1 (8)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
O packets
Match: dscp af31 (26) af32 (28) af33 (30)

```
```

 O packets, 0 bytes
 5 \text { minute rate 0 bps}
 Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10
 Class-map: class-default (match-any)
O packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

The following is an example of the auto qos video media-player command and the applied policies and class maps.
```

Device(config)\# interface gigabitethernet1/0/7
Device(config-if)\# auto qos video media-player
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/7
interface gigabitethernet1/0/7
Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy
Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp dscp table AutoQos-4.0-Trust-Dscp-Table
Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1

```
```

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
O packets
Match: dscp af21 (18) af22 (20) af23 (22)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
O packets, O bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%

```
```

 queue-buffers ratio 10
 Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

You can verify your settings by entering the show auto qos video interface interface-id privileged EXEC command.

\section*{auto qos voip}

To automatically configure quality of service (QoS) for voice over IP (VoIP) within a QoS domain, use the auto qos voip command in interface configuration mode. Use the no form of this command to return to the default setting.
auto qos voip \{cisco-phone | cisco-softphone | trust \} no auto qos voip \(\{\) cisco-phone | cisco-softphone | trust \}

Syntax Description

Command Default
cisco-phone Specifies a port connected to a Cisco IP phone, and automatically configures QoS for VoIP. The QoS labels of incoming packets are trusted only when the telephone is detected.
cisco-softphone Specifies a port connected to a device running the Cisco SoftPhone, and automatically configures QoS for VoIP.
trust Specifies a port connected to a trusted device, and automatically configures QoS for VoIP. The QoS labels of incoming packets are trusted. For nonrouted ports, the CoS value of the incoming packet is trusted. For routed ports, the DSCP value of the incoming packet is trusted.

Auto-QoS is disabled on the port.
When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.

Interface configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Usage Guidelines

Use this command to configure the QoS appropriate for VoIP traffic within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS.

Auto-QoS configures the device for VoIP with Cisco IP phones on device and routed ports and for devices running the Cisco SoftPhone application. These releases support only Cisco IP SoftPhone Version 1.3(3) or later. Connected devices must use Cisco Call Manager Version 4 or later.

To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.

The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

If this is the first port on which you have enabled auto-QoS, the auto-QoS-generated global configuration commands are executed followed by the interface configuration commands. If you enable auto-QoS on another port, only the auto-QoS-generated interface configuration commands for that port are executed.

When you enter the auto qos voip cisco-phone interface configuration command on a port at the edge of the network that is connected to a Cisco IP phone, the device enables the trusted boundary feature. The device uses the Cisco Discovery Protocol (CDP) to detect the presence of a Cisco IP phone. When a Cisco IP phone is detected, the ingress classification on the port is set to trust the QoS label received in the packet. The device also uses policing to determine whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24,26 , or 46 or is out of profile, the device changes the DSCP value to 0 . When a Cisco IP phone is absent, the ingress classification is set to not trust the QoS label in the packet. The policing is applied to those traffic matching the policy-map classification before the device enables the trust boundary feature.
- When you enter the auto qos voip cisco-softphone interface configuration command on a port at the edge of the network that is connected to a device running the Cisco SoftPhone, the device uses policing to decide whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24,26 , or 46 or is out of profile, the device changes the DSCP value to 0.
- When you enter the auto qos voip trust interface configuration command on a port connected to the network interior, the device trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices).

You can enable auto-QoS on static, dynamic-access, and voice VLAN access, and trunk ports. When enabling auto-QoS with a Cisco IP phone on a routed port, you must assign a static IP address to the IP phone.

Note When a device running Cisco SoftPhone is connected to a device or routed port, the device supports only one Cisco SoftPhone application per port.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the debug auto qos privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the auto qos voip trust command:

Policy maps:
- AutoQos-4.0-Trust-Cos-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the auto qos voip cisco-softphone command:

Policy maps:
- AutoQos-4.0-CiscoSoftPhone-Input-Policy
- AutoQos-4.0-Output-Policy

\section*{Class maps:}
- AutoQos-4.0-Voip-Data-Class (match-any)
- AutoQos-4.0-Voip-Signal-Class (match-any)
- AutoQos-4.0-Multimedia-Conf-Class (match-any)
- AutoQos-4.0-Bulk-Data-Class (match-any)
- AutoQos-4.0-Transaction-Class (match-any)
- AutoQos-4.0-Scavanger-Class (match-any)
- AutoQos-4.0-Signaling-Class (match-any)
- AutoQos-4.0-Default-Class (match-any)
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the auto qos voip cisco-phone command:

Policy maps:
- service-policy input AutoQos-4.0-CiscoPhone-Input-Policy
- service-policy output AutoQos-4.0-Output-Policy

Class maps:
- class AutoQos-4.0-Voip-Data-CiscoPhone-Class
- class AutoQos-4.0-Voip-Signal-CiscoPhone-Class
- class AutoQos-4.0-Default-Class

To disable auto-QoS on a port, use the no auto qos voip interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the no auto qos voip command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

The device configures egress queues on the port according to the settings in this table.
Table 134: Auto-QoS Configuration for the Egress Queues
\begin{tabular}{|l|l|l|l|l|l|}
\hline Egress Queue & \begin{tabular}{l} 
Queue \\
Number
\end{tabular} & \begin{tabular}{l} 
CoS-to-Queue \\
Map
\end{tabular} & \begin{tabular}{l} 
Queue Weight \\
(Bandwidth)
\end{tabular} & \begin{tabular}{l} 
Queue (Buffer) Size \\
for Gigabit-Capable \\
Ports
\end{tabular} & \begin{tabular}{l} 
Queue (Buffer) Size \\
for 10/100 Ethernet \\
Ports
\end{tabular} \\
\hline \begin{tabular}{l} 
Priority \\
(shaped)
\end{tabular} & 1 & 4,5 & Up to 100 percent & 25 percent & 15 percent \\
\hline SRR shared & 2 & \(2,3,6,7\) & 10 percent & 25 percent & 25 percent \\
\hline SRR shared & 3 & 0 & 60 percent & 25 percent & 40 percent \\
\hline SRR shared & 4 & 1 & 20 percent & 25 percent & 20 percent \\
\hline
\end{tabular}

\section*{Examples}

The following is an example of the auto qos voip trust command and the applied policies and class maps:
```

Device(config)\# interface gigabitethernet1/0/31
Device(config-if)\# auto qos voip trust
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/31
Gigabitethernet1/0/31
Service-policy input: AutoQos-4.0-Trust-Cos-Input-Policy
Class-map: class-default (match-any)
0 packets

```
```

 Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
 QoS Set
 cos cos table AutoQos-4.0-Trust-Cos-Table
 Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
O packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
O packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp }16\mathrm{ percent }8
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets

```
```

 Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
 5 minute rate 0 bps
 Match: cos 2
 O packets, 0 bytes
 5 minute rate 0 bps
 Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10
 Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
O packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

The following is an example of the auto qos voip cisco-phone command and the applied policies and class maps:
```

Device(config)\# interface gigabitethernet1/0/5
Device(config-if) \# auto qos voip cisco-phone
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/5
Gigabitethernet1/0/5

```
```

Service-policy input: AutoQos-4.0-CiscoPhone-Input-Policy
Class-map: AutoQos-4.0-Voip-Data-CiscoPhone-Class (match-any)
0 packets
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp ef
police:
cir 128000 bps, bc 8000 bytes
conformed 0 bytes; actions:
transmit
exceeded O bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Voip-Signal-CiscoPhone-Class (match-any)
0 packets
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp cs3
police:
cir 32000 bps, bc 8000 bytes
conformed O bytes; actions:
transmit
exceeded 0 bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Default-Class (match-any)
0 packets
Match: access-group name AutoQos-4.0-Acl-Default
O packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp default
Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0

```
```

 (bytes output) 0
 Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
O packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp }16\mathrm{ percent }8
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

```
```

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
O packets
Match: dscp cs1 (8)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
O packets
Match: dscp af31 (26) af32 (28) af33 (30)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

The following is an example of the auto qos voip cisco-softphone command and the applied policies and class maps:
```

Device(config)\# interface gigabitethernet1/0/20
Device(config-if)\# auto qos voip cisco-softphone
Device(config-if)\# end
Device\# show policy-map interface gigabitethernet1/0/20
Gigabitethernet1/0/20

```
    Service-policy input: AutoQos-4.0-CiscoSoftPhone-Input-Policy
```

Class-map: AutoQos-4.0-Voip-Data-Class (match-any)
O packets
Match: dscp ef (46)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp ef
police:
cir 128000 bps, bc 8000 bytes
conformed 0 bytes; actions:
transmit
exceeded O bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Voip-Signal-Class (match-any)
0 packets
Match: dscp cs3 (24)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp cs3
police:
cir 32000 bps, bc 8000 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Multimedia-Conf-Class (match-any)
0 packets
Match: access-group name AutoQos-4.0-Acl-MultiEnhanced-Conf
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp af41
police:
cir 5000000 bps, bc 156250 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
drop
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Bulk-Data-Class (match-any)
O packets
Match: access-group name AutoQos-4.0-Acl-Bulk-Data
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp af11
police:
cir 10000000 bps, bc 312500 bytes
conformed 0 bytes; actions:
transmit
exceeded O bytes; actions:

```
```

 set-dscp-transmit dscp table policed-dscp
 conformed 0000 bps, exceed 0000 bps
 Class-map: AutoQos-4.0-Transaction-Class (match-any)
O packets
Match: access-group name AutoQos-4.0-Acl-Transactional-Data
O packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp af21
police:
cir 10000000 bps, bc 312500 bytes
conformed 0 bytes; actions:
transmit
exceeded O bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Scavanger-Class (match-any)
0 packets
Match: access-group name AutoQos-4.0-Acl-Scavanger
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp cs1
police:
cir 10000000 bps, bc 312500 bytes
conformed 0 bytes; actions:
transmit
exceeded O bytes; actions:
drop
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Signaling-Class (match-any)
0 packets
Match: access-group name AutoQos-4.0-Acl-Signaling
O packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp cs3
police:
cir 32000 bps, bc 8000 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
drop
conformed 0000 bps, exceed 0000 bps
Class-map: AutoQos-4.0-Default-Class (match-any)
O packets
Match: access-group name AutoQos-4.0-Acl-Default
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp default
police:
cir 10000000 bps, bc 312500 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps
Class-map: class-default (match-any)

```
```

 0 packets
 Match: any
 O packets, 0 bytes
 5 minute rate 0 bps
 Service-policy output: AutoQos-4.0-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
O packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
O packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp }16\mathrm{ percent }8
queue-limit dscp 24 percent }9
queue-limit dscp 48 percent }10
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
O packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)

```
```

 0 packets, 0 bytes
 5 minute rate 0 bps
 Match: cos 2
 O packets, 0 bytes
 5 minute rate 0 bps
 Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10
 Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
O packets
Match: dscp af11 (10) af12 (12) af13 (14)
O packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
O packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
O packets
Match: any
O packets, O bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

```

You can verify your settings by entering the show auto qos interface interface-id privileged EXEC command.

\section*{class}

To define a traffic classification match criteria for the specified class-map name, use the class command in policy-map configuration mode. Use the no form of this command to delete an existing class map.
class \{class-map-name |class-default \(\}\) no class \{class-map-name |class-default \}

Syntax Description
\begin{tabular}{l}
\(\overline{\text { Command Default }}\) \\
\hline Command Modes
\end{tabular}

Command History
class-map-name The class map name.
class-default Refers to a system default class that matches unclassified packets.

No policy map class-maps are defined.
Policy-map configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Before using the class command, you must use the policy-map global configuration command to identify the policy map and enter policy-map configuration mode. After specifying a policy map, you can configure a policy for new classes or modify a policy for any existing classes in that policy map. You attach the policy map to a port by using the service-policy interface configuration command.

After entering the class command, you enter the policy-map class configuration mode. These configuration commands are available:
- admit-Admits a request for Call Admission Control (CAC)
- bandwidth-Specifies the bandwidth allocated to the class.
- exit-Exits the policy-map class configuration mode and returns to policy-map configuration mode.
- no-Returns a command to its default setting.
- police-Defines a policer or aggregate policer for the classified traffic. The policer specifies the bandwidth limitations and the action to take when the limits are exceeded. For more information about this command, see Cisco IOS Quality of Service Solutions Command Reference available on Cisco.com.
- priority-Assigns scheduling priority to a class of traffic belonging to a policy map.
- queue-buffers-Configures the queue buffer for the class.
- queue-limit-Specifies the maximum number of packets the queue can hold for a class policy configured in a policy map.
- service-policy-Configures a QoS service policy.
- set-Specifies a value to be assigned to the classified traffic. For more information, see the set command.
- shape-Specifies average or peak rate traffic shaping. For more information about this command, see Cisco IOS Quality of Service Solutions Command Reference available on Cisco.com.

To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.
The class command performs the same function as the class-map global configuration command. Use the class command when a new classification, which is not shared with any other ports, is needed. Use the class-map command when the map is shared among many ports.

You can configure a default class by using the class class-default policy-map configuration command. Unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as default traffic.

You can verify your settings by entering the show policy-map privileged EXEC command.

\section*{Examples}

This example shows how to create a policy map called policy1. When attached to the ingress direction, it matches all the incoming traffic defined in class1 and polices the traffic at an average rate of 1 \(\mathrm{Mb} / \mathrm{s}\) and bursts at 1000 bytes, marking down exceeding traffic via a table-map.
```

Device(config)\# policy-map policy1
Device(config-pmap)\# class class1
Device(config-pmap-c)\# police cir 1000000 bc 1000 conform-action
transmit exceed-action set-dscp-transmit dscp table EXEC_TABLE
Device(config-pmap-c)\# exit

```

This example shows how to configure a default traffic class to a policy map. It also shows how the default traffic class is automatically placed at the end of policy-map pm3 even though class-default was configured first:
```

Device\# configure terminal
Device(config)\# class-map cm-3
Device(config-cmap)\# match ip dscp 30
Device(config-cmap)\# exit
Device(config)\# class-map cm-4
Device(config-cmap)\# match ip dscp 40
Device(config-cmap)\# exit
Device(config)\# policy-map pm3
Device(config-pmap)\# class class-default
Device(config-pmap-c)\# set dscp 10
Device(config-pmap-c)\# exit
Device(config-pmap)\# class cm-3
Device(config-pmap-c)\# set dscp 4
Device(config-pmap-c)\# exit
Device(config-pmap)\# class cm-4
Device(config-pmap-c)\# set precedence 5
Device(config-pmap-c)\# exit
Device(config-pmap)\# exit
Device\# show policy-map pm3
Policy Map pm3
Class cm-3
set dscp 4
Class cm-4
set precedence 5
Class class-default
set dscp af11

```

\section*{class-map}

To create a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode, use the class-map command in global configuration mode. Use the no form of this command to delete an existing class map and to return to global or policy map configuration mode.
class-map class-map name \{match-any | match-all\} no class-map class-map name \{match-any | match-all\}

\section*{Syntax Description}
match-any (Optional) Perform a logical-OR of the matching statements under this class map. One or more criteria must be matched.
match-all (Optional) Performs a logical-AND of the matching statements under this class map. All criterias must match.
class-map-name The class map name.

No class maps are defined.

Global configuration
Policy map configuration

Command History
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

Use this command to specify the name of the class for which you want to create or modify class-map match criteria and to enter class-map configuration mode.

The class-map command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-port basis.

After you are in quality of service (QoS) class-map configuration mode, these configuration commands are available:
- description-Describes the class map (up to 200 characters). The show class-map privileged EXEC command displays the description and the name of the class map.
- exit-Exits from QoS class-map configuration mode.
- match-Configures classification criteria.
- no-Removes a match statement from a class map.

If you enter the match-any keyword, you can only use it to specify an extended named access control list (ACL) with the match access-group class-map configuration command.

To define packet classification on a physical-port basis, only one match command per class map is supported.
The ACL can have multiple access control entries (ACEs).

Note You cannot configure IPv4 and IPv6 classification criteria simultaneously in the same class-map. However, they can be configured in different class-maps in the same policy.

\section*{Examples \\ This example shows how to configure the class map called class1 with one match criterion, which} is an access list called 103:
```

Device(config)\# access-list 103 permit ip any any dscp 10
Device(config)\# class-map class1
Device(config-cmap) \# match access-group 103
Device(config-cmap)\# exit

```

This example shows how to delete the class map class1:
```

Device(config)\# no class-map class1

```

You can verify your settings by entering the show class-map privileged EXEC command.

\section*{debug auto qos}

To enable debugging of the automatic quality of service (auto-QoS) feature, use the debug auto qos command in privileged EXEC mode. Use the no form of this command to disable debugging.
debug auto qos
no debug auto qos

Syntax Description
Command Default

Command Modes
This command has no arguments or keywords.
Auto-QoS debugging is disabled.

Privileged EXEC

Command History
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. You enable debugging by entering the debug auto qos privileged EXEC command.

The undebug auto qos command is the same as the no debug auto qos command.
When you enable debugging on a device stack, it is enabled only on the active device. To enable debugging on a stack member, you can start a session from the active device by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the active device to enable debugging on a member device without first starting a session.

Examples
This example shows how to display the QoS configuration that is automatically generated when auto-QoS is enabled:
```

Device\# debug auto qos
AutoQoS debugging is on
Device\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)\# interface gigabitethernet 2/0/1
Device(config-if)\# auto qos voip cisco-phone

```

\section*{match (class-map configuration)}

To define the match criteria to classify traffic, use the match command in class-map configuration mode. Use the no form of this command to remove the match criteria.

\section*{Cisco IOS XE Everest 16.5.x and Earlier Releases}
match \{access-group \{nameacl-name acl-index\} |class-map class-map-name \(\mid\) cos cos-value \(\mid\) dscp \(d s c p\)-value \(\mid[\mathbf{i p}] \mathbf{d s c p} d s c p\)-list |[ip] precedence ip-precedence-list| precedence precedence-value1...value \(4 \mid\) qos-group qos-group-value \(\mid\) vlan vlan-id\}
no match \{access-group \{nameacl-name acl-index\}| class-map class-map-name \(\mid \mathbf{c o s}\) cos-value \(\mid \mathbf{d s c p}\) dscp-value \(\mid[\mathbf{i p}]\) dscp dscp-list | [ip] precedence ip-precedence-list \(\mid\) precedence precedence-valuel...value 4 qos-group qos-group-value \(\mid\) vlan vlan-id \(\}\)

\section*{Cisco IOS XE Everest 16.6.x and Later Releases}
match \{access-group \{name acl-name acl-index\}|cos cos-value |dscp dscp-value \(\mid\) [ ip] dscp dscp-list | [ip] precedence ip-precedence-list \(\mid \mathbf{m p l s}\) experimental-value |non-client-nrt | precedence precedence-value1...value 4 protocol protocol-name \(\mid\) qos-group qos-group-value \(\mid\) vlan vlan-id \(\mid\) wlan wlan-id\}
no match \{access-group \{name acl-name acl-index\}|cos cos-value \(\mid\) dscp dscp-value \(\mid[\mathbf{i p}]\) dscp dscp-list |[ip] precedence ip-precedence-list|mpls experimental-value |non-client-nrt |precedence precedence-value1...value 4 | protocol protocol-name \(\mid\) qos-group qos-group-value \(\mid\) vlan vlan-id \(\mid\) wlan wlan-id\}

\section*{Syntax Description}
\begin{tabular}{ll}
\hline access-group & Specifies an access group. \\
\hline name acl-name & \begin{tabular}{l} 
Specifies the name of an IP standard or extended access \\
control list (ACL) or MAC ACL.
\end{tabular} \\
\hline acl-index & \begin{tabular}{l} 
Specifies the number of an IP standard or extended access \\
control list (ACL) or MAC ACL. For an IP standard ACL, \\
the ACL index range is 1 to 99 and 1300 to 1999 . For an \\
IP extended ACL, the ACL index range is 100 to 199
\end{tabular} \\
and 2000 to 2699.
\end{tabular}
\begin{tabular}{ll}
\hline ip dscp dscp-list & \begin{tabular}{l} 
Specifies a list of up to eight IP Differentiated Services \\
Code Point (DSCP) values to match against incoming \\
packets. Separate each value with a space. The range is 0 \\
to 63. You also can enter a mnemonic name for a \\
commonly used value.
\end{tabular} \\
\hline ip precedence ip-precedence-list & \begin{tabular}{l} 
Specifies a list of up to eight IP-precedence values to match \\
against incoming packets. Separate each value with a space. \\
The range is 0 to 7. You also can enter a mnemonic name \\
for a commonly used value.
\end{tabular} \\
\hline precedence precedence-value1...value4 & \begin{tabular}{l} 
Assigns an IP precedence value to the classified traffic. \\
The range is 0 to 7. You also can enter a mnemonic name \\
for a commonly used value.
\end{tabular} \\
\hline qos-group qos-group-value & \begin{tabular}{l} 
Identifies a specific QoS group value as a match criterion. \\
The range is 0 to 31.
\end{tabular} \\
\hline vlan vlan-id & \begin{tabular}{l} 
Identifies a specific VLAN as a match criterion. The range \\
is 1 to 4094.
\end{tabular} \\
\hline mpls experimental-value & Specifies Multi Protocol Label Switching specific values.
\end{tabular}

\section*{Usage Guidelines}

The match command is used to specify which fields in the incoming packets are examined to classify the packets. Only the IP access group or the MAC access group matching to the Ether Type/Len are supported.

If you enter the class-map match-anyclass-map-name global configuration command, you can enter the following match commands:
- match access-group name acl-name
\(\qquad\)
- match ip dscp dscp-list
- match ip precedence ip-precedence-list

The match access-group acl-index command is not supported.
To define packet classification on a physical-port basis, only one match command per class map is supported. In this situation, the match-any keyword is equivalent.
For the match ip dscp dscp-list or the match ip precedence ip-precedence-list command, you can enter a mnemonic name for a commonly used value. For example, you can enter the match ip dscp af11 command, which is the same as entering the match ip dscp 10 command. You can enter the match ip precedence critical command, which is the same as entering the match ip precedence 5 command. For a list of supported mnemonics, enter the match ip dscp ? or the match ip precedence? command to see the command-line help strings.

Use the input-interface interface-id-list keyword when you are configuring an interface-level class map in a hierarchical policy map. For the interface-id-list, you can specify up to six entries.

\section*{Examples}

This example shows how to create a class map called class2, which matches all the incoming traffic with DSCP values of 10,11 , and 12 :
```

Device(config)\# class-map class2
Device(config-cmap) \# match ip dscp 10 11 12
Device(config-cmap)\# exit

```

This example shows how to create a class map called class3, which matches all the incoming traffic with IP-precedence values of 5,6 , and 7 :
```

Device(config)\# class-map class3
Device(config-cmap)\# match ip precedence 5 6 7
Device(config-cmap)\# exit

```

This example shows how to delete the IP-precedence match criteria and to classify traffic using acl1:
```

Device(config)\# class-map class2
Device(config-cmap)\# match ip precedence 5 6 7
Device(config-cmap)\# no match ip precedence
Device(config-cmap)\# match access-group acll
Device(config-cmap)\# exit

```

This example shows how to specify a list of physical ports to which an interface-level class map in a hierarchical policy map applies:
```

Device(config)\# class-map match-any class4
Device(config-cmap)\# match cos 4
Device(config-cmap)\# exit

```

This example shows how to specify a range of physical ports to which an interface-level class map in a hierarchical policy map applies:
```

Device(config)\# class-map match-any class4
Device(config-cmap)\# match cos 4
Device(config-cmap)\# exit

```

You can verify your settings by entering the show class-map privileged EXEC command.

\section*{policy-map}

To create or modify a policy map that can be attached to multiple physical ports or switch virtual interfaces (SVIs) and to enter policy-map configuration mode, use the policy-map command in global configuration mode. Use the no form of this command to delete an existing policy map and to return to global configuration mode.
policy-map policy-map-name
no policy-map policy-map-name

\section*{Syntax Description}
policy-map-name Name of the policy map.

Command Default

Command Modes

Command History

No policy maps are defined.
Global configuration (config)

Release Modification

Cisco IOS XE Everest 16.5.1a

After entering the policy-map command, you enter policy-map configuration mode, and these configuration commands are available:
- class-Defines the classification match criteria for the specified class map.
- description-Describes the policy map (up to 200 characters).
- exit-Exits policy-map configuration mode and returns you to global configuration mode.
- no-Removes a previously defined policy map.
- sequence-interval-Enables sequence number capability.

To return to global configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

Before configuring policies for classes whose match criteria are defined in a class map, use the policy-map command to specify the name of the policy map to be created, added to, or modified. Entering the policy-map command also enables the policy-map configuration mode in which you can configure or modify the class policies for that policy map.

You can configure class policies in a policy map only if the classes have match criteria defined for them. To configure the match criteria for a class, use the class-map global configuration and match class-map configuration commands. You define packet classification on a physical-port basis.

Only one policy map per ingress port is supported. You can apply the same policy map to multiple physical ports.

You can apply a nonhierarchical policy maps to physical ports. A nonhierarchical policy map is the same as the port-based policy maps in the device.

A hierarchical policy map has two levels in the format of a parent-child policy. The parent policy cannot be modified but the child policy (port-child policy) can be modified to suit the QoS configuration.

In VLAN-based QoS, a service policy is applied to an SVI interface.

Note Not all MQC QoS combinations are supported for wired ports. For information about these restrictions, see chapters "Restrictions for QoS on Wired Targets" in the QoS configuration guide.

\section*{Examples}

This example shows how to create a policy map called policy1. When attached to the ingress port, it matches all the incoming traffic defined in class1, sets the IP DSCP to 10, and polices the traffic at an average rate of \(1 \mathrm{Mb} / \mathrm{s}\) and bursts at 20 KB . Traffic less than the profile is sent.
```

Device(config)\# policy-map policy1
Device(config-pmap)\# class class1
Device(config-pmap-c)\# set dscp 10
Device(config-pmap-c) \# police 1000000 20000 conform-action transmit
Device(config-pmap-c) \# exit

```

This example show you how to configure hierarchical polices:
```

Device\# configure terminal
Device(config)\# class-map c1
Device(config-cmap)\# exit
Device(config)\# class-map c2
Device(config-cmap)\# exit
Device(config)\# policy-map child
Device(config-pmap)\# class c1
Device(config-pmap-c)\# priority level 1
Device(config-pmap-c)\# police rate percent 20 conform-action transmit exceed action drop
Device(config-pmap-c-police)\# exit
Device(config-pmap-c)\# exit
Device(config-pmap) \# class c2
Device(config-pmap-c) \# bandwidth 20000
Device(config-pmap-c) \# exit
Device(config-pmap)\# class class-default
Device(config-pmap-c) \# bandwidth 20000
Device(config-pmap-c)\# exit
Device(config-pmap)\# exit
Device(config)\# policy-map parent
Device(config-pmap)\# class class-default
Device(config-pmap-c)\# shape average 1000000
Device(config-pmap-c)\# service-policy child
Deviceconfig-pmap-c)\# end

```

This example shows how to delete a policy map:
```

Device(config)\# no policy-map policymap2

```

You can verify your settings by entering the show policy-map privileged EXEC command.

\section*{priority}
\begin{tabular}{|c|c|c|}
\hline Command Default & \multicolumn{2}{|l|}{No priority is set.} \\
\hline Command Modes & \multicolumn{2}{|l|}{Policy-map class configuration (config-pmap-c)} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest 16.5.1a & This command w \\
\hline
\end{tabular}

Syntax Description

Usage Guidelines

To assign priority to a class of traffic belonging to a policy map, use the priority command in policy-map class configuration mode. To remove a previously specified priority for a class, use the no form of this command.
priority [Kbps [burst-in-bytes] | level level-value [Kbps [burst-in-bytes] ] | percent percentage [Kb/s [burst-in-bytes] ] ]
no priority \([\mathrm{Kb} / \mathrm{s}\) [burst-in-bytes] | level level value [Kb/s [burst-in-bytes] ] | percent percentage [Kb/s [burst-in-bytes] ] ]
(Optional) Guaranteed allowed bandwidth, in kilobits per second
(kbps), for the priority traffic. The amount of guaranteed bandwidth varies according to the interface and platform in use. Beyond the guaranteed bandwidth, the priority traffic will be dropped in the event of congestion to ensure that the nonpriority traffic is not starved. The value must be between 1 and \(2,000,000 \mathrm{kbps}\).
burst-in-bytes
(Optional) Burst size in bytes. The burst size configures the network to accommodate temporary bursts of traffic. The default burst value, which is computed as 200 milliseconds of traffic at the configured bandwidth rate, is used when the burst argument is not specified. The range of the burst is from 32 to 2000000 bytes.
level level-value
(Optional) Assigns priority level. Available values for level-value are 1 and 2. Level 1 is a higher priority than Level 2. Level 1 reserves bandwidth and goes first, so latency is very low.
percent percentage
(Optional) Specifies the amount of guaranteed bandwidth to be specified by the percent of available bandwidth.

\section*{Example}

The following example shows how to configure the priority of the class in policy map policy1:
```

Device(config)\# class-map cm1
Device(config-cmap) \#match precedence 2
Device(config-cmap) \#exit
Device(config)\#class-map cm2
Device(config-cmap) \#match dscp 30
Device(config-cmap) \#exit
Device(config)\# policy-map policy1
Device(config-pmap)\# class cm1
Device(config-pmap-c)\# priority level 1
Device(config-pmap-c)\# police 1m
Device(config-pmap-c-police) \#exit
Device(config-pmap-c) \#exit
Device(config-pmap)\#exit
Device(config)\#policy-map policy1
Device(config-pmap) \#class cm2
Device(config-pmap-c) \#priority level 2
Device(config-pmap-c) \#police 1m

```

\section*{qos stack-buffer}

To change the stacking mode of the device use the qos stack-buffer command in the global configuration mode.
qos stack-buffer \{enable |disable \}
Syntax Description
\begin{tabular}{ll} 
enable & Enables stacking mode on the device. \\
\hline disable & \begin{tabular}{l} 
Disables stacking on the device and puts it to standalone \\
mode.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
\hline Command Default & & By default, the device boots up with stacking mode enabled. \\
\cline { 1 - 1 } Command Modes & & \\
\hline Command History & Release configuration (config) & \\
\cline { 1 - 1 } & &
\end{tabular}

Cisco IOS XE Gibraltar 16.12.1 This command was introduced.

\section*{Usage Guidelines}

This command is introduced only on the C9300-24UB and C9300-48UB switches. Ensure that you save the configuration and then reload the switches after executing the command.

C9300-24UXB does not support this command and is always in the stacking mode.
By default, the switch comes up in the stacking mode, when it is booted. Run the qos stack-buffer disable comamnd, save the configuration (write memory) and then reload the switch to bring it up in the standalone mode.

\section*{Examples}

The following example puts the device in the standalone mode:
```

Device\#configure terminal
Device(config) \#qos stack-buffer disable
Device(config)\#
*Jul 2 09:56:21.642: %FMANRP_QOS-4-STACKBUFFER: Stack-buffer configuration has been modified.
Current setting is stack-buffer Disabled. This change will take an effect once the
configuration is written in flash (write memory) and then reload the switch.
*Jul 2 09:56:21.643: %FED_QOS_ERRMSG-4-STACK_BUFFER_CONFIG_MGIG: Switch 1 R0/0: fed: mGIG
platform's default is stack-buffer enabled. Configured stack-buffer disabled (1).

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l} 
show platform software fed switch switch_no qos \\
stack-buffer
\end{tabular} & Displays the status of stack-buffer. \\
\hline
\end{tabular}

\section*{qos queue-softmax-multiplier}

To increase the value of the soft buffers used by an interface, use the qos queue-softmax-multiplier command in the global configuration mode.
qos queue-softmax-multiplier range-of-multiplier
no qos queue-softmax-multiplier range-of-multiplier

Syntax Description
\begin{tabular}{ll}
\(\overline{\text { Command Default }}\) & None \\
\(\overline{\text { Command Modes }}\) Global configuration (config)
\end{tabular}

Command History
range-of-multiplier
(config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

This example shows how to set the value of softmax buffer to 500 :
```

Device> enable
Device\# configure terminal
Device(config)\# qos queue-softmax-multiplier 500

```

\section*{queue-buffers ratio}

To configure the queue buffer for the class, use the queue-buffers ratio command in policy-map class configuration mode. Use the no form of this command to remove the ratio limit.
queue-buffers ratio ratio limit
no queue-buffers ratio ratio limit

Syntax Description


Command Modes

Command History

Usage Guidelines
ratio limit (Optional) Configures the queue buffer for the class. Enter the queue buffers ratio limit (0-100).

No queue buffer for the class is defined.
Policy-map class configuration (config-pmap-c)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Either the bandwidth, shape, or priority command must be used before using this command. For more information about these commands, see Cisco IOS Quality of Service Solutions Command Reference available on Cisco.com

The device allows you to allocate buffers to queues. If buffers are not allocated, then they are divided equally amongst all queues. You can use the queue-buffer ratio to divide it in a particular ratio. The buffers are soft buffers because Dynamic Threshold and Scaling (DTS) is active on all queues by default.

\section*{Example}

The following example sets the queue buffers ratio to 10 percent:
```

Device(config)\# policy-map policy_queuebuf01
Device(config-pmap)\# class-map class_queuebuf01
Device(config-cmap) \# exit
Device(config)\# policy policy_queuebuf01
Device(config-pmap)\# class class_queuebuf01
Device(config-pmap-c) \# bandwidth percent 80
Device(config-pmap-c)\# queue-buffers ratio 10
Device(config-pmap)\# end

```

You can verify your settings by entering the show policy-map privileged EXEC command.

\section*{queue-limit}

To specify or modify the maximum number of packets the queue can hold for a class policy configured in a policy map, use the queue-limit policy-map class configuration command. To remove the queue packet limit from a class, use the no form of this command.
queue-limit queиe-limit-size [\{packets\}] \{cos cos-value \(\mid\) dscp dscp-value \(\}\) percent percentage-of-packets no queue-limit queue-limit-size \([\{\) packets \(\}]\{\cos \cos\)-value \(\mid\) dscp dscp-value \(\}\) percent percentage-of-packets

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}
queue-limit-size
\begin{tabular}{lll}
\hline cos & cos-value & \begin{tabular}{l} 
Specifies parameters for each cos value. \(\operatorname{CoS}\) values are \\
from 0 to 7.
\end{tabular} \\
\hline dscp & \(d s c p\)-value & \begin{tabular}{l} 
Specifies parameters for each DSCP value. \\
You can specify a value in the range 0 to 63 specifying \\
the differentiated services code point value for the type \\
of queue limit.
\end{tabular}
\end{tabular}
percent percentage-of-packets
A percentage in the range 1 to 100 specifying the maximum percentage of packets that the queue for this class can accumulate.

\section*{None}

Policy-map class configuration (policy-map-c)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a &
\end{tabular}

\section*{Usage Guidelines}

Although visible in the command line help-strings, the packets unit of measure is not supported; use the percent unit of measure.

Note This command is supported only on wired ports in the egress direction.
Weighted fair queuing (WFQ) creates a queue for every class for which a class map is defined. Packets satisfying the match criteria for a class accumulate in the queue reserved for the class until they are sent, which occurs when the queue is serviced by the fair queuing process. When the maximum packet threshold you defined for the class is reached, queuing of any further packets to the class queue causes tail drop.

You use queue limits to configure Weighted Tail Drop (WTD). WTD ensures the configuration of more than one threshold per queue. Each class of service is dropped at a different threshold value to provide for QoS differentiation.

You can configure the maximum queue thresholds for the different subclasses of traffic, that is, DSCP and CoS and configure the maximum queue thresholds for each subclass.

\section*{Example}

The following example configures a policy map called port-queue to contain policy for a class called dscp-1. The policy for this class is set so that the queue reserved for it has a maximum packet limit of 20 percent:
```

Device(config)\# policy-map policy11
Device(config-pmap)\# class dscp-1
Device(config-pmap-c) \# bandwidth percent 20
Device(config-pmap-c)\# queue-limit dscp 1 percent 20

```

\section*{random-detect cos}

To change the minimum and maximum packet thresholds for the Class of service ( CoS ) value, use the random-detect cos command in QoS policy-map class configuration mode. To return the minimum and maximum packet thresholds to the default for the CoS value, use the no form of this command.
random-detect cos cos-value percent min-threshold max-threshold
no random-detect cos cos-value percentmin-threshold max-threshold

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline cos-value & \begin{tabular}{l} 
The CoS value, which is IEEE 802.1Q/ISL class of service/user priority value. The CoS \\
value can be a number from 0 to 7.
\end{tabular} \\
\hline percent & Specifies that the minimum and threshold values are in percentage. \\
\hline min-threshold & \begin{tabular}{l} 
Minimum threshold in number of packets. The value range of this argument is from 1 to \\
512000000. When the average queue length reaches the minimum threshold, Weighted \\
Random Early Detection (WRED) randomly drop some packets with the specified CoS \\
value.
\end{tabular} \\
\hline max-threshold & \begin{tabular}{l} 
Maximum threshold in number of packets. The value range of this argument is from the \\
value of the min-threshold argument to 512000000. When the average queue length exceeds \\
the maximum threshold, WRED or dWRED drop all packets with the specified CoS value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes}

QoS policy-map class configuration (config-pmap-c)

\section*{Command History}

\section*{Usage Guidelines}

Use the random-detect cos command in conjunction with the random-detect command in QoS policy-map class configuration mode.

The random-detect cos command is available only if you have specified the cos-based argument when using the random-detect command in interface configuration mode.

The following example enables WRED to use the CoS value 8 . The minimum threshold for the CoS value 8 is 20 , the maximum threshold is 40 .
random-detect cos-based
random-detect cos percent 52040

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline random-detect & Enables WRED \\
\hline show queueing & Lists all or selected configured queueing strategies. \\
\hline
\end{tabular}

\section*{random-detect cos-based}

To enable weighted random early detection (WRED) on the basis of the class of service (CoS) value of a packet, use the random-detectcos-based command in policy-map class configuration mode. To disable WRED, use the no form of this command.
random-detect cos-based no random-detect cos-based

Command Default
When WRED is configured, the default minimum and maximum thresholds are determined on the basis of output buffering capacity and the transmission speed for the interface.

\section*{Command Modes}

Policy-map class configuration (config-pmap-c)

Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Examples}

\section*{Related Commands}

In the following example, WRED is configured on the basis of the CoS value.
```

Device> enable
Device\# configure terminal
Device(config)\# policy-map policymap1
Device(config-pmap)\# class class1
Device(config-pmap-c)\# random-detect cos-based
Device(config-pmap-c) \#
end

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline random-detect cos & \begin{tabular}{l} 
Specifies the CoS value of a packet, the minimum and maximum thresholds, \\
and the maximum probability denominator used for enabling WRED.
\end{tabular} \\
\hline show policy-map & \begin{tabular}{l} 
Displays the configuration of all classes for a specified service policy map \\
or all classes for all existing policy maps.
\end{tabular} \\
\hline show policy-map interface & \begin{tabular}{l} 
Displays the packet statistics of all classes that are configured for all service \\
policies either on the specified interface or subinterface or on a specific PVC \\
on the interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{random-detect dscp}

To change the minimum and maximum packet thresholds for the differentiated services code point (DSCP) value, use the random-detect dscp command in QoS policy-map class configuration mode. To return the minimum and maximum packet thresholds to the default for the DSCP value, use the no form of this command.
random-detect dscp dscp-value percent min-threshold max-threshold no random-detect dscp dscp-value percentmin-threshold max-threshold

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline dscp-value & \begin{tabular}{l} 
The DSCP value. The DSCP value can be a number from 0 to 63, or it can be one of the \\
following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, \\
cs1, cs2, cs3, cs4, cs5, cs7, ef, or \(\mathbf{r s v p}\).
\end{tabular} \\
\hline percent & Specifies that the minimum and threshold values are in percentage. \\
\hline min-threshold & \begin{tabular}{l} 
Minimum threshold in number of packets. The value range of this argument is from 1 to \\
512000000. When the average queue length reaches the minimum threshold, Weighted \\
Random Early Detection (WRED) randomly drop some packets with the specified DSCP \\
value.
\end{tabular} \\
\hline max-threshold & \begin{tabular}{l} 
Maximum threshold in number of packets. The value range of this argument is from the \\
value of the min-threshold argument to 512000000. When the average queue length exceeds \\
the maximum threshold, WRED or dWRED drop all packets with the specified DSCP \\
value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Modes}

QoS policy-map class configuration (config-pmap-c)

Command History

\section*{Usage Guidelines}

Use the random-detect dscp command in conjunction with the random-detect command in QoS policy-map class configuration mode.

The random-detect dscp command is available only if you specified the \(d s c p\)-based argument when using the random-detect command in interface configuration mode.

\section*{Specifying the DSCP Value}

The random-detect dscp command allows you to specify the DSCP value per traffic class. The DSCP value can be a number from 0 to 63 , or it can be one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs1, cs2, cs3, cs4, cs5, cs7, ef, or rsvp.

On a particular traffic class, eight DSCP values can be configured per traffic class. Overall, 29 values can be configured on a traffic class: 8 precedence values, 12 Assured Forwarding (AF) code points, 1 Expedited Forwarding code point, and 8 user-defined DSCP values.

\section*{Assured Forwarding Code Points}

The AF code points provide a means for a domain to offer four different levels (four different AF classes) of forwarding assurances for IP packets received from other (such as customer) domains. Each one of the four AF classes is allocated a certain amount of forwarding services (buffer space and bandwidth).

Within each AF class, IP packets are marked with one of three possible drop precedence values (binary \(2\{010\}\), \(4\{100\}\), or \(6\{110\}\) ), which exist as the three lowest bits in the DSCP header. In congested network environments, the drop precedence value of the packet determines the importance of the packet within the AF class. Packets with higher drop precedence values are discarded before packets with lower drop precedence values.

The upper three bits of the DSCP value determine the AF class; the lower three values determine the drop probability.

\section*{Examples}

The following example enables WRED to use the DSCP value 8 . The minimum threshold for the DSCP value 8 is 20 , the maximum threshold is 40 , and the mark probability is \(1 / 10\).
random-detect dscp percent 82040

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline random-detect & Enables WRED \\
\hline show queueing & Lists all or selected configured queueing strategies. \\
\hline
\end{tabular}

\section*{random-detect dscp-based}

To base weighted random early detection (WRED) on the Differnciated Services Code Point (dscp) value of a packet, use the random-detectdscp-based command in policy-map class configuration mode. To disable this feature, use the no form of this command.
random-detect dscp-based
no random-detect dscp-based

Syntax Description
Command Default

\section*{Command Modes}

Policy-map class configuration (config-pmap-c)

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}
```

Device> enable
Device\# configure terminal
Device(config)\#
policy-map policy1
Device(config-pmap)\# class class1
Device(config-pmap-c) \# bandwidth percent 80
Device(config-pmap-c) \# random-detect dscp-based
Device(config-pmap-c)\# random-detect dscp 2 percent 10 40
Device(config-pmap-c)\# exit

```

With the random-detectdscp-based command, WRED is based on the dscp value of the packet.
Use the random-detectdscp-based command before configuring the random-detectdscp command.

The following example shows that random detect is based on the precedence value of a packet:
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline random-detect & Enables WRED. \\
\hline random-detect dscp & \begin{tabular}{l} 
Configures the WRED parameters for a particular DSCP value for a class policy in \\
a policy map.
\end{tabular} \\
\hline
\end{tabular}

\section*{random-detect precedence}

To configure Weighted Random Early Detection (WRED) parameters for a particular IP precedence for a class policy in a policy map, use the random-detect precedence command in QoS policy-map class configuration mode. To return the values to the default for the precedence, use the no form of this command.
random-detect precedence precedence percent min-threshold max-threshold no random-detect precedence

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline precedence & \begin{tabular}{l} 
IP precedence number. The value range is from 0 to 7; see Table 1 in the "Usage Guidelines" \\
section.
\end{tabular} \\
\hline percent & Indicates that the threshold values are in percentage. \\
\hline min-threshold & \begin{tabular}{l} 
Minimum threshold in number of packets. The value range of this argument is from 1 to \\
512000000. When the average queue length reaches the minimum threshold, WRED \\
randomly drops some packets with the specified IP precedence.
\end{tabular} \\
\hline max-threshold & \begin{tabular}{l} 
Maximum threshold in number of packets. The value range of this argument is from the \\
value of the min-threshold argument to 512000000. When the average queue length exceeds \\
the maximum threshold, WRED or dWRED drop all packets with the specified IP \\
precedence.
\end{tabular} \\
\hline
\end{tabular}

Command Default

Command Modes
The default min-threshold value depends on the precedence. The min-threshold value for IP precedence 0 corresponds to half of the max-threshold value. The values for the remaining precedences fall between half the max-threshold value and the max-threshold value at evenly spaced intervals. See the table in the "Usage Guidelines" section of this command for a list of the default minimum threshold values for each IP precedence.

Interface configuration (config-if)
QoS policy-map class configuration (config-pmap-c)

Command History
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists.

When you configure the random-detect command on an interface, packets are given preferential treatment based on the IP precedence of the packet. Use the random-detect precedence command to adjust the treatment for different precedences.

If you want WRED to ignore the precedence when determining which packets to drop, enter this command with the same parameters for each precedence. Remember to use appropriate values for the minimum and maximum thresholds.

Note that if you use the random-detect precedence command to adjust the treatment for different precedences within class policy, you must ensure that WRED is not configured for the interface to which you attach that service policy.

Although the range of values for the min-threshold and max-threshold arguments is from 1 to 512000000, the actual values that you can specify depend on the type of random detect you are configuring. For example, the maximum threshold value cannot exceed the queue limit.

\section*{Examples}

The following example shows the configuration to enable WRED on the interface and to specify parameters for the different IP precedences:
```

interface FortyGigE1/0/1
description 45Mbps to R1
ip address 10.200.14.250 255.255.255.252
random-detect
random-detect precedence 7 percent 20 50

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\hline bandwidth (policy-map class) & \begin{tabular}{l} 
Specifies or modifies the bandwidth allocated for a class belonging to a \\
policy map.
\end{tabular} \\
\hline random-detect dscp & \begin{tabular}{l} 
Changes the minimum and maximum packet thresholds for the DSCP \\
value.
\end{tabular} \\
& show policy-map interface & \begin{tabular}{l} 
Displays the configuration of all classes configured for all service policies \\
on the specified interface or displays the classes for the service policy for \\
a specific PVC on the interface.
\end{tabular} \\
\hline show queuing & Lists all or selected configured queuing strategies. \\
\hline
\end{tabular}

\section*{random-detect precedence-based}

To base weighted random early detection (WRED) on the precedence value of a packet, use the random-detect precedence-based command in policy-map class configuration mode. To disable this feature, use the no form of this command.
random-detect precedence-based
no random-detect precedence-based

Syntax Description

\section*{Command Default}

Command Modes

This command has no arguments or keywords.

WRED is disabled by default.

Policy-map class configuration (config-pmap-c)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l} 
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines

With the random-detect precedence-based command, WRED is based on the IP precedence value of the packet.

Use the random-detect precedence-based command before configuring the random-detect precedence-based command.

The following example shows that random detect is based on the precedence value of a packet:
```

Device> enable
Device\# configure terminal
Device(config)\#
policy-map policy1
Device(config-pmap)\# class class1
Device(config-pmap-c) \# bandwidth percent }8
Device(config-pmap-c) \# random-detect precedence-based
Device(config-pmap-c) \# random-detect precedence 2 percent 30 50
Device(config-pmap-c) \# exit

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline random-detect & Enables WRED. \\
\hline random-detect precedence & \begin{tabular}{l} 
Configures the WRED parameters for a particular IP precedence for a class \\
policy in a policy map.
\end{tabular} \\
\hline
\end{tabular}

\section*{service-policy (Wired)}

To apply a policy map to a physical port or a switch virtual interface (SVI), use the service-policy command in interface configuration mode. Use the no form of this command to remove the policy map and port association.
service-policy \(\{\) input | output \(\}\) policy-map-name no service-policy \(\{\) input | output \(\}\) policy-map-name

Syntax Description

\section*{Command Default}

\section*{Command Modes}

Command History
input policy-map-name Apply the specified policy map to the input of a physical port or an SVI.
output policy-map-name Apply the specified policy map to the output of a physical port or an SVI.

No policy maps are attached to the port.
WLAN interface configuration
\begin{tabular}{ll} 
Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Usage Guidelines}

A policy map is defined by the policy map command.
Only one policy map is supported per port, per direction. In other words, only one input policy and one output policy is allowed on any one port.
You can apply a policy map to incoming traffic on a physical port or on an SVI.

\section*{Examples}

This example shows how to apply plemap 1 to an physical ingress port:
```

Device(config)\# interface gigabitethernet 2/0/1
Device(config-if)\# service-policy input plcmap1

```

This example shows how to remove plcmap2 from a physical port:

Device(config) \# interface gigabitethernet 2/0/2
Device(config-if) \# no service-policy input plcmap2

The following example displays a VLAN policer configuration. At the end of this configuration, the VLAN policy map is applied to an interface for QoS:
```

Device\# configure terminal

```
Device# configure terminal
Device(config)# class-map vlan100
Device(config)# class-map vlan100
Device(config-cmap)# match vlan 100
Device(config-cmap)# match vlan 100
Device(config-cmap) # exit
Device(config-cmap) # exit
Device(config)# policy-map vlan100
Device(config)# policy-map vlan100
Device(config-pmap)# policy-map class vlan100
Device(config-pmap)# policy-map class vlan100
Device(config-pmap-c) # police 100000 bc conform-action transmit exceed-action drop
Device(config-pmap-c) # police 100000 bc conform-action transmit exceed-action drop
Device(config-pmap-c-police)# end
Device(config-pmap-c-police)# end
Device# configure terminal
```

Device\# configure terminal

```
```

Device(config)\# interface gigabitethernet 1/0/5
Device(config-if)\# service-policy input vlan100

```

You can verify your settings by entering the show running-config privileged EXEC command.

To classify IP traffic by setting a Differentiated Services Code Point (DSCP) or an IP-precedence value in the packet, use the set command in policy-map class configuration mode. Use the no form of this command to remove traffic classification.
```

set
cos| dscp| precedence | ip | qos-group
set cos
{cos-value } | {cos|dscp|precedence |qos-group} [{table table-map-name}]
set dscp
{dscp-value } | {cos|dscp|precedence |qos-group} [{table table-map-name}]
set ip {dscp | precedence}
set precedence {precedence-value} | {cos|dscp|precedence|qos-group} [{table table-map-name}]
set qos-group
{qos-group-value |dscp [{table table-map-name}]|precedence [{table table-map-name}]}

```

Sets the Layer 2 class of service (CoS) value or user priority of an outgoing packet. You can specify these values:
- cos-value-CoS value from 0 to 7 . You also can enter a mnemonic name for a commonly used value.
- Specify a packet-marking category to set the CoS value of the packet. If you also configure a table map for mapping and converting packet-marking values, this establishes the "map from" packet-marking category. Packet-marking category keywords:
- \(\boldsymbol{\operatorname { c o s }}\)-Sets a value from the CoS value or user priority.
- dscp-Sets a value from packet differentiated services code point (DSCP).
- precedence-Sets a value from packet precedence.
- qos-group-Sets a value from the QoS group.
- (Optional)table table-map-name-Indicates that the values set in a specified table map are used to set the CoS value. Enter the name of the table map used to specify the CoS value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the CoS value. For example, if you enter the set cos precedence command, the precedence
(packet-marking category) value is copied and used as the CoS value.
dscp
Sets the differentiated services code point (DSCP) value to mark IP(v4) and IPv6 packets. You can specify these values:
- cos-value-Number that sets the DSCP value. The range is from 0 to 63 . You also can enter a mnemonic name for a commonly used value.
- Specify a packet-marking category to set the DSCP value of the packet. If you also configure a table map for mapping and converting packet-marking values, this establishes the "map from" packet-marking category. Packet-marking category keywords:
- cos-Sets a value from the CoS value or user priority.
- dscp-Sets a value from packet differentiated services code point (DSCP).
- precedence-Sets a value from packet precedence.
- qos-group-Sets a value from the QoS group.
- (Optional)table table-map-name-Indicates that the values set in a specified table map will be used to set the DSCP value. Enter the name of the table map used to specify the DSCP value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the DSCP value. For example, if you enter the set dscp cos command, the CoS value (packet-marking category) is copied and used as the DSCP value.
ip
Sets IP values to the classified traffic. You can specify these values:
- dscp-Specify an IP DSCP value from 0 to 63 or a packet marking category.
- precedence-Specify a precedence-bit value in the IP header; valid values are from 0 to 7 or specify a packet marking category.

\section*{precedence}

Sets the precedence value in the packet header. You can specify these values:
- precedence-value- Sets the precedence bit in the packet header; valid values are from 0 to 7 . You also can enter a mnemonic name for a commonly used value.
- Specify a packet marking category to set the precedence value of the packet.
- cos-Sets a value from the CoS or user priority.
- dscp-Sets a value from packet differentiated services code point (DSCP).
- precedence-Sets a value from packet precedence.
- qos-group-Sets a value from the QoS group.
- (Optional)table table-map-name-Indicates that the values set in a specified table map will be used to set the precedence value. Enter the name of the table map used to specify the precedence value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the precedence value. For example, if you enter the set precedence cos command, the CoS value (packet-marking category) is copied and used as the precedence value.
qos-group

Assigns a QoS group identifier that can be used later to classify packets.
- qos-group-value-Sets a QoS value to the classified traffic. The range is 0 to 31 . You also can enter a mnemonic name for a commonly used value.
- dscp-Sets the original DSCP field value of the packet as the QoS group value.
- precedence-Sets the original precedence field value of the packet as the QoS group value.
- (Optional)table table-map-name-Indicates that the values set in a specified table map will be used to set the DSCP or precedence value. Enter the name of the table map used to specify the value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category (dscp or precedence) but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the QoS group value. For example, if you enter the set qos-group precedence command, the precedence value (packet-marking category) is copied and used as the QoS group value.
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

No traffic classification is defined.
Policy-map class configuration
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was intr

For the set dscp \(d s c p\)-value command, the set cos cos-value command, and the set ip precedence precedence-value command, you can enter a mnemonic name for a commonly used value. For example, you can enter the set dscp af11 command, which is the same as entering the set dscp \(\mathbf{1 0}\) command. You can enter the set ip precedence critical command, which is the same as entering the set ip precedence 5 command. For a list of supported mnemonics, enter the set dscp ? or the set ip precedence ? command to see the command-line help strings.

When you configure the set dscp coscommand, note the following: The CoS value is a 3-bit field, and the DSCP value is a 6-bit field. Only the three bits of the CoS field are used.

When you configure the set dscp qos-group command, note the following:
- The valid range for the DSCP value is a number from 0 to 63 . The valid value range for the QoS group is a number from 0 to 99 .
- If a QoS group value falls within both value ranges (for example, 44), the packet-marking value is copied and the packets is marked.
- If QoS group value exceeds the DSCP range (for example, 77), the packet-marking value is not be copied and the packet is not marked. No action is taken.

The set qos-group command cannot be applied until you create a service policy in policy-map configuration mode and then attach the service policy to an interface or ATM virtual circuit (VC).

To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

\section*{Examples \\ This example shows how to assign DSCP 10 to all FTP traffic without any policers:}
```

Device(config)\# policy-map policy_ftp
Device(config-pmap)\# class-map ftp_class
Device(config-cmap) \# exit
Device(config)\# policy policy_ftp
Device(config-pmap)\# class ftp_class
Device(config-pmap-c)\# set dscp}1
Device(config-pmap) \# exit

```

You can verify your settings by entering the show policy-map privileged EXEC command.

\section*{show auto qos}

To display the quality of service ( QoS ) commands entered on the interfaces on which automatic QoS (auto- QoS ) is enabled, use the show auto qos command in privileged EXEC mode.
show auto qos [interface [interface-id]]

\section*{Syntax Description}
interface (Optional) Displays auto-QoS information for the specified port or for all ports. Valid [interface-id] interfaces include physical ports.
\begin{tabular}{l}
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
The show auto qos command output shows only the auto qos command entered on each interface. The show auto qos interface interface-id command output shows the auto qos command entered on a specific interface.
Use the show running-config privileged EXEC command to display the auto-QoS configuration and the user modifications.

\section*{Examples}

This is an example of output from the show auto qos command after the auto qos voip cisco-phone and the auto qos voip cisco-softphone interface configuration commands are entered:
```

Device\# show auto qos
Gigabitethernet 2/0/4
auto qos voip cisco-softphone
Gigabitethernet 2/0/5
auto qos voip cisco-phone
Gigabitethernet 2/0/6
auto qos voip cisco-phone

```

This is an example of output from the show auto qos interface interface-id command when the auto qos voip cisco-phone interface configuration command is entered:
```

Device\# show auto qos interface Gigabitethernet 2/0/5
Gigabitethernet 2/0/5
auto qos voip cisco-phone

```

These are examples of output from the show auto qos interface interface-id command when auto-QoS is disabled on an interface:

\section*{show class-map}

To display quality of service (QoS) class maps, which define the match criteria to classify traffic, use the show class-map command in EXEC mode.
show class-map [class-map-name | type control subscriber \{all| class-map-name\}]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline class-map-name & (Optional) Class map name. \\
\hline type control subscriber & (Optional) Displays information about control class maps. \\
\hline all \(\quad\) (Optional) Displays information about all control class maps.
\end{tabular}

\section*{Command Modes}

User EXEC
Privileged EXEC

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

\section*{Examples}

This is an example of output from the show class-map command:
```

Device\# show class-map
Class Map match-any videowizard_10-10-10-10 (id 2)
Match access-group name videowizard_10-10-10-10
Class Map match-any class-default (id 0)
Match any
Class Map match-any dscp5 (id 3)
Match ip dscp 5

```

\section*{show platform hardware fed switch}

To display device-specific hardware information, use the show platform hardware fed switchswitch_number command.

This topic elaborates only the QoS-specific options, that is, the options available with the show platform hardware fed switch \{switch_num | active | standby \} qos command.
show platform hardware fed switch \(\{\) switch_num \(\mid\) active | standby\} qos \{afd |\{config type type |[\{asic asic_num \(\}] \mid\) stats clients \(\{\) all \(\mid\) bssid \(i d \mid\) wlanid \(i d\}\} \mid\) dscp-cos counters \(\{\) iifd_id \(i d \mid\) interfacetype number \(\}\) \(\mid\) le-info | \{iifd_id id \(\mid\) interface type number \(\} \mid\) policer config \{iifd_id \(i d \mid\) interface type number \(\} \mid\) queue | \{config | \{iifd_id id \(\mid\) interface type number \(\mid\) internal port-type type \{asic number [\{port_num \(\}]\}\} \mid\) label2qmap |[\{aqmrepqostbl|iqslabeltable | sqslabeltable\}]|\{asicnumber\}|stats |\{iifd_id id|interface type number | internal \{cpu policer | port-type type asic number \(\}\) \{asicnumber [\{port_num \(\}]\}\}\} \mid\) resource \(\}\)

\section*{Syntax Description}
switch \{switch_num | Switch for which you want to display information. You have the following options:
active | standby \} • switch_num-ID of the switch.
- active-Displays information relating to the active switch.
- standby-Displays information relating to the standby switch, if available.
qos
Displays QoS hardware information. You must choose from the following options:
- afd —Displays Approximate Fair Drop (AFD) information in hardware.
- dscp-cos-Displays information dscp-cos counters for each port.
- leinfo-Displays logical entity information.
- policer-Displays QoS policer information in hardware.
- queue-Displays queue information in hardware.
- resource-Displays hardware resource information.
afd \(\{\) config type | You must choose from the options under config type or stats client : stats client \} config type:
- client-Displays wireless client information
- port-Displays port-specific information
- radio-Displays wireless radio information
- ssid—Displays wireless SSID information
stats client :
- all-Displays statistics of all client.
- bssid—Valid range is from 1 to 4294967295.
- wlanid—Valid range is from to 14294967295
\begin{tabular}{|c|c|}
\hline asicasic_num & (Optional) ASIC number. Valid range is from 0 to 255. \\
\hline dscp-cos counters \{ iifd_id id | interface type number \} & \begin{tabular}{l}
Displays per port dscp-cos counters. You must choose from the following options under dscp-cos counters: \\
- iif_id id-The target interface ID. Valid range is from 1 to 4294967295. \\
- interface type number-Target interface type and ID.
\end{tabular} \\
\hline leinfo & \begin{tabular}{l}
You must choose from the following options under dscp-cos counters: \\
- iif_id \(i d\)-The target interface ID. Valid range is from 1 to 4294967295. \\
- interface type number-Target interface type and ID.
\end{tabular} \\
\hline policer config & \begin{tabular}{l}
Displays configuration information related to policers in hardware. You must choose from the following options: \\
- iif_id id-The target interface ID. Valid range is from 1 to 4294967295. \\
- interface type number-Target interface type and ID.
\end{tabular} \\
\hline queue \{config \{iif_id id | interface type number | internal \} | label2qmap | stats \} & \begin{tabular}{l}
Displays queue information in hardware. You must choose from the following options: \\
- config-Configuration information. You must choose from the following options: \\
- iif_id \(i d\)-The target interface ID. Valid range is from 1 to 4294967295. \\
- interface type number-Target interface type and ID. \\
- internal-Displays internal queue related information. \\
- label2qmap-Displays hardware label to queue mapping information. You can choose from the following options: \\
- (Optional) aqmrepqostbl-AQM REP QoS label table lookup. \\
- (Optional) iqslabeltable-IQS QoS label table lookup. \\
- (Optional) sqslabeltable-SQS and local QoS label table lookup. \\
- stats-Displays queue statistics. You must choose from the following options: \\
- iif_id \(i d\)-The target interface ID. Valid range is from 1 to 4294967295. \\
- interface type number-Target interface type and ID. \\
- internal \{cpu policer | port_type port_type asic asic_num [ port_num port_num ] \}-Displays internal queue related information.
\end{tabular} \\
\hline resource & Displays hardware resource usage information. You must enter the following keyword: usage \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command Modes & User EXEC \\
& Privileged EXEC
\end{tabular}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

This is an example of output from theshow platform hardware fed switchswitch_numberqos queue stats internal cpu policer command
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline QId & PlcIdx & Queue Name & Enabled & ```
(default)
    Rate
``` & \[
\begin{aligned}
& \text { (set) } \\
& \text { Rate }
\end{aligned}
\] & Drop \\
\hline 0 & 11 & DOT1X Auth & No & 1000 & 1000 & 0 \\
\hline 1 & 1 & L2 Control & No & 500 & 500 & 0 \\
\hline 2 & 14 & Forus traffic & No & 1000 & 1000 & 0 \\
\hline 3 & 0 & ICMP GEN & Yes & 200 & 200 & 0 \\
\hline 4 & 2 & Routing Control & Yes & 1800 & 1800 & 0 \\
\hline 5 & 14 & Forus Address resolution & No & 1000 & 1000 & 0 \\
\hline 6 & 3 & ICMP Redirect & No & 500 & 500 & 0 \\
\hline 7 & 6 & WLESS PRI-5 & No & 1000 & 1000 & 0 \\
\hline 8 & 4 & WLESS PRI-1 & No & 1000 & 1000 & 0 \\
\hline 9 & 5 & WLESS PRI-2 & No & 1000 & 1000 & 0 \\
\hline 10 & 6 & WLESS PRI-3 & No & 1000 & 1000 & 0 \\
\hline 11 & 6 & WLESS PRI-4 & No & 1000 & 1000 & 0 \\
\hline 12 & 0 & BROADCAST & Yes & 200 & 200 & 0 \\
\hline 13 & 10 & Learning cache ovfl & Yes & 100 & 100 & 0 \\
\hline 14 & 13 & Sw forwarding & Yes & 1000 & 1000 & 0 \\
\hline 15 & 8 & Topology Control & No & 13000 & 13000 & 0 \\
\hline 16 & 12 & Proto Snooping & No & 500 & 500 & 0 \\
\hline 17 & 16 & DHCP Snooping & No & 1000 & 1000 & 0 \\
\hline 18 & 9 & Transit Traffic & Yes & 500 & 500 & 0 \\
\hline 19 & 10 & RPF Failed & Yes & 100 & 100 & 0 \\
\hline 20 & 15 & MCAST END STATION & Yes & 2000 & 2000 & 0 \\
\hline 21 & 13 & LOGGING & Yes & 1000 & 1000 & 0 \\
\hline 22 & 7 & Punt Webauth & No & 1000 & 1000 & 0 \\
\hline 23 & 10 & Crypto Control & Yes & 100 & 100 & 0 \\
\hline 24 & 10 & Exception & Yes & 100 & 100 & 0 \\
\hline 25 & 3 & General Punt & No & 500 & 500 & 0 \\
\hline 26 & 10 & NFL SAMPLED DATA & Yes & 100 & 100 & 0 \\
\hline 27 & 2 & SGT Cache Full & Yes & 1800 & 1800 & 0 \\
\hline 28 & 10 & EGR Exception & Yes & 100 & 100 & 0 \\
\hline 29 & 16 & Show frwd & No & 1000 & 1000 & 0 \\
\hline 30 & 9 & MCAST Data & Yes & 500 & 500 & 0 \\
\hline 31 & 10 & Gold Pkt & Yes & 100 & 100 & 0 \\
\hline
\end{tabular}

\section*{show platform software fed switch qos}

To display device-specific software information, use the show platform hardware fed switch switch_number command.

This topic elaborates only the QoS-specific options available with the show platform software fed switch \{switch_num | active | standby \} qos command.
show platform software fed switch \(\{\) switch number \(\mid\) active | standby \(\}\) qos \(\{\) ave |internal |label2qmap| nflqos | policer | policy | qsb | tablemap \(\}\)

\section*{Syntax Description}

\section*{Command Modes}

Command History
switch
\(\{\) switch_num |
active | standby
\(\}\)

The device for which you want to display information.
- switch_num—Enter the switch ID. Displays information for the specified switch.
- active-Displays information for the active switch.
- standby-Displays information for the standby switch, if available.
qos Displays QoS software information. Choose one the following options:
- avc : Displays Application Visibility and Control (AVC) QoS information.
- internal: Displays internal queue-related information.
- label2qmap: Displays label to queue map table information.
- nflqos: Displays NetFlow QoS information.
- policer: Displays QoS policer information in hardware.
- policy: Displays QoS policy information.
- qsb: Displays QoS sub-block information.
- tablemap: Displays table mapping information for QoS egress and ingress queues.
- stack-buffer: Displays information on the stacking mode of the device. If the stacking mode is disabled, the device is in standalone mode.

User EXEC
Privileged EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline Cisco IOS XE Gibraltar 16.12.1 & \begin{tabular}{l}
Introduced the keyword \\
stack-buffer.
\end{tabular} \\
\hline
\end{tabular}

\section*{show platform software fed switch qos qsb}

To display QoS sub-block information, use the show platform software fed switch switch_number qos qsb command.
show platform software fed switch \(\{\) switch number | active | standby \(\}\) qosqsb \(\{\) brief | [\{all | type | \{clientclient_id | port port_number | radioradio_type | ssidssid \(\}\}] \mid\) iif_idid | interface |
\{Auto-Templateinterface_number | BDIİterface_number \(\mid\) Capwapinterface_number \(\mid\) GigabitEthernetinterface_number \(\mid\) InternalInterfaceinterface_number \(\mid\) Loopbackinterface_number \(\mid\) Nullinterface_number \(\mid\) Port-channelinterface_number \(\mid\) TenGigabitEthernetinterface_number \(\mid\) Tunnelinterface_number \(\mid\) Vlaninterface_number \(\}\}\)

Syntax Description

The switch for which you want to display information.
- switch_num - Enter the ID of the switch. Displays information for the specified switch.
- active-Displays information for the active switch.
- standby-Displays information for the standby switch, if available.
qsb \{brief | iif_id | brief interface \(\}\)
- all—Displays information for all client.
- type-Displays qsb information for the specified target type:
- client-Displays QoS qsb information for wireless clients
- port-Displays port-specific information
- radio-Displays QoS qsb information for wireless radios
- ssid—Displays QoS qsb information for wireless networks
iif_id-Displays information for the iif ID
interface-Displays QoS qsb information for the specified interface:
- Auto-Template-Auto-template interface between 1 and 999.
- BDI—Bridge-domain interface between 1 and 16000 .
- Capwap-CAPWAP interface between 0 and 2147483647.
- GigabitEthernet-GigabitEthernet interface between 0 and 9 .
- InternalInterface-Internal interface between 0 and 9 .
- Loopback-Loopback interface between 0 and 2147483647.
- Null-Null interface 0-0
- Port-Channel-Port-channel interface between 1 and 128.
- TenGigabitEthernet-TenGigabitEthernet interface between 0 and 9 .
- Tunnel-Tunnel interface between 0 and 2147483647 .
- Vlan-VLAN interface between 1 and 4094.

\section*{Command Modes}

\section*{Command History}

User EXEC
Privileged EXEC

Cisco IOS XE Everest 16.5.1a This command was introduced.

This is an example of the output for theshow platform software fed switchswitch_numberqos qsb command
```

Device\#sh pl so fed sw 3 qos qsb interface g3/0/2
QoS subblock information:
Name:GigabitEthernet3/0/2 iif_id:0x0000000000007b iif_type:ETHER(146)
qsb ptr:0xffd8573350
Port type = Wired port
asic_num:0 is_uplink:false init_done:true
FRU events: Active-0, Inactive-0
def_qos_label:0 def_le_priority:13
trust_enabled:false trust_type:TRUST_DSCP ifm_trust_type:1

```
```

LE priority:13 LE trans index(in, out): (0,0)
Stats (plc,q) export counters (in/out): 0/0
Policy Info:
Ingress Policy: pmap::{(0xffd8685180,AutoQos-4.0-CiscoPhone-Input-Policy,1083231504,)}
tcg::{0xffd867ad10,GigabitEthernet3/0/2 tgt(0x7b,IN) level:0 num_tccg:4 num_child:0},
status:VALID,SET_INHW
Egress Policy: pmap::{(0xffd86857d0,AutoQos-4.0-Output-Policy,1076629088,)}
tcg::{0xffd8685b40,GigabitEthernet3/0/2 tgt(0x7b,OUT) level:0 num_tccg:8 num_child:0},
status:VALID,SET_INHW
TCG(in,out):(0xffd867ad10, 0xffd8685b40) le_label_id(in,out):(2, 1)
Policer Info:
num ag policers(in,out)[1r2c,2r3c]: ([0,0],[0,0])
num_mf_policers(in,out): (0,0)
num afd policers:0
[ag_plc_handle(in,out) = (0xd8688220,0)]
[mf_plc_handle(in,out)=((nil),(nil)) num_mf_policers:(0,0)
base:(0xfffffffff,0xfffffffff) rc:(0,0)]
Queueing Info:
def_queuing = 0, shape_rate:0 interface_rate_kbps:1000000
Port shaper:false
lbl to qmap index:1
Physical qparams:
Queue Config: NodeType:Physical Id:0x40000049 parent:0x40000049 qid:0 attr:0x1 defq:0
PARAMS: Excess Ratio:1 Min Cir:1000000 QBuffer:0
Queue Limit Type:Single Unit:Percent Queue Limit:44192
SHARED Queue

```

\section*{show policy-map}

To display quality of service (QoS) policy maps, which define classification criteria for incoming traffic, use the show policy-map command in EXEC mode.
```

show policy-map [{policy-map-name | interface interface-id }]
show policy-map interface {Auto-template | Capwap | GigabitEthernet | GroupVI |
InternalInterface | Loopback | Lspvif | Null | Port-channel | TenGigabitEthernet | Tunnel
| Vlan | brief | class | input | output}
show policy-map type control subscriber detail

```

\section*{Syntax Description}

\section*{Command Modes}

\section*{User EXEC}

Privileged EXEC

\section*{Command History}

Modification
Cisco IOS XE Everest 16.5.1a
This command w

Policy maps can include policers that specify the bandwidth limitations and the action to take if the limits are exceeded.

Note Though visible in the command-line help string, the control-plane, session, and type keywords are not supported, and the statistics shown in the display should be ignored.

This is an example of the output for the show policy-map interface command.
```

Device\# show policy-map interface gigabitethernet 1/0/48
Service-policy output: port_shape_parent
Class-map: class-default (match-any)
191509734 packets
Match: any
Queueing
(total drops) 524940551420
(bytes output) 14937264500
shape (average) cir 250000000, bc 2500000, be 2500000
target shape rate 250000000

```
```

Service-policy : child trip play
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 524940551420
(bytes output) 14937180648
queue stats for all priority classes:
Queueing
priority level 2
(total drops) 0
(bytes output) 0
Class-map: dscp56 (match-any)
191508445 packets
Match: dscp cs7 (56)
O packets, 0 bytes
5 minute rate 0 bps
Priority: Strict,
Priority Level: 1
police:
cir 10 %
cir 25000000 bps, bc 781250 bytes
conformed 0 bytes; actions: >>>>>counters not supported
transmit
exceeded 0 bytes; actions:
drop
conformed 0000 bps, exceeded 0000 bps >>>>>counters not supported

```

\section*{show tech-support qos}

To display quality of service (QoS)-related information for use by technical support, use the show tech-support qos command in privileged EXEC mode.
show tech-support qos [\{switch \(\{\) switch-number | active | all \| standby \(\} \quad[\{\) control-plane | interface \{interface-name | all\} \}]\}]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline switch switch-number & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for a specific switch.
\end{tabular} \\
\hline active & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for the active instance \\
of the switch.
\end{tabular} \\
\hline all & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for all instances of the \\
switch.
\end{tabular} \\
\hline standby & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for the standby instance \\
of the switch.
\end{tabular} \\
\hline control-plane & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for the control-plane.
\end{tabular} \\
\hline interface interface-name & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for a specified interface.
\end{tabular} \\
\hline all & \begin{tabular}{l}
(Optional) Displays QoS-related \\
information for all interfaces.
\end{tabular} \\
\hline
\end{tabular}

\section*{\begin{tabular}{l}
\hline Command Modes \\
\hline Command History
\end{tabular}}

\section*{Usage Guidelines}

Privileged EXEC (\#)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Gibraltar 16.10.1 & This command was introduced. \\
\hline
\end{tabular}

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support qos | redirect flash: filename) in the local writable storage file system or remote file system.
The output of the show tech-support qos command displays a list of commands and their output. These commands differ based on the platform.

\section*{Examples}

The following is sample output from the show tech-support qos command:
```

Device\# show tech-support qos

```
.
```

----------------- show platform software fed switch 1 qos policy target brief
-------------------

```
TCG summary for policy: system-cpp-policy
\begin{tabular}{|c|c|c|c|c|c|}
\hline oc Interface & IIF-ID Di & \multicolumn{4}{|l|}{Dir tccg Child \#m/p/q State: (cfg,opr)} \\
\hline ?:255 Control Plane & 0x00000001000001 OUT & 22 & 0 0/17/0 & VALID, SET INHW & \(0 x f f e 4 d a 31 \mathrm{c} 8\) \\
\hline ?:0 CoPP-Queue-0 & 0x0000000100000d OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d a 41 e 8\) \\
\hline ?:0 CoPP-Queue-1 & 0x0000000100000e OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d b e d e 8\) \\
\hline ?:0 CoPP-Queue-2 & 0x0000000100000f OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d c 2 d f 8\) \\
\hline ?:0 CoPP-Queue-3 & 0x00000001000010 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d c 6 e 08\) \\
\hline ?:0 CoPP-Queue-4 & 0x00000001000011 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d c a e 18\) \\
\hline ?:0 CoPP-Queue-5 & 0x00000001000012 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d c e e 28\) \\
\hline ?:0 CoPP-Queue-6 & 0x00000001000013 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d d 2 e 38\) \\
\hline ?:0 CoPP-Queue-7 & 0x00000001000014 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d d 6 e 48\) \\
\hline ?:0 CoPP-Queue-8 & 0x00000001000015 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & 0xffe4ddae58 \\
\hline ?:0 CoPP-Queue-9 & 0x00000001000016 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d d e e 68\) \\
\hline ?:0 CoPP-Queue-10 & 0x00000001000017 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d e 2 e 78\) \\
\hline ?:0 CoPP-Queue-11 & 0x00000001000018 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d e 6 e 88\) \\
\hline ?:0 CoPP-Queue-12 & 0x00000001000019 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d e a e 98\) \\
\hline ?:0 CoPP-Queue-13 & 0x0000000100001a OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4\) deeea 8 \\
\hline ?:0 CoPP-Queue-14 & 0x0000000100001b OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d f 2 e b 8\) \\
\hline ?:0 CoPP-Queue-15 & 0x0000000100001c OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d f 6 e c 8\) \\
\hline ?:0 CoPP-Queue-16 & 0x0000000100001d OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d f a e d 8\) \\
\hline ?:0 CoPP-Queue-17 & 0x0000000100001e OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 d f e e e 8\) \\
\hline ?:0 CoPP-Queue-18 & 0x0000000100001f OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 02 e f 8\) \\
\hline ?:0 CoPP-Queue-19 & 0x00000001000020 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 06 f 08\) \\
\hline ?:0 CoPP-Queue-20 & 0x00000001000021 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 0 a e 88\) \\
\hline ?:0 CoPP-Queue-21 & 0x00000001000022 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 0 e e 98\) \\
\hline ?:0 CoPP-Queue-22 & 0x00000001000023 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 12 e a 8\) \\
\hline ?:0 CoPP-Queue-23 & 0x00000001000024 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 16 e b 8\) \\
\hline ?:0 CoPP-Queue-24 & 0x00000001000025 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 1 a e c 8\) \\
\hline ?:0 CoPP-Queue-25 & 0x00000001000026 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 1 e e d 8\) \\
\hline ?:0 CoPP-Queue-26 & 0x00000001000027 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 22 e e 8\) \\
\hline ?:0 CoPP-Queue-27 & 0x00000001000028 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 26 e f 8\) \\
\hline ?:0 CoPP-Queue-28 & 0x00000001000029 OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 2 a f 08\) \\
\hline ?:0 CoPP-Queue-29 & 0x0000000100002a OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 2 e f 18\) \\
\hline ?:0 CoPP-Queue-30 & 0x0000000100002b OUT & 22 & 0 0/17/0 & VALID, SET_INHW & \(0 x f f e 4 e 32 f 28\) \\
\hline ?:0 CoPP-Queue-31 & 0x0000000100002c OUT & 22 & 0 0/17/0 & VALID, SET_INHW & 0xffe4e36f38 \\
\hline
\end{tabular}
------------------ show platform software fed switch 1 qos policy summary -----------------------

\section*{Output fields are self-explanatory.}

\section*{trust device}

To configure trust for supported devices connected to an interface, use the trust device command in interface configuration mode. Use the no form of this command to disable trust for the connected device.
trust device \(\{\) cisco-phone | cts | ip-camera | media-player\}
no trust device \(\{\) cisco-phone | cts | ip-camera | media-player\}

\section*{Syntax Description}

Command Default
Command Modes
Command History

\section*{Usage Guidelines}

Use the trust device command on the following types of interfaces:
- Auto- auto-template interface
- Capwap-CAPWAP tunnel interface
- GigabitEthernet-Gigabit Ethernet IEEE 802
- GroupVI-Group virtual interface
- Internal Interface-Internal interface
- Loopback-Loopback interface
- Null-Null interface
- Port-channel-Ethernet Channel interface
- TenGigabitEthernet--10-Gigabit Ethernet
- Tunnel-Tunnel interface
- Vlan-Catalyst VLANs
- range-interface range command

\section*{Example}

The following example configures trust for a Cisco IP phone in Interface GigabitEthernet 1/0/1:
Device(config) \# interface gigabitethernet 1/0/1
Device(config-if) \# trust device cisco-phone

\({ }_{\text {рант }} \mathbf{X}\)

\section*{Routing}
- IP Routing Commands, on page 1347

\section*{IP Routing Commands}
- accept-lifetime, on page 1349
- address-family ipv6 (OSPF), on page 1352
- address-family 12 vpn , on page 1353
- aggregate-address, on page 1356
- area nssa, on page 1359
- area virtual-link, on page 1361
- auto-summary (BGP), on page 1364
- authentication (BFD), on page 1367
- bfd, on page 1368
- bfd all-interfaces, on page 1370
- bfd check-ctrl-plane-failure, on page 1371
- bfd echo, on page 1372
- bfd slow-timers, on page 1374
- bfd template, on page 1376
- bfd-template single-hop, on page 1377
- bgp graceful-restart, on page 1378
- clear proximity ip bgp, on page 1380
- default-information originate (OSPF), on page 1384
- default-metric (BGP), on page 1386
- distance (OSPF), on page 1388
- eigrp log-neighbor-changes, on page 1391
- eigrp log-neighbor-warnings, on page 1393
- ip authentication key-chain eigrp, on page 1395
- ip authentication mode eigrp, on page 1396
- ip bandwidth-percent eigrp, on page 1397
- ip cef load-sharing algorithm, on page 1398
- ip community-list, on page 1399
- ip prefix-list, on page 1404
- ip hello-interval eigrp, on page 1407
- ip hold-time eigrp, on page 1408
- ip load-sharing, on page 1409
- ip network-broadcast, on page 1410
- ip ospf database-filter all out, on page 1411
- ip ospf name-lookup, on page 1412
- ip split-horizon eigrp, on page 1413
- ip summary-address eigrp, on page 1414
- ip route static bfd, on page 1416
- ipv6 route static bfd, on page 1418
- metric weights (EIGRP), on page 1419
- neighbor advertisement-interval, on page 1421
- neighbor default-originate, on page 1423
- neighbor description, on page 1425
- neighbor ebgp-multihop, on page 1426
- neighbor maximum-prefix (BGP), on page 1427
- neighbor peer-group (assigning members), on page 1429
- neighbor peer-group (creating), on page 1431
- neighbor route-map, on page 1434
- neighbor update-source, on page 1436
- network (BGP and multiprotocol BGP), on page 1438
- network (EIGRP), on page 1440
- nsf (EIGRP), on page 1442
- offset-list (EIGRP), on page 1444
- redistribute (IP), on page 1446
- redistribute (IPv6), on page 1454
- redistribute maximum-prefix (OSPF), on page 1457
- rewrite-evpn-rt-asn, on page 1459
- route-map, on page 1460
- router-id, on page 1463
- router bgp, on page 1464
- router eigrp, on page 1467
- router ospf, on page 1468
- router ospfv3, on page 1469
- send-lifetime, on page 1470
- set community, on page 1473
- set ip next-hop (BGP), on page 1475
- show ip bgp, on page 1477
- show ip bgp neighbors, on page 1489
- show ip eigrp interfaces, on page 1504
- show ip eigrp neighbors, on page 1507
- show ip eigrp topology, on page 1510
- show ip eigrp traffic, on page 1515
- show ip ospf, on page 1517
- show ip ospf border-routers, on page 1525
- show ip ospf database, on page 1526
- show ip ospf interface, on page 1535
- show ip ospf neighbor, on page 1538
- show ip ospf virtual-links, on page 1544
- summary-address (OSPF), on page 1545
- timers throttle spf, on page 1547

\section*{accept-lifetime}

To set the time period during which the authentication key on a key chain is received as valid, use the accept-lifetime command in key chain key configuration mode. To revert to the default value, use the no form of this command.
accept-lifetime [local] start-time \{infinite end-time |duration seconds \} no accept-lifetime

Syntax Description

Command Default

Command Modes

Command History
\begin{tabular}{|c|c|}
\hline local & Specifies the time in local timezone. \\
\hline start-time & \begin{tabular}{l}
Beginning time that the key specified by the key command is valid to be received. The syntax can be either of the following: \\
\(h h: m m: s s\) month date year \\
\(h h: m m: s s\) date month year \\
- \(h h\) : Hours \\
- mm: Minutes \\
- ss: Seconds \\
- month: First three letters of the month \\
- date: Date (1-31) \\
- year: Year (four digits) \\
The default start time and the earliest acceptable date is January 1, 1993.
\end{tabular} \\
\hline infinite & Key is valid to be received from the start-time value on. \\
\hline end-time & Key is valid to be received from the start-time value until the end-timevalue. The syntax is the same as that for the start-timevalue. The end-time value must be after the start-timevalue. The default end time is an infinite time period. \\
\hline duration seconds & Length of time (in seconds) that the key is valid to be received. The range is from 1 to 864000. \\
\hline
\end{tabular}

The authentication key on a key chain is received as valid forever (the starting time is January 1, 1993, and the ending time is infinite).

Key chain key configuration (config-keychain-key)

Release Modification
Cisco IOS XE Everest 16.5.1a This command was introduced.

Only DRP Agent, Enhanced Interior Gateway Routing Protocol (EIGRP), and Routing Information Protocol (RIP) Version 2 use key chains.

Specify a start-time value and one of the following values: infinite, end-time, or duration seconds.
We recommend running Network Time Protocol (NTP) or some other time synchronization method if you assign a lifetime to a key.

If the last key expires, authentication will continue and an error message will be generated. To disable authentication, you must manually delete the last valid key.

\section*{Examples}

The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to \(3: 30 \mathrm{p} . \mathrm{m}\). and will be sent from \(2: 00 \mathrm{p} . \mathrm{m}\). to \(3: 00 \mathrm{p} . \mathrm{m}\). The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and will be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30 -minute leeway on each side to handle time differences.
```

Device(config)\# interface GigabitEthernet1/0/1
Device(config-if) \# ip rip authentication key-chain chain1
Device(config-if) \# ip rip authentication mode md5
Device(config-if)\# exit
Device(config)\# router rip
Device(config-router)\# network 172.19.0.0
Device(config-router)\# version 2
Device(config-router)\# exit
Device(config)\# key chain chain1
Device(config-keychain) \# key 1
Device(config-keychain-key)\# key-string key1
Device(config-keychain-key)\# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Device(config-keychain-key)\# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Device(config-keychain-key)\# exit
Device(config-keychain) \# key 2
Device(config-keychain) \# key-string key2
Device(config-keychain)\# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Device(config-keychain)\# send-lifetime 15:00:00 Jan 25 1996 duration 3600

```

The following example configures a key chain named chain1 for EIGRP address-family. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key 2 will be accepted from 2:30 p.m. to \(4: 30 \mathrm{p} . \mathrm{m}\). and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30 -minute leeway on each side to handle time differences.
```

Device(config)\# router eigrp 10
Device(config-router) \# address-family ipv4 autonomous-system 4453
Device(config-router-af)\# network 10.0.0.0
Device(config-router-af)\# af-interface ethernet0/0
Device(config-router-af-interface) \# authentication key-chain trees
Device(config-router-af-interface) \# authentication mode md5
Device(config-router-af-interface)\# exit
Device(config-router-af) \# exit
Device(config-router)\# exit
Device(config)\# key chain chain1
Device(config-keychain) \# key 1
Device(config-keychain-key)\# key-string key1
Device(config-keychain-key)\# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Device(config-keychain-key)\# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Device(config-keychain-key)\# exit
Device(config-keychain) \# key 2
Device(config-keychain-key)\# key-string key2
Device(config-keychain-key) \# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Device(config-keychain-key)\# send-lifetime 15:00:00 Jan 25 1996 duration 3600

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline key & Identifies an authentication key on a key chain. \\
\hline key chain & \begin{tabular}{l}
Defines an authentication key-chain needed to enable authentication for \\
routing protocols.
\end{tabular} \\
\hline key-string (authentication) & Specifies the authentication string for a key. \\
\hline send-lifetime & \begin{tabular}{l}
Sets the time period during which an authentication key on a key chain is \\
valid to be sent.
\end{tabular} \\
\hline show key chain & Displays authentication key information. \\
\hline
\end{tabular}

\section*{address-family ipv6 (0SPF)}

To enter the address family configuration mode for configuring routing sessions, such as Open Shortest Path First (OSPF), that uses the standard IPv6 address prefixes, use the address-family ipv6 command in the router configuration mode. To disable the address family configuration mode, use the no form of this command.
address-family ipv6 [unicast][\{vrf vrf-name \}]
no address-family ipv6 [unicast][\{vrf vrf-name \}]

\section*{Syntax Description}
unicast (Optional) Specifies the IPv6 unicast address prefixes.
vrf (Optional) Specifies all the VPN routing and forwarding (VRF) instance tables or a specific VRF table for an IPv6 address.
vrf-name (Optional) A specific VRF table for an IPv6 address.
\begin{tabular}{llll}
\hline Command Default & & \begin{tabular}{l}
IPv6 address prefixes are not enabled. Unicast address prefixes are the default when the IPv6 address prefixes \\
are configured.
\end{tabular} \\
\(\overline{\text { Command Modes }}\) & Router configuration (config-router) & \\
\hline Command History & Release & Modification \\
& Cisco IOS XE Everest 16.5.1a & This command w \\
& &
\end{tabular}

\section*{Usage Guidelines}

The address-family ipv6 command places the router in address family configuration mode (prompt: config-router-af), from which you can configure routing sessions that use the standard IPv6 address prefixes.

\section*{Examples}

The following example shows how to place the router in address family configuration mode:
```

Device> enable
Device\# configure terminal
Device(config)\# router ospfv3 1
Device(config-router)\# address-family ipv6 unicast
Device(config-router-af) \#

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline router ospfv3 & Enters OSPFv3 router configuration mode. \\
\hline
\end{tabular}

\section*{address-family l2vpn}

To enter address family configuration mode to configure a routing session using Layer 2 Virtual Private Network (VPN) endpoint provisioning address information, use the address-family l2vpn command in router configuration mode. To remove the Layer 2 VPN address family configuration from the running configuration, use the no form of this command.
address-family l2vpn [\(\mathbf{\operatorname { e v p n } |} \mid\) vpls \(\}\)] no address-family \(12 \mathrm{vpn}[\{\operatorname{evpn} \mid\) vpls \(\}]\)

\section*{Syntax Description}

\section*{Command Default}

Command Modes
\begin{tabular}{ll}
evpn & \begin{tabular}{l}
(Optional) Specifies L2VPN Ethernet Virtual Private \\
Network (EVPN) endpoint provisioning address \\
information.
\end{tabular} \\
\hline vpls & \begin{tabular}{l}
(Optional) Specifies L2VPN Virtual Private LAN \\
Service (VPLS) endpoint provisioning address \\
information.
\end{tabular}
\end{tabular}

No Layer 2 VPN endpoint provisioning support is enabled.

Router configuration (config-router)

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.6.1 & \begin{tabular}{l}
This command was \\
introduced.
\end{tabular}
\end{tabular}

Usage Guidelines
The address-family l2vpn command places the device in address family configuration mode (prompt: config-router-af), from which you can configure routing sessions that support Layer 2 VPN endpoint provisioning.

BGP support for the Layer 2 VPN address family introduces a BGP-based autodiscovery mechanism to distribute Layer 2 VPN endpoint provisioning information. BGP uses a separate Layer 2 VPN routing information base (RIB) to store endpoint provisioning information, which is updated each time any Layer 2 virtual forwarding instance (VFI) is configured. Prefix and path information is stored in the Layer 2 VPN database, allowing BGP to make best-path decisions. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to set up a pseudowire mesh to support Layer 2 VPN-based services.

The BGP autodiscovery mechanism facilitates the setting up of Layer 2 VPN services, which are an integral part of the Cisco IOS Virtual Private LAN Service (VPLS) feature. VPLS enables flexibility in deploying services by connecting geographically dispersed sites as a large LAN over high-speed Ethernet in a robust and scalable IP MPLS network.

The multiprotocol capability for address family Layer 2 VPN EVPN is advertised when the Address Family Identifier (AFI) is enabled under the internal BGP (iBGP) and external BGP (eBGP) neighbors for both IPv4 and IPv6 neighbors.

Routing information for address family IPv4 is advertised by default for each BGP routing session configured with the neighbor remote-as command unless you configure the no bgp default ipv4-unicast command before configuring the neighbor remote-as command.

\section*{Examples}

In this example, two provider edge (PE) devices are configured with VPLS endpoint provisioning information that includes Layer 2 VFI, VPN, and VPLS IDs. BGP neighbors are configured and activated under Layer 2 VPN address family to ensure that the VPLS endpoint provisioning information is saved to a separate Layer 2 VPN RIB and then distributed to other BGP peers in BGP update messages. When the endpoint information is received by the BGP peers, a pseudowire mesh is set up to support Layer 2 VPN-based services.

\section*{Device A}
```

Device> enable
Device\# configure terminal
Device(config)\# l2 vfi customerA autodiscovery
Device(config-vfi)\# vpn id 100
Device(config-vfi) \# vpls-id 45000:100
Device(config-vfi)\# exit
Device(config)\# l2 vfi customerB autodiscovery
Device(config-vfi)\# vpn id 200
Device(config-vfi)\# vpls-id 45000:200
Device(config-vfi)\# exit
Device(config)\# router bgp 45000
Device(config-router) \# no bgp default ipv4-unicast
Device(config-router) \# bgp log-neighbor-changes
Device(config-router)\# neighbor 172.16.1.2 remote-as 45000
Device(config-router)\# neighbor 172.21.1.2 remote-as 45000
Device(config-router) \# address-family l2vpn vpls
Device(config-router-af) \# neighbor 172.16.1.2 activate
Device(config-router-af)\# neighbor 172.16.1.2 send-community extended
Device(config-router-af)\# neighbor 172.21.1.2 activate
Device(config-router-af)\# neighbor 172.21.1.2 send-community extended
Device(config-router-af)\# end

```

\section*{Device B}
```

Device> enable
Device\# configure terminal
Device(config)\# l2 vfi customerA autodiscovery
Device(config-vfi)\# vpn id 100
Device(config-vfi)\# vpls-id 45000:100
Device(config-vfi)\# exit
Device(config)\# l2 vfi customerB autodiscovery
Device(config-vfi)\# vpn id 200
Device(config-vfi) \# vpls-id 45000:200
Device(config-vfi)\# exit
Device(config)\# router bgp 45000
Device(config-router)\# no bgp default ipv4-unicast
Device(config-router) \# bgp log-neighbor-changes
Device(config-router) \# neighbor 172.16.1.1 remote-as 45000
Device(config-router)\# neighbor 172.22.1.1 remote-as 45000

```
```

Device(config-router) \# address-family l2vpn vpls
Device(config-router-af)\# neighbor 172.16.1.1 activate
Device(config-router-af)\# neighbor 172.16.1.1 send-community extended
Device(config-router-af)\# neighbor 172.22.1.1 activate
Device(config-router-af)\# neighbor 172.22.1.1 send-community extended
Device(config-router-af)\# end

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline neighbor activate & \begin{tabular}{l}
Enables the exchange of information with a BGP \\
neighboring router.
\end{tabular} \\
\hline
\end{tabular}

\section*{aggregate-address}

To create an aggregate entry in a Border Gateway Protocol (BGP) database, use the aggregate-address command in address family or router configuration mode. To disable this function, use the no form of this command.
aggregate-address address mask [as-set] [as-confed-set] [summary-only] [suppress-map map-name] [advertise-map map-name] [attribute-map map-name]
no aggregate-address address mask [as-set] [as-confed-set] [summary-only] [suppress-map map-name] [advertise-map map-name] [attribute-map map-name]

Syntax Description
\begin{tabular}{|l|l|}
\hline address & Aggregate address. \\
\hline mask & Aggregate mask. \\
\hline as-set & (Optional) Generates autonomous system set path information. \\
\hline as-confed-set & (Optional) Generates autonomous confederation set path information. \\
\hline summary-only & (Optional) Filters all more-specific routes from updates. \\
\hline suppress-map map-name & \begin{tabular}{l}
(Optional) Specifies the name of the route map used to select the routes to be \\
suppressed.
\end{tabular} \\
\hline advertise-map map-name & \begin{tabular}{l}
(Optional) Specifies the name of the route map used to select the routes to \\
create AS_SET origin communities.
\end{tabular} \\
\hline attribute-map map-name & \begin{tabular}{l}
(Optional) Specifies the name of the route map used to set the attribute of the \\
aggregate route.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

The atomic aggregate attribute is set automatically when an aggregate route is created with this command unless the as-set keyword is specified.

\section*{Command Modes}

Address family configuration (config-router-af)
Router configuration (config-router)

\section*{Command History}

Table 135:
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

You can implement aggregate routing in BGP and Multiprotocol BGP (mBGP) either by redistributing an aggregate route into BGP or mBGP, or by using the conditional aggregate routing feature.

Using the aggregate-addresscommand with no keywords will create an aggregate entry in the BGP or mBGP routing table if any more-specific BGP or mBGP routes are available that fall within the specified range. (A longer prefix that matches the aggregate must exist in the Routing Information Base (RIB).) The aggregate route will be advertised as coming from your autonomous system and will have the atomic aggregate attribute
set to show that information might be missing. (By default, the atomic aggregate attribute is set unless you specify the as-set keyword.)
Using the as-setkeyword creates an aggregate entry using the same rules that the command follows without this keyword, but the path advertised for this route will be an AS_SET consisting of all elements contained in all paths that are being summarized. Do not use this form of the aggregate-addresscommand when aggregating many paths, because this route must be continually withdrawn and updated as autonomous system path reachability information for the summarized routes changes.

Using the as-confed-set keyword creates an aggregate entry using the same rules that the command follows without this keyword. This keyword performs the same function as the as-set keyword, except that it generates autonomous confed set path information.

Using the summary-onlykeyword not only creates the aggregate route (for example, 192.*.*.*) but also suppresses advertisements of more-specific routes to all neighbors. If you want to suppress only advertisements to certain neighbors, you may use the neighbor distribute-list command, with caution. If a more-specific route leaks out, all BGP or mBGP routers will prefer that route over the less-specific aggregate you are generating (using longest-match routing).
Using the suppress-mapkeyword creates the aggregate route but suppresses advertisement of specified routes. You can use the match clauses of route maps to selectively suppress some more-specific routes of the aggregate and leave others unsuppressed. IP access lists and autonomous system path access lists match clauses are supported.

Using the advertise-mapkeyword selects specific routes that will be used to build different components of the aggregate route, such as AS_SET or community. This form of the aggregate-addresscommand is useful when the components of an aggregate are in separate autonomous systems and you want to create an aggregate with AS_SET, and advertise it back to some of the same autonomous systems. You must remember to omit the specific autonomous system numbers from the AS_SET to prevent the aggregate from being dropped by the BGP loop detection mechanism at the receiving router. IP access lists and autonomous system path access lists match clauses are supported.
Using the attribute-mapkeyword allows attributes of the aggregate route to be changed. This form of the aggregate-addresscommand is useful when one of the routes forming the AS_SET is configured with an attribute such as the community no-export attribute, which would prevent the aggregate route from being exported. An attribute map route map can be created to change the aggregate attributes.

\section*{AS-Set Example}

In the following example, an aggregate BGP address is created in router configuration mode. The path advertised for this route will be an AS_SET consisting of all elements contained in all paths that are being summarized.

Device(config) \#router bgp 50000
Device (config-router) \#aggregate-address 10.0.0.0 255.0.0.0 as-set

\section*{Summary-Only Example}

In the following example, an aggregate BGP address is created in address family configuration mode and applied to the multicast database under the IP Version 4 address family. Because the summary-only keyword is configured, more-specific routes are filtered from updates.
```

Device(config) \#router bgp 50000

```
```

Device(config-router) \#address-family ipv4 multicast
Device(config-router-af) \#aggregate-address 10.0.0.0 255.0.0.0 summary-only

```

\section*{Conditional Aggregation Example}

In the following example, a route map called MAP-ONE is created to match on an AS-path access list. The path advertised for this route will be an AS_SET consisting of elements contained in paths that are matched in the route map.
```

Device(config)\#ip as-path access-list 1 deny ^1234_
Device(config)\#ip as-path access-list 1 permit .*
Device(config)\#!
Device(config) \#route-map MAP-ONE
Device(config-route-map) \#match ip as-path 1
Device(config-route-map) \#exit
Device(config) \#router bgp 50000
Device(config-router) \#address-family ipv4
Device(config-router-af)\#aggregate-address 10.0.0.0 255.0.0.0 as-set advertise-map
MAP-ONE
Router(config-router-af) \#end

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline address-family ipv4 (BGP) & \begin{tabular}{l}
Places the router in address family configuration mode for configuring routing \\
sessions such as BGP, RIP, or static routing sessions that use standard IPv4 \\
address prefixes.
\end{tabular} \\
\hline ip as-path access-list & Defines a BGP autonomous system path access list. \\
\hline match ip address & \begin{tabular}{l}
Distributes any routes that have a destination network number address that \\
is permitted by a standard or extended access list, and performs policy routing \\
on packets.
\end{tabular} \\
\hline neighbor distribute-list & Distributes BGP neighbor information in an access list. \\
\hline route-map (IP) & \begin{tabular}{l}
Defines the conditions for redistributing routes from one routing protocol \\
into another, or enables policy routing.
\end{tabular} \\
\hline
\end{tabular}

\section*{area nssa}

To configure a not-so-stubby area (NSSA), use the area nssa command in router address family topology or router configuration mode. To remove the NSSA distinction from the area, use the no form of this command.
area nssa commandarea area-id nssa [no-redistribution] [default-information-originate [metric] [metric-type]] [no-summary] [nssa-only] no area area-id nssa [no-redistribution] [default-information-originate [metric] [metric-type]] [no-summary] [nssa-only]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline area-id & \begin{tabular}{l}
Identifier for the stub area or NSSA. The identifier can be specified as either \\
a decimal value or an IP address.
\end{tabular} \\
\hline no-redistribution & \begin{tabular}{l}
(Optional) Used when the router is an NSSA Area Border Router (ABR) and \\
you want the redistribute command to import routes only into the normal \\
areas, but not into the NSSA area.
\end{tabular} \\
\hline \begin{tabular}{l}
default-information- \\
originate
\end{tabular} & \begin{tabular}{l}
(Optional) Used to generate a Type 7 default into the NSSA area. This \\
keyword takes effect only on the NSSA ABR or the NSSA Autonomous \\
System Boundary Router (ASBR).
\end{tabular} \\
\hline metric & (Optional) Specifies the OSPF default metric. \\
\hline metric-type & (Optional) Specifies the OSPF metric type for default routes. \\
\hline no-summary & \begin{tabular}{l}
(Optional) Allows an area to be an NSSA but not have summary routes \\
injected into it.
\end{tabular} \\
\hline nssa-only & \begin{tabular}{l}
(Optional) Limits the default advertisement to this NSSA area by setting the \\
propagate (P) bit in the type-7 LSA to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

Command Modes

\section*{Command History}

No NSSA area is defined.

Router address family topology configuration (config-router-af-topology) Router configuration (config-router)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
To remove the specified area from the software configuration, use the no area area-idcommand (with no other keywords). That is, the no area area-id command removes all area options, including area authentication, area default-cost, area nssa, area range, area stub, and area virtual-link.

\section*{Release 12.2(33)SRB}

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the area nssacommand in router address family topology configuration mode in order for this OSPF router configuration command to become topology-aware.

\section*{Examples}
```

router ospf 1
redistribute rip subnets
network 172.19.92.0 0.0.0.255 area 1
area 1 nssa

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline redistribute & Redistributes routes from one routing domain into another routing domain. \\
\hline
\end{tabular}

\section*{area virtual-link}

To define an Open Shortest Path First (OSPF) virtual link, use the area virtual-link command in router address family topology, router configuration, or address family configuration mode. To remove a virtual link, use the no form of this command.
area area-id virtual-link router-id authentication key-chain chain-name [hello-interval seconds] [retransmit-interval seconds] [transmit-delay seconds] [dead-interval seconds] [ttl-security hops hop-count]
no area area-id virtual-link router-id authentication key-chain chain-name
Syntax Description

\section*{Table 136:}
\begin{tabular}{|c|c|}
\hline area-id & Area ID assigned to the virtual link. This can be either a decimal value or a valid IPv6 prefix. There is no default. \\
\hline router-id & Router ID associated with the virtual link neighbor. The router ID appears in the show ip ospf or show ipv6 display command. There is no default. \\
\hline authentication & Enables virtual link authentication. \\
\hline key-chain & Configures a key-chain for cryptographic authentication keys. \\
\hline chain-name & Name of the authentication key that is valid. \\
\hline hello-interval seconds & (Optional) Specifies the time (in seconds) between the hello packets that the Cisco IOS software sends on an interface. The hello interval is an unsigned integer value to be advertised in the hello packets. The value must be the same for all routers and access servers attached to a common network. The range is from 1 to 8192 . The default is 10 . \\
\hline retransmit-interval seconds & (Optional) Specifies the time (in seconds) between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface. The retransmit interval is the expected round-trip delay between any two routers on the attached network. The value must be greater than the expected round-trip delay. The range is from 1 to 8192 . The default is 5 . \\
\hline transmit-delay seconds & (Optional) Specifies the estimated time (in seconds) required to send a link-state update packet on the interface. The integer value that must be greater than zero. LSAs in the update packet have their age incremented by this amount before transmission. The range is from 1 to 8192 . The default value is 1 . \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline dead-interval seconds & \begin{tabular}{l}
(Optional) Specifies the time (in seconds) that hello \\
packets are not seen before a neighbor declares the \\
router down. The dead interval is an unsigned integer \\
value. The default is four times the hello interval, or \\
40 seconds. As with the hello interval, this value must \\
be the same for all routers and access servers attached \\
to a common network.
\end{tabular} \\
\hline ttl-security hops hop-count & \begin{tabular}{l}
(Optional) Configures Time-to-Live (TTL) security \\
on a virtual link. The hop-count argument range is \\
from 1 to 254.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll|l|}
\hline \begin{tabular}{ll}
Command Default & No OSPF virtual link is defined. \\
\(\overline{\text { Command Modes }}\) & Router address family topology configuration (config-router-af-topology) \\
& Router configuration (config-router) \\
& Address family configuration (config-router-af) \\
\hline Command History & Release
\end{tabular} Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

In OSPF, all areas must be connected to a backbone area. A lost connection to the backbone can be repaired by establishing a virtual link.

The shorter the hello interval, the faster topological changes will be detected, but more routing traffic will ensue. The setting of the retransmit interval should be conservative, or needless retransmissions will result. The value should be larger for serial lines and virtual links.

You should choose a transmit delay value that considers the transmission and propagation delays for the interface.

To configure a virtual link in OSPF for IPv6, you must use a router ID instead of an address. In OSPF for IPv6, the virtual link takes the router ID rather than the IPv6 prefix of the remote router.

Use the ttl-security hops hop-count keywords and argument to enable checking of TTL values on OSPF packets from neighbors or to set TTL values sent to neighbors. This feature adds an extra layer of protection to OSPF.

In order for a virtual link to be properly configured, each virtual link neighbor must include the transit area ID and the corresponding virtual link neighbor router ID. To display the router ID, use the show ip ospf or the show ipv6 ospf command in privileged EXEC mode.

Note To remove the specified area from the software configuration, use the no area area-id command (with no other keywords). That is, the no area area-id command removes all area options, such as area default-cost, area nssa, area range, area stub, and area virtual-link.

\section*{Release 12.2(33)SRB}

If you plan to configure the Multitopology Routing (MTR) feature, you need to enter the area virtual-link command in router address family topology configuration mode in order for this OSPF router configuration command to become topology-aware.

\section*{Examples}

The following example establishes a virtual link with default values for all optional parameters:
```

Device(config)\# ipv6 router ospf 1
Device(config)\# log-adjacency-changes
Device(config)\# area 1 virtual-link 192.168.255.1

```

The following example establishes a virtual link in OSPF for IPv6:
```

Device(config)\# ipv6 router ospf 1
Device(config)\# log-adjacency-changes
Device(config)\# area 1 virtual-link 192.168.255.1 hello-interval 5

```

The following example shows how to configure TTL security for a virtual link in OSPFv3 for IPv6:
```

Device(config)\# router ospfv3 1
Device(config-router)\# address-family ipv6 unicast vrf vrf1
Device(config-router-af)\# area 1 virtual-link 10.1.1.1 ttl-security hops 10

```

The following example shows how to configure the authentication using a key chain for virtual-links:

Device(config) \# area 1 virtual-link 192.168.255.1 authentication key-chain ospf-chain-1

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline area & Configures OSPFv3 area parameters. \\
\hline show ip ospf & Enables the display of general information about OSPF routing processes. \\
\hline show ipv6 ospf & Enables the display of general information about OSPF routing processes. \\
\hline ttl-security hops & \begin{tabular}{l}
Enables checking of TTL values on OSPF packets from neighbors or setting TTL values \\
sent to neighbors.
\end{tabular} \\
\hline
\end{tabular}

\section*{auto-summary (BGP)}

To configure automatic summarization of subnet routes into network-level routes, use the auto-summary command in address family or router configuration mode. To disable automatic summarization and send subprefix routing information across classful network boundaries, use the no form of this command.
auto-summary
no auto-summary

\section*{Syntax Description}

\section*{Command Default}

This command has no arguments or keywords.
Automatic summarization is disabled by default (the software sends subprefix routing information across classful network boundaries).

\section*{Command Modes}

Address family configuration (config-router-af)
Router configuration (config-router)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

BGP automatically summarizes routes to classful network boundaries when this command is enabled. Route summarization is used to reduce the amount of routing information in routing tables. Automatic summarization applies to connected, static, and redistributed routes.

Note The MPLS VPN Per VRF Label feature does not support auto-summary.
By default, automatic summarization is disabled and BGP accepts subnets redistributed from an Interior Gateway Protocol (IGP). To block subnets and create summary subprefixes to the classful network boundary when crossing classful network boundaries, use the auto-summary command.
To advertise and carry subnet routes in BGP when automatic summarization is enabled, use an explicit network command to advertise the subnet. The auto-summarycommand does not apply to routes injected into BGP via the network command or through iBGP or eBGP.

\section*{Why auto-summary for BGP Is Disabled By Default}

When auto-summary is enabled, routes injected into BGP via redistribution are summarized on a classful boundary. Remember that a 32-bit IP address consists of a network address and a host address. The subnet mask determines the number of bits used for the network address and the number of bits used for the host address. The IP address classes have a natural or standard subnet mask, as shown in the table below.

Table 137: IP Address Classes
\begin{tabular}{|l|l|l|}
\hline Class & Address Range & Standard Mask \\
\hline A & 1.0 .0 .0 to 126.0 .0 .0 & 255.0 .0 .0 or \(/ 8\) \\
\hline B & 128.1 .0 .0 to 191.254 .0 .0 & 255.255 .0 .0 or \(/ 16\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Class & Address Range & Standard Mask \\
\hline C & 192.0.1.0 to 223.255 .254 .0 & 255.255 .255 .0 or \(/ 24\) \\
\hline
\end{tabular}

Reserved addresses include 128.0.0.0, 191.255.0.0, 192.0.0.0, and 223.255.255.0.
When using the standard subnet mask, Class A addresses have one octet for the network, Class B addresses have two octets for the network, and Class C addresses have three octets for the network.

Consider the Class B address 156.26 .32 . 1 with a 24 -bit subnet mask, for example. The 24 -bit subnet mask selects three octets, 156.26.32, for the network. The last octet is the host address. If the network 156.26.32.1/24 is learned via an IGP and is then redistributed into BGP, if auto-summary were enabled, the network would be automatically summarized to the natural mask for a Class B network. The network that BGP would advertise is 156.26.0.0/16. BGP would be advertising that it can reach the entire Class B address space from 156.26.0.0 to 156.26 .255 .255 . If the only network that can be reached via the BGP router is \(156.26 .32 .0 / 24\), BGP would be advertising 254 networks that cannot be reached via this router. This is why the auto-summary (BGP)command is disabled by default.

\section*{Examples}

In the following example, automatic summarization is enabled for IPv4 address family prefixes:
```

Device(config)\#router bgp 50000
Device(config-router) \#address-family ipv4 unicast
Device(config-router-af) \#auto-summary
Device(config-router-af) \#network 7.7.7.7 255.255.255.255

```

In the example, there are different subnets, such as 7.7.7.6 and 7.7.7.7 on Loopback interface 6 and Loopback interface 7, respectively. Both auto-summary and a network command are configured.
\begin{tabular}{lccl}
Device\#show ip interface brief & & \\
Interface & IP-Address & OK? Method Status \\
Ethernet0/0 & 100.0 .1 .7 & YES NVRAM up & Protocol \\
Ethernet0/1 & unassigned & YES NVRAM administratively down down \\
Ethernet0/2 & unassigned & YES NVRAM & administratively down down \\
Ethernet0/3 & unassigned & YES NVRAM administratively down down \\
Ethernet1/0 & 108.7 .9 .7 & YES NVRAM up & up \\
Ethernet1/1 & unassigned & YES NVRAM administratively down down \\
Ethernet1/2 & unassigned & YES NVRAM administratively down down \\
Ethernet1/3 & unassigned & YES NVRAM administratively down down \\
Loopback6 & 7.7 .7 .6 & YES NVRAM up & up \\
Loopback7 & 7.7 .7 .7 & YES NVRAM up & up
\end{tabular}

Note that in the output below, because of the auto-summary command, the BGP routing table displays the summarized route 7.0.0.0 instead of 7.7.7.6. The 7.7.7.7/32 network is displayed because it was configured with the network command, which is not affected by the auto-summary command.
```

Device\#show ip bgp
BGP table version is 10, local router ID is 7.7.7.7
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, x best-external
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 6.6.6.6/32 100.0.1.6 0 0 0 i
*> 7.0.0.0 0.0.0.0 0 32768 ? <-- summarization
*> 7.7.7.7/32 0.0.0.0 0 32768 i <-- network command

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline r>i9.9.9.9/32 & 108.7.9.9 & 0 & 100 & 0 & i & \\
\hline *> 100.0.0.0 & 0.0 .0 .0 & 0 & & 32768 & ? & \\
\hline \(r>100.0 .1 .0 / 24\) & 100.0.1.6 & 0 & & 0 & 6 & ? \\
\hline *> 108.0.0.0 & 0.0 .0 .0 & 0 & & 32768 & ? & \\
\hline r>i108.7.9.0/24 & 108.7.9.9 & 0 & 100 & 0 & ? & \\
\hline *>i200.0.1.0 & 108.7.9.9 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\hline & address-family ipv4 (BGP) & \begin{tabular}{l}
Places the router in address family configuration mode for configuring \\
routing sessions such as BGP, RIP, or static routing sessions that use \\
standard IPv4 address prefixes.
\end{tabular} \\
\hline & address-family vpnv4 & \begin{tabular}{l}
Places the router in address family configuration mode for configuring \\
routing sessions such as BGP, RIP, or static routing sessions that use \\
standard VPNv4 address prefixes.
\end{tabular} \\
\hline & \begin{tabular}{l}
network (BGP and multiprotocol \\
BGP)
\end{tabular} & Specifies the networks to be advertised by BGP and multiprotocol BGP. \\
\hline
\end{tabular}

\section*{authentication (BFD)}

To configure authentication in a Bidirectional Forwarding Detection (BFD) template for single hop sessions, use the authentication command in BFD configuration mode. To disable authentication in BFD template for single-hop sessions, use the no form of this command
authentication authentication-type keychain keychain-name no authentication authentication-type keychain keychain-name

Syntax Description

\section*{Command Default \\ Command Modes}

Command History

Usage Guidelines

\section*{Examples}
authentication-type Authentication type. Valid values are md5, meticulous-md5, meticulous-sha1, and sha-1.
keychain keychain-name Configures an authentication key chain with the specified name. The maximum number of characters allowed in the name is 32 .

Authentication in BFD template for single hop sessions is not enabled.
BFD configuration (config-bfd)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a &
\end{tabular}

You can configure authentication in single hop templates. We recommend that you configure authentication to enhance security. Authentication must be configured on each BFD source-destination pair, and authentication parameters must match on both devices.

The following example shows how to configure authentication for the template1 BFD single-hop template:

Device>enable
Device\#configuration terminal
Device (config) \#bfd-template single-hop templatel
Device(config-bfd) \#authentication sha-1 keychain bfd-singlehop

To set the baseline Bidirectional Forwarding Detection (BFD) session parameters on an interface, use the bfd interface configuration mode. To remove the baseline BFD session parameters, use the no form of this command
bfd interval milliseconds min_rx milliseconds multiplier multiplier-value no bfd interval milliseconds min_rx milliseconds multiplier multiplier-value

\section*{Syntax Description}
interval milliseconds Specifies the rate, in milliseconds, at which BFD control packets will be sent to BFD peers. The valid range for the milliseconds argument is from 50 to 9999.
min_rx milliseconds Specifies the rate, in milliseconds, at which BFD control packets will be expected to be received from BFD peers. The valid range for the milliseconds argument is from 50 to 9999 .
\begin{tabular}{ll}
\hline multiplier & \begin{tabular}{l}
Specifies the number of consecutive BFD control packets that must be missed \\
multiplier-value
\end{tabular} \\
from a BFD peer before BFD declares that the peer is unavailable and the Layer \\
3 BFD peer is informed of the failure. The valid range for the \\
multiplier-valueargument is from 3 to 50.
\end{tabular}
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & No baseline BFD session parameters are set. \\
\(\overline{\text { Command Modes }}\) & & Interface configuration (config-if) \\
Command History & Release & Modification \\
\cline { 3 - 3 } & Cisco IOS XE Everest & This command was introduced. \\
& 16.5 .1 a &
\end{tabular}

\section*{Usage Guidelines}

The bfd command can be configured on SVI, Ethernet and port-channel interfaces.
If BFD runs on a port channel interface, BFD has a timer value restriction of \(750 * 3\) milliseconds.
The bfd interval configuration is not removed when:
- an IPv4 address is removed from an interface
- an IPv6 address is removed from an interface
- IPv6 is disabled from an interface
- an interface is shutdown
- IPv4 CEF is disabled globally or locally on an interface
- IPv6 CEF is disabled globally or locally on an interface

The bfd interval configuration is removed when the subinterface on which its is configured is removed.

Note If we configure bfd interval command in interface config mode, then bfd echo mode is enabled by default. We need to enable either no ip redirect (if BFD echo is needed) or no bfd echo in interface config mode.

Before using BFD echo mode, you must disable sending Internet Control Message Protocol (ICMP) redirect messages by entering the no ip redirect command, in order to avoid high CPU utilization.

\section*{Examples}

The following example shows the BFD session parameters set for Gigabit Ethernet 1/0/3:
```

Device>enable
Device\#configuration terminal
Device(config) \#interface gigabitethernet 1/0/3
Device(config-if)\#bfd interval 100 min_rx 100 multiplier 3

```

\section*{bfd all-interfaces}

To enable Bidirectional Forwarding Detection (BFD) for all interfaces participating in the routing process, use the bfd all-interfaces command in router configuration or address family interface configuration mode. To disable BFD for all neighbors on a single interface, use the no form of this command
bfd all-interfaces
no bfd all-interfaces
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Usage Guidelines}

To enable BFD for all interfaces, enter the bfd all-interfaces command in router configuration mode

\section*{Examples}

The following example shows how to enable BFD for all Enhanced Interior Gateway Routing Protocol (EIGRP) neighbors:
```

Device>enable
Device\#configuration terminal
Device(config) \#router eigrp 123
Device(config-router) \#bfd all-interfaces
Device(config-router) \#end

```

The following example shows how to enable BFD for all Intermediate System-to-Intermediate System (IS-IS) neighbors:
```

Device> enable
Device\#configuration terminal
Device(config) \#router isis tag1
Device(config-router) \#bfd all-interfaces
Device(config-router) \#end

```

\section*{bfd check-ctrl-plane-failure}

To enable Bidirectional Forwarding Detection (BFD) control plane failure checking for the Intermediate System-to-Intermediate System (IS-IS) routing protocol, use the bfd check-control-plane-failure command in router configuration mode. To disable control plane failure detection, use the no form of this command

\section*{bfd check-ctrl-plane-failure no bfd check-ctrl-plane-failure}

Syntax Description
Command Default
\begin{tabular}{|c|c|c|}
\hline Command Modes & \multicolumn{2}{|l|}{Router configuration (config-router)} \\
\hline \multirow[t]{2}{*}{Command History} & Release & Modification \\
\hline & Cisco IOS XE Everest
16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
This command has no arguments or keywords.
BFD control plane failure checking is disabled.
16.5.1a

The bfd check-ctrl-plane-failure command can be configured for an IS-IS routing process only. The command is not supported on other protocols.

When a switch restarts, a false BFD session failure can occur, where neighboring routers behave as if a true forwarding failure has occurred. However, if the bfd check-ctrl-plane-failure command is enabled on a switch, the router can ignore control plane related BFD session failures. We recommend that you add this command to the configuration of all neighboring routers just prior to a planned router restart, and that you remove the command from all neighboring routers when the restart is complete.

The following example enables BFD control plane failure checking for the IS-IS routing protocol:
```

Device>enable
Device\#configuration terminal
Device(config) \#router isis
Device(config-router) \#bfd check-ctrl-plane-failure
Device(config-router) \#end

```

To enable Bidirectional Forwarding Detection (BFD) echo mode, use the bfd echo command in interface configuration mode. To disable BFD echo mode, use the no form of this command

\section*{bfd echo} no bfd echo

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

This command has no arguments or keywords.
BFD echo mode is enabled by default if BFD is configured using bfd interval command in interface configuration mode.

Interface configuration (config-if)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

\section*{Usage Guidelines}

Echo mode is enabled by default. Entering the no bfd echo command without any keywords turns off the sending of echo packets and signifies that the switch is unwilling to forward echo packets received from BFD neighbor switches.
When echo mode is enabled, the desired minimum echo transmit interval and required minimum transmit interval values are taken from the bfd interval milliseconds min_rx milliseconds parameters, respectively.

Before using BFD echo mode, you must disable sending Internet Control Message Protocol (ICMP) redirect messages by entering the no ip redirects command, in order to avoid high CPU utilization.

\section*{Examples}

The following example configures echo mode between BFD neighbors:
```

Device>enable
Device\#configuration terminal
Device(config) \#interface GigabitEthernet 1/0/3
Device(config-if) \#bfd echo

```

The following output from the show bfd neighbors details command shows that the BFD session neighbor is up and using BFD echo mode. The relevant command output is shown in bold in the output.
```

Device\#show bfd neighbors details
OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int
172.16.1.2 172.16.1.1 1/6 Up 0 (3 ) Up Fa0/1
Session state is UP and using echo function with 100 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP

```
```

Uptime: 00:05:00
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 6 - Your Discr.: 1
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 50000

```

\section*{bfd slow-timers}

To configure the Bidirectional Forwarding Detection (BFD) slow timers value, use the bfd slow-timers command in interface configuration mode. To change the slow timers used by BFD, use the no form of this command
bfd slow-timers [milliseconds] no bfd slow-timers
\begin{tabular}{lll}
\(\overline{\text { Command Default }}\) & & The BFD slow timer value is 1000 milliseconds \\
\(\overline{\text { Command Modes }}\) & & Global configuration (config) \\
\cline { 3 - 3 } Command History & & Release \\
& \begin{tabular}{lll}
Cisco IOS XE Everest & This command was introduced. \\
& 16.5 .1 a &
\end{tabular} &
\end{tabular}

\section*{Examples}

The following example shows how to configure the BFD slow timers value to 14,000 milliseconds:
```

Device(config) \#bfd slow-timers }1400

```

The following output from the show bfd neighbors details command shows that the BFD slow timers value of 14,000 milliseconds has been implemented. The values for the MinTxInt and MinRxInt will correspond to the configured value for the BFD slow timers. The relevant command output is shown in bold.
```

Device\#show bfd neighbors details
OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int
172.16.1.2 172.16.1.1 1/6 Up 0 (3) Up Fa0/1
Session state is UP and using echo function with 100 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 14000, MinRxInt: 14000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3600(0), Hello (hits): 1200(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
Uptime: 00:05:00
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 6 - Your Discr.: 1
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 50000

```
- If the BFD session is down, then the BFD control packets will be sent with the slow timer interval.
- If the BFD session is up, then if echo is enabled, then BFD control packets will be sent in negotiated slow timer interval and echo packets will be sent in negotiated configured BFD interval. If echo is not enabled, then BFD control packets will be sent in negotiated configured interval.

\section*{bfd template}

To create a Bidirectional Forwarding Detection (BFD) template and to enter BFD configuration mode, use the bfd-template command in global configuration mode. To remove a BFD template, use the no form of this command
bfd template template-name no bfd template template-name

Command Default

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

A BFD template is not bound to an interface.
Interface configuration (config-if)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Even if you have not created the template by using the bfd-template command, you can configure the name of the template under an interface, but the template is considered invalid until you define the template. You do not have to reconfigure the template name again. It becomes valid automatically.

\section*{Examples}
```

Device> enable
Device\#configuration terminal
Device(config) \#interface Gigabitethernet 1/3/0
Device(config-if)\#bfd template templatel

```

\section*{bfd-template single-hop}

To bind a single hop Bidirectional Forwarding Detection (BFD) template to an interface, use the bfd template command in interface configuration mode. To unbind single-hop BFD template from an interface, use the no form of this command
bfd-template single-hop template-name no bfd-template single-hop template-name

\section*{Syntax Description}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline
\end{tabular}

\section*{Command History}

Usage Guidelines
The bfd-template command allows you to create a BFD template and places the device in BFD configuration mode. The template can be used to specify a set of BFD interval values. BFD interval values specified as part of the BFD template are not specific to a single interface.

\section*{Examples}

The following example shows how to create a BFD template and specify BFD interval values:
```

Device>enable
Device\#configuration terminal
Device(config) \#bfd-template single-hop nodel
Device(bfd-config)\#interval min-tx 100 min-rx }100\mathrm{ multiplier 3
Device(bfd-config) \#echo

```

The following example shows how to create a BFD single-hop template and configure BFD interval values and an authentication key chain:
```

Device> enable
Device\#configuration terminal
Device(config) \#bfd-template single-hop template1
Device(bfd-config)\#interval min-tx 200 min-rx 200 multiplier 3
Device(bfd-config) \#authentication keyed-sha-1 keychain bfd_singlehop

```

Note BFD echo is not enabled by default in the bfd-template configuration. This needs to configured explicitly.

\section*{bgp graceful-restart}

To enable the Border Gateway Protocol (BGP) graceful restart capability globally for all BGP neighbors, use the bgp graceful-restart command in address family or in router configuration mode. To disable the BGP graceful restart capability globally for all BGP neighbors, use the no form of this command.
bgp graceful-restart [\{extended |restart-time seconds \(\mid\) stalepath-time seconds \(\}\)] [all] no bgp graceful-restart

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline extended & (Optional) Enables BGP graceful restart extension. \\
\hline restart-time seconds & \begin{tabular}{l}
(Optional) Sets the maximum time period that the \\
local router will wait for a graceful-restart-capable \\
neighbor to return to normal operation after a restart \\
event occurs. The default value for this argument is \\
120 seconds. The configurable range of values is from \\
1 to 3600 seconds.
\end{tabular} \\
\hline stalepath-time seconds & \begin{tabular}{l}
(Optional) Sets the maximum time period that the \\
local router will hold stale paths for a restarting peer. \\
All stale paths are deleted after this timer expires. The \\
default value for this argument is 360 seconds. The \\
configurable range of values is from 1 to 3600 seconds
\end{tabular} \\
\hline all & \begin{tabular}{l}
(Optional) Enables BGP graceful restart capability \\
for all address family modes.
\end{tabular} \\
\hline
\end{tabular}

\section*{Command Default}

The following default values are used when this command is entered without any keywords or arguments:
restart-time : 120 seconds stalepath-time: 360 seconds

Note Changing the restart and stalepath timer values is not required to enable the BGP graceful restart capability. The default values are optimal for most network deployments, and these values should be adjusted only by an experienced network operator.

\section*{Command Modes}

Address-family configuration (config-router-af)
Router configuration (config-router)

\section*{Command History}

\section*{Table 138:}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The bgp graceful-restart command is used to enable or disable the graceful restart capability globally for all BGP neighbors in a BGP network. The graceful restart capability is negotiated between nonstop forwarding (NSF)-capable and NSF-aware peers in OPEN messages during session establishment. If the graceful restart
capability is enabled after a BGP session has been established, the session will need to be restarted with a hard reset.

The graceful restart capability is supported by NSF-capable and NSF-aware routers. A router that is NSF-capable can perform a stateful switchover (SSO) operation (graceful restart) and can assist restarting peers by holding routing table information during the SSO operation. A router that is NSF-aware functions like a router that is NSF-capable but cannot perform an SSO operation.

The BGP graceful restart capability is enabled by default when a supporting version of Cisco IOS software is installed. The default timer values for this feature are optimal for most network deployments. We recommend that they are adjusted only by experienced network operators. When adjusting the timer values, the restart timer should not be set to a value greater than the hold time that is carried in the OPEN message. If consecutive restart operations occur, routes (from a restarting router) that were previously marked as stale will be deleted.

Note Changing the restart and stalepath timer values is not required to enable the BGP graceful restart capability. The default values are optimal for most network deployments, and these values should be adjusted only by an experienced network operator.

\section*{Examples}

In the following example, the BGP graceful restart capability is enabled:
```

Device\#configure terminal
Device(config)\#router bgp 65000
Device(config-router) \#bgp graceful-restart

```

In the following example, the restart timer is set to 130 seconds:
```

Device\#configure terminal
Device(config) \#router bgp 65000
Device(config-router) \#bgp graceful-restart restart-time 130

```

In the following example, the stalepath timer is set to 350 seconds:
```

Device\#configure terminal
Device(config) \#router bgp 65000
Device(config-router) \#bgp graceful-restart stalepath-time 350

```

In the following example, the extended keyword is used:
```

Device\#configure terminal
Device(config) \#router bgp 65000
Device(config-router) \#bgp graceful-restart extended

```

\section*{Related Commands}

Table 139:
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline show ip bgp & Displays entries in the BGP routing table. \\
\hline show ip bgp neighbors & \begin{tabular}{l}
Displays information about the TCP and BGP \\
connections to neighbors.
\end{tabular} \\
\hline
\end{tabular}

\section*{clear proximity ip bgp}

To reset Border Gateway Protocol (BGP) connections using hard or soft reconfiguration, use the clear proximity ip bgp command in privileged EXEC mode.
clear proximity ip bgp \(\{* \mid\) allautonomous-system-numberneighbor-address \(\mid\) peer-group group-name \(\}\) [\{in [prefix-filter]|out \(\mid\) slow \(\mid\) soft [\{in [prefix-filter] \(\mid\) out \(\mid\) slow \(\}]\}\)]

\section*{Syntax Description}
\(\left.\begin{array}{|l|l|}\hline * & \text { Specifies that all current BGP sessions will be reset. } \\ \hline \text { all } & \begin{array}{l}\text { (Optional) Specifies the reset of all address family sessions. }\end{array} \\ \hline \text { autonomous-system-number } & \begin{array}{l}\text { Number of the autonomous system in which all BGP peer sessions will be reset. } \\ \text { Number in the range from 1 to 65535. } \\ \text { • In Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, } \\ \text { 12.2(33)XNE, 12.2(33)SXI1, Cisco IOS XE Release 2.4, and later releases, } \\ \text { 4-byte autonomous system numbers are supported in the range from 65536 } \\ \text { to 4294967295 in asplain notation and in the range from 1.0 to 65535.65535 } \\ \text { in asdot notation. } \\ \text { • In Cisco IOS Release 12.0(32)S12, 12.4(24)T, and Cisco IOS XE Release } \\ 2.3,4-b y t e ~ a u t o n o m o u s ~ s y s t e m ~ n u m b e r s ~ a r e ~ s u p p o r t e d ~ i n ~ t h e ~ r a n g e ~ f r o m ~\end{array} \\ 1.0 \text { to 65535.65535 in asdot notation only. }\end{array}\right\}\)

\section*{Command Modes}

Privileged EXEC (\#)
\begin{tabular}{|l|l|l|}
\hline Command History & Release & Modification \\
\cline { 2 - 3 } & Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Theclearproximity ip bgp command can be used to initiate a hard reset or soft reconfiguration. A hard reset tears down and rebuilds the specified peering sessions and rebuilds the BGP routing tables. A soft reconfiguration uses stored prefix information to reconfigure and activate BGP routing tables without tearing down existing peering sessions. Soft reconfiguration uses stored update information, at the cost of additional memory for storing the updates, to allow you to apply new BGP policy without disrupting the network. Soft reconfiguration can be configured for inbound or outbound sessions.

Note Due to the complexity of some of the keywords available for the clear proximityip bgp command, some of the keywords are documented as separate commands. All of the complex keywords that are documented separately start with clear ip bgp. For example, for information on resetting BGP connections using hard or soft reconfiguration for all BGP neighbors in IPv4 address family sessions, refer to the clear ip bgp ipv4 command.

\section*{Generating Updates from Stored Information}

To generate new inbound updates from stored update information (rather than dynamically) without resetting the BGP session, you must preconfigure the local BGP router using the neighbor soft-reconfiguration inboundcommand. This preconfiguration causes the software to store all received updates without modification regardless of whether an update is accepted by the inbound policy. Storing updates is memory intensive and should be avoided if possible.
Outbound BGP soft configuration has no memory overhead and does not require any preconfiguration. You can trigger an outbound reconfiguration on the other side of the BGP session to make the new inbound policy take effect.

Use this command whenever any of the following changes occur:
- Additions or changes to the BGP-related access lists
- Changes to BGP-related weights
- Changes to BGP-related distribution lists
- Changes to BGP-related route maps

\section*{Dynamic Inbound Soft Reset}

The route refresh capability, as defined in RFC 2918, allows the local router to reset inbound routing tables dynamically by exchanging route refresh requests to supporting peers. The route refresh capability does not store update information locally for non-disruptive policy changes. It instead relies on dynamic exchange with supporting peers. Route refresh is advertised through BGP capability negotiation. All BGP routers must support the route refresh capability.

To determine if a BGP router supports this capability, use the show ip bgp neighborscommand. The following message is displayed in the output when the router supports the route refresh capability:

Received route refresh capability from peer.

If all BGP routers support the route refresh capability, use the clear proximityip bgpcommand with the in keyword. You need not use the soft keyword, because soft reset is automatically assumed when the route refresh capability is supported.

Note After configuring a soft reset (inbound or outbound), it is normal for the BGP routing process to hold memory. The amount of memory that is held depends on the size of routing tables and the percentage of the memory chunks that are utilized. Partially used memory chunks will be used or released before more memory is allocated from the global router pool.

\section*{Examples}

In the following example, a soft reconfiguration is initiated for the inbound session with the neighbor 10.100.0.1, and the outbound session is unaffected:

Device\#clear proximity ip bgp 10.100.0.1 soft in
In the following example, the route refresh capability is enabled on the BGP neighbor routers and a soft reconfiguration is initiated for the inbound session with the neighbor 172.16.10.2, and the outbound session is unaffected:

Device\#clear proximity ip bgp 172.16.10.2 in
In the following example, a hard reset is initiated for sessions with all routers in the autonomous system numbered 35700 :

Device\#clear proximity ip bgp 35700
In the following example, a hard reset is initiated for sessions with all routers in the 4-byte autonomous system numbered 65538 in asplain notation. This example requires Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXI1, Cisco IOS XE Release 2.4, or a later release.

Device\#clear proximity ip bgp 65538
In the following example, a hard reset is initiated for sessions with all routers in the 4-byte autonomous system numbered 1.2 in asdot notation. This example requires Cisco IOS Release 12.0(32)SY8, 12.0(32)S12, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXI1, 12.4(24)T, and Cisco IOS XE Release 2.3, or a later release.

Device\#clear proximity ip bgp 1.2

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline \begin{tabular}{l}
bgp slow-peer split-update-group \\
dynamic permanent
\end{tabular} & Moves a dynamically detected slow peer to a slow update group. \\
\hline clear ip bgp ipv4 & \begin{tabular}{l}
Resets BGP connections using hard or soft reconfiguration for \\
IPv4 address family sessions.
\end{tabular} \\
\hline clear ip bgp ipv6 & \begin{tabular}{l}
Resets BGP connections using hard or soft reconfiguration for \\
IPv6 address family sessions.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline clear ip bgp vpnv4 & \begin{tabular}{l}
Resets BGP connections using hard or soft reconfiguration for \\
VPNv4 address family sessions.
\end{tabular} \\
\hline clear ip bgp vpnv6 & \begin{tabular}{l}
Resets BGP connections using hard or soft reconfiguration for \\
VPNv6 address family sessions.
\end{tabular} \\
\hline \begin{tabular}{l}
neighbor slow-peer split-update-group \\
dynamic permanent
\end{tabular} & Moves a dynamically detected slow peer to a slow update group. \\
\hline neighbor soft-reconfiguration & Configures the Cisco IOS software to start storing updates. \\
\hline router bgp & Configures the BGP routing process. \\
\hline show ip bgp & Displays entries in the BGP routing table. \\
\hline show ip bgp neighbors & \begin{tabular}{l}
Displays information about BGP and TCP connections to \\
neighbors.
\end{tabular} \\
\hline \begin{tabular}{l}
slow-peer split-update-group dynamic \\
permanent
\end{tabular} & Moves a dynamically detected slow peer to a slow update group. \\
\hline
\end{tabular}

\section*{default-information originate (0SPF)}

To generate a default external route into an Open Shortest Path First (OSPF) routing domain, use the default-information originate command in router configuration or router address family topology configuration mode. To disable this feature, use the no form of this command.
default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]
no default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline always & \begin{tabular}{l}
(Optional) Always advertises the default route regardless of whether the software \\
has a default route. \\
Note \\
The always keyword includes the following exception when the \\
route map is used. When a route map is used, the origination of the \\
default route by OSPF is not bound to the existence of a default route \\
in the routing table and the always keyword is ignored.
\end{tabular} \\
\hline metric metric-value & \begin{tabular}{l}
(Optional) Metric used for generating the default route. If you omit a value and \\
do not specify a value using the default-metric router configuration command, \\
the default metric value is 10. The value used is specific to the protocol.
\end{tabular} \\
\hline \begin{tabular}{l}
metric-type \\
type-value
\end{tabular} & \begin{tabular}{l}
(Optional) External link type associated with the default route that is advertised \\
into the OSPF routing domain. It can be one of the following values: \\
- Type 1 external route. \\
- Type 2 external route. \\
The default is type 2 external route.
\end{tabular} \\
\hline route-map map-name & \begin{tabular}{l}
(Optional) The routing process will generate the default route if the route map is \\
satisfied.
\end{tabular} \\
\hline
\end{tabular}

This command is disabled by default. No default external route is generated into the OSPF routing domain.
Router configuration (config-router) Router address family topology configuration (config-router-af-topology)

\section*{Cisco IOS XE Everest 16.5.1a}

This command was introduced.

Whenever you use the redistribute or the default-information router configuration command to redistribute routes into an OSPF routing domain, the Cisco IOS software automatically becomes an Autonomous System Boundary Router (ASBR). However, an ASBR does not, by default, generate a default route into the OSPF routing domain. The software must still have a default route for itself before it generates one, except when you have specified the always keyword.

When a route map is used, the origination of the default route by OSPF is not bound to the existence of a default route in the routing table.

\section*{Release 12.2(33)SRB}

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the default-information originatecommand in router address family topology configuration mode in order for this OSPF router configuration command to become topology-aware.

\section*{Examples}

The following example specifies a metric of 100 for the default route that is redistributed into the OSPF routing domain and specifies an external metric type of 1:
```

router ospf 109
redistribute eigrp }108\mathrm{ metric 100 subnets
default-information originate metric 100 metric-type 1

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline default-information & \begin{tabular}{l}
Accepts exterior or default information into Enhanced Interior Gateway Routing \\
Protocol (EIGRP) processes.
\end{tabular} \\
\hline default-metric & Sets default metric values for routes. \\
\hline redistribute (IP) & Redistributes routes from one routing domain into another routing domain. \\
\hline
\end{tabular}

\section*{default-metric (BGP)}

To set a default metric for routes redistributed into Border Gateway Protocol (BGP), use the default-metric command in address family or router configuration mode. To remove the configured value and return BGP to default operation, use the no form of this command.
default-metric number
no default-metric number

Syntax Description

\section*{Command Default}
number
Default metric value applied to the redistributed route. The range of values for this argument is from 1 to 4294967295.

The following is default behavior if this command is not configured or if the no form of this command is entered:
- The metric of redistributed interior gateway protocol (IGP) routes is set to a value that is equal to the interior BGP (iBGP) metric.
- The metric of redistributed connected and static routes is set to 0 .

When this command is enabled, the metric for redistributed connected routes is set to 0 .

\section*{Command Modes}

Address family configuration (config-router-af)
Router configuration (config-router)

\section*{Command History}

Table 140:
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The default-metric command is used to set the metric value for routes redistributed into BGP and can be applied to any external BGP (eBGP) routes received and subsequently advertised internally to iBGP peers.

This value is the Multi Exit Discriminator (MED) that is evaluated by BGP during the best path selection process. The MED is a non-transitive value that is processed only within the local autonomous system and adjacent autonomous systems. The default metric is not set if the received route has a MED value.

When enabled, the default-metric command applies a metric value of 0 to redistributed connected routes. The default-metric command does not override metric values that are applied with the redistribute command.

\section*{\(\overline{\text { Examples }}\)}

In the following example, a metric of 1024 is set for routes redistributed into BGP from OSPF:
```

Device(config) \#router bgp 50000
Device(config-router) \#address-family ipv4 unicast
Device(config-router-af) \#default-metric 1024

```
```

Device(config-router-af) \#redistribute ospf 10
Device(config-router-af) \#end

```

In the following configuration and output examples, a metric of 300 is set for eBGP routes received and advertised internally to an iBGP peer.
```

Device(config) \#router bgp 65501
Device(config-router) \#no synchronization
Device(config-router) \#bgp log-neighbor-changes
Device(config-router) \#network 172.16.1.0 mask 255.255.255.0
Device(config-router) \#neighbor 172.16.1.1 remote-as }6550
Device(config-router) \#neighbor 172.16.1.1 soft-reconfiguration inbound
Device(config-router) \#neighbor 192.168.2.2 remote-as }6550
Device(config-router) \#neighbor 192.168.2.2 soft-reconfiguration inbound
Device(config-router) \#default-metric 300
Device(config-router) \#no auto-summary

```

After the above configuration, some routes are received from the eBGP peer at 192.168.2.2 as shown in the output from the show ip bgp neighbors received-routes command.
```

Device\#show ip bgp neighbors 192.168.2.2 received-routes
BGP table version is 7, local router ID is 192.168.2.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 172.17.1.0/24 192.168.2.2 0 65502 i

```

After the received routes from the eBGP peer at 192.168.2.2 are advertised internally to iBGP peers, the output from the show ip bgp neighbors received-routes command shows that the metric (MED) has been set to 300 for these routes.
```

Device\#show ip bgp neighbors 172.16.1.2 received-routes
BGP table version is 2, local router ID is 172.16.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

* i172.16.1.0/24 172.16.1.2 0 100 0 i
* i172.17.1.0/24 192.168.2.2 300 100 0 65502 i
Total number of prefixes 2

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline redistribute (IP) & Redistributes routes from one routing domain into another routing domain. \\
\hline
\end{tabular}

\section*{distance (OSPF)}

To define an administrative distance, use the distance command in router configuration mode or VRF configuration mode. To remove the distance command and restore the system to its default condition, use the no form of this command.

\section*{distance weight}
[ip-address wildcard-mask [access-list name]]
no distance weight ip-address wildcard-mask [access-list-name]

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline weight & \begin{tabular}{l}
Administrative distance. Range is 10 to 255. Used alone, the weight argument specifies a \\
default administrative distance that the software uses when no other specification exists \\
for a routing information source. Routes with a distance of 255 are not installed in the \\
routing table. The table in the "Usage Guidelines" section lists the default administrative \\
distances.
\end{tabular} \\
\hline ip-address & (Optional) IP address in four-part dotted-decimal notation. \\
\hline wildcard-mask & \begin{tabular}{l}
(Optional) Wildcard mask in four-part, dotted-decimal format. A bit set to 1 in the \\
wildcard-mask argument instructs the software to ignore the corresponding bit in the address \\
value.
\end{tabular} \\
\hline access-list-name & (Optional) Name of an IP access list to be applied to incoming routing updates. \\
\hline
\end{tabular}

If this command is not specified, the administrative distance is the default. The table in the "Usage Guidelines" section lists the default administrative distances.

Router configuration (config-router)
VRF configuration (config-vrf)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

To use this command, you must be in a user group associated with a task group that includes the appropriate task IDs. If the user group assignment is preventing you from using a command contact your AAA administrator for assistance.

An administrative distance is an integer from 10 to 255 . In general, the higher the value, the lower the trust rating. An administrative distance of 255 means that the routing information source cannot be trusted at all and should be ignored. Weight values are subjective; no quantitative method exists for choosing weight values.

If an access list is used with this command, it is applied when a network is being inserted into the routing table. This behavior allows you to filter networks based on the IP prefix supplying the routing information. For example, you could filter possibly incorrect routing information from networking devices not under your administrative control.

The order in which you enter distance commands can affect the assigned administrative distances, as shown in the "Examples" section. The following table lists default administrative distances.

Table 141: Default Administrative Distances
\begin{tabular}{|l|l|}
\hline Rate Source & Default Distance \\
\hline Connected interface & 0 \\
\hline Static route out on interface & 0 \\
\hline Static route to next hop & 1 \\
\hline EIGRP summary route & 5 \\
\hline External BGP & 20 \\
\hline Internal EIGRP & 90 \\
\hline OSPF & 110 \\
\hline IS-IS & 115 \\
\hline RIP version 1 and 2 & 170 \\
\hline External EIGRP & 200 \\
\hline Internal BGP & 255 \\
\hline Unknown & \\
\hline
\end{tabular}

Task ID
\begin{tabular}{|l|l|}
\hline Task ID & Operations \\
\hline ospf & read, write \\
\hline
\end{tabular}

\section*{Examples}

In the following example, the router ospf command sets up Open Shortest Path First (OSPF) routing instance 1. The first distance command sets the default administrative distance to 255, which instructs the software to ignore all routing updates from networking devices for which an explicit distance has not been set. The second distance command sets the administrative distance for all devices on the network 192.168.40.0 to 90.
```

Device\#configure terminal
Device(config)\#router ospf 1
Device(config-ospf) \#distance 255
Device(config-ospf)\#distance 90 192.168.40.0 0.0.0.255

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline distance bgg & \begin{tabular}{l}
Allows the use of external, internal, and local administrative distances that could be a better \\
route to a BGP node.
\end{tabular} \\
\hline \begin{tabular}{l}
distance \\
ospf
\end{tabular} & \begin{tabular}{l}
Allows the use of external, internal, and local administrative distances that could be a better \\
route to an OSPF node.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline router ospf & Configures the OSPF routing process. \\
\hline
\end{tabular}

\section*{eigrp log-neighbor-changes}

To enable the logging of changes in Enhanced Interior Gateway Routing Protocol (EIGRP) neighbor adjacencies, use the eigrp log-neighbor-changes command in router configuration mode, address-family configuration mode, or service-family configuration mode. To disable the logging of changes in EIGRP neighbor adjacencies, use the noform of thiscommand.
eigrp log-neighbor-changes
no eigrp log-neighbor-changes
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

Usage Guidelines
This command enables the logging of neighbor adjacency changes to monitor the stability of the routing system and to help detect problems. Logging is enabled by default. To disable the logging of neighbor adjacency changes, use the no form of this command.

To enable the logging of changes for EIGRP address-family neighbor adjacencies, use the eigrp log-neighbor-changescommand in address-family configuration mode.

To enable the logging of changes for EIGRP service-family neighbor adjacencies, use the eigrp log-neighbor-changescommand in service-family configuration mode.

Examples
The following configuration disables logging of neighbor changes for EIGRP process 209:
```

Device(config) \# router eigrp 209
Device(config-router) \# no eigrp log-neighbor-changes

```

The following configuration enables logging of neighbor changes for EIGRP process 209:
```

Device(config)\# router eigrp 209
Device(config-router)\# eigrp log-neighbor-changes

```

The following example shows how to disable logging of neighbor changes for EIGRP address-family with autonomous-system 4453:
```

Device(config)\# router eigrp virtual-name
Device(config-router)\# address-family ipv4 autonomous-system 4453
Device(config-router-af) \# no eigrp log-neighbor-changes
Device(config-router-af) \# exit-address-family

```

The following configuration enables logging of neighbor changes for EIGRP service-family process 209:
```

Device(config)\# router eigrp 209
Device(config-router) \# service-family ipv4 autonomous-system 4453
Device(config-router-sf) \# eigrp log-neighbor-changes
Device(config-router-sf) \# exit-service-family

```

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline address-family (EIGRP) & \begin{tabular}{l}
Enters address-family configuration mode to configure an EIGRP routing \\
instance.
\end{tabular} \\
\hline exit-address-family & Exits address-family configuration mode. \\
\hline exit-service-family & Exits service-family configuration mode. \\
\hline router eigrp & Configures the EIGRP routing process. \\
\hline service-family & Specifies service-family configuration mode. \\
\hline
\end{tabular}

\section*{eigrp log-neighbor-warnings}

To enable the logging of Enhanced Interior Gateway Routing Protocol (EIGRP) neighbor warning messages, use the eigrp log-neighbor-warnings command in router configuration mode, address-family configuration mode, or service-family configuration mode. To disable the logging of EIGRP neighbor warning messages, use the no form of this command.
eigrp log-neighbor-warnings [seconds] no eigrp log-neighbor-warnings

\section*{Syntax Description}

\section*{Command Default}

Command Modes

Command History

\section*{Usage Guidelines}
seconds (Optional) The time interval (in seconds) between repeated neighbor warning messages. The range is from 1 to 65535 . The default is 10 .

Neighbor warning messages are logged at 10-second intervals.
Router configuration (config-router) Address-family configuration (config-router-af) Service-family configuration (config-router-sf)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

When neighbor warning messages occur, they are logged by default. With this command, you can disable and enable neighbor warning messages, and you can configure the interval between repeated neighbor warning messages.

To enable the logging of warning messages for an EIGRP address family, use the eigrp log-neighbor-warnings command in address-family configuration mode.
To enable the logging of warning messages for an EIGRP service family, use the eigrp log-neighbor-warnings command in service-family configuration mode.

\section*{Examples}

The following command will log neighbor warning messages for EIGRP process 209 and repeat the warning messages in 5-minute (300 seconds) intervals:
```

Device(config)\# router eigrp 209
Device(config-router)\# eigrp log-neighbor-warnings 300

```

The following example logs neighbor warning messages for the service family with autonomous system number 4453 and repeats the warning messages in five-minute (300 second) intervals:
```

Device(config)\# router eigrp virtual-name
Device(config-router)\# service-family ipv4 autonomous-system 4453
Device(config-router-sf)\# eigrp log-neighbor-warnings 300

```

The following example logs neighbor warning messages for the address family with autonomous system number 4453 and repeats the warning messages in five-minute (300 second) intervals:

\footnotetext{
Device(config) \# router eigrp virtual-name
}
```

Device(config-router) \# address-family ipv4 autonomous-system 4453
Device(config-router-af) \# eigrp log-neighbor-warnings 300

```
\begin{tabular}{|l|l|}
\hline Related Commands & Command \\
\hline Description \\
\cline { 2 - 3 } & address-family (EIGRP)
\end{tabular} \begin{tabular}{l}
Enters address-family configuration mode to configure an EIGRP routing \\
instance.
\end{tabular}

\section*{ip authentication key-chain eigrp}

To enable authentication of Enhanced Interior Gateway Routing Protocol (EIGRP) packets, use the ip authentication key-chain eigrpcommand in interface configuration mode. To disable such authentication, use the no form of this command.
ip authentication key-chain eigrp as-number key-chain no ip authentication key-chain eigrp as-number key-chain

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

\section*{Examples}

Related Commands
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number to which the authentication applies. \\
\hline key-chain & Name of the authentication key chain. \\
\hline
\end{tabular}

No authentication is provided for EIGRP packets.
Interface configuration (config-if) Virtual network interface (config-if-vnet)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

The following example applies authentication to autonomous system 2 and identifies a key chain named SPORTS:

Device(config-if) \#ip authentication key-chain eigrp 2 SPORTS
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline accept-lifetime & \begin{tabular}{l}
Sets the time period during which the authentication key on a key chain is \\
received as valid.
\end{tabular} \\
\hline ip authentication mode eigrp & Specifies the type of authentication used in EIGRP packets. \\
\hline key & Identifies an authentication key on a key chain. \\
\hline key chain & Enables authentication of routing protocols. \\
\hline key-string (authentication) & Specifies the authentication string for a key. \\
\hline send-lifetime & \begin{tabular}{l}
Sets the time period during which an authentication key on a key chain is \\
valid to be sent.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip authentication mode eigrp}

To specify the type of authentication used in Enhanced Interior Gateway Routing Protocol (EIGRP) packets, use the ip authentication mode eigrpcommand in interface configuration mode. To disable that type of authentication, use the no form of this command.
ip authentication mode eigrp as-number md5 no ip authentication mode eigrp as-number md5

Syntax Description
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number. \\
\hline md5 & Keyed Message Digest 5 (MD5) authentication. \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

No authentication is provided for EIGRP packets.
Interface configuration (config-if) Virtual network interface (config-if-vnet)

Usage Guidelines

\section*{Examples}

Configure authentication to prevent unapproved sources from introducing unauthorized or false routing messages. When authentication is configured, an MD5 keyed digest is added to each EIGRP packet in the specified autonomous system.

The following example configures the interface to use MD5 authentication in EIGRP packets in autonomous system 10:

Device(config-if) \#ip authentication mode eigrp 10 md5

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline accept-lifetime & \begin{tabular}{l}
Sets the time period during which the authentication key on a key \\
chain is received as valid.
\end{tabular} \\
\hline ip authentication key-chain eigrp & Enables authentication of EIGRP packets. \\
\hline key & Identifies an authentication key on a key chain. \\
\hline key chain & Enables authentication of routing protocols. \\
\hline key-string (authentication) & Specifies the authentication string for a key. \\
\hline send-lifetime & \begin{tabular}{l}
Sets the time period during which an authentication key on a key chain \\
is valid to be sent.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip bandwidth-percent eigrp}

To configure the percentage of bandwidth that may be used by Enhanced Interior Gateway Routing Protocol (EIGRP) on an interface, use the ip bandwidth-percent eigrpcommand in interface configuration mode. To restore the default value, use the no form of this command.
ip bandwidth-percent eigrp as-number percent no ip bandwidth-percent eigrp as-number percent

Syntax Description

Command Default
Command Modes Command History

Usage Guidelines
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number. \\
\hline percent & Percent of bandwidth that EIGRP may use. \\
\hline
\end{tabular}

EIGRP may use 50 percent of available bandwidth.
Interface configuration (config-if) Virtual network interface (config-if-vnet)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

EIGRP will use up to 50 percent of the bandwidth of a link, as defined by the bandwidth interface configuration command. This command may be used if some other fraction of the bandwidth is desired. Note that values greater than 100 percent may be configured. The configuration option may be useful if the bandwidth is set artificially low for other reasons.

The following example allows EIGRP to use up to 75 percent (42 kbps) of a \(56-\mathrm{kbps}\) serial link in autonomous system 209:
```

Device(config)\#interface serial 0
Device(config-if)\#bandwidth 56
Device(config-if)\#ip bandwidth-percent eigrp 209 75

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline bandwidth (interface) & Sets a bandwidth value for an interface. \\
\hline
\end{tabular}

\section*{ip cef load-sharing algorithm}

To select a Cisco Express Forwarding load-balancing algorithm, use theip cef load-sharing algorithm command in global configuration mode. To return to the default universal load-balancing algorithm, use the no form of this command.
ip cef load-sharing algorithm \{original | [universal \([i d]]\}\) no ip cef load-sharing algorithm

Syntax Description

\section*{Command Default}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{|l|l|}
\hline original & \begin{tabular}{l}
Sets the load-balancing algorithm to the original algorithm based on a source and destination \\
hash.
\end{tabular} \\
\hline universal & \begin{tabular}{l}
Sets the load-balancing algorithm to the universal algorithm that uses a source and destination \\
and an ID hash.
\end{tabular} \\
\hline id & (Optional) Fixed identifier. \\
\hline
\end{tabular}

The universal load-balancing algorithm is selected by default. If you do not configure the fixed identifier for a load-balancing algorithm, the router automatically generates a unique ID.

Global configuration (config)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline \begin{tabular}{l}
Cisco IOS XE Everest \\
16.5.1a
\end{tabular} & This command was introduced. \\
\hline
\end{tabular}

The original Cisco Express Forwarding load-balancing algorithm produced distortions in load sharing across multiple devices because of the use of the same algorithm on every device. When the load-balancing algorithm is set to universal mode, each device on the network can make a different load sharing decision for each source-destination address pair, and that resolves load-balancing distortions.

The following example shows how to enable the Cisco Express Forwarding original load-balancing algorithm:
```

Device> enable
Device\# configure terminal
Device(config)\# ip cef load-sharing algorithm original
Device(config)\# exit

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ip load-sharing & Enables load balancing for Cisco Express Forwarding. \\
\hline
\end{tabular}

\section*{ip community-list}

To configure a BGP community list and to control which routes are permitted or denied based on their community values, use the ip community-list command in global configuration mode. To delete the community list, use the no form of this command.

\section*{Standard Community Lists}
ip community-list \(\{\) standard \(\mid\) standard list-name \(\}\) \{deny |permit \(\}\) [community-number] [AA:NN] [internet] [local-as] [no-advertise] [no-export] [gshut]
no ip community-list \(\{\) standard \(\mid\) standard list-name \(\}\)

\section*{Expanded Community Lists}
ip community-list \{expanded \(\mid\) expanded list-name\} \{deny \(\mid\) permit\} regexp no ip community-list \(\{\) expanded \(\mid\) expanded list-name \(\}\)

Syntax Description
\begin{tabular}{|l|l|}
\hline standard & \begin{tabular}{l}
Standard community list \\
number from 1 to 99 to \\
identify one or more permit or \\
deny groups of communities.
\end{tabular} \\
\hline standard list-name & \begin{tabular}{l}
Configures a named standard \\
community list.
\end{tabular} \\
\hline deny & \begin{tabular}{l}
Denies routes that match the \\
specified community or \\
communities.
\end{tabular} \\
\hline permit & \begin{tabular}{l}
Permits routes that match the \\
specified community or \\
communities.
\end{tabular} \\
\hline community-number & \begin{tabular}{l}
(Optional) 32-bit number from \\
l to 4294967200. A single \\
community can be entered or \\
multiple communities can be \\
entered, each separated by a \\
space.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline\(A A: N N\) & \begin{tabular}{l}
(Optional) Autonomous \\
system number and network \\
number entered in the 4-byte \\
new community format. This \\
value is configured with two \\
2-byte numbers separated by \\
a colon. A number from 1 to \\
65535 can be entered for each
\end{tabular} \\
2-byte number. A single \\
community can be entered or \\
multiple communities can be \\
entered, each separated by a \\
space.
\end{tabular}\(|\)\begin{tabular}{l}
(Optional) Specifies the \\
internet \\
\hline local-as \\
with this community. Routes are \\
advertised to all peers (internal \\
and external).
\end{tabular}
\begin{tabular}{|l|l|}
\hline gshut & \begin{tabular}{l}
(Optional) Specifies the \\
Graceful Shutdown (GSHUT) \\
community.
\end{tabular} \\
\hline expanded & \begin{tabular}{l}
Expanded community list \\
number from 100 to 500 to \\
identify one or more permit or \\
deny groups of communities.
\end{tabular} \\
\hline expanded list-name & \begin{tabular}{l}
Configures a named expanded \\
community list.
\end{tabular} \\
regexp & \begin{tabular}{l}
Regular expression that is used \\
to specify a pattern to match \\
against an input string. \\
Noter
\end{tabular} \\
\begin{tabular}{ll}
Regular \\
expressions can \\
be used only \\
with expanded \\
community lists.
\end{tabular} \\
\hline
\end{tabular}

Command Default BGP community exchange is not enabled by default.
Command Modes
Global configuration (config)

\section*{Command History}

\section*{Table 142:}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
The ip community-list command is used to filter BGP routes based on one or more community values. BGP community values are configured as a 32 -bit number (old format) or as a 4 -byte number (new format). The new community format is enabled when the ip bgp-community new-format command is entered in global configuration mode. The new community format consists of a 4-byte value. The first two bytes represent the autonomous system number, and the trailing two bytes represent a user-defined network number. Named and numbered community lists are supported.

BGP community exchange is not enabled by default. The exchange of BGP community attributes between BGP peers is enabled on a per-neighbor basis with the neighbor send-community command. The BGP community attribute is defined in RFC 1997 and RFC 1998.

The Internet community is applied to all routes or prefixes by default, until any other community value is configured with this command or the set community command.

Use a route map to reference a community list and thereby apply policy routing or set values.

\section*{Community List Processing}

Once a permit value has been configured to match a given set of communities, the community list defaults to an implicit deny for all other community values. Unlike an access list, it is feasible for a community list to contain only deny statements.
- When multiple communities are configured in the same ip community-list statement, a logical AND condition is created. All community values for a route must match the communities in the community list statement to satisfy an AND condition.
- When multiple communities are configured in separate ip community-list statements, a logical OR condition is created. The first list that matches a condition is processed.

\section*{Standard Community Lists}

Standard community lists are used to configure well-known communities and specific community numbers. A maximum of 16 communities can be configured in a standard community list. If you attempt to configure more than 16 communities, the trailing communities that exceed the limit are not processed or saved to the running configuration file.

\section*{Expanded Community Lists}

Expanded community lists are used to filter communities using a regular expression. Regular expressions are used to configure patterns to match community attributes. The order for matching using the * or + character is longest construct first. Nested constructs are matched from the outside in. Concatenated constructs are matched beginning at the left side. If a regular expression can match two different parts of an input string, it will match the earliest part first. For more information about configuring regular expressions, see the "Regular Expressions" appendix of the Terminal Services Configuration Guide.

\section*{Examples}

In the following example, a standard community list is configured that permits routes from network 10 in autonomous system 50000:

Device(config) \#ip community-list 1 permit 50000:10
In the following example, a standard community list is configured that permits only routes from peers in the same autonomous system or from subautonomous system peers in the same confederation:

Device(config) \#ip community-list 1 permit no-export
In the following example, a standard community list is configured to deny routes that carry communities from network 40 in autonomous system 65534 and from network 60 in autonomous system 65412. This example shows a logical AND condition; all community values must match in order for the list to be processed.

Device(config) \#ip community-list 2 deny 65534:40 65412:60
In the following example, a named, standard community list is configured that permits all routes within the local autonomous system or permits routes from network 20 in autonomous system 40000. This example shows a logical OR condition; the first match is processed.
```

Device(config)\#ip community-list standard RED permit local-as
Device(config)\#ip community-list standard RED permit 40000:20

```

In the following example, a standard community list is configured that denies routes with the GSHUT community and permits routes with the local-AS community. This example shows a logical OR condition; the first match is processed.
```

Device(config) \#ip community-list 18 deny gshut
Device(config) \#ip community-list }18\mathrm{ permit local-as

```

In the following example, an expanded community list is configured that denies routes that carry communities from any private autonomous system:

Device (config) \#ip community-list 500 deny _64[6-9][0-9][0-9]_l_65[0-9][0-9][0-9]_
In the following example, a named expanded community list is configured that denies routes from network 1 to 99 in autonomous system 50000:

Device(config) \#ip community-list expanded BLUE deny 50000:[0-9][0-9]_

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline match community & Defines a BGP community that must match the community of a route. \\
\hline neighbor send-community & Allows BGP community exchange with a neighbor. \\
\hline neighbor shutdown graceful & Configures the BGP Graceful Shutdown feature. \\
\hline route-map (IP) & \begin{tabular}{l}
Defines the conditions for redistributing routes from one routing protocol \\
into another, or enables policy routing.
\end{tabular} \\
\hline set community & Sets the BGP communities attribute. \\
\hline set comm-list delete & \begin{tabular}{l}
Removes communities from the community attribute of an inbound or \\
outbound update.
\end{tabular} \\
\hline show ip bgp community & Displays routes that belong to specified BGP communities. \\
\hline show ip bgp regexp & Displays routes that match a locally configured regular expression. \\
\hline
\end{tabular}

\section*{ip prefix-list}

To create a prefix list or to add a prefix-list entry, use the ip prefix-list command in global configuration mode. To delete a prefix-list entry, use the no form of this command.
ip prefix-list \{list-name [seq number] \{deny|permit\} networkllength [ge ge-length] [le le-length] \(\mid\) description description \(\mid\) sequence-number \(\}\)
no ip prefix-list \{list-name [seq number] [\{deny|permit\} networkllength [ge ge-length] [le le-length]]| description description \(\mid\) sequence-number\}

Syntax Description
\begin{tabular}{|l|l|}
\hline list-name & \begin{tabular}{l}
Configures a name to identify the prefix list. Do not use the word "detail" or "summary" \\
as a list name because they are keywords in the show ip prefix-list command.
\end{tabular} \\
\hline seq & (Optional) Applies a sequence number to a prefix-list entry. \\
\hline number & \begin{tabular}{l}
(Optional) Integer from 1 to 4294967294. If a sequence number is not entered when \\
configuring this command, default sequence numbering is applied to the prefix list. \\
The number 5 is applied to the first prefix entry, and subsequent unnumbered entries \\
are incremented by 5.
\end{tabular} \\
\hline deny & Denies access for a matching condition. \\
\hline permit & Permits access for a matching condition. \\
\hline network / length & \begin{tabular}{l}
Configures the network address and the length of the network mask in bits. The network \\
number can be any valid IP address or prefix. The bit mask can be a number from 1 \\
to 32.
\end{tabular} \\
\hline ge & \begin{tabular}{l}
(Optional) Specifies the lesser value of a range (the "from" portion of the range \\
description) by applying the ge-length argument to the range specified. \\
Note \\
The ge keyword represents the greater than or equal to operator.
\end{tabular} \\
\hline ge-length & \begin{tabular}{l}
(Optional) Represents the minimum prefix length to be matched.
\end{tabular} \\
\hline le & \begin{tabular}{l}
(Optional) Specifies the greater value of a range (the "to" portion of the range \\
description) by applying the le-length argument to the range specified. \\
Note \\
The le keyword represents the less than or equal to operator.
\end{tabular} \\
\hline de-length & (Optional) Represents the maximum prefix length to be matched. \\
\hline sequence-number & (Optional) Enables or disables the use of sequence numbers for prefix lists. \\
\hline
\end{tabular}

\footnotetext{
Command Default
Command Modes
}

No prefix lists or prefix-list entries are created.
Global configuration (config)

\section*{Command History}

\section*{Usage Guidelines}

Table 143:
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Use the ip prefix-list command to configure IP prefix filtering. Prefix lists are configured with permit or deny keywords to either permit or deny a prefix based on a matching condition. An implicit deny is applied to traffic that does not match any prefix-list entry.

A prefix-list entry consists of an IP address and a bit mask. The IP address can be for a classful network, a subnet, or a single host route. The bit mask is a number from 1 to 32 .

Prefix lists are configured to filter traffic based on a match of an exact prefix length or a match within a range when the ge and le keywords are used. The ge and le keywords are used to specify a range of prefix lengths and provide more flexible configuration than using only the network/length argument. A prefix list is processed using an exact match when neither the ge nor le keyword is specified. If only the ge value is specified, the range is the value entered for the ge ge-length argument to a full 32 -bit length. If only the le value is specified, the range is from the value entered for the networkllength argument to the le le-length argument. If both the ge ge-length and le le-length keywords and arguments are entered, the range is between the values used for the ge-length and le-length arguments.

The following formula shows this behavior:
length \(<\) ge ge-length \(<\mathbf{l e}\) le-length \(<=32\)
If the seq keyword is configured without a sequence number, the default sequence number is 5 . In this scenario, the first prefix-list entry is assigned the number 5 and subsequent prefix list entries increment by 5 . For example, the next two entries would have sequence numbers 10 and 15 . If a sequence number is entered for the first prefix list entry but not for subsequent entries, the subsequent entry numbers increment by 5 . For example, if the first configured sequence number is 3 , subsequent entries will be 8,13 , and 18 . Default sequence numbers can be suppressed by entering the no ip prefix-list command with the seq keyword.

Evaluation of a prefix list starts with the lowest sequence number and continues down the list until a match is found. When an IP address match is found, the permit or deny statement is applied to that network and the remainder of the list is not evaluated.

Tip For best performance, the most frequently processed prefix list statements should be configured with the lowest sequence numbers. The seq number keyword and argument can be used for resequencing.

A prefix list is applied to inbound or outbound updates for a specific peer by entering the neighbor prefix-list command. Prefix list information and counters are displayed in the output of the show ip prefix-list command. Prefix-list counters can be reset by entering the clear ip prefix-list command.

\section*{Examples}

In the following example, a prefix list is configured to deny the default route \(0.0 .0 .0 / 0\) :
```

Device(config)\#ip prefix-list RED deny 0.0.0.0/0

```

In the following example, a prefix list is configured to permit traffic from the 172.16.1.0/24 subnet:
```

Device(config)\#ip prefix-list BLUE permit 172.16.1.0/24

```

In the following example, a prefix list is configured to permit routes from the 10.0.0.0/8 network that have a mask length that is less than or equal to 24 bits:

Device (config) \#ip prefix-list YELLOW permit 10.0.0.0/8 le 24
In the following example, a prefix list is configured to deny routes from the 10.0.0.0/8 network that have a mask length that is greater than or equal to 25 bits:

Device(config)\#ip prefix-list PINK deny 10.0.0.0/8 ge 25
In the following example, a prefix list is configured to permit routes from any network that have a mask length from 8 to 24 bits:

Device(config)\#ip prefix-list GREEN permit 0.0.0.0/0 ge 8 le 24
In the following example, a prefix list is configured to deny any route with any mask length from the 10.0.0.0/8 network:

Device(config)\#ip prefix-list ORANGE deny 10.0.0.0/8 le 32

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline clear ip prefix-list & Resets the prefix list entry counters. \\
\hline ip prefix-list description & Adds a text description of a prefix list. \\
\hline ip prefix-list sequence & Enables or disables default prefix-list sequencing. \\
\hline match ip address & \begin{tabular}{l}
Distributes any routes that have a destination network number address that is \\
permitted by a standard or extended access list, and performs policy routing on \\
packets.
\end{tabular} \\
\hline neighbor prefix-list & Filters routes from the specified neighbor using a prefix list. \\
\hline show ip prefix-list & Displays information about a prefix list or prefix list entries. \\
\hline
\end{tabular}

\section*{ip hello-interval eigrp}

To configure the hello interval for an Enhanced Interior Gateway Routing Protocol (EIGRP) process, use the ip hello-interval eigrp command in interface configuration mode. To restore the default value, use the no form of this command.
ip hello-interval eigrp as-number seconds no ip hello-interval eigrp as-number [seconds]

Syntax Description

Command Default

\section*{Command Modes}

Command History
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number. \\
\hline seconds & Hello interval (in seconds). The range is from 1 to 65535. \\
\hline
\end{tabular}

The hello interval for low-speed, nonbroadcast multiaccess (NBMA) networks is 60 seconds and 5 seconds for all other networks.

Interface configuration (config-if) Virtual network interface (config-if-vnet)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
The default of 60 seconds applies only to low-speed, NBMA media. Low speed is considered to be a rate of T1 or slower, as specified with the bandwidth interface configuration command. Note that for the purposes of EIGRP, Frame Relay and Switched Multimegabit Data Service (SMDS) networks may be considered to be NBMA. These networks are considered NBMA if the interface has not been configured to use physical multicasting; otherwise, they are considered not to be NBMA.

Examples The following example sets the hello interval for Ethernet interface 0 to 10 seconds:

Device(config) \#interface ethernet 0
Device(config-if) \#ip hello-interval eigrp 10910

\section*{Related Commands}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline bandwidth (interface) & Sets a bandwidth value for an interface. \\
\hline ip hold-time eigrp & \begin{tabular}{l}
Configures the hold time for a particular EIGRP routing process designated by \\
the autonomous system number.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip hold-time eigrp}

To configure the hold time for an Enhanced Interior Gateway Routing Protocol (EIGRP) process, use the ip hold-time eigrp command in interface configuration mode. To restore the default value, use the no form of this command.
ip hold-time eigrp as-number seconds no ip hold-time eigrp as-number seconds

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number. \\
\hline seconds & Hold time (in seconds). The range is from 1 to 65535. \\
\hline
\end{tabular}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

The EIGRP hold time is 180 seconds for low-speed, nonbroadcast multiaccess (NBMA) networks and 15 seconds for all other networks.

Interface configuration (config-if) Virtual network interface (config-if-vnet)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
On very congested and large networks, the default hold time might not be sufficient time for all routers and access servers to receive hello packets from their neighbors. In this case, you may want to increase the hold time.

We recommend that the hold time be at least three times the hello interval. If a router does not receive a hello packet within the specified hold time, routes through this router are considered unavailable.

Increasing the hold time delays route convergence across the network.
The default of 180 seconds hold time and 60 seconds hello interval apply only to low-speed, NBMA media. Low speed is considered to be a rate of T 1 or slower, as specified with the bandwidth interface configuration command.

The following example sets the hold time for Ethernet interface 0 to 40 seconds:

Device(config) \#interface ethernet 0
Device(config-if) \#ip hold-time eigrp 10940

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline bandwidth (interface) & Sets a bandwidth value for an interface. \\
\hline ip hello-interval eigrp & \begin{tabular}{l}
Configures the hello interval for the EIGRP routing process designated by an \\
autonomous system number.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip load-sharing}

To enable load balancing for Cisco Express Forwarding on an interface, use the ip load-sharing command in interface configuration mode. To disable load balancing for Cisco Express Forwarding on the interface, use the no form of this command.
ip load-sharing \{per-destination \} no ip load-sharing

Syntax Description

Command Default
Command Modes
Command History

\section*{Usage Guidelines}
\begin{tabular}{|l|l|}
\hline per-destination & Enables per-destination load balancing for Cisco Express Forwarding on the interface. \\
\hline
\end{tabular}
Per-destination load balancing is enabled by default when you enable Cisco Express Forwarding.
Interface configuration (config-if)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Per-destination load balancing allows the device to use multiple, equal-cost paths to achieve load sharing. Packets for a given source-destination host pair are guaranteed to take the same path, even if multiple, equal-cost paths are available. Traffic for different source-destination host pairs tends to take different paths.

The following example shows how to enable per-destination load balancing:
```

Device> enable
Device\# configure terminal
Device(config)\# interface gigabitethernet 1/0/1
Device(config-if)\# ip load-sharing per-destination

```

\section*{ip network-broadcast}

To receive and accept the network-prefix-directed broadcast packets, configure the ip network-broadcast command at the interface of the device.
ip network-broadcast
\begin{tabular}{l}
\hline Syntax Description \\
\hline Command Default \\
\hline Command Modes \\
\hline Command History \\
\hline \\
\hline Usage Guidelines
\end{tabular}

This command has no arguments or keywords.
This command is disabled by default.
Interface configuration (config-if)
\begin{tabular}{ll}
Release & Modification \\
\hline Cisco IOS XE Amsterdam 17.3.1 & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Configure the ip network-broadcast command at the ingress interface before configuring the ip directed-broadcast command at the egress interface. This ensures that the network-prefix-directed broadcast packets are received and accepted.
The ip network-broadcast command is disabled by default. If you do not configure this command, the network-prefix-directed broadcast packets are silently discarded.

\section*{Example}

The following example shows how to enable the network to accept the network-prefix-directed broadcast packets at ingress and then configure the directed broadcast-to-physical broadcast translation on the egress interface.
```

Device\# configure terminal
Device(config) \#interface gigabitethernet 1/0/2
Device(config-if) \#ip network-broadcast
Device(config-if)\#exit
Device(config) \#interface gigabitethernet 1/0/3
Device(config-if)\#ip directed-broadcast
Device(config-if) \#exit

```

\section*{ip ospf database-filter all out}

To filter outgoing link-state advertisements (LSAs) to an Open Shortest Path First (OSPF) interface, use the ip ospf database-filter all out command in interface or virtual network interface configuration modes. To restore the forwarding of LSAs to the interface, use the no form of this command.
ip ospf database-filter all out [disable] no ip ospf database-filter all out

Syntax Description

Command Default

Command Modes
disable (Optional) Disables the filtering of outgoing LSAs to an OSPF interface; all outgoing LSAs are flooded to the interface.

Note This keyword is available only in virtual network interface mode.

This command is disabled by default. All outgoing LSAs are flooded to the interface.

Interface configuration (config-if)
Virtual network interface (config-if-vnet)

Command History

Usage Guidelines
This command performs the same function that the neighbor database-filter command performs on a neighbor basis.

If the ip ospf database-filter all out command is enabled for a virtual network and you want to disable it, use the disable keyword in virtual network interface configuration mode.

Examples
The following example prevents filtering of OSPF LSAs to broadcast, nonbroadcast, or point-to-point networks reachable through Ethernet interface 0:
```

Device(config)\#interface ethernet 0
Device(config-if)\#ip ospf database-filter all out

```
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline neighbor database-filter & Filters outgoing LSAs to an OSPF neighbor. \\
\hline
\end{tabular}

\section*{ip ospf name-lookup}

To configure Open Shortest Path First (OSPF) to look up Domain Name System (DNS) names for use in all OSPF show EXEC command displays, use the ip ospf name-lookup command in global configuration mode. To disable this function, use the no form of this command.
```

ip ospf name-lookup
noipospfname-lookup

```

\section*{Syntax Description}

\section*{Command Default}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

This command has no arguments or keywords.
This command is disabled by default.
Global configuration
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

This command makes it easier to identify a router because the router is displayed by name rather than by its router ID or neighbor ID.

\section*{Examples}

The following example configures OSPF to look up DNS names for use in all OSPF show EXEC command displays:

Device(config) \#ip ospf name-lookup

\section*{ip split-horizon eigrp}

To enable Enhanced Interior Gateway Routing Protocol (EIGRP) split horizon, use the ip split-horizon eigrp command in interface configuration mode. To disable split horizon, use the no form of this command.
ip split-horizon eigrp as-number
no ip split-horizon eigrp as-number

Syntax Description
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes
\end{tabular}

Command History

Usage Guidelines
Examples

Related Commands

The behavior of this command is enabled by default.
Interface configuration (config-if)
Virtual network interface (config-if-vnet)
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number. \\
\hline
\end{tabular}

Use the no ip split-horizon eigrp command to disable EIGRP split horizon in your configuration.

The following is an example of how to enable EIGRP split horizon:

Device(config-if) \#ip split-horizon eigrp 101
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline ip split-horizon (RIP) & Enables the split horizon mechanism. \\
\hline neighbor (EIGRP) & Defines a neighboring router with which to exchange routing information. \\
\hline
\end{tabular}

\section*{ip summary-address eigrp}

To configure address summarization for the Enhanced Interior Gateway Routing Protocol (EIGRP) on a specified interface, use the ip summary-address eigrp command in interface configuration or virtual network interface configuration mode. To disable the configuration, use the no form of this command.
ip summary-address eigrp as-number ip-address mask [admin-distance] [leak-map name] no ip summary-address eigrp as-number ip-address mask

Syntax Description

Command Default
\begin{tabular}{|l|l|}
\hline as-number & Autonomous system number. \\
\hline ip-address & Summary IP address to apply to an interface. \\
\hline mask & Subnet mask. \\
\hline admin-distance & \begin{tabular}{l}
(Optional) Administrative distance. Range: 0 to 255. \\
Note \(\quad\)\begin{tabular}{l}
Starting with Cisco IOS XE Release 3.2S, the admin-distance argument \\
was removed. Use the summary-metric command to configure the \\
administrative distance.
\end{tabular} \\
\hline leak-map name
\end{tabular} \begin{tabular}{l}
(Optional) Specifies the route-map reference that is used to configure the route leaking \\
through the summary.
\end{tabular} \\
\hline
\end{tabular}
- An administrative distance of 5 is applied to EIGRP summary routes.
- EIGRP automatically summarizes to the network level, even for a single host route.
- No summary addresses are predefined.
- The default administrative distance metric for EIGRP is 90 .

Interface configuration (config-if)
Virtual network interface configuration (config-if-vnet)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The ip summary-address eigrp command is used to configure interface-level address summarization. EIGRP summary routes are given an administrative-distance value of 5. The administrative-distance metric is used to advertise a summary without installing it in the routing table.

By default, EIGRP summarizes subnet routes to the network level. The no auto-summary command can be entered to configure the subnet-level summarization.
The summary address is not advertised to the peer if the administrative distance is configured as 255 .
EIGRP Support for Leaking Routes

Configuring the leak-map keyword allows a component route that would otherwise be suppressed by the manual summary to be advertised. Any component subset of the summary can be leaked. A route map and access list must be defined to source the leaked route.

The following is the default behavior if an incomplete configuration is entered:
- If the leak-map keyword is configured to reference a nonexistent route map, the configuration of this keyword has no effect. The summary address is advertised but all component routes are suppressed.
- If the leak-map keyword is configured but the access list does not exist or the route map does not reference the access list, the summary address and all component routes are advertised.

If you are configuring a virtual-network trunk interface and you configure the ip summary-address eigrp command, the admin-distance value of the command is not inherited by the virtual networks running on the trunk interface because the administrative distance option is not supported in the ip summary-address eigrp command on virtual network subinterfaces.

\section*{Examples}

The following example shows how to configure an administrative distance of 95 on Ethernet interface 0/0 for the 192.168.0.0/16 summary address:
```

Device(config)\#router eigrp 1
Device(config-router) \#no auto-summary
Device(config-router)\#exit
Device(config)\#interface Ethernet 0/0
Device(config-if)\#ip summary-address eigrp 1 192.168.0.0 255.255.0.0 95

```

The following example shows how to configure the 10.1.1.0/24 subnet to be leaked through the 10.2.2.0 summary address:
```

Device(config)\#router eigrp 1
Device(config-router)\#exit
Device(config) \#access-list 1 permit 10.1.1.0 0.0.0.255
Device(config) \#route-map LEAK-10-1-1 permit }1
Device(config-route-map) \#match ip address 1
Device(config-route-map) \#exit
Device(config)\#interface Serial 0/0
Device(config-if)\#ip summary-address eigrp 1 10.2.2.0 255.0.0.0 leak-map LEAK-10-1-1
Device(config-if) \#end

```

The following example configures GigabitEthernet interface \(0 / 0 / 0\) as a virtual network trunk interface:
```

Device(config) \#interface gigabitethernet 0/0/0
Device(config-if)\#vnet global
Device(config-if-vnet)\#ip summary-address eigrp 1 10.3.3.0 255.0.0.0 33

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline auto-summary (EIGRP) & \begin{tabular}{l}
Configures automatic summarization of subnet routes to network-level routes \\
(default behavior).
\end{tabular} \\
\hline summary-metric & Configures fixed metrics for an EIGRP summary aggregate address. \\
\hline
\end{tabular}

\section*{ip route static bfd}

To specify static route bidirectional forwarding detection (BFD) neighbors, use the ip route static bfd command in global configuration mode. To remove a static route BFD neighbor, use theno form of this command
ip route static bfd \{interface-type interface-number ip-address | vrf vrf-name\} [group group-name] [passive] [unassociate]
no ip route static bfd \{interface-type interface-number ip-address | vrf vrf-name\} [group group-name] [passive] [unassociate]

Syntax Description
Command Default
Command Modes

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline interface-type interface-number & Interface type and number. \\
\hline ip-address & \begin{tabular}{l}
IP address of the gateway, in \\
A.B.C.D format.
\end{tabular} \\
\hline vrf vrf-name & \begin{tabular}{l}
Specifies Virtual Routing and \\
Forwarding (VRF) instance and the \\
destination vrf name.
\end{tabular} \\
\hline group group-name & \begin{tabular}{l}
(Optional) Assigns a BFD group. \\
The group-name is a character \\
string of up to 32 characters \\
specifying the BFD group name.
\end{tabular} \\
\hline unassociate & \begin{tabular}{l}
(Optional) Unassociates the static \\
route configured for a BFD.
\end{tabular} \\
\hline
\end{tabular}

No static route BFD neighbors are specified.
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest & This command was introduced. \\
16.5.1a & \\
\hline
\end{tabular}

Use the ip route static bfd command to specify static route BFD neighbors. All static routes that have the same interface and gateway specified in the configuration share the same BFD session for reachability notification.
All static routes that specify the same values for the interface-type, interface-number, and ip-address arguments will automatically use BFD to determine gateway reachability and take advantage of fast failure detection.

The group keyword assigns a BFD group. The static BFD configuration is added to the VPN routing and forwarding (VRF) instance with which the interface is associated. The passive keyword specifies the passive member of the group. Adding static BFD in a group without the passive keyword makes the BFD an active member of the group. A static route should be tracked by the active BFD configuration in order to trigger a BFD session for the group. To remove all the static BFD configurations (active and passive) of a specific group, use the no ip route static bfd command and specify the BFD group name.

The unassociate keyword specifies that a BFD neighbor is not associated with static route, and the BFD sessions are requested if an interface has been configured with BFD. This is useful in bringing up a BFDv4 session in the absence of an IPv 4 static route. If the unassociate keyword is not provided, then the \(\operatorname{IPv} 4\) static routes are associated with BFD sessions.

BFD requires that BFD sessions are initiated on both endpoint devices. Therefore, this command must be configured on each endpoint device.

The BFD static session on a switch virtual interface (SVI) is established only after the bfd interval milliseconds min_rx milliseconds multiplier multiplier-value command is disabled and enabled on that SVI.

To enable the static BFD sessions, perform the following steps:
1. Enable BFD timers on the SVI.
bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
2. Enable BFD for the static IP route
ip route static bfd interface-type interface-number ip-address
3. Disable and enable the BFD timers on the SVI again.
no bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
bfd interval milliseconds min_rx milliseconds multiplier multiplier-value

\section*{Examples}

The following example shows how to configure BFD for all static routes through a specified neighbor, group, and active member of the group:
```

Device\#configuration terminal
Device(config)\#ip route static bfd GigabitEthernet 1/0/1 10.1.1.1 group group1

```

The following example shows how to configure BFD for all static routes through a specified neighbor, group, and passive member of the group:
```

Device\#configuration terminal
Device(config)\#ip route static bfd GigabitEthernet 1/0/1 10.2.2.2 group group1 passive

```

The following example shows how to configure BFD for all static routes in an unassociated mode without the group and passive keywords:
```

Device\#configuration terminal
Device(config)\#ip route static bfd GigabitEthernet 1/0/1 10.2.2.2 unassociate

```

\section*{ipv6 route static bfd}

To specify static route Bidirectional Forwarding Detection for IPv6 (BFDv6) neighbors, use the ipv6 route static bfd command in global configuration mode. To remove a static route BFDv6 neighbor, use theno form of this command
ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated] no ipv6 route static bfd
Syntax Description

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
vrf \(v r f\)-name
(Optional) Name of the virtual routing and forwarding (VRF) instance by which static routes should be specified.
\begin{tabular}{ll}
\hline interface-type interface-number & Interface type and number. \\
\hline ipv6-address & IPv6 address of the neighbor. \\
\hline unassociated & \begin{tabular}{l}
(Optional) Moves a static BFD \\
neighbor from associated mode to \\
unassociated mode.
\end{tabular} \\
\hline
\end{tabular}

No static route BFDv6 neighbors are specified.
Global configuration (config)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced.
\end{tabular}

Use the ipv6 route static bfd command to specify static route neighbors. All of the static routes that have the same interface and gateway specified in the configuration share the same BFDv6 session for reachability notification. BFDv6 requires that BFDv6 sessions are initiated on both endpoint routers. Therefore, this command must be configured on each endpoint router. An IPv6 static BFDv6 neighbor must be fully specified (with the interface and the neighbor address) and must be directly attached.

All static routes that specify the same values for vrf vrf-name, interface-type interface-number, and ipv6-address will automatically use BFDv6 to determine gateway reachability and take advantage of fast failure detection.

The following example creates a neighbor on Ethernet interface \(0 / 0\) with an address of 2001::1:
Device\#configuration terminal
Device(config) \#ipv6 route static bfd ethernet 0/0 2001::1
The following example converts the neighbor to unassociated mode:
Device\#configuration terminal
Device(config) \#ipv6 route static bfd ethernet 0/0 2001::1 unassociated

\section*{metric weights (EIGRP)}

To tune the Enhanced Interior Gateway Routing Protocol (EIGRP) metric calculations, use the metric weights command in router configuration mode or address family configuration mode. To reset the values to their defaults, use the no form of this command.

\section*{Router Configuration}
metric weights tos \(k 1 \quad k 2 k 3 k 4 k 5\)
no metric weights

\section*{Address Family Configuration}
metric weights tos [kl [k2 [k3 [k4 [k5 [k6]]]]]]]
no metric weights

Syntax Description

\section*{Command Default}

EIGRP metric K values are set to their default values.

\section*{Command Modes}

Router configuration (config-router)
Address family configuration (config-router-af)

\section*{Command History}
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines Use this command to alter the default behavior of EIGRP routing and metric computation and to allow the tuning of the EIGRP metric calculation for a particular type of service (ToS).

If k5 equals 0 , the composite EIGRP metric is computed according to the following formula:
metric \(=[\mathrm{k} 1 *\) bandwidth \(+(\mathrm{k} 2 *\) bandwidth \() /(256-\mathrm{load})+\mathrm{k} 3 *\) delay \(+\mathrm{K} 6 *\) extended metrics \(]\)

If k 5 does not equal zero, an additional operation is performed:
metric \(=\) metric \(*[\mathrm{k} 5 /(\) reliability \(+\mathrm{k} 4)]\)
Scaled Bandwidth \(=10^{7} /\) minimum interface bandwidth (in kilobits per second) \(* 256\)
Delay is in tens of microseconds for classic mode and pico seconds for named mode. In classic mode, a delay of hexadecimal FFFFFFFF (decimal 4294967295) indicates that the network is unreachable. In named mode, a delay of hexadecimal FFFFFFFFFFFF (decimal 281474976710655) indicates that the network is unreachable.

Reliability is given as a fraction of 255 . That is, 255 is 100 percent reliability or a perfectly stable link.
Load is given as a fraction of 255 . A load of 255 indicates a completely saturated link.

\section*{Examples}

The following example shows how to set the metric weights to slightly different values than the defaults:
```

Device(config) \#router eigrp 109
Device(config-router)\#network 192.168.0.0
Device(config-router)\#metric weights 0 2 0 2 0 0

```

The following example shows how to configure an address-family metric weight to ToS: \(0 ; \mathrm{K} 1: 2\); K2: 0; K3: \(2 ; \mathrm{K} 4: 0 ; \mathrm{K} 5: 0 ; \mathrm{K} 6: 1\) :
```

Device(config) \#router eigrp virtual-name
Device(config-router) \#address-family ipv4 autonomous-system 4533
Device(config-router-af)\#metric weights 0 2 0 2 0 0 1

```

Related Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline address-family (EIGRP) & \begin{tabular}{l}
Enters address family configuration mode to configure an EIGRP routing \\
instance.
\end{tabular} \\
\hline bandwidth (interface) & Sets a bandwidth value for an interface. \\
\hline delay (interface) & Sets a delay value for an interface. \\
\hline ipv6 router eigrp & Configures an IPv6 EIGRP routing process. \\
\hline metric holddown & \begin{tabular}{l}
Keeps new EIGRP routing information from being used for a certain period of \\
time.
\end{tabular} \\
\hline metric maximum-hops & \begin{tabular}{l}
Causes IP routing software to advertise routes with a hop count higher than \\
what is specified by the command (EIGRP only) as unreachable routes.
\end{tabular} \\
\hline router eigrp & Configures an EIGRP routing process. \\
\hline
\end{tabular}

\section*{neighbor advertisement-interval}

To set the minimum route advertisement interval (MRAI) between the sending of BGP routing updates, use the neighbor advertisement-interval command in address family or router configuration mode. To restore the default value, use the no form of this command.
neighbor \{ip-addresspeer-group-name\} advertisement-interval seconds no neighbor \{ip-addresspeer-group-name\} advertisement-interval seconds

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline ip-address & IP address of the neighbor. \\
\hline peer-group-name & Name of a BGP peer group. \\
\hline seconds & Time (in seconds) is specified by an integer ranging from 0 to 600. \\
\hline
\end{tabular}

\section*{Command Default}
eBGP sessions not in a VRF: 30 seconds
eBGP sessions in a VRF: 0 seconds
iBGP sessions: 0 seconds

Command Modes
Router configuration (config-router)

Command History

Usage Guidelines
When the MRAI is equal to 0 seconds, BGP routing updates are sent as soon as the BGP routing table changes.
If you specify a BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command.

\section*{Examples}

The following router configuration mode example sets the minimum time between sending BGP routing updates to 10 seconds:
```

router bgp 5
neighbor 10.4.4.4 advertisement-interval 10

```

The following address family configuration mode example sets the minimum time between sending BGP routing updates to 10 seconds:
```

router bgp 5
address-family ipv4 unicast
neighbor 10.4.4.4 advertisement-interval 10

```
\begin{tabular}{|l|l|l|}
\hline Related Commands & Command & Description \\
\cline { 2 - 4 } & address-family ipv4 (BGP) & \begin{tabular}{l}
Places the router in address family configuration mode for configuring \\
routing sessions such as BGP, RIP, or static routing sessions that use \\
standard IPv4 address prefixes.
\end{tabular} \\
\hline & \begin{tabular}{l}
Places the router in address family configuration mode for configuring \\
routing sessions such as BGP, RIP, or static routing sessions that use \\
standard VPNv4 address prefixes.
\end{tabular} \\
\hline & neighbor peer-group (creating) & Creates a BGP peer group. \\
\hline
\end{tabular}

\section*{neighbor default-originate}

To allow a BGP speaker (the local router) to send the default route 0.0 .0 .0 to a neighbor for use as a default route, use the neighbor default-originate command in address family or router configuration mode. To send no route as a default, use the no form of this command.
neighbor \{ip-addresspeer-group-name \(\}\) default-originate [route-map map-name] no neighbor \{ip-addresspeer-group-name \(\}\) default-originate [route-map map-name]

\section*{Syntax Description}
\begin{tabular}{|l|l|}
\hline ip-address & IP address of the neighbor. \\
\hline peer-group-name & Name of a BGP peer group. \\
\hline route-map map-name & \begin{tabular}{l}
(Optional) Name of the route map. The route map allows route 0.0 .0 .0 to be \\
injected conditionally.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Command Default \\
\hline Command Modes \\
\hline Command History
\end{tabular}

No default route is sent to the neighbor.
Address family configuration (config-router-af)
Router configuration (config-router)

Table 145:
\begin{tabular}{|l|l|}
\hline Release & Modification \\
\hline Cisco IOS XE Everest 16.5.1a & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
This command does not require the presence of 0.0 .0 .0 in the local router. When used with a route map, the default route 0.0 .0 .0 is injected if the route map contains a match ip address clause and there is a route that matches the IP access list exactly. The route map can contain other match clauses also.

You can use standard or extended access lists with the neighbor default-originate command.

\section*{Examples}

In the following router configuration example, the local router injects route 0.0 .0 .0 to the neighbor 172.16.2.3 unconditionally:
```

router bgp 109

```
router bgp 109
network 172.16.0.0
network 172.16.0.0
neighbor 172.16.2.3 remote-as 200
neighbor 172.16.2.3 remote-as 200
neighbor 172.16.2.3 default-originate
neighbor 172.16.2.3 default-originate
In the following example, the local router injects route 0.0 .0 .0 to the neighbor 172.16.2.3 only if there is a route to 192.168 .68 .0 (that is, if a route with any mask exists, such as 255.255.255.0 or 255.255.0.0):
```

router bgp 109

```
router bgp 109
```

router bgp 109
network 172.16.0.0
network 172.16.0.0
network 172.16.0.0
neighbor 172.16.2.3 remote-as 200
neighbor 172.16.2.3 remote-as 200
neighbor 172.16.2.3 remote-as 200
neighbor 172.16.2.3 default-originate route-map default-map

```
neighbor 172.16.2.3 default-originate route-map default-map
```

neighbor 172.16.2.3 default-originate route-map default-map

```
!
```

```
route-map default-map 10 permit
 match ip address 1
!
access-list 1 permit 192.168.68.0
```

In the following example, the last line of the configuration has been changed to show the use of an extended access list. The local router injects route 0.0 .0 .0 to the neighbor 172.16.2.3 only if there is a route to 192.168.68.0 with a mask of 255.255.0.0:

```
router bgp 109
 network 172.16.0.0
 neighbor 172.16.2.3 remote-as 200
 neighbor 172.16.2.3 default-originate route-map default-map
!
route-map default-map 10 permit
 match ip address 100
!
access-list 100 permit ip host 192.168.68.0 host 255.255.0.0
```

Related Commands	Command	Description
address-family ipv4 (BGP)	Places the router in address family configuration mode for configuring routing   sessions such as BGP, RIP, or static routing sessions that use standard IPv4   address prefixes.	
	address-family vpnv4	Places the router in address family configuration mode for configuring routing   sessions such as BGP, RIP, or static routing sessions that use standard VPNv4   address prefixes.
neighbor ebgp-multihop	Accepts and attempts BGP connections to external peers residing on networks   that are not directly connected.	

## neighbor description

To associate a description with a neighbor, use the neighbor description command in router configuration mode or address family configuration mode. To remove the description, use the no form of this command.
neighbor \{ip-addresspeer-group-name $\}$ description text no neighbor \{ip-addresspeer-group-name $\}$ description [text]

## Syntax Description

ip-address	IP address of the neighbor.
peer-group-name	Name of an EIGRP peer group. This argument is not   available in address-family configuration mode.
text	Text (up to 80 characters in length) that describes the   neighbor.


Command Default
Command Modes
Command History

There is no description of the neighbor.

Router configuration (config-router) Address family configuration (config-router-af)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

In the following examples, the description of the neighbor is "peer with example.com":

```
Device(config) #router bgp 109
Device(config-router) #network 172.16.0.0
Device(config-router) #neighbor 172.16.2.3 description peer with example.com
```

In the following example, the description of the address family neighbor is "address-family-peer":

```
Device(config) #router eigrp virtual-name
Device(config-router) #address-family ipv4 autonomous-system 4453
Device(config-router-af) #network 172.16.0.0
Device(config-router-af) #neighbor 172.16.2.3 description address-family-peer
```


## Related Commands

Command	Description
address-family (EIGRP)	Enters address family configuration mode to configure   an EIGRP routing instance.
network (EIGRP)	Specifies the network for an EIGRP routing process.
router eigrp	Configures the EIGRP address family process.

## neighbor ebgp-multihop

To accept and attempt BGP connections to external peers residing on networks that are not directly connected, use the neighbor ebgp-multihop command in router configuration mode. To return to the default, use the no form of this command.
neighbor \{ip-addressipv6-addresspeer-group-name\} ebgp-multihop [ttl] no neighbor \{ip-addressipv6-addresspeer-group-name\} ebgp-multihop

## Syntax Description

ip-address	IP address of the BGP-speaking neighbor.
ipv6-address	IPv6 address of the BGP-speaking neighbor.
peer-group-name	Name of a BGP peer group.
ttl	(Optional) Time-to-live in the range from 1 to 255 hops.

## Command Default

Only directly connected neighbors are allowed.

## Command Modes

Router configuration (config-router)

## Command History

## Usage Guidelines

This feature should be used only under the guidance of Cisco technical support staff.
If you specify a BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command.

To prevent the creation of loops through oscillating routes, the multihop will not be established if the only route to the multihop peer is the default route (0.0.0.0).

## Examples

The following example allows connections to or from neighbor 10.108.1.1, which resides on a network that is not directly connected:

Device(config) \#router bgp 109
Device(config-router) \#neighbor 10.108.1.1 ebgp-multihop

## Related Commands

Command	Description
neighbor advertise-map non-exist-map	Allows a BGP speaker (the local router) to send the default   route 0.0 .0 .0 to a neighbor for use as a default route.
neighbor peer-group (creating)	Creates a BGP peer group.
network (BGP and multiprotocol BGP)	Specifies the list of networks for the BGP routing process.

## neighbor maximum-prefix (BGP)

To control how many prefixes can be received from a neighbor, use the neighbor maximum-prefix command in router configuration mode. To disable this function, use the no form of this command.
neighbor \{ip-addresspeer-group-name\} maximum-prefix maximum [threshold] [restart restart-interval] [warning-only]
no neighbor \{ip-addresspeer-group-name \} maximum-prefix maximum

## Syntax Description

## Command Default

ip-address	IP address of the neighbor.
peer-group-name	Name of a Border Gateway Protocol (BGP) peer group.
maximum	Maximum number of prefixes allowed from the specified neighbor. The number of   prefixes that can be configured is limited only by the available system resources on a   router.
threshold	(Optional) Integer specifying at what percentage of the maximum-prefix limit the router   starts to generate a warning message. The range is from 1 to 100; the default is 75.
restart	(Optional) Configures the router that is running BGP to automatically reestablish a   peering session that has been disabled because the maximum-prefix limit has been   exceeded. The restart timer is configured with the restart-interval argument.
restart-interval	(Optional) Time interval (in minutes) that a peering session is reestablished. The range   is from 1 to 65535 minutes.
warning-only	(optional) Allows the router to generate a sys-log message when the maximum-prefix   limitis exceeded, instead of terminating the peering session.

This command is disabled by default. Peering sessions are disabled when the maximum number of prefixes is exceeded. If the restart-interval argument is not configured, a disabled session will stay down after the maximum-prefix limit is exceeded.
threshold: 75 percent

## Command Modes

Router configuration (config-router)

Table 147:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

The neighbor maximum-prefixcommand allows you to configure a maximum number of prefixes that a Border Gateway Protocol (BGP) routing process will accept from the specified peer. This feature provides a mechanism (in addition to distribute lists, filter lists, and route maps) to control prefixes received from a peer.

When the number of received prefixes exceeds the maximum number configured, BGP disables the peering session (by default). If the restart keyword is configured, BGP will automatically reestablish the peering
session at the configured time interval. If the restart keyword is not configured and a peering session is terminated because the maximum prefix limit has been exceed, the peering session will not be be reestablished until the clear ip bgp command is entered. If the warning-only keyword is configured, BGP sends only a log message and continues to peer with the sender.

There is no default limit on the number of prefixes that can be configured with this command. Limitations on the number of prefixes that can be configured are determined by the amount of available system resources.

## $\overline{\text { Examples }}$

In the following example, the maximum prefixes that will be accepted from the 192.168.1.1 neighbor is set to 1000 :

```
Device(config) #router bgp 40000
Device(config-router) #network 192.168.0.0
Device(config-router)#neighbor 192.168.1.1 maximum-prefix 1000
```

In the following example, the maximum number of prefixes that will be accepted from the 192.168.2.2 neighbor is set to 5000 . The router is also configured to display warning messages when 50 percent of the maximum-prefix limit ( 2500 prefixes) has been reached.

```
Device(config) #router bgp 40000
Device(config-router)#network 192.168.0.0
Device(config-router) #neighbor 192.168.2.2 maximum-prefix 5000 50
```

In the following example, the maximum number of prefixes that will be accepted from the 192.168.3.3 neighbor is set to 2000 . The router is also configured to reestablish a disabled peering session after 30 minutes.

```
Device(config) #router bgp 40000
Device(config-router) network 192.168.0.0
Device(config-router)#neighbor 192.168.3.3 maximum-prefix 2000 restart 30
```

In the following example, warning messages will be displayed when the threshold of the maximum-prefix limit $(500 \times 0.75=375)$ for the 192.168.4.4 neighbor is exceeded:

```
Device(config) #router bgp 40000
Device(config-router)#network 192.168.0.0
Device(config-router) #neighbor 192.168.4.4 maximum-prefix 500 warning-only
```


## Related Commands

Command	Description
clear ip bgp	Resets a BGP connection using BGP soft reconfiguration.

## neighbor peer-group (assigning members)

To configure a BGP neighbor to be a member of a peer group, use the neighbor peer-group command in address family or router configuration mode. To remove the neighbor from the peer group, use the noform of this command.
neighbor \{ip-addressipv6-address\} peer-group peer-group-name no neighbor \{ip-addressipv6-address $\}$ peer-group peer-group-name

## Syntax Description

ip-address	IP address of the BGP neighbor that belongs to the peer group specified by the   peer-group-name argument.
ipv6-address	IPv6 address of the BGP neighbor that belongs to the peer group specified by the   peer-group-name argument.
peer-group-name	Name of the BGP peer group to which this neighbor belongs.

## Command Default <br> Command Modes

There are no BGP neighbors in a peer group.

Address family configuration (config-router-af)

Router configuration (config-router)

Table 148:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\overline{\text { Usage Guidelines }}$ The neighbor at the IP address indicated inherits all the configured options of the peer group.

Note Using the no form of the neighbor peer-group command removes all of the BGP configuration for that neighbor, not just the peer group association.

## Examples

The following router configuration mode example assigns three neighbors to the peer group named internal:

```
Device(config) #router bgp 100
Device(config-router) #neighbor internal peer-group
Device(config-router) #neighbor internal remote-as 100
Device(config-router) #neighbor internal update-source loopback 0
Device(config-router) #neighbor internal route-map set-med out
Device(config-router) #neighbor internal filter-list 1 out
Device(config-router) #neighbor internal filter-list 2 in
Device(config-router) #neighbor 172.16.232.53 peer-group internal
Device(config-router) #neighbor 172.16.232.54 peer-group internal
```

```
Device(config-router) #neighbor 172.16.232.55 peer-group internal
Device(config-router) #neighbor 172.16.232.55 filter-list 3 in
```

The following address family configuration mode example assigns three neighbors to the peer group named internal:

```
Device(config) #router bgp 100
Device(config-router) #address-family ipv4 unicast
Device(config-router)#neighbor internal peer-group
Device(config-router) #neighbor internal remote-as 100
Device(config-router) #neighbor internal update-source loopback 0
Device(config-router) #neighbor internal route-map set-med out
Device(config-router) #neighbor internal filter-list 1 out
Device(config-router) #neighbor internal filter-list 2 in
Device(config-router) #neighbor 172.16.232.53 peer-group internal
Device(config-router) #neighbor 172.16.232.54 peer-group internal
Device(config-router) #neighbor 172.16.232.55 peer-group internal
Device(config-router) #neighbor 172.16.232.55 filter-list 3 in
```


## Related Commands

Command	Description
address-family ipv4 (BGP)	Places the router in address family configuration mode for configuring   routing sessions such as BGP, RIP, or static routing sessions that use   standard IPv4 address prefixes.
address-family vpnv4	Places the router in address family configuration mode for configuring   routing sessions such as BGP, RIP, or static routing sessions that use   standard VPNv4 address prefixes.
neighbor peer-group (creating)	Creates a BGP peer group.
neighbor shutdown	Disables a neighbor or peer group.

## neighbor peer-group (creating)

To create a BGP or multiprotocol BGP peer group, use the neighbor peer-group command in address family or router configuration mode. To remove the peer group and all of its members, use the noform of this command.
neighbor peer-group-name peer-group no neighbor peer-group-name peer-group

## Syntax Description

peer-group-name	Name of the BGP peer group.


Command Default	There is no BGP peer group.
Command Modes	Address family configuration (config-router-af)
	Router configuration (config-router)

Command History
Table 149:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines Often in a BGP or multiprotocol BGP speaker, many neighbors are configured with the same update policies (that is, same outbound route maps, distribute lists, filter lists, update source, and so on). Neighbors with the same update policies can be grouped into peer groups to simplify configuration and make update calculation more efficient.

Note Peer group members can span multiple logical IP subnets, and can transmit, or pass along, routes from one peer group member to another.

Once a peer group is created with the neighbor peer-group command, it can be configured with the neighbor commands. By default, members of the peer group inherit all the configuration options of the peer group. Members also can be configured to override the options that do not affect outbound updates.

All the peer group members will inherit the current configuration as well as changes made to the peer group. Peer group members will always inherit the following configuration options by default:

- remote-as (if configured)
- version
- update-source
- outbound route-maps
- outbound filter-lists
- outbound distribute-lists
- minimum-advertisement-interval
- next-hop-self

If a peer group is not configured with a remote-as option, the members can be configured with the neighbor \{ip-address $\mid$ peer-group-name $\}$ remote-as command. This command allows you to create peer groups containing external BGP (eBGP) neighbors.

The following example configurations show how to create these types of neighbor peer group:

- internal Border Gateway Protocol (iBGP) peer group
- eBGP peer group
- Multiprotocol BGP peer group

In the following example, the peer group named internal configures the members of the peer group to be iBGP neighbors. By definition, this is an iBGP peer group because the router bgp command and the neighbor remote-as command indicate the same autonomous system (in this case, autonomous system 100). All the peer group members use loopback 0 as the update source and use set-med as the outbound route map. The neighbor internal filter-list 2 in command shows that, except for 172.16.232.55, all the neighbors have filter list 2 as the inbound filter list.

```
router bgp 100
neighbor internal peer-group
neighbor internal remote-as 100
neighbor internal update-source loopback 0
neighbor internal route-map set-med out
neighbor internal filter-list 1 out
neighbor internal filter-list 2 in
neighbor 172.16.232.53 peer-group internal
neighbor 172.16.232.54 peer-group internal
neighbor 172.16.232.55 peer-group internal
neighbor 172.16.232.55 filter-list 3 in
```

The following example defines the peer group named external-peers without the neighbor remote-as command. By definition, this is an eBGP peer group because each individual member of the peer group is configured with its respective autonomous system number separately. Thus the peer group consists of members from autonomous systems 200,300 , and 400 . All the peer group members have the set-metric route map as an outbound route map and filter list 99 as an outbound filter list. Except for neighbor 172.16.232.110, all of them have 101 as the inbound filter list.

```
router bgp 100
neighbor external-peers peer-group
neighbor external-peers route-map set-metric out
neighbor external-peers filter-list 99 out
neighbor external-peers filter-list 101 in
neighbor 172.16.232.90 remote-as 200
neighbor 172.16.232.90 peer-group external-peers
neighbor 172.16.232.100 remote-as 300
neighbor 172.16.232.100 peer-group external-peers
neighbor 172.16.232.110 remote-as 400
neighbor 172.16.232.110 peer-group external-peers
neighbor 172.16.232.110 filter-list 400 in
```

In the following example, all members of the peer group are multicast-capable:

```
router bgp 100
neighbor 10.1.1.1 remote-as 1
neighbor 172.16.2.2 remote-as 2
address-family ipv4 multicast
neighbor mygroup peer-group
neighbor 10.1.1.1 peer-group mygroup
neighbor 172.16.2.2 peer-group mygroup
neighbor 10.1.1.1 activate
neighbor 172.16.2.2 activate
```

Command	Description
address-family ipv4 (BGP)	Places the router in address family configuration mode for configuring routing   sessions such as BGP, RIP, or static routing sessions that use standard IPv4   address prefixes.
address-family vpnv4	Places the router in address family configuration mode for configuring routing   sessions such as BGP, RIP, or static routing sessions that use standard VPNv4   address prefixes.
clear ip bgp peer-group	Removes all the members of a BGP peer group.
show ip bgp peer-group	Displays information about BGP peer groups.

## neighbor route-map

To apply a route map to incoming or outgoing routes, use the neighbor route-map command in address family or router configuration mode. To remove a route map, use the no form of this command.
neighbor $\{$ ip-addresspeer-group-name $\mid$ ipv6-address $[\{\%\}]\}$ route-map map-name $\{\mathbf{i n} \mid$ out $\}$ no neighbor $\{$ ip-addresspeer-group-name $\mid$ ipv6-address $[\{\boldsymbol{\%}\}]\}$ route-map map-name $\{\mathbf{i n} \mid$ out $\}$

## Syntax Description

\section*{| Command Default |
| :--- |
| Command Modes |
| Command History |}

No route maps are applied to a peer.
Router configuration (config-router)
Table 150:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

When specified in address family configuration mode, this command applies a route map to that particular address family only. When specified in router configuration mode, this command applies a route map to IPv4 or IPv6 unicast routes only.

If an outbound route map is specified, it is proper behavior to only advertise routes that match at least one section of the route map.
If you specify a BGP or multiprotocol BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command. Specifying the command for a neighbor overrides the inbound policy that is inherited from the peer group.

The \% keyword is used whenever link-local IPv6 addresses are used outside the context of their interfaces. This keyword does not need to be used for non-link-local IPv6 addresses.

## Examples

The following router configuration mode example applies a route map named internal-map to a BGP incoming route from 172.16.70.24:

```
router bgp 5
```

```
neighbor 172.16.70.24 route-map internal-map in
route-map internal-map
match as-path 1
set local-preference 100
```

The following address family configuration mode example applies a route map named internal-map to a multiprotocol BGP incoming route from 172.16.70.24:

```
router bgp 5
address-family ipv4 multicast
neighbor 172.16.70.24 route-map internal-map in
route-map internal-map
match as-path 1
set local-preference 100
```

Related Commands

Command	Description
address-family ipv4 (BGP)	Places the router in address family configuration mode for configuring routing   sessions such as BGP, RIP, or static routing sessions that use standard IP   Version 4 address prefixes.
address-family ipv6	Enters address family configuration mode for configuring routing sessions   such as BGP that use standard IPv6 address prefixes.
address-family vpnv4	Places the router in address family configuration mode for configuring routing   sessions such as BGP, RIP, or static routing sessions that use standard VPN   Version 4 address prefixes.
address-family vpnv6	Places the router in address family configuration mode for configuring routing   sessions that use standard VPNv6 address prefixes.
neighbor remote-as	Creates a BGP peer group.

## neighbor update-source

To have the Cisco software allow Border Gateway Protocol (BGP) sessions to use any operational interface for TCP connections, use the neighbor update-source command in router configuration mode. To restore the interface assignment to the closest interface, which is called the best local address, use the no form of this command.
neighbor $\{$ ip-address $\mid$ ipv6-address $[\{\%\}]$ peer-group-name $\}$ update-source interface-type interface-number neighbor $\{$ ip-address $\mid$ ipv6-address $[\{\%\}]$ peer-group-name $\}$ update-source interface-type interface-number

Syntax Description
$\overline{\text { Command Default }}$

## Command History

## Usage Guidelines

ip-address	IPv4 address of the BGP-speaking neighbor.
ipv6-address	IPv6 address of the BGP-speaking neighbor.
$\%$	(Optional) IPv6 link-local address identifier. This keyword needs to be added whenever   a link-local IPv6 address is used outside the context of its interface.
peer-group-name	Name of a BGP peer group.
interface-type	Interface type.
interface-number	Interface number.

Best local address

Router configuration (config-router)
Table 151:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This command can work in conjunction with the loopback interface feature described in the "Interface Configuration Overview" chapter of the Cisco IOS Interface and Hardware Component Configuration Guide.

If you specify a BGP peer group by using the peer-group-name argument, all the members of the peer group will inherit the characteristic configured with this command.

The neighbor update-source command must be used to enable IPv6 link-local peering for internal or external BGP sessions.

The \% keyword is used whenever link-local IPv6 addresses are used outside the context of their interfaces and for these link-local IPv6 addresses you must specify the interface they are on. The syntax becomes <IPv6 local-link address $>\%<$ interface name $>$, for example, FE80::1\%Ethernet $1 / 0$. Note that the interface type and number must not contain any spaces, and be used in full-length form because name shortening is not supported in this situation. The \% keyword and subsequent interface syntax is not used for non-link-local IPv6 addresses.

## Examples

The following example sources BGP TCP connections for the specified neighbor with the IP address of the loopback interface rather than the best local address:

```
Device(config)#router bgp 65000
Device(config-router) #network 172.16.0.0
Device(config-router)#neighbor 172.16.2.3 remote-as 110
Device(config-router) #neighbor 172.16.2.3 update-source Loopback0
```

The following example sources IPv6 BGP TCP connections for the specified neighbor in autonomous system 65000 with the global IPv6 address of loopback interface 0 and the specified neighbor in autonomous system 65400 with the link-local IPv6 address of Fast Ethernet interface 0/0. Note that the link-local IPv6 address of FE80::2 is on Ethernet interface $1 / 0$.

```
Device(config)#router bgp 65000
Device(config-router)#neighbor 3ffe::3 remote-as 65000
Device(config-router) #neighbor 3ffe::3 update-source Loopback0
Device(config-router)#neighbor fe80::2%Ethernet1/0 remote-as 65400
Device(config-router) #neighbor fe80::2%Ethernet1/0 update-source FastEthernet 0/0
Device(config-router) #address-family ipv6
Device(config-router)#neighbor 3ffe::3 activate
Device(config-router)#neighbor fe80::2%Ethernet1/0 activate
Device(config-router) #exit-address-family
```

Related Commands	Command	Description
	neighbor activate	Enables the exchange of information with a BGP neighboring router.
	neighbor remote-as	Adds an entry to the BGP or multiprotocol BGP neighbor table.

## network (BGP and multiprotocol BGP)

To specify the networks to be advertised by the Border Gateway Protocol (BGP) and multiprotocol BGP routing processes, use the network command in address family or router configuration mode. To remove an entry from the routing table, use the no form of this command.
network \{network-number [mask network-mask]nsap-prefix\} [route-map map-tag] no network \{network-number [mask network-mask]nsap-prefix\} [route-map map-tag]

## Syntax Description

$\overline{\text { Command Default }}$
Command Modes
Command History

## Usage Guidelines

network-number	Network that BGP or multiprotocol BGP will advertise.
mask network-mask	(Optional) Network or subnetwork mask with mask address.
nsap-prefix	Network service access point (NSAP) prefix of the Connectionless Network Service   (CLNS) network that BGP or multiprotocol BGP will advertise. This argument is   used only under NSAP address family configuration mode.
route-map map-tag	(Optional) Identifier of a configured route map. The route map should be examined   to filter the networks to be advertised. If not specified, all networks are advertised.   If the keyword is specified, but no route map tags are listed, no networks will be   advertised.

No networks are specified.
Address family configuration (config-router-af)
Router configuration (config-router)

## Table 152:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

BGP and multiprotocol BGP networks can be learned from connected routes, from dynamic routing, and from static route sources.

The maximum number of network commands you can use is determined by the resources of the router, such as the configured NVRAM or RAM.

## Examples

The following example sets up network 10.108.0.0 to be included in the BGP updates:

```
Device(config) #router bgp 65100
Device(config-router) #network 10.108.0.0
```

The following example sets up network 10.108.0.0 to be included in the multiprotocol BGP updates:

[^6]```
Device(config-router)#address family ipv4 multicast
Device(config-router)#network 10.108.0.0
```

The following example advertises NSAP prefix 49.6001 in the multiprotocol BGP updates:

```
Device(config)#router bgp 64500
Device(config-router) #address-family nsap
Device(config-router) #network 49.6001
```

Related Commands

| Command | Description |
| :--- | :--- |
| address-family ipv4 (BGP) | Enters the router in address family configuration mode for configuring
 routing sessions such as BGP, RIP, or static routing sessions that use
 standard IP Version 4 address prefixes. |
| address-family vpnv4 | Enters the router in address family configuration mode for configuring
 routing sessions such as BGP, RIP, or static routing sessions that use
 standard VPNv4 address prefixes. |
| default-information originate
 (BGP) | Allows the redistribution of network 0.0.0.0 into BGP. |
| route-map (IP) | Defines the conditions for redistributing routes from one routing
 protocol into another. |
| router bgp | Configures the BGP routing process. |

network (EIGRP)

To specify the network for an Enhanced Interior Gateway Routing Protocol (EIGRP) routing process, use the network command in router configuration mode or address-family configuration mode. To remove an entry, use the no form of this command.
network ip-address [wildcard-mask]
no network ip-address [wildcard-mask]

Syntax Description

| Command Default |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines

| ip-address | IP address of the directly connected network. |
| :--- | :--- |
| wildcard-mask | (Optional) EIGRP wildcard bits. Wildcard mask indicates a subnetwork, bitwise complement
 of the subnet mask. |

No networks are specified.
Router configuration (config-router) Address-family configuration (config-router-af)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

When the network command is configured for an EIGRP routing process, the router matches one or more local interfaces. The network command matches only local interfaces that are configured with addresses that are within the same subnet as the address that has been configured with the networkcommand. The router then establishes neighbors through the matched interfaces. There is no limit to the number of network statements (network commands) that can be configured on a router.

Use a wildcard mask as a shortcut to group networks together. A wildcard mask matches everything in the network part of an IP address with a zero. Wildcard masks target a specific host/IP address, entire network, subnet, or even a range of IP addresses.

When entered in address-family configuration mode, this command applies only to named EIGRP IPv4 configurations. Named IPv6 and Service Advertisement Framework (SAF) configurations do not support this command in address-family configuration mode.

The following example configures EIGRP autonomous system 1 and establishes neighbors through network 172.16.0.0 and 192.168.0.0:

```
Device(config)#router eigrp 1
Device(config-router) #network 172.16.0.0
Device(config-router) #network 192.168.0.0
Device(config-router) #network 192.168.0.0 0.0.255.255
```

The following example configures EIGRP address-family autonomous system 4453 and establishes neighbors through network 172.16.0.0 and 192.168.0.0:

[^7]```
Device(config-router-af) #network 172.16.0.0
Device(config-router-af) #network 192.168.0.0
```

Related Commands	Command	Description
	address-family (EIGRP)	Enters address-family configuration mode to configure an EIGRP routing   instance.
	router eigrp	Configures the EIGRP address-family process.

## nsf (EIGRP)

To enable Cisco nonstop forwarding (NSF) operations for the Enhanced Interior Gateway Routing Protocol (EIGRP), use the nsf command in router configuration or address family configuration mode. To disable EIGRP NSF and to remove the EIGRP NSF configuration from the running-configuration file, use the no form of this command.

## nsf

no nsf

$\overline{\text { Syntax Description }}$	This command has no arguments or keywords.
$\overline{\text { Command Default }}$	EIGRP NSF is disabled.
$\overline{\text { Command Modes }}$	Router configuration (config-router)
	Address family configuration (config-router-af)

## Command History

## Usage Guidelines

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The nsf command is used to enable or disable EIGRP NSF support on an NSF-capable router. NSF is supported only on platforms that support High Availability.

## Examples

The following example shows how to disable NSF:

```
Device#configure terminal
Device(config) #router eigrp 101
Device(config-router) #no nsf
Device(config-router) #end
```

The following example shows how to enable EIGRP IPv6 NSF:

```
Device#configure terminal
Device(config) #router eigrp virtual-name-1
Device(config-router) #address-family ipv6 autonomous-system 10
Device(config-router-af)#nsf
Device(config-router-af)#end
```


## Related Commands

Command	Description
debug eigrp address-family ipv6   notifications	Displays information about EIGRP address family IPv6 event   notifications.
debug eigrp nsf	Displays notifications and information about NSF events for an   EIGRP routing process.
debug ip eigrp notifications	Displays information and notifications for an EIGRP routing process.


Command	Description
show ip protocols	Displays the parameters and the current state of the active routing   protocol process.
show ipv6 protocols	Displays the parameters and the current state of the active IPv6   routing protocol process.
timers graceful-restart purge-time	Sets the graceful-restart purge-time timer to determine how long an   NSF-aware router that is running EIGRP must hold routes for an   inactive peer.
timers nsf converge	Sets the maximum time that the restarting router must wait for the   end-of-table notification from an NSF-capable or NSF-aware peer.
timers nsf signal	Sets the maximum time for the initial restart period.

## offset-list (EIGRP)

To add an offset to incoming and outgoing metrics to routes learned via Enhanced Interior Gateway Routing Protocol (EIGRP), use the offset-list command in router configuration mode or address family topology configuration mode. To remove an offset list, use the no form of this command.
offset-list \{access-list-numberaccess-list-name $\}\{$ in $\mid$ out $\}$ offset [interface-type interface-number] no offset-list \{access-list-numberaccess-list-name\} $\{\mathbf{i n} \mid$ out $\}$ offset [interface-type interface-number]

## Syntax Description

Command Default
Command Modes
Command History

## Usage Guidelines

## Examples

access-list-number   access-list-name	Standard access list number or name to be applied. Access list number 0   indicates all networks (networks, prefixes, or routes). If the offset value is   0, no action is taken.
in	Applies the access list to incoming metrics.
out	Applies the access list to outgoing metrics.
offset	Positive offset to be applied to metrics for networks matching the access   list. If the offset is 0, no action is taken.
interface-type	(Optional) Interface type to which the offset list is applied.
interface-number	(Optional) Interface number to which the offset list is applied.

No offset values are added to incoming or outgoing metrics to routes learned via EIGRP.
Router configuration (config-router) Address family topology configuration (config-router-af-topology)
Table 153:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The offset value is added to the routing metric. An offset list with an interface type and interface number is considered extended and takes precedence over an offset list that is not extended. Therefore, if an entry passes the extended offset list and the normal offset list, the offset of the extended offset list is added to the metric.

In the following example, the router applies an offset of 10 to the delay component of the router only to access list 21:

Device(config-router) \#offset-list 21 out 10
In the following example, the router applies an offset of 10 to routes learned from Ethernet interface 0 :

Device (config-router) \#offset-list 21 in 10 ethernet 0
In the following example, the router applies an offset of 10 to routes learned from Ethernet interface 0 in an EIGRP named configuration:

```
Device(config)#router eigrp virtual-name
Device(config-router) #address-family ipv4 autonomous-system 1
Device(config-router-af)#topology base
Device(config-router-af-topology) #offset-list 21 in 10 ethernet0
```


## redistribute (IP)

To redistribute routes from one routing domain into another routing domain, use the redistribute command in the appropriate configuration mode. To disable all or some part of the redistribution (depending on the protocol), use the no form of this command. See the "Usage Guidelines" section for detailed, protocol-specific behaviors.
redistribute protocol [process-id] \{level-1|level-1-2|level-2\} [autonomous-system-number] [metric \{metric-value |transparent\}] [metric-type type-value] [match \{internal|external $1 \mid$ external 2\}] [tag tag-value] [route-map map-tag] [subnets] [nssa-only]
no redistribute protocol [process-id] \{level-1 | level-1-2 | level-2\} [autonomous-system-number] [metric \{metric-value |transparent \}] [metric-type type-value] [match \{internal|external $1 \mid$ external 2\}] [tag tag-value] [route-map map-tag] [subnets] [nssa-only]

## Syntax Description

protocol

Source protocol from which routes are being redistributed. It can be one of the following keywords: application, bgp, connected, eigrp, isis, mobile, ospf, rip, or static [ip].

The static [ip] keyword is used to redistribute IP static routes. The optional ip keyword is used when redistributing into the Intermediate System-to-Intermediate System (IS-IS) protocol.

The application keyword is used to redistribute an application from one routing domain to another. You can redistribute more than one application to different routing protocols such as IS-IS, OSPF, Border Gateway Protocol (BGP), Enhanced Interior Gateway Routing Protocol (EIGRP) and Routing Information Protocol (RIP).

The connected keyword refers to routes that are established automatically by virtue of having enabled IP on an interface. For routing protocols such as Open Shortest Path First (OSPF) and IS-IS, these routes will be redistributed as external to the autonomous system.
$\left.\begin{array}{|l|l|}\hline \text { process-id } & \begin{array}{l}\text { (Optional) For the application keyword, this is the name of } \\ \text { an application. } \\ \text { For the bgp or eigrp keyword, this is an autonomous system } \\ \text { number, which is a 16-bit decimal number. } \\ \text { For the isis keyword, this is an optional tag value that defines } \\ \text { a meaningful name for a routing process. Creating a name for } \\ \text { a routing process means that you use names when configuring } \\ \text { routing. You can configure a router in two routing domains } \\ \text { and redistribute routing information between these two } \\ \text { domains. } \\ \text { For the ospf keyword, this is an appropriate OSPF process ID } \\ \text { from which routes are to be redistributed. This identifies the } \\ \text { routing process. This value takes the form of a nonzero } \\ \text { decimal number. } \\ \text { For the rip keyword, no process-id value is needed. } \\ \text { For the application keyword, this is the name of an } \\ \text { application. }\end{array} \\ \hline \text { metric transparent } & \text { By default, no process ID is defined. }\end{array}\right\}$

metric-type type value	(Optional) For OSPF, specifies the external link type associated with the default route advertised into the OSPF routing domain. It can be one of two values:   - 1—Type 1 external route   - 2-Type 2 external route   If a metric-type is not specified, the Cisco IOS software adopts a Type 2 external route.   For IS-IS, it can be one of two values:   - internal-IS-IS metric that is $<63$.   - external-IS-IS metric that is $>64<128$.   The default is internal.	
match \{internal \| external1	external2\}	(Optional) Specifies the criteria by which OSPF routes are redistributed into other routing domains. It can be one of the following:   - internal-Routes that are internal to a specific autonomous system.   - external 1—Routes that are external to the autonomous system, but are imported into OSPF as Type 1 external routes.   - external 2-Routes that are external to the autonomous system, but are imported into OSPF as Type 2 external routes.   The default is internal.
tag tag-value	(Optional) Specifies the 32-bit decimal value attached to each external route. This is not used by OSPF itself. It may be used to communicate information between Autonomous System Boundary Routers (ASBRs). If none is specified, the remote autonomous system number is used for routes from BGP and Exterior Gateway Protocol (EGP); for other protocols, zero $(0)$ is used.	
route-map	(Optional) Specifies the route map that should be interrogated to filter the importation of routes from this source routing protocol to the current routing protocol. If not specified, all routes are redistributed. If this keyword is specified, but no route map tags are listed, no routes will be imported.	
map-tag	(Optional) Identifier of a configured route map.	


subnets	(Optional) For redistributing routes into OSPF.   NoteIrrespective of whether the subnets keyword is   configured or not, the subnets functionality is   enabled by default. This automatic addition   results in the redistribution of classless OSPF   routes.   nssa-only
(Optional) Sets the nssa-only attribute for all routes   redistributed into OSPF.	


$\overline{\text { Command Default }}$	Route redistribution is disabled.	
$\overline{\text { Command Modes }}$	Router configuration (config-router)	
	Address family configuration (config-af)	
	Address family topology configuration (config-router-af-topology)	
$\overline{\text { Command History }}$	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Using the no Form of the redistribute Command

## !

Caution Removing options that you have configured for the redistribute command requires careful use of the no form of the redistribute command to ensure that you obtain the result that you are expecting. Changing or disabling any keyword may or may not affect the state of other keywords, depending on the protocol.

It is important to understand that different protocols implement the no form of the redistribute command differently:

- In BGP, OSPF, and RIP configurations, the no redistribute command removes only the specified keywords from the redistribute commands in the running configuration. They use the subtractive keyword method when redistributing from other protocols. For example, in the case of BGP, if you configure no redistribute static route-map interior, only the route map is removed from the redistribution, leaving redistribute static in place with no filter.
- The no redistribute isis command removes the IS-IS redistribution from the running configuration. IS-IS removes the entire command, regardless of whether IS-IS is the redistributed or redistributing protocol.
- EIGRP used the subtractive keyword method prior to EIGRP component version rel5. Starting with EIGRP component version rel5, the no redistribute command removes the entire redistribute command when redistributing from any other protocol.
- An EIGRP routing process is configured when you issue the router eigrp command and then specify a network for the process using the network sub-command. Suppose that you have not configured an EIGRP routing process, and that you have configured redistribution of routes from such an EIGRP process into BGP, OSPF, or RIP. If you use the no redistribute eigrp command to change or disable a parameter
in the redistribute eigrp command, the no redistribute eigrp command removes the entire redistribute eigrp command instead of changing or disabling a specific parameter.


## Additional Usage Guidelines for the redistribute Command

A router receiving a link-state protocol with an internal metric will consider the cost of the route from itself to the redistributing router plus the advertised cost to reach the destination. An external metric only considers the advertised metric to reach the destination.

Routes learned from IP routing protocols can be redistributed at Level 1 into an attached area or at Level 2. The level-1-2 keyword allows both Level 1 and Level 2 routes in a single command.

Redistributed routing information must be filtered by the distribute-list out router configuration command. This guideline ensures that only those routes intended by the administrator are passed along to the receiving routing protocol.

Whenever you use the redistribute or the default-information router configuration commands to redistribute routes into an OSPF routing domain, the router automatically becomes an ASBR. However, an ASBR does not, by default, generate a default route into the OSPF routing domain.

When routes are redistributed into OSPF from protocols other than OSPF or BGP, and no metric has been specified with the metric-type keyword and type-value argument, OSPF will use 20 as the default metric. When routes are redistributed into OSPF from BGP, OSPF will use 1 as the default metric. When routes are redistributed from one OSPF process to another OSPF process, autonomous system external and not-so-stubby-area (NSSA) routes will use 20 as the default metric. When intra-area and inter-area routes are redistributed between OSPF processes, the internal OSPF metric from the redistribution source process is advertised as the external metric in the redistribution destination process. (This is the only case in which the routing table metric will be preserved when routes are redistributed into OSPF.)

Note The show ip ospf [topology-info] command will display subnets keyword irrespective of whether the subnets keyword is configured or not. This is because the subnets functionality is enabled by default for OSPF.

On a router internal to an NSSA area, the nssa-only keyword causes the originated type-7 NSSA LSAs to have their propagate $(\mathrm{P})$ bit set to zero, which prevents area border routers from translating these LSAs into type-5 external LSAs. On an area border router that is connected to an NSSA and normal areas, the nssa-only keyword causes the routes to be redistributed only into the NSSA areas.

Routes configured with the connected keyword affected by this redistribute command are the routes not specified by the network router configuration command.

You cannot use the default-metric command to affect the metric used to advertise connected routes.

Note The metric value specified in the redistribute command supersedes the metric value specified in the default-metric command.

The default redistribution of Interior Gateway Protocol (IGP) or Exterior Gateway Protocol (EGP) into BGP is not allowed unless the default-information originate router configuration command is specified.

## 4-Byte Autonomous System Number Support

The Cisco implementation of 4-byte autonomous system numbers uses asplain-65538 for example-as the default regular expression match and output display format for autonomous system numbers, but you can configure 4-byte autonomous system numbers in both the asplain format and the asdot format as described in RFC 5396. To change the default regular expression match and output display of 4-byte autonomous system numbers to asdot format, use the bgp asnotation dot command.

## Examples The following example shows how OSPF routes are redistributed into a BGP domain:

```
Device(config)# router bgp 109
Device(config-router)# redistribute ospf
```

The following example shows how to redistribute EIGRP routes into an OSPF domain:

```
Device(config)# router ospf 110
Device(config-router)# redistribute eigrp
```

The following example shows how to redistribute the specified EIGRP process routes into an OSPF domain. The EIGRP-derived metric will be remapped to 100 and RIP routes to 200.

```
Device(config) # router ospf 109
Device(config-router)# redistribute eigrp 108 metric 100 subnets
Device(config-router)# redistribute rip metric 200 subnets
```

The following example shows how to configure BGP routes to be redistributed into IS-IS. The link-state cost is specified as 5 , and the metric type is set to external, indicating that it has lower priority than internal metrics.

```
Device(config)# router isis
Device(config-router)# redistribute bgp 120 metric 5 metric-type external
```

The following example shows how to redistribute an application into an OSPF domain and specify a metric value of 5 :

```
Device(config)# router ospf 4
Device(config-router)# redistribute application am metric 5
```

In the following example, network 172.16.0.0 will appear as an external LSA in OSPF 1 with a cost of 100 (the cost is preserved):

```
Device(config)# interface ethernet 0
Device(config-if)# ip address 172.16.0.1 255.0.0.0
Device(config-if) # exit
Device(config) # ip ospf cost }10
Device(config)# interface ethernet 1
Device(config-if)# ip address 10.0.0.1 255.0.0.0
!
Device(config)# router ospf 1
Device(config-router) # network 10.0.0.0 0.255.255.255 area 0
Device(config-if) # exit
Device(config-router)# redistribute ospf 2 subnet
Device(config) # router ospf 2
Device(config-router)# network 172.16.0.0 0.255.255.255 area 0
```

The following example shows how BGP routes are redistributed into OSPF and assigned the local 4-byte autonomous system number in asplain format.

Device (config) \# router ospf 2
Device(config-router) \# redistribute bgp 65538
The following example shows how to remove the connected metric 1000 subnets options from the redistribute connected metric 1000 subnets command and leave the redistribute connected command in the configuration:

Device(config-router) \# no redistribute connected metric 1000 subnets
The following example shows how to remove the metric 1000 options from the redistribute connected metric 1000 subnets command and leave the redistribute connected subnets command in the configuration:

Device(config-router) \# no redistribute connected metric 1000
The following example shows how to remove the subnets option from the redistribute connected metric 1000 subnets command and leave the redistribute connected metric 1000 command in the configuration:

Device(config-router) \# no redistribute connected subnets
The following example shows how to remove the redistribute connected command, and any of the options that were configured for the redistribute connected command, from the configuration:

Device(config-router) \# no redistribute connected
The following example shows how EIGRP routes are redistributed into an EIGRP process in a named EIGRP configuration:

```
Device(config)# router eigrp virtual-name
Device(config-router)# address-family ipv4 autonomous-system 1
Device(config-router-af) # topology base
Device(config-router-af-topology)# redistribute eigrp 6473 metric 1 1 1 1 1
```

The following example shows how to set and disable the redistributions in EIGRP configuration. Note that, in the case of EIGRP, the no form of the commands removes the entire set of redistribute commands from the running configuration.

```
Device(config)# router eigrp 1
Device(config-router)# network 0.0.0.0
Device(config-router)# redistribute eigrp 2 route-map x
Device(config-router)# redistribute ospf 1 route-map x
Device(config-router) # redistribute bgp 1 route-map x
Device(config-router)# redistribute isis level-2 route-map x
Device(config-router)# redistribute rip route-map x
Device(config)# router eigrp 1
Device(config-router) # no redistribute eigrp 2 route-map x
Device(config-router)# no redistribute ospf 1 route-map x
Device(config-router)# no redistribute bgp 1 route-map x
Device(config-router)# no redistribute isis level-2 route-map x
Device(config-router)# no redistribute rip route-map x
Device(config-router)# end
Device# show running-config | section router eigrp 1
router eigrp 1
```

network 0.0.0.0

The following example shows how to set and disable the redistributions in OSPF configuration. Note that the no form of the commands removes only the specified keywords from the redistribute command in the running configuration.

```
Device(config)# router ospf 1
Device(config-router) # network 0.0.0.0
Device(config-router) # redistribute eigrp 2 route-map x
Device(config-router)# redistribute ospf 1 route-map x
Device(config-router) # redistribute bgp 1 route-map x
Device(config-router)# redistribute isis level-2 route-map x
Device(config-router)# redistribute rip route-map x
Device(config)# router ospf 1
Device(config-router)# no redistribute eigrp 2 route-map x
Device(config-router)# no redistribute ospf 1 route-map x
Device(config-router)# no redistribute bgp 1 route-map x
Device(config-router)# no redistribute isis level-2 route-map x
Device(config-router)# no redistribute rip route-map x
Device(config-router)# end
Device# show running-config | section router ospf 1
router ospf 1
 redistribute eigrp 2
 redistribute ospf 1
 redistribute bgp 1
 redistribute rip
 network 0.0.0.0
```

The following example shows how to remove only the route map filter from the redistribution in BGP; redistribution itself remains in force without a filter:

```
Device(config)# router bgp 65000
Device(config-router) # no redistribute eigrp 2 route-map x
```

The following example shows how to remove the EIGRP redistribution to BGP:

```
Device(config)# router bgp 65000
Device(config-router) # no redistribute eigrp 2
```

Command	Description
default-information originate (OSPF)	Generates a default route into an OSPF routing domain.
router bgp	Configures the BGP routing process.
router eigrp	Configures the EIGRP address-family process.

## redistribute (IPv6)

To redistribute IPv6 routes from one routing domain into another routing domain, use the redistribute command in IPv6 address family configuration mode. To disable redistribution, use the no form of this command.
redistribute protocol [\{process-id \}][\{include-connected \{level-1|level-1-2 |
level-2 $\}\}][\{$ as-number $\}][\{$ metric metric-value $\}]\{$ metric-type type-value $\}[\{\mathbf{n s s a}$-only $\}][\{$ tag tag-value\}][\{route-map map-tag\}]
no redistribute protocol [\{process-id \}][\{include-connected \{level-1| level-1-2| level-2 $\}\}][\{$ as-number $\}][\{$ metric metric-value $\}]\{$ metric-type type-value $\}[\{$ nssa-only $\}][$ \{tag tag-value\}][\{route-map map-tag\}]

Syntax Description protocol $\begin{aligned} & \text { Source protocol from which routes are redistributed. It can be one of the following } \\ & \text { keywords: bgp, connected, eigrp, isis, lisp, nd, omp, ospf (ospfv3), rip, or static. }\end{aligned}$
process-id (Optional) For the bgp or eigrp keyword, the process ID is an autonomous system number, which is a 16-bit decimal number.
For the isis keyword, the process ID is an optional value that defines a meaningful name for a routing process. You can specify only one Intermediate System-to-Intermediate System (IS-IS) process per router. Creating a name for a routing process means that you use names when configuring routing.

For the ospf keyword, the process ID is the number that is assigned administratively when the Open Shortest Path First (OSPF) for the IPv6 routing process is enabled.

For the rip keyword, the process ID is an optional value that defines a meaningful name for an IPv6 Routing Information Protocol (RIP) routing process.
include-connected (Optional) Allows the target protocol to redistribute routes that are learned by the source protocol and connected prefixes on those interfaces over which the source protocol is running.

level-1	Specifies that for IS-IS, Level 1 routes are redistributed into other IPv6 routing protocols   independently.
level-1-2	Specifies that for IS-IS, both Level 1 and Level 2 routes are redistributed into other   IPv6 routing protocols.
level-2	Specifies that for IS-IS, Level 2 routes are redistributed into other IPv6 routing protocols   independently.
as-number	(Optional) Autonomous system number for the redistributed route.
metric   metric-value	(Optional) When redistributing from one OSPF process to another OSPF process on   the same router, the metric is carried through from one process to the other if no metric   value is specified. When redistributing other processes to an OSPF process, the default   metric is 20 when no metric value is specified.

metric-type
type-value
(Optional) Specifies the external link type that is associated with the default route that is advertised into the routing domain. It can be one of two values:

- 1: Type 1 external route
- 2: Type 2 external route

If no value is specified for the metric-type keyword, the Cisco IOS software adopts a Type 2 external route.
nssa-only (Optional) Limits redistributed routes to not-so-stubby area (NSSA)
tag tag-value (Optional) Specifies the 32-bit decimal value that is attached to each external route. This is not used by OSPF itself. It might be used to communicate information between Autonomous System Boundary Routers (ASBRs). If none is specified, then the remote autonomous system number is used for routes from the BGP and the Exterior Gateway Protocol (EGP); for other protocols, zero (0) is used.

## route-map

(Optional) Specifies the route map that is checked to filter the import of routes from this source routing protocol to the current routing protocol. If the route-map keyword is not specified, all the routes are redistributed. If this keyword is specified, but no route map tags are listed, no routes are imported.
map-tag (Optional) Identifier of a configured route map.

Command Modes	Router configuration (config-router)   Address family configuration (config-router-af)
Command History	Release Modificatior
	Cisco IOS XE Everest 16.5.1a This comm
Usage Guidelines	Changing or disabling a keyword does not affect the state of other keywords.
	IS-IS ignores configured redistribution of routes, if any that are configured with the include-connected keyword. IS-IS advertises a prefix on an interface if either IS-IS is running over the interface or the interface is configured as passive.
	Routes that are learned from IPv6 routing protocols are redistributed into IPv6 IS-IS at Level 1 into an attached area, or at Level 2. The level-1-2 keyword allows both Level 1 and Level 2 routes in a single command.
	For IPv6 RIP, use the redistribute command to advertise static routes as if they were directly connected routes.
	$\mathbb{N}$
	Note Advertising static routes as directly connected routes might cause routing loops if improperly configured.

Redistributed IPv6 RIP routing information is always filtered by the distribute-list prefix-list command in router configuration mode. Using the distribute-list prefix-list command ensures that only those routes that are intended by the administrator are passed along to the receiving routing protocol.

## Examples

Note
The metric value that is specified in the redistribute command for IPv6 RIP supersedes the metric value that is specified using the default-metric command.

In IPv4, if you redistribute a protocol, by default, you also redistribute the subnet on the interfaces over which the protocol is running. In IPv6, this is not the default behavior. To redistribute the subnet on the interfaces over which the protocol is running in IPv6, use the include-connected keyword. In IPv6, this functionality is not supported when the source protocol is BGP.

When the no redistribute command is configured, the parameter settings are ignored when the client protocol is IS-IS or EIGRP.

IS-IS redistribution is removed completely when IS-IS Level 1 and Level 2 are removed by you. IS-IS level settings can be configured using the redistribute command only.

The default redistribute type is restored to OSPFv3 when all route type values are removed by you.
Specify the nssa-only keyword to clear the propagate bit (P-bit) when external routes are redistributed into an NSSA. Doing so prevents corresponding NSSA external link state advertisements (LSAs) from being translated into other areas.

The following example shows how to configure IPv6 IS-IS to redistribute IPv6 BGP routes. The metric is specified as 5 , and the metric type is set to 1 .

```
Device> enable
Device# configure terminal
Device(config) # router isis
Device(config-router) # address-family ipv6
Device(config-router-af) # redistribute bgp 64500 metric 5 metric-type 1
```

The following example shows how to redistribute IPv6 BGP routes into the IPv6 RIP routing process named cisco:

```
Device> enable
Device# configure terminal
Device(config) # router rip cisco
Device(config-router) # redistribute bgp 42
```

The following example shows how to redistribute IS-IS for IPv6 routes into the OSPFv3 for IPv6 routing process 1 :

```
Device> enable
Device# configure terminal
Device(config) # router ospfv3 1
Device(config-router) # address-family ipv6
Device(config-router-af)# redistribute isis 1 metric 32 metric-type 1 tag 85
```


## redistribute maximum-prefix (OSPF)

To limit the number of prefixes that are redistributed into Open Shortest Path First (OSPF) or to generate a warning when the number of prefixes that are redistributed into OSPF reaches a maximum, use the redistribute maximum-prefix command in router configuration mode. To remove the values, use the no form of this command.
redistribute maximum-prefix maximum [\{percentage\}][\{warning-only\}] no redistribute

## Syntax Description

## Command Default <br> Command Modes

## Command History

## Usage Guidelines

maximum Integer from 1 to 4294967295 that specifies the maximum number of IP or IPv6 prefixes that can be redistributed into OSPF.

When the warning-only keyword is configured, the maximum value specifies the number of prefixes that can be redistributed into OSPF before the system logs a warning message. Redistribution is not limited.

The maximum number of IP or IPv6 prefixes that are allowed to be redistributed into OSPF, or the number of prefixes that are allowed to be redistributed into OSPF before the system logs a warning message, depends on whether the warning-only keyword is present.
There is no default value for the maximum argument.
If the warning-only keyword is also configured, this value does not limit redistribution; it is simply the number of redistributed prefixes that, when reached, causes a warning message to be logged.
percentage (Optional) Integer from 1 to 100 that specifies the threshold value, as a percentage, at which a warning message is generated.

The default percentage is 75 .
warning-only (Optional) Causes a warning message to be logged when the number of prefixes that are defined by the maximum argument has been exceeded. Additional redistribution is not prevented.

The default percentage is 75 .
Router configuration (config-router)
Address family configuration (config-router-af)

Release	Modifi
Cisco IOS XE Everest 16.5.1a	This c

A network can be severely flooded if many IP or IPv6 prefixes are injected into the OSPF, perhaps by redistributing Border Gateway Protocol (BGP) into OSPF. Limiting the number of redistributed prefixes prevents this potential problem.

When the redistribute maximum-prefix command is configured and the number of redistributed prefixes reaches the maximum value that is configured, no more prefixes are redistributed (unless the warning-only keyword is configured).

Examples
The following example shows how two warning messages are logged; the first if the number of prefixes redistributed reaches 85 percent of 600 ( 510 prefixes), and the second if the number of redistributed routes reaches 600 . However, the number of redistributed routes is not limited.

```
Device> enable
Device# configure terminal
Device(config)# router ospfv3 11
Device(config-router) # address-family ipv6
Device(config-router-af)# redistribute eigrp 10 subnets
Device(config-router-af) # redistribute maximum-prefix }60085\mathrm{ warning-only
```

The following example shows how to set a maximum of 10 prefixes that can be redistributed into an OSPFv3 process:

```
Device> enable
Device# configure terminal
Device(config)# router ospfv3 10
Device(config-router)# address-family ipv6 unicast
Device(config-router-af) # redistribute maximum-prefix 10
Device(config-router-af)# redistribute connected
```


## rewrite-evpn-rt-asn

To enable the rewrite of the autonomous system number (ASN) portion of the EVPN route target extended community with the ASN of the target eBGP EVPN peer, use the rewrite-evpn-rt-asn command in address family configuration mode. Use the no form of the command to disable the rewrite of ASN.

## rewrite-evpn-rt-asn <br> no rewrite-evpn-rt-asn

| Syntax Description  This command has no arguments or keywords. <br>    <br> Command Modes Address-family configuration (config-router-af)  <br> Command History Release Modification <br>  Cisco IOS XE Gibraltar 16.12.1 The command was introduced. |  |
| :--- | :--- | :--- |

## Usage Guidelines

The rewrite-evpn-rt-asn command is required for the route target auto feature to be used to configure EVPN route targets. Route target auto feature is implemented on all border leaf switches that support BGP EVPN.

The rewrite-evpn-rt-asn command only affects the following:

- EVPN address family.
- Inbound route-reception.
- Routes from eBGP peers.
- Route-type 2 and route-type 5 of EVPN prefixes.
- route target extended community inside the BGP update.

The rewrite-evpn-rt-asn command only works on type 0 and on type 2 of route-target extended communities.

Run this command only when route target auto feature is being used and matching route targets are not manually configured on all switches.

The following example shows how to enable rewrite of ASN using the rewrite-evpn-rt-asn command:

```
Device# configure terminal
Device(config)# router bgp 10000
Device(config-router) # address-family l2vpn evpn
Device(config-router-af)# rewrite-evpn-rt-asn
```


## route-map

To define conditions for redistributing routes from one routing protocol to another routing protocol, or to enable policy routing, use the route-map command in global configuration mode. To delete an entry, use the no form of this command.
route-map map-tag [\{permit |deny\}] [sequence-number] ordering-seq sequence-name no route-map map-tag [\{permit |deny\}] [sequence-number] ordering-seq sequence-name
Syntax Description

## Command Default

## Command Modes

## Command History

## Usage Guidelines

map-tag	Name for the route map.
permit	(Optional) Permits only the routes matching the route map to be forwarded   or redistributed.
deny	(Optional) Blocks routes matching the route map from being forwarded or   redistributed.
sequence-number	(Optional) Number that indicates the position a new route map will have in   the list of route maps already configured with the same name.
ordering-seq sequence-name	(Optional) Orders the route maps based on the string provided.

Policy routing is not enabled, and conditions for redistributing routes from one routing protocol to another routing protocol are not configured.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the route-map command to enter route-map configuration mode.
Use route maps to redistribute routes, or to subject packets to policy routing. Both these purposes are described here.

## Redistribution

Use the route-map global configuration command and the match and set route-map configuration commands to define the conditions for redistributing routes from one routing protocol to another. Each route-map command has a list of match and set commands associated with it. The match commands specify the match criteria, that is, the conditions under which redistribution is allowed for the current route-map command. The set commands specify the set actions, that is, the redistribution actions to be performed if the criteria enforced by the match commands are met. If the route-map command is enabled and the user does not specify any action, then the permit action is applied by default. The no route-map command deletes the route map.
The match route-map configuration command has multiple formats. The match commands can be run in any order, and all the match commands must match to cause the route to be redistributed according to the set actions specified with the set commands. The no forms of the match commands remove the specified match criteria.

Use route maps when you want detailed control over how routes are redistributed between routing processes. The destination routing protocol is the one you specify with the router global configuration command. The source routing protocol is the one you specify with the redistribute router configuration command. See the examples section for an illustration of how route maps are configured.

When passing routes through a route map, the route map can have several parts. Any route that does not match at least one match clause relating to a route-map command is ignored, that is, the route is not advertised for outbound route maps, and is not accepted for inbound route maps. If you want to modify only some data, configure a second route map section with an explicit match specified.

The redistribute router configuration command uses the name specified by the map-tag argument to reference a route map. Multiple route maps can share the same map tag name.

If the match criteria are met for this route map, and the permit keyword is specified, the route is redistributed as controlled by the set actions. In the case of policy routing, the packet is policy routed. If the match criteria are not met, and the permit keyword is specified, the next route map with the same map tag is tested. If a route passes none of the match criteria for the set of route maps sharing the same name, it is not redistributed by that set.

If the match criteria are met for the route map, and the deny keyword is specified, the route is not redistributed. In the case of policy routing, the packet is not policy routed, and no other route maps sharing the same map tag name are examined. If the packet is not policy routed, the normal forwarding algorithm is used.

## Policy Routing

Another purpose of route maps is to enable policy routing. Use the ip policy route-map or ipv6 policy route-map command in addition to the route-map command, and the match and set commands to define the conditions for policy-routing packets. The match commands specify the conditions under which policy routing occurs. The set commands specify the routing actions to be performed if the criteria enforced by the match commands are met. We recommend that you policy route packets some way other than the obvious shortest path.
The sequence-number argument works as follows:

- If no entry is defined with the supplied tag, an entry is created with the sequence-number argument set to 10 .
- If only one entry is defined with the supplied tag, that entry becomes the default entry for the route-map command. The sequence-number argument of this entry is unchanged.
- If more than one entry is defined with the supplied tag, an error message is displayed to indicate that the sequence-number argument is required.

If the no route-map map-tag command is specified (without the sequence-number argument), the entire route map is deleted.

## Examples

The following example shows how to redistribute Routing Information Protocol (RIP) routes with a hop count equal to 1 to the Open Shortest Path First (OSPF). These routes will be redistributed to the OSPF as external link-state advertisements (LSAs) with a metric of 5, metric type of type1, and a tag equal to 1 .

```
Device> enable
Device# configure terminal
Device(config)# router ospf 109
Device(config-router)# redistribute rip route-map rip-to-ospf
Device(config-router)# exit
Device(config) # route-map rip-to-ospf permit
```

```
Device(config-route-map) # match metric 1
Device(config-route-map)# set metric 5
Device(config-route-map)# set metric-type type1
Device(config-route-map)# set tag 1
```

The following example for IPv6 shows how to redistribute RIP routes with a hop count equal to 1 to the OSPF. These routes will be redistributed to the OSPF as external LSAs, with a tag equal to 42 , and a metric type equal to type1.

```
Device> enable
Device# configure terminal
Device(config)# ipv6 router ospf 1
Device(config-router)# redistribute rip one route-map rip-to-ospfv3
Device(config-router)# exit
Device(config)# route-map rip-to-ospfv3
Device(config-route-map) # match tag 42
Device(config-route-map)# set metric-type typel
```

The following named configuration example shows how to redistribute Enhanced Interior Gateway Routing Protocol (EIGRP) addresses with a hop count equal to 1 . These addresses are redistributed to the EIGRP as external, with a metric of 5 , and a tag equal to 1 :

```
Device> enable
Device# configure terminal
Device(config)# router eigrp virtual-namel
Device(config-router)# address-family ipv4 autonomous-system 4453
Device(config-router-af) # topology base
Device(config-router-af-topology)# redistribute eigrp 6473 route-map
virtual-name1-to-virtual-name2
Device(config-router-af-topology)# exit-address-topology
Device(config-router-af)# exit-address-family
Device(config-router)# router eigrp virtual-name2
Device(config-router) # address-family ipv4 autonomous-system 6473
Device(config-router-af)# topology base
Device(config-router-af-topology) # exit-af-topology
Device(config-router-af)# exit-address-family
Device(config)# route-map virtual-name1-to-virtual-name2
Device(config-route-map) # match tag 42
Device(config-route-map)# set metric 5
Device(config-route-map)# set tag 1
```


## Related Commands

Command	Description
ip policy route-map	Identifies a route map to use for policy routing on an interface.
ipv6 policy route-map	Configures IPv6 PBR on an interface.
match	Matches values from the routing table.
router eigrp	Configures the EIGRP address-family process.
set	Sets values in the destination routing protocol
show route-map	Displays all route maps configured or only the one specified.

## router-id

To use a fixed router ID, use the router-id command in router configuration mode. To force Open Shortest Path First (OSPF) to use the previous OSPF router ID behavior, use the no form of this command.
router-id ip-address
no router-id ip-address

Syntax Description

ip-address	Router ID in IP address format.

Command Default
Command Modes
Command History
$\overline{\text { Usage Guidelines You can configure an arbitrary value in the IP address format for each router. However, each router ID must }}$ be unique.

If this command is used on an OSPF router process which is already active (has neighbors), the new router-ID is used at the next reload or at a manual OSPF process restart. To manually restart the OSPF process, use the clear ip ospf command.

The following example specifies a fixed router-id:
router-id 10.1.1.1

Related Commands

Command	Description
clear ip ospf	Clears redistribution based on the OSPF routing process ID.
router ospf	Configures the OSPF routing process.

## router bgp

To configure the Border Gateway Protocol (BGP) routing process, use the router bgp command in global configuration mode. To remove a BGP routing process, use the no form of this command.
router bgp autonomous-system-number no router bgp autonomous-system-number

## Syntax Description

$\overline{\text { Command Default }}$
Command Modes

Command History

Release	Modification
Cisco IOS XE Gibraltar 16.12.1	This command was introduced.

autonomous-system-number
Number of an autonomous system that identifies the router to other BGP routers and tags the routing information that is passed along. Number in the range from 1 to 65535 .

No BGP routing process is enabled by default.
Global configuration (config)

This command allows you to set up a distributed routing core that automatically guarantees the loop-free exchange of routing information between autonomous systems.
Cisco has implemented the following two methods of representing autonomous system numbers:

- Asplain-Decimal value notation where both 2-byte and 4-byte autonomous system numbers are represented by their decimal value. For example, 65526 is a 2 -byte autonomous system number and 234567 is a 4-byte autonomous system number.
- Asdot—Autonomous system dot notation where 2-byte autonomous system numbers are represented by their decimal value and 4 -byte autonomous system numbers are represented by a dot notation. For example, 65526 is a 2 -byte autonomous system number and 1.169031 is a 4 -byte autonomous system number (this is dot notation for the 234567 decimal number).

For details about the third method of representing autonomous system numbers, see RFC 5396.

In Cisco IOS releases that include 4-byte ASN support, command accounting and command authorization that include a 4-byte ASN number are sent in the asplain notation irrespective of the format that is used on the command-line interface.

## Asplain as Default Autonomous System Number Formatting

The Cisco implementation of 4-byte autonomous system numbers uses asplain as the default display format for autonomous system numbers, but you can configure 4-byte autonomous system numbers in both the asplain and asdot format. In addition, the default format for matching 4-byte autonomous system numbers in regular expressions is asplain, so you must ensure that any regular expressions to match 4-byte autonomous system numbers are written in the asplain format. If you want to change the default show command output to display 4-byte autonomous system numbers in the asdot format, use the bgp asnotation dot command under router
configuration mode. When the asdot format is enabled as the default, any regular expressions to match 4-byte autonomous system numbers must be written using the asdot format, or the regular expression match will fail. The tables below show that although you can configure 4-byte autonomous system numbers in either asplain or asdot format, only one format is used to display show command output and control 4-byte autonomous system number matching for regular expressions, and the default is asplain format. To display 4-byte autonomous system numbers in show command output and to control matching for regular expressions in the asdot format, you must configure the bgp asnotation dot command. After enabling the bgp asnotation dot command, a hard reset must be initiated for all BGP sessions by entering the clear ip bgp * command.

Note If you are upgrading to an image that supports 4-byte autonomous system numbers, you can still use 2-byte autonomous system numbers. The show command output and regular expression match are not changed and remain in asplain (decimal value) format for 2-byte autonomous system numbers regardless of the format configured for 4-byte autonomous system numbers.

Table 155: Default Asplain 4-Byte Autonomous System Number Format

Format	Configuration Format	Show Command Output and Regular Expression   Match Format
asplain	2-byte: 1 to 65535 4-byte: 65536 to   4294967295	2-byte: 1 to 65535 4-byte: 65536 to 4294967295
asdot	2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535	2-byte: 1 to 65535 4-byte: 65536 to 4294967295

Table 156: Asdot 4-Byte Autonomous System Number Format

Format	Configuration Format	Show Command Output and Regular Expression   Match Format
asplain	2-byte: 1 to 65535 4-byte: 65536 to   4294967295	2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535
asdot	2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535	2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535

## Reserved and Private Autonomous System Numbers

The Cisco implementation of BGP supports RFC 4893. RFC 4893 was developed to allow BGP to support a gradual transition from 2-byte autonomous system numbers to 4-byte autonomous system numbers. A new reserved (private) autonomous system number, 23456, was created by RFC 4893 and this number cannot be configured as an autonomous system number in the Cisco IOS CLI.
RFC 5398, Autonomous System (AS) Number Reservation for Documentation Use, describes new reserved autonomous system numbers for documentation purposes. Use of the reserved numbers allow configuration examples to be accurately documented and avoids conflict with production networks if these configurations are literally copied. The reserved numbers are documented in the IANA autonomous system number registry. Reserved 2-byte autonomous system numbers are in the contiguous block, 64496 to 64511 and reserved 4-byte autonomous system numbers are from 65536 to 65551 inclusive.

Private 2-byte autonomous system numbers are still valid in the range from 64512 to 65534 with 65535 being reserved for special use. Private autonomous system numbers can be used for internal routing domains but must be translated for traffic that is routed out to the Internet. BGP should not be configured to advertise
private autonomous system numbers to external networks. Cisco IOS software does not remove private autonomous system numbers from routing updates by default. Cisco recommends that ISPs filter private autonomous system numbers.

Note
Autonomous system number assignment for public and private networks is governed by the IANA. For information about autonomous system numbers, including reserved number assignment, or to apply to register an autonomous system number, see the following URL: http://www.iana.org/.

## Examples

The following example shows how to configure a BGP process for autonomous system 45000 and configures two external BGP neighbors in different autonomous systems using 2-byte autonomous system numbers:

```
Device> enable
Device# configure terminal
Device(config)# router bgp 45000
Device(config-router)# neighbor 192.168.1.2 remote-as 40000
Device(config-router)# neighbor 192.168.3.2 remote-as 50000
Device(config-router)# neighbor 192.168.3.2 description finance
Device(config-router) # address-family ipv4
Device(config-router-af)# neighbor 192.168.1.2 activate
Device(config-router-af)# neighbor 192.168.3.2 activate
Device(config-router-af)# no auto-summary
Device(config-router-af) # no synchronization
Device(config-router-af) # network 172.17.1.0 mask 255.255.255.0
Device(config-router-af)# exit-address-family
```

The following example shows how to configure a BGP process for autonomous system 65538 and configures two external BGP neighbors in different autonomous systems using 4-byte autonomous system numbers in asplain notation. This example is supported in Cise IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXI1, Ciseo IOS XE Release 2.4, and later releases.

```
Device> enable
Device# configure terminal
Device(config)# router bgp 65538
Device(config-router)# neighbor 192.168.1.2 remote-as 65536
Device(config-router)# neighbor 192.168.3.2 remote-as }6555
Device(config-router)# neighbor 192.168.3.2 description finance
Device(config-router)# address-family ipv4
Device(config-router-af)# neighbor 192.168.1.2 activate
Device(config-router-af)# neighbor 192.168.3.2 activate
Device(config-router-af)# no auto-summary
Device(config-router-af) # no synchronization
Device(config-router-af)# network 172.17.1.0 mask 255.255.255.0
Device(config-router-af)# exit-address-family
```

Related Commands

Command	Description
neighbor remote-as	Adds an entry to the BGP or multiprotocol BGP neighbor table.
network (BGP and multiprotocol BGP)	Specifies the list of networks for the BGP routing process.

## router eigrp

To configure the EIGRP routing process, use the router eigrp command in global configuration mode. To remove an EIGRP routing process, use the no form of this command.
router eigrp \{autonomous-system-numbervirtual-instance-name\} no router eigrp \{autonomous-system-numbervirtual-instance-name\}

Syntax Description

## Command Default

Command Modes
Command History

Usage Guidelines

autonomous-system-number	Autonomous system number that identifies the services to the other EIGRP   address-family routers. It is also used to tag routing information. Valid range   is 1 to 65535.
virtual-instance-name	EIGRP virtual instance name. This name must be unique among all   address-family router processes on a single router, but need not be unique   among routers.

No EIGRP processes are configured.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Configuring the router eigrp command with the autonomous-system-numberargument creates an EIGRP configuration referred to as autonomous system (AS) configuration. An EIGRP AS configuration creates an EIGRP routing instance that can be used for tagging routing information.

Configuring the router eigrp command with the virtual-instance-name argument creates an EIGRP configuration referred to as EIGRP named configuration. An EIGRP named configuration does not create an EIGRP routing instance by itself. An EIGRP named configuration is a base configuration that is required to define address-family configurations under it that are used for routing.

The following example configures EIGRP process 109:
Device(config) \# router eigrp 109
The following example configures an EIGRP address-family routing process and assigns it the name virtual-name:

Device(config) \# router eigrp virtual-name

## router ospf

To configure an OSPF routing process, use the router ospf command in global configuration mode. To terminate an OSPF routing process, use the no form of this command.
router ospf process-id [vrf vrf-name]
no router ospf process-id [vrf vrf-name]

## Syntax Description

process-id	Internally used identification parameter for an OSPF routing process. It is locally assigned   and can be any positive integer. A unique value is assigned for each OSPF routing process.
vrf vrf-name	(Optional) Specifies the name of the VPN routing and forwarding (VRF) instance to associate   with OSPF VRF processes.


Command Default
Command Modes
Command History

## Usage Guidelines

You can specify multiple OSPF routing processes in each router.
After you enter the router ospf command, you can enter the maximum number of paths. There can be from 1 to 32 paths.

## $\overline{\text { Examples }}$

The following example configures an OSPF routing process and assign a process number of 109:

```
Device(config)# router ospf 109
```

This example shows a basic OSPF configuration using the router ospf command to configure OSPF VRF instance processes for the VRFs first, second, and third:

```
Device> enable
Device# configure terminal
Device(config)# router ospf 12 vrf first
Device(config) # router ospf 13 vrf second
Device(config)# router ospf 14 vrf third
Device(config)# exit
```

The following example shows usage of the maximum-paths option:

```
Device> enable
```

Device\# configure terminal
Device(config)\# router ospf
Device(config-router) \# maximum-paths 2
Device(config-router) \# exit

## Related Commands

Command	Description
network area	Defines the interfaces on which OSPF runs and defines the area ID for those interfaces.

## router ospfv3

To enter Open Shortest Path First Version 3 (OSPFv3) through router configuration mode, use the router ospfv3 command in global configuration mode.
router ospfv3 [\{process-id\}]

Syntax Description

## Command Default

$\overline{\text { Command Modes }}$
Command History
process-id (Optional) Internal identification. The number that is used here is the number assigned administratively when enabling the OSPFv3 routing process. The range is 1-65535.

OSPFv3 routing process is disabled by default.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduce

Usage Guidelines

Examples

Related Commands

Command	Description
address-family ipv6	Enters IPv6 address family configuration mode.

## send-lifetime

To set the time period during which an authentication key on a key chain is valid to be sent, use the send-lifetime command in key chain key configuration mode. To revert to the default value, use the no form of this command.
send-lifetime [ local ] start-time \{infinite end-time |duration seconds \} no send-lifetime

Syntax Description

local	Specifies the time in local timezone.
start-time	Beginning time that the key specified by the key command is valid to be sent. The syntax can be either of the following:   $h h: m m: s s$ month date year   $h h: m m: s s$ date month year   - hh: Hours   - mm: Minutes   - ss: Seconds   - month: First three letters of the month   - date: Date (1-31)   - year: Year (four digits)   The default start time and the earliest acceptable date is January 1, 1993.
infinite	Key is valid to be sent from the start-time value on.
end-time	Key is valid to be sent from the start-time value until the end-timevalue. The syntax is the same as that for the start-timevalue. The end-time value must be after the start-timevalue. The default end time is an infinite time period.
duration seconds	Length of time (in seconds) that the key is valid to be sent. The range is from 1 to 864000.


| $\overline{\text { Command Default }}$ | Forever (the starting time is January 1, 1993, and the ending time |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Key chain key configuration (config-keychain-key) |
|  |  |
| Command History | Release Modification |
|  |  |

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Usage Guidelines

Specify a start-time value and one of the following values: infinite, end-time, or duration seconds.
We recommend running Network Time Protocol (NTP) or some other time synchronization method if you intend to set lifetimes on keys.

## Examples

If the last key expires, authentication will continue and an error message will be generated. To disable authentication, you must manually delete the last valid key.

The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to $3: 30 \mathrm{p} . \mathrm{m}$. and be sent from 2:00 p.m. to $3: 00 \mathrm{p} . \mathrm{m}$. The key named key 2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30 -minute leeway on each side to handle time differences.

```
Device(config)# interface GigabitEthernet1/0/1
Device(config-if)# ip rip authentication key-chain chain1
Device(config-if) # ip rip authentication mode md5
Device(config-if)# exit
Device(config)# router rip
Device(config-router) # network 172.19.0.0
Device(config-router)# version 2
Device(config-router)# exit
Device(config)# key chain chain1
Device(config-keychain) # key 1
Device(config-keychain-key) # key-string key1
Device(config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Device(config-keychain-key) # send-lifetime 14:00:00 Jan 25 1996 duration 3600
Device(config-keychain-key)# exit
Device(config-keychain)# key 2
Device(config-keychain) # key-string key2
Device(config-keychain)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Device(config-keychain)# send-lifetime 15:00:00 Jan 25 1996 duration 3600
```

The following example configures a key chain named chain 1 for EIGRP address-family. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key 2 will be accepted from 2:30 p.m. to $4: 30 \mathrm{p} . \mathrm{m}$. and be sent from 3:00 p.m. to $4: 00$ p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Device(config)# router eigrp 10
Device(config-router) # address-family ipv4 autonomous-system 4453
Device(config-router-af)# network 10.0.0.0
Device(config-router-af)# af-interface ethernet0/0
Device(config-router-af-interface)# authentication key-chain trees
Device(config-router-af-interface) # authentication mode md5
Device(config-router-af-interface)# exit
Device(config-router-af)# exit
Device(config-router) # exit
Device(config)# key chain chain1
Device(config-keychain) # key 1
Device(config-keychain-key) # key-string key1
Device(config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Device(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Device(config-keychain-key)# exit
Device(config-keychain) # key 2
Device(config-keychain-key) # key-string key2
Device(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Device(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600
```


## Related Commands

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is   received as valid.


Command	Description
key	Identifies an authentication key on a key chain.
key chain	Defines an authentication key chain needed to enable authentication for   routing protocols.
key-string (authentication)	Specifies the authentication string for a key.
show key chain	Displays authentication key information.

## set community

To set the BGP communities attribute, use the set community route map configuration command. To delete the entry, use the no form of this command.
set community \{community-number [additive] [well-known-community]|none\} no set community

Syntax Description

community-number	Specifies that community number. Valid values are from 1 to 4294967200,   no-export, or no-advertise.
additive	(Optional) Adds the community to the already existing communities.   well-known-community   • internet   • local-as   eno-advertise
• no-export	

## Command Default

## Command Modes

## Command History

## Usage Guidelines

No BGP communities attributes exist.

Route-map configuration (config-route-map)

## Table 157:

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You must have a match clause (even if it points to a "permit everything" list) if you want to set tags.
Use the route-map global configuration command, and the match and set route map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each route-map command has a list of match and set commands associated with it. The match commands specify the match criteria --the conditions under which redistribution is allowed for the current route-mapcommand. The set commands specify the set actions --the particular redistribution actions to perform if the criteria enforced by the match commands are met. The no route-map command deletes the route map.

The set route map configuration commands specify the redistribution set actions to be performed when all of the match criteria of a route map are met. When all match criteria are met, all set actions are performed.

## Examples

## Related Commands

Command	Description
ip community-list	Creates a community list for BGP and control access to it.
match community	Matches a BGP community.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into   another, or enables policy routing.
set comm-list delete	Removes communities from the community attribute of an inbound or outbound   update.
show ip bgp community	Displays routes that belong to specified BGP communities.

## set ip next-hop (BGP)

To indicate where to output packets that pass a match clause of a route map for policy routing, use the set ip next-hop command in route-map configuration mode. To delete an entry, use the no form of this command.
set ip next-hop ip-address [ $\{$...ip-address $\}][\{$ peer-address $\}]$ no set ip next-hop ip-address[\{...ip-address $\}][\{$ peer-address $\}]$

Syntax Description

ip-address	IP address of the next hop to which packets are output. It need not be an adjacent router.
peer-address	(Optional) Sets the next hop to be the BGP peering address.

Command Default
Command Modes
This command is disabled by default.

Route-map configuration (config-route-map)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

An ellipsis (...) in the command syntax indicates that your command input can include multiple values for the ip-address argument.

Use the ip policy route-map interface configuration command, the route-map global configuration command, and the match and set route-map configuration commands to define the conditions for policy routing packets. The ip policy route-map command identifies a route map by name. Each route-map command has a list of match and set commands associated with it. The match commands specify the match criteria --the conditions under which policy routing occurs. The set commands specify the set actions --the particular routing actions to perform if the criteria enforced by the match commands are met.

If the first next hop specified with the set ip next-hop command is down, the optionally specified IP addresses are tried in turn.

When the set ip next-hop command is used with the peer-address keyword in an inbound route map of a BGP peer, the next hop of the received matching routes will be set to be the neighbor peering address, overriding any third-party next hops. So the same route map can be applied to multiple BGP peers to override third-party next hops.
When the set ip next-hop command is used with the peer-address keyword in an outbound route map of a BGP peer, the next hop of the advertised matching routes will be set to be the peering address of the local router, thus disabling the next hop calculation. The set ip next-hop command has finer granularity than the (per-neighbor) neighbor next-hop-self command, because you can set the next hop for some routes, but not others. The neighbor next-hop-self command sets the next hop for all routes sent to that neighbor.

The set clauses can be used in conjunction with one another. They are evaluated in the following order:

1. set ip next-hop
2. set interface
3. set ip default next-hop

## 4. set default interface

Note To avoid a common configuration error for reflected routes, do not use the set ip next-hop command in a route map to be applied to BGP route reflector clients.

Configuring the set ip next-hop ...ip-address command on a VRF interface allows the next hop to be looked up in a specified VRF address family. In this context, the ...ip-address argument matches that of the specified VRF instance.

## Examples

In the following example, three routers are on the same FDDI LAN (with IP addresses 10.1.1.1, 10.1.1.2, and 10.1.1.3). Each is in a different autonomous system. The set ip next-hop peer-address command specifies that traffic from the router (10.1.1.3) in remote autonomous system 300 for the router (10.1.1.1) in remote autonomous system 100 that matches the route map is passed through the router bgp 200, rather than sent directly to the router (10.1.1.1) in autonomous system 100 over their mutual connection to the LAN.

```
Device(config) #router bgp 200
Device(config) #neighbor 10.1.1.3 remote-as 300
Device(config) #neighbor 10.1.1.3 route-map set-peer-address out
Device(config) #neighbor 10.1.1.1 remote-as }10
Device(config) #route-map set-peer-address permit 10
Device(config)#set ip next-hop peer-address
```

Related Commands

Command	Description
ip policy route-map	Identifies a route map to use for policy routing on an interface.
match ip address	Distributes any routes that have a destination network number address that is   permitted by a standard or extended access list, and performs policy routing on   packets.
match length	Bases policy routing on the Level 3 length of a packet.
neighbor next-hop-self	Disables next hop processing of BGP updates on the router.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol to   another, or enables policy routing.
set default interface	Indicates where to output packets that pass a match clause of a route map for   policy routing and that have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of a route map for   policy routing.
set ip default next-hop	Indicates where to output packets that pass a match clause of a route map for   policy routing and for which the Cisco IOS software has no explicit route to a   destination.

## show ip bgp

To display entries in the Border Gateway Protocol (BGP) routing table, use the show ip bgp command in user EXEC or privileged EXEC mode.
show ip bgp [\{ip-address [\{mask [\{longer-prefixes [\{injected\}] | shorter-prefixes [\{length \}] | best-path-reason |bestpath |multipaths | subnets\}] |best-path-reason |bestpath |internal | multipaths $\}$ ] |all|oer-paths |prefix-list name |pending-prefixes |route-map name | version $\{$ version-number $\mid$ recent offset-value $\}\}]$

Syntax Description

ip-address	(Optional) IP address entered to filter the output to display only a particular host or network in the BGP routing table.
mask	(Optional) Mask to filter or match hosts that are part of the specified network.
longer-prefixes	(Optional) Displays the specified route and all more-specific routes.
injected	(Optional) Displays more-specific prefixes injected into the BGP routing table.
shorter-prefixes	(Optional) Displays the specified route and all less-specific routes.
length	(Optional) The prefix length. The range is a number from 0 to 32 .
bestpath	(Optional) Displays the best path for this prefix.
best-path-reason	(Optional) Displays the reason why a path loses to the bestpath.   Note   If the best-path is yet to be selected, then the output will be 'Best Path Evaluation: No best path'
internal	(Optional) Displays the internal details for this prefix.
multipaths	(Optional) Displays multipaths for this prefix.
subnets	(Optional) Displays the subnet routes for the specified prefix.
all	(Optional) Displays all address family information in the BGP routing table.
oer-paths	(Optional) Displays Optimized Edge Routing (OER) controlled prefixes in the BGP routing table.
prefix-list name	(Optional) Filters the output based on the specified prefix list.
pending-prefixes	(Optional) Displays prefixes that are pending deletion from the BGP routing table.
route-map name	(Optional) Filters the output based on the specified route map.
version version-number	(Optional) Displays all prefixes with network versions greater than or equal to the specified version number. The range is from 1 to 4294967295.
recent offset-value	(Optional) Displays the offset from the current routing table version. The range is from 1 to 4294967295.


$\overline{\text { Command Modes }}$	User EXEC ( $>$ )
	Privileged EXEC (\#)


$\frac{\text { Command History }}{\text { Command History }}$		Modification
	Release	This command was introduced.
	Cisco IOS XE Everest 16.5.1a	The best-path-reason keyword was added to this   command.
	BGP Path Installation Time-Stamp was added to the   output of the command.	
	BGP Peak Prefix Watermark was added to the output   of the command.	

## Usage Guidelines

The show ip bgp command is used to display the contents of the BGP routing table. The output can be filtered to display entries for a specific prefix, prefix length, and prefixes injected through a prefix list, route map, or conditional advertisement.

When changes are made to the network address, the network version number is incremented. Use the version keyword to view a specific network version.

## show ip bgp: Example

The following sample output displays the BGP routing table:

```
Device#show ip bgp
BGP table version is 6, local router ID is 10.0.96.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure, S Stale, m multipath, b backup-path, x best-external, f
RT-Filter, a additional-path
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Network & Next Hop & Metric & Neight & & \\
\hline N* & 10.0.0.1 & 10.0.0.3 & 0 & 0 & 3 & ? \\
\hline N*> & & 10.0.3.5 & 0 & 0 & 4 & ? \\
\hline Nr & 10.0.0.0/8 & 10.0.0.3 & 0 & 0 & 3 & ? \\
\hline Nr> & & 10.0.3.5 & 0 & 0 & 4 & ? \\
\hline Nr> & 10.0.0.0/24 & 10.0.0.3 & 0 & 0 & 3 & ? \\
\hline V*> & 10.0.2.0/24 & 0.0 .0 .0 & 0 & 32768 & i & \\
\hline Vr> & 10.0.3.0/24 & 10.0.3.5 & 0 & 0 & 4 & ? \\
\hline
\end{tabular}
```

The table below describes the significant fields shown in the display.

## Table 158: show ip bgp Field Descriptions

Field	Description
BGP table version	Internal version number of the table. This number is incremented whenever the table changes.
local router ID	IP address of the router.
Status codes	Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:   - s-The table entry is suppressed.   - d-The table entry is dampened.   - h -The table entry history.   - *-The table entry is valid.   - >- The table entry is the best entry to use for that network.   - i-The table entry was learned via an internal BGP (iBGP) session.   - r -The table entry is a RIB-failure.   - S-The table entry is stale.   - m-The table entry has multipath to use for that network.   - b-The table entry has a backup path to use for that network.   - x -The table entry has a best external route to use for the network.
Origin codes	Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:   - a-Path is selected as an additional path.   - i-Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.   - e-Entry originated from an Exterior Gateway Protocol (EGP).   - ?-Origin of the path is not clear. Usually, this is a router that is redistributed into BGP from an IGP.
RPKI validation codes	If shown, the RPKI validation state for the network prefix, which is downloaded from the RPKI server. The codes are shown only if the bgp rpki server or neighbor announce rpki state command is configured.
Network	IP address of a network entity.
Next Hop	IP address of the next system that is used when forwarding a packet to the destination network. An entry of 0.0.0.0 indicates that the router has some non-BGP routes to this network.
Metric	If shown, the value of the interautonomous system metric.


Field	Description
LocPrf	Local preference value as set with the set local-preference route-map configuration   command. The default value is 100.
Weight	Weight of the route as set via autonomous system filters.
Path	Autonomous system paths to the destination network. There can be one entry in this   field for each autonomous system in the path.
(stale)	Indicates that the following path for the specified autonomous system is marked as   "stale" during a graceful restart process.
Updated on	The time at which the path is received or updated.

## show ip bgp (4-Byte Autonomous System Numbers): Example

The following sample output shows the BGP routing table with 4-byte autonomous system numbers, 65536 and 65550, shown under the Path field. This example requires Cisco IOS Release 12.0(32)SY8, $12.0(33) \mathrm{S} 3,12.2(33) \mathrm{SRE}, 12.2(33) \mathrm{XNE}, 12.2(33) \mathrm{SXI}$, Cisco IOS XE Release 2.4, or a later release.

```
Device#show ip bgp
BGP table version is 4, local router ID is 172.16.1.99
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
 Network Next Hop Metric LocPrf Weight Path
*> 10.1.1.0/24 192.168.1.2 0 0 65536 i
*> 10.2.2.0/24 192.168.3.2 0 0 65550 i
*> 172.16.1.0/24 0.0.0.0 0 32768 i
```


## show ip hgp network: Example

The following sample output displays information about the 192.168.1.0 entry in the BGP routing table:

```
Device#show ip bgp 192.168.1.0
BGP routing table entry for 192.168.1.0/24, version 22
Paths: (2 available, best #2, table default)
 Additional-path
 Advertised to update-groups:
 3
 10 10
 192.168.3.2 from 172.16.1.2 (10.2.2.2)
 Origin IGP, metric 0, localpref 100, valid, internal, backup/repair
 10 10
 192.168.1.2 from 192.168.1.2 (10.3.3.3)
 Origin IGP, localpref 100, valid, external, best , recursive-via-connected
```

The following sample output displays information about the 10.3.3.3 255.255.255.255 entry in the BGP routing table:

```
Device#show ip bgp 10.3.3.3 255.255.255.255
BGP routing table entry for 10.3.3.3/32, version 35
Paths: (3 available, best #2, table default)
Multipath: eBGP
Flag: 0x860
 Advertised to update-groups:
 1
 200
 10.71.8.165 from 10.71.8.165 (192.168.0.102)
 Origin incomplete, localpref 100, valid, external, backup/repair
 Only allowed to recurse through connected route
 200
 10.71.11.165 from 10.71.11.165 (192.168.0.102)
 Origin incomplete, localpref 100, weight 100, valid, external, best
 Only allowed to recurse through connected route
 200
 10.71.10.165 from 10.71.10.165 (192.168.0.104)
 Origin incomplete, localpref 100, valid, external,
 Only allowed to recurse through connected route
```

The table below describes the significant fields shown in the display.

Table 159: show ip bgp ip-address Field Descriptions

Field	Description
BGP routing table entry for	IP address or network number of the routing table entry.
version	Internal version number of the table. This number is incremented whenever the   table changes.
Paths	The number of available paths, and the number of installed best paths. This   line displays "Default-IP-Routing-Table" when the best path is installed in the   IP routing table.
Multipath	This field is displayed when multipath load sharing is enabled. This field will   indicate if the multipaths are iBGP or eBGP.
Advertised to update-groups	The number of each update group for which advertisements are processed.
Origin	Origin of the entry. The origin can be IGP, EGP, or incomplete. This line   displays the configured metric (0 if no metric is configured), the local preference   value (100 is default), and the status and type of route (internal, external,   multipath, best).
Extended Community	This field is displayed if the route carries an extended community attribute.   The attribute code is displayed on this line. Information about the extended   community is displayed on a subsequent line.

## show ip bgp all: Example

The following is sample output from the show ip bgp command entered with the all keyword. Information about all configured address families is displayed.

## Device\#show ip bgp all

```
For address family: IPv4 Unicast *****
```

BGP table version is 27, local router ID is 10.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete
Next Hop Met
*> 10.1.1.0/24 0.0.0.0 0 32768 ?
*> $10.13 .13 .0 / 24$

* $>$ 10.15.15.0/24 0.0.0.0 $0 \quad 32768$ ?
*>i10.18.18.0/24 172.16.14.105 1388913510100 e
*>i10.100.0.0/16 172.16.14.107 2620720123 i
*>i10.100.0.0/16 172.16.14.105 $138891351 \quad 0 \quad 100$ e
* $>$ i10.101.0.0/16 172.16.14.105 138891351 0 100 e
*>i10.103.0.0/16 172.16.14.101 $1388 \quad 173 \quad 173100 \mathrm{e}$
*>i10.104.0.0/16 172.16.14.101 1388 173 173100 e
* $>110.100 .0 .0 / 16 \quad 172.16 .14 .106 \quad 2219 \quad 20889 \quad 0 \quad 53285332995117847751$ e
*>i10.101.0.0/16 172.16.14.106 2219 20889 0 53285 332995117847751e
* 10.100.0.0/16 172.16.14.109 23090200300 e
*> 172.16.14.108 1388 0 100 e
* 10.101.0.0/16 172.16.14.109 23090200300 e
*> 172.16.14.108 1388 0 100
*> 10.102.0.0/16 172.16.14.108 $1388 \quad 0 \quad 100 \mathrm{e}$
*> 172.16.14.0/24 0.0.0.0
0.0.0.0 $0 \quad 32768$ ?
*> 192.168.5.0 0.0.0.0
* 10.80.0.0/16 172.16.14.108 $1388 \quad 0 \quad 50 \mathrm{e}$
*> 10.80.0.0/16 172.16.14.108 1388 0 50
For address family: VPNv4 Unicast *****
BGP table version is 21, local router ID is 10.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 1:1 (default for vrf vpn1)

*> 10.1.1.0/24	192.168.4.3	1622		0	100	53285	33299	51178
$\{27016,57039,16690\}$	e							
*> 10.1.2.0/24	192.168.4.3	1622		0	100	53285	33299	51178
$\{27016,57039,16690\}$	e							
*> 10.1.3.0/24	192.168.4.3	1622		0	100	53285	33299	51178
$\{27016,57039,16690\}$	e							
*> 10.1.4.0/24	192.168.4.3	1622		0	100	53285	33299	51178
$\{27016,57039,16690\}$	e							
*> 10.1.5.0/24	192.168.4.3	1622		0	100	53285	33299	51178
$\{27016,57039,16690\}$	e							
*>i172.17.1.0/24	10.3.3.3	10	30	0	53285	533299	951178	847751
*>i172.17.2.0/24	10.3.3.3	10	30	0	53285	533299	951178	847751
*>i172.17.3.0/24	10.3.3.3	10	30	0	53285	533299	951178	847751
*>i172.17.4.0/24	10.3.3.3	10	30	0	53285	533299	951178	847751
*>i172.17.5.0/24	10.3.3.3	10	30	0	53285	533299	951178	847751

For address family: IPv4 Multicast *****
BGP table version is 11, local router ID is 10.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

* $>10.40 .40 .0 / 26 \quad 172.16 .14 .110 \quad 2219 \quad 02122\{51178,47751,27016\}$ e
* 10.1.1.1 1622015201 \{2\} e
* $>10.40 .40 .64 / 26 \quad 172.16 .14 .110 \quad 2219 \quad 0 \quad 2122\{51178,47751,27016\} e$
* 10.1.1.1 1622015201 \{2\} e
* $10.40 .40 .128 / 26 \quad 172.16 .14 .110 \quad 2219 \quad 02122\{51178,47751,27016\}$ e
* 10.1.1.1 2563015201 \{2\} e
*> 10.40.40.192/26 10.1.1.1 $2563015201\{2\}$ e



## show ip bgp longer-prefixes: Example

The following is sample output from the show ip bgp longer-prefixes command:


## show ip bgp shorter-prefixes: Example

The following is sample output from the show ip bgp shorter-prefixes command. An 8-bit prefix length is specified.

Device\#show ip bgp 172.16.0.0/16 shorter-prefixes 8
*> 172.16.0.0
10.0.0.2
0 ?
10.0.0.2
0
0200 ?

## show ip bgp prefix-list: Example

The following is sample output from the show ip bgp prefix-list command:

```
Device#show ip bgp prefix-list ROUTE
BGP table version is 39, local router ID is 10.0.0.1
Status codes:s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes:i - IGP, e - EGP, ? - incomplete
\begin{tabular}{llrr}
Network & Next Hop & Metric LocPrf Weight Path \\
* 192.168 .1 .0 & 10.0 .0 .2 & 0 & 0 ? \\
* & 10.0 .0 .2 & 0 & 200 ?
\end{tabular}
```


## show ip bgp route-map: Example

The following is sample output from the show ip bgp route-map command:

```
Device#show ip bgp route-map LEARNED PATH
BGP table version is 40, local router ID is 10.0.0.1
Status codes:s suppressed, d damped, h history, * valid, > best, i -
internal
Origin codes:i - IGP, e - EGP, ? - incomplete
 Network Next Hop Metric LocPrf Weight Path
*> 192.168.1.0 10.0.0.2 0 ?
* 10.0.0.2 0 0 200 ?
```


## show ip bgp (Additional Paths): Example

The following output indicates (for each neighbor) whether any of the additional path tags (group-best, all, best 2 or best 3 ) are applied to the path. A line of output indicates rx pathid (received from neighbor) and tx pathid (announcing to neighbors). Note that the "Path advertised to update-groups:" is now per-path when the BGP Additional Paths feature is enabled.

```
Device#show ip bgp 10.0.0.1 255.255.255.224
BGP routing table entry for 10.0.0.1/28, version }8
Paths: (10 available, best #5, table default)
 Path advertised to update-groups:
 21 25
 Refresh Epoch 1
 20 50, (Received from a RR-client)
 192.0.2.1 from 192.0.2.1 (192.0.2.1)
 Origin IGP, metric 200, localpref 100, valid, internal, all
 Originator: 192.0.2.1, Cluster list: 2.2.2.2
 mpls labels in/out 16/nolabel
 rx pathid: 0, tx pathid: 0x9
 Updated on Aug 14 2018 18:30:39 PST
 Path advertised to update-groups:
 18 21
 Refresh Epoch 1
 30
 192.0.2.2 from 192.0.2.2 (192.0.2.2)
 Origin IGP, metric 200, localpref 100, valid, internal, group-best, all
```

```
 Originator: 192.0.2.2, Cluster list: 4.4.4.4
 mpls labels in/out 16/nolabel
 rx pathid: 0x1, tx pathid: 0x8
 Updated on Aug 14 2018 18:30:39 PST
Path advertised to update-groups:
 16 18 llllll
 2 5 ~ 2 7
Refresh Epoch 1
10
 192.0.2.3 from 192.0.2.3 (192.0.2.3)
 Origin IGP, metric 200, localpref 100, valid, external, best2, all
 mpls labels in/out 16/nolabel
 rx pathid: 0, tx pathid: 0x7
 Updated on Aug 14 2018 18:30:39 PST
Path advertised to update-groups:
 20 21 22 24 25
Refresh Epoch 1
10
 192.0.2.4 from 192.0.2.4 (192.0.2.4)
 Origin IGP, metric 300, localpref 100, valid, external, best3, all
 mpls labels in/out 16/nolabel
 rx pathid: 0, tx pathid: 0x6
 Updated on Jun 17 2018 11:12:30 PST
Path advertised to update-groups:
\begin{tabular}{lllllll}
10 & 13 & 17 & 18 & 19 & 20 & 21 \\
22 & 23 & 24 & 25 & 26 & 27 & 28
\end{tabular}
Refresh Epoch 1
10
 192.0.2.5 from 192.0.2.5 (192.0.2.5)
 Origin IGP, metric 100, localpref 100, valid, external, best
 mpls labels in/out 16/nolabel
 rx pathid: 0, tx pathid: 0x0
 Updated on Jun 17 2018 11:12:30 PST
Path advertised to update-groups:
 21
Refresh Epoch 1
30
 192.0.2.6 from 192.0.2.6 (192.0.2.6)
 Origin IGP, metric 200, localpref 100, valid, internal, all
 Originator: 192.0.2.6, Cluster list: 5.5.5.5
 mpls labels in/out 16/nolabel
 rx pathid: 0x1, tx pathid: 0x5
 Updated on Jun 17 2018 11:12:30 PST
Path advertised to update-groups:
 18 23 24 26
Refresh Epoch 1
60 40, (Received from a RR-client)
 192.0.2.7 from 192.0.2.7 (192.0.2.7)
 Origin IGP, metric 250, localpref 100, valid, internal, group-best
 Originator: 192.0.2.7, Cluster list: 3.3.3.3
 mpls labels in/out 16/nolabel
 rx pathid: 0x2, tx pathid: 0x2
 Updated on Jun 17 2018 11:12:30 PST
Path advertised to update-groups:
 25
Refresh Epoch 1
30 40, (Received from a RR-client)
 192.0.2.8 from 192.0.2.8 (192.0.2.8)
 Origin IGP, metric 200, localpref 100, valid, internal, all
 Originator: 192.0.2.8, Cluster list: 2.2.2.2
 mpls labels in/out 16/nolabel
 rx pathid: 0x1, tx pathid: 0x3
 Updated on Jun 17 2018 11:12:30 PST
Path advertised to update-groups:
```


## show ip bgp network (BGP Attribute Filter): Example

The following is sample output from the show ip bgp command that displays unknown and discarded path attributes:

```
Device#show ip bgp 192.0.2.0/32
BGP routing table entry for 192.0.2.0/32, version 0
Paths: (1 available, no best path)
 Refresh Epoch 1
 Local
 192.168.101.2 from 192.168.101.2 (192.168.101.2)
 Origin IGP, localpref 100, valid, internal
 unknown transitive attribute: flag 0xE0 type 0x81 length 0x20
 value 0000 0000 0000 0000 0000 0000 0000 0000
 00000000 0000 0000 0000 0000 0000 0000
 unknown transitive attribute: flag 0xE0 type 0x83 length 0x20
 value 0000 0000 0000 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000
 discarded unknown attribute: flag 0x40 type 0x63 length 0x64
 value 0000 0000 0000 000000000000 0000 0000
 00000000 0000 0000 0000 0000 00000000
```


## show ip bgp version: Example

The following is sample output from the show ip bgp version command:

```
Device#show ip bgp version
BGP table version is 5, local router ID is 10.2.4.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, x best-external
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 192.168.34.2/24 10.0.0.1 0 0 1 ?
```

```
*> 192.168.35.2/24 10.0.0.1 0 0 1 ?
```

The following example shows how to display the network version:

```
Device#show ip bgp 192.168.34.2 | include version
BGP routing table entry for 192.168.34.2/24, version 5
```

The following sample output from the show ip bgp version recent command displays the prefix changes in the specified version:

```
Device#show ip bgp version recent 2
BGP table version is 5, local router ID is 10.2.4.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, x best-external
Origin codes: i - IGP, e - EGP, ? - incomplete
\begin{tabular}{lcccc}
& Network & Next Hop & Metric LocPrf & Weight
\end{tabular} Path
Device#show ip bgp 80.230.70.96 best-path-reason
BGP routing table entry for 192.168.3.0/24, version 72
Paths: (2 available, best #2, table default)
 Advertised to update-groups:
 2
 Refresh Epoch 1
 2
 10.0.101.1 from 10.0.101.1 (10.0.101.1)
 Origin IGP, localpref 100, valid, external
 Extended Community: RT:100:100
 rx pathid: 0, tx pathid: 0
 Updated on Aug 14 2018 18:34:12 PST
 Best Path Evaluation: Path is younger
 Refresh Epoch 1
 1
 10.0.96.254 from 10.0.96.254 (10.0.96.254)
 Origin IGP, localpref 100, valid, external, best
 rx pathid: 0, tx pathid: 0x0
 Updated on Aug 14 2018 18:30:39 PST
 Best Path Evaluation: Overall best path
```

The following sample output for the show ip bgp summary command shows the peak watermarks and their time-stamps for the peak number of route entries per neighbor bases:

```
Device#show ip bgp all summary
For address family: IPv4 Unicast
BGP router identifier 10.10.10.10, local AS number 1
BGP table version is 27, main routing table version 27
2 \text { network entries using 496 bytes of memory}
2 \text { path entries using 272 bytes of memory}
1/1 BGP path/bestpath attribute entries using 280 bytes of memory
1 BGP extended community entries using 24 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP using 1072 total bytes of memory
BGP activity 58/54 prefixes, 110/106 paths, scan interval 60 secs
20 networks peaked at 00:03:50 Jul 28 2018 PST (00:00:32.833 ago)
```



```
For address family: L2VPN E-VPN
BGP router identifier 10.10.10.10, local AS number 1
BGP table version is 183, main routing table version 183
2 network entries using 688 bytes of memory
2 path entries using 416 bytes of memory
2/2 BGP path/bestpath attribute entries using 560 bytes of memory
1 BGP extended community entries using 24 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP using 1688 total bytes of memory
BGP activity \(58 / 54\) prefixes, \(110 / 106\) paths, scan interval 60 secs
30 networks peaked at 00:35:36 Jul 282018 PST (00:00:47.321 ago)
```



## Related Commands

Command	Description
bgp asnotation dot	Changes the default display and the regular expression match format of   BGP 4-byte autonomous system numbers from asplain (decimal values)   to dot notation.
clear ip bgp	Resets BGP connections using hard or soft reconfiguration.
ip bgp community new-format	Configures BGP to display communities in the format AA:NN.
ip prefix-list	Creates a prefix list or adds a prefix-list entry.
route-map	Defines the conditions for redistributing routes from one routing protocol   into another routing protocol.
router bgp	Configures the BGP routing process.

## show ip bgp neighbors

To display information about Border Gateway Protocol (BGP) and TCP connections to neighbors, use the show ip bgp neighbors command in user or privileged EXEC mode.
show ip bgp [\{ipv4 \{multicast|unicast $\} \mid$ vpnv4 all|vpnv6 unicast all $\}$ ] neighbors [\{slowip-address | ipv6-address [\{advertised-routes | dampened-routes | flap-statistics | paths [reg-exp]|policy [detail] $\mid$ received prefix-filter $\mid$ received-routes $\mid$ routes $\}]\}]$

Syntax Description

ipv4	(Optional) Displays peers in the IPv4 address family.
multicast	(Optional) Specifies IPv4 multicast address prefixes.
unicast	(Optional) Specifies IPv4 unicast address prefixes.
vpnv4 all	(Optional) Displays peers in the VPNv4 address family.
vpnv6 unicast all	(Optional) Displays peers in the VPNv6 address family.
slow	(Optional) Displays information about dynamically configured slow peers.
ip-address	(Optional) IP address of the IPv4 neighbor. If this argument is omitted, information   about all neighbors is displayed.
ipv6-address	(Optional) IP address of the IPv6 neighbor.
advertised-routes	(Optional) Displays all routes that have been advertised to neighbors.
dampened-routes	(Optional) Displays the dampened routes received from the specified neighbor.
flap-statistics	(Optional) Displays the flap statistics of the routes learned from the specified   neighbor (for external BGP peers only).
paths reg-exp	(Optional) Displays autonomous system paths learned from the specified neighbor.   An optional regular expression can be used to filter the output.
policy	(Optional) Displays the policies applied to this neighbor per address family.
detail	(Optional) Displays detailed policy information such as route maps, prefix lists,   community lists, access control lists (ACLs), and autonomous system path filter   lists.
received prefix-filter	(Optional) Displays the prefix list (outbound route filter [ORF]) sent from the   specified neighbor.
when this keyword is entered is a subset of the output displayed by the	
received-routes keyword.	
specified neighbor.	


Command Default	The output of this command displays information for all neighbors.
$\overline{\text { Command Modes }}$	User EXEC ( $>$ )
	Privileged EXEC (\#)

## Command History

## Command History

## Usage Guidelines

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Gibraltar 16.10.1	BGP Peak Prefix Watermark was added to the   command output.

Use the show ip bgp neighbors command to display BGP and TCP connection information for neighbor sessions. For BGP, this includes detailed neighbor attribute, capability, path, and prefix information. For TCP, this includes statistics related to BGP neighbor session establishment and maintenance.
Prefix activity is displayed based on the number of prefixes that are advertised and withdrawn. Policy denials display the number of routes that were advertised but then ignored based on the function or attribute that is displayed in the output.

## Examples

Example output is different for the various keywords available for the show ip bgp neighbors command. Examples using the various keywords appear in the following sections.

## show ip bgp neighbors: Example

The following example shows output for the BGP neighbor at 10.108.50.2. This neighbor is an internal BGP (iBGP) peer. This neighbor supports the route refresh and graceful restart capabilities.

```
Device#show ip bgp neighbors 10.108.50.2
BGP neighbor is 10.108.50.2, remote AS 1, internal link
 BGP version 4, remote router ID 192.168.252.252
 BGP state = Established, up for 00:24:25
 Last read 00:00:24, last write 00:00:24, hold time is 180, keepalive interval is
 6 0 ~ s e c o n d s
 Neighbor capabilities:
 Route refresh: advertised and received(old & new)
 MPLS Label capability: advertised and received
 Graceful Restart Capability: advertised
 Address family IPv4 Unicast: advertised and received
 Message statistics:
 InQ depth is 0
 OutQ depth is 0
 Opens: Sent
 Notifications: 0 0
 Updates: 0 0
 Keepalives: 113 112
 Route Refresh: 0 0
 Total: 116 115
 Default minimum time between advertisement runs is 5 seconds
 For address family: IPv4 Unicast
 BGP additional-paths computation is enabled
```

```
 BGP advertise-best-external is enabled
 BGP table version 1, neighbor version 1/0
Output queue size : 0
 Index 1, Offset 0, Mask 0x2
 1 update-group member
 Prefix activity:
 Local Policy Denied Prefixes: --------------------
 Total: 0
 0
 Number of NLRIs in the update sent: max 0, min 0
 Connections established 3; dropped 2
 Last reset 00:24:26, due to Peer closed the session
External BGP neighbor may be up to 2 hops away.
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Connection is ECN Disabled
Local host: 10.108.50.1, Local port: 179
Foreign host: 10.108.50.2, Foreign port: 42698
Enqueued packets for retransmit: 0, input: 0 mis-ordered: 0 (0 bytes)
Event Timers (current time is 0x68B944):
\begin{tabular}{lrcccl}
Timer & Starts & Wakeups & Next \\
Retrans & 27 & 0 & \(0 x 0\) \\
TimeWait & 0 & 0 & \(0 x 0\) & \\
AckHold & 27 & 18 & \(0 x 0\) \\
SendWnd & 0 & 0 & \(0 x 0\) \\
KeepAlive & 0 & 0 & \(0 x 0\) & \\
GiveUp & 0 & 0 & \(0 x 0\) & \\
PmtuAger & 0 & 0 & \(0 x 0\) & \\
DeadWait & 0 & 0 & & \\
iss: 3915509457 & snduna: & 3915510016 & sndnxt: & 3915510016 & sndwnd: \\
irs: 233567076 & rcvnxt: & 233567616 & rcvwnd: & 15845 & delrcvwnd:
\end{tabular}
irs: 233567076 rcvnxt: 233567616 rcvwnd: 15845 delrcvwnd: 539
SRTT: 292 ms, RTTO: 359 ms, RTV: 67 ms, KRTT: 0 ms
minRTT: 12 ms, maxRTT: }300\textrm{ms}, ACK hold: 200 ms
Flags: passive open, nagle, gen tcbs
IP Precedence value : 6
Datagrams (max data segment is 1460 bytes):
Rcvd: 38 (out of order: 0), with data: 27, total data bytes: 539
Sent:45 (retransmit: 0, fastretransmit: 0, partialack: 0, Second Congestion: 08
```

The table below describes the significant fields shown in the display. Fields that are preceded by the asterisk character $\left(^{*}\right)$ are displayed only when the counter has a nonzero value.

## Table 160: show ip bgp neighbors Field Descriptions

Field	Description
BGP neighbor	IP address of the BGP neighbor and its autonomous system number.
remote AS	Autonomous system number of the neighbor.
local AS 300 no-prepend (not shown   in display)	Verifies that the local autonomous system number is not prepended to   received external routes. This output supports the hiding of the local   autonomous systems when a network administrator is migrating   autonomous systems.


Field	Description		
internal link	"internal link" is displayed for iBGP neighbors; "external link" is		
displayed for external BGP (eBGP) neighbors.		,	BGP version
:---			
BGP version being used to communicate with the remote router.			
BGP state			
up for			
IP address of the neighbor.			
Fast read			
last write state machine (FSM) stage of session negotiation.			
hold time			
existence.		Time, in hh:mm:ss, that the underlying TCP connection has been in	
:---			
neighbor.			


Field	Description
Route Refresh	Number of route refresh request messages sent and received.
Total	Total number of messages sent and received.
Default minimum time between...	Time, in seconds, between advertisement transmissions.
For address family:	Address family to which the following fields refer.
BGP table version	Internal version number of the table. This is the primary routing table with which the neighbor has been updated. The number increments when the table changes.
neighbor version	Number used by the software to track prefixes that have been sent and those that need to be sent.
1 update-group member	Number of the update-group member for this address family.
Prefix activity	Prefix statistics for this address family.
Prefixes Current	Number of prefixes accepted for this address family.
Prefixes Total	Total number of received prefixes.
Implicit Withdraw	Number of times that a prefix has been withdrawn and readvertised.
Explicit Withdraw	Number of times that a prefix has been withdrawn because it is no longer feasible.
Used as bestpath	Number of received prefixes installed as best paths.
Used as multipath	Number of received prefixes installed as multipaths.
* Saved (soft-reconfig)	Number of soft resets performed with a neighbor that supports soft reconfiguration. This field is displayed only if the counter has a nonzero value.
* History paths	This field is displayed only if the counter has a nonzero value.
* Invalid paths	Number of invalid paths. This field is displayed only if the counter has a nonzero value.
Local Policy Denied Prefixes	Prefixes denied due to local policy configuration. Counters are updated for inbound and outbound policy denials. The fields under this heading are displayed only if the counter has a nonzero value.
* route-map	Displays inbound and outbound route-map policy denials.
* filter-list	Displays inbound and outbound filter-list policy denials.
* prefix-list	Displays inbound and outbound prefix-list policy denials.
* Ext Community	Displays only outbound extended community policy denials.
* AS_PATH too long	Displays outbound AS_PATH length policy denials.


Field	Description
* AS_PATH loop	Displays outbound AS_PATH loop policy denials.
* AS_PATH confed info	Displays outbound confederation policy denials.
* AS_PATH contains AS 0	Displays outbound denials of autonomous system 0 .
* NEXT_HOP Martian	Displays outbound martian denials.
* NEXT_HOP non-local	Displays outbound nonlocal next-hop denials.
* NEXT_HOP is us	Displays outbound next-hop-self denials.
* CLUSTER_LIST loop	Displays outbound cluster-list loop denials.
* ORIGINATOR loop	Displays outbound denials of local originated routes.
* unsuppress-map	Displays inbound denials due to an unsuppress map.
* advertise-map	Displays inbound denials due to an advertise map.
* VPN Imported prefix	Displays inbound denials of VPN prefixes.
* Well-known Community	Displays inbound denials of well-known communities.
* SOO loop	Displays inbound denials due to site-of-origin.
* Bestpath from this peer	Displays inbound denials because the best path came from the local router.
* Suppressed due to dampening	Displays inbound denials because the neighbor or link is in a dampening state.
* Bestpath from iBGP peer	Deploys inbound denials because the best path came from an iBGP neighbor.
* Incorrect RIB for CE	Deploys inbound denials due to RIB errors for a customer edge (CE) router.
* BGP distribute-list	Displays inbound denials due to a distribute list.
Number of NLRIs...	Number of network layer reachability attributes in updates.
Current session network count peaked...	Displays the peak number of networks observed in the current session.
Highest network count observed at...	Displays the peak number of networks observed since startup.
Connections established	Number of times a TCP and BGP connection has been successfully established.
dropped	Number of times that a valid session has failed or been taken down.
Last reset	Time, in hh:mm:ss, since this peering session was last reset. The reason for the reset is displayed on this line.


Field	Description
External BGP neighbor may be...	Indicates that the BGP time to live (TTL) security check is enabled. The maximum number of hops that can separate the local and remote peer is displayed on this line.
Connection state	Connection status of the BGP peer.
unread input bytes	Number of bytes of packets still to be processed.
Connection is ECN Disabled	Explicit congestion notification status (enabled or disabled).
Local host: 10.108.50.1, Local port: 179	IP address of the local BGP speaker. BGP port number 179.
Foreign host: 10.108.50.2, Foreign port: 42698	Neighbor address and BGP destination port number.
Enqueued packets for retransmit:	Packets queued for retransmission by TCP.
Event Timers	TCP event timers. Counters are provided for starts and wakeups (expired timers).
Retrans	Number of times a packet has been retransmitted.
TimeWait	Time waiting for the retransmission timers to expire.
AckHold	Acknowledgment hold timer.
SendWnd	Transmission (send) window.
KeepAlive	Number of keepalive packets.
GiveUp	Number of times a packet is dropped due to no acknowledgment.
PmtuAger	Path MTU discovery timer.
DeadWait	Expiration timer for dead segments.
iss:	Initial packet transmission sequence number.
snduna:	Last transmission sequence number that has not been acknowledged.
sndnxt:	Next packet sequence number to be transmitted.
sndwnd:	TCP window size of the remote neighbor.
irs:	Initial packet receive sequence number.
rcvnxt:	Last receive sequence number that has been locally acknowledged.
revwnd:	TCP window size of the local host.


Field	Description
delrcvwnd:	Delayed receive window-data the local host has read from the   connection, but has not yet subtracted from the receive window the   host has advertised to the remote host. The value in this field gradualy   increases until it is higher than a full-sized packet, at which point it is   applied to the rcvwnd field.
SRTT:	A calculated smoothed round-trip timeout.
RTTO:	Round-trip timeout.
RTV:	Variance of the round-trip time.
KRTT:	New round-trip timeout (using the Karn algorithm). This field   separately tracks the round-trip time of packets that have been re-sent.
minRTT:	Shortest recorded round-trip timeout (hard-wire value used for   calculation).
maxRTT:	Longest recorded round-trip timeout.
ACK hold:	Length of time the local host will delay an acknowledgment to carry   (piggyback) additional data.
IP Precedence value:	IP precedence of the BGP packets.
Datagrams	Number of update packets received from a neighbor.
Rcvd:	Number of received packets.
out of order:	Number of packets received out of sequence.
with data	Number of update packets sent with data.
total data bytes	Total amount of data received, in bytes.
Sent	Number of update packets sent.
Second Congestion	Number of update packets with data sent.
Natagrams: Rcvd	Number of update packets received from a neighbor.
retransmit	Number of packets retransmitted.   order segment before the retransmission timer expires.
fastretransmit	Number of retransmissions for partial acknowledgments (transmissions   before or without subsequent acknowledgments).
partialack	Second Congestion

## show ip bgp neighbors (4-Byte Autonomous System Numbers)

The following partial example shows output for several external BGP neighbors in autonomous systems with 4-byte autonomous system numbers, 65536 and 65550 . This example requires Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXI1, Cisco IOS XE Release 2.4 , or a later release.

```
Device#show ip bgp neighbors
BGP neighbor is 192.168.1.2, remote AS 65536, external link
 BGP version 4, remote router ID 0.0.0.0
 BGP state = Idle
 Last read 02:03:38, last write 02:03:38, hold time is 120, keepalive interval is 70
seconds
 Configured hold time is 120, keepalive interval is 70 seconds
 Minimum holdtime from neighbor is 0 seconds
.
BGP neighbor is 192.168.3.2, remote AS 65550, external link
 Description: finance
 BGP version 4, remote router ID 0.0.0.0
 BGP state = Idle
 Last read 02:03:48, last write 02:03:48, hold time is 120, keepalive interval is 70
seconds
 Configured hold time is 120, keepalive interval is 70 seconds
 Minimum holdtime from neighbor is 0 seconds
```


## show ip bgp neighbors advertised-routes

The following example displays routes advertised for only the 172.16.232.178 neighbor:

```
Device#show ip bgp neighbors 172.16.232.178 advertised-routes
BGP table version is 27, local router ID is 172.16.232.181
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*>i10.0.0.0 172.16.232.179 0 100 0 ?
*> 10.20.2.0 10.0.0.0 0 32768 i
```

The table below describes the significant fields shown in the display.

## Table 161: show ip bgp neighbors advertised-routes Field Descriptions

Field	Description
BGP table version	Internal version number of the table. This is the primary routing table with which the   neighbor has been updated. The number increments when the table changes.
local router ID	IP address of the local BGP speaker.


Field	Description
Status codes	Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:   - s -The table entry is suppressed.   - d-The table entry is dampened and will not be advertised to BGP neighbors.   - h -The table entry does not contain the best path based on historical information.   - *-The table entry is valid.   - >-The table entry is the best entry to use for that network.   - i -The table entry was learned via an internal BGP (iBGP) session.
Origin codes	Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:   - i-Entry originated from Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.   - e-Entry originated from Exterior Gateway Protocol (EGP).   - ?-Origin of the path is not clear. Usually, this is a route that is redistributed into BGP from an IGP.
Network	IP address of a network entity.
Next Hop	IP address of the next system used to forward a packet to the destination network. An entry of 0.0.0.0 indicates that there are non-BGP routes in the path to the destination network.
Metric	If shown, this is the value of the interautonomous system metric. This field is not used frequently.
LocPrf	Local preference value as set with the set local-preference route-map configuration command. The default value is 100 .
Weight	Weight of the route as set via autonomous system filters.
Path	Autonomous system paths to the destination network. There can be one entry in this field for each autonomous system in the path.

## show ip bgp neighbors check-control-plane-failure

The following is sample output from the show ip bgp neighbors command entered with the check-control-plane-failure option configured:

```
Device#show ip bgp neighbors 10.10.10.1
BGP neighbor is 10.10.10.1, remote AS 10, internal link
 Fall over configured for session
 BFD is configured. BFD peer is Up. Using BFD to detect fast fallover (single-hop) with
c-bit check-control-plane-failure.
```

```
Inherits from template cbit-tps for session parameters
 BGP version 4, remote router ID 10.7.7.7
 BGP state = Established, up for 00:03:55
 Last read 00:00:02, last write 00:00:21, hold time is 180, keepalive interval is 60 seconds
 Neighbor sessions:
 1 active, is not multisession capable (disabled)
 Neighbor capabilities:
 Route refresh: advertised and received(new)
 Four-octets ASN Capability: advertised and received
 Address family IPv4 Unicast: advertised and received
 Enhanced Refresh Capability: advertised and received
 Multisession Capability:
 Stateful switchover support enabled: NO for session 1
```


## show ip bgp neighbors paths

The following is sample output from the show ip bgp neighbors command entered with the paths keyword:

```
Device#show ip bgp neighbors 172.29.232.178 paths 10
Address Refcount Metric Path
0x60E577B0 2 40 10 ?
```

The table below describes the significant fields shown in the display.
Table 162: show ip bgp neighbors paths Field Descriptions

Field	Description
Address	Internal address where the path is stored.
Refcount	Number of routes using that path.
Metric	Multi Exit Discriminator (MED) metric for the path. (The name of this metric for BGP versions   2 and 3 is INTER_AS.)
Path	Autonomous system path for that route, followed by the origin code for that route.

## show ip bgp neighbors received prefix-filter

The following example shows that a prefix list that filters all routes in the 10.0.0.0 network has been received from the 192.168.20.72 neighbor:

```
Device#show ip bgp neighbors 192.168.20.72 received prefix-filter
Address family:IPv4 Unicast
ip prefix-list 192.168.20.72:1 entries
 seq 5 deny 10.0.0.0/8 le 32
```

The table below describes the significant fields shown in the display.

Table 163: show ip bgp neighbors received prefix-filter Field Descriptions

Field	Description
Address family	Address family mode in which the prefix filter is received.
ip prefix-list	Prefix list sent from the specified neighbor.

## show ip bgp neighbors policy

The following sample output shows the policies applied to the neighbor at 192.168.1.2. The output displays both inherited policies and policies configured on the neighbor device. Inherited polices are policies that the neighbor inherits from a peer group or a peer-policy template.

```
Device#show ip bgp neighbors 192.168.1.2 policy
Neighbor: 192.168.1.2, Address-Family: IPv4 Unicast
Locally configured policies:
 route-map ROUTE in
Inherited polices:
 prefix-list NO-MARKETING in
 route-map ROUTE in
 weight 300
 maximum-prefix 10000
```


## BGP Attribute Filter and Enhanced Attribute Error Handling

The following is sample output from the show ip bgp neighbors command that indicates the discard attribute values and treat-as-withdraw attribute values configured. It also provides a count of received Updates matching a treat-as-withdraw attribute, a count of received Updates matching a discard attribute, and a count of received malformed Updates that are treat-as-withdraw.

```
Device#show ip bgp vpnv4 all neighbors 10.0.103.1
BGP neighbor is 10.0.103.1, remote AS 100, internal link
 Path-attribute treat-as-withdraw inbound
 Path-attribute treat-as-withdraw value 128
 Path-attribute treat-as-withdraw }128\mathrm{ in: count 2
 Path-attribute discard 128 inbound
 Path-attribute discard }128\mathrm{ in: count 2
 Outbound Inbound
 Local Policy Denied Prefixes:
 MALFORM treat as withdraw: 0
 Total: 0
```


## BGP Additional Paths

The following output indicates that the neighbor is capable of advertising additional paths and sending additional paths it receives. It is also capable of receiving additional paths and advertised paths.

```
Device#show ip bgp neighbors 10.108.50.2
```

```
BGP neighbor is 10.108.50.2, remote AS 1, internal link
 BGP version 4, remote router ID 192.168.252.252
 BGP state = Established, up for 00:24:25
 Last read 00:00:24, last write 00:00:24, hold time is 180, keepalive interval is 60 seconds
 Neighbor capabilities:
 Additional paths Send: advertised and received
 Additional paths Receive: advertised and received
 Route refresh: advertised and received(old & new)
 Graceful Restart Capabilty: advertised and received
 Address family IPv4 Unicast: advertised and received
```


## BGP—Multiple Cluster IDs

In the following output, the cluster ID of the neighbor is displayed. (The vertical bar and letter "i" for "include" cause the device to display only lines that include the user's input after the " i ", in this case, "cluster-id.") The cluster ID displayed is the one directly configured through a neighbor or a template.

```
Device#show ip bgp neighbors 192.168.2.2 | i cluster-id
Configured with the cluster-id 192.168.15.6
```


## BGP Peak Prefix Watermark

The following sample output shows the peak watermarks and their timestamps displayed for the peak number of route entries per neighbor bases:

```
Device#show ip bgp ipv4 unicast neighbors 11.11.11.11
BGP neighbor is 11.11.11.11, remote AS 1, internal link
 BGP version 4, remote router ID 0.0.0.0
 BGP state = Idle, down for 00:01:43
 Neighbor sessions:
 O active, is not multisession capable (disabled)
 Stateful switchover support enabled: NO
 Do log neighbor state changes (via global configuration)
 Default minimum time between advertisement runs is 0 seconds
 For address family: IPv4 Unicast
 BGP table version 27, neighbor version 1/27
 Output queue size : 0
 Index 0, Advertise bit 0
 Slow-peer detection is disabled
 Slow-peer split-update-group dynamic is disabled
 Prefixes Current: 0 0
 Prefixes Total:
 Implicit Withdraw:
 Explicit Withdraw:
 Used as bestpath:
 Used as multipath:
 Used as secondary: n/a 0
 n/a 0
 Local Policy Denied Prefixes: Outbound Inbound
 Total: 0 0
 Number of NLRIs in the update sent: max 2, min 0
```

```
 Current session network count peaked at 20 entries at 00:00:23 Aug 8 2018 PST (00:01:29.156
ago).
 Highest network count observed at 20 entries at 23:55:32 Aug 7 2018 PST (00:06:20.156
ago).
 Last detected as dynamic slow peer: never
 Dynamic slow peer recovered: never
 Refresh Epoch: 1
 Last Sent Refresh Start-of-rib: never
 Last Sent Refresh End-of-rib: never
 Last Received Refresh Start-of-rib: never
 Last Received Refresh End-of-rib: never
\begin{tabular}{ccc}
Refresh activity: & Sent & Rcvd \\
Refresh Start-of-RIB & ---- & --- \\
Refresh End-of-RIB & 0 & 0 \\
0
\end{tabular}
```


## BGP Soft Inbound and Outbound Refresh Time

In the following example, the times of occurrence of the soft inbound and outbound refresh, to or from the given neighbour, are displayed:

```
Device#show ip bgp l2vpn evpn neighbors 11.11.11.11
BGP neighbor is 11.11.11.11, remote AS 1, internal link
 BGP version 4, remote router ID 11.11.11.11
 BGP state = Established, up for 00:14:06
 Last read 00:00:21, last write 00:00:28, hold time is 180, keepalive
 Do log neighbor state changes (via global configuration)
 Default minimum time between advertisement runs is 0 seconds
 For address family: L2VPN E-VPN
 Session: 11.11.11.11
 BGP table version 30, neighbor version 30/0
 Output queue size : 0
 Index 1, Advertise bit 0
 1 update-group member
 Community attribute sent to this neighbor
 Extended-community attribute sent to this neighbor

 Last detected as dynamic slow peer: never
 Dynamic slow peer recovered: never
 Refresh Epoch: 2
 Last Sent Refresh Start-of-rib: never
 Last Sent Refresh End-of-rib: never
 Last Received Refresh Start-of-rib: 00:14:06
 Last Received Refresh End-of-rib: 00:14:06
 Refresh-In took 0 seconds
\begin{tabular}{ccc}
Refresh activity: & Sent & Rcvd \\
Refresh Start-of-RIB & --- & --- \\
Refresh End-of-RIB & 0 & 1 \\
\end{tabular}
 Address tracking is enabled, the RIB does have a route to 11.11.11.11
 Route to peer address reachability Up: 1; Down: 0
 Last notification 00:14:07
 Connections established 1; dropped 0
```

```
Packets received in fast path: 0, fast processed: 0, slow path: 0
 fast lock acquisition failures: 0, slow path: 0
TCP Semaphore 0x7FA8A0AE7BA0 FREE
```

Related Commands

Command	Description
bgp asnotation dot	Changes the default display and the regular expression match format of   BGP 4-byte autonomous system numbers from asplain (decimal values)   to dot notation.
bgp enhanced-error	Restores the default behavior of treating Update messages that have a   malformed attribute as withdrawn, or includes iBGP peers in the   Enhanced Attribute Error Handling feature.
neighbor path-attribute discard	Configures the device to discard unwanted Update messages from the   specified neighbor that contain a specified path attribute.
neighbor path-attribute   treat-as-withdraw	Configures the device to withdraw from the specified neighbor unwanted   Update messages that contain a specified attribute.
neighbor send-label	Enables a BGP router to send MPLS labels with BGP routes to a   neighboring BGP router.
neighbor send-label explicit-null	Enables a BGP router to send MPLS labels with explicit-null information   for a CSC-CE router and BGP routes to a neighboring CSC-PE router.
router bgp	Configures the BGP routing process.

## show ip eigrp interfaces

To display information about interfaces that are configured for the Enhanced Interior Gateway Routing Protocol (EIGRP), use the show ip eigrp interfaces command in user EXEC or privileged EXEC mode.
show ip eigrp [vrf vrf-name] [autonomous-system-number] interfaces [type number] [\{detail\}]

## Syntax Description

vrf vrf-name	(Optional) Displays information about the specified virtual routing and   forwarding (VRF) instance.
autonomous-system-number	(Optional) Autonomous system number whose output needs to be filtered.
type	(Optional) Interface type. For more information, use the question mark (?)   online help function.
number	(Optional) Interface or subinterface number. For more information about the   numbering syntax for your networking device, use the question mark (?) online   help function.
detail	(Optional) Displays detailed information about EIGRP interfaces for a specific   EIGRP process.

## Command Modes

Command History
User EXEC ( $>$ )
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

Use the show ip eigrp interfaces command to display active EIGRP interfaces and EIGRP-specific interface settings and statistics. The optional type number argument and the detail keyword can be entered in any order.
If an interface is specified, only information about that interface is displayed. Otherwise, information about all interfaces on which EIGRP is running is displayed.

If an autonomous system is specified, only the routing process for the specified autonomous system is displayed. Otherwise, all EIGRP processes are displayed.
This command can be used to display information about EIGRP named and EIGRP autonomous system configurations.

This command displays the same information as the show eigrp address-family interfaces command. Cisco recommends using the show eigrp address-family interfaces command.

## $\overline{\text { Examples }}$

The following is sample output from the show ip eigrp interfaces command:

```
Device#show ip eigrp interfaces
EIGRP-IPv4 Interfaces for AS(60)
 Xmit Queue Mean Pacing Time Multicast Pending
```

Interface	Peers	Un/Reliable	SRTT	Un/Reliable	Flow	Timer	Routes
Di0	0	$0 / 0$	0	$11 / 434$	0	0	
Et0	1	$0 / 0$	337	$0 / 10$	0	0	
SE0:1.16	1	$0 / 0$	10	$1 / 63$	103	0	
Tu0	1	$0 / 0$	330	$0 / 16$	0	0	

The following sample output from the show ip eigrp interfaces detail command displays detailed information about all active EIGRP interfaces:

EIGRP-IPv4 Interfaces for AS (1)							
Interface	Peers	Un/Reliable	Un/Reliable	SRTT	Un/Reliable	Flow Timer	Routes
Et0/0	1	0/0	0/0	525	0/2	3264	0
Hello-interval is 5, Hold-time is 15							
Split-horizon is enabled							
Next xmit serial <none>							
Packetized sent/expedited: 3/0							
Hello's sent/expedited: 6/2							
Un/reliable mcasts: 0/6 Un/reliable ucasts: 7/4							
Mcast exceptions: 1 CR packets: 1 ACKs suppressed: 0							
Retransmissions sent: 1 Out-of-sequence rcvd: 0							
Topology-ids on interface - 0							
Authentication mode is not set							

The following sample output from the show ip eigrp interfaces detail command displays detailed information about a specific interface on which the no ip next-hop self command is configured along with the no-ecmp-mode option:


The table below describes the significant fields shown in the displays.
Table 164: show ip eigrp interfaces Field Descriptions

Field	Description
Interface	Interface on which EIGRP is configured.
Peers	Number of directly connected EIGRP neighbors.


Field	Description
PeerQ Un/Reliable	Number of unreliable and reliable packets queued for transmission to specific   peers on the interface.
Xmit Queue Un/Reliable	Number of packets remaining in the Unreliable and Reliable transmit queues.
Mean SRTT	Mean smooth round-trip time (SRTT) interval (in seconds).
Pacing Time Un/Reliable	Pacing time (in seconds) used to determine when EIGRP packets (unreliable and   reliable) should be sent out of the interface .
Multicast Flow Timer	Maximum number of seconds for which the device will send multicast EIGRP   packets.
Pending Routes	Number of routes in the transmit queue waiting to be sent.
Packetized sent/expedited	Number of EIGRP routes that have been prepared for sending packets to neighbors   on an interface, and the number of times multiple routes were stored in a single   packet.
Hello's sent/expedited	Number of EIGRP hello packets that have been sent on an interface and packets   that were expedited.

## Related Commands

Command	Description
show eigrp address-family interfaces	Displays information about address family interfaces configured   for EIGRP.
show ip eigrp neighbors	Displays neighbors discovered by EIGRP.

## show ip eigrp neighbors

To display neighbors discovered by the Enhanced Interior Gateway Routing Protocol (EIGRP), use the show ip eigrp neighbors command in privileged EXEC mode.
show ip eigrp [vrf vrf-name] [autonomous-system-number] neighbors [\{static $\mid$ detail $\}$ ] [interface-type interface-number]

Syntax Description

## Command Modes

Command History

## Usage Guidelines

vrf vrf-name	(Optional) Displays information about the specified VPN Routing and   Forwarding (VRF) instance.
autonomous-system-number	(Optional) Autonomous-system-number-specific output is displayed.
static	(Optional) Displays static neighbors.
detail	(Optional) Displays detailed neighbor information.
interface-type interface-number	(Optional) Interface-specific output is displayed.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The show ip eigrp neighbors command can be used to display information about EIGRP named and EIGRP autonomous-system configurations. Use the show ip eigrp neighbors command to display dynamic and static neighbor states. You can use this command for also debugging certain types of transport problems.

This command displays the same information as the show eigrp address-family neighbors command. Cisco recommends that you use the show eigrp address-family neighbors command.

The following is sample output from the show ip eigrp neighbors command:

H	Address	Interface	Hold Uptime (sec)	$\begin{gathered} \text { SRTT } \\ (\mathrm{ms}) \end{gathered}$	RTO	$\begin{gathered} \text { Q } \\ \text { Cnt } \end{gathered}$	Seq   Num
0	10.1.1.2	Et0/0	13 00:00:03	1996	5000	0	5
2	10.1.1.9	Et0/0	14 00:02:24	206	5000	0	5
1	10.1.2.3	Et0/1	11 00:20:39	2202	5000	0	5

The table below describes the significant fields shown in the display.

## Table 165: show ip eigrp neighbors Field Descriptions

Field	Description
Address	IP address of the EIGRP peer.
Interface	Interface on which the router is receiving hello packets from the peer.


Field	Description
Hold	Time in seconds for which EIGRP waits to hear from the peer before declaring it down.
Uptime	Elapsed time (in hours:minutes: seconds) since the local router first heard from this neighbor.
SRTT	Smooth round-trip time. This is the number of milliseconds required for an EIGRP packet to be   sent to this neighbor and for the local router to receive an acknowledgment of that packet.
RTO	Retransmission timeout (in milliseconds). This is the amount of time the software waits before   resending a packet from the retransmission queue to a neighbor.
Q Cnt	Number of EIGRP packets (update, query, and reply) that the software is waiting to send.
Seq Num	Sequence number of the last update, query, or reply packet that was received from this neighbor.

The following is sample output from the show ip eigrp neighbors detailcommand:

```
Device#show ip eigrp neighbors detail
EIGRP-IPv4 VR(foo) Address-Family Neighbors for AS(1)
```



```
 Static neighbor (Lisp Encap)
 Version 8.0/2.0, Retrans: 0, Retries: 0, Prefixes: 1
 Topology-ids from peer - 0
```

The table below describes the significant fields shown in the display.
Table 166: show ip eigrp neighbors detail Field Descriptions

Field	Description
H	This column lists the order in which a peering session was established with the specified neighbor.   The order is specified with sequential numbering starting with 0.
Address	IP address of the EIGRP peer.
Interface	Interface on which the router is receiving hello packets from the peer.
Hold	Time in seconds for which EIGRP waits to hear from the peer before declaring it down.
Lisp   Encap	Indicates that routes from this neighbor are LISP encapsulated.
Uptime	Elapsed time (in hours:minutes: seconds) since the local router first heard from this neighbor.
SRTT	Smooth round-trip time. This is the number of milliseconds required for an EIGRP packet to be   sent to this neighbor and for the local router to receive an acknowledgment of that packet.
RTO	Retransmission timeout (in milliseconds). This is the amount of time the software waits before   resending a packet from the retransmission queue to a neighbor.
Q Cnt	Number of EIGRP packets (update, query, and reply) that the software is waiting to send.


Field	Description
Seq Num	Sequence number of the last update, query, or reply packet that was received from this neighbor.
Version	The software version that the specified peer is running.
Retrans	Number of times that a packet has been retransmitted.
Retries	Number of times an attempt was made to retransmit a packet.


Related Commands	Command	Description
	show eigrp address-family neighbors	Displays neighbors discovered by EIGRP.

## show ip eigrp topology

To display Enhanced Interior Gateway Routing Protocol (EIGRP) topology table entries, use the show ip eigrp topology command in user EXEC or privileged EXEC mode.
show ip eigrp topology [\{network [\{mask\}] prefix | active | all-links | detail-links | frr | pending | secondary-paths $\mid$ summary $\mid$ zero-successors $\}]$

Syntax Description

network	(Optional) Network address.
mask	(Optional) Network mask.
prefix	(Optional) Network prefix in the format <network>/<length>; for example, 192.168.0.0/16.
active	(Optional) Displays all topology entries that are in the active state.
all-links	(Optional) Displays all entries in the EIGRP topology table (including   nonfeasible-successor sources).
detail-links	(Optional) Displays all topology entries with additional details.
frr	(Optional) Displays the list of configured loop-free alternates in the EIGRP topology   table.
pending	(Optional) Displays all entries in the EIGRP topology table that are either waiting for an   update from a neighbor or waiting to reply to a neighbor.
secondary-paths	(Optional) Displays secondary paths in the topology.
summary	(Optional) Displays a summary of the EIGRP topology table.
zero-successors	(Optional) Displays available routes that have zero successors.

## Command Default

## Command Modes

## Command History

## Usage Guidelines

If this command is used without any of the optional keywords, only topology entries with feasible successors are displayed and only feasible paths are shown.

User EXEC (>)
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Amsterdam 17.3.1	The frr keyword was introduced.

Use the show ip eigrp topology command to display topology entries, feasible and nonfeasible paths, metrics, and states. This command can be used without any arguments or keywords to display only topology entries with feasible successors and feasible paths. The all-links keyword displays all paths, whether feasible or not, and the detail-links keyword displays additional details about these paths.

Use this command to display information about EIGRP named and EIGRP autonomous system configurations. This command displays the same information as the show eigrp address-family topology command. We recommend using the show eigrp address-family topology command.

## Examples

The following is sample output from the show ip eigrp topology command:

```
Device# show ip eigrp topology
EIGRP-IPv4 Topology Table for AS(1)/ID(10.0.0.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
 r - Reply status, s - sia status
P 10.0.0.0/8, 1 successors, FD is 409600
 via 192.0.2.1 (409600/128256), Ethernet0/0
P 192.16.1.0/24, 1 successors, FD is 409600
 via 192.0.2.1 (409600/128256), Ethernet0/0
P 10.0.0.0/8, 1 successors, FD is 281600
 via Summary (281600/0), Null0
P 10.0.1.0/24, 1 successors, FD is 281600
 via Connected, Ethernet0/0
```

The following sample output from the show ip eigrp topology prefix command displays detailed information about a single prefix. The prefix shown is an EIGRP internal route.

```
Device# show ip eigrp topology 10.0.0.0/8
EIGRP-IPv4 VR(vr1) Topology Entry for AS(1)/ID(10.1.1.2) for 10.0.0.0/8
 State is Passive, Query origin flag is 1, 1 Successor(s), FD is 82329600, RIB is 643200
 Descriptor Blocks:
 10.1.1.1 (Ethernet2/0), from 10.1.1.1, Send flag is 0x0
 Composite metric is (82329600/163840), route is Internal
 Vector metric:
 Minimum bandwidth is 16000 Kbit
 Total delay is 631250000 picoseconds
 Reliability is 255/255
 Load is 1⁄255
 Minimum MTU is 1500
 Hop count is 1
 Originating router is 10.1.1.1
```

The following sample output from the show ip eigrp topology prefix command displays detailed information about a single prefix. The prefix shown is an EIGRP external route.

```
Device# show ip eigrp topology 192.16.1.0/24
EIGRP-IPv4 Topology Entry for AS(1)/ID(10.0.0.1) for 192.16.1.0/24
State is Passive, Query origin flag is 1, 1 Successor(s), FD is 409600, RIB is 643200
 Descriptor Blocks:
 172.16.1.0/24 (Ethernet0/0), from 10.0.1.2, Send flag is 0x0
 Composite metric is (409600/128256), route is External
 Vector metric:
 Minimum bandwidth is 10000 Kbit
 Total delay is 6000 picoseconds
 Reliability is 255/255
 Load is 1/255
 Minimum MTU is 1500
 Hop count is 1
 Originating router is 192.16.1.0/24
 External data:
 AS number of route is 0
 External protocol is Connected, external metric is 0
 Administrator tag is 0 (0x00000000)
```

The following sample output from the show ip eigrp topology prefix command displays Equal Cost Multipath (ECMP) mode information when the no ip next-hop-self command is configured without the no-ecmp-mode keyword in an EIGRP topology. The ECMP mode provides information about the path that is being advertised. If there is more than one successor, the top most path will be advertised as the default path over all interfaces, and "ECMP Mode: Advertise by default" will be displayed in the output. If any path other than the default path is advertised, "ECMP Mode: Advertise out <Interface name>" will be displayed.

The topology table displays entries of routes for a particular prefix. The routes are sorted based on metric, next-hop, and infosource. In a Dynamic Multipoint VPN (DMVPN) scenario, routes with same metric and next-hop are sorted based on infosource. The top route in the ECMP is always advertised.

```
Device# show ip eigrp topology 192.168.10.0/24
EIGRP-IPv4 Topology Entry for AS(1)/ID(10.10.100.100) for 192.168.10.0/24
State is Passive, Query origin flag is 1, 2 Successor(s), FD is 284160
 Descriptor Blocks:
 10.100.1.0 (Tunnel0), from 10.100.0.1, Send flag is 0x0
 Composite metric is (284160/281600), route is Internal
 Vector metric:
 Minimum bandwidth is 10000 Kbit
 Total delay is }1100\mathrm{ microseconds
 Reliability is 255/255
 Load is }1/25
 Minimum MTU is 1400
 Hop count is 1
 Originating router is 10.10.1.1
 ECMP Mode: Advertise by default
 10.100.0.2 (Tunnel1), from 10.100.0.2, Send flag is 0x0
 Composite metric is (284160/281600), route is Internal
 Vector metric:
 Minimum bandwidth is 10000 Kbit
 Total delay is }1100\mathrm{ microseconds
 Reliability is 255/255
 Load is 1/255
 Minimum MTU is 1400
 Hop count is 1
 Originating router is 10.10.2.2
 ECMP Mode: Advertise out Tunnel1
```

The following sample output from the show ip eigrp topology all-links command displays all paths, even those that are not feasible:

```
Device# show ip eigrp topology all-links
EIGRP-IPv4 Topology Table for AS(1)/ID(10.0.0.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
 r - reply Status, s - sia Status
P 172.16.1.0/24, 1 successors, FD is 409600, serno 14
 via 10.10.1.2 (409600/128256), Ethernet0/0
 via 10.1.4.3 (2586111744/2585599744), Serial3/0, serno 18
```

The following sample output from the show ip eigrp topology detail-links command displays additional details about routes:

```
Device# show ip eigrp topology detail-links
EIGRP-IPv4 Topology Table for AS (1)/ID(10.0.0.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
 r - reply Status, s - sia Status
P 10.0.0.0/8, 1 successors, FD is 409600, serno 6
```

```
 via 10.10.1.2 (409600/128256), Ethernet0/0
P 172.16.1.0/24, 1 successors, FD is 409600, serno 14
 via 10.10.1.2 (409600/128256), Ethernet0/0
P 10.0.0.0/8, 1 successors, FD is 281600, serno 3
 via Summary (281600/0), Null0
P 10.1.1.0/24, 1 successors, FD is 281600, serno 1
 via Connected, Ethernet0/0
```

The table below describes the significant fields shown in the displays.

## Table 167: show ip eigrp topology Field Descriptions

Field	Description
Codes	State of this topology table entry. Passive and Active refer to the EIGRP state with respect to the destination. Update, Query, and Reply refer to the type of packet that is being sent.   - P - Passive: Indicates that no EIGRP computations are being performed for this route.   - A - Active: Indicates that EIGRP computations are being performed for this route.   - U - Update: Indicates that a pending update packet is waiting to be sent for this route.   - Q - Query: Indicates that a pending query packet is waiting to be sent for this route.   - R - Reply: Indicates that a pending reply packet is waiting to be sent for this route.   -r - Reply status: Indicates that EIGRP has sent a query for the route and is waiting for a reply from the specified path.   - s - sia status: Indicates that the EIGRP query packet is in stuck-in-active (SIA) status.
successors	Number of successors. This number corresponds to the number of next hops in the IP routing table. If successors is capitalized, then the route or the next hop is in a transition state.
serno	Serial number.


Field	Description
FD	Feasible distance. The feasible distance is the best metric   to reach the destination or the best metric that was   known when the route became active. This value is used   in the feasibility condition check. If the reported distance   of the device is less than the feasible distance, the   feasibility condition is met and that route becomes a   feasible successor. After the software determines that it   has a feasible successor, the software need not send a   query for that destination.
via	Next-hop address that advertises the passive route.


Related Commands	Command	Description
	show eigrp address-family topology	Displays entries in the EIGRP address-family topology table.

## show ip eigrp traffic

To display the number of Enhanced Interior Gateway Routing Protocol (EIGRP) packets sent and received, use the show ip eigrp traffic command in privileged EXEC mode.
show ip eigrp [vrf $\left\{\right.$ vrf-name $\left.\left.\right|^{*}\right\}$ ] [autonomous-system-number] traffic

Syntax Description

## Command Modes

## Command History

Usage Guidelines

vrf vrf-name	(Optional) Displays information about the specified VRF.
$\mathbf{v r f} *$	(Optional) Displays information about all VRFs.
autonomous-system-number	(Optional) Autonomous system number.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This command can be used to display information about EIGRP named configurations and EIGRP autonomous-system (AS) configurations.

This command displays the same information as the show eigrp address-family traffic command. Cisco recommends using the show eigrp address-family traffic command.

## Examples

The following is sample output from the show ip eigrp traffic command:

```
Device#show ip eigrp traffic
EIGRP-IPv4 Traffic Statistics for AS(60)
Hellos sent/received: 21429/2809
Updates sent/received: 22/17
Queries sent/received: 0/0
Replies sent/received: 0/0
Acks sent/received: 16/13
SIA-Queries sent/received: 0/0
SIA-Replies sent/received: 0/0
Hello Process ID: 204
PDM Process ID: 203
Socket Queue: 0/2000/2/0 (current/max/highest/drops)
Input Queue: 0/2000/2/0 (current/max/highest/drops)
```

The table below describes the significant fields shown in the display.

## Table 168: show ip eigrp traffic Field Descriptions

Field	Description
Hellos sent/received	Number of hello packets sent and received.
Updates sent/received	Number of update packets sent and received.
Queries sent/received	Number of query packets sent and received.


Field	Description
Replies sent/received	Number of reply packets sent and received.
Acks sent/received	Number of acknowledgement packets sent and received.
SIA-Queries sent/received	Number of stuck in active query packets sent and received.
SIA-Replies sent/received	Number of stuck in active reply packets sent and received.
Hello Process ID	Hello process identifier.
PDM Process ID	Protocol-dependent module IOS process identifier.
Socket Queue	The IP to EIGRP Hello Process socket queue counters.
Input queue	The EIGRP Hello Process to EIGRP PDM socket queue counters.


Related Commands	Command	Description
	show eigrp address-family traffic	Displays the number of EIGRP packets sent and received.

## show ip ospf

To display general information about Open Shortest Path First (OSPF) routing processes, use the showipospf command in user EXEC or privileged EXEC mode.
show ip ospf [process-id]

Syntax Description

## Command Modes

Command History
process-id (Optional) Process ID. If this argument is included, only information for the specified routing process is included.

## User EXEC Privileged EXEC

Mainline Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

The following is sample output from the showipospf command when entered without a specific OSPF process ID:

```
Device#show ip ospf
 Routing Process "ospf 201" with ID 10.0.0.1 and Domain ID 10.20.0.1
 Supports only single TOS(TOSO) routes
 Supports opaque LSA
 SPF schedule delay 5 secs, Hold time between two SPFs }10\mathrm{ secs
 Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
 LSA group pacing timer 100 secs
 Interface flood pacing timer 55 msecs
 Retransmission pacing timer 100 msecs
 Number of external LSA 0. Checksum Sum 0x0
 Number of opaque AS LSA 0. Checksum Sum 0x0
 Number of DCbitless external and opaque AS LSA 0
 Number of DoNotAge external and opaque AS LSA 0
 Number of areas in this router is 2. 2 normal 0 stub 0 nssa
 External flood list length 0
 Area BACKBONE (0)
 Number of interfaces in this area is 2
 Area has message digest authentication
 SPF algorithm executed 4 times
 Area ranges are
 Number of LSA 4. Checksum Sum 0x29BEB
 Number of opaque link LSA 0. Checksum Sum 0x0
 Number of DCbitless LSA 3
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
 Area 172.16.26.0
 Number of interfaces in this area is 0
 Area has no authentication
 SPF algorithm executed 1 times
 Area ranges are
 192.168.0.0/16 Passive Advertise
 Number of LSA 1. Checksum Sum 0x44FD
 Number of opaque link LSA 0. Checksum Sum 0x0
 Number of DCbitless LSA 1
```

```
Number of indication LSA 1
Number of DoNotAge LSA 0
Flood list length 0
```


## Cisco IOS Release 12.2(18)SXE, 12.0(31)S, and 12.4(4)T

The following is sample output from the showipospfcommand to verify that the BFD feature has been enabled for OSPF process 123. The relevant command output is shown in bold in the output.

```
Device#show ip ospf
Routing Process "ospf 123" with ID 172.16.10.1
Supports only single TOS(TOSO) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay }5000\mathrm{ msecs
Minimum hold time between two consecutive SPFs }10000\mathrm{ msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival }1000\mathrm{ msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
 BFD is enabled
 Area BACKBONE (0)
 Number of interfaces in this area is 2
 Area has no authentication
 SPF algorithm last executed 00:00:03.708 ago
 SPF algorithm executed 27 times
 Area ranges are
 Number of LSA 3. Checksum Sum 0x00AEF1
 Number of opaque link LSA 0. Checksum Sum 0x000000
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```

The table below describes the significant fields shown in the display.

## Table 169: show ip ospf Field Descriptions

Field	Description
Routing process "ospf 201" with ID 10.0.0.1	Process ID and OSPF router ID.
Supports...	Number of types of service supported (Type 0 only).
SPF schedule delay	Delay time (in seconds) of SPF calculations.
Minimum LSA interval	Minimum interval (in seconds) between link-state   advertisements.


Field	Description
LSA group pacing timer	Configured LSA group pacing timer (in seconds).
Interface flood pacing timer	Configured LSA flood pacing timer (in milliseconds).
Retransmission pacing timer	Configured LSA retransmission pacing timer (in   milliseconds).
Number of external LSA	Number of external link-state advertisements.
Number of opaque AS LSA	Number of opaque link-state advertisements.
Number of DCbitless external and opaque AS   LSA	Number of demand circuit external and opaque link-state   advertisements.
Number of DoNotAge external and opaque AS   LSA	Number of do not age external and opaque link-state   advertisements.
Number of areas in this router is	Number of areas configured for the router.
External flood list length	External flood list length.
BFD is enabled	BFD has been enabled on the OSPF process.

The following is an excerpt of output from the showipospf command when the OSPF Forwarding Address Suppression in Type-5 LSAs feature is configured:

```
Device#show ip ospf
.
Area 2
 Number of interfaces in this area is 4
 It is a NSSA area
 Perform type-7/type-5 LSA translation, suppress forwarding address
.
Routing Process "ospf 1" with ID 192.168.0.1
 Supports only single TOS(TOSO) routes
 Supports opaque LSA
 Supports Link-local Signaling (LLS)
 Initial SPF schedule delay 5000 msecs
 Minimum hold time between two consecutive SPFs }10000\mathrm{ msecs
 Maximum wait time between two consecutive SPFs }10000\mathrm{ msecs
 Incremental-SPF disabled
 Minimum LSA interval 5 secs
 Minimum LSA arrival }1000\mathrm{ msecs
 LSA group pacing timer 240 secs
 Interface flood pacing timer 33 msecs
 Retransmission pacing timer 66 msecs
 Number of external LSA 0. Checksum Sum 0x0
 Number of opaque AS LSA 0. Checksum Sum 0x0
 Number of DCbitless external and opaque AS LSA 0
 Number of DoNotAge external and opaque AS LSA 0
 Number of areas in this router is 0. O normal O stub 0 nssa
 External flood list length 0
```

The table below describes the significant fields shown in the display.

## Table 170: show ip ospf Field Descriptions

Field	Description
Area	OSPF area and tag.
Number of interfaces...	Number of interfaces configured in the area.
It is...	Possible types are internal, area border, or autonomous system   boundary.
Routing process "ospf 1" with ID   192.168 .0 .1	Process ID and OSPF router ID.
Supports...	Number of types of service supported (Type 0 only).
Initial SPF schedule delay	Delay time of SPF calculations at startup.
Minimum hold time	Minimum hold time (in milliseconds) between consecutive SPF   calculations.
Maximum wait time	Maximum wait time (in milliseconds) between consecutive SPF   calculations.
Incremental-SPF	Status of incremental SPF calculations.
Minimum LSA...	Minimum time interval (in seconds) between link-state   advertisements, and minimum arrival time (in milliseconds) of   link-state advertisements,
LSA group pacing timer	Configured LSA group pacing timer (in seconds).
Interface flood pacing timer	Configured LSA flood pacing timer (in milliseconds).
Retransmission pacing timer	Configured LSA retransmission pacing timer (in milliseconds).
Number of...	Number and type of link-state advertisements that have been   received.
Number of external LSA	Number of external link-state advertisements.
Number of opaque AS LSA	Number of opaque link-state advertisements.
Number of DCbitless external and opaque   AS LSA	Number of demand circuit external and opaque link-state   advertisements.
Number of DoNotAge external and opaque   AS LSA	Number of do not age external and opaque link-state   advertisements.
Number of areas in this router is	Number of areas configured for the router listed by type.
External flood list length	External flood list length.

The following is sample output from the showipospf command. In this example, the user had configured the redistributionmaximum-prefix command to set a limit of 2000 redistributed routes. SPF throttling was configured with the timersthrottlespf command.

```
Device#show ip ospf 1
 Routing Process "ospf 1" with ID 10.0.0.1
 Supports only single TOS(TOSO) routes
 Supports opaque LSA
 Supports Link-local Signaling (LLS)
 It is an autonomous system boundary router
 Redistributing External Routes from,
 static, includes subnets in redistribution
 Maximum limit of redistributed prefixes 2000
 Threshold for warning message 75%
Initial SPF schedule delay }5000\mathrm{ msecs
 Minimum hold time between two consecutive SPFs }10000\mathrm{ msecs
Maximum wait time between two consecutive SPFs }10000\mathrm{ msecs
```

The table below describes the significant fields shown in the display.
Table 171: show ip ospf Field Descriptions

Field	Description
Routing process "ospf 1" with ID   10.0 .0 .1	Process ID and OSPF router ID.
Supports ...	Number of Types of Service supported.
It is ...	Possible types are internal, area border, or autonomous system   boundary router.
Redistributing External Routes from	Lists of redistributed routes, by protocol.
Maximum limit of redistributed   prefixes	Value set in the redistributionmaximum-prefix command to set   a limit on the number of redistributed routes.
Threshold for warning message	Percentage set in the redistributionmaximum-prefix command   for the threshold number of redistributed routes needed to cause a   warning message. The default is 75 percent of the maximum limit.
Initial SPF schedule delay	Delay (in milliseconds) before initial SPF schedule for SPF throttling.   Configured with the timersthrottlespf command.
Minimum hold time between two   consecutive SPFs	Minimum hold time (in milliseconds) between two consecutive SPF   calculations for SPF throttling. Configured with the   timersthrottlespf command.
Maximum wait time between two   consecutive SPFs	Maximum wait time (in milliseconds) between two consecutive SPF   calculations for SPF throttling. Configured with the   timersthrottlespf command.
Number of areas	Number of areas in router, area addresses, and so on.

The following is sample output from the showipospf command. In this example, the user had configured LSA throttling, and those lines of output are displayed in bold.

```
Device#show ip ospf 1
Routing Process "ospf 4" with ID 10.10.24.4
 Supports only single TOS(TOSO) routes
 Supports opaque LSA
 Supports Link-local Signaling (LLS)
 Initial SPF schedule delay }5000\mathrm{ msecs
 Minimum hold time between two consecutive SPFs 10000 msecs
 Maximum wait time between two consecutive SPFs 10000 msecs
 Incremental-SPF disabled
 Initial LSA throttle delay }100\mathrm{ msecs
 Minimum hold time for LSA throttle 10000 msecs
Maximum wait time for LSA throttle 45000 msecs
Minimum LSA arrival }1000\mathrm{ msecs
 LSA group pacing timer 240 secs
 Interface flood pacing timer 33 msecs
 Retransmission pacing timer 66 msecs
 Number of external LSA 0. Checksum Sum 0x0
 Number of opaque AS LSA 0. Checksum Sum 0x0
 Number of DCbitless external and opaque AS LSA 0
 Number of DoNotAge external and opaque AS LSA 0
 Number of areas in this router is 1. 1 normal 0 stub 0 nssa
 External flood list length 0
 Area }2
 Number of interfaces in this area is 2
 Area has no authentication
 SPF algorithm last executed 04:28:18.396 ago
 SPF algorithm executed 8 times
 Area ranges are
 Number of LSA 4. Checksum Sum 0x23EB9
 Number of opaque link LSA 0. Checksum Sum 0x0
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```

The following is sample showipospfcommand. In this example, the user had configured the redistributionmaximum-prefix command to set a limit of 2000 redistributed routes. SPF throttling was configured with the timersthrottlespf command.

```
Device#show ip ospf 1
 Routing Process "ospf 1" with ID 192.168.0.0
 Supports only single TOS(TOSO) routes
 Supports opaque LSA
 Supports Link-local Signaling (LLS)
 It is an autonomous system boundary router
 Redistributing External Routes from,
 static, includes subnets in redistribution
 Maximum limit of redistributed prefixes 2000
 Threshold for warning message 75%
Initial SPF schedule delay }5000\mathrm{ msecs
 Minimum hold time between two consecutive SPFs 10000 msecs
 Maximum wait time between two consecutive SPFs 10000 msecs
```

The table below describes the significant fields shown in the display.

## Table 172: show ip ospf Field Descriptions

Field	Description
Routing process "ospf 1" with ID   192.168.0.0.	Process ID and OSPF router ID.
Supports ...	Number of TOS supported.
It is ...	Possible types are internal, area border, or autonomous system   boundary routers.
Redistributing External Routes from	Lists of redistributed routes, by protocol.
Maximum limit of redistributed prefixes	Value set in the redistributionmaximum-prefix command to set   a limit on the number of redistributed routes.
Threshold for warning message	Percentage set in the redistributionmaximum-prefix command   for the threshold number of redistributed routes needed to cause a   warning message. The default is 75 percent of the maximum limit.
Initial SPF schedule delay	Delay (in milliseconds) before the initial SPF schedule for SPF   throttling. Configured with the timersthrottlespf command.
Minimum hold time between two   consecutive SPFs	Minimum hold time (in milliseconds) between two consecutive SPF   calculations for SPF throttling. Configured with the   timersthrottlespf command.
Maximum wait time between two   consecutive SPFs	Maximum wait time (in milliseconds) between two consecutive SPF   calculations for SPF throttling. Configured with the   timersthrottlespf command.
Number of areas	Number of areas in router, area addresses, and so on.

The following is sample output from the showipospf command. In this example, the user had configured LSA throttling, and those lines of output are displayed in bold.

```
Device#show ip ospf 1
Routing Process "ospf 4" with ID 10.10.24.4
 Supports only single TOS(TOSO) routes
 Supports opaque LSA
 Supports Link-local Signaling (LLS)
 Initial SPF schedule delay }5000\mathrm{ msecs
 Minimum hold time between two consecutive SPFs }10000\mathrm{ msecs
 Maximum wait time between two consecutive SPFs }10000\mathrm{ msecs
 Incremental-SPF disabled
 Initial LSA throttle delay }100\mathrm{ msecs
 Minimum hold time for LSA throttle 10000 msecs
 Maximum wait time for LSA throttle 45000 msecs
Minimum LSA arrival }1000\mathrm{ msecs
 LSA group pacing timer 240 secs
 Interface flood pacing timer 33 msecs
 Retransmission pacing timer 66 msecs
 Number of external LSA 0. Checksum Sum 0x0
 Number of opaque AS LSA 0. Checksum Sum 0x0
 Number of DCbitless external and opaque AS LSA 0
 Number of DoNotAge external and opaque AS LSA 0
```

```
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
 Area 24
 Number of interfaces in this area is 2
 Area has no authentication
 SPF algorithm last executed 04:28:18.396 ago
 SPF algorithm executed 8 times
 Area ranges are
 Number of LSA 4. Checksum Sum 0x23EB9
 Number of opaque link LSA 0. Checksum Sum 0x0
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```


## show ip ospf border-routers

To display the internal Open Shortest Path First (OSPF) routing table entries to an Area Border Router (ABR) and Autonomous System Boundary Router (ASBR), use the showipospfborder-routers command in privileged EXEC mode.
show ip ospf border-routers

Syntax Description
This command has no arguments or keywords.
Command Modes
Privileged EXEC

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

The following is sample output from the showipospfborder-routers command:

```
Device#show ip ospf border-routers
OSPF Process }109\mathrm{ internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 192.168.97.53 [10] via 172.16.1.53, Serial0, ABR, Area 0.0.0.3, SPF 3
i 192.168.103.51 [10] via 192.168.96.51, Serial0, ABR, Area 0.0.0.3, SPF 3
I 192.168.103.52 [22] via 192.168.96.51, Serial0, ASBR, Area 0.0.0.3, SPF 3
I 192.168.103.52 [22] via 172.16.1.53, Serial0, ASBR, Area 0.0.0.3, SPF 3
```

The table below describes the significant fields shown in the display.
Table 173: show ip ospf border-routers Field Descriptions

Field	Description
192.168 .97 .53	Router ID of the destination.
$[10]$	Cost of using this route.
via 172.16.1.53	Next hop toward the destination.
Serial0	Interface type for the outgoing interface.
ABR	The router type of the destination; it is either an ABR or ASBR or both.
Area	The area ID of the area from which this route is learned.
SPF 3	The internal number of the shortest path first (SPF) calculation that installs this route.

## show ip ospf database

To display lists of information related to the Open Shortest Path First (OSPF) database for a specific router, use the showipospfdatabase command in EXEC mode.

```
show ip ospf [process-id area-id] database
show ip ospf [process-id area-id] database [adv-router [ip-address]]
show ip ospf [process-id area-id] database [asbr-summary] [link-state-id]
show ip ospf [process-id area-id] database [asbr-summary] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [asbr-summary] [link-state-id] [self-originate]
[link-state-id]
show ip ospf [process-id area-id] database [database-summary]
show ip ospf [process-id] database [external] [link-state-id]
show ip ospf [process-id] database [external] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [external] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [network] [link-state-id]
show ip ospf [process-id area-id] database [network] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [network] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [nssa-external] [link-state-id]
show ip ospf [process-id area-id] database [nssa-external] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [nssa-external] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [router] [link-state-id]
show ip ospf [process-id area-id] database [router] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [router] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [summary] [link-state-id]
show ip ospf [process-id area-id] database [summary] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [summary] [link-state-id] [self-originate] [link-state-id]
```

process-id	(Optional) Internal identification. It is locally assigned and can be any positive   integer. The number used here is the number assigned administratively when   enabling the OSPF routing process.
area-id	(Optional) Area number associated with the OSPF address range defined in the   network router configuration command used to define the particular area.
adv-router [ip-address	(Optional) Displays all the LSAs of the specified router. If no IP address is included,   the information is about the local router itself (in this case, the same as   self-originate).


link-state-id	(Optional) Portion of the Internet environment that is being described by the   advertisement. The value entered depends on the advertisement's LS type. It must   be entered in the form of an IP address.   When the link state advertisement is describing a network, the link-state-id can   take one of two forms:   The network's IP address (as in type 3 summary link advertisements and in   autonomous system external link advertisements).   A derived address obtained from the link state ID. (Note that masking a network   links advertisement's link state ID with the network's subnet mask yields the   network's IP address.)   When the link state advertisement is describing a router, the link state ID is always   the described router's OSPF router ID.   When an autonomous system external advertisement (LS Type = 5) is describing   a default route, its link state ID is set to Default Destination (0.0.0.0).
asbr-summary	(Optional) Displays information only about the autonomous system boundary   router summary LSAs.
database-summary	(Optional) Displays how many of each type of LSA for each area there are in the   database, and the total.
external	(Optional) Displays information only about the external LSAs.
network	(Optional) Displays information only about the network LSAs.
nssa-external	(Optional) Displays information only about the NSSA external LSAs.

## Command Modes

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

Examples
EXEC

The various forms of this command deliver information about different OSPF link state advertisements.

The following is sample output from the showipospfdatabase command when no arguments or keywords are used:

```
Device#show ip ospf database
OSPF Router with id(192.168.239.66) (Process ID 300)
 Displaying Router Link States(Area 0.0.0.0)
Link ID
```

172.16.21.5	172.16.21.5	1112	0x800009D2	0xA2B8
172.16.1.2	172.16.1.2	1662	$0 \times 80000$ A98	$0 \times 4 \mathrm{CB6}$
172.16.1.1	172.16.1.1	1115	$0 \times 800009 \mathrm{B6}$	0x5F2C
172.16.1.5	172.16.1.5	1691	0x80002BC	$0 \times 2 \mathrm{~A} 1 \mathrm{~A}$
172.16.65.6	172.16 .65 .6	1395	$0 \times 80001947$	$0 \times E E E 1$
172.16 .241 .5	172.16 .241 .5	1161	$0 \times 8000007 \mathrm{C}$	0×7C70
172.16.27.6	172.16 .27 .6	1723	$0 \times 80000548$	0x8641
172.16.70.6	172.16 .70 .6	1485	0x80000B97	0xEB84
	Displaying	Net Link	States (Area 0.0	0.0)
Link ID	ADV Router	Age	Seq\#	Checksum
172.16.1.3	192.168.239.66	1245	0x800000EC	0x82E
	Displaying	Summary N	Net Link States(	(Area 0.0.0.0)
Link ID	ADV Router	Age	Seq\#	Checksum
172.16.240.0	172.16.241.5	51152	0x80000077	0x7A05
172.16 .241 .0	172.16 .241 .5	51152	0x80000070	0xAEB7
172.16.244.0	172.16 .241 .5	51152	0x80000071	0x95CB

The table below describes the significant fields shown in the display.

## Table 174: show ip ospf Database Field Descriptions

Field	Description
Link ID	Router ID number.
ADV Router	Advertising router's ID.
Age	Link state age.
Seq\#	Link state sequence number (detects old or duplicate link state advertisements).
Checksum	Fletcher checksum of the complete contents of the link state advertisement.
Link count	Number of interfaces detected for router.

The following is sample output from the showipospfdatabasecommand with the asbr-summarykeyword:

```
Device#show ip ospf database asbr-summary
OSPF Router with id(192.168.239.66) (Process ID 300)
 Displaying Summary ASB Link States(Area 0.0.0.0)
 LS age: 1463
 Options: (No TOS-capability)
 LS Type: Summary Links(AS Boundary Router)
 Link State ID: 172.16.245.1 (AS Boundary Router address)
 Advertising Router: 172.16.241.5
 LS Seq Number: 80000072
 Checksum: 0x3548
 Length: 28
 Network Mask: 0.0.0.0 TOS: 0 Metric: 1
```

The table below describes the significant fields shown in the display.

## Table 175: show ip ospf database asbr-summary Field Descriptions

Field	Description
OSPF Router with id	Router ID number.
Process ID	OSPF process ID.


Field	Description
LS age	Link state age.
Options	Type of service options (Type 0 only).
LS Type	Link state type.
Link State ID	Link state ID (autonomous system boundary router).
Advertising Router	Advertising router's ID.
LS Seq Number	Link state sequence (detects old or duplicate link state advertisements).
Checksum	LS checksum (Fletcher checksum of the complete contents of the link state   advertisement).   Length   Network Mask Length in bytes of the link state advertisement.
TOS	Type of service.
Metric	Link state metric.

The following is sample output from the showipospfdatabasecommand with the externalkeyword:

```
Device#show ip ospf database external
OSPF Router with id(192.168.239.66) (Autonomous system 300)
 Displaying AS External Link States
LS age: 280
Options: (No TOS-capability)
LS Type: AS External Link
Link State ID: 10.105.0.0 (External Network Number)
Advertising Router: 172.16.70.6
LS Seq Number: 80000AFD
Checksum: 0xC3A
Length: 36
Network Mask: 255.255.0.0
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 1
 Forward Address: 0.0.0.0
 External Route Tag: 0
```

The table below describes the significant fields shown in the display.
Table 176: show ip ospf database external Field Descriptions

Field	Description
OSPF Router with id	Router ID number.
Autonomous system	OSPF autonomous system number (OSPF process ID).
LS age	Link state age.
Options	Type of service options (Type 0 only).


Field	Description
LS Type	Link state type.
Link State ID	Link state ID (external network number).
Advertising Router	Advertising router's ID.
LS Seq Number	Link state sequence number (detects old or duplicate link state advertisements).
Checksum	LS checksum (Fletcher checksum of the complete contents of the LSA).
Length	Length in bytes of the link state advertisement.
Network Mask	Network mask implemented.
Metric Type	Type of service.
TOS	Link state metric.
Metric	Forwarding address. Data traffic for the advertised destination will be forwarded to   this address. If the forwarding address is set to 0.0.0.0, data traffic will be forwarded   instead to the advertisement's originator.
Forward Address	
External Route Tag	External route tag, a 32-bit field attached to each external route. This is not used by   the OSPF protocol itself.

The following is sample output from the showipospfdatabasecommand with the networkkeyword:

```
Device#show ip ospf database network
 OSPF Router with id(192.168.239.66) (Process ID 300)
 Displaying Net Link States(Area 0.0.0.0)
LS age: 1367
Options: (No TOS-capability)
LS Type: Network Links
Link State ID: 172.16.1.3 (address of Designated Router)
Advertising Router: 192.168.239.66
LS Seq Number: 800000E7
Checksum: 0x1229
Length: 52
Network Mask: 255.255.255.0
 Attached Router: 192.168.239.66
 Attached Router: 172.16.241.5
 Attached Router: 172.16.1.1
 Attached Router: 172.16.54.5
 Attached Router: 172.16.1.5
```

The table below describes the significant fields shown in the display.

## Table 177: show ip ospf database network Field Descriptions

Field	Description
OSPF Router with id	Router ID number.
Process ID 300	OSPF process ID.


Field	Description
LS age	Link state age.
Options	Type of service options (Type 0 only).
LS Type:	Link state type.
Link State ID	Link state ID of designated router.
Advertising Router	Advertising router's ID.
LS Seq Number	Link state sequence (detects old or duplicate link state advertisements).
Checksum	LS checksum (Fletcher checksum of the complete contents of the link state   advertisement).   Length   Network Mask   Length in bytes of the link state advertisement.   Network mask implemented.   Attached Router List of routers attached to the network, by IP address.

The following is sample output from the showipospfdatabasecommand with the routerkeyword:

```
Device#show ip ospf database router
OSPF Router with id(192.168.239.66) (Process ID 300)
Displaying Router Link States(Area 0.0.0.0)
LS age: 1176
Options: (No TOS-capability)
LS Type: Router Links
Link State ID: 172.16.21.6
Advertising Router: 172.16.21.6
LS Seq Number: 80002CF6
Checksum: 0x73B7
Length: 120
AS Boundary Router
155 Number of Links: 8
Link connected to: another Router (point-to-point)
(link ID) Neighboring Router ID: 172.16.21.5
(Link Data) Router Interface address: 172.16.21.6
Number of TOS metrics: 0
TOS 0 Metrics: 2
```

The table below describes the significant fields shown in the display.

## Table 178: show ip ospf database router Field Descriptions

Field	Description
OSPF Router with id	Router ID number.
Process ID	OSPF process ID.
LS age	Link state age.


Field	Description
Options	Type of service options (Type 0 only).
LS Type	Link state type.
Link State ID	Link state ID.
Advertising Router	Advertising router's ID.
LS Seq Number	Link state sequence (detects old or duplicate link state advertisements).
Checksum	LS checksum (Fletcher checksum of the complete contents of the link state   advertisement).   Length   Length in bytes of the link state advertisement.   Number of Links   Number of active links.   link ID   Link Data   TOS   Router interface address. T Type of service metric (Type 0 only).

The following is sample output from showipospfdatabasecommand with the summarykeyword:

```
Device#show ip ospf database summary
 OSPF Router with id(192.168.239.66) (Process ID 300)
 Displaying Summary Net Link States(Area 0.0.0.0)
LS age: 1401
Options: (No TOS-capability)
LS Type: Summary Links(Network)
Link State ID: 172.16.240.0 (summary Network Number)
Advertising Router: 172.16.241.5
LS Seq Number: 80000072
Checksum: 0x84FF
Length: 28
Network Mask: 255.255.255.0 TOS: 0 Metric: 1
```

The table below describes the significant fields shown in the display.

## Table 179: show ip ospf database summary Field Descriptions

Field	Description
OSPF Router with id	Router ID number.
Process ID	OSPF process ID.
LS age	Link state age.
Options	Type of service options (Type 0 only).
LS Type	Link state type.


Field	Description
Link State ID	Link state ID (summary network number).
Advertising Router	Advertising router's ID.
LS Seq Number	Link state sequence (detects old or duplicate link state advertisements).
Checksum	LS checksum (Fletcher checksum of the complete contents of the link state   advertisement).
Length	Length in bytes of the link state advertisement.
Network Mask	Network mask implemented.
TOS	Type of service.
Metric	Link state metric.

The following is sample output from showipospfdatabasecommand with the database-summarykeyword:

Device\#show ip ospf database database-summary			
OSPF Router with ID (10.0.0.1)	(Process ID 1)		
Area 0 database summary			
LSA Type	Count	Delete	Maxage
Router	3	0	0
Network	0	0	0
Summary Net	0	0	0
Summary ASBR	0	0	0
Type-7 Ext	0	0	0
Self-originated Type-7	0		
Opaque Link	0	0	0
Opaque Area	0	0	0
Subtotal	3	0	0
Process 1 database summary			
LSA Type	Count	Delete	Maxage
Router	3	0	0
Network	0	0	0
Summary Net	0	0	0
Summary ASBR	0	0	0
Type-7 Ext	0	0	0
Opaque Link	0	0	0
Opaque Area	0	0	0
Type-5 Ext	0	0	0
Self-originated Type-5	200		
Opaque AS	0	0	0
Total	203	0	0

The table below describes the significant fields shown in the display.
Table 180: show ip ospf database database-summary Field Descriptions

Field	Description
Area 0 database summary	Area number.
Count	Count of LSAs of the type identified in the first column.


Field	Description
Router	Number of router link state advertisements in that area.
Network	Number of network link state advertisements in that area.
Summary Net	Number of summary link state advertisements in that area.
Summary ASBR	Number of summary autonomous system boundary router (ASBR) link state   advertisements in that area.
Type-7 Ext	Type-7 LSA count.
Self-originated Type-7	Self-originated Type-7 LSA.
Opaque Link	Type-9 LSA count.
Opaque Area	Type-10 LSA count
Subtotal	Sum of LSAs for that area.
Delete	Number of link state advertisements that are marked "Deleted" in that area.
Maxage	Number of link state advertisements that are marked "Maxaged" in that area.
Process 1 database summary	Database summary for the process.
Count	Count of LSAs of the type identified in the first column.
Router	Number of router link state advertisements in that process.
Network	Number of network link state advertisements in that process.
Summary Net	Number of summary link state advertisements in that process.
Summary ASBR	Number of summary autonomous system boundary router (ASBR) link state   advertisements in that process.
Tuper of link state advertisements that are marked "Maxaged" in that process.	
Type-7 Ext	Type-7 LSA count.
Opaque Link	Type-9 LSA count.
Opaque Area	Type-10 LSA count.
Type-5 Ext	Type-5 LSA count.
Self-Originated Type-5	
Delete	Type-11 LSA
Maxage	AS count.

## show ip ospf interface

To display interface information related to Open Shortest Path First (OSPF), use the show ip ospf interface command in user EXEC or privileged EXEC mode.
show ip [ospf] [process-id] interface [type number] [brief] [multicast] [topology \{topology-name | base $\}$ ]

Syntax Description

process-id	(Optional) Process ID number. If this argument is included, only information for   the specified routing process is included. The range is 1 to 65535.
type	(Optional) Interface type. If the type argument is included, only information for   the specified interface type is included.
number	(Optional) Interface number. If the number argument is included, only information   for the specified interface number is included.
brief	(Optional) Displays brief overview information for OSPF interfaces, states,   addresses and masks, and areas on the device.
multicast	(Optional) Displays multicast information.
topology topology-name	(Optional) Displays OSPF-related information about the named topology instance.
topology base	(Optional) Displays OSPF-related information about the base topology.

Command Modes

Command History

User EXEC (>)
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\overline{\text { Examples }}$
The following is sample output from the show ip ospf interface command when Ethernet interface
$0 / 0$ is specified:

```
Device#show ip ospf interface ethernet 0/0
Ethernet0/0 is up, line protocol is up
 Internet Address 192.168.254.202/24, Area 0
 Process ID 1, Router ID 192.168.99.1, Network Type BROADCAST, Cost: 10
 Topology-MTID Cost Disabled Shutdown Topology Name
 0 10 no no Base
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 192.168.99.1, Interface address 192.168.254.202
 Backup Designated router (ID) 192.168.254.10, Interface address 192.168.254.10
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:05
 Supports Link-local Signaling (LLS)
 Cisco NSF helper support enabled
```

```
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 192.168.254.10 (Backup Designated Router)
Suppress hello for 0 neighbor(s)
```

In Cisco IOS Release 12.2(33)SRB, the following sample output from the show ip ospf interface brief topology VOICE command shows a summary of information, including a confirmation that the Multitopology Routing (MTR) VOICE topology is configured in the interface configuration:

Device\#show ip ospf interface brief topology VOICE						
VOICE Topology (MTID 10)						
Interface	PID	Area	IP Address/Mask	Cost	State Nbrs F/C	
Lo0	1	0	$10.0 .0 .2 / 32$	1	LOOP	$0 / 0$
Se2/0	1	0	$10.1 .0 .2 / 30$	10	P2P	$1 / 1$

The following sample output from the show ip ospf interface brief topology VOICE command displays details of the MTR VOICE topology for the interface. When the command is entered without the brief keyword, more information is displayed.

```
Device\#show ip ospf interface topology VOICE
 VOICE Topology (MTID 10)
Loopback0 is up, line protocol is up
 Internet Address 10.0.0.2/32, Area 0
 Process ID 1, Router ID 10.0.0.2, Network Type LOOPBACK
 Topology-MTID Cost Disabled Shutdown Topology Name
 101 no no VOICE
 Loopback interface is treated as a stub Host Serial2/0 is up, line protocol is up
 Internet Address 10.1.0.2/30, Area 0
 Process ID 1, Router ID 10.0.0.2, Network Type POINT_TO_POINT
 Topology-MTID Cost Disabled Shutdown Topology Name
 10 no no VOICE
 Transmit Delay is 1 sec , State POINT TO_POINT
 Timer intervals configured, Hello 10, Dēad 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:03
 Supports Link-local Signaling (LLS)
 Cisco NSF helper support enabled
 IETF NSF helper support enabled
 Index \(1 / 1\), flood queue length 0
 Next \(0 x 0(0) / 0 x 0(0)\)
 Last flood scan length is 1 , maximum is 1
 Last flood scan time is 0 msec , maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.0.0.1
 Suppress hello for 0 neighbor(s)
```

In Cisco IOS Release 12.2(33)SRC, the following sample output from the show ip ospf interface command displays details about the configured Time-to-Live (TTL) limits:

```
Device#show ip ospf interface ethernet 0
•
```



```
Strict TTL checking enabled
! or a message similar to the following is displayed
Strict TTL checking enabled, up to 4 hops allowed
```

The table below describes the significant fields shown in the displays.
Table 181: show ip ospf interface Field Descriptions

Field	Description
Ethernet	Status of the physical link and operational status of the protocol.
Process ID	OSPF process ID.
Area	OSPF area.
Cost	Administrative cost assigned to the interface.
State	Operational state of the interface.
Nbrs F/C	Interface IP address, subnet mask, and area address.
Internet Address	MTR topology Multitopology Identifier (MTID). A number assigned   so that the protocol can identify the topology associated with   information that it sends to its peers.
Topology-MTID	Transmit delay in seconds, interface state, and device priority.
Transmit Delay	Designated router ID and respective interface IP address.
Designated Router	Backup designated router ID and respective interface IP address.
Backup Designated router	Configuration of timer intervals.
Timer intervals configured	Number of seconds until the next hello packet is sent out this   interface.
Hello	Only one hop is allowed.
Strict TTL checking enabled	A set number of hops has been explicitly configured.
Strict TTL checking enabled, up to 4   hops allowed	Neighbor Count

## show ip ospf neighbor

To display Open Shortest Path First (OSPF) neighbor information on a per-interface basis, use the showipospfneighbor command in privileged EXEC mode.
show ip ospf neighbor [interface-type interface-number] [neighbor-id] [detail] [summary [per-instance] ]

## Syntax Description

interface-type interface-number	(Optional) Type and number associated with a specific OSPF interface.
neighbor-id	(Optional) Neighbor hostname or IP address in A.B.C.D format.
detail	(Optional) Displays all neighbors given in detail (lists all neighbors).
summary	(Optional) Displays total number summary of all neighbors.
per-instance	(Optional) Displays total number of neighbors in each neighbor state. The   output is printed for each configured OSPF instance separately.

## Command Modes

## Command History

## Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

The following sample output from the show ip ospf neighbor command shows a single line of summary information for each neighbor:

Device\#show ip ospf neighbor					
Neighbor ID	Pri	State	Dead Time	Address	Interface
10.199 .199 .137	1	FULL/DR	$0: 00: 31$	192.168 .80 .37	Ethernet0
172.16 .48 .1	1	FULL/DROTHER	$0: 00: 33$	172.16 .48 .1	Fddi0
172.16 .48 .200	1	FULL/DROTHER	$0: 00: 33$	172.16 .48 .200	Fddi0
10.199 .199 .137	5	FULL/DR	$0: 00: 33$	172.16 .48 .189	Fddi0

The following is sample output showing summary information about the neighbor that matches the neighbor ID:

```
Device#show ip ospf neighbor 10.199.199.137
Neighbor 10.199.199.137, interface address 192.168.80.37
 In the area 0.0.0.0 via interface Ethernet0
 Neighbor priority is 1, State is FULL
 Options 2
 Dead timer due in 0:00:32
 Link State retransmission due in 0:00:04
Neighbor 10.199.199.137, interface address 172.16.48.189
 In the area 0.0.0.0 via interface Fddi0
 Neighbor priority is 5, State is FULL
 Options 2
 Dead timer due in 0:00:32
```

If you specify the interface along with the neighbor ID, the system displays the neighbors that match the neighbor ID on the interface, as in the following sample display:

```
Device#show ip ospf neighbor ethernet 0 10.199.199.137
Neighbor 10.199.199.137, interface address 192.168.80.37
 In the area 0.0.0.0 via interface Ethernet0
 Neighbor priority is 1, State is FULL
 Options 2
 Dead timer due in 0:00:37
 Link State retransmission due in 0:00:04
```

You can also specify the interface without the neighbor ID to show all neighbors on the specified interface, as in the following sample display:

Device\#show ip ospf	neighbor fddi 0					
ID		Pri	State	Dead Time	Address	Interface
172.16 .48 .1	1	FULL/DROTHER	$0: 00: 33$	172.16 .48 .1	Fddi0	
172.16 .48 .200	1	FULL/DROTHER	$0: 00: 32$	172.16 .48 .200	Fddi0	
10.199 .199 .137	5	FULL/DR	$0: 00: 32$	172.16 .48 .189	Fddi0	

The following is sample output from the show ip ospf neighbor detail command:

```
Device#show ip ospf neighbor detail
Neighbor 192.168.5.2, interface address 10.225.200.28
 In the area 0 via interface GigabitEthernet1/0/0
 Neighbor priority is 1, State is FULL, 6 state changes
 DR is 10.225.200.28 BDR is 10.225.200.30
 Options is 0x42
 LLS Options is 0x1 (LR), last OOB-Resync 00:03:08 ago
 Dead timer due in 00:00:36
 Neighbor is up for 00:09:46
 Index 1/1, retransmission queue length 0, number of retransmission 1
 First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec
```

The table below describes the significant fields shown in the displays.

## Table 182: show ip ospf neighbor detail Field Descriptions

Field	Description
Neighbor	Neighbor router ID.
interface address	IP address of the interface.
In the area	Area and interface through which the OSPF neighbor is known.
Neighbor priority	Router priority of the neighbor and neighbor state.
State	OSPF state. If one OSPF neighbor has enabled TTL security, the other   side of the connection will show the neighbor in the INIT state.


Field	Description
state changes	Number of state changes since the neighbor was created. This value can   be reset using the clearipospfcountersneighbor command.
DR is	Router ID of the designated router for the interface.
BDR is	Router ID of the backup designated router for the interface.
Options	Hello packet options field contents. (E-bit only. Possible values are 0 and   $2 ; 2$ indicates area is not a stub; 0 indicates area is a stub.)
LLS Options..., last OOB-Resync	Link-Local Signaling and out-of-band (OOB) link-state database   resynchronization performed hours:minutes:seconds ago. This is nonstop   forwarding (NSF) information. The field indicates the last successful   out-of-band resynchronization with the NSF-capable router.
Dead timer due in	Expected time in hours:minutes:seconds before Cisco IOS software will   declare the neighbor dead.
Neighbor is up for	Number of hours:minutes:seconds since the neighbor went into the   two-way state.
Index	Neighbor location in the area-wide and autonomous system-wide   retransmission queue.
retransmission queue length	Number of elements in the retransmission queue.
Last retransmission scan length	Number of link state advertisements (LSAs) in the last retransmission   packet.
First	Maximum number of LSAs sent in any retransmission packet.
maximum of retransmission	Mumber of times update packets have been re-sent during flooding.
Memory location of the flooding details.	
Maxime taken to build the last retransmission packet.	
Memory location of the flooding details.	
Mam time, in milliseconds, taken to build any retransmission packet.	

The following is sample output from the show ip ospf neighbor command showing a single line of summary information for each neighbor. If one OSPF neighbor has enabled TTL security, the other side of the connection will show the neighbor in the INIT state.

Device\#show ip ospf neighbor					
Neighbor ID	Pri	State	Dead Time	Address	Interface
10.199 .199 .137	1	FULL/DR	$0: 00: 31$	192.168 .80 .37	Ethernet0
172.16 .48 .1	1	FULL/DROTHER	$0: 00: 33$	172.16 .48 .1	Fddi0
172.16 .48 .200	1	FULL/DROTHER	$0: 00: 33$	172.16 .48 .200	Fddi0

```
10.199.199.137 5 FULL/DR 0:00:33 172.16.48.189 Fddi0
172.16.1.201 1 INIT/DROTHER 00.00.35 10.1.1.201 Ethernet0/0
```


## Cisco IOS Release 15.1(3)S

The following sample output from the show ip ospf neighbor command shows the network from the neighbor's point of view:

```
Device#show ip ospf neighbor 192.0.2.1
 OSPF Router with ID (192.1.1.1) (Process ID 1)
 Area with ID (0)
Neighbor with Router ID 192.0.2.1:
 Reachable over:
 Ethernet0/0, IP address 192.0.2.1, cost 10
 SPF was executed 1 times, distance to computing router 10
 Router distance table:
 192.1.1.1 i [10]
 192.0.2.1 i [0]
 192.3.3.3 i [10]
 192.4.4.4 i [20]
 192.5.5.5 i [20]
 Network LSA distance table:
 192.2.12.2 i [10]
 192.2.13.3 i [20]
 192.2.14.4 i [20]
 192.2.15.5 i [20]
```

The following is sample output from the show ip ospf neighbor summary command:

```
Device#show ip ospf neighbor summary
 Neighbor summary for all OSPF processes
\begin{tabular}{ll}
DOWN & 0 \\
ATTEMPT & 0 \\
INIT & 0 \\
2WAY & 0 \\
EXSTART & 0 \\
EXCHANGE & 0 \\
LOADING & 0 \\
FULL & 1 \\
Total count & 1
\end{tabular}
 (Undergoing NSF 0)
```

The following is sample output from the show ip ospf neighbor summary per-instance command:

```
Device#show ip ospf neighbor summary
 OSPF Router with ID (1.0.0.10) (Process ID 1)
\begin{tabular}{ll}
DOWN & 0 \\
ATTEMPT & 0 \\
INIT & 0 \\
2WAY & 0
\end{tabular}
```

```
EXSTART 0
EXCHANGE 0
LOADING 0
FULL 1
Total count 1 (Undergoing NSF 0)
Neighbor summary for all OSPF processes
DOWN 0
ATTEMPT 0
INIT 0
2WAY 0
EXSTART 0
EXCHANGE 0
LOADING 0
FULL 1
Total count 1 (Undergoing NSF 0)
```

Table 183: show ip ospf neighbor summary and show ip ospf neighbor summary per-instance Field Descriptions

Field	Description
DOWN	No information (hellos) has been received from this neighbor, but hello packets can still be   sent to the neighbor in this state.
ATTEMPT	This state is only valid for manually configured neighbors in a Non-Broadcast Multi-Access   (NBMA) environment. In Attempt state, the router sends unicast hello packets every poll   interval to the neighbor, from which hellos have not been received within the dead interval.
INIT	This state specifies that the router has received a hello packet from its neighbor, but the   receiving router's ID was not included in the hello packet. When a router receives a hello   packet from a neighbor, it should list the sender's router ID in its hello packet as an   acknowledgment that it received a valid hello packet.
2WAY	This state designates that bi-directional communication has been established between two   routers.
EXSTART	This state is the first step in creating an adjacency between the two neighboring routers. The   goal of this step is to decide which router is active, and to decide epon the initial DD sequence   number. Neighbor conversations in this state or greater are called adjacencies.
	In this state, OSPF routers exchange database descriptor (DBD) packets. Database descriptors   contain link-state advertisement (LSA) headers only and describe the contents of the entire   link-state database. Each DBD packet has a sequence number which can be incremented only   by the active router which is explicitly acknowledged by the secondary router. Routers also   send link-state request packets and link-state update packets (which contain the entire LSA)   in this state. The contents of the DBD received are compared to the information contained in   the routers link-state database to check if new or more current link-state information is available   with the neighbor.


Field	Description
LOADING	In this state, the actual exchange of link state information occurs. Based on the information   provided by the DBDs, routers send linkk-state request packets. The neighbor then provides   the requested link-state information in likk-state update packets. During the adjacency, if a   device receives an outdated or missing LSA, it requests that LSA by sending a link-state   request packet. All link-state update packets are acknowledged.
FULL	In this state, devices are fully adjacent with each other. All the device and network LSAs are   exchanged and the devices' databases are fully synchronized.
Full is the normal state for an OSPF device. If a device is stuck in another state, it's an indication   that there are problems in forming adjacencies. The only exception to this is the 2-way state,   which is normal in a broadcast network. Devices achieve the full state with their DR and BDR   only. Neighbors always see each other as 2-way.	

## show ip ospf virtual-links

To display parameters and the current state of Open Shortest Path First (OSPF) virtual links, use the showipospfvirtual-links command in EXEC mode.

## show ip ospf virtual-links

Syntax Description
Command Modes

Command History

## Usage Guidelines

## Examples

This command has no arguments or keywords.

EXEC

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The information displayed by the showipospfvirtual-links command is useful in debugging OSPF routing operations.

The following is sample output from the showipospfvirtual-links command:

```
Device#show ip ospf virtual-links
Virtual Link to router 192.168.101.2 is up
Transit area 0.0.0.1, via interface Ethernet0, Cost of using 10
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10,
Hello due in 0:00:08
Adjacency State FULL
```

The table below describes the significant fields shown in the display.
Table 184: show ip ospf virtual-Iinks Field Descriptions

Field	Description
Virtual Link to router 192.168.101.2 is up	Specifies the OSPF neighbor, and if the link to that neighbor is   up or down.
Transit area 0.0.0.1	The transit area through which the virtual link is formed.
via interface Ethernet0	The interface through which the virtual link is formed.
Cost of using 10	The cost of reaching the OSPF neighbor through the virtual link.
Transmit Delay is 1 sec	The transmit delay (in seconds) on the virtual link.
State POINT_TO_POINT	The state of the OSPF neighbor.
Timer intervals...	When the next hello is expected from the neighbor.
Hello due in 0:00:08	The adjacency state between the neighbors.
Adjacency State FULL	

## summary-address (0SPF)

To create aggregate addresses for Open Shortest Path First (OSPF), use the summary-address command in router configuration mode. To restore the default, use the no form of this command.
summary-address commandsummary-address \{ip-address mask|prefix mask\} [not-advertise] [tag tag] [nssa-only]
no summary-address \{ip-address mask|prefix mask\} [not-advertise] [tag tag] [nssa-only]

## Syntax Description

ip-address	Summary address designated for a range of addresses.
mask	IP subnet mask used for the summary route.
prefix	IP route prefix for the destination.
not-advertise	(Optional) Suppresses routes that match the specified prefix/mask pair. This keyword applies   to OSPF only.
tag tag	(Optional) Specifies the tag value that can be used as a "match" value for controlling   redistribution via route maps. This keyword applies to OSPF only.
nssa-only	(Optional) Sets the nssa-only attribute for the summary route (if any) generated for the   specified prefix, which limits the summary to not-so-stubby-area (NSSA) areas.

## Command Default

## Command Modes

## Command History

## Usage Guidelines

This command behavior is disabled by default.
Router configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

R outes learned from other routing protocols can be summarized. The metric used to advertise the summary is the lowest metric of all the more specific routes. This command helps reduce the size of the routing table.

Using this command for OSPF causes an OSPF Autonomous System Boundary Router (ASBR) to advertise one external route as an aggregate for all redistributed routes that are covered by the address. For OSPF, this command summarizes only routes from other routing protocols that are being redistributed into OSPF. Use the area range command for route summarization between OSPF areas.

OSPF does not support the summary-address $\mathbf{0 . 0 . 0 . 0}$ 0.0.0.0command.

In the following example, the summary address 10.1.0.0 includes address 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. Only the address 10.1 .0 .0 is advertised in an external link-state advertisement.

Device(config) \#summary-address 10.1.0.0 255.255.0.0

Related Commands	Command	Description
	area range	Consolidates and summarizes routes at an area boundary.
ip ospf authentication-key	Assigns a password to be used by neighboring routers that are using the simple   password authentication of OSPF.	
ip ospf message-digest-key	Enables OSPF MD5 authentication.	

## timers throttle spf

To turn on Open Shortest Path First ( OSPF) shortest path first (SPF) throttling, use the timers throttle spf command in the appropriate configuration mode. To turn off OSPF SPF throttling, use the no form of this command.
timers throttle spf spf-start spf-hold spf-max-wait no timers throttle spf spf-start spf-hold spf-max-wait

Syntax Description

Command Default

Command Modes

spf-start	Initial delay to schedule an SPF calculation after a change, in milliseconds. Range is from   1 to 600000. In OSPF for IPv6, the default value is 5000.
spf-hold	Minimum hold time between two consecutive SPF calculations, in milliseconds. Range is   from 1 to 600000. In OSPF for IPv6, the default value is $10,000$.
spf-max-wait	Maximum wait time between two consecutive SPF calculations, in milliseconds. Range is   from 1 to 600000. In OSPF for IPv6, the default value is $10,000$.

SPF throttling is not set.

Address family configuration (config-router-af) Router address family topology configuration (config-router-af-topology) Router configuration (config-router) OSPF for IPv6 router configuration (config-rtr)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
The first wait interval between SPF calculations is the amount of time in milliseconds specified by the spf-startargument. Each consecutive wait interval is two times the current hold level in milliseconds until the wait time reaches the maximum time in milliseconds as specified by the spf-max-wait argument. Subsequent wait times remain at the maximum until the values are reset or a link-state advertisement (LSA) is received between SPF calculations.

## Release 12.2(33)SRB

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the timers throttle spf command in router address family topology configuration mode in order to make this OSPF router configuration command become topology-aware.

## Release 15.2(1)T

When you configure the ospfv3 network manet command on any interface attached to the OSPFv3 process, the default values for the spf-start, spf-hold, and the spf-max-wait arguments are reduced to 1000 milliseconds, 1000 milliseconds, and 2000 milliseconds respectively.

## Examples

The following example shows how to configure a router with the delay, hold, and maximum interval values for the timers throttle spf command set at 5,1000 , and 90,000 milliseconds, respectively.

```
router ospf 1
 router-id 10.10.10.2
```

```
log-adjacency-changes
timers throttle spf 5 1000 90000
redistribute static subnets
network 10.21.21.0 0.0.0.255 area 0
network 10.22.22.0 0.0.0.255 area 00
```

The following example shows how to configure a router using IPv6 with the delay, hold, and maximum interval values for the timers throttle spf command set at 500,1000 , and 10,000 milliseconds, respectively.

```
ipv6 router ospf 1
 event-log size 10000 one-shot
 log-adjacency-changes
 timers throttle spf 500 1000 10000
```

Related Commands	Command	Description
ospfv3 network manet	Sets the network type to Mobile Ad Hoc Network (MANET).	


${ }_{\text {рані }} \mathbf{X I}$

## Security

- Security, on page 1551



## Security

- aaa accounting, on page 1555
- aaa accounting dot 1 x , on page 1558
- aaa accounting identity, on page 1560
- aaa authentication dot 1 x , on page 1562
- aaa authorization, on page 1563
- aaa new-model, on page 1567
- access-session mac-move deny, on page 1569
- action, on page 1571
- authentication host-mode, on page 1572
- authentication logging verbose, on page 1574
- authentication mac-move permit, on page 1575
- authentication priority, on page 1577
- authentication violation, on page 1579
- automate-tester idle-time , on page 1581
- automate-tester probe-on, on page 1582
- cisp enable, on page 1583
- clear errdisable interface vlan, on page 1584
- clear mac address-table, on page 1585
- confidentiality-offset, on page 1587
- crypto pki trustpool import, on page 1588
- debug aaa dead-criteria transaction, on page 1591
- debug umbrella, on page 1593
- delay-protection, on page 1594
- deny (MAC access-list configuration), on page 1595
- device-role (IPv6 snooping), on page 1598
- device-role (IPv6 nd inspection), on page 1599
- dnscrypt (Parameter Map), on page 1600
- dot1x critical (global configuration), on page 1601
- dot1x logging verbose, on page 1602
- dot1x max-start, on page 1603
- dot1x pae, on page 1604
- dot 1 x supplicant controlled transient, on page 1605
- dot1x supplicant force-multicast, on page 1606
- dot 1 x test eapol-capable, on page 1607
- dot1x test timeout, on page 1608
- dot1x timeout, on page 1609
- dtls, on page 1611
- enable password, on page 1613
- enable secret, on page 1615
- epm access-control open, on page 1618
- include-icv-indicator, on page 1619
- ip access-list, on page 1620
- ip access-list role-based, on page 1623
- ip admission, on page 1624
- ip admission name, on page 1625
- ip dhcp snooping database, on page 1627
- ip dhcp snooping information option format remote-id, on page 1629
- ip dhcp snooping verify no-relay-agent-address, on page 1630
- ip http access-class, on page 1631
- ip radius source-interface, on page 1633
- ip source binding, on page 1635
- ip ssh source-interface, on page 1636
- ip verify source, on page 1637
- ipv6 access-list, on page 1638
- ipv6 snooping policy, on page 1640
- key chain macsec, on page 1641
- key config-key password-encrypt, on page 1642
- key-server, on page 1644
- limit address-count, on page 1645
- local-domain (Parameter Map), on page 1646
- mab logging verbose, on page 1647
- mab request format attribute 32, on page 1648
- macsec-cipher-suite, on page 1650
- macsec network-link, on page 1652
- match (access-map configuration), on page 1653
- mka pre-shared-key, on page 1655
- mka suppress syslogs sak-rekey, on page 1656
- parameter-map type regex, on page 1657
- parameter-map type umbrella global, on page 1660
- password encryption aes, on page 1661
- pattern (Parameter Map), on page 1663
- permit (MAC access-list configuration), on page 1665
- protocol (IPv6 snooping), on page 1668
- radius server, on page 1669
- radius-server dead-criteria, on page 1671
- radius-server deadtime, on page 1673
- radius-server directed-request, on page 1675
- radius-server domain-stripping, on page 1677
- sak-rekey, on page 1681
- security level (IPv6 snooping), on page 1682
- security passthru, on page 1683
- send-secure-announcements, on page 1684
- server-private (RADIUS), on page 1685
- server-private (TACACS+), on page 1687
- show aaa clients, on page 1689
- show aaa command handler, on page 1690
- show aaa dead-criteria, on page 1691
- show aaa local, on page 1693
- show aaa servers, on page 1695
- show aaa sessions, on page 1696
- show authentication brief, on page 1697
- show authentication history, on page 1700
- show authentication sessions, on page 1701
- show cisp, on page 1704
- show device-tracking capture-policy, on page 1706
- show device-tracking counters, on page 1708
- show device-tracking database, on page 1710
- show device-tracking events, on page 1715
- show device-tracking features, on page 1717
- show device-tracking messages, on page 1718
- show device-tracking policies, on page 1719
- show device-tracking policy, on page 1720
- show dot1x, on page 1721
- show eap pac peer, on page 1723
- show ip access-lists, on page 1724
- show ip dhcp snooping statistics, on page 1727
- show platform software dns-umbrella statistics, on page 1730
- show platform software umbrella switch F0, on page 1731
- show radius server-group, on page 1733
- show storm-control, on page 1735
- show tech-support acl, on page 1737
- show tech-support identity, on page 1741
- show umbrella, on page 1750
- show vlan access-map, on page 1752
- show vlan filter, on page 1753
- show vlan group, on page 1754
- ssci-based-on-sci, on page 1755
- storm-control, on page 1756
- switchport port-security aging, on page 1759
- switchport port-security mac-address, on page 1761
- switchport port-security maximum, on page 1764
- switchport port-security violation, on page 1766
- tacacs server, on page 1768
- tls, on page 1769
- token (Parameter Map), on page 1771
- tracking (IPv6 snooping), on page 1772
- trusted-port, on page 1774
- umbrella, on page 1775
- use-updated-eth-header, on page 1776
- username, on page 1777
- vlan access-map, on page 1782
- vlan dot1Q tag native, on page 1784
- vlan filter, on page 1785
- vlan group, on page 1786


## aaa accounting

To enable authentication, authorization, and accounting (AAA) accounting of requested services for billing or security purposes when you use RADIUS or TACACS+, use the aaa accounting command in global configuration mode. To disable AAA accounting, use the no form of this command.
aaa accounting \{auth-proxy | system | network | exec | connections | commands level\} \{default | list-name\} \{start-stop | stop-only | none\} [broadcast] group group-name no aaa accounting \{auth-proxy | system | network | exec | connections | commands level\} \{default | list-name\} \{start-stop | stop-only | none\} [broadcast] group group-name

## Syntax Description

auth-proxy	Provides information about all authenticated-proxy user events.
system	Performs accounting for all system-level events not associated with users, such as reloads.
network	Runs accounting for all network-related service requests.
exec	Runs accounting for EXEC shell session. This keyword might return user profile   information such as what is generated by the autocommand command.
connection	Provides information about all outbound connections made from the network access server.
commands   level	Runs accounting for all commands at the specified privilege level. Valid privilege level   entries are integers from 0 through 15.
default	Uses the listed accounting methods that follow this argument as the default list of methods   for accounting services.
list-name	Character string used to name the list of at least one of the accounting methods described   in
start-stop	Sends a "start" accounting notice at the beginning of a process and a "stop" accounting   notice at the end of a process. The "start" accounting record is sent in the background. The   requested user process begins regardless of whether the "start" accounting notice was   received by the accounting server.
stop-only	Sends a "stop" accounting notice at the end of the requested user process.
none	Disables accounting services on this line or interface.
broadcast	(Optional) Enables sending accounting records to multiple AAA servers. Simultaneously   sends accounting records to the first server in each group. If the first server is unavailable,   fail over occurs using the backup servers defined within that group.
group least one of the keywords described in the AAA Accounting Methods table.	
groupname	At lat

## Command Default

AAA accounting is disabled.

Command Modes

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the aaa accounting command to enable accounting and to create named method lists defining specific accounting methods on a per-line or per-interface basis.

Table 185: AAA Accounting Methods

Keyword	Description
group radius	Uses the list of all RADIUS servers for authentication   as defined by the aaa group server radius command.
group tacacs+	Uses the list of all TACACS+ servers for authentication   as defined by the aaa group server tacacs+ command.
group group-name	Uses a subset of RADIUS or TACACS+ servers for   accounting as defined by the server group group-name.

In AAA Accounting Methods table, the group radius and group tacacs+ methods refer to a set of previously defined RADIUS or TACACS+ servers. Use the radius server and tacacs server commands to configure the host servers. Use the aaa group server radius and aaa group server tacacs+ commands to create a named group of servers.
Cisco IOS XE software supports the following two methods of accounting:

- RADIUS-The network access server reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server.
- TACACS+-The network access server reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server.

Method lists for accounting define the way accounting will be performed. Named accounting method lists enable you to designate a particular security protocol to be used on specific lines or interfaces for particular types of accounting services. Create a list by entering the list-name and the method, where list-name is any character string used to name this list (excluding the names of methods, such as radius or tacacs+) and method identifies the methods to be tried in sequence as given.
If the aaa accounting command for a particular accounting type is issued without a named method list specified, the default method list is automatically applied to all interfaces or lines (where this accounting type applies) except those that have a named method list explicitly defined. (A defined method list overrides the default method list.) If no default method list is defined, then no accounting takes place.

Note System accounting does not use named accounting lists; you can only define the default list for system accounting.

For minimal accounting, include the stop-only keyword to send a stop record accounting notice at the end of the requested user process. For more accounting, you can include the start-stop keyword, so that RADIUS or TACACS+ sends a start accounting notice at the beginning of the requested process and a stop accounting
notice at the end of the process. Accounting is stored only on the RADIUS or TACACS+ server. The none keyword disables accounting services for the specified line or interface.
When AAA accounting is activated, the network access server monitors either RADIUS accounting attributes or TACACS+ AV pairs pertinent to the connection, depending on the security method you have implemented. The network access server reports these attributes as accounting records, which are then stored in an accounting $\log$ on the security server.

Note This command cannot be used with TACACS or extended TACACS.

This example defines a default commands accounting method list, where accounting services are provided by a TACACS+ security server, set for privilege level 15 commands with a stop-only restriction:

```
Device> enable
Device# configure terminal
Device(config)# aaa accounting commands 15 default stop-only group TACACS+
Device(config)# exit
```

This example defines a default auth-proxy accounting method list, where accounting services are provided by a TACACS+ security server with a stop-only restriction. The aaa accounting commands activates authentication proxy accounting.

```
Device> enable
Device# configure terminal
Device(config)# aaa new model
Device(config)# aaa authentication login default group TACACS+
Device(config)# aaa authorization auth-proxy default group TACACS+
Device(config)# aaa accounting auth-proxy default start-stop group TACACS+
Device(config)# exit
```


## aaa accounting dot1x

To enable authentication, authorization, and accounting (AAA) accounting and to create method lists defining specific accounting methods on a per-line or per-interface basis for IEEE 802.1x sessions, use the aaa accounting dot1xcommand in global configuration mode. To disable IEEE 802.1 x accounting, use the no form of this command.

```
aaa accounting dot1x {name | default } start-stop {broadcast group {name | radius | tacacs+}
[group {name | radius | tacacs+} . .] | group {name | radius | tacacs+} [group
{name | radius | tacacs+} . . .] }
no aaa accounting dot1x {name| default }
```


## Syntax Description

name	Name of a server group. This is optional when you enter it after the broadcast group and group   keywords.
default	Specifies the accounting methods that follow as the default list for accounting services.
start-stop	Sends a start accounting notice at the beginning of a process and a stop accounting notice at the   end of a process. The start accounting record is sent in the background. The requested user   process begins regardless of whether or not the start accounting notice was received by the   accounting server.
broadcast	Enables accounting records to be sent to multiple AAA servers and sends accounting records   to the first server in each group. If the first server is unavailable, the device uses the list of   backup servers to identify the first server.
group	Specifies the server group to be used for accounting services. These are valid server group   names:
• name - Name of a server group.	
• radius - Lists of all RADIUS hosts.	
• tacacs+ - Lists of all TACACS+ hosts.	

The group keyword is optional when you enter it after the broadcast group and group keywords. You can enter more than optional group keyword.

radius	(Optional) Enables RADIUS accounting.
tacacs+	(Optional) Enables TACACS+ accounting.


$\overline{\text { Command Default }}$
Command Modes

AAA accounting is disabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines This command requires access to a RADIUS server.

We recommend that you enter the dot1x reauthentication interface configuration command before configuring IEEE 802.1x RADIUS accounting on an interface.

This example shows how to configure IEEE 802.1x accounting:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config) # aaa accounting dot1x default start-stop group radius
Device(config)# exit
```


## aaa accounting identity

To enable authentication, authorization, and accounting (AAA) accounting for IEEE 802.1x, MAC authentication bypass (MAB), and web authentication sessions, use the aaa accounting identity command in global configuration mode. To disable IEEE 802.1x accounting, use the no form of this command.
aaa accounting identity \{name | default \} start-stop \{broadcast group \{name | radius | tacacs+\} [group \{name | radius | tacacs+\} . . . ] | group \{name | radius | tacacs+\} [group \{name | radius | tacacs+\}... ] \}
no aaa accounting identity \{name | default \}

## Syntax Description

name	Name of a server group. This is optional when you enter it after the broadcast group and group   keywords.
default	Uses the accounting methods that follow as the default list for accounting services.
start-stop	Sends a start accounting notice at the beginning of a process and a stop accounting notice at the   end of a process. The start accounting record is sent in the background. The requested-user   process begins regardless of whether or not the start accounting notice was received by the   accounting server.

broadcast Enables accounting records to be sent to multiple AAA servers and send accounting records to the first server in each group. If the first server is unavailable, the switch uses the list of backup servers to identify the first server.
group Specifies the server group to be used for accounting services. These are valid server group names:

- name - Name of a server group.
- radius - Lists of all RADIUS hosts.
- tacacs+ - Lists of all TACACS+ hosts.

The group keyword is optional when you enter it after the broadcast group and group keywords. You can enter more than optional group keyword.
radius (Optional) Enables RADIUS authorization.
tacacs+ (Optional) Enables TACACS + accounting.

Command Default
Command Modes
Command History

## Usage Guidelines

AAA accounting is disabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

To enable AAA accounting identity, you need to enable policy mode. To enable policy mode, enter the authentication display new-style command in privileged EXEC mode.

This example shows how to configure IEEE 802.1x accounting identity:

```
Device# authentication display new-style
Please note that while you can revert to legacy style
configuration at any time unless you have explicitly
entered new-style configuration, the following caveats
should be carefully read and understood.
(1) If you save the config in this mode, it will be written
 to NVRAM in NEW-style config, and if you subsequently
 reload the router without reverting to legacy config and
 saving that, you will no longer be able to revert.
(2) In this and legacy mode, Webauth is not IPv6-capable. It
 will only become IPv6-capable once you have entered new-
 style config manually, or have reloaded with config saved
 in 'authentication display new' mode.
Device# configure terminal
Device(config)# aaa accounting identity default start-stop group radius
Device(config)# exit
```


## aaa authentication dot1x

To specify the authentication, authorization, and accounting (AAA) method to use on ports complying with the IEEE 802.1x authentication, use the aaa authentication dot1x command in global configuration mode. To disable authentication, use the no form of this command.
aaa authentication dot1x $\{$ default $\}$ method 1 no aaa authentication dot $1 \mathbf{x}$ \{default \} method1

## Syntax Description

Command Default
Command Modes
Command History
Usage Guidelines

No authentication is performed.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The method argument identifies the method that the authentication algorithm tries in the specified sequence to validate the password provided by the client. The only method that is IEEE 802.1x-compliant is the group radius method, in which the client data is validated against a RADIUS authentication server.

If you specify group radius, you must configure the RADIUS server by entering the radius-server host global configuration command.

Use the show running-config privileged EXEC command to display the configured lists of authentication methods.

This example shows how to enable AAA and how to create an IEEE 802.1x-compliant authentication list. This authentication first tries to contact a RADIUS server. If this action returns an error, the user is not allowed access to the network.

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# aaa authentication dot1x default group radius
Device(config)# exit
```


## aaa authorization

To set the parameters that restrict user access to a network, use the aaa authorization command in global configuration mode. To remove the parameters, use the no form of this command.

Syntax Description	auth-proxy	Runs authorization for authentication proxy services.
	cache	Configures the authentication, authorization, and accounting (AAA) server.
	commands	Runs authorization for all commands at the specified privilege level.
	level	Specific command level that should be authorized. Valid entries are 0 through 15.
	config-commands	Runs authorization to determine whether commands entered in configuration mode are authorized.
	configuration	Downloads the configuration from the AAA server.
	console	Enables the console authorization for the AAA server.
	credential-download	Downloads EAP credential from Local/RADIUS/LDAP.
	exec	Enables the console authorization for the AAA server.
	multicast	Downloads the multicast configuration from the AAA server.
	network	Runs authorization for all network-related service requests, including Serial Line Internet Protocol (SLIP), PPP, PPP Network Control Programs (NCPs), and AppleTalk Remote Access (ARA).
	reverse-access	Runs authorization for reverse access connections, such as reverse Telnet.
	template	Enables template authorization for the AAA server.
	default	Uses the listed authorization methods that follow this keyword as the default list of methods for authorization.
	list_name	Character string used to name the list of authorization methods.
	methodl [method2...]	(Optional) An authorization method or multiple authorization methods to be used for authorization. A method may be any one of the keywords listed in the table below.


| $\left.\begin{array}{ll}\text { Command Default } & \text { Authorization is disabled for all actions (equivalent to the method keyword none). } \\ \overline{\text { Command Modes }} & \text { Global configuration (config) } \\ & \\ \hline \text { Command History } & \text { Release } \\ & \text { Cisco IOS XE Everest 16.5.1a } \\ & \end{array}\right)$ Modification |
| :--- | :--- | :--- |

## Usage Guidelines

Use the aaa authorization command to enable authorization and to create named methods lists, which define authorization methods that can be used when a user accesses the specified function. Method lists for authorization define the ways in which authorization will be performed and the sequence in which these methods will be performed. A method list is a named list that describes the authorization methods (such as RADIUS or TACACS+) that must be used in sequence. Method lists enable you to designate one or more security protocols to be used for authorization, which ensures a backup system in case the initial method fails. Cisco IOS XE software uses the first method listed to authorize users for specific network services; if that method fails to respond, the Cisco IOS XE software selects the next method listed in the method list. This process continues until there is successful communication with a listed authorization method, or until all the defined methods are exhausted.

The Cisco IOS XE software attempts authorization with the next listed method only when there is no response from the previous method. If authorization fails at any point in this cycle--meaning that the security server or the local username database responds by denying the user services--the authorization process stops and no other authorization methods are attempted.

If the aaa authorization command for a particular authorization type is issued without a specified named method list, the default method list is automatically applied to all interfaces or lines (where this authorization type applies) except those that have a named method list explicitly defined. (A defined method list overrides the default method list.) If no default method list is defined, then no authorization takes place. The default authorization method list must be used to perform outbound authorization, such as authorizing the download of IP pools from the RADIUS server.

Use the aaa authorization command to create a list by entering the values for the list-name and the method arguments, where list-name is any character string used to name this list (excluding all method names) and method identifies the list of authorization methods tried in the given sequence.

Note In the table that follows, the groupgroup-name, group ldap, group radius, and group tacacs+ methods refer to a set of previously defined RADIUS or TACACS+ servers. Use the radius server and tacacs server commands to configure the host servers. Use the aaa group server radius, aaa group server ldap, and aaa group server tacacs+ commands to create a named group of servers.

This table describes the method keywords.

## Table 186: aaa authorization Methods

Keyword	Description
cache group-name	Uses a cache server group for authorization.


Keyword	Description
group group-name	Uses a subset of RADIUS or TACACS+ servers for   accounting as defined by the server group   group-name command.
group ldap	Uses the list of all Lightweight Directory Access   Protocol (LDAP) servers for authentication.
group radius	Uses the list of all RADIUS servers for authentication   as defined by the aaa group server radius command.
grouptacacs+	Uses the list of all TACACS+ servers for   authentication as defined by the aaa group server   tacacs+ command.
if-authenticated	Allows the user to access the requested function if the   user is authenticated.   The if-authenticated method is a   terminating method. Therefore, if it is   listed as a method, any methods listed   after it will never be evaluated.
note	Uses the local database for authorization.
nocal	Indicates that no authorization is performed.

Cisco IOS XE software supports the following methods for authorization:

- Cache Server Groups-The device consults its cache server groups to authorize specific rights for users.
- If-Authenticated-The user is allowed to access the requested function provided the user has been authenticated successfully.
- Local-The device consults its local database, as defined by the username command, to authorize specific rights for users. Only a limited set of functions can be controlled through the local database.
- None-The network access server does not request authorization information; authorization is not performed over this line or interface.
- RADIUS-The network access server requests authorization information from the RADIUS security server group. RADIUS authorization defines specific rights for users by associating attributes, which are stored in a database on the RADIUS server, with the appropriate user.
- TACACS+_The network access server exchanges authorization information with the TACACS + security daemon. TACACS+ authorization defines specific rights for users by associating attribute-value (AV) pairs, which are stored in a database on the TACACS+ security server, with the appropriate user.

Method lists are specific to the type of authorization being requested. AAA supports five different types of authorization:

- Commands-Applies to the EXEC mode commands a user issues. Command authorization attempts authorization for all EXEC mode commands, including global configuration commands, associated with a specific privilege level.
- EXEC-Applies to the attributes associated with a user EXEC terminal session.
- Network-Applies to network connections. The network connections can include a PPP, SLIP, or ARA connection.
- Reverse Access-Applies to reverse Telnet sessions.
- Configuration-Applies to the configuration downloaded from the AAA server.

When you create a named method list, you are defining a particular list of authorization methods for the indicated authorization type.

Once defined, the method lists must be applied to specific lines or interfaces before any of the defined methods are performed.

The authorization command causes a request packet containing a series of AV pairs to be sent to the RADIUS or TACACS daemon as part of the authorization process. The daemon can do one of the following:

- Accept the request as is.
- Make changes to the request.
- Refuse the request and authorization.

For a list of supported RADIUS attributes, see the module RADIUS Attributes. For a list of supported TACACS+ AV pairs, see the module TACACS+ Attribute-Value Pairs.

Note Five commands are associated with privilege level 0: disable, enable, exit, help, and logout. If you configure AAA authorization for a privilege level greater than 0 , these five commands will not be included in the privilege level command set.

The following example shows how to define the network authorization method list named mygroup, which specifies that RADIUS authorization will be used on serial lines using PPP. If the RADIUS server fails to respond, local network authorization will be performed.

```
Device> enable
Device# configure terminal
Device(config)# aaa authorization network mygroup group radius local
Device(config)# exit
```


## aaa new-model

To enable the authentication, authorization, and accounting (AAA) access control model, issue the aaa new-model command in global configuration mode. To disable the AAA access control model, use the no form of this command.
aaa new-model
no aaa new-model

Syntax Description
Command Default
AAA is not enabled.
Command Modes Global configuration (config)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

This command enables the AAA access control system.
If the login local command is configured for a virtual terminal line (VTY), and the aaa new-model command is removed, you must reload the switch to get the default configuration or the login command. If the switch is not reloaded, the switch defaults to the login local command under the VTY.

Note We do not recommend removing the aaa new-model command.

## Examples

The following example initializes AAA:

```
Device> enable
Device# configure terminal
Device(config) # aaa new-model
Device(config) # exit
```

The following example shows a VTY configured and the aaa new-model command removed:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# line vty 0 15
Device(config-line)# login local
Device(config-line) # exit
Device(config)# no aaa new-model
Device(config)# exit
Device# show running-config | b line vty
line vty 0 4
 login local !<=== Login local instead of "login"
line vty 5 15
 login local
```

Related Commands	Command
Description	
	Enables AAA accounting of requested services for billing or security   purposes.
authentication arap	Enables an AAA authentication method for ARAP using TACACS+.
aaa authentication enable default	Enables AAA authentication to determine if a user can access the   privileged command level.
aaa authentication login	Sets AAA authentication at login.
aaa authentication ppp	Specifies one or more AAA authentication method for use on serial   interfaces running PPP.
aaa authorization	Sets parameters that restrict user access to a network.

## access-session mac-move deny

To disable MAC move on a device, use the access-session mac-move deny global configuration command. To return to the default setting, use the no form of this command.
access-session mac-move deny no access-session mac-move deny

Syntax Description
This command has no arguments or keywords.

Command Default
Command Modes
Command History

MAC move is enabled.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

The no form of this command enables authenticated hosts to move between any authentication-enabled ports (MAC authentication bypass [MAB], 802.1 x , or Web-auth) on a device. For example, if there is a device between an authenticated host and port, and that host moves to another port, the authentication session is deleted from the first port, and the host is reauthenticated on the new port.

If MAC move is disabled, and an authenticated host moves to another port, it is not reauthenticated, and a violation error occurs.

This example shows how to enable MAC move on a device:

```
Device> enable
Device# configure terminal
Device(config) # no access-session mac-move deny
Device(config) # exit
```


## Related Commands

Command	Description
authentication event	Sets the action for specific authentication events.
authentication fallback	Configures a port to use web authentication as a fallback   authentication.
authentication host-mode	Sets the authorization manager mode on a port.
authentication open	Enables or disables open access on a port.
authentication order	Sets the order of authentication methods used on a port.
authentication periodic	Enables or disables reauthentication on a port.
authentication port-control	Enables manual control of the port authorization state.
authentication priority	Adds an authentication method to the port-priority list.


Command	Description
authentication timer	Configures the timeout and reauthentication parameters for a
authentication violation	Configures the violation modes that occur when a new device   to a port with the maximum number of devices already conne
show authentication	Displays information about authentication manager events on

## action

To set the action for the VLAN access map entry, use the action command in access-map configuration mode. To return to the default setting, use the no form of this command.

```
action{drop | forward}
no action
```


## Syntax Description

Command Default
Command Modes

## Command History

drop	Drops the packet when the specified conditions are matched.
forward	Forwards the packet when the specified conditions are matched.
The default action is to forward packets.	
Access-map configuration (config-access-map)	
Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

You enter access-map configuration mode by using the vlan access-map global configuration command.
If the action is drop, you should define the access map, including configuring any access control list (ACL) names in match clauses, before applying the map to a VLAN, or all packets could be dropped.
In access-map configuration mode, use the match access-map configuration command to define the match conditions for a VLAN map. Use the action command to set the action that occurs when a packet matches the conditions.

The drop and forward parameters are not used in the no form of the command.
You can verify your settings by entering the show vlan access-map privileged EXEC command.
Examples
This example shows how to identify and apply a VLAN access map (vmap4) to VLANs 5 and 6 that causes the VLAN to forward an IP packet if the packet matches the conditions defined in access list al2:

```
Device> enable
Device# configure terminal
Device(config)# vlan access-map vmap4
Device(config-access-map)# match ip address al2
Device(config-access-map) # action forward
Device(config-access-map) # exit
Device(config)# vlan filter vmap4 vlan-list 5-6
Device(config)# exit
```


## authentication host-mode

To set the authorization manager mode on a port, use the authentication host-mode command in interface configuration mode. To return to the default setting, use the no form of this command.
authentication host-mode \{multi-auth | multi-domain |multi-host | single-host \} no authentication host-mode

## Syntax Description

multi-auth	Enables multiple-authorization mode (multi-auth mode) on the   port.
multi-domain	Enables multiple-domain mode on the port.
multi-host	Enables multiple-host mode on the port.
single-host	Enables single-host mode on the port.


Command Default
Command Modes
Command History

Single host mode is enabled.
Interface configuration (config-if)

## Release

Cisco IOS XE Everest 16.5.1a

Single-host mode should be configured if only one data host is connected. Do not connect a voice device to authenticate on a single-host port. Voice device authorization fails if no voice VLAN is configured on the port.
Multi-domain mode should be configured if data host is connected through an IP phone to the port. Multi-domain mode should be configured if the voice device needs to be authenticated.

Multi-auth mode should be configured to allow devices behind a hub to obtain secured port access through individual authentication. Only one voice device can be authenticated in this mode if a voice VLAN is configured.
Multi-host mode also offers port access for multiple hosts behind a hub, but multi-host mode gives unrestricted port access to the devices after the first user gets authenticated.

This example shows how to enable multi-auth mode on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if) # authentication host-mode multi-auth
Device(config-if)# end
```

This example shows how to enable multi-domain mode on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if) # authentication host-mode multi-domain
Device(config-if)# end
```

This example shows how to enable multi-host mode on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if) # authentication host-mode multi-host
Device(config-if)# end
```

This example shows how to enable single-host mode on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if) # authentication host-mode single-host
Device(config-if)# end
```

You can verify your settings by entering the show authentication sessions interface interface details privileged EXEC command.

## authentication logging verbose

To filter detailed information from authentication system messages, use the authentication logging verbose command in global configuration mode on the switch stack or on a standalone switch.
authentication logging verbose no authentication logging verbose

Syntax Description	This command has no arguments or keywords.	
Command Default	Detailed logging of system messages is not enabled.	
Command Modes	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

This command filters details, such as anticipated success, from authentication system messages. Failure messages are not filtered.

To filter verbose authentication system messages:

```
Device> enable
Device# configure terminal
Device(config)# authentication logging verbose
Device(config)# exit
```

You can verify your settings by entering the show running-config privileged EXEC command.

## Related Commands

Command	Description
authentication logging verbose	Filters details fro
dot1x logging verbose	Filters details fro
mab logging verbose	Filters details fro

## authentication mac-move permit

To enable MAC move on a device, use the authentication mac-move permit command in global configuration mode. To disable MAC move, use the no form of this command.
authentication mac-move permit no authentication mac-move permit

Syntax Description
This command has no arguments or keywords.

Command Default
Command Modes
Command History

MAC move is disabled.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The command enables authenticated hosts to move between any authentication-enabled ports (MAC authentication bypass [MAB], 802.1x, or Web-auth) on a device. For example, if there is a device between an authenticated host and port, and that host moves to another port, the authentication session is deleted from the first port, and the host is reauthenticated on the new port.
If MAC move is disabled, and an authenticated host moves to another port, it is not reauthenticated, and a violation error occurs.

This example shows how to enable MAC move on a device:

```
Device> enable
Device# configure terminal
Device(config) # authentication mac-move permit
Device(config)# exit
```


## Related Commands

Command	Description
authentication priority	Adds an authentication method to the port-priority l
authentication timer	Configures the timeout and reauthentication parame
authentication violation	Configures the violation modes that occur when a   device connects to a port with the maximum numbe
show authentication	Displays information about authentication manager

## authentication priority

To add an authentication method to the port-priority list, use the authentication priority command in interface configuration mode. To return to the default, use the no form of this command.
authentication priority [dot1x | mab] \{webauth\} no authentication priority [dot1x | mab] \{webauth\}

## Syntax Description

dot1x	(Optional) Adds 802.1 x to the order of authentication methods.
mab	(Optional) Adds MAC authentication bypass (MAB) to the order of authenti   methods.
webauth	Adds web authentication to the order of authentication methods.


Command Default	The default priority is 802.1 x authentication, followed by MAC authentication bypass and web authentication.
Command Modes	Interface configuration (config-if)
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.
Usage Guidelines	Ordering sets the order of methods that the device attempts when trying to authenticate a new device is connected to a port.
	When configuring multiple fallback methods on a port, set web authentication (webauth) last.
	Assigning priorities to different authentication methods allows a higher-priority method to interrupt an in-progress authentication method with a lower priority.

Note If a client is already authenticated, it might be reauthenticated if an interruption from a higher-priority method occurs.

The default priority of an authentication method is equivalent to its position in execution-list order: 802.1 x authentication, MAC authentication bypass (MAB), and web authentication. Use the dot1x, mab, and webauth keywords to change this default order.

This example shows how to set 802.1 x as the first authentication method and web authentication as the second authentication method:

Device(config-if) \# authentication priority dot1x webauth

This example shows how to set MAB as the first authentication method and web authentication as the second authentication method:

```
Device> enable
Device# configure terminal
```

Device(config)\# interface gigabitethernet 0/1/2
Device(config-if) \# authentication priority mab webauth
Device(config-if) \# end

## Related Commands

Command	Description
authentication control-direction	Configures the port mode as unidirectional or bidirectional.
authentication event fail	Specifies how the Auth Manager handles authentication failures as a
authentication event no-response action	Specifies how the Auth Manager handles authentication failures as a
authentication event server alive action   reinitialize	Reinitializes an authorized Auth Manager session when a previously   and accounting server becomes available.
authentication event server dead action   authorize	Authorizes Auth Manager sessions when the authentication, authoriza   unreachable.
authentication fallback	Enables a web authentication fallback method.
authentication host-mode	Allows hosts to gain access to a controlled port.
authentication open	Enables open access on a port.
authentication order	Specifies the order in which the Auth Manager attempts to authentica
authentication periodic	Enables automatic reauthentication on a port.
authentication port-control	Configures the authorization state of a controlled port.
authentication timer inactivity	Configures the time after which an inactive Auth Manager session is
authentication timer reauthenticate	Specifies the period of time between which the Auth Manager attemp
authentication timer restart	Specifies the period of time after which the Auth Manager attempts to
authentication violation	Specifies the action to be taken when a security violation occurs on a
mab	Displays information about the Auth Manager for a given interface.
show authentication registrations authentication bypass on a port.	

## authentication violation

To configure the violation modes that occur when a new device connects to a port or when a new device connects to a port after the maximum number of devices are connected to that port, use the authentication violation command in interface configuration mode.
authentication violation \{ protect | replace | restrict | shutdown \} no authentication violation \{ protect | replace | restrict | shutdown \}

## Syntax Description

protect	Drops unexpected incoming MAC addresses. No syslog errors are   generated.
replace	Removes the current session and initiates authentication with the   new host.
restrict	Generates a syslog error when a violation error occurs.
shutdown	Error-disables the port or the virtual port on which an unexpected   MAC address occurs.

Authentication violation shutdown mode is enabled.
Interface configuration (config-if)

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines Use the authentication violation command to specify the action to be taken when a security violation occurs on a port.

This example shows how to configure an IEEE 802.1x-enabled port as error-disabled and to shut down when a new device connects it:

```
Device> enable
Device# configure terminal
Device(config) # interface gigabitethernet 2/0/1
Device(config-if)# authentication violation shutdown
Device(config-if) # end
```

This example shows how to configure an 802.1 x -enabled port to generate a system error message and to change the port to restricted mode when a new device connects to it:

```
Device> enable
Device# configure terminal
Device(config) # interface gigabitethernet 2/0/1
Device(config-if)# authentication violation restrict
Device(config-if) # end
```

This example shows how to configure an 802.1 x -enabled port to ignore a new device when it connects to the port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if) # authentication violation protect
Device(config-if)# end
```

This example shows how to configure an 802.1 x -enabled port to remove the current session and initiate authentication with a new device when it connects to the port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication violation replace
Device(config-if) # end
```

You can verify your settings by entering the show running-config interface interface-name command.

## automate-tester idle-time

To enable automated testing feature for a RADIUS server, use the automate-tester command in RADIUS server configuration mode. To disable automated testing feature, use the no form of this command.
automate-tester username user [ ignore-auth-port ] [ ignore-acct-port ] [ idle-time minutes ] [ vrf vrf-name ]
no automate-tester username user [ ignore-auth-port ] [ ignore-acct-port ] [ idle-time minutes ] [ vrf vrf-name ]

username	Specifies the automated test user ID username.
ignore-auth-port	(Optional) Disables testing on the User Datagram   Protocol (UDP) port for the RADIUS authentication   server.
ignore-acct-port	(Optional) Disables testing on the UDP port for the   RADIUS accounting server.
idle-time	(Optional) Specifies the time, in minutes, for which   the server remains idle before it is quarantined and   test packets are sent out. The timer is periodic. Test   packets are sent out after every idle-time period   expires. The default value is 60 minutes.
vrf	(Optional) Specifies the non-default interface VRF   for automated testing.

## Command Default

Command Modes

Usage Guidelines

Automated testing is disabled by default.
RADIUS server configuration (config-radius-server)

Release	Modification
Cisco IOS XE Bengaluru 17.4.1	The command was introduced.

Use the automate-tester command to enable automated testing on the RADIUS server accounting and authentication UDP ports for RADIUS server load balancing.

Use the vrf keyword to specify the non-default VRF to be used for RADIUS automated testing.

The following example shows how to enable automated testing for a non-default VRF on the RADIUS server:

Device(config) \#radius server myserver
Device(config-radius-server) \#address ipv4 192.0.2.1 auth-port 1812 acct-port 1813 Device(config-radius-server) \#automate-tester username user1 idle-time 2 vrf VRF1 Device(config-radius-server) \#end

## automate-tester probe-on

To enable automated testing for a RADIUS server and to verify the status of the server, use the automate-tester probe-on command in RADIUS server configuration mode. To disable the automated testing feature, use the no form of this command.
automate-tester username user [ ignore-auth-port ] [ ignore-acct-port ] [ probe-on ] [ vrf vrf-name ]
no automate-tester username user [ ignore-auth-port ] [ ignore-acct-port ] [ probe-on ] [ vrf vrf-name ]

## Syntax Description

## Command Default

Command Modes

## Usage Guidelines

username	Specifies the automated test user ID username.
ignore-auth-port	(Optional) Disables testing on the User Datagram   Protocol (UDP) port for the RADIUS authentication   server.
ignore-acct-port	(Optional) Disables testing on the UDP port for the   RADIUS accounting server.
probe-on	(Optional) Verifies the status of the server by sending   a test packet. Test packets are sent only when the   server is in the Dead state. Once the server is in the   Up state the packets are not sent.
vrf	(Optional) Specifies the non-default interface VRF   for automated testing.

Automated testing is disabled by default.
RADIUS server configuration (config-radius-server)

Release	Modification
Cisco IOS XE Bengaluru 17.4.1	The command was introduced.

Use the automate-tester command to enable automated testing on the RADIUS server accounting and authentication UDP ports for RADIUS server load balancing.

Use the vrf keyword to specify the non-default VRF to be used for RADIUS automated testing.
The following example shows how to enable automated testing for a non-default VRF on the RADIUS server:

Device(config) \#radius server myserver
Device(config-radius-server) \#address ipv4 192.0 .2 .1 auth-port 1812 acct-port 1813 Device(config-radius-server) \#automate-tester username userl probe-on vrf VRF1 Device(config-radius-server) \#end

## cisp enable

To enable Client Information Signaling Protocol (CISP) on a device so that it acts as an authenticator to a supplicant device and a supplicant to an authenticator device, use the cisp enable global configuration command.
cisp enable no cisp enable
Syntax Description

This command has no arguments or keywords.


No default behavior or values.
Global configuration (config)

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

The link between the authenticator and supplicant device is a trunk. When you enable VTP on both devices, the VTP domain name must be the same, and the VTP mode must be server.

To avoid the MD5 checksum mismatch error when you configure VTP mode, verify that:

- VLANs are not configured on two different devices, which can be caused by two VTP servers in the same domain.
- Both devices have different configuration revision numbers.

This example shows how to enable CISP:

```
Device> enable
Device# configure terminal
Device(config) # cisp enable
Device(config) # exit
```


## Related Commands

Command	Description
dot1x credentialsprofile	Configures a profile on a supplicant device.
dot1x supplicant force-multicast	Forces 802.1X supplicant to send multicast pa
dot1x supplicant controlled transient	Configures controlled access by 802.1X suppli
show cisp	Displays CISP information for a specified inte

## clear errdisable interface vlan

To reenable a VLAN that was error-disabled, use the clear errdisable interface command in privileged EXEC mode.
clear errdisable interface interface-id vlan [vlan-list]

## Syntax Description

interface-id	Specifies an interface.
vlan list	(Optional) Specifies a list of VLANs to be reenabled. If a


Command Default	No default behavior or values.	
Command Modes	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

## Examples

## Related Commands

Command	Description
errdisable detect cause	Enables error-disabled detection fo
errdisable recovery	Configures the recovery mechanis
show errdisable detect	Displays error-disabled detection s
show errdisable recovery	Displays error-disabled recovery ti
show interfaces status err-disabled	Displays interface status of a list o

## clear mac address-table

To delete from the MAC address table a specific dynamic address, all dynamic addresses on a particular interface, all dynamic addresses on stack members, or all dynamic addresses on a particular VLAN, use the clear mac address-table command in privileged EXEC mode. This command also clears the MAC address notification global counters.
clear mac address-table \{dynamic [address mac-addr | interface interface-id | vlan vlan-id] | move update | notification \}

## Syntax Description

\section*{| Command Default |
| :--- |
| Command Modes |
| Command History |}

Usage Guidelines

dynamic	Deletes all dynamic MAC addresses.
address mac-addr	(Optional) Deletes the specified dynamic MAC add
interface interface-id	(Optional) Deletes all dynamic MAC addresses on t
vlan vlan-id	(Optional) Deletes all dynamic MAC addresses for
move update	Clears the MAC address table move-update counter
notification	Clears the notifications in the history table and reset

No default behavior or values.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You can verify that the information was deleted by entering the show mac address-table command.
This example shows how to remove a specific MAC address from the dynamic address table:
Device> enable
Device\# clear mac address-table dynamic address 0008.0070.0007

Command	Description
mac address-table notification	Enables the MAC address notification feature.
mac address-table move update $\{$ receive   $\mid$ transmit $\}$	Configures MAC address-table move update on the device.
show mac address-table	Displays the MAC address table static and dynamic entries.
show mac address-table move update	Displays the MAC address-table move update information on the   device.


Command	Description
show mac address-table notification	Displays the MAC address notification settings for all interfaces   or on the specified interface when the interface keyword is   appended.
snmp trap mac-notification change	Enables the SNMP MAC address notification trap on a specific   interface.

## confidentiality-offset

To enable MACsec Key Agreement protocol (MKA) to set the confidentiality offset for MACsec operations, use the confidentiality-offset command in MKA-policy configuration mode. To disable confidentiality offset, use the no form of this command.
confidentiality-offset
no confidentiality-offset

Syntax Description
Command Default
Command Modes
Command History

This command has no arguments or keywords.
Confidentiality offset is disabled.
MKA-policy configuration (config-mka-policy)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

The following example shows how to enable the confidentiality offset:

```
Device> enable
Device# configure terminal
Device(config)# mka policy 2
Device(config-mka-policy)# confidentiality-offset
```

Related Commands

Command	Description
mka policy	Configures an MKA policy.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
sak-rekey	Configures the SAK rekey interval.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## crypto pki trustpool import

To manually import (download) a certificate authority (CA) certificate bundle into a public key infrastructure (PKI) trustpool to update or replace an existing CA bundle, use the crypto pki trustpool import command in global configuration mode. To remove any of the configured parameters, use the no form of this command.
crypto pki trustpool import \{ca-bundle |clean [\{terminal|urlurl\}]|terminal|urlurl\} no crypto pki trustpool import \{ca-bundle |clean [\{terminal|url url\}]|terminal|urlurl\}

## Syntax Description

## Command Default

## Command Modes

## Command History

ca-bundle Imports a CA certificate bundle configured in the trustpool policy.
clean Removes all the downloaded PKI trustpool certificates before the new certificates are downloaded. Use the optional terminal keyword to remove the existing CA certificate bundle terminal setting, or the url keyword and url argument to remove the URL file system setting.
terminal Import a CA certificate bundle through the terminal (cut-and-paste) in privacy-enhanced mail (PEM) format.
url url Imports a CA certificate bundle through the specified URL.

The PKI trustpool feature is enabled. The device uses the built-in CA certificate bundle in the PKI trustpool, which is updated automatically.

Global configuration (config)

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

PKI trustpool certificates are automatically updated. When the PKI trustpool certificates are not current, use the crypto pki trustpool import command to update them from another location.

Note Security threats, as well as the cryptographic technologies that help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Cryptography white paper.

The $u r l$ argument specifies or changes the URL file system of the CA. The following table lists the available URL file systems.

Table 187: URL File Systems

File System	Description
archive:	Imports from the archive file system.
cns:	Imports from the Cluster Namespace (CNS) file system.
disk0:	Imports from the disc0 file system.


File System	Description
disk1:	Imports from the discl file system.
ftp:	Imports from the FTP file system.
http:	Imports from the HTTP file system. The URL must be in the following formats:   - http://CAname:80, where CAname is the Domain Name System (DNS)   - http://ipv4-address:80, for example: http://10.10.10.1:80.   - http://[ipv6-address]:80, for example: http://[2001:DB8:1:1::1]:80. The IPv6 address is a hexadecimal notation, and must be enclosed within brackets in the URL.
https:	Imports from the HTTPS file system. The URL must use the same format as the HTTP: file system format.
null:	Imports from the null file system.
nvram:	Imports from the NVRAM file system.
pram:	Imports from the Parameter Random-access Memory (PRAM) file system.
rcp:	Imports from the remote copy protocol (RCP) file system.
scp:	Imports from the secure copy protocol (SCP) file system.
snmp:	Imports from the Simple Network Management Protocol (SNMP).
system:	Imports from the system file.
tar:	Imports from the UNIX TAR file system.
tftp:	Imports from the TFTP file system.   Note   The URL must be in the form: tftp://CAname/filespecification.
tmpsys:	Imports from the Cisco IOS tmpsys file system.
unix:	Imports from the UNIX file system.
xmodem:	Imports from the xmodem simple file transfer protocol system.
ymodem:	Imports from the ymodem simple file transfer protocol system.

## Examples

The following example shows how to remove all the downloaded PKI trustpool CA certificates and subsequently update the CA certificates in the PKI trustpool by downloading a new CA certification bundle:

```
Device> enable
Device# configure terminal
Device(config)# crypto pki trustpool import clean
```

The following example shows how to update all the CA certificates in the PKI trustpool by downloading a new CA certification bundle without removing all the downloaded PKI trustpool CA certificates:

Device(config)\# crypto pki trustpool import url http://www.cisco.com/security/pki/trs/ios.p7b

Related Commands	Command	Description
crypto pki trustpool policy	Configures PKI trustpool policy   parameters.	
	Displays the PKI trustpool   certificates of the device, and   optionally shows the PKI trustpool   policy.	

## debug aaa dead-criteria transaction

To display authentication, authorization, and accounting (AAA) dead-criteria transaction values, use the debugaaadead-criteriatransactioncommand in privileged EXEC mode. To disable dead-criteria debugging, use the no form of this command.
debug aaa dead-criteria transaction
no debug aaa dead-criteria transaction
Syntax Description
Command Default
Command Modes
Privileged EXEC (\#)

## Command History

Release	Modification
Cisco IOS XE Everest   16.5.1a	This command was introduced.

## Usage Guidelines

Dead-criteria transaction values may change with every AAA transaction. Some of the values that can be displayed are estimated outstanding transaction, retransmit tries, and dead-detect intervals. These values are explained in the table below.

## Examples

The following example shows dead-criteria transaction information for a particular server group:

```
Device> enable
Device# debug aaa dead-criteria transaction
AAA Transaction debugs debugging is on
*Nov 14 23:44:17.403: AAA/SG/TRANSAC: Computed Retransmit Tries: 10, Current Tries: 3,
Current Max Tries: 10
*Nov 14 23:44:17.403: AAA/SG/TRANSAC: Computed Dead Detect Interval: 10s, Elapsed Time:
317s, Current Max Interval: 10s
*Nov 14 23:44:17.403: AAA/SG/TRANSAC: Estimated Outstanding Transaction: 6, Current Max
Transaction: 6
```

The table below describes the significant fields shown in the display.

Table 188: debug aaa dead-criteria transaction Field Descriptions

Field	Description
AAA/SG/TRANSAC	AAA server-group transaction.
Computed Retransmit Tries	Currently computed number of retransmissions before the server is   marked as dead.
Current Tries	Number of successive failures since the last valid response.
Current Max Tries	Maximum number of tries since the last successful transaction.


Field	Description
Computed Dead Detect Interval	Period of inactivity (the number of seconds since the last successful   transaction) that can elapse before the server is marked as dead. The   period of inactivity starts when a transaction is sent to a server that is   considered live. The dead-detect interval is the period that the device   waits for responses from the server before the device marks the server   as dead.
Elapsed Time	Amount of time that has elapsed since the last valid response.
Current Max Interval	Maximum period of inactivity since the last successful transaction.
Estimated Outstanding Transaction	Estimated number of transaction that are associated with the server.
Current Max Transaction	Maximum transaction since the last successful transaction.


Related Commands	Command	Description
	radius-server dead-criteria	Forces one or both of the criteria, used to mark a RADIUS server as dead,   to be the indicated constant.
show aaa dead-criteria	Displays dead-criteria detection information for an AAA server.	

## debug umbrella

To enable debugging of the Cisco Umbrella Integration feature, use the debug umbrella command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug umbrella \{config | device-registration | dnscrypt | redundancy\} no debug umbrella \{config | device-registration | dnscrypt | redundancy\}
Syntax Description

Command Default
Command Modes
Command History

## Examples

The following example shows how to enable Cisco Umbrella configuration debugging:

```
Device> enable
Device# debug umbrella config
Umbrella config debugging is on
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/12
Device(config-if) # umbrella in test
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:Umbrella token configured, so set mode as TOKEN
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:check user configured resolver count
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:Umbrella interface with no direct cloud access
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:Umbrella mandatory parameter 'token' or
'api-key/secret/orgid' configured
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:Processing is umbrella enabled check
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:Is umbrella enabled check failed:sw idb info not found
*Nov 27 08:34:41.088: UMBRELLA-CONFIG:Send the interface info to device registration proces
*Nov 27 08:34:41.089: UMBRELLA-CONFIG:Add interface GigabitEthernet1/0/12 request sent to
DP
*Nov 27 08:34:41.089: UMBRELLA-CONFIG:Configured 'umbrella in test' on interface
GigabitEthernet1/0/12
*Nov 27 08:34:41.089: UMBRELLA-CONFIG:Cannot add domain patterns to DSA: Nothing to add
```


## delay-protection

To configure MKA to use delay protection in sending MACsec Key Agreement Protocol Data Units (MKPDUs), use the delay-protection command in MKA-policy configuration mode. To disable delay protection, use the no form of this command.

## delay-protection

no delay-protection

Syntax Description

## Command Default

## Command Modes

Command History

## Examples

Related Commands

The following example shows how to configure MKA to use delay protection in sending MKPDUs:

```
Device> enable
Device# configure terminal
Device(config)# mka policy 2
```

Device(config-mka-policy) \# delay-protection

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
sak-rekey	Configures the SAK rekey interval.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## deny (MAC access-list configuration)

To prevent non-IP traffic from being forwarded if the conditions are matched, use the deny command in MAC access-list extended configuration mode. To remove a deny condition from the named MAC access list, use the no form of this command.

|  | deny \{any \| host src-MAC-addr | src-dst-MAC-addr mask\} [type mask | aarp diagnostic | dsm | etype-6000 | etype-mop-dump | msdos | mumps | net no deny \{any | host src-MAC-addr | src-lis dst-MAC-addr mask\} [type mask | aarp diagnostic | dsm | etype-6000 | etype-mop-dump | msdos | mumps | net | host dst-MAC-addr \| <br> dec-spanning \| decnet-iv <br> Isap lsap mask \| mop-console vines-ip | xns-idp][ $\cos \cos ]$ any \| host $d s t$-MAC-addr dec-spanning \| decnet-iv Isap lsap mask | mop-console vines-ip | xns-idp][ $\cos \cos ]$ |
| :---: | :---: | :---: |
| Syntax Description | any | Denies any source or destination MAC addre |
|  | host src-MAC-addr \| src-MAC-addr mask | Defines a host MAC address and optional sub matches the defined address, non-IP traffic fr |
|  | host dst-MAC-addr \| dst-MAC-addr mask | Defines a destination MAC address and optio a packet matches the defined address, non-IP |
|  | type mask | (Optional) Specifies the EtherType number of to identify the protocol of the packet. |
|  |  | The type is 0 to 65535, specified in hexadeci |
|  |  | The mask is a mask of don't care bits applied |
|  | aarp | (Optional) Specifies EtherType AppleTalk Ad address to a network address. |
|  | amber | (Optional) Specifies EtherType DEC-Amber. |
|  | appletalk | (Optional) Specifies EtherType AppleTalk/Et |
|  | dec-spanning | (Optional) Specifies EtherType Digital Equip |
|  | decnet-iv | (Optional) Specifies EtherType DECnet Phas |
|  | diagnostic | (Optional) Specifies EtherType DEC-Diagno |
|  | dsm | (Optional) Specifies EtherType DEC-DSM. |
|  | etype-6000 | (Optional) Specifies EtherType 0x6000. |
|  | etype-8042 | (Optional) Specifies EtherType 0x8042. |
|  | lat | (Optional) Specifies EtherType DEC-LAT. |
|  | lave-sca | (Optional) Specifies EtherType DEC-LAVC- |


Isap lsap-number mask	(Optional) Specifies the LSAP number (0 to 655   identify the protocol of the packet.   mask is a mask of don't care bits applied to the L
mop-console	(Optional) Specifies EtherType DEC-MOP Rems
mop-dump	(Optional) Specifies EtherType DEC-MOP Dum
msdos	(Optional) Specifies EtherType DEC-MSDOS.
mumps	(Optional) Specifies EtherType DEC-MUMPS.
netbios	(Optional) Specifies EtherType DEC- Network B
vines-echo	(Optional) Specifies EtherType Virtual Integratec
Banyan Systems.	
vines-ip	(Optional) Specifies EtherType VINES IP.
(Ons-idp	(Optional) Specifies EtherType Xerox Network S   an arbitrary EtherType in decimal, hexadecimal,
cos cos	(Optional) Specifies a class of service (CoS) num
	CoS can be performed only in hardware. A warnin
is configured.	


Command Default
Command Modes
Command History
Usage Guidelines

This command has no defaults. However, the default action for a MAC-named ACL is to deny.
MAC-access list extended configuration (config-ext-macl)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You enter MAC-access list extended configuration mode by using the mac access-list extended global configuration command.

If you use the host keyword, you cannot enter an address mask; if you do not use the host keyword, you must enter an address mask.

When an access control entry (ACE) is added to an access control list, an implied deny-any-any condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.
To filter IPX traffic, you use the type mask or lsap lsap mask keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS XE terminology are listed in the table.

Table 189: IPX Filtering Criteria

IPX Encapsulation Type		Filter Criterion
Cisco IOS XE Name	Novel Name	
arpa	Ethernet-snap	EtherType 0x8137
snap	Ethernet 802.2	LSAP 0xE0E0
sap	Ethernet 802.3	LSAP 0xFFFF
novell-ether		

This example shows how to define the named MAC extended access list to deny NETBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is denied.

```
Device> enable
Device# configure terminal
Device(config) # mac access-list extended mac_layer
Device(config-ext-macl)# deny any host 00c0.00a0.03fa netbios.
Device(config-ext-macl) # end
```

This example shows how to remove the deny condition from the named MAC extended access list:

```
Device> enable
Device# configure terminal
Device(config) # mac access-list extended mac_layer
Device(config-ext-macl)# no deny any 00c0.00a0.03fa 0000.0000.0000 netbios.
Device(config-ext-macl)# end
```

The following example shows how to deny all packets with EtherType 0x4321:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended mac_layer
Device(config-ext-macl)# deny any any 0x4321 0
Device(config-ext-macl) # end
```

You can verify your settings by entering the show access-lists privileged EXEC command.


Command	Description
mac access-list extended	Creates an access list based on MAC addresses
permit	Permits from the MAC access-list configuratio   Permits non-IP traffic to be forwarded if condit
show access-lists	Displays access control lists configured on a de

## device-role (IPv6 snooping)

To specify the role of the device attached to the port, use the device-role command in IPv6 snooping configuration mode. To remove the specification, use the no form of this command.
device-role \{node | switch\}
no device-role \{node | switch\}

Syntax Description    node Sets the role of the attached device to node.    switch Sets the role of the attached device to device.		
Command Default The device role is node.    Command Modes IPv6 snooping configuration (config-ipv6-snooping)    Release Modification	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines The device-role command specifies the role of the device attached to the port. By default, the device role is node.

The switch keyword indicates that the remote device is a switch and that the local switch is now operating in multiswitch mode; binding entries learned from the port will be marked with trunk_port preference level. If the port is configured as a trust-port, binding entries will be marked with trunk_trusted_port preference level.

This example shows how to define an IPv6 snooping policy name as policy1, place the device in IPv6 snooping configuration mode, and configure the device as the node:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping) # device-role node
Device(config-ipv6-snooping)# end
```


## device-role (IPv6 nd inspection)

To specify the role of the device attached to the port, use the device-role command in neighbor discovery (ND) inspection policy configuration mode.

	device-role \{host \| switch \}	
Syntax Description	host Sets the role of the attached device to host.	
	switch	Sets the role of the attached device to switch.
Command Default	The device role is host.	
Command Modes	ND inspection policy configuration (config-nd-inspection)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
The device-role command specifies the role of the device attached to the port. By default, the device role is host, and therefore all the inbound router advertisement and redirect messages are blocked.

The switch keyword indicates that the remote device is a switch and that the local switch is now operating in multiswitch mode; binding entries learned from the port will be marked with trunk_port preference level. If the port is configured as a trust-port, binding entries will be marked with trunk_trusted_port preference level.

The following example defines a Neighbor Discovery Protocol (NDP) policy name as policy1, places the device in ND inspection policy configuration mode, and configures the device as the host:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 nd inspection policy policy1
Device(config-nd-inspection) # device-role host
Device(config-nd-inspection) # end
```


## dnscrypt (Parameter Map)

To enable Domain Name System (DNS) packet encryption for authenticating communications between a Cisco device and the Cisco Umbrella Integration feature, use the dnscrypt command in parameter-map type inspect configuration mode. To disable DNS packet encryption, use the no form of this command.
dnscrypt
no dnscrypt
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

| Command Default  <br> DNS packet encyrption for umbrella mode is not configured.  <br> Command Modes Parameter-map type inspect configuration (config-profile) <br> Command History Release <br>  Cisco IOS XE Amsterdam 17.1.1 | Modification |
| :--- | :--- | :--- |

## Usage Guidelines

When DNSCrypt is used, the DNS request packets' size is more than 512 bytes. Ensure that these packets are allowed through the intermediary devices; otherwise, the response may not reach the intended recipients.

## Examples

The following example shows how to enable DNS packet encryption:

## Device> enable

Device\# configure terminal
Device(config) \# parameter-map type umbrella global
Device(config-profile) \# dnscrypt

Related Commands

Command	Description
parameter-map type umbrella global	Configures a parameter map type in umbrella mode.

## dot1x critical (global configuration)

To configure the IEEE 802.1X critical authentication parameters, use the dot1x critical command in global configuration mode.
dot1x critical eapol

Syntax Description
eapol Specifies that the switch send an EAPOL-Success message when the device successfully authenticates the critical port.

Command Default
Command Modes

eapol is disabled
Global configuration (config)

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This example shows how to specify that the device sends an EAPOL-Success message when the device successfully authenticates the critical port:

```
Device> enable
Device# configure terminal
Device(config)# dot1x critical eapol
Device(config)# exit
```


## dot1x logging verbose

To filter detailed information from 802.1x system messages, use the dot1x logging verbose command in global configuration mode on a device stack or on a standalone device.
dot1x logging verbose
no dot1x logging verbose

Syntax Description	This command has no arguments or keywords.
Command Default	Detailed logging of system messages is not enabled.
Command Modes	Global configuration (config)
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.
Usage Guidelines	This command filters details, such as anticipated success, from 802.1 x system messages. Failure messages are not filtered.
	The following example shows how to filter verbose 802.1 x system messages:
	Device> enable
	Device\# configure terminal
	Device(config) \# dot1x logging verbose   Device(config) \# exit

## Related Commands

Command	Description
authentication logging verbose	Filters details from authentication sys
dot1x logging verbose	Filters details from $802.1 x$ system me
mab logging verbose	Filters details from MAC authenticati

## dot1x max-start

To set the maximum number of Extensible Authentication Protocol over LAN (EAPOL) start frames that a supplicant sends (assuming that no response is received) to the client before concluding that the other end is 802.1X unaware, use the dot1x max-start command in interface configuration mode. To remove the maximum number-of-times setting, use the no form of this command.
dot1x max-start number no dot1x max-start

Syntax Description

Command Default
Command Modes
Command History
number Maximum number of times that the router sends an EAPOL start frame. The value is from 1 to 10 . The default is 3 .

The default maximum number setting is 3 .
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You must enter the switchport mode access command on a switch port before entering this command.
The following example shows that the maximum number of EAPOL Start requests has been set to 5:

```
Device> enable
```

Device\# configure terminal
Device(config) \# interface gigibitethernet 1/0/3
Device (config-if) \# dot1x max-start 5
Device(config-if) \# end

## dot1x pae

## Syntax Description

supplicant The interface acts only as a supplicant and will not respond to messages that are meant for an authenticator.
authenticator The interface acts only as an authenticator and will not respond to any messages meant for a supplicant.

Command Default
Command Modes
Command History

## Usage Guidelines

PAE type is not set.

Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the no dot1x pae interface configuration command to disable IEEE 802.1x authentication on the port.
When you configure IEEE 802.1x authentication on a port, such as by entering the dot1x port-control interface configuration command, the device automatically configures the port as an IEEE 802.1x authenticator. After the no dot1x pae interface configuration command is entered, the Authenticator PAE operation is disabled.

The following example shows that the interface has been set to act as a supplicant:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/3
Device(config-if)# dot1x pae supplicant
Device(config-if)# end
```


## dot1x supplicant controlled transient

To control access to an 802.1x supplicant port during authentication, use the dot1x supplicant controlled transient command in global configuration mode. To open the supplicant port during authentication, use the no form of this command
dot 1x supplicant controlled transient no dot1x supplicant controlled transient

This command has no arguments or keywords.

Access is allowed to 802.1 x supplicant ports during authentication.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
In the default state, when you connect a supplicant device to an authenticator switch that has BPCU guard enabled, the authenticator port could be error-disabled if it receives a Spanning Tree Protocol (STP) bridge protocol data unit (BPDU) packets before the supplicant switch has authenticated. You can control traffic exiting the supplicant port during the authentication period. Entering the dot1x supplicant controlled transient command temporarily blocks the supplicant port during authentication to ensure that the authenticator port does not shut down before authentication completes. If authentication fails, the supplicant port opens. Entering the no dot1x supplicant controlled transient command opens the supplicant port during the authentication period. This is the default behavior.

We recommend using the dot1x supplicant controlled transient command on a supplicant device when BPDU guard is enabled on the authenticator switch port with the spanning-tree bpduguard enable interface configuration command.

This example shows how to control access to 802.1 x supplicant ports on a device during authentication:

```
Device> enable
Device# configure terminal
Device(config) # dot1x supplicant controlled transient
Device(config) # exit
```


## dot1x supplicant force-multicast

	To force a supplicant switch to send only multicast Extensible Authentication Protocol over LAN (EAPOL) packets whenever it receives multicast or unicast EAPOL packets, use the dot1x supplicant force-multicast command in global configuration mode. To return to the default setting, use the no form of this command.   dot1x supplicant force-multicast   no dot1x supplicant force-multicast
Syntax Description	This command has no arguments or keywords.
Command Default	The supplicant device sends unicast EAPOL packets when it receives unicast EAPOL packets. Similarly, it sends multicast EAPOL packets when it receives multicast EAPOL packets.
Command Modes	Global configuration (config)
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.
Usage Guidelines	Enable this command on the supplicant device for Network Edge Access Topology (NEAT) to work in all host modes.
	This example shows how force a supplicant device to send multicast EAPOL packets to the authenticator device:
	Device> enable
	Device\# configure terminal
	Device(config)\# dot1x supplicant force-multicast Device(config) \# end

## Related Commands

Command	Description
cisp enable	Enables CISP on a device so that it act
dot1x credentials	Configures the 802.1 x supplicant cred
dot1x pae supplicant	Configures an interface to act only as

## dot1x test eapol-capable

To monitor IEEE 802.1x activity on all the switch ports and to display information about the devices that are connected to the ports that support IEEE 802.1 x , use the dot1x test eapol-capable command in privileged EXEC mode.
dot1x test eapol-capable [interface interface-id]

Syntax Description

Command Default
Command Modes

## Command History

interface interface-id
(Optional) Port to be queried.

There is no default setting.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines Use this command to test the IEEE 802.1x capability of the devices connected to all ports or to specific ports on a switch.

There is not a no form of this command.
This example shows how to enable the IEEE 802.1 x readiness check on a switch to query a port. It also shows the response received from the queried port verifying that the device connected to it is IEEE 802.1x-capable:

```
Device> enable
Device# dot1x test eapol-capable interface gigabitethernet1/0/13
DOT1X_PORT_EAPOL_CAPABLE:DOT1X: MAC 00-01-02-4b-f1-a3 on gigabitethernet1/0/13 is EAPOL
capable
```

Command	Description
dot1x test timeout timeout	Configures the timeout used t   readiness query.

## dot1x test timeout

To configure the timeout used to wait for EAPOL response from a port being queried for IEEE 802.1 x readiness, use the dot1x test timeout command in global configuration mode.
dot1x test timeout timeout

## Syntax Description

Command Default
Command Modes

Command Modes

Command History

## Usage Guidelines

timeout
Time in seconds to wait for an EAPOL response. The range is from 1 to 65535 seconds.

The default setting is 10 seconds.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use this command to configure the timeout used to wait for EAPOL response.
There is not a no form of this command.
This example shows how to configure the switch to wait 27 seconds for an EAPOL response:

```
Device> enable
Device# dot1x test timeout 27
```

You can verify the timeout configuration status by entering the show running-config command.

## Related Commands

Command	Description
dot1x test eapol-capable [interface   interface-id]	Checks for IEEE 802.1x readiness on devices connected to all   or to specified IEEE 802.1x-capable ports.

## dot1x timeout

To configure the value for retry timeouts, use the dot $1 \mathbf{x}$ timeout command in global configuration or interface configuration mode. To return to the default value for retry timeouts, use the no form of this command.


Syntax Description

auth-period seconds	Configures the time, in seconds for which a supplicant will stay in   the HELD state (that is, the length of time it will wait before trying   to send the credentials again after a failed attempt).   The range is from 1 to 65535 . The default is 30.
held-period seconds	Configures the time, in seconds for which a supplicant will stay in   the HELD state (that is, the length of time it will wait before trying   to send the credentials again after a failed attempt).
The range is from 1 to 65535. The default is 60	


server-timeout seconds	Configures the interval, in seconds, between two successive   EAPOL-Start frames when they are being retransmitted.		
• The range is from 1 to 65535 . The default is 30.			If the server does not send a response to an 802.1 X packet within
:---			
the specified period, the packet is sent again.			

The range is from 1 to 65535 . The default is 30 .
supp-timeout seconds
Sets the authenticator-to-supplicant retransmission time for all EAP messages other than EAP Request ID.

The range is from 1 to 65535 . The default is 30 .
tx-period seconds

Configures the number of seconds between retransmission of EAP request ID packets (assuming that no response is received) to the client.

- The range is from 1 to 65535 . The default is 30 .
- If an 802.1X packet is sent to the supplicant and the supplicant does not send a response after the retry period, the packet will be sent again.


## Command Default

## Command Modes

## Command History

## Usage Guidelines

Periodic reauthentication and periodic rate-limiting are done.
Global configuration (config)
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.
The dot1x timeout reauth-period interface configuration command affects the behavior of the device only if you have enabled periodic re-authentication by using the dot1x reauthentication interface configuration command.

During the quiet period, the device does not accept or initiate any authentication requests. If you want to provide a faster response time to the user, enter a number smaller than the default.

When the ratelimit-period is set to 0 (the default), the device does not ignore EAPOL packets from clients that have been successfully authenticated and forwards them to the RADIUS server.

The following example shows that various 802.1X retransmission and timeout periods have been set:

```
Device> enable
Device(config)# configure terminal
Device(config)# interface gigabitethernet 1/0/3
Device(config-if) # dot1x port-control auto
Device(config-if) # dot1x timeout auth-period 2000
Device(config-if) # dot1x timeout held-period 2400
Device(config-if) # dotlx timeout quiet-period 600
Device(config-if)# dot1x timeout start-period 90
Device(config-if) # dot1x timeout supp-timeout 300
Device(config-if)# dot1x timeout tx-period 60
Device(config-if) # dot1x timeout server-timeout }6
Device(config-if)# end
```

To configure Datagram Transport Layer Security (DTLS) parameters, use the dtls command in radius server configuration mode. To return to the default setting, use the no form of this command.
dtls [\{ connectiontimeout connection-timeout-value |idletimeout idle-timeout-value | [\{ ip |ipv6 \}] \{ radius source-interface interface-name | vrf forwarding forwarding-table-name \} | match-server-identity \{ email-address email-address |hostname hostname |ip-address ip-address \}|port port-number | retries number-of-connection-retries | trustpoint \{ client trustpoint name | server trustpoint name \} \}]
no dtls

Syntax Description

Command Default

connectiontimeout connection-timeout-value	(Optional) Configures the DTLS connection timeout value.	
idletimeout idle-timeout-value	(Optional) Configures the DTLS idle timeout value.	
[ip \|ipv6] \{radius source-interface interface-name	vrf forwarding forwarding-table-name\}	(Optional) Configures IP or IPv6 source parameters.
match-server-identity \{email-address email-address hostname host-name \|ip-address ip-address\}	Configures RadSec certification validation parameters.	
port port-number	(Optional) Configures the DTLS port number.	
retries number-of-connection-retries	(Optional) Configures the number of DTLS connection retries.	
trustpoint \{client trustpoint name \| server trustpoint name \}	(Optional) Configures the DTLS trustpoint for the client and the server.	

- The default value of DTLS connection timeout is 5 seconds.
- The default value of DTLS idle timeout is 60 seconds.
- The default DTLS port number is 2083 .
- The default value of DTLS connection retries is 5 .

Command Modes	Radius server configuration (config-radius-server)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.6.1	This command was introduced.
	Cisco IOS XE Gibraltar 16.10.1	The match-server-identity keyword was introduced.
	Cisco IOS XE Amsterdam 17.1.1	The ipv6 keyword was introduced.

## Usage Guidelines

We recommend that you use the same server type, either only Transport Layer Security (TLS) or only DTLS, under an Authentication, Authorization, and Accounting (AAA) server group.

Examples The following example shows how to configure the DTLS connection timeout value to 10 seconds:

```
Device> enable
Device# configure terminal
Device(config)# radius server R1
Device(config-radius-server)# dtls connectiontimeout 10
Device(config-radius-server)# end
```

Related Commands	Command	Description
show aaa servers	Displays information related to the DTLS server.	
clear aaa counters servers radius	Clears the RADIUS DTLS-specific statistics.	
debug radius dtls	Enables RADIUS DTLS-specific debugs.	

## enable password

To set a local password to control access to various privilege levels, use the enable password command in global configuration mode. To remove control access of the local password, use the no form of this command.
enable password [level level] \{[0] unencrypted-password | [ encryption-type] encrypted-password $\}$ no enable password [level level]

## Syntax Description

## Command Default <br> Command Modes <br> Command History

level level

0
(Optional) Specifies an unencrypted cleartext password. The password is conve Algorithm (SHA) 256 secret and is stored in the device.
unencrypted-password
encryption-type
Specifies the password to enter enable mode.
(Optional) Cisco-proprietary algorithm used to encrypt the password. If you spe next argument that you supply must be an encrypted password (a password alrea device). You can specify type 7, which indicates that a hidden password follow
encrypted-password Encrypted password copied from another device configuration.

No password is defined.
Global configuration (config)
Release Modif
Cisco IOS XE Everest 16.5.1a

If neither the enable password command nor the enable secret command is configured, and if a line password is configured for the console, the console line password serves as the enable password for all VTY (Telnet and Secure Shell [SSH]) sessions.
Use enable password command with the level option to define a password for a specific privilege level. After you specify the level and the password, share the password with users who need to access this level. Use the privilege level configuration command to specify the commands that are accessible at various levels.

Typically, you enter an encryption type only if you copy and paste a password that has already been encrypted by a Cisco device, into this command.

## Usage Guidelines

If you specify an encryption type and then enter a cleartext password, you will not be able to re-enter enable mode. You cannot recover a lost password that has been encrypted earlier.

If the service password-encryption command is set, the encrypted form of the password you create with the enable password command is displayed when the more nvram:startup-config command is run.
You can enable or disable password encryption with the service password-encryption command.

An enable password is defined as follows:

- Must contain a combination of numerals from 1 to 25 , and uppercase and lowercase alphanumeric characters.
- Can have leading spaces, but they are ignored. However, intermediate and trailing spaces are recognized.
- Can contain the question mark (?) character if you precede the question mark with the key combination Crtl-V when you create the password, for example, to create the password $a b c ? 123$, do the following:

1. Enter abc.
2. Press Crtl-v.
3. Enter ? $\mathbf{1 2 3}$.

When the system prompt you to enter the enable password command, you need not precede the question mark with Ctrl-V; you can enter abc?123 at the password prompt.

## Examples

The following example shows how to enables the password pswd2 for privilege level 2 :

```
Device> enable
Device# configure terminal
Device(config)# enable password level 2 pswd2
```

The following example shows how to set the encrypted password $\$ 1 \$ 15$ Rkls3LoyxzS8t9, which has been copied from a device configuration file, for privilege level 2 using encryption type 7:

```
Device> enable
Device# configure terminal
Device(config)# enable password level 2 5 1i5Rkls3LoyxzS8t9
```

Command	Description
enable secret	Specifies an additional layer of security over the enable pas
service password-encryption	Encrypts a password.
more nvram:startup-config	Displays the startup configuration file contained in NVRAM   CONFIG_FILE environment variable.
privilege level	Sets the privilege level for the user.

## enable secret

To specify an additional layer of security over the enable password command, use the enable secret command in global configuration mode. To turn off the enable secret function, use the no form of this command.
enable secret [level level] \{[0] unencrypted-password | encryption-type encrypted-password $\}$ no enable secret [level level] [encryption-type encrypted-password]

Syntax Description
level level
(Optional) Specifies the level for which the password is applicable. You can spec levels, using numerals 1 through 15 . Level 1 is normal user EXEC mode privilege in the command or in the no form of the command, the privilege level defaults to

0
(Optional) Specifies an unencrypted cleartext password. The password is conver Algorithm (SHA) 256 secret and is stored in the device.
unencrypted-password
encryption-type

Specifies the password for users to enter enable mode. This password should be dift created with the enable password command.

Cisco-proprietary algorithm used to hash the password:

- 5: Specifies a message digest algorithm 5-encrypted (MD5-encrypted) secr
- 8: Specifies a Password-Based Key Derivation Function 2 (PBKDF2) with
- 9: Specifies a scrypt-hashed secret.

Hashed password that is copied from another device configuration.

No password is defined.
Global configuration (config)
Release Modif

Cisco IOS XE Everest 16.5.1a

If neither the enable password command or the enable secret command is configured, and if a line password is configured for the console, the console line password serves as the enable password for all vty (Telnet and Secure Shell [SSH]) sessions.
Use the enable secret command to provide an additional layer of security over the enable password password. The enable secret command provides better security by storing the password using a nonreversible cryptographic function. The additional layer of security encryption is useful in environments where the password is sent to the network or is stored on a TFTP server.

Typically, you enter an encryption type only when you paste an encrypted password that you copied from a device configuration file, into this command.

If you specify an encryption type and then enter a cleartext password, you will not be able to reenter enable mode. You cannot recover a lost password that has been encrypted earlier.

If you use the same password for the enable password and enable secret commands, you receive an error message warning that this practice is not recommended, but the password will be accepted. By using the same password, however, you undermine the additional security the enable secret command provides.

After you set a password using the enable secret command, a password set using the enable password command works only if the enable secret is disabled. Additionally, you cannot recover a lost password that has been encrypted by any method.

If the service password-encryption command is set, the encrypted form of the password you create is displayed when the more nvram:startup-config command is run.

You can enable or disable password encryption with the service password-encryption command.
An enable password is defined as follows:

- Must contain a combination of numerals from 1 to 25, and uppercase and lowercase alphanumeric characters.
- Can have leading spaces, but they are ignored. However, intermediate and trailing spaces are recognized.
- Can contain the question mark (?) character if you precede the question mark with the key combination Crtl-v when you create the password; for example, to create the password $a b c$ ? 123, do the following:

1. Enter abc.
2. Press Crtl-v.
3. Enter $\mathbf{~} 123$.

Note When the system prompts you to enter the enable password command, you need not precede the question mark with Ctrl-v; you can enter abc?123 at the password prompt.

## Examples

The following example shows how to specify a password with the enable secret command:

## Device> enable

Device\# configure terminal
Device(config) \# enable secret password

After specifying a password with the enable secret command, users must enter this password to gain access. Otherwise, passwords set using the enable password command will no longer work.

Password: password

The following example shows how to enable the encrypted password $\$ 1 \$ F a D 0$ \$Xyti5Rkls3LoyxzS8, which has been copied from a device configuration file, for privilege level 2, using the encryption type 4:

```
Device> enable
Device# configure terminal
Device(config)# enable password level 2 4 1FaD0$Xyti5Rkls3LoyxzS8
```

The following example shows the warning message that is displayed when a user enters the enable secret 4 encrypted-password command:

```
Device> enable
Device# configure terminal
Device(config)# enable secret 4 tnhtc92DXBhelxjYk8LWJrPV36S2i4ntXrpb4RFmfqY
WARNING: Command has been added to the configuration but Type 4 passwords have been
deprecated.
Migrate to a supported password type
Device(config)# end
Device# show running-config | inc secret
enable secret 4 tnhtc92DXBhelxjYk8LWJrPV36S2i4ntXrpb4RFmfqY
```


## Related Commands

Command	Description
enable password	Sets a local password to control access to various privil
more nvram:startup-config	Displays the startup configuration file contained in NVF   CONFIG_FILE environment variable.
service password-encryption	Encrypt passwords.

## epm access-control open

To configure an open directive for ports that do not have an access control list (ACL) configured, use the epm access-control open command in global configuration mode. To disable the open directive, use the no form of this command.
epm access-control open no epm access-control open

## Syntax Description

## Command Default

## Command Modes

## Command History

## Usage Guidelines

This command has no arguments or keywords.
The default directive applies.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use this command to configure an open directive that allows hosts without an authorization policy to access ports configured with a static ACL. If you do not configure this command, the port applies the policies of the configured ACL to the traffic. If no static ACL is configured on a port, both the default and open directives allow access to the port.

You can verify your settings by entering the show running-config command.
This example shows how to configure an open directive.

```
Device> enable
Device# configure terminal
Device(config)# epm access-control open
Device(config)# exit
```


## Related Commands

Command	Description
show running-config	Displays the contents of the current running configuration   file.

## include-icv-indicator

To include the integrity check value (ICV) indicator in MKPDU, use the include-icv-indicator command in MKA-policy configuration mode. To disable the ICV indicator, use the no form of this command.
include-icv-indicator no include-icv-indicator

Syntax Description
This command has no arguments or keywords.

## Command Default

ICV indicator is included.

Command Modes
MKA-policy configuration (config-mka-policy)

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

The following example shows how to include the ICV indicator in MKPDU:

```
Device> enable
```

Device\# configure terminal
Device(config) \# mka policy 2

Device(config-mka-policy) \# include-icv-indicator

## Related Commands

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
sak-rekey	Configures the SAK rekey interval.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## ip access-list

To define an IP access list or object-group access control list (ACL) by name or number or to enable filtering for packets with IP helper-address destinations, use the ip access-list command in global configuration mode. To remove the IP access list or object-group ACL or to disable filtering for packets with IP helper-address destinations, use the no form of this command.
ip access-list $\{$ \{extended | resequence $\mid$ standard $\}$ \{access-list-numberaccess-list-name $\} \mid$ helper egress check |log-update threshold threshold-number |logging \{hash-generation | interval time\}|persistent | role-based access-list-name |fqdn access-list-name \}
no ip access-list $\{$ \{ extended $\mid$ resequence $\mid$ standard $\}\{$ access-list-number access-list-name \} |helper egress check |log-update threshold |logging \{ hash-generation |interval \}|persistent |role-based access-list-name |fqdn access-list-name \}

## Syntax Description

standard	Specifies a standard IP access list.
resequence	Specifies a resequenced IP access list.
extended	Specifies an extended IP access list. Required for object-group ACLs.
access-list-name	Name of the IP access list or object-group ACL. Names cannot contain a space   or quotation mark, and must begin with an alphabetic character to prevent   ambiguity with numbered access lists.
access-list-number	Number of the access list.   • A standard IP access list is in the ranges 1-99 or 1300-1999.   • An extended IP access list is in the ranges 100-199 or 2000-2699.
helper egress check	Enables permit or deny matching capability for an outbound access list that is   applied to an interface for traffic that is relayed via the IP helper feature to a   destination server address.
log-update	Controls the access list log updates.
threshold   threshold-number	Sets the access list logging threshold. The range is 0 to 2147483647.
logging	Controls the access list logging.
hash-generation	Enables syslog hash code generation.   Sets the access list logging interval in milliseconds. The range is 0 to   2147483647.
interval time	Access control entry (ACE) sequence numbers are persistent across reloads.   Note   This is enabled by default and cannot be disabled.
persistent	Specifies a role-based IP access list.
role-based	


fqdn	Specifies a FQDN IP access list.   Note $\quad$ The name must start with an alphabet.

## Command Default

## Command Modes

## Command History

## Usage Guidelines

No IP access list or object-group ACL is defined, and outbound ACLs do not match and filter IP helper relayed traffic.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Bengaluru 17.4.1	The fqdn keyword was introduced.

Use this command to configure a named or numbered IP access list or an object-group ACL. This command places the device in access-list configuration mode, where you must define the denied or permitted access conditions by using the deny and permit commands.
Specifying the standard or extended or fqdn keyword with the ip access-list command determines the prompt that appears when you enter access-list configuration mode. You must use the extended keyword when defining object-group ACLs.

You can create object groups and IP access lists or object-group ACLs independently, which means that you can use object-group names that do not yet exist.

Use the ip access-group command to apply the access list to an interface.
The ip access-list helper egress check command enables outbound ACL matching for permit or deny capability on packets with IP helper-address destinations. When you use an outbound extended ACL with this command, you can permit or deny IP helper relayed traffic based on source or destination User Datagram Protocol (UDP) ports. The ip access-list helper egress check command is disabled by default; outbound ACLs will not match and filter IP helper relayed traffic.

The following example defines a standard access list named Internetfilter:

```
Device> enable
Device# configure terminal
Device(config)# ip access-list standard Internetfilter
Device(config-std-nacl) # permit 192.168.255.0 0.0.0.255
Device(config-std-nacl)# permit 10.88.0.0 0.0.255.255
Device(config-std-nacl)# permit 10.0.0.0 0.255.255.255
```

The following example shows how to set the FQDN TTL timeout factor and create an FQDN ACL named facl.

```
Device> enable
Device# configure terminal
Device(config) # fqdn ttl-timeout-factor 100
Device(config) # ip access-list fqdn facl
Device(config-fqdn-acl) # 100 permit ip any any
Device(config-fqdn-acl)# 10 permit ip host 192.0.2.121 host dynamic www.google.com
Device(config-fqdn-acl) # end
```

The following example shows how to create an object-group ACL that permits packets from the users in my_network_object_group if the protocol ports match the ports specified in my_service_object_group:

```
Device> enable
Device# configure terminal
Device(config)# ip access-list extended my_ogacl_policy
Device(config-ext-nacl)# permit tcp object-group my_network_object_group portgroup
 my_service_object_group any
Device(config-ext-nacl)# deny tcp any any
```

The following example shows how to enable outbound ACL filtering on packets with helper-address destinations:

```
Device> enable
Device# configure terminal
Device(config)# ip access-list helper egress check
```


## Related Commands

Command	Description
deny	Sets conditions in a named IP access list or in an object-group ACL that will deny   packets.
ip access-group	Applies an ACL or an object-group ACL to an interface or a service policy map.
object-group network	Defines network object groups for use in object-group ACLs.
object-group service	Defines service object groups for use in object-group ACLs.
permit	Sets conditions in a named IP access list or in an object-group ACL that will permit   packets.
show ip access-list	Displays the contents of IP access lists or object-group ACLs.
show object-group	Displays information about object groups that are configured.

## ip access-list role-based

To create a role-based (security group) access control list (RBACL) and enter role-based ACL configuration mode, use the ip access-list role-based command in global configuration mode. To remove the configuration, use the no form of this command.
ip access-list role-based access-list-name no ip access-list role-based access-list-name

Syntax Description

Command Default		Role-based ACLs are not configured.
$\overline{\text { Command Modes }}$		Global configuration (config)
Command History	Release	Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines

For SGACL logging, you must configure the permit ip log command. Also, this command must be configured in Cisco Identity Services Engine (ISE) to enable logging for dynamic SGACLs.

The following example shows how to define an SGACL that can be applied to IPv4 traffic and enter role-based access list configuration mode:

```
Device> enable
Device# configure terminal
Device(config)# ip access-list role-based rbacll
Device(config-rb-acl)# permit ip log
Device(config-rb-acl)# end
```

Related Commands

Command	Description
permit ip log	Permits logging that matches the configured entry.
show ip access-list	Displays contents of all current IP access lists.

## ip admission

To enable web authentication, use the ip admission command in interface configuration mode or fallback-profile configuration mode. To disable web authentication, use the no form of this command.
ip admission rule no ip admission rule
Syntax Description
rule IP admission rule name.

$\overline{\text { Command Default }}$	Web authentication is disabled.
Command Modes	Interface configuration (config-if)
	Fallback-profile configuration (config-fallback-profile)

## Command History

## Usage Guidelines

The ip admission command applies a web authentication rule to a switch port.
This example shows how to apply a web authentication rule to a switchport:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if) # ip admission rule1
Device(config-if)# end
```

This example shows how to apply a web authentication rule to a fallback profile for use on an IEEE 802.1x enabled switch port.

```
Device> enable
Device# configure terminal
Device(config)# fallback profile profile1
Device(config-fallback-profile)# ip admission rule1
Device(config-fallback-profile)# end
```


## ip admission name

To enable web authentication, use the ip admission name command in global configuration mode. To disable web authentication, use the no form of this command.
ip admission name name \{consent | proxy http\} [absolute timer minutes | inactivity-time minutes | list \{acl | acl-name\} | service-policy type tag service-policy-name] no ip admission name name \{consent | proxy http\} [absolute timer minutes | inactivity-time minutes | list $\{$ acl | acl-name $\}$ | service-policy type tag service-policy-name]

Syntax Description

name	Name of network admission control rule.
consent	Associates an authentication proxy consent web page   with the IP admission rule specified using the   admission-name argument.
proxy http	Configures web authentication custom page.
absolute-timer minutes	(Optional) Elapsed time, in minutes, before the external   server times out.
inactivity-time minutes	(Optional) Elapsed time, in minutes, before the external   file server is deemed unreachable.
list	(Optional) Associates the named rule with an access   control list (ACL).
acl	Applies a standard, extended list to a named admission   control rule. The value ranges from 1 through 199, or   from 1300 through 2699 for expanded range.
acl-name	Applies a named access list to a named admission   control rule.
service-policy type tag	(Optional) A control plane service policy is to be   configured.
service-policy-name	Control plane tag service policy that is configured   using the policy-map type control tagpolicyname   command, keyword, and argument. This policy map   is used to apply the actions on the host when a tag is   received.


Command Default	Web authentication is disabled.	
Command Modes	Global configuration (config)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

The ip admission name command globally enables web authentication on a switch.
After you enable web authentication on a switch, use the ip access-group in and ip admission web-rule interface configuration commands to enable web authentication on a specific interface.

## Examples

This example shows how to configure only web authentication on a switch port:

```
Device> enable
Device# configure terminal
Device(config) ip admission name http-rule proxy http
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip access-group 101 in
Device(config-if)# ip admission rule
Device(config-if)# end
```

This example shows how to configure IEEE 802.1x authentication with web authentication as a fallback mechanism on a switch port:

Device> enable
Device\# configure terminal
Device(config) \# ip admission name rule2 proxy http
Device(config) \# fallback profile profile1
Device(config) \# ip access group 101 in
Device(config) \# ip admission name rule2
Device(config) \# interface gigabitethernet1/0/1
Device(config-if) \# dot1x port-control auto
Device(config-if) \# dot1x fallback profile1
Device(config-if) \# end

## Related Commands

Command	Description
dot1x fallback	Configures a port to use web   authentication as a fallback method   for clients that do not support   IEEE 802.1x authentication.
fallback profile	Creates a web authentication   fallback profile.
ip admission	Enables web authentication on a   port.
show authentication sessions interface interface detail	Displays information about the web   authentication session status.
show ip admission	Displays information about NAC   cached entries or the NAC   configuration.

## ip dhcp snooping database

To configure the Dynamic Host Configuration Protocol (DHCP)-snooping database, use the ip dhcp snooping database command in global configuration mode. To disable the DHCP-snooping database, use the no form of this command.

```
ip dhcp snooping database { crashinfo: url | flash: url | ftp: url | http: url | https: url
| rcp:url | scp:url | tftp:url | timeout seconds | usbflash0:url | write-delay
seconds }
no ip dhep snooping database [timeout | write-delay]
abor
```

crashinfo:url	Specifies the database URL for   storing entries using crashinfo.
flash:url	Specifies the database URL for   storing entries using flash.
ftp:url	Specifies the database URL for   storing entries using FTP.
http:url	Specifies the database URL for   storing entries using HTTP.
https:url	Specifies the database URL for   storing entries using secure HTTP   (https).
rcp:url	Specifies the database URL for   storing entries using remote copy   (rcp).
scp:url	Specifies the database URL for   storing entries using Secure Copy   (SCP).
usbflash0:url	Specifies the database URL for   storing entries using TFTP.
timeout seconds	Specifies the cancel timeout   interval; valid values are from 0 to   86400 seconds.

$\left.\begin{array}{ll}\text { write-delay seconds } & \begin{array}{l}\text { Specifies the amount of time before } \\ \text { writing the DHCP-snooping entries } \\ \text { to an external server after a change }\end{array} \\ \text { is seen in the local DHCP-snooping }\end{array}\right\}$ database; valid values are from 15

| Command Default   <br> Command Modes Global configuration (config)  <br> Command History Release Modification <br>  Cisco IOS XE Everest 16.5.1a This command was introduced. |  |
| :--- | :--- | :--- |

## Usage Guidelines

You must enable DHCP snooping on the interface before entering this command. Use the ip dhcp snooping command to enable DHCP snooping.

This example shows how to specify the database URL using TFTP:

```
Device> enable
Device# configure terminal
Device(config)# ip dhcp snooping database tftp://10.90.90.90/snooping-rp2
Device(config)# exit
```

This example shows how to specify the amount of time before writing DHCP snooping entries to an external server:

```
evice> enable
Device# configure terminal
Device(config)# ip dhcp snooping database write-delay 15
Device(config)# exit
```


## ip dhcp snooping information option format remote-id

To configure the option-82 remote-ID suboption, use the ip dhep snooping information option format remote-id command in global configuration mode on the device to configure the option- 82 remote-ID suboption. To configure the default remote-ID suboption, use the no form of this command.
ip dhcp snooping information option format remote-id \{hostname | string string\} no ip dhep snooping information option format remote-id \{hostname | string string\}

Syntax Description

Command Default
Command Modes
Command History

## Usage Guidelines

hostname Specify the device hostname as the remote ID.
string string Specify a remote ID, using from 1 to 63 ASCII characters (no spaces).

The device MAC address is the remote ID.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

You must globally enable DHCP snooping by using the ip dhcp snooping global configuration command for any DHCP snooping configuration to take effect.
When the option- 82 feature is enabled, the default remote-ID suboption is the device MAC address. This command allows you to configure either the device hostname or a string of up to 63 ASCII characters (but no spaces) to be the remote ID.

Note If the hostname exceeds 63 characters, it will be truncated to 63 characters in the remote-ID configuration.

This example shows how to configure the option- 82 remote-ID suboption:

```
Device> enable
Device# configure terminal
Device(config)# ip dhcp snooping information option format remote-id hostname
Device(config)# exit
```


## ip dhcp snooping verify no-relay-agent-address

To disable the DHCP snooping feature from verifying that the relay agent address (giaddr) in a DHCP client message matches the client hardware address on an untrusted port, use the ip dhcp snooping verify no-relay-agent-address command in global configuration mode. To enable verification, use the no form of this command.
ip dhcp snooping verify no-relay-agent-address
no ip dhep snooping verify no-relay-agent-address

Syntax Description
Command Default
Command Modes
Command History

This command has no arguments or keywords.
The DHCP snooping feature verifies that the relay-agent IP address (giaddr) field in DHCP client message on an untrusted port is 0 .

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

By default, the DHCP snooping feature verifies that the relay-agent IP address (giaddr) field in DHCP client message on an untrusted port is 0 ; the message is dropped if the giaddr field is not 0 . Use the ip dhep snooping verify no-relay-agent-address command to disable the verification. Use the no ip dhep snooping verify no-relay-agent-address to reenable verification.

This example shows how to enable verification of the giaddr in a DHCP client message:

```
Device> enable
Device# configure terminal
Device(config)# no ip dhcp snooping verify no-relay-agent-address
Device(config)# exit
```


## ip http access-class

To specify the access list that should be used to restrict access to the HTTP server, use the ip http access-class command in global configuration mode. To remove a previously configured access list association, use the no form of this command.

```
ip http access-class { access-list-number | ipv4 { access-list-number | access-list-name } |
ipv6 access-list-name }
no ip http access-class { access-list-number | ipv4 { access-list-number | access-list-name }
| ipv6 access-list-name }
```


## Syntax Description

access-list-number	Standard IP access list number in the range 0 to 99, as configured by the access-list   global configuration command.
ipv4	Specifies the IPv4 access list to restrict access to the secure HTTP server.
access-list-name	Name of a standard IPv4 access list, as configured by the ip access-list command.
ipv6	Specifies the IPv6 access list to restrict access to the secure HTTP server.

Command Default

No access list is applied to the HTTP server.

## Command Modes

Global configuration (config)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines If this command is configured, the specified access list is assigned to the HTTP server. Before the HTTP server accepts a connection, it checks the access list. If the check fails, the HTTP server does not accept the request for a connection.

## Examples

The following example shows how to define an access list as 20 and assign it to the HTTP server:

```
Device> enable
Device(config)# ip access-list standard 20
Device(config-std-nacl)# permit 209.165.202.130 0.0.0.255
Device(config-std-nacl)# permit 209.165.201.1 0.0.255.255
Device(config-std-nacl)# permit 209.165.200.225 0.255.255.255
Device(config-std-nacl)# exit
Device(config)# ip http access-class 20
Device(config-std-nacl)# exit
```

The following example shows how to define an IPv4 named access list as and assign it to the HTTP server.

```
Device> enable
Device(config)# ip access-list standard Internet filter
Device(config-std-nacl)# permit 1.2.3.4
Device(config-std-nacl)# exit
```

```
Device(config)# ip http access-class ipv4 Internet_filter
Device(config)# exit
```

Related Commands	Command	Description
	ip access-list	Assigns an ID to an access list and enters access list configuration mode.
ip http server	Enables the HTTP 1.1 server, including the Cisco web browser user interface.	

## ip radius source-interface

To force RADIUS to use the IP address of a specified interface for all outgoing RADIUS packets, use the ip radius source-interface command in global configuration mode. To prevent RADIUS from using the IP address of a specified interface for all outgoing RADIUS packets, use the no form of this command.
ip radius source-interface interface-name [vrf vrf-name] no ip radius source-interface

Syntax Description

Command Default
Command Modes

Command History

interface-name	Name of the interface that RADIUS uses for all of its outgoing packets.
vrf vrf-name	(Optional) Per virtual route forwarding (VRF) configuration.

No default behavior or values.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

## Usage Guidelines

Use this command to set the IP address of an interface to be used as the source address for all outgoing RADIUS packets. The IP address is used as long as the interface is in the $u p$ state. The RADIUS server can use one IP address entry for every network access client instead of maintaining a list of IP addresses. Radius uses the IP address of the interface that it is associated to, regardless of whether the interface is in the $u p$ or down state.

The ip radius source-interface command is especially useful in cases where the router has many interfaces and you want to ensure that all RADIUS packets from a particular router have the same IP address.

The specified interface should have a valid IP address and should be in the $u p$ state for a valid configuration. If the specified interface does not have a valid IP address or is in the down state, RADIUS selects a local IP that corresponds to the best possible route to the AAA server. To avoid this, add a valid IP address to the interface or bring the interface to the $u p$ state.
Use the vrf vrf-name keyword and argument to configure this command per VRF, which allows multiple disjoined routing or forwarding tables, where the routes of one user have no correlation with the routes of another user.

The following example shows how to configure RADIUS to use the IP address of interface s2 for all outgoing RADIUS packets:
ip radius source-interface s2

The following example shows how to configure RADIUS to use the IP address of interface Ethernet0 for VRF definition:

```
ip radius source-interface Ethernet0 vrf vrf1
```


## ip source binding

To add a static IP source binding entry, use the ip source binding command. Use the no form of this command to delete a static IP source binding entry
ip source binding mac-address vlan vlan-id ip-address interface interface-id no ip source binding mac-address vlan vlan-id ip-address interface interface-id

Syntax Description

Command Default
Command Modes
Command History

## Usage Guidelines

mac-address	Binding MAC address.
vlan vlan-id	Specifies the Layer 2 VLAN   identification; valid values are from   1 to 4094.
ip-address	Binding IP address.
interface interface-id	ID of the physical interface.

No IP source bindings are configured.
Global configuration (config)
Release Modification

Cisco IOS XE Everest 16.5.1a
This command was introduced.

You can use this command to add a static IP source binding entry only.
The no format deletes the corresponding IP source binding entry. It requires the exact match of all required parameter in order for the deletion to be successful. Note that each static IP binding entry is keyed by a MAC address and a VLAN number. If the command contains the existing MAC address and VLAN number, the existing binding entry is updated with the new parameters instead of creating a separate binding entry.

This example shows how to add a static IP source binding entry:

```
Device> enable
Device# configure terminal
Device(config) ip source binding 0100.0230.0002 vlan 11 10.0.0.4 interface
gigabitethernet1/0/1
Device(config)# exit
```


## ip ssh source-interface

To specify the IP address of an interface as the source address for a Secure Shell (SSH) client device, use the ip ssh source-interface command in global configuration mode. To remove the IP address as the source address, use the no form of this command.
ip ssh source-interface interface
no ip ssh source-interface interface

## Syntax Description

Command Default

## Command Modes

Command History

interface	The interface whose address is used as the source address for the SSH client.

The address of the closest interface to the destination is used as the source address (the closest interface is the output interface through which the SSH packet is sent).

Global configuration (config)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.
Cisco IOS XE Gibraltar 16.11.1	

## Usage Guidelines

Examples
By specifying this command, you can force the SSH client to use the IP address of the source interface as the source address.

In the following example, the IP address assigned to GigabitEthernet interface $1 / 0 / 1$ is used as the source address for the SSH client:

```
Device> enable
Device# configure terminal
Device(config)# ip ssh source-interface GigabitEthernet 1/0/1
Device(config)# exit
```


## ip verify source

To enable IP source guard on an interface, use the ip verify source command in interface configuration mode. To disable IP source guard, use the no form of this command.

```
ip verify source [mac-check][tracking]
```

no ip verify source

mac-check	(Optional) Enables IP source guard with MAC address   verification.
tracking	(Optional) Enables IP port security to learn static IP   address learning on a port.


Command Default
Command Modes
Command History

Usage Guidelines
To enable IP source guard with source IP address filtering, use the ip verify source interface configuration command.

To enable IP source guard with source IP address filtering and MAC address verification, use the ip verify source mac-check interface configuration command.

## Examples

This example shows how to enable IP source guard with source IP address filtering on an interface:

```
Device> enable
Device# configure terminal
Device(config) # interface gigabitethernet1/0/1
Device(config-if) # ip verify source
Device(config-if) # end
```

This example shows how to enable IP source guard with MAC address verification:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip verify source mac-check
Device(config-if)# end
```

You can verify your settings by entering the show ip verify source command.

## ipv6 access-list

To define an IPv6 access list and to place the device in IPv6 access list configuration mode, use the ipv6 access-list command in global configuration mode. To remove the access list, use the no form of this command.
ipv6 access-list access-list-name | match-local-traffic | log-update threshold threshold-in-msgs | role-based list-name
noipv6 access-list access-list-name | client permit-control-packets| log-update threshold | role-based list-name

## Syntax Description

## Command Default <br> Command Modes

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

## Command History

No IPv6 access list is defined.

ipv6 access-list-name	Creates a named IPv6 ACL (up to 64 characters in length) and enters   IPv6 ACL configuration mode.   access-list-name: Name of the IPv6 access list. Names cannot contain   a space or quotation mark, or begin with a numeric.
match-local-traffic	Enables matching for locally-generated traffic.
log-update threshold   threshold-in-msgs	Determines how syslog messages are generated after the initial packet   match.   threshold-in-msgs- Number of packets generated.
role-based list-name	Creates a role-based IPv6 ACL.

IPv6 ACLs are defined by using the ipv6 access-listcommand in global configuration mode and their permit and deny conditions are set by using the deny and permitcommands in IPv6 access list configuration mode. Configuring the ipv6 access-listcommand places the device in IPv6 access list configuration mode. From IPv6 access list configuration mode, permit and deny conditions can be set for the defined IPv6 ACL.

Note IPv6 ACLs are defined by a unique name (IPv6 does not support numbered ACLs). An IPv4 ACL and an IPv6 ACL cannot share the same name.

IPv6 is automatically configured as the protocol type in permit any any and deny any any statements that are translated from global configuration mode to IPv6 access list configuration mode.

Every IPv6 ACL has implicit permit icmp any any nd-na, permit icmp any any nd-ns, and deny ipv6 any any statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.) An IPv6 ACL must contain at least one entry for the implicit deny ipv6 any any statement to take
effect. The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, makes use of a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Use the ipv6 traffic-filter interface configuration command with the access-list-name argument to apply an IPv6 ACL to an IPv6 interface. Use the ipv6 access-class line configuration command with the access-list-name argument to apply an IPv6 ACL to incoming and outgoing IPv6 virtual terminal connections to and from the device.

An IPv6 ACL applied to an interface with the ipv6 traffic-filter command filters traffic that is forwarded, not originated, by the device.

## Examples

The example configures the IPv6 ACL list named list1 and places the device in IPv6 access list configuration mode.

```
Device> enable
Device# configure terminal
Device(config)# ipv6 access-list list1
Device(config-ipv6-acl)# end
```

The following example configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on Ethernet interface 0. Specifically, the first ACL entry keeps all packets from the network FEC0:0:0:2::/64 (packets that have the site-local prefix FEC0:0:0:2 as the first 64 bits of their source IPv6 address) from exiting from GigabitEthernet interface $0 / 1 / 2$. The second entry in the ACL permits all other traffic to exit out of Ethernet interface 0 . The second entry is necessary because an implicit deny all condition is at the end of each IPv6 ACL.

```
Device> enable
Device# configure terminal
Device(config)# ipv6 access-list list2 deny FEC0:0:0:2::/64 any
Device(config)# ipv6 access-list list2 permit any any
Device(config)# interface gigabitethernet 0/1/2
Device(config-if) # ipv6 traffic-filter list2 out
Device(config-if)# end
```


## ipv6 snooping policy

To configure an IPv6 snooping policy and enter IPv6 snooping configuration mode, use the ipv6 snooping policy command in global configuration mode. To delete an IPv6 snooping policy, use the no form of this command.
ipv6 snooping policy snooping-policy no ipv6 snooping policy snooping-policy

Syntax Description

Command Default
Command Modes

## Command History

## Usage Guidelines

snooping-policy User-defined name of the snooping policy. The policy name can be a symbolic string (such as Engineering) or an integer (such as 0).

An IPv6 snooping policy is not configured.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the ipv6 snooping policy command to create an IPv6 snooping policy. When the ipv6 snooping policy command is enabled, the configuration mode changes to IPv6 snooping configuration mode. In this mode, the administrator can configure the following IPv6 first-hop security commands:

- The device-role command specifies the role of the device attached to the port.
- The limit address-count maximum command limits the number of IPv6 addresses allowed to be used on the port.
- The protocol command specifies that addresses should be gleaned with Dynamic Host Configuration Protocol (DHCP) or Neighbor Discovery Protocol (NDP).
- The security-level command specifies the level of security enforced.
- The tracking command overrides the default tracking policy on a port.
- The trusted-port command configures a port to become a trusted port; that is, limited or no verification is performed when messages are received.

This example shows how to configure an IPv6 snooping policy:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# end
```


## key chain macsec

To configure a MACsec key chain name on a device interface to fetch a Pre Shared Key (PSK), use the key chain macsec command in global configuration mode. To disable it, use the no form of this command.
key chain name macsec no key chain name [macsec ]

Syntax Description

$\overline{\text { Command Default }}$
Command Modes

Command History
name Name of a key chain to be used to get keys.

Key chain macsec is disabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This example shows how to configure MACsec key chain to fetch a 128-bit Pre Shared Key (PSK):

```
Device> enable
Device# configure terminal
Device(config)# key chain kcl macsec
Device(config-keychain-macsec) # key 1000
Device(config-keychain-macsec) # cryptographic-algorithm aes-128-cmac
Device(config-keychain-macsec-key) # key-string fb63e0269e2768c49bab8ee9a5c2258f
Device(config-keychain-macsec-key)# end
Device#
```

This example shows how to configure MACsec key chain to fetch a 256-bit Pre Shared Key (PSK):

```
Device> enable
Device# configure terminal
Device(config)# key chain kc1 macsec
Device(config-keychain-macsec)# key 2000
Device(config-keychain-macsec) # cryptographic-algorithm aes-256-cmac
Device(config-keychain-macsec-key)# key-string c865632acb269022447c417504a1b
f5db1c296449b52627ba01f2ba2574c2878
Device(config-keychain-macsec-key)# end
Device#
```


## key config-key password-encrypt

To store a type 6 encryption key in private NVRAM, use the key config-key password-encrypt command in global configuration mode. To disable the encryption, use the no form of this command.
key config-key password-encrypt [text] no key config-key password-encrypt [text]

Syntax Description

Command Default
Command Modes
Command History

## Usage Guidelines

text (Optional) Password or master key.
Note We recommended that you do not use the text argument, and instead use interactive mode (using the Enter key after you enter the key config-key password-encrypt command) so that the preshared key is not printed anywhere and, therefore, cannot be seen.

Type 6 password encryption key is not stored in private NVRAM.

Global configuration (config)

Release	Modifica
Cisco IOS XE Everest 16.5.1a	This com
	introduce

You can securely store plain text passwords in type 6 format in NVRAM using a CLI. Type 6 passwords are encrypted. Although the encrypted passwords can be seen or retrieved, it is difficult to decrypt them to find out the actual password. Use the key config-key password-encrypt command along with the password encryption aes command to configure and enable the password (symmetric cipher Advanced Encryption Standard [AES] is used to encrypt the keys). The password (key) configured using the key config-key password-encrypt command is the master encryption key that is used to encrypt all other keys in the device.
If you configure the password encryption aes command without configuring the key config-key password-encrypt command, the following message is displayed at startup or during a nonvolatile generation (NVGEN) process, such as when the show running-config or copy running-config startup-config commands are configured:
"Can not encrypt password. Please configure a configuration-key with 'key config-key" "

## Changing a Password

If the password (master key) is changed or reencrypted, use the key config-key password-encrypt command) for the list registry to pass the old key and the new key to the application modules that are using type 6 encryption.

## Deleting a Password

If the master key that was configured using the key config-key password-encrypt command is deleted from the system, a warning is displayed (and a confirm prompt is issued) stating that all type 6 passwords will become useless. As a security measure, after the passwords are encrypted, they will never be decrypted in the Cisco IOS software. However, passwords can be re-encrypted, as explained in the previous paragraph.

## Caution

If the password that is configured using the key config-key password-encrypt command is lost, it cannot be recovered. We, therefore, recommend that you store the password in a safe location.

## Unconfiguring Password Encryption

If you unconfigure password encryption using the no password encryption aes command, all the existing type 6 passwords are left unchanged, and as long as the password (master key) that was configured using the key config-key password-encrypt command exists, the type 6 passwords will be decrypted as and when required by the application.

## Storing Passwords

Because no one can read the password (configured using the key config-key password-encrypt command), there is no way that the password can be retrieved from the device. Existing management stations cannot know what it is unless the stations are enhanced to include this key somewhere, in which case, the password needs to be stored securely within the management system. If configurations are stored using TFTP, the configurations are not standalone, meaning that they cannot be loaded onto a device. Before or after the configurations are loaded onto a device, the password must be manually added (using the key config-key password-encrypt command). The password can be manually added to the stored configuration. However we do not recommend this because adding the password manually allows anyone to decrypt all the passwords in that configuration.

## Configuring New or Unknown Passwords

If you enter or cut and paste ciphertext that does not match the master key, or if there is no master key, the ciphertext is accepted or saved, but an alert message is displayed:
"ciphertext>[for username bar>] is incompatible with the configured master key."
If a new master key is configured, all plain keys are encrypted and made type 6 keys. The existing type 6 keys are not encrypted. The existing type 6 keys are left as is.

If the old master key is lost or is unknown, you have the option of deleting the master key using the no key config-key password-encrypt command. Deleting the master key causes the existing encrypted passwords to remain encrypted in the device configuration. The passwords cannot be decrypted.

## Examples <br> The following example shows how a type 6 encryption key is stored in NVRAM:

```
Device> enable
Device# configure terminal
Device (config)# key config-key password-encrypt
```

Related Commands

Command	Description
password encryption aes	Enables a type 6 encrypted p

## key-server

To configure MKA key-server options, use the key-server command in MKA-policy configuration mode.
To disable MKA key-server options, use the no form of this command.
key-server priority value no key-server priority

## Syntax Description

## Command Default

## Command Modes

Command History
priority value
Specifies the priority value of the MKA key-server.

MKA key-server is disabled.
MKA-policy configuration (config-mka-policy)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\overline{\text { Examples }}$

Related Commands
The following example shows how to configure the MKA key-server:

```
Device> enable
```

Device\# configure terminal
Device(config) \# mka policy 2
Device(config-mka-policy) \# key-server priority 33

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
macsec-cipher-suite	Configures cipher suite for deriving SAK)
sak-rekey	Configures the SAK rekey interval.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## limit address-count

To limit the number of IPv6 addresses allowed to be used on the port, use the limit address-count command in Neighbor Discovery Protocol (NDP) inspection policy configuration mode or IPv6 snooping configuration mode. To return to the default, use the no form of this command.
limit address-count maximum no limit address-count

## Syntax Description

## Command Default

Command Modes

The default is no limit.

IPv6 snooping configuration (config-ipv6-snooping)
ND inspection policy configuration (config-nd-inspection)

## Release

Cisco IOS XE Everest 16.5.1a

The limit address-count command limits the number of IPv6 addresses allowed to be used on the port on which the policy is applied. Limiting the number of IPv6 addresses on a port helps limit the binding table size. The range is from 1 to 10000 .

This example shows how to define an NDP policy name as policy1, and limit the number of IPv6 addresses allowed on the port to 25 :

```
Device> enable
Device# configure terminal
Device(config) # ipv6 nd inspection policy policyl
Device(config-nd-inspection)# limit address-count 25
Device(config-nd-inspection)# end
```

This example shows how to define an IPv6 snooping policy name as policy1, and limit the number of IPv6 addresses allowed on the port to 25 :

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping) # limit address-count 25
Device(config-ipv6-snooping) # end
```


## local-domain (Parameter Map)

To configure a local domain for the Cisco Umbrella Integration feature, use the local-domain command in parameter-map type inspect configuration mode. To remove a local domain, use the no form of this command.
local-domain regex_param_map_name
no local-domain regex_param_map_name
Syntax Description
regex_param_map_name Name of the regular expression parameter map.

Command Default	No local domain is created for the parameter map.	
$\overline{\text { Command Modes }}$	Parameter-map type inspect configuration (config-profile)	
Command History	Release	Modification
	Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

Usage Guidelines

## Examples

Related Commands
A maximum of 64 local domains can be configured, and the allowed domain name length is 100 characters.

The following example shows how to configure a local domain:

Device> enable
Device\# configure terminal
Device(config) \# parameter-map type umbrella global
Device(config-profile) \# local-domain dns_bypass

Command	Description
parameter-map type umbrella global	Configures a parameter-map type in umbrella mode.

## mab logging verbose

To filter detailed information from MAC authentication bypass (MAB) system messages, use the mab logging verbose command in global configuration mode. Use the no form of this command to disable logging MAB system messages.

## mab logging verbose no mab logging verbose

Syntax Description
Command Default
Command Modes
Command History

Detailed logging of system messages is not enabled.
Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\begin{array}{ll}\text { Usage Guidelines } & \begin{array}{l}\text { This command filters details, such as anticipated success, from MAC authentication bypass (MAB) system } \\ \text { messages. Failure messages are not filtered. }\end{array}\end{array}$

To filter verbose MAB system messages:

```
Device> enable
Device# configure terminal
Device(config)# mab logging verbose
Device(config)# exit
```

You can verify your settings by entering the show running-config command.

## Related Commands

Command	Description
authentication logging verbose	Filters details from authentication system messages.
dot1x logging verbose	Filters details from 802.1x system messages.
mab logging verbose	Filters details from MAC authentication bypass (MAB) system me

## mab request format attribute 32

To enable VLAN ID-based MAC authentication on a device, use the mab request format attribute 32 vlan access-vlan command in global configuration mode. To return to the default setting, use the no form of this command.
mab request format attribute 32 vlan access-vlan
no mab request format attribute 32 vlan access-vlan

Syntax Description
Command Default
Command Modes
Command History

## Usage Guidelines

## Related Commands

Command	Description
authentication event	Sets the action for specific authentication events.
authentication fallback	Configures a port to use web authentication as a fallback method   that do not support IEEE 802.1x authentication.
authentication host-mode	Sets the authorization manager mode on a port.
authentication open	Enables or disables open access on a port.
authentication order	Sets the order of authentication methods used on a port.
authentication periodic	Enables or disables reauthentication on a port.
authentication port-control	Enables manual control of the port authorization state.
authentication priority	Adds an authentication method to the port-priority list.
authentication timer	Configures the timeout and reauthentication parameters for an   $802.1 x-e n a b l e d ~ p o r t . ~$


Command	Description
authentication violation	Configures the violation modes that occur when a new devic   a port or when a new device connects to a port with the maxi   of devices already connected to that port.
mab	Enables MAC-based authentication on a port.
mab eap	Configures a port to use the Extensible Authentication Protoc
show authentication	Displays information about authentication manager events or

## macsec-cipher-suite

To configure cipher suite for deriving Security Association Key (SAK), use the macsec-cipher-suite command in MKA-policy configuration mode. To disable cipher suite for SAK, use the no form of this command.
macsec-cipher-suite \{gcm-aes-128| gcm-aes-256| gcm-aes-xpn-128|gem-aes-xpn-256\} no macsec-cipher-suite \{gcm-aes-128| gcm-aes-256| gcm-aes-xpn-128| gcm-aes-xpn-256\}

## Syntax Description

gcm-aes-128 Configures cipher suite for deriving SAK with 128-bit encryption.
gcm-aes-256 Configures cipher suite for deriving SAK with 256-bit encryption.
gcm-aes-xpn-128 Configures cipher suite for deriving SAK with 128-bit encryption for Extended Packet Numbering (XPN).
gcm-aes-xpn-256 Configures cipher suite for deriving SAK with 256-bit encryption for XPN.

Command Default
Command Modes
Command History

## Usage Guidelines

## Examples

Related Commands

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
sak-rekey	Configures the SAK rekey interval.


Command	Description
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## macsec network-link

To enable MACsec Key Agreement protocol (MKA) configuration on the uplink interfaces, use the macsec network-link command in interface configuration mode. To disable it, use the no form of this command.
macsec network-link
no macsec network-link

Syntax Description

$\overline{\text { Command Default }}$	MACsec network-link is disabled.
$\overline{\text { Command Modes }}$	Interface configuration (config-if)

## Command History

macsec network-link Enables MKA MACsec configuration on device interfaces using EAP-TLS authentication protocol.

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This example shows how to configure MACsec MKA on an interface using the EAP-TLS authentication protocol:

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet 1/0/20
Device(config-if) # macsec network-link
Device(config-if)# end
Device#
```


## match (access-map configuration)

To set the VLAN map to match packets against one or more access lists, use the match command in access-map configuration mode. To remove the match parameters, use the no form of this command.
match $\{\mathbf{i p}$ address $\{$ namenumber $\}$ [\{namenumber $\}$ ] [\{namenumber $\}$ ]...|ipv6 address \{namenumber $\}$ [\{namenumber $\}$ ] [\{namenumber $\}] \ldots \mid$ mac address $\{$ name $\}$ [\{name $\}][\{$ name $\}] .$. no match $\{\mathbf{i p}$ address $\{$ namenumber $\}$ [\{namenumber $\}$ ] [\{namenumber $\}] . . \mid \mathbf{i p v 6}$ address $\{$ namenumber $\}$ [\{namenumber $\}$ ] [\{namenumber $\}] . . \mid$ mac address \{name $\}[\{$ name $\}][\{$ name $\}] . .$.

## Syntax Description

ip address Sets the access map to match packets against an IP address access list.
ipv6 address Sets the access map to match packets against an IPv6 address access list.
mac address Sets the access map to match packets against a MAC address access list.

name	Name of the access list to match packets against.
number	Number of the access list to match packets against. This option is not valid for MAC access   lists.

Command Default

Command Modes
Access-map configuration (config-access-map)
Command History
Release Modification
Cisco IOS XE Everest 16.5.1a This command was introduced.

## Usage Guidelines

You enter access-map configuration mode by using the vlan access-map global configuration command.
You must enter one access list name or number; others are optional. You can match packets against one or more access lists. Matching any of the lists counts as a match of the entry.

In access-map configuration mode, use the match command to define the match conditions for a VLAN map applied to a VLAN. Use the action command to set the action that occurs when the packet matches the conditions.

Packets are matched only against access lists of the same protocol type; IP packets are matched against IP access lists, IPv6 packets are matched against IPv6 access lists, and all other packets are matched against MAC access lists.

IP, IPv6, and MAC addresses can be specified for the same map entry.

Examples
This example shows how to define and apply a VLAN access map vmap4 to VLANs 5 and 6 that will cause the interface to drop an IP packet if the packet matches the conditions defined in access list al2:

```
Device> enable
Device(config)# vlan access-map vmap4
Device(config-access-map)# match ip address al2
Device(config-access-map) # action drop
```

```
Device(config-access-map) # exit
Device(config)# vlan filter vmap4 vlan-list 5-6
Device(config)# exit
```

You can verify your settings by entering the show vlan access-map command.

## mka pre-shared-key

To configure MACsec Key Agreement (MKA) MACsec on a device interface using a Pre Shared Key (PSK), use the mka pre-shared-key key-chain key-chain name command in interface configuration mode. To disable it, use the no form of this command.
mka pre-shared-key key-chain key-chain-name no mka pre-shared-key key-chain key-chain-name

Syntax Description

Command Default
Command Modes

Command History
mka pre-shared-key key-chain Enables MACsec MKA configuration on device interfaces using a PSK.

MKA pre-shared-key is disabled.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

This example shows how to configure MKA MACsec on an interface using a PSK:

```
Device> enable
Device# configure terminal
Device(config)# interface Gigabitethernet 1/0/20
Device(config-if) # mka pre-shared-key key-chain kc1
Device(config-if)# end
Device#
```


## mka suppress syslogs sak-rekey

To suppress MACsec Key Agreement (MKA) secure association key (SAK) rekey messages during logging, use the mka suppress syslogs sak-rekey command in global configuration mode. To enable MKA SAK rekey message logging, use the no form of this command.
mka suppres syslogs sak-rekey
no mka suppres syslogs sak-rekey
This command has no arguments or keywords.

Command Default
Command Modes
Command History
Usage Guidelines

All MKA SAK syslog messages are displayed on the console.
Global configuration (config)

Release	Modification
Cisco IOS XE Gibraltar 16.9.1	This command was introduced.

MKA SAK syslogs are continuously generated at every rekey interval, and when MKA is configured on multiple interfaces, the amount of syslog generated is too high. Use this command to suppress the MKA SAK syslogs.

## Example

The following example shows show to suppress MKA SAK syslog logging:

```
Device> enable
Device# configure terminal
Device(config)# mka suppress syslogs sak-rekey
```


## parameter-map type regex

To configure a parameter-map type with a regular expression to match a specific traffic pattern, use the parameter-map type regex command in global configuration mode. To delete a parameter-map type with a regular expression, use the no form of this command.
parameter-map type regex parameter-map-name no parameter-map type regex

Syntax Description

## Command Default <br> Command Modes <br> Command History

parameter-map-name Name of the parameter map. The name can have a maximum of 228 alphanumeric characters.

Note We do not recommend the use of blank spaces. The system interprets the first blank space as the end of the parameter-map name unless the string is delimited by quotation marks.

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

## Usage Guidelines

You can enter a regular expression to match text strings either as an exact string or by using metacharacters
to match multiple variants of a text string. You can use a regular expression to match the content of certain application traffic. For example, you can match a uniform resource identifier (URI) string inside an HTTP packet using the match request regex command under an HTTP inspection class map.

Press Ctrl-V to ignore all of the special characters in the CLI, such as a question mark (?) or a tab. For example, press $\mathbf{d}[\mathbf{C t r l}-\mathrm{V}] \mathbf{g}$ to enter $\mathbf{d}$ ?g in the configuration.

The following table lists the metacharacters that have special meanings.

## Table 190: regex Metacharacters

Character	Description	Notes
.	Dot	Matches any single character. For example, d.g matches dog, dag,   dtg, and any word that contains those characters.
$(x x x)$	Subexpression	Segregates characters from surrounding characters so that you can   use other metacharacters on the subexpression. For example, d $(\mathbf{o} \mid \mathbf{a}) \mathbf{g}$   matches dog and dag, but do $\mid$ ag matches do and ag. A subexpression   can also be used with repeat quantifiers to differentiate the characters   meant for repetition. For example, ab $(\mathbf{x y})\{\mathbf{3}\} \mathbf{z}$ matches abxyxyxyz.
I	Alternation	Matches either of the expressions that it separates. For example,   dog\|cat matches dog or cat.


Character	Description	Notes
?	Question mark	Indicates that there are 0 or 1 occurrence of the previous expression. For example, lo?se matches lse or lose.   Note You must enter Ctrl-V and then a question mark. Otherwise, the Help function is invoked.
*	Asterisk	Indicates that there are 0,1 , or any number of occurrences of the previous expression. For example, lo*se matches lse, lose, loose, and so on.
+	Plus	Indicates that there is at least one occurrence of the previous expression. For example, lo+se matches lose and loose, but not lse.
\{ $x$ \}	Repeat quantifier	Repeats exactly $x$ times. For example, $\mathbf{a b}(\mathbf{x y})\{\mathbf{3}\} \mathbf{z}$ matches abxyxyxyz.
\{ $x$, \}	Minimum repeat quantifier	Repeats at least $x$ times. For example, $\mathbf{a b}(\mathbf{x y})\{\mathbf{2},\} \mathbf{z}$ matches abxyxyz, abxyxyxyz, and so on.
[ $a b c$ ]	Character class	Matches any character in the bracket. For example, [abc] matches a, b, or c.
[^ $a b c$ ]	Negated character class	Matches a single character that is not contained within brackets. For example, $[\wedge \mathbf{a b c}]$ matches any character other than $\mathrm{a}, \mathrm{b}$, or c , and [^A-Z] matches any single character that is not an uppercase letter
[ $a-c$ ]	Character range class	Matches any character in the specified range. [a-z] matches any lowercase letter. You can mix characters and ranges. For example, [abcq-z] matches a, b, c, q, r, s, t, u, v, w, x, y, z, and so does [a-cq-z]   Note $\quad$ The dash (-) character is literal only if it is the last or first character within brackets, for example, [abc-] or [-abc].
""	Quotation marks	Preserves trailing or leading spaces in the string. For example, "test" preserves the leading space when it looks for a match.
$\wedge$	Caret	Specifies the beginning of a line.
1	Escape character	When preceding a literal character, matches the literal character. For example, \[ matches the left square bracket.
char	Character	When the character is not a metacharacter, matches the literal character.
\r	Carriage return	Matches the carriage return 0x0d.
ln	New line	Matches the new line 0x0a.
\t	Tab	Matches the tab 0x09.
lf	Formfeed	Matches the form feed 0x0c.


Character	Description	Notes
Ix $n n$	Escaped hexadecimal   number	Matches an ASCII character using hexadecimal numbers (exactly two   digits).
\nnn	Escaped octal number	Matches an ASCII character as an octal number (exactly three digits).   For example, the character $\mathbf{0 4 0}$ represents a space.

## Examples

The following example shows how to configure and apply a regex parameter map to an HTTP application firewall parameter-map type whose URI matches any of the following regular expressions:
-".*cmd.exe"

- ".*money"
-".*shopping"

```
Device> enable
Device# configure terminal
Device(config)# parameter-map type regex uri-regex-cm
Device(config-profile)# pattern ".*cmd.exe"
Device(config-profile)# pattern ".*money"
Device(config-profile)# pattern ".*shopping"
Device(config-profile)# exit
Device(config)# class-map type inspect http uri-check-cm
Device(config-cmap)# match request uri regex uri-regex-cm
Device(config-cmap) # exit
Device(config)# policy-map type inspect http uri-check-pm
Device(config-pmap)# class type inspect http uri-check-cm
Device(config-pmap-c) # reset
```

The following example shows how to configure a regex parameter map whose case-insensitive pattern matches multiple variants of the string hello:

```
Device# configure terminal
Device(config)# parameter-map type regex body_regex
Device(config-profile)# pattern ".*[Hh][Ee][Ll][Ll][OO]"
Device(config-profile)# end
```


## Related Commands

Command	Description
class-map type inspect	Creates a Layer 3 and Layer 4 or a Layer 7 (application-specific) inspect-type   class map.
class type inspect	Specifies the traffic (class) on which an action is to be performed.
match request regex	Configures an HTTP firewall policy to permit or deny HTTP traffic on the basis   of request messages whose URI or arguments (parameters) match a defined regular   expression.
parameter-map type	Creates or modifies a parameter map.
policy-map type inspect	Creates a Layer 3 and Layer 4 or a Layer 7 (application-specific) inspect-type   policy map.

## parameter-map type umbrella global

To configure a parameter-map type in umbrella mode, use the parameter-map type umbrella global command in global configuration mode. To delete a parameter-map type in umbrella mode, use the no form of this command.
parameter-map type umbrella global no parameter-map type umbrella

Syntax Description
$\overline{\text { Command Default }}$ Umbrella mode parameter-map is not configured.
$\overline{\text { Command Modes }}$ Global configuration (config)
Command History

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

## Examples

The following example shows how to set the parameter-map type to umbrella mode:

```
Device> enable
Device# configure terminal
Device(config)# parameter-map type umbrella global
Device(config-profile)#
```

Related Commands

Command	Description
parameter-map type	Creates or modifies a parameter map.

## password encryption aes

To enable a type 6 encrypted preshared key, use the password encryption aes command in global configuration mode. To disable password encryption, use the no form of this command.
password encryption aes no password encryption aes

Syntax Description
Command Default
Command Modes
Command History

Usage Guidelines
You can securely store plain text passwords in type 6 format in NVRAM using a CLI. Type 6 passwords are encrypted. Although the encrypted passwords can be seen or retrieved, it is difficult to decrypt them to find out the actual password. Use the key config-key password-encrypt command along with the password encryption aes command to configure and enable the password (symmetric cipher Advanced Encryption Standard [AES] is used to encrypt the keys). The password (key) that is configured using the key config-key password-encrypt command is the master encryption key that is used to encrypt all other keys in the router.

If you configure the password encryption aes command without configuring the key config-key password-encrypt command, the following message is displayed at startup or during a nonvolatile generation (NVGEN) process, such as when the show running-config or copy running-config startup-config commands are run:
"Can not encrypt password. Please configure a configuration-key with 'key config-key'"

## Changing a Password

If the password (master key) is changed or re-encrypted using the key config-key password-encrypt command), the list registry passes the old key and the new key to the application modules that are using type 6 encryption.

## Deleting a Password

If the master key that was configured using the key config-key password-encrypt command is deleted from the system, a warning is displayed (and a confirm prompt is issued) that states that all type 6 passwords will no longer be applicable. As a security measure, after the passwords are encrypted, they will never be decrypted in the Cisco IOS software. However, passwords can be re-encrypted as explained in the previous paragraph.

Caution
If a password that is configured using the key config-key password-encrypt command is lost, it cannot be recovered. Therefore, the password should be stored in a safe location.

## Unconfiguring Password Encryption

If you unconfigure password encryption using the no password encryption aes command, all the existing type 6 passwords are left unchanged. As long as the password (master key) that was configured using the key config-key password-encrypt command exists, the type 6 passwords are decrypted as and when required by the application.

## Storing Passwords

Because no one can read the password (configured using the key config-key password-encrypt command), there is no way that the password can be retrieved from the router. Existing management stations cannot know what it is unless the stations are enhanced to include this key somewhere. Therefore, the password needs to be stored securely within the management system. If configurations are stored using TFTP, the configurations are not standalone, meaning that they cannot be loaded onto a router. Before or after the configurations are loaded onto a router, the password must be manually added (using the key config-key password-encrypt command). The password can be manually added to the stored configuration, but we do not recommend this because adding the password manually allows anyone to decrypt all the passwords in that configuration.

## Configuring New or Unknown Passwords

If you enter or cut and paste ciphertext that does not match the master key, or if there is no master key, the ciphertext is accepted or saved, but the following alert message is displayed:
"ciphertext>[for username bar>] is incompatible with the configured master key."
If a new master key is configured, all the plain keys are encrypted and converted to type 6 keys. The existing type 6 keys are not encrypted. The existing type 6 keys are left as is.

If the old master key is lost or unknown, you have the option of deleting the master key using the no key config-key password-encrypt command. This causes the existing encrypted passwords to remain encrypted in the router configuration. The passwords will not be decrypted.

## Examples

The following example shows how a type 6 encrypted preshared key is enabled:

```
Device> enable
Device# configure terminal
Device (config)# password encryption aes
```

Related Commands

Command	Description
key config-key password-encrypt	Stores a type 6 encryption key in

## pattern (Parameter Map)

To configure a matching pattern that specifies a list of domains, URL keywords, or URL metacharacters that must be allowed or blocked by the local URL filtering, use the pattern command in parameter-map type inspect configuration mode. To remove the matching pattern, use the no form of this command.
pattern expression no pattern expression

Syntax Description

$\overline{\text { Command Default }}$
Command Modes
Command History

No pattern is created for the parameter map.
Parameter-map type inspect configuration (config-profile)
Release Modification

Cisco IOS XE Amsterdam 17.1.1
This command was introduced.

A matching pattern expression is configured for a parameter map created by the parameter-map type regex command.

In a pattern expression, the characters $/,\{$, and $\}$ are not allowed. The question mark (?) character is not allowed because it is reserved for the CLI Help function. The asterisk $\left(^{*}\right.$ ) character is not allowed at the beginning of a pattern.
For URL pattern matching, the period (.) character is interpreted as a dot, and not as a wildcard entry that represents a single character, as is the case with regular expression pattern matching. Any character in the host or domain name can be allowed or blocked through URL filtering.

A URL keyword is a complete word that comes after the domain name and is between the forward slash (/) path delimiters. For example, in the URL http://www.example.com/hack/123.html, only hack is treated as a keyword. The entire keyword in the URL must match a pattern. For example, if you have configured a pattern named hack, the URL www.example.com/hacksite/123.html will not match the pattern. To match the URL, your pattern must have hacksite.
URL metacharacters allow pattern matching of single characters or ranges of characters to URLs, similar to the way a UNIX glob expression works. URL metacharacters are described in the following table.

## Table 191: URL Metacharacters for URL Pattern Matching

Character	Description
$*$	Asterisk: Matches any sequence of 0 or more characters.
$[a b c]$	Character class: Matches any character within brackets. Character   matching is case sensitive. For example, $[$ abc $]$ matches $\mathrm{a}, \mathrm{b}$, or c.


Character	Description
$[a-c]$	Character range class: Matches any character in a specified range.   Character matching is case sensitive. For example, [a-z] matches   any lowercase letter. You can also mix characters and ranges. For   example, [abcq-z] matches a, b, c, q, r, s, t, u, v, w, x, y, z, and so   does [a-cq-z].   Note $\quad$The dash (-) character is matched only if it is the last   or the first character within brackets, for example,   [abc-] or [-abc].   $[0-9]$
Numerical range class: Matches any number within brackets. For   example, [0-9] matches $0,1,2,3,4,5,6,7,8, ~ o r ~ 9 . ~$	

URL metacharacters are combined with domain names and URL keywords for pattern matching. For example, the pattern www.example[0-9][0-9].com can be used to block www.example01.com, www.example33.com, www.example99.com, and so on. You can combine a keyword and a metacharacter and create a matching pattern to block a URL. For example, you can use pattern hack* to block www.example.com/hacksite/123.html.

When you configure the parameter-map type regex command and then the pattern command, patterns that are specified in the pattern command are used as filters in General Packet Radio Service (GPRS) Tunneling Protocol (GTP) classes.

## Examples

The following example shows how to configure a matching pattern for a specified URL:

```
Device(config)# parameter-map type regex dns_bypass
Device(config-profile)# pattern www.example.com
```

The following example shows how to specify a case-insensitive pattern that matches multiple variants of the string hello:

```
Device> enable
Device# configure terminal
Device(config)# parameter-map type regex body-regex
Device(config-profile)# pattern ".*[Hh][Ee][Ll][Ll][OO]"
```

The following example shows an error message that appears on the console when an asterisk (*) character is specified at the beginning of a pattern:
Device(config) \# parameter-map type regex gtp-map
Device(config-profile) \# pattern *.gprs.com
\%Invalid first char + or * in regex pattern

## Related Commands

Command	Description
parameter-map type regex	Configures a regex parameter map that matches a specific regular expression   pattern and enters parameter-map type inspect configuration mode.

## permit (MAC access-list configuration)

To allow non-IP traffic to be forwarded if the conditions are matched, use the permit command in MAC access-list configuration mode. To remove a permit condition from the extended MAC access list, use the no form of this command.

any Denies any source or destination MAC address.
host $s r c-M A C$-addr $\mid$ src-MAC-addr mask $\quad$ Specifies a host MAC address and optional subnet ma defined address, non-IP traffic from that address is de
host $d s t$-MAC-addr $\mid d s t$-MAC-addr mask $\quad$ Specifies a destination MAC address and optional sul matches the defined address, non-IP traffic to that add
type mask
(Optional) Specifies the EtherType number of a pack identify the protocol of the packet.

- type is 0 to 65535 , specified in hexadecimal.
- mask is a mask of don't care bits applied to the I

aarp	(Optional) Specifies EtherType AppleTalk Address R   to a network address.
amber	(Optional) Specifies EtherType DEC-Amber.
appletalk	(Optional) Specifies EtherType AppleTalk/EtherTalk.
dec-spanning	(Optional) Specifies EtherType Digital Equipment Cc
decnet-iv	(Optional) Specifies EtherType DECnet Phase IV pro
diagnostic	(Optional) Specifies EtherType DEC-Diagnostic.
dsm	(Optional) Specifies EtherType DEC-DSM.
etype- $\mathbf{6 0 0 0}$	(Optional) Specifies EtherType 0x6000.
etype-8042	(Optional) Specifies EtherType 0x8042.
lat	(Optional) Specifies EtherType DEC-LAT.
lavc-sca	(Optional) Specifies EtherType DEC-LAVC-SCA.


Isap lsap-number mask	(Optional) Specifies the LSAP number (0 to 65535) of a   the protocol of the packet.   The mask is a mask of don't care bits applied to the LSA
mop-console	(Optional) Specifies EtherType DEC-MOP Remote Cons
mop-dump	(Optional) Specifies EtherType DEC-MOP Dump.
msdos	(Optional) Specifies EtherType DEC-MSDOS.
mumps	(Optional) Specifies EtherType DEC-MUMPS.
netbios	(Optional) Specifies EtherType DEC- Network Basic Inp
vines-echo	(Optional) Specifies EtherType Virtual Integrated Network
vines-ip	(Optional) Specifies EtherType VINES IP.
$\mathbf{x n s - i d p}$	(Optional) Specifies EtherType Xerox Network Systems
cos $\cos$	(Optional) Specifies an arbitrary class of service (CoS) n

## Command Default <br> Command Modes <br> Command History

## Usage Guidelines

This command has no defaults. However, the default action for a MAC-named ACL is to deny.
MAC-access list configuration

## Release

Cisco IOS XE Everest 16.5.1a

Though visible in the command-line help strings, appletalk is not supported as a matching condition.
You enter MAC access-list configuration mode by using the mac access-list extended global configuration command.

If you use the host keyword, you cannot enter an address mask; if you do not use the any or host keywords, you must enter an address mask.

After an access control entry (ACE) is added to an access control list, an implied deny-any-any condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.
To filter IPX traffic, you use the type mask or lsap lsap mask keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS XE terminology are listed in the following table.

Table 192: IPX Filtering Criteria

IPX Encapsulation Type		Filter Criterion
Cisco IOS Name	NoveII Name	
arpa	Ethernet II	EtherType 0x8137


IPX Encapsulation Type		Filter Criterion
Cisco IOS Name	Novell Name	
snap	Ethernet-snap	EtherType 0x8137
sap	Ethernet 802.2	LSAP 0xE0E0
novell-ether	Ethernet 802.3	LSAP 0xFFFF

This example shows how to define the MAC-named extended access list to allow NetBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is allowed.

```
Device> enable
Device# configure terminal
Device(config) # mac access-list extended
Device(config-ext-macl) # permit any host 00c0.00a0.03fa netbios
Device(config-ext-macl)# end
```

This example shows how to remove the permit condition from the MAC-named extended access list:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended
Device(config-ext-macl)# no permit any 00c0.00a0.03fa 0000.0000.0000 netbios
Device(config-ext-macl)# end
```

This example permits all packets with EtherType 0x4321:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended
Device(config-ext-macl)# permit any any 0x4321 0
Device(config-ext-macl) # end
```

You can verify your settings by entering the show access-lists command.

Related Commands	Command	Description
	deny	Denies from the   non-IP traffic to b
	mac access-list extended	Creates an access   traffic.
show access-lists	Displays access c	

## protocol (IPv6 snooping)

S
To specify that addresses should be gleaned with Dynamic Host Configuration Protocol (DHCP) or Neighbor Discovery Protocol (NDP), or to associate the protocol with an IPv6 prefix list, use the protocol command in IPv6 snooping configuration mode. To disable address gleaning with DHCP or NDP, use the no form of the command.
protocol \{dhcp | ndp\}
no protocol \{dhcp | ndp\}

## Syntax Description

## Command Default

Command Modes
Command History
dhcp Specifies that addresses should be gleaned in Dynamic Host Configuration Protocol (DHCP) packets.
ndp Specifies that addresses should be gleaned in Neighbor Discovery Protocol (NDP) packets.

Snooping and recovery are attempted using both DHCP and NDP.
IPv6 snooping configuration mode (config-ipv6-snooping)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
If an address does not match the prefix list associated with DHCP or NDP, then control packets will be dropped and recovery of the binding table entry will not be attempted with that protocol.

- Using the no protocol \{dhcp | ndp\} command indicates that a protocol will not be used for snooping or gleaning.
- If the no protocol dhep command is used, DHCP can still be used for binding table recovery.
- Data glean can recover with DHCP and NDP, though destination guard will only recovery through DHCP.

This example shows how to define an IPv6 snooping policy name as policy1, and configure the port to use DHCP to glean addresses:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping) # protocol dhcp
Device(config-ipv6-snooping) # end
```


## radius server

To configure the RADIUS server parameters, including the RADIUS accounting and authentication, use the radius server command in global configuration mode. Use the no form of this command to return to the default settings.
radius server name
address \{ipv4|ipv6\} ip\{address| hostname\} auth-port udp-port acct-port udp-port
key string
automate tester name | retransmit value | timeout seconds
no radius server name

## Syntax Description

address $\{\mathbf{i p v 4} \mid \mathbf{i p v} 6\} \quad$ Specifies the IP address of the RADIUS server. ip\{address | hostname\}
auth-port udp-port (Optional) Specifies the UDP port for the RADIUS authentication server. The range is from 0 to 65536.

acct-port udp-port	(Optional) Specifies the UDP port for the RADIUS accounting server. The range   is from 0 to 65536.
key string	(Optional) Specifies the authentication and encryption key for all RADIUS   communication between the device and the RADIUS daemon.   Note $\quad$The key is a text string that must match the encryption key used   on the RADIUS server. Always configure the key as the last item   in this command. Leading spaces are ignored, but spaces within   and at the end of the key are used. If there are spaces in your key,   do not enclose the key in quotation marks unless the quotation   marks are part of the key.   automate tester name   (Optional) Enables automatic server testing of the RADIUS server status, and   specify the username to be used.
(Optional) Specifies the number of times a RADIUS request is resent when the	

## Command Default

- The UDP port for the RADIUS accounting server is 1646.
- The UDP port for the RADIUS authentication server is 1645 .
- Automatic server testing is disabled.
- The timeout is 60 minutes ( 1 hour).
- When the automatic testing is enabled, testing occurs on the accounting and authentication UDP ports.
- The authentication and encryption key ( string) is not configured.

$\overline{\text { Command Modes }}$
Command History
Usage Guidelines

Global configuration (config)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

- We recommend that you configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to non-default values.
- You can configure the authentication and encryption key by using the key string command in RADIUS server configuration mode. Always configure the key as the last item in this command.
- Use the automate-tester name keywords to enable automatic server testing of the RADIUS server status and to specify the username to be used.

This example shows how to configure 1645 as the UDP port for the authentication server and 1646 as the UDP port for the accounting server, and configure a key string:

```
Device> enable
Device# configure terminal
Device(config)# radius server ISE
Device(config-radius-server)# address ipv4 10.1.1 auth-port 1645 acct-port 1646
Device(config-radius-server) # key cisco123
Device(config-radius-server)# end
```


## radius-server dead-criteria

To force one or both of the criteria, used to mark a RADIUS server as dead, to be the indicated constant, use the radius-server dead-criteria command in global configuration mode. To disable the criteria that were set, use the no form of this command.
radius-server dead-criteria [time seconds] [tries number-of-tries] no radius-server dead-criteria [\{time seconds $\mid$ tries number-of-tries $\}]$

## Syntax Description

Command Default

| time seconds | (Optional) Minimum amount of time, in seconds, that must elapse from the time that the |
| :---: | :---: | :---: | device last received a valid packet from the RADIUS server to the time the server is marked as dead. If a packet has not been received since the device booted, and there is a timeout, the time criterion will be treated as though it has been met. You can configure the time to be from 1 through 120 seconds.

- If the seconds argument is not configured, the number of seconds will range from 10 to 60 seconds, depending on the transaction rate of the server.

Note
Both the time criterion and the tries criterion must be met for the server to be marked as dead.
(Optional) Number of consecutive timeouts that must occur on the device before the RADIUS server is marked as dead. If the server performs both authentication and accounting, both types of packets will be included in the number. Improperly constructed packets will be counted as though they were timeouts. All transmissions, including the initial transmit and all retransmits, will be counted. You can configure the number of timeouts to be from 1 through 100.

- If the number-of-tries argument is not configured, the number of consecutive timeouts will range from 10 to 100 , depending on the transaction rate of the server and the number of configured retransmissions.

Note $\quad$ Both the time criterion and the tries criterion must be met for the server to be marked as dead.

Global configuration (config)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5 .1 a	

## Usage Guidelines

Note Both the time criterion and the tries criterion must be met for the server to be marked as dead.
The no form of this command has the following cases:

- If neither the seconds nor the number-of-tries argument is specified with the no radius-server dead-criteria command, both time and tries will be reset to their defaults.
- If the seconds argument is specified using the originally set value, the time will be reset to the default value range (10 to 60 ).
- If the number-of-tries argument is specified using the originally set value, the number of tries will be reset to the default value range ( 10 to 100 ).
$\overline{\text { Examples }} \quad$ The following example shows how to configure the device so that it will be considered dead after 5 seconds and 4 tries:

```
Device> enable
Device# configure terminal
Device(config)# radius-server dead-criteria time 5 tries 4
```

The following example shows how to disable the time and number-of-tries criteria that were set for the radius-server dead-criteria command.

```
Device(config)# no radius-server dead-criteria
```

The following example shows how to disable the time criterion that was set for the radius-server dead-criteria command.

Device(config) \# no radius-server dead-criteria time 5
The following example shows how to disable the number-of-tries criterion that was set for the radius-server dead-criteria command.

Device(config) \# no radius-server dead-criteria tries 4

## Related Commands

Command	Description
debug aaa dead-criteria transactions	Displays AAA dead-criteria transaction values.
show aaa dead-criteria	Displays dead-criteria information for a AAA server.
show aaa server-private	Displays the status of all private RADIUS servers.
show aaa servers	Displays information about the number of packets sent to and   received from AAA servers.

## radius-server deadtime

To improve RADIUS response time when some servers might be unavailable and to skip unavailable servers immediately, use the radius-server deadtime command in global configuration mode. To set deadtime to 0 , use the no form of this command.
radius-server deadtime minutes
no radius-server deadtime

Syntax Description

## Command Default

Command Modes
Command History

## Usage Guidelines

minutes Length of time, in minutes (up to a maximum of 1440 minutes or 24 hours), for which a RADIUS server is skipped over by transaction requests.

Dead time is set to 0 .
Global configuration (config)

Release	Modification
Cisco IOS XE Everest   16.5.1a	This command was introduced.

Use this command to enable the Cisco IOS software to mark as dead any RADIUS servers that fail to respond to authentication requests, thus avoiding the wait for the request to time out before trying the next configured server. A RADIUS server marked as dead is skipped by additional requests for the specified duration (in minutes) or unless there are no servers not marked as dead.

Note If a RADIUS server that is marked as dead receives a directed-request, the directed- request is not omitted by the RADIUS server. The RADIUS server continues to process the directed-request because the request is directly sent to the RADIUS server.

The RADIUS server will be marked as dead if both of the following conditions are met:

1. A valid response has not been received from the RADIUS server for any outstanding transaction for at least the timeout period that is used to determine whether to retransmit to that server, and
2. At at least the requisite number of retransmits plus one (for the initial transmission) have been sent consecutively across all transactions being sent to the RADIUS server without receiving a valid response from the server within the requisite timeout.

## Examples

The following example specifies five minutes of deadtime for RADIUS servers that fail to respond to authentication requests:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config) # radius-server deadtime 5
```

Related Commands	Command	Description
	deadtime (server-group configuration)	Configures deadtime within the context of RADIUS server   groups.
	Specifies a RADIUS server host.	
radius-server retransmit	Specifies the number of times that the Cisco IOS software   searches the list of RADIUS server hosts before giving up.	
radius-server timeout	Sets the interval for which a device waits for a server host to   reply.	

## radius-server directed-request

To allow users to log in to a Cisco network access server (NAS) and select a RADIUS server for authentication, use the radius-server directed-request command in global configuration mode. To disable the directed-request function, use the no form of this command.

```
radius-server directed-request [restricted]
no radius-server directed-request [restricted]
```

Syntax Description

Command Default
Command Modes
$\xrightarrow{ }$

Global configuration (config)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

Usage Guidelines
The User cannot log in to a Cisco NAS and select a RADIUS server for authentication.
16.5.1a
restricted (Optional) Prevents the user from being sent to a secondary server if the specified server is not available.

The radius-server directed-request command sends only the portion of the username before the "@" symbol to the host specified after the "@" symbol. In other words, with this command enabled, you can direct a request to any of the configured servers, and only the username is sent to the specified server.

Note If a private RADIUS server is used as the group server by configuring the server-private (RADIUS) command, then the radius-server directed-request command cannot be configured.

The following is the sequence of events to send a message to RADIUS servers:

- If the radius-server directed-request command is configured:
- A request is sent to the directed server. If there are more servers with the same IP address, the request is sent only to the first server with same IP address.
- If a response is not received, requests will be sent to all servers listed in the first method list.
- If no response is received with the first method, the request is sent to all servers listed in the second method list until the end of the method list is reached.

Note To select the directed server, search the first server group in the method list for a server with the IP address provided in a directed request. If it is not available, the first server group with the same IP address from the global pool is considered.

- If the radius-server directed-request restricted command is configured for every server group in the method list, until the response is received from the directed server or the end of method list is reached, the following actions occur:
- The first server with an IP address of the directed server will be used to send the request.
- If a server with the same IP address is not found in the server group, then the first server in the global pool with the IP address of the directed-server will be used.

If the radius-server directed-request command is disabled using the no radius-server directed-request command, the entire string, both before and after the "@" symbol, is sent to the default RADIUS server. The router queries the list of servers, starting with the first one in the list. It sends the whole string, and accepts the first response from the server.

Use the radius-server directed-request restricted command to limit the user to the RADIUS server identified as part of the username.

If the user request has a server IP address, then the directed server forwards it to a specific server before forwarding it to the group. For example, if a user request such as user@10.0.0.1 is sent to the directed server, and if the IP address specified in this user request is the IP address of a server, the directed server forwards the user request to the specific server.

If a directed server is configured both on the server group and on the host server, and if the user request with the configured server name is sent to the directed server, the directed server forwards the user request to the host server before forwarding it to the server group. For example, if a user request of user@10.0.0.1 is sent to the directed server and 10.0.0.1 is the host server address, then the directed server forwards the user request to the host server before forwarding the request to the server group.

When the no radius-server directed-request restricted command is entered, only the restricted flag is removed, and the directed-request flag is retained. To disable the directed-request function, you must also enter the no radius-server directed-request command.

## Examples

The following example shows how to configure the directed-request function:

```
Device> enable
Device# configure terminal
Device(config)# radius server rad-1
Device(config-radius-server)# address ipv4 10.1.1.2
Device(config-radius-server) # key dummy123
Device(config-radius-server)# exit
Device(config) # radius-server directed-request
```

Related Commands

Command	Description
aaa group server	Groups different server hosts into distinct lists and distinct methods.
aaa new-model	Enables the AAA access control model.
server-private (RADIUS)	Configures the IP address of the private RADIUS server for the group server.

## radius-server domain-stripping

To configure a network access server (NAS) to strip suffixes, or to strip both suffixes and prefixes from the username before forwarding the username to the remote RADIUS server, use the radius-server domain-stripping command in global configuration mode. To disable a stripping configuration, use the no form of this command.

Note The ip vrf default command must be configured in global configuration mode before the radius-server domain-stripping command is configured to ensure that the default VRF name is a NULL value until the defaulf vrf name is configured.
radius-server domain-stripping [\{ [right-to-left] [prefix-delimiter character [ character 2 . . . character 7] [ delimiter character [character2 . . . character 7]]|strip-suffix suffix $\}$ ] [ vrf vrf-name ]
no radius-server domain-stripping [\{[right-to-left] [prefix-delimiter character [ character 2 . . . character 7] [ delimiter character [character2 . . . character7]]|strip-suffix suffix \}] [ vrf vrf-name ]

Syntax Description
$\left.\left.\begin{array}{|l|l|}\hline \text { right-to-left } & \begin{array}{l}\text { (Optional) Specifies that the NAS will apply the stripping configuration at the } \\ \text { first delimiter found when parsing the full username from right to left. The default } \\ \text { is for the NAS to apply the stripping configuration at the first delimiter found } \\ \text { when parsing the full username from left to right. }\end{array} \\ \hline \begin{array}{l}\text { prefix-delimiter } \\ \text { character } \\ \text { [character2...character7] }\end{array} & \begin{array}{l}\text { (Optional) Enables prefix stripping and specifies the character or characters that } \\ \text { will be recognized as a prefix delimiter. Valid values for the character argument } \\ \text { are @, /, \$, \%, }, ~ \#, ~ a n d ~-. ~ M u l t i p l e ~ c h a r a c t e r s ~ c a n ~ b e ~ e n t e r e d ~ w i t h o u t ~ i n t e r v e n i n g ~\end{array} \\ \text { spaces. Up to seven characters can be defined as prefix delimiters, which is the } \\ \text { maximum number of valid characters. If a } \backslash \text { is entered as the final or only value } \\ \text { for the character argument, it must be entered as } \backslash \backslash \text {. No prefix delimiter is defined } \\ \text { by default. }\end{array}\right\} \begin{array}{l}\text { delimiter character } \\ \text { [character2...character7] }\end{array} \begin{array}{l}\text { (Optional) Specifies the character or characters that will be recognized as a suffix } \\ \text { delimiter. Valid values for the character argument are @, /, \$, \%, } \backslash, \#, \text { and -. } \\ \text { Multiple characters can be entered without intervening spaces. Up to seven } \\ \text { characters can be defined as suffix delimiters, which is the maximum number of } \\ \text { valid characters. If a } \backslash \text { is entered as the final or only value for the character } \\ \text { argument, it must be entered as } \backslash \backslash \text {. The default suffix delimiter is the @ character. }\end{array}\right\}$

Command Default
Stripping is disabled. The full username is sent to the RADIUS server.

Command Modes	Global configuration (config)
Command History	Release Modification
	Cisco IOS XE Everest This command was introduced. 16.5.1a
Usage Guidelines	Use the radius-server domain-stripping command to configure the NAS to strip the domain from a username before forwarding the username to the RADIUS server. If the full username is user $1 @$ cisco.com, enabling the radius-server domain-stripping command results in the username "userl" being forwarded to the RADIUS server.
	Use the right-to-left keyword to specify that the username should be parsed for a delimiter from right to left, rather than from left to right. This allows strings with two instances of a delimiter to strip the username at either delimiter. For example, if the username is user@cisco.com@cisco.net, the suffix could be stripped in two ways. The default direction (left to right) would result in the username "user" being forwarded to the RADIUS server. Configuring the right-to-left keyword would result in the username "user@cisco.com" being forwarded to the RADIUS server.
	Use the prefix-delimiter keyword to enable prefix stripping and to specify the character or characters that will be recognized as a prefix delimiter. The first configured character that is parsed will be used as the prefix delimiter, and any characters before that delimiter will be stripped.
	Use the delimiter keyword to specify the character or characters that will be recognized as a suffix delimiter. The first configured character that is parsed will be used as the suffix delimiter, and any characters after that delimiter will be stripped.
	Use strip-suffix suffix to specify a particular suffix to strip from usernames. For example, configuring the radius-server domain-stripping strip-suffix cisco.net command would result in the username user@cisco.net being stripped, while the username user@cisco.com will not be stripped. You may configure multiple suffixes for stripping by issuing multiple instances of the radius-server domain-stripping command. The default suffix delimiter is the @ character.

Note Issuing the radius-server domain-stripping s trip-suffix suffix command disables the capacity to strip suffixes from all domains. Both the suffix delimiter and the suffix must match for the suffix to be stripped from the full username. The default suffix delimiter of @ will be used if you do not specify a different suffix delimiter or set of suffix delimiters using the delimiterkeyword.

To apply a domain-stripping configuration only to a specified VRF, use the vrf vrf-name option.
The interactions between the different types of domain stripping configurations are as follows:

- You may configure only one instance of the radius-server domain-stripping[right-to-left] [prefix-delimiter character [character2...character7]] [delimiter character [character2...character7]] command.
- You may configure multiple instances of the radius-server domain-stripping[right-to-left] [prefix-delimiter character [character2...character7]] [delimiter character [character $2 \ldots$ character 7$]$ ] [vrf $v r f$-name] command with unique values for vrf $v r f$-name.
- You may configure multiple instances of the radius-server domain-stripping strip-suffix suffix[vrf per-vrf] command to specify multiple suffixes to be stripped as part of a global or per-VRF ruleset.
- Issuing any version of the radius-server domain-stripping command automatically enables suffix stripping using the default delimiter character @ for that ruleset, unless a different delimiter or set of delimiters is specified.
- Configuring a per-suffix stripping rule disables generic suffix stripping for that ruleset. Only suffixes that match the configured suffix or suffixes will be stripped from usernames.


## Examples

The following example configures the router to parse the username from right to left and sets the valid suffix delimiter characters as @, <br>, and \$. If the full username is cisco/user@cisco.com\$cisco.net, the username "cisco/user@cisco.com" will be forwarded to the RADIUS server because the \$ character is the first valid delimiter encountered by the NAS when parsing the username from right to left.

```
radius-server domain-stripping right-to-left delimiter @\$
```

The following example configures the router to strip the domain name from usernames only for users associated with the VRF instance named abc. The default suffix delimiter @ will be used for generic suffix stripping.

```
radius-server domain-stripping vrf abc
```

The following example enables prefix stripping using the character / as the prefix delimiter. The default suffix delimiter character @ will be used for generic suffix stripping. If the full username is cisco/user@cisco.com, the username "user" will be forwarded to the RADIUS server.

```
radius-server domain-stripping prefix-delimiter /
```

The following example enables prefix stripping, specifies the character / as the prefix delimiter, and specifies the character \# as the suffix delimiter. If the full username is cisco/user@cisco.com\#cisco.net, the username "user@cisco.com" will be forwarded to the RADIUS server.

```
radius-server domain-stripping prefix-delimiter / delimiter #
```

The following example enables prefix stripping, configures the character / as the prefix delimiter, configures the characters $\$$, $@$, and \# as suffix delimiters, and configures per-suffix stripping of the suffix cisco.com. If the full username is cisco/user@cisco.com, the username "user" will be forwarded to the RADIUS server. If the full username is cisco/user@cisco.com\#cisco.com, the username "user@cisco.com" will be forwarded.

```
radius-server domain-stripping prefix-delimiter / delimiter $@#
radius-server domain-stripping strip-suffix cisco.com
```

The following example configures the router to parse the username from right to left and enables suffix stripping for usernames with the suffix cisco.com. If the full username is cisco/user@cisco.net@cisco.com, the username "cisco/user@cisco.net" will be forwarded to the RADIUS server. If the full username is cisco/user@cisco.com@cisco.net, the full username will be forwarded.

```
radius-server domain-stripping right-to-left
radius-server domain-stripping strip-suffix cisco.com
```

The following example configures a set of global stripping rules that will strip the suffix cisco.com using the delimiter @, and a different set of stripping rules for usernames associated with the VRF named myvrf:

```
radius-server domain-stripping strip-suffix cisco.com
!
radius-server domain-stripping prefix-delimiter # vrf myvrf
radius-server domain-stripping strip-suffix cisco.net vrf myvrf
```

Related Commands	Command	Description
	aaa new-model	Enables the AAA access control model.
ip vrf	Defines a VRF instance and enters VRF configuration mode.	
tacacs-server domain-stripping	Configures a router to strip a prefix or suffix from the username before   forwarding the username to the TACACS+ server.	

## sak-rekey

To configure the Security Association Key (SAK) rekey time interval for a defined MKA policy, use the sak-rekey command in MKA-policy configuration mode. To stop the SAK rekey timer, use the no form of this command.
sak-rekey \{interval time-interval | on-live-peer-loss\} no sak-rekey \{interval | on-live-peer-loss\}

Syntax Description

Command Default
Command Modes
Command History

interval   time-interval	SAK rekey interval in seconds.
	The range is from 30 to 65535, and the default is 0.
on-live-peer-loss	Peer loss from the live membership.

The SAK rekey timer is disabled. The default is 0 .
MKA-policy configuration (config-mka-policy)

Release	Modification
Cisco IOS XE Fuji   16.8.1a	This command was introduced.

Examples
The following example shows how to configure the SAK rekey interval:

```
Device> enable
Device# configure terminal
Device(config)# mka policy 2
Device(config-mka-policy)# sak-rekey interval 300
```

Related Commands

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## security level (IPv6 snooping)

To specify the level of security enforced, use the security-level command in IPv6 snooping policy configuration mode.

	security	\| inspect $\}$
Syntax Description	glean	Extracts addresses from the messages and installs them into the binding table without performing any verification.
	guard	Performs both glean and inspect. Additionally, RA, and DHCP server messages are rejected unless they are received on a trusted port or another policy authorizes them.
	inspect	Validates messages for consistency and conformance; in particular, address ownership is enforced. Invalid messages are dropped.


Command Default	The default security level is guard.	
Command Modes	IPv6 snooping configuration (config-ipv6-snooping)	Modification
Command History	Release	This command was introduced.
	Cisco IOS XE Everest 16.5.1a	

This example shows how to define an IPv6 snooping policy name as policy1 and configure the security level as inspect:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping) # security-level inspect
Device(config-ipv6-snooping)# end
```


## security passthru

To modify the IPsec pass-through, use the security passthru command. To disable, use the no form of the command.
security passthru ip-address no security passthru

Syntax Description		
Command Default	None.	
Command Modes	wlan	IP address of the IPsec gateway that is terminating the VPN tunnel.
Command History	Release	Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This example shows how to modify IPSec pass-through.

```
Device> enable
Device# configure terminal
Device(config)# security passthrough 10.1.1.1
```


## send-secure-announcements

To enable MKA to send secure announcements in MACsec Key Agreement Protocol Data Units (MKPDUs), use the send-secure-announcements command in MKA-policy configuration mode. To disable sending of secure announcements, use the no form of this command.
send-secure-announcements
no send-secure-announcements

## Syntax Description

This command has no arguments or keywords.

$\overline{\text { Command Default }}$	Secure announcements in MKPDUs is disabled.	
$\overline{\text { Command Modes }}$	MKA-policy configuration (config-mka-policy)	
Command History	Release	Modification
	Cisco IOS XE Fuji	This command was introduced.
	16.9 .1	

## Usage Guidelines

Secure announcements revalidate the MACsec Cipher Suite capabilities which were shared previously through unsecure announcements.

## Examples

The following example shows how to enable sending of secure announcements:

```
Device> enable
Device# configure terminal
Device(config)# mka policy 2
Device(config-mka-policy)# send-secure-announcements
```

Related Commands

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
sak-rekey	Configures the SAK rekey interval.
ssci-based-on-sci	Computes SSCI based on the SCI.
use-updated-eth-header	Uses the updated ethernet header for ICV calculation.

## server-private (RADIUS)

To configure the IP address of the private RADIUS server for the group server, use the server-private command in RADIUS server-group configuration mode. To remove the associated private server from the authentication, authorization, and accounting (AAA) group server, use the no form of this command.
server-private ip-address [\{auth-port port-number |acct-port port-number\}] [non-standard] [timeout seconds] [retransmit retries] [key string]
no server-private ip-address [\{auth-port port-number | acct-port port-number\}] [non-standard] [timeout seconds] [retransmit retries] [key string]

## Syntax Description

## Command Default

## Command Modes

RADIUS server-group configuration (config-sg-radius)

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

 not specified, default values will be used.| ip-address | IP address of the private RADIUS server host. |
| :--- | :--- |
| auth-port port-number | (Optional) User Datagram Protocol (UDP) destination port for authentication <br> requests. The default value is 1645. |
| acct-port port-number | Optional) UDP destination port for accounting requests. The default value is 1646. |
| non-standard | (Optional) RADIUS server is using vendor-proprietary RADIUS attributes. |
| timeout seconds | (Optional) Time interval (in seconds) that the device waits for the RADIUS server <br> to reply before retransmitting. This setting overrides the global value of the <br> radius-server timeout command. If no timeout value is specified, the global value <br> is used. |
| retransmit retries | (Optional) Number of times a RADIUS request is resent to a server, if that server <br> is not responding or responding slowly. This setting overrides the global setting of <br> the radius-server retransmit command. |
| key string | (Optional) Authentication and encryption key used between the device and the <br> RADIUS daemon running on the RADIUS server. This key overrides the global <br> setting of the radius-server key command. If no key string is specified, the global <br> value is used. <br> The string can be 0 (specifies that an unencrypted key follows), $\mathbf{6}$ (specifies that <br> an advanced encryption scheme [AES] encrypted key follows), $\mathbf{7}$ (specifies that a <br> hidden key follows), or a line specifying the unencrypted (clear-text) server key. |

If server-private parameters are not specified, global configurations will be used; if global configurations are

Use the server-private command to associate a particular private server with a defined server group. To prevent possible overlapping of private addresses between virtual route forwarding (VRF) instances, private
servers (servers with private addresses) can be defined within the server group and remain hidden from other groups, while the servers in the global pool (default "radius" server group) can still be referred to by IP addresses and port numbers. Thus, the list of servers in server groups includes references to the hosts in the global configuration and the definitions of private servers.

Note

- If the radius-server directed-request command is configured, then a private RADIUS server cannot be used as the group server by configuring the server-private (RADIUS) command.
- Creating or updating AAA server statistics record for private RADIUS servers are not supported. If private RADIUS servers are used, then error messages and tracebacks will be encountered, but these error messages or tracebacks do not have any impact on the AAA RADIUS functionality. To avoid these error messages and tracebacks, configure public RADIUS server instead of private RADIUS server.

Use the password encryption aes command to configure type 6 AES encrypted keys.

## Examples

The following example shows how to define the sg_water RADIUS group server and associate private servers with it:

## Device> enable

Device\# configure terminal
Device(config) \# aaa new-model
Device(config) \# aaa group server radius sg_water
Device (config-sg-radius) \# server-private 10.1 .1 .1 timeout 5 retransmit 3 key xyz
Device (config-sg-radius) \# server-private 10.2 .2.2 timeout 5 retransmit 3 key xyz
Device(config-sg-radius) \# end

## Related Commands

Command	Description
aaa group server	Groups different server hosts into distinct lists and distinct methods.
aaa new-model	Enables the AAA access control model.
password encryption aes	Enables a type 6 encrypted preshared key.
radius-server host	Specifies a RADIUS server host.
radius-server directed-request	Allows users to log in to a Cisco NAS and select a RADIUS server for   authentication.

## server-private (TACACS+)

To configure the IPv4 or IPv6 address of the private TACACS+ server for the group server, use the server-private command in server-group configuration mode. To remove the associated private server from the authentication, authorization, and accounting (AAA) group server, use the no form of this command.
server-private \{ipv4-address |ipv6-address |fqdn\}[nat][single-connection][port port-number ][timeout seconds] key [\{0|7\}] string no server-private

Syntax Description

ip4-address	IPv4 address of the private TACACS+ server host.
ip6-address	IPv6 address of the private TACACS+ server host.
fqdn	Fully qualified domain name (fqdn) of the private TACACS+ server host for address   resolution from the Domain Name Server (DNS)
nat	(Optional) Specifies the port Network Address Translation (NAT) address of the remote

single-connection (Optional) Maintains a single TCP connection between the router and the TACACS+ server.
timeout seconds (Optional) Specifies a timeout value for the server response. This value overrides the global timeout value set with the tacacs-server timeout command for this server only.
port port-number (Optional) Specifies a server port number. This option overrides the default, which is port 49.
key [0|7] string (Optional) Specifies an authentication and encryption key. This key must match the key used by the TACACS+ daemon. Specifying this key overrides the key set by the global tacacs-server key command for this server only.

If no number or 0 is entered, the string that is entered is considered to be plain text. If 7 is entered, the string that is entered is considered to be encrypted text.

Command Default	If server-private parameters are not specified, global configurations will be used; if global configurations are not specified, default values will be used.
Command Modes	TACACS+ server-group configuration (config-sg-tacacs + )
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.
Usage Guidelines	Use the server-private command to associate a particular private server with a defined server group. To prevent possible overlapping of private addresses between virtual route forwardings (VRFs), private servers (servers with private addresses) can be defined within the server group and remain hidden from other groups, while the servers in the global pool (default "TACACS+" server group) can still be referred to by IP addresses

and port numbers. Thus, the list of servers in server groups includes references to the hosts in the global configuration and the definitions of private servers.

The following example shows how to define the tacacs1 TACACS+ group server and associate private servers with it:

```
Device> enable
Device# configure terminal
Device(config)# aaa group server tacacs+ tacacs1
Device(config-sg-tacacs+)# server-private 10.1.1.1 port 19 key cisco
Device(config-sg-tacacs+) # exit
Device(config)#ip vrf cisco
Device(config-vrf) # rd 100:1
Device(config-vrf)# exit
Device(config)# interface Loopback0
Device(config-if)#ip address 10.0.0.2 255.0.0.0
Device(config-if)#ip vrf forwarding cisco
```


## Related Commands

Command	Description
aaa group server	Groups different server hosts into distinct lists and distinct methods.
aaa new-model	Enables the AAA access control model.
ip tacacs source-interface	Uses the IP address of a specified interface for all outgoing TACACS+   packets.
ip vrf forwarding (server-group)	Configures the VRF reference of an AAA TACACS+ server group.

## show aaa clients

	To display authentication, authorization, and accounting (AAA) client statistics, use the show aaa clients command.	
Syntax Description	detailed (Optional) Shows detailed AAA client statistics.	
Command Modes	User EXEC ( $>$ )	
	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

This is an example of output from the show aaa clients command:

```
Device> enable
Device# show aaa clients
Dropped request packets: 0
```


## show aaa command handler

To display authentication, authorization, and accounting (AAA) command handler statistics, use the show aaa command handler command.
show aaa command handler

$\overline{\text { Syntax Description }}$	This command has no aruguments or keywords.	
$\overline{\text { Command Modes }}$	User EXEC ( $>$ )	
	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

This is an example of output from the show aaa command handler command:

```
Device# show aaa command handler
AAA Command Handler Statistics:
 account-logon: 0, account-logoff: 0
 account-query: 0, pod: 0
 service-logon: 0, service-logoff: 0
 user-profile-push: 0, session-state-log: 0
 reauthenticate: 0, bounce-host-port: 0
 disable-host-port: 0, update-rbacl: 0
 update-sgt: 0, update-cts-policies: 0
 invalid commands: 0
 async message not sent: 0
```


## show aaa dead-criteria

To display dead-criteria detection information for an authentication, authorization, and accounting (AAA) server, use the show aaa dead-criteria command in privileged EXEC mode.
show aaa dead-criteria \{security-protocol ip-address\} [auth-port port-number] [acct-port port-number][server-group-name]

Syntax Description

Command Default

security-protocol	Security protocol of the specified AAA server. Currently, the only protocol that is   supported is RADIUS.
ip-address	IP address of the specified AAA server.
auth-port	(Optional) Authentication port for the RADIUS server that was specified.
port-number	(Optional) Number of the authentication port. The default is 1645 (for a RADIUS   server).
acct-port	(Optional) Accounting port for the RADIUS server that was specified.
port-number	(Optional) Number of the accounting port. The default is 1646 (for a RADIUS server).
server-group-name	(Optional) Server group with which the specified server is associated. The default is   radius (for a RADIUS server).

Currently, the port-number argument for the auth-port keyword and the port-number argument for the acct-port keyword default to 1645 and 1646, respectively. The default for the server-group-name argument is radius.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest   16.5.1a	This command was introduced.

Usage Guidelines
Multiple RADIUS servers having the same IP address can be configured on a device. The auth-port and acct-port keywords are used to differentiate the servers. The dead-detect interval of a server that is associated with a specified server group can be obtained by using the server-group-name keyword. (The dead-detect interval and retransmit values of a RADIUS server are set on the basis of the server group to which the server belongs. The same server can be part of multiple server groups.)

Examples The following example shows that dead-criteria-detection information has been requested for a RADIUS server at the IP address 172.19.192.80:

```
Device# show aaa dead-criteria radius 172.19.192.80 radius
RADIUS Server Dead Critieria:
==============================
Server Details:
 Address : 172.19.192.80
```

```
 Auth Port : 1645
 Acct Port : 1646
Server Group : radius
Dead Criteria Details:
 Configured Retransmits : 62
 Configured Timeout : 27
 Estimated Outstanding Transactions: 5
 Dead Detect Time : 25s
 Computed Retransmit Tries: 22
 Statistics Gathered Since Last Successful Transaction
===
Max Computed Outstanding Transactions: 5
Max Computed Dead Detect Time: 25s
Max Computed Retransmits : 22
```

The Max Computed Dead Detect Time is displayed in seconds. The other fields shown in the display are self-explanatory.

Related Commands	Command	Description
	debug aaa dead-criteria transactions	Displays AAA dead-criteria transaction values.
	Forces one or both of the criteria, used to mark a RADIUS server   as dead, to be the indicated constant.	
show aaa server-private	Displays the status of all private RADIUS servers.	
show aaa servers	Displays information about the number of packets sent to and   received from AAA servers.	

## show aaa local

To display authentication, authorization, and accounting (AAA) local method options, use the show aaa local command.
show aaa local \{netuser \{name | all \} | statistics | user lockout \}
Syntax Description

## Command Modes

Command History

netuser	Specifies the AAA local network or guest user database.
name	Network user name.
all	Specifies the network and guest user information.
statistics	Displays statistics for local authentication.
user   lockout	Specifies the AAA local locked-out user.

User EXEC (>)
Privileged EXEC (\#)
Release

## Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This is an example of output from the show aaa local statistics command:

```
Device# show aaa local statistics
Local EAP statistics
EAP Method Success Fail
--
Unknown 0 0
EAP-MD5 0 0
EAP-GTC 0 0
LEAP 0 0
PEAP
EAP-TLS
EAP-MSCHAPV2 0 0
EAP-FAST 0 0
Requests received from AAA: 0
Responses returned from EAP: 0
Requests dropped (no EAP AVP): 0
Requests dropped (other reasons): 0
Authentication timeouts from EAP: 0
Credential request statistics
Requests sent to backend: 0
Requests failed (unable to send): 0
Authorization results received
 Success:
 0
```


## show aaa servers

To display all authentication, authorization, and accounting (AAA) servers as seen by the AAA server MIB, use the show aaa servers command.
show aaa servers [private | public | [detailed]]
Syntax Description

detailed	(Optional) Displays private AAA servers as seen by the AAA server
	MIB.
public	(Optional) Displays public AAA servers as seen by the AAA server
	MIB.
detailed	(Optional) Displays detailed AAA server statistics.

## Command Modes

User EXEC (>)
Privileged EXEC ( $>$ )

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Fuji 16.9.1	The output of the command was   updated.

## Examples

The following is a sample output from the show aaa servers command:

```
Device# show aaa servers
Bad authenticators: 0
RADSEC: Packet count since last idletimeout 0,
Send handshake count 0,
Handshake Success 0,
Total Packets Transmitted 0,
Total Packets Received 0,
Total Connection Resets 9,
Connection Reset due to idle timeout 0,
Connection Reset due to No Response 0,
Connection Reset due to Malformed packet 0,
Connection Reset by Peer 0,
```


## show aaa sessions

To display authentication, authorization, and accounting (AAA) sessions as seen by the AAA Session MIB, use the show aaa sessions command.
show aaa sessions
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

$\overline{\text { Command Modes }}$	User EXEC ( $>$ )
	Privileged EXEC (\#)

## Command History

Release
Cisco IOS XE Everest 16.5 .1 a
The following is sample output from the sh
Device\# show aaa sessions
Total sessions since last reload: 7
Session Id: 4007
Unique Id: 4025
User Name: *not available*
IP Address: 0.0.0.0
Idle Time: 0
CT Call Handle: 0

## show authentication brief

To display brief information about authentication sessions for a given interface, use the show authentication brief command in either user EXEC or privileged EXEC mode.
show authentication brief[switch\{switch-number|active|standby\}\{R0\}]

Syntax Description

Command Modes

## Command History

switch-number	Valid values for the switch-number variable are from   1 to 9.
R0	Displays information about the Route Processor (RP)   slot 0.
active	Specifies the active instance.
standby	Specifies the standby instance.

Privileged EXEC (\#)
User EXEC (>)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The following is a sample output from the show authentication brief command:

Interface	MAC Address	AuthC	Authz	Fg	Uptime
Gi2/0/14	0002.0002 .0001	m:NA d:OK	AZ: SA-	X	281 s
Gi2/0/14	0002.0002 .0002	m:NA d:OK	AZ: SA-	X	280 s
Gi2/0/14	0002.0002 .0003	m:NA d:OK	AZ: SA-	X	279s
Gi2/0/14	0002.0002 .0004	m:NA d:OK	AZ: SA-	X	278s
Gi2/0/14	0002.0002 .0005	m:NA d:OK	AZ: SA-	X	278 s
Gi2/0/14	0002.0002 .0006	m:NA d:OK	AZ: SA-	X	277 s
Gi2/0/14	0002.0002 .0007	m:NA d:OK	AZ: SA-	X	276 s
Gi2/0/14	0002.0002 .0008	m:NA d:OK	AZ: SA-	X	276 s
Gi2/0/14	0002.0002 .0009	$m: N A$ d:OK	AZ: SA-	X	275 s
Gi2/0/14	0002.0002 .000 a	m:NA d:OK	AZ: SA-	X	275 s
Gi2/0/14	0002.0002 .000 b	m:NA d:OK	AZ: SA-	X	274 s
Gi2/0/14	0002.0002 .000 c	m:NA d:OK	AZ: SA-	X	274 s
Gi2/0/14	0002.0002 .000 d	m:NA d:OK	AZ: SA-	X	273s
Gi2/0/14	0002.0002 .000 e	m:NA d:OK	AZ: SA-	X	273s
Gi2/0/14	$0002.0002 .000 f$	m:NA d:OK	AZ: SA-	X	272s
Gi2/0/14	0002.0002 .0010	m:NA d:OK	AZ: SA-	X	272s
Gi2/0/14	0002.0002 .0011	m:NA d:OK	AZ: SA-	X	271 s
Gi2/0/14	0002.0002 .0012	m:NA d:OK	AZ: SA-	X	271 s
Gi2/0/14	0002.0002 .0013	m:NA d:OK	AZ: SA-	X	270s
Gi2/0/14	0002.0002 .0014	m:NA d:OK	AZ: SA-	X	270s
Gi2/0/14	0002.0002 .0015	m:NA d:OK	AZ: SA-	X	269s

The following is a sample output from the show authentication brief command for active instances:

Interface	MAC Address	AuthC	Authz	Fg	Uptime
Gi2/0/14	0002.0002 .0001	m:NA d:OK	AZ: SA-	X	1 s
Gi2/0/14	0002.0002 .0002	$m: N A \quad d: O K$	AZ: SA-	X	0 s
Gi2/0/14	0002.0002 .0003	m:NA d:OK	AZ: SA-	X	299s
Gi2/0/14	0002.0002 .0004	$m: N A \quad d: O K$	AZ: SA-	X	298s
Gi2/0/14	0002.0002 .0005	m:NA d:OK	AZ: SA-	X	298s
Gi2/0/14	0002.0002 .0006	m:NA d:OK	AZ: SA-	X	297s
Gi2/0/14	0002.0002 .0007	m:NA d:OK	AZ: SA-	X	296s
Gi2/0/14	0002.0002 .0008	m:NA d:OK	AZ: SA-	X	296 s
Gi2/0/14	0002.0002 .0009	m:NA d:OK	AZ: SA-	X	295s
Gi2/0/14	0002.0002.000a	$m: N A \quad d: O K$	AZ: SA-	X	295s
Gi2/0/14	0002.0002.000b	$m: N A \quad d: O K$	AZ: SA-	X	294s
Gi2/0/14	0002.0002 .000 c	$m: N A \quad d: O K$	AZ: SA-	X	294 s
Gi2/0/14	0002.0002 .000 d	$m: N A \quad d: O K$	AZ: SA-	X	293s
Gi2/0/14	0002.0002 .000 e	$m: N A \quad d: O K$	AZ: SA-	X	293s
Gi2/0/14	$0002.0002 .000 f$	$m: N A \quad d: O K$	AZ: SA-	X	292s
Gi2/0/14	0002.0002 .0010	$m: N A \quad d: O K$	AZ: SA-	X	292s
Gi2/0/14	0002.0002 .0011	m:NA d:OK	AZ: SA-	X	291s
Gi2/0/14	0002.0002 .0012	$m: N A \quad d: O K$	AZ: SA-	X	291s
Gi2/0/14	0002.0002 .0013	m:NA d:OK	AZ: SA-	X	290s
Gi2/0/14	0002.0002 .0014	$m: N A \quad d: O K$	AZ: SA-	X	290s
Gi2/0/14	0002.0002 .0015	m:NA d:OK	AZ: SA-	X	289s
Gi2/0/14	0002.0002 .0016	$m: N A \quad d: O K$	AZ: SA-	X	289s

The following is a sample output from the show authentication brief command for standby instances:

```
Device# show authentication brief switch standby R0
No sessions currently exist
```

The table below describes the significant fields shown in the displays.

## Table 193: show authentication brief Field Descriptions

Field	Description
Interface	The type and number of the authentication interface.
MAC Address	The MAC address of the client.
AuthC	Indicates authentication status.
AuthZ	Indicates authorization status.


Field	Description
Fg	Flag indicates the current status. The valid values are:   - A—Applying policy (multi-line status for details)   - D—Awaiting removal   - F-Final removal in progress   - I—Awaiting IIF ID allocation   - P—Pushed session   - R—Removing user profile (multi-line status for details)   - U—Applying user profile (multi-line status for details)   - X—Unknown blocker
Uptime	Indicates the duration since which the session came up

## show authentication history

To display the authenticated sessions alive on a device, use the show authentication history command in user EXEC or privileged EXEC mode.
show authentication history [min-uptime seconds]

## Syntax Description

## Command Modes

Command History

## Usage Guidelines

min-uptime seconds (Optional) Displays sessions within the minimum uptime. The range is from 1 through 4294967295 seconds.

User EXEC ( $>$ )
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Use the show authentication history command to display the authenticated sessions alive on the device.
The following is sample output from the show authentication history command:

```
Device# show authentication history
Interface MAC Address Method Domain Status Uptime
Gi3/0/2 0021.d864.07c0 dot1x DATA Auth 38s
```

Session count $=1$

## show authentication sessions



State	Description
Success	The method has provided a successful authentication   result for the session.
Authc Failed	The method has provided a failed authentication result   for the session.

This table shows the possible authentication methods.

## Table 195: Authentication Method States

State	Description
dot1x	802.1 X
mab	MAC authentication bypass
webauth	web authentication

The following example shows how to display all authentication sessions on the device:

Device\# show authentication sessions					
Interface	MAC Address	Method	Domain	Status	Session ID
Gi1/0/48	$0015.63 b 0 . f 676$	dot1x	DATA	Authz Success	OA3462B1000000102983C05C
Gi1/0/5	$000 f .23 c 4 . a 401$	mab	DATA	Authz Success	OA3462B100000000D24F80B58
Gi1/0/5	$0014 . b f 5 d . d 26 d$	dot1x	DATA	Authz Success	OA3462B100000000E29811B94

The following example shows how to display all authentication sessions on an interface:

```
Device# show authentication sessions interface gigabitethernet2/0/47
 Interface: GigabitEthernet2/0/47
 MAC Address: Unknown
 IP Address: Unknown
 Status: Authz Success
 Domain: DATA
 Oper host mode: multi-host
 Oper control dir: both
 Authorized By: Guest Vlan
 Vlan Policy: 20
 Session timeout: N/A
 Idle timeout: N/A
 Common Session ID: OA3462C8000000000002763C
 Acct Session ID: 0x00000002
 Handle: 0x25000000
Runnable methods list:
 Method State
 mab Failed over
 dot1x Failed over
--
 Interface: GigabitEthernet2/0/47
 MAC Address: 0005.5e7c.da05
 IP Address: Unknown
 User-Name: 00055e7cda05
 Status: Authz Success
```

```
 Domain: voICE
 Oper host mode: multi-domain
 Oper control dir: both
 Authorized By: Authentication Server
 Session timeout: N/A
 Idle timeout: N/A
Common Session ID: 0A3462C8000000010002A238
 Acct Session ID: 0x00000003
 Handle: 0x91000001
Runnable methods list:
 Method State
 mab Authc success
 dot1x Not run
```


## show cisp

To display Client Information Signaling Protocol (CISP) information for a specified interface, use the show cisp command in privileged EXEC mode.

|  | show cisp $\{[$ clients \| interface interface-id $]$ | registrations \| summary $\}$ |
| :--- | :--- | :--- | :--- |
| Syntax Description | clients | (Optional) Display CISP client details. |
| interface interface-id | (Optional) Display CISP information about the specified interfa <br> channels. |  |
| registrations | Displays CISP registrations. |  |
|  | summary | (Optional) Displays CISP summary. |

## Command Modes

Privileged EXEC (\#)

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The following is sample output from the show cisp interface command:

Device\# show cisp interface fastethernet 0/1/1
CISP not enabled on specified interface

The following is sample output from the show cisp registration command:

```
Device# show cisp registrations
Interface(s) with CISP registered user(s):
--
Fa1/0/13
Auth Mgr (Authenticator)
Gi2/0/1
Auth Mgr (Authenticator)
Gi2/0/2
Auth Mgr (Authenticator)
Gi2/0/3
Auth Mgr (Authenticator)
Gi2/0/5
Auth Mgr (Authenticator)
Gi2/0/9
Auth Mgr (Authenticator)
Gi2/0/11
Auth Mgr (Authenticator)
Gi2/0/13
Auth Mgr (Authenticator)
Gi3/0/3
Gi3/0/5
```


## Gi3/0/23

Related Commands	Command	Description
cisp enable	Enables CISP.	
dot1x credentials profile	Configures a profile on a supplicant device.	

## show device-tracking capture-policy

To display the rules that the system pushes to the hardware (forwarding layer), enter the show device-tracking capture-policy command in privileged EXEC mode. These rules determine which packets are punted to SISF for further action. These rules are a translation of the policy that is applied to the interface or VLAN.
show device-tracking capture-policy [ interface inteface_type_no | vlan vlan_id]

## Syntax Description

Command Modes
Command History

## Usage Guidelines

interface inteface_type_no Displays message capture policy information for the interface you specify. Enter an interface type and number.

Use the question mark (?) online help function to display the types of interfaces on the device.
vlan vlan_id Displays message capture policy information for the VLAN ID you specify. The valid value range is from 1 to 4095.

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

The output of this command is used by the technical support team, for troubleshooting.

## Examples

The following is sample output from the show device-tracking capture-policy command:

```
Device# show device-tracking capture-policy interface tengigabitethernet1/0/1
 HW Target Te1/0/1 HW policy signature 0001DF9F policies#:1 rules 14 sig 0001DF9F
 SW policy sisf-01 feature Device-tracking - Active
 Rule DHCP4 CLIENT Protocol UDP mask 00000400 action PUNT match1 0 match2 67#feat:1
 feature Device-tracking
 Rule DHCP4 SERVER SOURCE Protocol UDP mask 00001000 action PUNT match1 0 match2
68#feat:1
 feature Device-tracking
 Rule DHCP4 SERVER Protocol UDP mask 00000800 action PUNT match1 67 match2 0#feat:1
 feature Device-tracking
 Rule ARP Protocol IPV4 mask 00004000 action PUNT match1 0 match2 0#feat:1
 feature Device-tracking
 Rule DHCP SERVER SOURCE Protocol UDP mask 00000200 action PUNT match1 0 match2
546#feat:1
 feature Device-tracking
 Rule DHCP CLIENT Protocol UDP mask 00000080 action PUNT match1 0 match2 547#feat:1
 feature Device-tracking
 Rule DHCP SERVER Protocol UDP mask 00000100 action PUNT match1 547 match2 0#feat:1
 feature Device-tracking
 Rule RS Protocol ICMPV6 mask 00000004 action PUNT match1 133 match2 0#feat:1
 feature Device-tracking
 Rule RA Protocol ICMPV6 mask 00000008 action PUNT match1 134 match2 0#feat:1
```

```
 feature Device-tracking
Rule NS Protocol ICMPV6 mask 00000001 action PUNT match1 135 match2 0#feat:1
 feature Device-tracking
Rule NA Protocol ICMPV6 mask 00000002 action PUNT match1 }136\mathrm{ match2 0#feat:1
 feature Device-tracking
Rule REDIR Protocol ICMPV6 mask 00000010 action PUNT match1 }137\mathrm{ match2 0#feat:1
 feature Device-tracking
Rule DAR Protocol ICMPV6 mask 00008000 action PUNT match1 157 match2 0#feat:1
 feature Device-tracking
Rule DAC Protocol ICMPV6 mask 00010000 action PUNT match1 158 match2 0#feat:1
 feature Device-tracking
```


## show device-tracking counters

To display information about the number of broadcast, multicast, bridged, unicast, probe, dropped device-tracking messages and faults received on an interface or VLAN or both, enter the show device-tracking counters command in privileged EXEC mode. Where applicable, the messages are categorized by protocol. The list of protocols include Address Resolution Protocol (ARP), Neighbor Discovery Protocol (NDP), DHCPv6, DHCPv4, Address Collision Detection (ACD), and Duplicate Address Detection (DAD).
show device-tracking counters [ all | interface inteface_type_no | vlan vlan_id]

## Syntax Description

## Command Modes

## Command History

## Usage Guidelines

all Displays information for all interfaces and VLANs on the device where a policy is attached.
interface inteface_type_no Displays information for the specified interface. Enter an interface type and number.

Use the question mark (?) online help function to display the types of interfaces on the device.

vlan vlan_id	Displays information for the VLAN ID you specify. The range is from 1 to   4095.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was   introduced.

When you enter the show device-tracking counterscommand, you must enter one of the keywords that follow, that is, all, or interface inteface_type_no, or vlan vlan_id.

If you specify an interface or VLAN where a policy is not attached, the following message is displayed: \% no ipv6 snooping policy attached on <interface number or VLAN ID>

## Examples

The following is sample output from theshow device-tracking counters command. Information relating to a particular VLAN (VLAN 10) is displayed here:

```
Device# show device-tracking counters vlan 10
Received messages on vlan 10 :
Protocol Protocol message
NDP RA[2479] NS[1757] NA[2794]
DHCPv6
ARP REP[878]
DHCPv4
ACD&DAD -- [3]
Received Broadcast/Multicast messages on vlan 10 :
Protocol Protocol message
NDP RA[2479] NS[3] NA[5]
DHCPv6
```

```
ARP REP[1]
DHCPv4
Bridged messages from vlan 10
Protocol Protocol message
NDP RA[1238] NS[1915] NA[878]
DHCPv6
ARP REQ[877]
DHCPv4
ACD&DAD -- [1]
Broadcast/Multicast converted to unicast messages from vlan 10 :
Protocol Protocol message
NDP
DHCPv6
ARP
DHCPv4
ACD&DAD
Probe message on vlan 10 :
Type Protocol message
PROBE SEND NS[1037] REQ[877]
PROBE_REPLY NA[1037] REP[877]
Limited Broadcast to Local message on vlan 10 :
Type Protocol message
NDP
DHCPv6
ARP
DHCPv4
Dropped messages on vlan 10 :
Feature Protocol Msg [Total dropped]
Device-tracking: NDP RA [1241]
 reason: Packet not authorized on port [1241]
 NS [2]
 reason: Silent drop [2]
 NA [1039]
 reason: Silent drop [1037]
 reason: Packet accepted but not forwarded [2]
 ARP REP [878]
 reason: Silent drop [877]
 reason: Packet accepted but not forwarded [1]
ACD&DAD: -- -- [2]
Faults on vlan 10 :
```


## show device-tracking database

To display details of the binding table database, enter the show device-tracking database command in privileged EXEC mode.
show device-tracking database [ address \{ hostname_address | all \} [ interface inteface_type_no ] [ vlanid vlan ] [ details ] | details | interface inteface_type_no [ details ] [ vlanid vlan ] | mac [ 48_bit_hw_add ] [ details ] [ interface inteface_type_no ] [ vlanid vlan ] | prefix [ prefix_address | all ] [ details ] [ interface inteface_type_no ] | vlanid vlanid [details ] ]

## Syntax Description

## Command Modes

Command History

address $\{$ hostname_address $\mid$   all $\}$	Displays binding table information for a particular IP address or for all   addresses
interface inteface_type_no	Displays binding table information for the specified interface. Enter an   interface type and number.   Use the question mark (?) online help function to display the types of   interfaces on the device.
vlanid vlan	Displays binding table information for the VLAN ID you specify. The   valid value range is from 1 to 4095.
details	Displays detailed information.
mac	Displays binding table information for the MAC address you specify.
$48 \_b i t \_h w \_a d d$	Enter a 48-bit hardware address.
prefix	Displays binding table information for the IPv6 prefix you specify.
prefix_address	Enter an IPv6 prefix.
all	Displays binding table information for all the available IPv6 prefixes.

Privileged EXEC (\#)

Release	Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Examples

The following is sample output for the show device-tracking database detailscommand. The accompanying table describes the significant fields shown in the display.

```
Device# show device-tracking database details
 Binding table configuration:

 max/box : no limit
 max/vlan : no limit
```

```
max/port : no limit
max/mac : no limit
Binding table current counters:

dynamic : 5
local : 1
total : 5
Binding table counters by state:
Binding table------------------------------
REACHABLE : 5
 DOWN : 1
 total : 6
```

Codes: L - Local, S - Static, ND - Neighbor Discovery, ARP - Address Resolution Protocol,
DH4 - IPv4 DHCP, DH6 - IPv6 DHCP, PKT - Other Packet, API - API created
Preflevel flags (prlvl):
0001:MAC and LLA match
0008:Orig trusted trunk
0040:Cga authenticated 0080:Cert authenticated 0100:Statically assigned
0002:Orig trunk 0004:Orig access
0010:Orig trusted access 0020:DHCP assigned

Network Layer Address age state Time left	Link Layer Address Filter In Crimson	Interface mode Client ID	$\begin{aligned} & \text { vlan(prim) prlvl } \\ & \text { Session ID } \end{aligned}$
Policy (feature)			
ARP 192.0.9.29	001b.4411.3ab7 (S)	Te1/0/4 trunk	200 (200) 0003
6 mn REACHABLE 331 s	no yes	0000.0000 .0000	(unspecified)
sisf-01 (Device-tracking)			
ARP 192.0.9.28	001b.4411.3ab7 (S)	Te1/0/4 trunk	200 (200) 0003
6 mn REACHABLE 313 s	no yes	0000.0000 .0000	(unspecified)
sisf-01 (Device-tracking)			
ARP 192.0.9.27	001b.4411.3ab7 (S)	Te1/0/4 trunk	200 (200) 0003
6 mn REACHABLE 323 s	no yes	0000.0000 .0000	(unspecified)
sisf-01 (Device-tracking)			
ARP 192.0.9.26	001b.4411.3ab7 (S)	Te1/0/4 trunk	200 (200) 0003
6 mn REACHABLE 311 s	no yes	0000.0000 .0000	(unspecified)
sisf-01 (Device-tracking)			
ARP 192.0.9.25	001b.4411.3ab7 (S)	Te1/0/4 trunk	200 (200) 0003
6 mn REACHABLE 313 s	no yes	0000.0000 .0000	(unspecified)
sisf-01 (Device-tracking)			
L 192.168.0.1	00a5.bf9d. 0462 (D)	V1200 svi	200 (200) 0100
6 mn DOWN	no yes	0000.0000 .0000	(unspecified)
sisf-01 (sisf local)			

Table 196: show device-tracking database details Field Descriptions

Field	Description
Binding table configuration:   - max/box   - max/vlan   - max/port   - max/mac	Displays binding table settings. The values correspond with what is configured using the device-tracking binding command in global configuration mode.   - max/box: The value displayed here corresponds with the configured value for the max-entries no_of_entries keyword.   - max/vlan: The value displayed here corresponds with the configured value for the vlan-limit no_of_entries keyword.   - max/port: The value displayed here corresponds with the configured value for the port-limit no_of_entries keyword.   - max/mac: The value displayed here corresponds with the configured value for the mac-limit no_of_entries keyword.
Binding table current counters:   - dynamic   - local   - total	Displays the number of entries in the table.   - dynamic: Dynamic entries are created by learning events that dynamically populate the binding table.   - local: Local entries are automatically created when you configure an SVI on the device.   One of ways in which SISF uses a local entry, is in the context of polling. If polling is enabled, the SVI address is used as the source address of an ARP probe.   - total: The total is a sum of the dynamic, local, and static binding entries.
Binding table counters by state:	Displays the number of entries in each state. The state can be REACHABLE, STALE, DOWN.
Codes	Clarifies abbreviations that are used to signify learning events.   The first column of a binding entry uses an abbreviated code, which tells you about the learning event that resulted in creation of that binding entry.


Field	Description
Preflevel flags (prlvl)	A list of preference level number codes and clarification for what the number codes in the prlvi column of the binding table mean.   The codes signify a broad classification and multiple codes can apply to an entry. What is displayed in the prlvl column is a sum of these number codes and signifies a corresponding preference level.   For example if an ARP entry (preference code: 0001) is learned from an access interface (preference code: 0004), the value displayed in the prlvi column is "0005".   1 is the lowest preference level, and 100 is the highest.   A binding entry with a higher preference is given preference in case of a collision. For example, if the same entry is seen on two different interfaces, the value in the prlvi column, determines which entry is retained.
Network Layer Address	The IP address of the host from which a packet is received.
Link Layer Address	The MAC address of the host.
Mode	Displays one of the following values: "invalid", "unsupp", "access", "trunk", "vpc", "svi", "virtual", "pseudowire", "unkn", "bdi", "pseudoport".
vlan(prim)	The host's VLAN ID
prlvl	A value between 1 and 100 is displayed, with 1 having the lowest preference level, and 100 having the highest preference level.   See Preflevel flags above to know what the value displayed here means.
age	The total age of the entry in seconds (s) or minutes $(\mathrm{mn})$ since the the last time the entry was refreshed. When it is refreshed (sign-of-life from the host), this value is reset.
state	The current state of an entry, which can be one of the stable or transitional states.   Stable state values are: REACHABLE, DOWN, and STALE,   Transitional states values are: VERIFY, INCOMPLETE, and TENTATIVE.


Field	Description			
Time left	Displays the amount of time left until the next action   in the current state.			
In Crimson	A yes or no value which indicates if the entry has been   added to another database. The information is then   used by other applications, like Cisco DNA Center.   Typically, all the entries that are in a binding table are   also added to this database.			
This is used by the technical support team, for				
troubleshooting and to diagnose a problem.		$	$	This field is applicable only to virtual machines (VMs)
:---				
in Cisco Software-Defined Access (SDA)				
deployments.				
It refers to the actual MAC address of a VM in a				
bridged networking mode, where the hosting device				
is a wireless client with a non-promiscuous network				
interface (NIC).				

## show device-tracking events

To display SISF binding table-related events, enter the show device-tracking events command in privileged EXEC mode. The types of events that are displayed includes the creation of binding table entries and all updates to an entry. Updates may be state changes, or, changes in the MAC, VLAN, or interface information for an entry.
show device-tracking events

## Syntax Description

## Command Default

Command Modes

Command History

This command has no arguments or keywords.

SISF binding table events are displayed.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was   introduced.

The output of this command is used by the technical support team, for troubleshooting.

## Examples

The following is sample output for the show device-tracking events command. It shows you the kind of binding table events that the system logs:

```
Device# show device-tracking events
 [Wed Mar 23 19:08:33.000] SSID 0 FSM Feature Table running for event ACTIVE_REGISTER in
state CREATING
 [Wed Mar 23 19:08:33.000] SSID 0 Transition from CREATING to READY upon event ACTIVE_REGISTER
 [Wed Mar 23 19:08:33.000] SSID 1 FSM Feature Table running for event ACTIVE_REGISTER in
state CREATING
 [Wed Mar 23 19:08:33.000] SSID 1 Transition from CREATING to READY upon event ACTIVE_REGISTER
 [Wed Mar 23 19:09:25.000] SSID O FSM sisf_mac_fsm running for event MAC_TENTV in state
MAC-CREATING
 [Wed Mar 23 19:09:25.000] SSID 0 Transition from MAC-CREATING to MAC-TENTATIVE upon event
 MAC_TENTV
 [Wed Mar 23 19:09:25.000] SSID 1 Created Entry origin IPv4 ARP MAC 00a5.bf9c.e051 IPV4
10.0.0.1
 [Wed Mar 23 19:09:25.000] SSID 0 FSM sisf_mac_fsm running for event MAC_VERIFIED in state
 MAC-TENTATIVE
 [Wed Mar 23 19:09:25.000] SSID O Transition from MAC-TENTATIVE to MAC-REACHABLE upon event
 MAC_VERIFIED
 [Wed Mar 23 19:09:25.000] SSID 1 FSM Binding table running for event VALIDATE_LLA in state
 CREATING
 [Wed Mar 23 19:09:25.000] SSID 1 FSM Binding table running for event SET_TENTATIVE in state
 CREATING
 [Wed Mar 23 19:09:25.000] SSID 1 Transition from CREATING to TENTATIVE upon event
SET TENTATIVE
 [Wed Mar 23 19:09:25.000] SSID 1 Entry State changed origin IPv4 ARP MAC 00a5.bf9c.e051
IPV4 10.0.0.1
```

[Wed Mar 23 20:07:27.000] SSID 0 FSM sisf_mac_fsm running for event MAC_DELETE_NOS in state MAC-REACHABLE
[Wed Mar 23 20:07:27.000] SSID O Transition from MAC-REACHABLE to MAC-NONE upon event MAC_DELETE_NOS
[Wed Mar 23 20:07:27.000] SSID 1 Transition from REACHABLE to NONE upon event DELETE

## show device-tracking features

To display the device-tracking features that are enabled, enter the show device-tracking features command in privileged EXEC mode. The "features" include SISF-based device-tracking, and security features like IPv6 RA Guard, IPv6 DHCP Guard, Layer 2 DHCP Relay, and so on, that use SISF.
show device-tracking features

Syntax Description

## Command Modes

Command History

This command has no arguments or keywords.

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Examples

The following is sample output for the show device-tracking features command.

```
Device# show device-tracking features
Feature name priority state
Device-tracking 128 READY
Source guard 32 READY
```


## show device-tracking messages

To display a list of device-tracking related activities, enter the show device-tracking messages command in privileged EXEC mode.
show device-tracking messages [ detailed no_of_messages ]

## Syntax Description

$\overline{\text { Command Modes }}$

Command History
detailed $n o \_o f$ _messages
Displays a more detailed format of the list of device-tracking messages. Enter a value between 1 and 255 , to specify the number of messages that must be displayed in a detailed format.

Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was   introduced.

The following is sample output for the show device-tracking messages command. The summarized and detailed versions of the output are displayed:

```
Device# show device-tracking messages
 [Wed Mar 23 19:09:25.000] VLAN 1, From Te1/0/2 MAC 00a5.bf9c.e051: ARP::REP, 10.0.0.1,
 [Wed Mar 23 19:09:25.000] VLAN 1, From Te1/0/2 MAC 00a5.bf9c.e051: ARP::REP, 10.0.0.1,
Device# show device-tracking messages detailed 255
 [Wed Mar 23 19:09:25.000] VLAN 1, From Te1/0/2 seclvl [guard], MAC 00a5.bf9c.e051: ARP::REP,
 1 addresses advertised:
 IPv6 addr: 10.0.0.1,
 [Wed Mar 23 20:03:22.000] VLAN 1, From Te1/0/2 seclvl [guard], MAC 00a5.bf9c.e051: ARP::REP,
 1 \text { addresses advertised:}
 IPv6 addr: 10.0.0.1,
```


## show device-tracking policies

To display all the device-tracking policies on the device, enter the show device-tracking policies command in privileged EXEC mode.
show device-tracking policies [ details | interface interface_type_no [ details ] | vlan vlanid ]

Syntax Description

## Command Modes

Command History

details	Displays information about the policy targets and policy parameters of all   device-tracking policies on the device
interface interface_type_noDisplays all policies applied to the the specified interface. Enter an interface   type and number.	
Use the question mark (?) online help function to display the types of interfaces   on the device.	
vlan vlanid	Displays all policies applied to the the specified VLAN. The valid value range   is from 1 to 4095.

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Examples

The following is sample output for the show device-tracking policies command with the details keyword. It shows that there is only one policy on the device. It shows the target to which the policy is applied and the policy parameters.

```
Device# show device-tracking policies details
Target Type Policy Feature Target range
Te1/0/1 PORT sisf-01 Device-tracking vlan all
Device-tracking policy sisf-01 configuration:
 security-level guard
 device-role node
 gleaning from Neighbor Discovery
 gleaning from DHCP6
 gleaning from ARP
 gleaning from DHCP4
 NOT gleaning from protocol unkn
 tracking enable
Policy sisf-01 is applied on the following targets:
Target Type Policy Feature Target range
Te1/0/1 PORT sisf-01 Device-tracking vlan all
```


## show device-tracking policy

To display information about a particular policy, enter the show device-tracking policy command in privileged EXEC mode. Displayed information includes the list of targets to which the policy is applied, and policy parameters.
show device-tracking policy policy_name

Syntax Description

## Command Modes

Command History
policy_name Enter the name of the policy.

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Examples

The following is sample output for the show device-tracking policy command. Details of policy sisf-01 are displayed.

Device\# show device-tracking policy sisf-01
Device-tracking policy sisf-01 configuration:
security-level guard
device-role node
gleaning from Neighbor Discovery
gleaning from DHCP6
gleaning from ARP
gleaning from DHCP4
NOT gleaning from protocol unkn
tracking enable
Policy sisf-01 is applied on the following targets:
$\begin{array}{llll}\text { Target } & \text { Type Policy } & \text { Feature } & \text { Target range } \\ \text { Te1/0/1 } & \text { PORT sisf-01 } & \text { Device-tracking vlan all }\end{array}$

## show dot1x

To display IEEE 802.1x statistics, administrative status, and operational status for a device or for the specified port, use the show dot1x command in user EXEC or privileged EXEC mode.

```
show dot1x [all [count | details | statistics | summary]] [interface type number [details |
statistics]] [statistics]
```

Syntax Description

## Command Modes

## Command History

all	(Optional) Displays the IEEE 802.1x information for all   interfaces.
count	(Optional) Displays total number of authorized and unauthorized   clients.
details	(Optional) Displays the IEEE 802.1x interface details.
statistics	(Optional) Displays the IEEE 802.1x statistics for all interfaces.
summary	(Optional) Displays the IEEE 802.1x summary for all interfaces.
interface type number	(Optional) Displays the IEEE 802.1x status for the specified port.

User EXEC ( $(>)$
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The following is sample output from the show dot1x all command:

```
Device# show dot1x all
Sysauthcontrol Enabled
Dot1x Protocol Version 3
```

The following is sample output from the show dot1x all count command:

```
Device# show dot1x all count
Number of Dot1x sessions

Authorized Clients = 0
UnAuthorized Clients = 0
Total No of Client = 0
```

The following is sample output from the show dot1x all statistics command:

```
Dot1x Global Statistics for
--
RxStart = 0 RxLogoff = 0 RxResp = 0 RxRespID = 0
RxReq = 0 RxInvalid = 0 RxLenErr = 0
RxTotal = 0
TxStart = 0 TxLogoff = 0 TxResp = 0
TxReq = 0 ReTxReq = 0 ReTxReqFail = 0
TxReqID = 0 ReTxReqID = 0 ReTxReqIDFail = 0
TxTotal = 0
```


## show eap pac peer

To display stored Protected Access Credentials (PAC) for Extensible Authentication Protocol (EAP) Flexible Authentication via Secure Tunneling (FAST) peers, use the show eap pac peer command in privileged EXEC mode.
show eap pac peer

Syntax Description
Command Modes
Command History

This command has no arguments or keywords.
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The following is sample output from the show eap pac peers command:

```
Device# show eap pac peers
No PACs stored
```

Related Commands

Command	Description
clear eap sessions	Clears EAP session information for the device or for the

## show ip access-lists

To display the contents of all current IP access lists, use the show ip access-lists command in user EXEC or privileged EXEC modes.
show ip access-lists [\{ access-list-number access-list-number-expanded-range access-list-name |dynamic [dynamic-access-list-name] |interface name number [\{in |out \}] \}]

## Syntax Description

access-list-number	(Optional) Number of the IP access list to display.
access-list-number-expanded-range	(Optional) Expanded range of the IP access list to display.
access-list-name	(Optional) Name of the IP access list to display.
dynamic dynamic-access-list-name	(Optional) Displays the specified dynamic IP access lists.
interface name number	(Optional) Displays the access list for the specified interface.
in	(Optional) Displays input interface statistics.
out	(Optional) Displays output interface statistics.

Note Statistics for OGACL is not supported

## Command Default <br> Command Modes

## Command History

## Usage Guidelines

All standard and expanded IP access lists are displayed.
User EXEC ( $>$ )
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest   16.5.1a	This command was introduced.

The show ip access-lists command provides output identical to the show access-lists command, except that it is IP-specific and allows you to specify a particular access list.

The output of the show ip access-lists interface command does not display dACL or ACL filter IDs. This is because the ACLs are attached to the virtual ports created by multidomain authentication for each authentication session; instead of the physical interface. To display dACL or ACL filter IDs, use the show ip access-lists access-list-name command. The access-list-name should be taken from the show access-session interface interface-name detail command output. The access-list-name is case sensitive.

The following is a sample output from the show ip access-lists command when all access lists are requested:

```
Device# show ip access-lists
Extended IP access list 101
 deny udp any any eq nntp
 permit tcp any any
 permit udp any any eq tftp
 permit icmp any any
 permit udp any any eq domain
Role-based IP access list r1
 1 0 \text { permit tcp dst eq telnet}
 2 0 \text { permit udp}
FQDN IP access list facl
 10 permit ip host 10.1.1.1 host dynamic www.google.com
 20 permit tcp 10.10.0.0 0.255.255.255 eq ftp host dynamic www.cisco.com log
 3 0 \text { permit udp host dynamic www.youtube.com any}
 40 permit ip 10.3.4.0 0.0.0.255 any
Extended Resolved IP access list facl
 2 0 0 0 0 0 ~ p e r m i t ~ t c p ~ 1 0 . 0 . 0 . 0 ~ 0 . 2 5 5 . 2 5 5 . 2 5 5 ~ e q ~ f t p ~ h o s t ~ 1 0 . 1 0 . 1 0 . 1 ~ l o g
 2 0 0 0 0 1 ~ p e r m i t ~ t c p ~ 1 0 . 0 . 0 . 0 ~ 0 . 2 5 5 . 2 5 5 . 2 5 5 ~ e q ~ f t p ~ h o s t ~ 1 0 . 1 0 . 1 0 . 2 ~ l o g
 3 0 0 0 0 0 \text { permit udp host dynamic 10.11.11.11 any}
 3 0 0 0 0 1 ~ p e r m i t ~ u d p ~ h o s t ~ d y n a m i c ~ 1 0 . 1 1 . 1 1 . 1 2 ~ a n y ~
 400000 permit ip 10.3.4.0 0.0.0.255 any
```

The table below describes the significant fields shown in the display.
Table 197: show ip access-lists Field Descriptions

Field	Description
Extended IP access list	Extended IP access-list name/number.
Role-based IP access list	Role-based IP access-list name.
FQDN IP access list	FQDN IP access-list name.
Extended Resolved IP access list	Extended resolved IP access-list name.
deny	Packets to reject.
udp	User Datagram Protocol.
any	Source host or destination host.
eq	Packets on a given port number.
nntp	Network News Transport Protocol.
permit	Packets to forward.
dynamic	Dynamically resolves domain name.
tcp	Transmission Control Protocol.
tftp	Internet Control Message Protocol.
icmp	Domain name service.
domain	

The following is a sample output from the show ip access-lists command when the name of a specific access list is requested:

```
Device# show ip access-lists Internetfilter
Extended IP access list Internetfilter
 permit tcp any 192.0.2.0 255.255.255.255 eq telnet
 deny tcp any any
 deny udp any 192.0.2.0 255.255.255.255 lt 1024
 deny ip any any log
```

The following is a sample output from the show ip access-lists command using the dynamic keyword:

```
Device# show ip access-lists dynamic CM_SF#1
Extended IP access list CM_SF#1
 1 0 \text { permit udp any any eqq 5060 (650 matches)}
 20 permit tcp any any eq 5060
 3 0 \text { permit udp any any dscp ef (806184 matches)}
```


## Related Commands

Command	Description
deny	Sets conditions in a named IP access list or OGACL that will deny packets.
ip access-group	Applies an ACL or OGACL to an interface or a service policy map.
ip access-list	Defines an IP access list or OGACL by name or number.
object-group network	Defines network object groups for use in OGACLs.
object-group service	Defines service object groups for use in OGACLs.
permit	Sets conditions in a named IP access list or OGACL that will permit packets.
show object-group	Displays information about object groups that are configured.
show run interfaces cable	Displays statistics on the cable modem.

## show ip dhep snooping statistics

To display DHCP snooping statistics in summary or detail form, use the show ip dhcp snooping statistics command in user EXEC or privileged EXEC mode.
show ip dhep snooping statistics [detail]

Syntax Description

## Command Modes

## Command History

detail (Optional) Displays detailed statistics information.

User EXEC (>)
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
In a device stack, all statistics are generated on the stack's active switch. If a new active device is elected, the statistics counters reset.

The following is sample output from the show ip dhep snooping statistics command:

Device> show ip dhcp snooping statistics
Packets Forwarded $=0$
Packets Dropped $=0$
Packets Dropped From untrusted ports $=0$

The following is sample output from the show ip dhep snooping statistics detail command:

```
Device> show ip dhcp snooping statistics detail
 Packets Processed by DHCP Snooping = 0
Packets Dropped Because
 IDB not known = 0
 Queue full = 0
 Interface is in errdisabled = 0
 Rate limit exceeded = 0
 Received on untrusted ports = 0
 Nonzero giaddr = 0
 Source mac not equal to chaddr = 0
 Binding mismatch = 0
 Insertion of opt82 fail = 0
 Interface Down = 0
 Unknown output interface = 0
 Reply output port equal to input port = 0
 Packet denied by platform = 0
```

This table shows the DHCP snooping statistics and their descriptions:
Table 198: DHCP Snooping Statistics

DHCP Snooping Statistic	Description
Packets Processed by DHCP Snooping	Total number of packets handled by DHCP snooping, including   forwarded and dropped packets.
Packets Dropped Because IDB not   known	Number of errors when the input interface of the packet cannot be   determined.
Queue full	Number of errors when an internal queue used to process the   packets is full. This might happen if DHCP packets are received   at an excessively high rate and rate limiting is not enabled on the   ingress ports.
Interface is in errdisabled	Number of times a packet was received on a port that has been   marked as error disabled. This might happen if packets are in the   processing queue when a port is put into the error-disabled state   and those packets are subsequently processed.
Rate limit exceeded	Number of times the rate limit configured on the port was exceeded   and the interface was put into the error-disabled state.
Received on untrusted ports	Number of times a DHCP server packet (OFFER, ACK, NAK, or   LEASEQUERY) was received on an untrusted port and was   dropped.
Nonzero giaddr	Number of times the relay agent address field (giaddr) in the DHCP   packet received on an untrusted port was not zero, or the no ip   dhcp snooping information option allow-untrusted global   configuration command is not configured and a packet received on   an untrusted port contained option-82 data.
Source mac not equal to chaddr	Number of times the client MAC address field of the DHCP packet   (chaddr) does not match the packet surce MAC address and the   ip dhcp snooping verify mac-address global configuration   command is configured.
Insertion of opt82 fail	Number of times a RELEASE or DECLINE packet was received   on a port that is different than the port in the binding for that MAC   address-VLAN pair. This indicates someone might be trying to   spoof the real client, or it could mean that the client has moved to   another port on the device and issued a RELEASE or DECLINE.   The MAC address is taken from the chaddr field of the DHCP   packet, not the source MAC address in the Ethernet header.
	Number of times the option-82 insertion into a packet failed. The   insertion might fail if the packet with the option-82 data exceeds   the size of a single physical packet on the internet.


DHCP Snooping Statistic	Description
Interface Down	Number of times the packet is a reply to the DHCP relay agent, but   the SVI interface for the relay agent is down. This is an unlikely   error that occurs if the SVI goes down between sending the client   request to the DHCP server and receiving the response.
Unknown output interface	Number of times the output interface for a DHCP reply packet   cannot be determined by either option-82 data or a lookup in the   MAC address table. The packet is dropped. This can happen if   option 82 is not used and the client MAC address has aged out. If   IPSG is enabled with the port-security option and option 82 is not   enabled, the MAC address of the client is not learned, and the reply   packets will be dropped.
Reply output port equal to input port	Number of times the output port for a DHCP reply packet is the   same as the input port, causing a possible loop. Indicates a possible   network misconfiguration or misuse of trust settings on ports.
Packet denied by platform	Number of times the packet has been denied by a platform-specific   registry.

## show platform software dns-umbrella statistics

To display the Domain Name Syatem (DNS) umbrella statistics of a device, use the show platform software dns-umbrella statistics command in privileged EXEC mode.
show platform software dns-umbrella statistics

$\overline{\text { Syntax Description }}$	This command has no arguments or keywords.	
$\overline{\text { Command Modes }}$	Privileged EXEC ( $>$ )	
Command History	Release	Modification
	Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

Examples The following is a sample output of the show platform software dns-umbrella statistics command:

```
Device> enable
Device# show platform software dns-umbrella statistics
===
Umbrella Statistics
==
Total Packets : 7848
DNSCrypt queries : 3940
DNSCrypt responses : 0
DNS queries : 0
DNS bypassed queries(Regex) : 0
DNS responses(Umbrella) : 0
DNS responses(Other) : }390
Aged queries : 34
Dropped pkts : 0
```


## show platform software umbrella switch F0

To display umbrella configuration of Embedded Service Processor (ESP) slot 0, use the show platform software umbrella switch $\{$ switch_number $\mid$ active $\mid$ standby $\}$ F0 command in privileged EXEC mode.
show platform software umbrella switch \{switch_number | active | standby $\}$ F0 \{config | interface-info | local-domain\}

Syntax Description
switch $\{$ switch_number $\mid$ active $\mid$ standby $\} \quad$ Specifies the switch.

- switch_number: ID of the switch. The range is from 1 to 8 .
- active: Specifies the active switch.
- standby: Specifies the standby switch.

config	Displays global configurations of ESP slot 0.
interface-info	Displays interface-related configuration of ESP slot 0.
local-domain	Displays local domain-related configuration of ESP slot 0.

## Command Modes

Privileged EXEC (>)

Command History

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

Examples
The following is a sample output of the show platform software umbrella switch active $\mathbf{F 0}$ config command:

```
Device> show platform software umbrella switch active FO config
+++ Umbrella Config +++
```

Umbrella feature:
--------------------
Init: Enabled
Dnscrypt: disabled
Timeout:
------------------
udp timeout: 5
OrgId :
------------------
orgid : 2427270
Resolver config:
RESOLVER IP's

```
208.67.220.220
208.67.222.222
2620:119:35::35
2620:119:53::53
Dnscrypt Info:
public_key:
magic_key:
serial number:
ProfileID DeviceID Mode Resolver Local-Domain Tag
```


## show radius server-group

To display properties for the RADIUS server group, use the show radius server-group command in user EXEC or privileged EXEC mode.
show radius server-group $\{$ name | all \}

Syntax Description

## Command Modes

Command History
name Name of the server group. The character string used to name the group of servers must be defined using the aaa group server radius command.
all Displays properties for all of the server groups.

User EXEC ( $>$ )
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5 .1 a	This command was introduced.

Use the show radius server-group command to display the server groups that you defined by using the aaa group server radius command.

The following is sample output from the show radius server-group all command:

```
Device# show radius server-group all
Server group radius
 Sharecount = 1 sg_unconfigured = FALSE
 Type = standard Memlocks = 1
```

This table describes the significant fields shown in the display.

Table 199: show radius server-group command Field Descriptions

Field	Description
Server group	Name of the server group.
Sharecount	Number of method lists that are sharing this server   group. For example, if one method list uses a   particular server group, the sharecount would be 1. If   two method lists use the same server group, the   sharecount would be 2.
sg_unconfigured	Server group has been unconfigured.


Field	Description
Type	The type can be either standard or nonstandard. The   type indicates whether the servers in the group accept   nonstandard attributes. If all servers within the group   are configured with the nonstandard option, the type   will be shown as "nonstandard".
Memlocks	An internal reference count for the server-group   structure that is in memory. The number represents   how many internal data structure packets or   transactions are holding references to this server   group. Memlocks is used internally for memory   management purposes.

## show storm-control

To display broadcast, multicast, or unicast storm control settings on the device or on the specified interface or to display storm-control history, use the show storm-control command in user EXEC or privileged EXEC mode.
show storm-control [\{interface-id $\}$ ] [\{broadcast |multicast |unicast $\}$ ]

Syntax Description

## Command Modes

Command History
interface-id (Optional) Interface ID for the physical port (including type, stack member for stacking-capable devices, module, and port number).

broadcast	(Optional) Displays broadcast storm threshold setting.
multicast	(Optional) Displays multicast storm threshold setting.
unicast	(Optional) Displays unicast storm threshold setting.

User EXEC (>)
Privileged EXEC (>)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

When you enter an interface ID, the storm control thresholds appear for the specified interface. If you do not enter an interface ID, settings appear for one traffic type for all ports on the device. If you do not enter a traffic type, settings appear for broadcast storm control.

The following is sample partial output from the show storm-control command when no keywords are entered. Because no traffic-type keyword was entered, the broadcast storm control settings appear.

```
Device> show storm-control
Interface Filter State Upper Lower Current
--------- ------------- ---------- --------- -----------
Gil/0/1 Forwarding 20 pps 10 pps 5 pps
Gi1/0/2 Forwarding 50.00% 40.00% 0.00%
<output truncated>
```

The following is sample output from the show storm-control command for a specified interface. Because no traffic-type keyword was entered, the broadcast storm control settings appear.

```
Device> show storm-control gigabitethernet 1/0/1
Interface Filter State Upper Lower Current
--------- ------------- ---------- --------- -------------
Gi1/0/1 Forwarding 20 pps 10 pps 5 pps
```

The following table describes the fields in the show storm-control display:

## Table 200: show storm-control Field Descriptions

Field	Description
Interface	Displays the ID of the interface.
Filter State	Displays the status of the filter:   - Blocking-Storm control is enabled, and a storm has occurred.   - Forwarding-Storm control is enabled, and no storms have occurred.   - Inactive-Storm control is disabled.
Upper	Displays the rising suppression level as a percentage of total available bandwidth in packets per second or in bits per second.
Lower	Displays the falling suppression level as a percentage of total available bandwidth in packets per second or in bits per second.
Current	Displays the bandwidth usage of broadcast traffic or the specified traffic type (broadcast, multicast, or unicast) as a percentage of total available bandwidth. This field is only valid when storm control is enabled.

## show tech-support acl

To display access control list (ACL)-related information for technical support, use the show tech-support acl command in privileged EXEC mode.
show tech-support acl

$\overline{\text { Syntax Description }}$	This command has no arguments or keywords.	
$\overline{\text { Command Modes }}$	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Gibraltar 16.10.1	This command was introduced.
	Cisco IOS XE Gibraltar 16.11.1	

## Usage Guidelines

The output of the show tech-support acl command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support acl | redirect flash:show_tech_acl.txt) in the local writable storage file system or remote file system.

The output of this command displays the following commands:

Note On stackable platforms, these commands are executed on every switch in the stack. On modular platforms, like Catalyst 9400 Series Switches, these commands are run only on the active switch.

Note The following list of commands is a sample of the commands available in the output; these may differ based on the platform.

- show clock
- show version
- show running-config
- show module
- show interface
- show access-lists
- show logging
- show platform software fed switch switch-number acl counters hardware
- show platform software fed switch switch-number ifm mapping
- show platform hardware fed switch switch-number fwd-asic drops exceptions
- show platform software fed switch switch-number acl info
- show platform software fed switch switch-number acl
- show platform software fed switch switch-number acl usage
- show platform software fed switch switch-number acl policy intftype all cam
- show platform software fed switch switch-number acl cam brief
- show platform software fed switch switch-number acl policy intftype all vcu
- show platform hardware fed switch switch-number acl resource usage
- show platform hardware fed switch switch-number fwd-asic resource tcam table acl
- show platform hardware fed switch switch-number fwd-asic resource tcam utilization
- show platform software fed switch switch-number acl counters hardware
- show platform software classification switch switch-number all F0 class-group-manager class-group
- show platform software process database forwarding-manager switch switch-number $\mathbf{R 0}$ summary
- show platform software process database forwarding-manager switch switch-number $\mathbf{F 0}$ summary
- show platform software object-manager switch switch-number F0 pending-ack-update
- show platform software object-manager switch switch-number $\mathbf{F 0}$ pending-issue-update
- show platform software object-manager switch switch-number F0 error-object
- show platform software peer forwarding-manager switch switch-number $\mathbf{F 0}$
- show platform software access-list switch switch-number f0 statistics
- show platform software access-list switch switch-number r0 statistics
- show platform software trace message fed switch switch-number
- show platform software trace message forwarding-manager switch switch-number $\mathbf{F 0}$
- show platform software trace message forwarding-manager switch R0 switch-number R0

The following is sample output from the show tech-support acl command:

```
Device# show tech-support acl
 show platform software fed switch 1 acl cam brief -------------------
Printing entries for region ACL CONTROL (143) type 6 asic 0
===
TAQ-4 Index-0 (A:0,C:0) Valid StartF-1 StartA-1 SkipF-0 SkipA-0
Output IPv4 VACL
VCU Result: Not In-Use
L3 Length: 0000, L3 Protocol: 17 (UDP), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
```

```
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0044 (68)/0xffff 0x0043 (67)/0xffff
TCP Flags: 0x00 (NOT SET)
ACTIONS: Forward L3, Forward L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)
TAQ-4 Index-1 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Output IPv4 VACL
VCU Result: Not In-Use
L3 Length: 0000, L3 Protocol: 17 (UDP), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0043 (67)/0xfffff 0x0044 (68)/0xffff
TCP Flags: 0x00 (NOT SET)
ACTIONS: Forward L3, Forward L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)
TAQ-4 Index-2 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Output IPv4 VACL
VCU Result: Not In-Use
L3 Length: 0000, L3 Protocol: 17 (UDP), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0043 (67)/0xffff 0x0043 (67)/0xffff
TCP Flags: 0x00 (NOT SET)
ACTIONS: Forward L3, Forward L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)
TAQ-4 Index-3 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Input IPv4 PACL
VCU Result: Not In-Use
```

```
L3 Length: 0000, L3 Protocol: 00 (HOPOPT), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0000 (0)/0x0000 0x0000 (0)/0x0000
TCP Flags: 0x00 (NOT SET)
ACTIONS: Drop L3, Drop L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)
TAQ-4 Index-4 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Output IPv4 PACL
VCU Result: Not In-Use
L3 Length: 0000, L3 Protocol: 00 (HOPOPT), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0000 (0)/0x0000 0x0000 (0)/0x0000
TCP Flags: 0x00 (NOT SET)
ACTIONS: Drop L3, Drop L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)
TAQ-4 Index-5 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Output MAC PACL
VLAN ID/MASK : 0x000 (000)/0x000
Source MAC/Mask : 0000.0000.0000/0000.0000.0000
Destination MAC/Mask : 0000.0000.0000/0000.0000.0000
isSnap: Disabled, isLLC: Disabled
ACTIONS: Drop L3, Drop L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)
.
.
```

Output fields are self-explanatory.

## show tech-support identity

To display identity/802.1x-related information for technical support, use the show tech-support identity command in privileged EXEC mode.
show tech-support identity mac mac-address interface interface-name

## Syntax Description

## Command Modes

Command History
mac mac-address Displays information about the client MAC address.

Displays information about the client interface.

interface interface-name	Displays information about the client   interface.

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Gibraltar 16.10.1
This command was introduced.
Cisco IOS XE Gibraltar 16.11.1

## Usage Guidelines

The output of the show tech-support platform command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support identity mac mac-address interface interface-name | redirect flash:filename) in the local writable storage file system or remote file system.
The output of this command displays the following commands:

- show clock
- show module
- show version
- show switch
- show redundancy
- show dot1x statistics
- show ip access-lists
- show interface
- show ip interface brief
- show vlan brief
- show running-config
- show logging
- show interface controller
- show platform authentication sbinfo interface
- show platform host-access-table
- show platform pm port-data
- show spanning-tree interface
- show access-session mac detail
- show platform authentication session mac
- show device-tracking database mac details
- show mac address-table address
- show access-session event-logging mac
- show authentication sessions mac details R0
- show ip admission cache R0
- show platform software wired-client R0
- show platform software wired-client F0
- show platform software process database forwarding-manager R0 summary
- show platform software process database forwarding-manager $\mathbf{F 0}$ summary
- show platform software object-manager F0 pending-ack-update
- show platform software object-manager $\mathbf{F 0}$ pending-issue-update
- show platform software object-manager F0 error-object
- show platform software peer forwarding-manager R0
- show platform software peer forwarding-manager F0
- show platform software VP R0 summary
- show platform software VP F0 summary
- show platform software fed punt cpuq
- show platform software fed punt cause summary
- show platform software fed inject cause summary
- show platform hardware fed fwd-asic drops exceptions
- show platform hardware fed fwd-asic resource tcam table acl
- show platform software fed acl counter hardware
- show platform software fed matm macTable
- show platform software fed ifm mappings
- show platform software trace message fed reverse
- show platform software trace message forwarding-manager $\mathbf{R 0}$ reverse
- show platform software trace message forwarding-manager F0 reverse
- show platform software trace message smd R0 reverse
- show authentication sessions mac details
- show platform software wired-client
- show platform software process database forwarding-manager summary
- show platform software object-manager pending-ack-update
- show platform software object-manager pending-issue-update
- show platform software object-manager error-object
- show platform software peer forwarding-manager
- show platform software VP summary
- show platform software trace message forwarding-manager reverse
- show ip admission cache
- show platform software trace message smd reverse
- show platform software fed punt cpuq
- show platform software fed punt cause summary
- show platform software fed inject cause summary
- show platform hardware fed fwd-asic drops exceptions
- show platform hardware fed fwd-asic resource tcam table acl
- show platform software fed acl counter hardware
- show platform software fed matm macTable
- show platform software fed ifm mappings
- show platform software trace message fed reverse


## Examples

The following is sample output from the show tech-support identity command:

```
Device# show tech-support identity mac 0000.0001.0003 interface gigabitethernet1/0/1
show platform software peer forwarding-manager R0
```

```
IOSD Connection Information:
```

IOSD Connection Information:
MQIPC (reader) Connection State: Connected, Read-selected
MQIPC (reader) Connection State: Connected, Read-selected
Connections: 1, Failures: 22
Connections: 1, Failures: 22
3 8 9 7 packet received (0 dropped), 466929 bytes
3 8 9 7 packet received (0 dropped), 466929 bytes
Read attempts: 2352, Yields: 0
Read attempts: 2352, Yields: 0
BIPC Connection state: Connected, Ready
BIPC Connection state: Connected, Ready
Accepted: 1, Rejected: 0, Closed: 0, Backpressures: 0
Accepted: 1, Rejected: 0, Closed: 0, Backpressures: 0
36 packets sent, 2808 bytes
36 packets sent, 2808 bytes
SMD Connection Information:

```
SMD Connection Information:
```

```
 MQIPC (reader) Connection State: Connected, Read-selected
 Connections: 1, Failures: 30
 0 packet received (0 dropped), 0 bytes
 Read attempts: 1, Yields: 0
MQIPC (writer) Connection State: Connected, Ready
 Connections: 1, Failures: 0, Backpressures: 0
 0 packet sent, 0 bytes
FP Peers Information:
 Slot: 0
 Peer state: connected
 OM ID: 0, Download attempts: 638
 Complete: 638, Yields: 0, Spurious: 0
 IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
 Back-Pressure asserted for IPC: 0, IPC-Log: 1
 Number of FP FMAN peer connection expected: 7
 Number of FP FMAN online msg received: 1
 IPC state: unknown
 Config IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf3d48e8, BIPC FD: 36, Peer Context: 0xdf3e7158
 Tx Packets: 688, Messages: 2392, ACKs: }3
 Rx Packets: 37, Bytes: 2068
 IPC Log:
 Peer name: fman-log-bay0-peer0
 Flags: Recovery-Complete
 Send Seq: 36, Recv Seq: 36, Msgs Sent: 0, Msgs Recovered: 0
 Upstream FMRP IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf3e7308, BIPC FD: 37, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Upstream FMRP-IOSd IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf3f9c38, BIPC FD: 38, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 37, Bytes: 2864
 Rx ACK Requests: 1, Tx ACK Responses: 1
 Upstream FMRP-SMD IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf40c568, BIPC FD: 39, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
 Upstream FMRP-WNCD_0 IPC Context:
 State: Connected
 BIPC Handle: 0xdf4317c8, BIPC FD: 41, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
 Upstream FMRP-WNCMGRD IPC Context:
 State: Connected
 BIPC Handle: 0xdf4lee98, BIPC FD: 40, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
```

Rx ACK Requests: 0, Tx ACK Responses: 0

```
Upstream FMRP-MOBILITYD IPC Context:
 State: Connected
 BIPC Handle: Oxdf4440f8, BIPC FD: 42, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
```

```
Slot: 1
```

Peer state: connected
OM ID: 1, Download attempts: 1
Complete: 1, Yields: 0, Spurious: 0
IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
Back-Pressure asserted for IPC: 0, IPC-Log: 0
Number of $F P$ FMAN peer connection expected: 7
Number of $F P$ FMAN online msg received: 1
IPC state: unknown
Config IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf45e4d8, BIPC FD: 48, Peer Context: 0xdf470e18
Tx Packets: 20, Messages: 704, ACKs: 1
Rx Packets: 2, Bytes: 108
IPC Log:
Peer name: fman-log-bay0-peer1
Flags: Recovery-Complete
Send Seq: 1, Recv Seq: 1, Msgs Sent: 0, Msgs Recovered: 0
Upstream FMRP IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf470fc8, BIPC FD: 49, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Upstream FMRP-IOSd IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf4838f8, BIPC FD: 50, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-SMD IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf496228, BIPC FD: 51, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-WNCD_0 IPC Context:
State: Connected
BIPC Handle: 0xdf4bb488, BIPC FD: 53, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-WNCMGRD IPC Context:
State: Connected
BIPC Handle: 0xdf4a8b58, BIPC FD: 52, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

```
Upstream FMRP-MOBILITYD IPC Context:
 State: Connected
 BIPC Handle: 0xdf4cddb8, BIPC FD: 54, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
```

```
------------------ show platform software peer forwarding-manager R0
IOSD Connection Information:
 MQIPC (reader) Connection State: Connected, Read-selected
 Connections: 1, Failures: 22
 3 8 9 7 \text { packet received (0 dropped), 466929 bytes}
 Read attempts: 2352, Yields: 0
 BIPC Connection state: Connected, Ready
 Accepted: 1, Rejected: 0, Closed: 0, Backpressures: 0
 36 packets sent, 2808 bytes
SMD Connection Information:
 MQIPC (reader) Connection State: Connected, Read-selected
 Connections: 1, Failures: 30
 O packet received (0 dropped), 0 bytes
 Read attempts: 1, Yields: 0
 MQIPC (writer) Connection State: Connected, Ready
 Connections: 1, Failures: 0, Backpressures: 0
 O packet sent, 0 bytes
FP Peers Information:
 Slot: 0
 Peer state: connected
 OM ID: 0, Download attempts: 638
 Complete: 638, Yields: 0, Spurious: 0
 IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
 Back-Pressure asserted for IPC: 0, IPC-Log: 1
 Number of FP FMAN peer connection expected: 7
 Number of FP FMAN online msg received: 1
 IPC state: unknown
 Config IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf3d48e8, BIPC FD: 36, Peer Context: 0xdf3e7158
 Tx Packets: 688, Messages: 2392, ACKs: 36
 Rx Packets: 37, Bytes: 2068
 IPC Log:
 Peer name: fman-log-bay0-peer0
 Flags: Recovery-Complete
 Send Seq: 36, Recv Seq: 36, Msgs Sent: 0, Msgs Recovered: 0
 Upstream FMRP IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf3e7308, BIPC FD: 37, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Upstream FMRP-IOSd IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf3f9c38, BIPC FD: 38, Peer Context: 0xdf3e7158
```

```
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 37, Bytes: 2864
 Rx ACK Requests: 1, Tx ACK Responses: 1
 Upstream FMRP-SMD IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf40c568, BIPC FD: 39, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
 Upstream FMRP-WNCD_0 IPC Context:
 State: Connected
 BIPC Handle: 0xdf4317c8, BIPC FD: 41, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
 Upstream FMRP-WNCMGRD IPC Context:
 State: Connected
 BIPC Handle: 0xdf4lee98, BIPC FD: 40, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
 Upstream FMRP-MOBILITYD IPC Context:
 State: Connected
 BIPC Handle: 0xdf4440f8, BIPC FD: 42, Peer Context: 0xdf3e7158
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
Slot: 1
Peer state: connected
 OM ID: 1, Download attempts: 1
 Complete: 1, Yields: 0, Spurious: 0
 IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
 Back-Pressure asserted for IPC: 0, IPC-Log: 0
 Number of FP FMAN peer connection expected: 7
 Number of FP FMAN online msg received: 1
 IPC state: unknown
 Config IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf45e4d8, BIPC FD: 48, Peer Context: 0xdf470e18
 Tx Packets: 20, Messages: 704, ACKs: 1
 Rx Packets: 2, Bytes: 108
 IPC Log:
 Peer name: fman-log-bay0-peer1
 Flags: Recovery-Complete
 Send Seq: 1, Recv Seq: 1, Msgs Sent: 0, Msgs Recovered: 0
 Upstream FMRP IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf470fc8, BIPC FD: 49, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Upstream FMRP-IOSd IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf4838f8, BIPC FD: 50, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
```

```
 Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-SMD IPC Context:
 State: Connected, Read-selected
 BIPC Handle: 0xdf496228, BIPC FD: 51, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-WNCD_0 IPC Context:
 State: Connected
 BIPC Handle: 0xdf4bb488, BIPC FD: 53, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-WNCMGRD IPC Context:
 State: Connected
 BIPC Handle: 0xdf4a8b58, BIPC FD: 52, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-MOBILITYD IPC Context:
 State: Connected
 BIPC Handle: 0xdf4cddb8, BIPC FD: 54, Peer Context: 0xdf470e18
 TX Packets: 0, Bytes: 0, Drops: 0
 Rx Packets: 0, Bytes: 0
 Rx ACK Requests: 0, Tx ACK Responses: 0
```

Vlan	Intf-ID	Stp-state
1	7	Forwarding
1	9	Forwarding
1	17	Forwarding
1	27	Forwarding
1	28	Forwarding
1	29	Forwarding
1	30	Forwarding
1	31	Forwarding
1	40	Forwarding
1	41	Forwarding
Forwarding Manager Vlan Port Information		
Vlan	Intf-ID	Stp-state
1	49	Forwarding
1	51	Forwarding
1	63	Forwarding
1	72	Forwarding
1	73	Forwarding
1	74	Forwarding


Forwarding Manager Vlan Port Information		
Vlan	Intf-ID	Stp-state
1	7	Forwarding
1	9	Forwarding
1	17	Forwarding
1	27	Forwarding
1	28	Forwarding
1	29	Forwarding
1	30	Forwarding
1	31	Forwarding
1	40	Forwarding
1	41	Forwarding
Forwarding Manager Vlan Port Information		
Vlan	Intf-ID	Stp-state
1	49	Forwarding
1	51	Forwarding
1	63	Forwarding
1	72	Forwarding
1	73	Forwarding
1	74	Forwarding

## show umbrella

To display the Cisco Umbrella Integration feature-related configuration, use the show umbrella command in user EXEC or privileged EXEC mode.
show umbrella \{config | deviceid [detailed] | dnscrypt \}

Syntax Description	config	Displays gl
	deviceid	Displays d
	dnscrypt	Displays D
Command Modes	User EXEC ( $>$ )	
	Privileged	EXEC (>)

Command History

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

## Examples

The following is a sample output of the show umbrella config command:

```
Device> show umbrella config
Umbrella Configuration
========================
 Token: 0C6ED7E376DD4D2E04492CE7EDFF1A7C00250986
 API-KEY: NONE
 OrganizationID: 2427270
 Local Domain Regex parameter-map name: NONE
 DNSCrypt: Enabled
 Public-key: B735:1140:206F:225D:3E2B:D822:D7FD:691E:A1C3:3CC8:D666:8D0C:BE04:BFAB:CA43:FB79
 UDP Timeout: 5 seconds
 Resolver address:
 1. 208.67.220.220
 2. 208.67.222.222
 3. 2620:119:53::53
 4. 2620:119:35::35
Umbrella Interface Config:
 Number of interfaces with "umbrella out" config: 1
 1. GigabitEthernet1/0/48
 Mode : OUT
 VRF : global(Id: 0)
 Number of interfaces with "umbrella in" config: 1
 1. GigabitEthernet1/0/1
 Mode : IN
 DCA : Disabled
 Tag : test
 Device-id : 010a2c41b8ab019c
 VRF : global(Id: 0)
 Configured Umbrella Parameter-maps:
```

```
1. global
```

The following is a sample output of the show umbrella deviceid detailed command:

```
Device> show umbrella deviceid detailed
Device registration details
 1.GigabitEthernet1/0/2
 Tag : guest
 Device-id : 010a6aef0b443f0f
 Description : Device Id received successfully
 WAN interface : GigabitEthernet1/0/1
 WAN VRF used : global(Id: 0)
```

The following is a sample output of the show umbrella dnscrypt command:

```
Device> show umbrella dnscrypt
DNSCrypt: Enabled
Public-key: B735:1140:206F:225D:3E2B:D822:D7FD:691E:A1C3:3CC8:D666:8D0C:BE04:BFAB:CA43:FB79
Certificate Update Status:
Last Successful Attempt : 10:55:40 UTC Apr 14 2016
Last Failed Attempt : 10:55:10 UTC Apr 14 2016
Certificate Details:
Certificate Magic : DNSC
Major Version : 0x0001
Minor Version : 0x0000
Query Magic : 0x717744506545635A
Serial Number : 1435874751
Start Time : 1435874751 (22:05:51 UTC Jul 2 2015)
End Time : 1467410751 (22:05:51 UTC Jul 1 2016)
Server Public Key :
ABA1:F000:D394:8045:672D:73E0:EAE6:F181:19D0:2A62:3791:EFAD:B04E:40B7:B6F9:C40B
Client Secret Key Hash :
BBC3:409F:5CB5:C3F3:06BD:A385:78DA:4CED:62BC:3985:1C41:BCCE:1342:DF13:B71E:F4CF
Client Public key :
ECE2:8295:2157:6797:6BE2:C563:A5A9:C5FC:C20D:ADAF:EB3C:A1A2:C09A:40AD:CAEA:FF76
NM key Hash :
F9C2:2C2C:330A:1972:D484:4DD8:8E5C:71FF:6775:53A7:0344:5484:B78D:01B1:B938:E884
```


## show vlan access-map

	To display information about a particular VLAN access map or for all VLAN access maps, use the show vlan access-map command in privileged EXEC mode.   show vlan access-map [map-name]
Syntax Description	map-name (Optional) Name of a specific VLAN access map.
Command Modes	Privileged EXEC (\#)
Command History	Release Modification
	Cisco IOS XE Everest 16.5.1a This command was introduced.

## Examples

The following is sample output from the show vlan access-map command:

```
Device# show vlan access-map
Vlan access-map "vmap4" 10
 Match clauses:
 ip address: al2
 Action:
 forward
Vlan access-map "vmap4" 20
 Match clauses:
 ip address: al2
 Action:
 forward
```


## show vlan filter

To display information about all VLAN filters or about a particular VLAN or VLAN access map, use the show vlan filter command in privileged EXEC mode.
show vlan filter \{access-map name $\mid$ vlan vlan-id\}
Syntax Description

access-map name	(Optional) Displays filtering information for the specified VLAN access map.
vlan vlan-id	(Optional) Displays filtering information for the specified VLAN. The range is 1 to
	4094.

Command Modes
Command History
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

The following is sample output from the show vlan filter command:

```
Device# show vlan filter
VLAN Map map_1 is filtering VLANs:
 20-22
```


## show vlan group

To display the VLANs that are mapped to VLAN groups, use the show vlan group command in privileged EXEC mode.
show vlan group [\{group-name vlan-group-name [user_count]\}]

## Syntax Description

group-name vlan-group-name	(Optional) Displays the VLANs mapped to the specified VLAN group.
user_count	(Optional) Displays the number of users in each VLAN mapped to a
	specified VLAN group.

## Command Modes

Privileged EXEC (\#)
Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines The show vlan group command displays the existing VLAN groups and lists the VLANs and VLAN ranges that are members of each VLAN group. If you enter the group-name keyword, only the members of the specified VLAN group are displayed.

## Examples

This example shows how to display the members of a specified VLAN group:

```
Device# show vlan group group-name group2
vlan group group1 :40-45
```

This example shows how to display number of users in each of the VLANs in a group:

Device\# show vlan group group-name group2 user_count	
VLAN	$:$
( Count	
40	$:$
41	$:$
42	$:$
43	$:$
44	$:$
45	$:$

## ssci-based-on-sci

To compute the Short Secure Channel Identifier (SSCI) value based on the Secure Channel Identifier (SCI) value, use the ssci-based-on-sci command in MKA-policy configuration mode. To disable SSCI computation based on SCI, use the no form of this command.
ssci-based-on-sci
no ssci-based-on-sci

Syntax Description

## Command Default

Command Modes

Command History

Usage Guidelines

## Examples

Related Commands

This command has no arguments or keywords.

SSCI value computation based on SCI value is disabled.

MKA-policy configuration (config-mka-policy)

Release	Modification
Cisco IOS XE Gibraltar 16.12.3	This command was   introduced.

The higher the SCI value, the lower is the SSCI value.

The following example shows how to enable the SSCI computation based on SCI:

```
Device> enable
Device# configure terminal
Device(config)# mka policy 2
Device(config-mka-policy)# ssci-based-on-sci
```

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
sak-rekey	Configures the SAK rekey interval.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
use-updated-eth-header	Uses the updated Ethernet header for ICV calculation.

## storm-control

To enable broadcast, multicast, or unicast storm control and to set threshold levels on an interface, use the storm-control command in interface configuration mode. To return to the default setting, use the no form of this command.
storm-control \{action $\{$ shutdown $\mid$ trap $\} \mid\{$ broadcast $\mid$ multicast |unicast |unknown-unicast $\}$ level $\{$ level [level-low]|bps bps [bps-low]| pps pps [pps-low]\}\}
no storm-control \{action \{shutdown |trap\}|\{broadcast|multicast|unicast|unknown-unicast\} level\}

## Syntax Description

action	Specifies the action taken when a storm occurs on a port. The default action is to filter   traffic and to not send an Simple Network Management Protocol (SNMP) trap.
shutdown	Disables the port during a storm.
trap	Sends an SNMP trap when a storm occurs.
broadcast	Enables broadcast storm control on the interface.
multicast	Enables multicast storm control on the interface.
unicast	Enables unicast storm control on the interface.
unknown-unicast	Enables unknown unicast storm control on an interface.
level	Specifies the rising and falling suppression levels as a percentage of total bandwidth of   the port.
level	Rising suppression level, up to two decimal places. The range is 0.00 to 100.00. Block   the flooding of storm packets when the value specified for level is reached.
level-low	(Optional) Falling suppression level, up to two decimal places. The range is 0.00 to 100.00.   This value must be less than or equal to the rising suppression value. If you do not configure   a falling suppression level, it is set to the rising suppression level.
level bps	Specifies the rising and falling suppression levels as a rate in bits per second at which   traffic is received on the port.
level pps	Rpecifies the rising and falling suppression levels as a rate in packets per second at which   traffic is received on the port.   the flooding of storm packets when the value specified for bps is reached.   You can use metric suffixes such as k, m, and g for large number thresholds.
Yps-low	(Optional) Falling suppression level, up to 1 decimal place. The range is 0.0 to   10000000000.0. This value must be equal to or less than the rising suppression value.   You can use metric suffixes such as k, m, and g for large number thresholds.


pps	Rising suppression level, up to 1 decimal place. The range is 0.0 to 10000000000.0 . Block   the flooding of storm packets when the value specified for pps is reached.   You can use metric suffixes such as $\mathrm{k}, \mathrm{m}$, and g for large number thresholds.
pps-low	(Optional) Falling suppression level, up to 1 decimal place. The range is 0.0 to   10000000000.0 . This value must be equal to or less than the rising suppression value.   You can use metric suffixes such as $\mathrm{k}, \mathrm{m}$, and g for large number thresholds.


$\overline{\text { Command Default }}$		Broadcast, multicast, and unicast storm control are disabled.
	The default action is to filter traffic and to not send an SNMP trap.	
$\overline{\text { Command Modes }}$	Interface configuration (config-if)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.
	Cisco IOS XE Gibraltar 16.11.1	This command was modified. The   unknown-unicast keyword was   added.

## Usage Guidelines

The storm-control suppression level can be entered as a percentage of total bandwidth of the port, as a rate in packets per second at which traffic is received, or as a rate in bits per second at which traffic is received.

When specified as a percentage of total bandwidth, a suppression value of 100 percent means that no limit is placed on the specified traffic type. A value of level 00 means that all broadcast, multicast, or unicast traffic on that port is blocked. Storm control is enabled only when the rising suppression level is less than 100 percent. If no other storm-control configuration is specified, the default action is to filter the traffic causing the storm and to send no SNMP traps.

Note When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the device does not differentiate between routing updates, such as Open Shortest Path First (OSPF) and regular multicast data traffic, so both types of traffic are blocked.

The trap and shutdown options are independent of each other.
If you configure the action to be taken as shutdown (the port is error-disabled during a storm) when a packet storm is detected, you must use the no shutdown interface configuration command to bring the interface out of this state. If you do not specify the shutdown action, specify the action as trap (the device generates a trap when a storm is detected).

When a storm occurs and the action is to filter traffic, if the falling suppression level is not specified, the device blocks all traffic until the traffic rate drops below the rising suppression level. If the falling suppression level is specified, the device blocks traffic until the traffic rate drops below this level.

Note Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

When a broadcast storm occurs and the action is to filter traffic, the device blocks only broadcast traffic.
For more information, see the software configuration guide for this release.
This example shows how to enable broadcast storm control with a 75.5 -percent rising suppression level:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/1
Device(config-if)# storm-control broadcast level 75.5
Device(config-if)# end
```

This example shows how to enable unicast storm control on a port with a 87-percent rising suppression level and a 65 -percent falling suppression level:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/1
Device(config-if) # storm-control unicast level }876
Device(config-if)# end
```

This example shows how to enable multicast storm control on a port with a 2000-packets-per-second rising suppression level and a 1000 -packets-per-second falling suppression level:

```
Device> enable
Device# configure terminal
Device(config) # interface gigabitethernet 1/0/1
Device(config-if)# storm-control multicast level pps 2k 1k
Device(config-if) # end
```

This example shows how to enable the shutdown action on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/1
Device(config-if) # storm-control action shutdown
Device(config-if)# end
```

You can verify your settings by entering the show storm-control command.

## switchport port-security aging

To set the aging time and type for secure address entries or to change the aging behavior for secure addresses on a particular port, use the switchport port-security aging command in interface configuration mode. To disable port security aging or to set the parameters to their default states, use the no form of this command.
switchport port-security aging \{static|time time|type \{absolute|inactivity\}\} no switchport port-security aging \{static|time|type\}

## Syntax Description

Command Default

## Command Modes

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

static	Enables aging for statically configured secure addresses on this port.
time   time	Specifies the aging time for this port. The range is 0 to 1440 minutes. If the time is 0, aging is   disabled for this port.

type Sets the aging type.
absolute Sets absolute aging type. All the secure addresses on this port age out exactly after the time (minutes) specified and are removed from the secure address list.
inactivity Sets the inactivity aging type. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period.

The port security aging feature is disabled. The default time is 0 minutes.
The default aging type is absolute.
The default static aging behavior is disabled.

Interface configuration (config-if)

To enable secure address aging for a particular port, set the aging time to a value other than 0 for that port.

To allow limited time access to particular secure addresses, set the aging type as absolute. When the aging time lapses, the secure addresses are deleted.

To allow continuous access to a limited number of secure addresses, set the aging type as inactivity. This removes the secure address when it become inactive, and other addresses can become secure.

To allow unlimited access to a secure address, configure it as a secure address, and disable aging for the statically configured secure address by using the no switchport port-security aging static interface configuration command.

This example sets the aging time as 2 hours for absolute aging for all the secure addresses on the port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# switchport port-security aging time 120
```

```
Device(config-if)# end
```

This example sets the aging time as 2 minutes for inactivity aging type with aging enabled for configured secure addresses on the port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport port-security aging time 2
Device(config-if)# switchport port-security aging type inactivity
Device(config-if)# switchport port-security aging static
Device(config-if)# end
```

This example shows how to disable aging for configured secure addresses:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/2
Device(config-if) # no switchport port-security aging static
Device(config-if)# end
```


## switchport port-security mac-address

To configure secure MAC addresses or sticky MAC address learning, use the switchport port-security mac-address interface configuration command. To return to the default setting, use the no form of this command.
switchport port-security mac-address \{mac-address [\{vlan \{vlan-id \{access |voice $\}\}\}] \mid$ sticky [\{mac-address $\mid$ vlan $\{$ vlan-id $\{$ access $\mid$ voice $\}\}\}]\}$
no switchport port-security mac-address $\{$ mac-address [\{vlan \{vlan-id \{access |voice $\}\}\}] \mid$ sticky [\{mac-address $\mid$ vlan $\{$ vlan-id $\{$ access $\mid$ voice $\}\}\}]\}$

## Syntax Description

mac-address A secure MAC address for the interface by entering a 48-bit MAC address. You can add additional secure MAC addresses up to the maximum value configured.
vlan vlan-id (Optional) On a trunk port only, specifies the VLAN ID and the MAC address. If no VLAN ID is specified, the native VLAN is used.
vlan access (Optional) On an access port only, specifies the VLAN as an access VLAN.
vlan voice (Optional) On an access port only, specifies the VLAN as a voice VLAN.
Note The voice keyword is available only if voice VLAN is configured on a port and if that port is not the access VLAN.
sticky Enables the interface for sticky learning. When sticky learning is enabled, the interface adds all secure MAC addresses that are dynamically learned to the running configuration and converts these addresses to sticky secure MAC addresses.
mac-address (Optional) A MAC address to specify a sticky secure MAC address.

Command Default	No secure MAC addresses are configured.	
Command Modes	Sticky learning is disabled.	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This commanation (config-if)

## Usage Guidelines

A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Gigabit or 10-Gigabit EtherChannel port group.
- You cannot configure static secure or sticky secure MAC addresses in the voice VLAN.
- When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.
- Voice VLAN is supported only on access ports and not on trunk ports.

Sticky secure MAC addresses have these characteristics:

- When you enable sticky learning on an interface by using the switchport port-security mac-address sticky interface configuration command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses and adds all sticky secure MAC addresses to the running configuration.
- If you disable sticky learning by using the no switchport port-security mac-address sticky interface configuration command or the running configuration is removed, the sticky secure MAC addresses remain part of the running configuration but are removed from the address table. The addresses that were removed can be dynamically reconfigured and added to the address table as dynamic addresses.
- When you configure sticky secure MAC addresses by using the switchport port-security mac-address sticky mac-address interface configuration command, these addresses are added to the address table and the running configuration. If port security is disabled, the sticky secure MAC addresses remain in the running configuration.
- If you save the sticky secure MAC addresses in the configuration file, when the device restarts or the interface shuts down, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost. If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.
- If you disable sticky learning and enter the switchport port-security mac-address sticky mac-address interface configuration command, an error message appears, and the sticky secure MAC address is not added to the running configuration.

You can verify your settings by using the show port-security command.

This example shows how to configure a secure MAC address and a VLAN ID on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/2
Device(config-if)# switchport mode trunk
Device(config-if)# switchport port-security
Device(config-if)# switchport port-security mac-address 1000.2000.3000 vlan 3
Device(config-if) # end
```

This example shows how to enable sticky learning and to enter two sticky secure MAC addresses on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/2
Device(config-if) # switchport port-security mac-address sticky
Device(config-if)# switchport port-security mac-address sticky 0000.0000.4141
```

[^8]
## switchport port-security maximum

To configure the maximum number of secure MAC addresses, use the switchport port-security maximum command in interface configuration mode. To return to the default settings, use the no form of this command.
switchport port-security maximum value [vlan [\{vlan-list $\mid[\{$ access $\mid$ voice $\}]\}]]$ no switchport port-security maximum value [vlan $[\{$ vlan-list $\mid[\{\operatorname{access} \mid$ voice $\}]\}]]$

## Syntax Description

## Command Default

When port security is enabled and no keywords are entered, the default maximum number of secure MAC addresses is 1 .

Command Modes			
Command History	Interface configuration (config-if		
	Release	Modification	
		Thisco IOS XE Everest 16.5.1a	

## Usage Guidelines

The maximum number of secure MAC addresses that you can configure on a device is set by the maximum number of available MAC addresses allowed in the system. This number is determined by the active Switch Database Management (SDM) template. See the sdm prefer command. This number represents the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces.

A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel or 10-Gigabit EtherChannel port group.
- When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.

Voice VLAN is supported only on access ports and not on trunk ports.

- When you enter a maximum secure address value for an interface, if the new value is greater than the previous value, the new value overrides the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

Setting a maximum number of addresses to one and configuring the MAC address of an attached device ensures that the device has the full bandwidth of the port.

When you enter a maximum secure address value for an interface, this occurs:

- If the new value is greater than the previous value, the new value overrides the previously configured value.
- If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

You can verify your settings by using the show port-security command.
This example shows how to enable port security on a port and to set the maximum number of secure addresses to 5 . The violation mode is the default, and no secure MAC addresses are configured.

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/2
Device(config-if)# switchport mode access
Device(config-if)# switchport port-security
Device(config-if)# switchport port-security maximum 5
Device(config-if)# end
```


## switchport port-security violation

To configure secure MAC address violation mode or the action to be taken if port security is violated, use the switchport port-security violation command in interface configuration mode. To return to the default settings, use the no form of this command.
switchport port-security violation \{protect | restrict | shutdown | shutdown vlan\} no switchport port-security violation \{protect|restrict | shutdown | shutdown vlan\}
Syntax Description

protect	Sets the security violation protect mode.
restrict	Sets the security violation restrict mode.
shutdown	Sets the security violation shutdown mode.
shutdown   vlan	Sets the security violation mode to per-VLAN shutdown.


\section*{| Command Default |
| :--- |
| Command Modes |}

Command History
The default violation mode is shutdown.
Interface configuration (config-if)

## Release

Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.

## Usage Guidelines

In the security violation protect mode, when the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

We do not recommend configuring the protect mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

In the security violation restrict mode, when the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

In the security violation shutdown mode, the interface is error-disabled when a violation occurs and the port LED turns off. An SNMP trap is sent, a syslog message is logged, and the violation counter increments. When a secure port is in the error-disabled state, you can bring it out of this state by entering the errdisable recovery cause psecure-violation global configuration command, or you can manually re-enable it by entering the shutdown and no shutdown interface configuration commands.

When the security violation mode is set to per-VLAN shutdown, only the VLAN on which the violation occurred is error-disabled.

A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel or 10-Gigabit EtherChannel port group.

A security violation occurs when the maximum number of secure MAC addresses are in the address table and a station whose MAC address is not in the address table attempts to access the interface or when a station whose MAC address is configured as a secure MAC address on another secure port attempts to access the interface.

When a secure port is in the error-disabled state, you can bring it out of this state by entering the errdisable recovery cause psecure-violation global configuration command. You can manually re-enable the port by entering the shutdown and no shutdown interface configuration commands or by using the clear errdisable interface privileged EXEC command.

You can verify your settings by using the show port-security privileged EXEC command.

This example shows how to configure a port to shut down only the VLAN if a MAC security violation occurs:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/2
Device(config)# switchport port-security violation shutdown vlan
Device(config)# exit
```


## tacacs server

To configure the TACACS+ server for IPv6 or IPv4 and enter TACACS+ server configuration mode, use the tacacs server command in global configuration mode. To remove the configuration, use the no form of this command.
tacacs server name
no tacacs server

Syntax Description
name Name of the private TACACS+ server host.

Command Default
Command Modes
Command History

## Usage Guidelines

The tacacs server command configures the TACACS server using the name argument and enters TACACS+ server configuration mode. The configuration is applied once you have finished configuration and exited TACACS+ server configuration mode.

## Examples

The following example shows how to configure the TACACS server using the name serverl and enter TACACS+ server configuration mode to perform further configuration:

```
Device> enable
Device# configure terminal
Device(config)# tacacs server server1
Device(config-server-tacacs)# end
```


## Related Commands

Command	Description
address ipv6 (TACACS+)	Configures the IPv6 address of the TACACS+ server.
key (TACACS+)	Configures the per-server encryption key on the TACACS+ server.
port (TACACS+)	Specifies the TCP port to be used for TACACS+ connections.
send-nat-address (TACACS+)	Sends a client's post-NAT address to the TACACS+ server.
single-connection (TACACS+)	Enables all TACACS packets to be sent to the same server using a single   TCP connection.
timeout(TACACS+)	Configures the time to wait for a reply from the specified TACACS server.

To configure Transport Layer Security (TLS) parameters, use the tls command in radius server configuration mode. To return to the default setting, use the no form of this command.
tls [\{ connectiontimeout connection-timeout-value |idletimeout idle-timeout-value |[\{ ip |ipv6 \}] \{ radius source-interface interface-name $\mid$ vrf forwarding forwarding-table-name $\} \mid$ match-server-identity \{ email-address email-address |hostname hostname |ip-address ip-address \}|port port-number | retries number-of-connection-retries | trustpoint \{ client trustpoint name |server trustpoint name \} \}]
no tls

Syntax Description

Command Default

connectiontimeout connection-timeout-value	(Optional) Configures the DTLS connection timeout   value.
idletimeout idle-timeout-value	(Optional) Configures the DTLS idle timeout value.
[ip $\mid$ ipv6 $]\{$ radius source-interface interface-name   $\mid$ vrf forwarding forwarding-table-name $\}$	(Optional) Configures IP or IPv6 source parameters.
match-server-identity $\{$ email-address email-address   $\mid$ hostname host-name $\mid$ ip-address ip-address $\}$	Configures RadSec certification validation parameters.
port port-number	(Optional) Configures the DTLS port number.
retries number-of-connection-retries	(Optional) Configures the number of DTLS   connection retries.
trustpoint $\{$ client trustpoint name $\mid$ server trustpoint   name $\}$	(Optional) Configures the DTLS trustpoint for the   client and the server.

- The default value of TLS connection timeout is 5 seconds.
- The default value of TLS idle timeout is 60 seconds.
- The default TLS port number is 2083.
- The default value of TLS connection retries is 5 .


## Command Modes

Command History

Radius server configuration mode (config-radius-server)

Release	Modification
Cisco IOS XE Fuji 16.9.1	This command was introduced.
Cisco IOS XE Gibraltar 16.10.1	The match-server-identity keyword was introduced.
Cisco IOS XE Amsterdam 17.1.1	The ipv6 keyword was introduced.

## Usage Guidelines

We recommended that you use the same server type, either only TLS or only Datagram Transport Layer Security (DTLS), under a authentication, authorization, and accounting (AAA) server group.

Examples The following example shows how to configure the TLS idle timeout value to 5 seconds:

```
Device> enable
Device# configure terminal
Device(config)# radius server R1
Device(config-radius-server)# tls idletimeout 5
Device(config-radius-server) # end
```

Related Commands	Command	Description
show aaa servers	Displays information related to the TLS server.	
clear aaa counters servers radius	Clears the RADIUS TLS-specific statistics.	
debug radius radsec	Enables RADIUS TLS-specific debugs.	

## token (Parameter Map)

To configure the application programming interface (API) key used for authorization during device registration, use the token command in parameter-map type inspect configuration mode. To remove the unique identifier, use the no form of this command.
token value no token

Syntax Description

Command Default
Command Modes
Command History

Usage Guidelines
value
The API token. You can obtain this from the Cisco Umbrella registration server.

No token is created for the parameter map.
Parameter-map type inspect configuration (config-profile)

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

The token command is a mandatory configuration for the umbrella in and umbrella out commands.
To change an existing token to a new token, remove the umbrella in command and reconfigure it on the interface for policies of the new token to be applied.

The following example shows how to configure a Cisco Umbrella token:

```
Device> enable
Device# configure terminal
Device(config)# parameter-map type umbrella global
Device(config-profile)# token AADDD5FF6E510B28921A20C9B98EEEFF
```


## Related Commands

Command	Description
parameter-map type umbrella global	Configures a parameter-map type in umbrella mode.
umbrella	Configures the Cisco Umbrella Connector on an interface.

## tracking (IPv6 snooping)



The tracking command overrides the default tracking policy set by the ipv6 neighbor tracking command on the port on which this policy applies. This function is useful on trusted ports where, for example, you may not want to track entries but want an entry to stay in the binding table to prevent it from being stolen.
The reachable-lifetime keyword is the maximum time an entry will be considered reachable without proof of reachability, either directly through tracking or indirectly through IPv6 snooping. After the reachable-lifetime value is reached, the entry is moved to stale. Use of the reachable-lifetime keyword with the tracking command overrides the global reachable lifetime configured by the ipv6 neighbor binding reachable-lifetime command.

The stale-lifetime keyword is the maximum time an entry is kept in the table before it is deleted or the entry is proven to be reachable, either directly or indirectly. Use of the reachable-lifetime keyword with the tracking command overrides the global stale lifetime configured by the ipv6 neighbor binding stale-lifetime command.

This example shows how to define an IPv6 snooping policy name as policyland configures an entry to stay in the binding table for an infinite length of time on a trusted port:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping) # tracking disable stale-lifetime infinite
Device(config-ipv6-snooping)# end
```


## trusted-port

To configure a port to become a trusted port, use the trusted-port command in IPv6 snooping policy mode or ND inspection policy configuration mode. To disable this function, use the no form of this command.
trusted-port
no trusted-port
Syntax Description

$\overline{\text { Command Default }}$	No ports are trusted.
Command Modes	ND inspection policy configuration (config-nd-inspection)
	IPv6 snooping configuration (config-ipv6-snooping)

Command History

Usage Guidelines
When the trusted-port command is enabled, limited or no verification is performed when messages are received on ports that have this policy. However, to protect against address spoofing, messages are analyzed so that the binding information that they carry can be used to maintain the binding table. Bindings discovered from these ports will be considered more trustworthy than bindings received from ports that are not configured to be trusted.

This example shows how to define an NDP policy name as policy1, and configures the port to be trusted:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 nd inspection policy1
Device(config-nd-inspection) # trusted-port
Device(config-nd-inspection)# end
```

This example shows how to define an IPv6 snooping policy name as policy1, and configures the port to be trusted:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping) # trusted-port
Device(config-ipv6-snooping)# end
```


## umbrella

To configure the Cisco Umbrella Connector on an interface, use the umbrella command in interface configuration mode. To remove this configuration, use the no form of this command.
umbrella $\{$ in tag-name $\mid$ out $\}$ no umbrella $\{$ in $\mid$ out $\}$

Syntax Description

## Command Default <br> Command Modes

Command History
in Configures the Cisco Umbrella Connector on an interface that is connected to a client.
tag-name The interface tag name.
The length should not exceed 49 characters.
out Configures the Cisco Umbrella Connector on an interface that is used to reach the umbrella server.

No default behavior or values.
Interface configuration (config-if)

Release	Modification
Cisco IOS XE Amsterdam 17.1.1	This command was introduced.

Usage Guidelines
You should configure the umbrella out command before you configure the umbrella in command. Registration is successful only when port 443 is in Open state and allows traffic to pass through the existing firewall.

The umbrella in and umbrella out commands cannot be configured on the same interface.

## Examples

Related Commands

The following example shows how to configure the Cisco Umbrella Connector on an interface:

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet 1/0/1
Device(config-if)# umbrella out
Device(config-if) # exit
Device(config)# interface GigabitEthernet 1/0/2
Device(config-if)# umbrella in mydevice_tag
```

Command	Description
show umbrella config	Displays the Cisco Umbrella   Integration configurations of the   device.

## use-updated-eth-header

To enable interoperability between devices and any port on a device that includes the updated Ethernet header in MACsec Key Agreement Protocol Data Units (MKPDUs) for integrity check value (ICV) calculation, use the ssci-based-on-sci command in MKA-policy configuration mode. To disable the updated ethernet header in MKPDUs for ICV calculation, use the no form of this command.

## use-updated-eth-header

no use-updated-eth-header

## Syntax Description

$\overline{\text { Command Default }}$
Command Modes

## Command History

## Usage Guidelines

## Examples

This command has no arguments or keywords.
The Ethernet header for ICV calculation is disabled.

MKA-policy configuration (config-mka-policy)

Release	Modification
Cisco IOS XE Gibraltar 16.12.1	This command was introduced.

The updated Ethernet header is non-standard. Enabling this option ensures that an MACsec Key Agreement (MKA) session between the devices can be set up.

The following example shows how to enable the updated Ethernet header in MKPDUs for ICV calculation:

```
Device> enable
Device# configure terminal
Device(config)# mka policy 2
Device(config-mka-policy)# use-updated-eth-header
```


## Related Commands

Command	Description
mka policy	Configures an MKA policy.
confidentiality-offset	Sets the confidentiality offset for MACsec operations.
delay-protection	Configures MKA to use delay protection in sending MKPDU.
include-icv-indicator	Includes ICV indicator in MKPDU.
key-server	Configures MKA key-server options.
macsec-cipher-suite	Configures cipher suite for deriving SAK.
sak-rekey	Configures the SAK rekey interval.
send-secure-announcements	Configures MKA to send secure announcements in sending MKPDUs.
ssci-based-on-sci	Computes SSCI based on the SCI.

## username

To establish the username-based authentication system, use the username command in global configuration mode. To remove an established username-based authentication, use the no form of this command.

```
username name [aaa attribute list aaa-list-name]
username name [access-class access-list-number]
username name [algorithm-type {md5 | scrypt | sha256 }]
username name [autocommand command]
username name [callback-dialstring telephone-number]
username name [callback-line [tty]line-number [ending-line-number]]
username name [callback-rotary rotary-group-number]
username name [common-criteria-policy policy-name]
username name [dnis]
username name [mac]
username name [nocallback-verify]
username name [noescape]
username name [nohangup]
username name [{nopassword | password password | password encryption-type encrypted-password}]
username name [one-time {password {0|6|7| password}| secret {0|5|8|9|password}}]
username name [password secret]
username name [privilege level]
username name [secret {0| 5 |password }]
username name [serial-number]
username name [user-maxlinks number]
username name [view view-name]
no username name
```

name $\quad$ Hostname, server name, user ID, or command name. The name argument can be only one word. Blank spaces and quotation marks are not allowed.

aaa attribute list   aaa-list-name	(Optional) Uses the specified authentication, authorization, and accounting (AAA)   method list.
access-class   access-list-number	(Optional) Specifies an outgoing access list that overrides the access list specified   in the access-class command that is available in line configuration mode. It is   used for the duration of the user's session.
algorithm-type	(Optional) Specifies the algorithm to use for hashing the plaintext secret for the   user.
• md5: Encodes the password using the MD5 algorithm.	
- scrypt: Encodes the password using the SCRYPT hashing algorithm.	
• sha256: Encodes the password using the PBKDF2 hashing algorithm.	


autocommand command(Optional) Causes the specified autocommandcommand to be issued   automatically after the user logs in. When the specified autocommand command   is complete, the session is terminated. Because the command can be of any length   and can contain embedded spaces, commands using the autocommand keyword   must be the last option on the line.	
callback-dialstring   telephone-number	(Optional) Permits you to specify a telephone number to pass to the Data   Circuit-terminating Equipment (DCE) device; for asynchronous callback only.
callback-line line-number(Optional) Specifies relative number of the terminal line (or the first line in a   contiguous group) on which you enable a specific username for callback; for   asynchronous callback only. Numbering begins with zero.	
ending-line-number	(Optional) Relative number of the last line in a contiguous group on which you   want to enable a specific username for callback. If you omit the keyword (such   as tty), then line number and ending line number are absolute rather than relative   line numbers.
(Optional) Specifies standard asynchronous line; for asynchronous callback only.	
tty	(Optional) Permits you to specify a rotary group number on which you want to   enable a specific username for callback; for asynchronous callback only. The   next available line in the rotary group is selected. Range: 1 to 100.
rotary-group-number	


encryption-type	Single-digit number that defines whether the text immediately following the   password is encrypted, and if so, what type of encryption is used. Defined   encryption types are 0 , which means that the text immediately following the   password is not encrypted, and 6 and 7 , which means that the text is encrypted   using a Cisco-defined encryption algorithm.
encrypted-password	Encrypted password that the user enters.
one-time	(Optional) Specifies that the username and password is valid for only one time.   This configuration is used to prevent default credentials from remaining in user   configurations.
•0: Specifies that an unencrypted password or secret (depending on the	
configuration) follows.	
• 6: Specifies that an encrypt password follows.	
• 7: Specifies that a hidden password follows.	
• 5: Specifies that a MD5 HASHED secret follows.	
• 8: Specifies that a PBKDF2 HASHED secret follows.	
•9: Specifies that a SCRYPT HASHED secret follows.	


secret	(Optional) Specifies a secret for the user.
secret	For Challenge Handshake Authentication Protocol (CHAP) authentication.   Specifies the secret for the local device or the remote device. The secret is   encrypted when it is stored on the local device. The secret can consist of any   string of up to 11 ASCII characters. There is no limit to the number of username   and password combinations that can be specified, allowing any number of remote   devices to be authenticated.
privilege privilege-level	(Optional) Sets the privilege level for the user. Range: 1 to 15.
serial-number	(Optional) Specifies the serial number.
user-maxlinks number	(Optional) Specifies the maximum number of inbound links allowed for the user.
view view-name	(Optional) Associates a CLI view name, which is specified with the parser view   command, with the local AAA database; for CLI view only.


Command Default	No username-based authentication system is established.	
$\overline{\text { Command Modes }}$	Global configuration (config)	
Command History		Release
	Cisco IOS XE Everest 16.5.1a	

[^9]Multiple username commands can be used to specify options for a single user.
Add a username entry for each remote system with which the local device communicates, and from which it requires authentication. The remote device must have a username entry for the local device. This entry must have the same password as the local device's entry for that remote device.

This command can be useful for defining usernames that get special treatment. For example, you can use this command to define an info username that does not require a password, but connects the user to a general purpose information service.

The username command is required as part of the configuration for CHAP. Add a username entry for each remote system from which the local device requires authentication.

To enable the local device to respond to remote CHAP challenges, one username name entry must be the same as the hostname entry that has already been assigned to the other device. To avoid the situation of a privilege level 1 user entering into a higher privilege level, configure a per-user privilege level other than 1 , for example, 0 or 2 through 15 . Per-user privilege levels override virtual terminal privilege levels.

## CLI and Lawful Intercept Views

Both CLI views and lawful intercept views restrict access to specified commands and configuration information. A lawful intercept view allows the user to secure access to lawful intercept commands that are held within the TAP-MIB, which is a special set of SNMP commands that store information about calls and users.

Users who are specified via the lawful-intercept keyword are placed in the lawful-intercept view by default if no other privilege level or view name is explicitly specified.

If no value is specified for the secret argument, and the debug serial-interface command is enabled, an error is displayed when a link is established and the CHAP challenge is not implemented. The CHAP debugging information is available using the debug ppp negotiation, debug serial-interface, and debug serial-packet commands.

The following example shows how to implement a service similar to the UNIX who command, which can be entered at the login prompt, and lists the current users of the device:

```
Device> enable
Device# configure terminal
Device(config)# username who nopassword nohangup autocommand show users
```

The following example shows how to implement an information service that does not require a password to be used:

```
Device> enable
Device# configure terminal
Device(config) # username info nopassword noescape autocommand telnet nic.ddn.mil
```

The following example shows how to implement an ID that works even if all the TACACS+ servers break:

```
Device> enable
Device# configure terminal
Device(config)# username superuser password superpassword
```

The following example shows how to enable CHAP on interface serial 0 of server_1. It also defines a password for a remote server named server_r.

[^10]```
username server_r password theirsystem
interface serial 0
encapsulation ppp
ppp authentication chap
```

The following is a sample output from the show running-config command displaying the passwords that are encrypted:

```
hostname server_l
username server r password 7 121F0A18
interface serial 0
    encapsulation ppp
    ppp authentication chap
```

The following example shows how a privilege level 1 user is denied access to privilege levels higher than 1:

```
Device> enable
Device# configure terminal
Device(config)# username user privilege 0 password 0 cisco
Device(config)# username user2 privilege 2 password O cisco
```

The following example shows how to remove username-based authentication for user2:

```
Device> enable
Device# configure terminal
Device(config)# no username user2
```

| Command | Description |
| :--- | :--- |
| debug ppp negotiation | Displays PPP packets sent during PPP startup, where PPP op |
| debug serial-interface | Displays information about a serial connection failure. |
| debug serial-packet | Displays more detailed serial interface debugging informatio
 using the debug serial interface command. |

vlan access-map

To create or modify a VLAN map entry for VLAN packet filtering, and change the mode to the VLAN access-map configuration, use the vlan access-map command in global configuration mode on the device. To delete a VLAN map entry, use the no form of this command.
vlan access-map name [number] no van access-map name [number]

Syntax Description

Command Default

Command Modes

Command History

name Name of the VLAN map.
number (Optional) The sequence number of the map entry that you want to create or modify (0 to 65535). If you are creating a VLAN map and the sequence number is not specified, it is automatically assigned in increments of 10 , starting from 10 . This number is the sequence to insert to, or delete from, a VLAN access-map entry.

There are no VLAN map entries and no VLAN maps applied to a VLAN.
Global configuration (config)

Release

Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

In global configuration mode, use this command to create or modify a VLAN map. This entry changes the mode to VLAN access-map configuration, where you can use the match access-map configuration command to specify the access lists for IP or non-IP traffic to match and use the action command to set whether a match causes the packet to be forwarded or dropped.
In VLAN access-map configuration mode, these commands are available:

- action-Sets the action to be taken (forward or drop).
- default-Sets a command to its defaults.
- exit-Exits from VLAN access-map configuration mode.
- match-Sets the values to match (IP address or MAC address).
- no-Negates a command or set its defaults.

When you do not specify an entry number (sequence number), it is added to the end of the map.
There can be only one VLAN map per VLAN and it is applied as packets are received by a VLAN.
You can use the no vlan access-map name [number] command with a sequence number to delete a single entry.

Use the vlan filter interface configuration command to apply a VLAN map to one or more VLANs.

Examples

This example shows how to create a VLAN map named vac 1 and apply matching conditions and actions to it. If no other entries already exist in the map, this will be entry 10 .

```
Device> enable
Device# configure terminal
Device(config)# vlan access-map vac1
Device(config-access-map) # match ip address acll
Device(config-access-map) # action forward
Device(config-access-map)# end
```

This example shows how to delete VLAN map vac1:

```
Device> enable
Device# configure terminal
Device(config)# no vlan access-map vac1
Device(config) # exit
```


vlan dot10 tag native

To enable dot1q (IEEE 802.1Q) tagging for a native VLAN on a trunk port, use the vlan dot1Q tag native command in global configuration mode.
To disable this function, use the no form of this command.
vlan dot1Q tag native
no vlan dot1Q tag native

| $\overline{\text { Syntax Description }}$ | This command has no arguments or keywords. | |
| :--- | :--- | :--- |
| $\overline{\text { Command Default }}$ | | Disabled |
| $\overline{\text { Command Modes }}$ | | Global configuration (config) |
| | | Release |

Usage Guidelines
 Typically, you configure 802.1Q trunks with a native VLAN ID which strips tagging from all packets on that

 VLAN.To maintain the tagging on the native VLAN and drop untagged traffic, use the vlan dot1q tag native command. The device will tag the traffic received on the native VLAN and admit only 802.1Q-tagged frames, dropping any untagged traffic, including untagged traffic in the native VLAN.
Control traffic continues to be accepted as untagged on the native VLAN on a trunked port, even when the vlan dot1q tag native command is enabled.

Note
If the dot1q tag vlan native command is configured at global level, dot1x reauthentication will fail on trunk ports.

This example shows how to enable dot1q (IEEE 802.1Q) tagging for native VLANs on all trunk ports on a device:
Device(config) \# vlan dot1q tag native
Device(config)\#

Related Commands

| Command | Description |
| :--- | :--- |
| show vlan dot1q tag native | Displays the status of tagging on the native VLAN. |

vlan filter

To apply a VLAN map to one or more VLANs, use the vlan filter command in global configuration mode. Use the no form of this command to remove the map.
vlan filter mapname vlan-list $\{$ list \mid all $\}$ no vlan filter mapname vlan-list $\{l i s t \mid$ all $\}$

Syntax Description

| Command Default |
| :--- |
| Command Modes |

Command History
mapname Name of the VLAN map entry.
vlan-list Specifies which VLANs to apply the map to.
list The list of one or more VLANs in the form tt , $\mathrm{uu}-\mathrm{vv}, \mathrm{xx}, \mathrm{yy}-\mathrm{zz}$, where spaces around commas and dashes are optional. The range is 1 to 4094 .
all Adds the map to all VLANs.

There are no VLAN filters.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

To avoid accidentally dropping too many packets and disabling connectivity in the middle of the configuration process, we recommend that you completely define the VLAN access map before applying it to a VLAN.

This example applies VLAN map entry map1 to VLANs 20 and 30:

```
Device> enable
Device# configure terminal
Device(config) # vlan filter mapl vlan-list 20, 30
Device(config) # exit
```

This example shows how to delete VLAN map entry mac 1 from VLAN 20:

```
Device> enable
Device# configure terminal
Device(config) # no vlan filter mapl vlan-list 20
Device(config) # exit
```

You can verify your settings by entering the show vlan filter command.

vlan group

To create or modify a VLAN group, use the vlan group command in global configuration mode. To remove a VLAN list from the VLAN group, use the no form of this command.
vlan group group-name vlan-list vlan-list
no vlan group group-name vlan-list vlan-list

Syntax Description

Command Modes

Command History

Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

Usage Guidelines

If the named VLAN group does not exist, the vlan group command creates the group and maps the specified VLAN list to the group. If the named VLAN group exists, the specified VLAN list is mapped to the group.
The no form of the vlan group command removes the specified VLAN list from the VLAN group. When you remove the last VLAN from the VLAN group, the VLAN group is deleted.

A maximum of 100 VLAN groups can be configured, and a maximum of 4094 VLANs can be mapped to a VLAN group.

Examples

This example shows how to map VLANs 7 through 9 and 11 to a VLAN group:

```
Device> enable
Device# configure terminal
Device(config) # vlan group group1 vlan-list 7-9,11
Device(config) # exit
```

This example shows how to remove VLAN 7 from the VLAN group:

```
Device> enable
Device# configure terminal
Device(config)# no vlan group group1 vlan-list 7
Device(config)# exit
```


pant XII

Stack Manager and High Availability

- Stack Manager and High Availability Commands, on page 1789

Stack Manager and High Availability Commands

- debug platform stack-manager, on page 1790
- maintenance-template, on page 1791
- main-cpu, on page 1792
- mode sso, on page 1793
- policy config-sync prc reload, on page 1794
- redundancy, on page 1795
- redundancy config-sync mismatched-commands, on page 1796
- redundancy force-switchover, on page 1798
- redundancy reload, on page 1799
- reload, on page 1800
- router routing protocol shutdown 12, on page 1802
- session, on page 1803
- show redundancy, on page 1804
- show redundancy config-sync, on page 1808
- show switch, on page 1810
- show switch stack-mode, on page 1813
- show tech-support stack, on page 1814
- stack-mac persistent timer, on page 1820
- stack-mac update force, on page 1822
- standby console enable, on page 1823
- start maintenance, on page 1824
- stop maintenance, on page 1825
- switch clear stack-mode, on page 1826
- switch switch-number role, on page 1827
- switch stack port, on page 1828
- switch priority, on page 1829
- switch provision, on page 1830
- switch renumber, on page 1832
- switch renumber, on page 1833
- system mode maintenance, on page 1834

debug platform stack-manager

To enable debugging of the stack manager software, use the debug platform stack-manager command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug platform stack-manager $\{$ all $|\mathbf{r p c}| \mathbf{s d p}|\operatorname{sim}|$ ssm \mid trace $\}$
no debug platform stack-manager $\{$ all \mid rpc \mid sdp \mid sim \mid ssm \mid trace $\}$

Syntax Description

| Command Default |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines

all Displays all stack manager debug messages.
rpc Displays stack manager remote procedure call (RPC) usage debug messages.
sdp Displays the Stack Discovery Protocol (SDP) debug messages.
sim Displays the stack information module debug messages.
ssm Displays the stack state-machine debug messages.
trace Traces the stack manager entry and exit debug messages.

Debugging is disabled.
Privileged EXEC
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This command is supported only on stacking-capable switches.
The undebug platform stack-manager command is the same as the no debug platform stack-manager command.
When you enable debugging on a switch stack, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number EXEC command. Enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

maintenance-template

To create a maintenance template, use the maintenance-template template_namecommand in the global configuration mode. To delete the template, use the no form of the command.
maintenance-template template_name no maintenance-template template_name

Syntax Description

| Command Default |
| :--- |
| Command Modes |
| Command History |

| maintenance-template | Creates a template for GIR with a
 specific name. |
| :--- | :--- |
| template_name | Name of the maintanence template. |

Disabled.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest
 16.6.1 | This command was introduced. |

Example:

The following example shows how to configure a maintenance template with the name g 1 :
Device(config) \# maintenance template g1

main-cpu

To enter the redundancy main configuration submode and enable the standby switch, use the main-cpu command in redundancy configuration mode.
main-cpu
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

| $\overline{\text { Command Default }}$ | None | |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | | Redundancy configuration (config-red) |
| Command History | Release | Modification |
| | | |
| | | |
| | | |

Usage Guidelines From the redundancy main configuration submode, use the standby console enable command to enable the standby switch.

This example shows how to enter the redundancy main configuration submode and enable the standby switch:

```
Device(config)# redundancy
Device(config-red) # main-cpu
Device(config-r-mc)# standby console enable
Device#
```


mode sso

To set the redundancy mode to stateful switchover (SSO), use the mode sso command in redundancy configuration mode.
mode sso
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

| Command Default | None | |
| :--- | :--- | :--- |
| $\left.\begin{array}{lll} & & \\ \hline \text { Command Modes } & & \text { Redundancy configuration } \\ & & \text { Release }\end{array}\right)$ Modification | | |

Cisco IOS XE Everest 16.5.1a This command was introduced.
$\overline{\text { Usage Guidelines }}$ The mode sso command can be entered only from within redundancy configuration mode.
Follow these guidelines when configuring your system to SSO mode:

- You must use identical Cisco IOS images on the switches in the stack to support SSO mode. Redundancy may not work due to differences between the Cisco IOS releases.
- If you perform an online insertion and removal (OIR) of the module, the switch resets during the stateful switchover and the port states are restarted only if the module is in a transient state (any state other than Ready).
- The forwarding information base (FIB) tables are cleared on a switchover. Routed traffic is interrupted until route tables reconverge.

This example shows how to set the redundancy mode to SSO:

```
Device(config) # redundancy
Device(config-red) # mode sso
Device(config-red) #
```


policy config-sync prc reload

To reload the standby switch if a parser return code (PRC) failure occurs during configuration synchronization, use the policy config-sync reload command in redundancy configuration mode. To specify that the standby switch is not reloaded if a parser return code (PRC) failure occurs, use the no form of this command.
policy config-sync $\{$ bulk $\mid \mathrm{lbl}\}$ pre reload no policy config-sync $\{$ bulk $\mid \mathrm{lbl}\}$ pre reload

Syntax Description

Command Default

Command Modes

Command History

The command is enabled by default.
Redundancy configuration (config-red)
Release \quad Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This example shows how to specify that the standby switch is not reloaded if a parser return code (PRC) failure occurs during configuration synchronization:

Device(config-red) \# no policy config-sync bulk prc reload

redundancy

To enter redundancy configuration mode, use the redundancy command in global configuration mode. redundancy
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default

None

Command Modes
Global configuration (config)

Command History
Release Modification
Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines The redundancy configuration mode is used to enter the main CPU submode, which is used to enable the standby switch.

To enter the main CPU submode, use the main-cpu command while in redundancy configuration mode. From the main CPU submode, use the standby console enable command to enable the standby switch.

Use the exit command to exit redundancy configuration mode.
This example shows how to enter redundancy configuration mode:
(config) \# redundancy
(config-red) \#

This example shows how to enter the main CPU submode:

```
(config)# redundancy
(config-red) # main-cpu
(config-r-mc)#
```


Related Commands

| Command | Description |
| :--- | :--- |
| show redundancy | Displays redundancy facility information. |

redundancy config-sync mismatched-commands

To allow the standby switch to join the stack if a configuration mismatch occurs between the active and standby switches, use the redundancy config-sync mismatched-commands command in privileged EXEC mode.
redundancy config-sync \{ignore |validate\} mismatched-commands

Syntax Description

| Command Default |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines

| ignore | Ignores the mismatched command list. |
| :--- | :--- |
| validate | Revalidates the mismatched command list with the modified running-configuration. |
| None | |
| Privileged EXEC | |
| Release \quad Modification | |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

If the command syntax check in the running configuration of the active switch fails while the standby switch is booting, use the redundancy config-sync mismatched-commands command to display the Mismatched Command List (MCL) on the active switch and to reboot the standby switch.

The following is a log entry example for mismatched commands:

```
00:06:31: Config Sync: Bulk-sync failure due to Servicing Incompatibility. Please check
full list of mismatched commands via:
show redundancy config-sync failures mcl
00:06:31: Config Sync: Starting lines from MCL file:
interface GigabitEthernet7/7
! <submode> "interface"
- ip address 192.0.2.0 255.255.255.0
! </submode> "interface"
```

To display all mismatched commands, use the show redundancy config-sync failures mcl command.
To clean the MCL, follow these steps:

1. Remove all mismatched commands from the running configuration of the active switch.
2. Revalidate the MCL with a modified running configuration by using the redundancy config-sync validate mismatched-commands command.
3. Reload the standby switch.

You can ignore the MCL by doing the following:

1. Enter the redundancy config-sync ignore mismatched-commands command.
2. Reload the standby switch; the system changes to SSO mode.

Note If you ignore the mismatched commands, the out-of-sync configuration at the active switch and the standby switch still exists.
3. Verify the ignored MCL with the show redundancy config-sync ignored mel command.

If SSO mode cannot be established between the active and standby switches because of an incompatibility in the configuration file, a mismatched command list (MCL) is generated at the active switch and a reload into route processor redundancy (RPR) mode is forced for the standby switch.

This example shows how to revalidate the mismatched command list with the modified configuration:

```
# redundancy config-sync validate mismatched-commands
```

\#

redundancy force-switchover

To force a switchover from the active switch to the standby switch, use the redundancy force-switchover command in privileged EXEC mode.
redundancy force-switchover

Syntax Description
This command has no arguments or keywords.

| Command Default |
| :--- |
| Command Modes |
| Command History |
| Usage Guidelines |

None
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines

Use the redundancy force-switchover command to manually switch over to the redundant switch. The redundant switch becomes the new active switch that runs the Cisco IOS XE image, and the modules are reset to their default settings. The old active switch reboots with the new image.

If you use the redundancy force-switchover command on the active switch, the switchports on the active switch go down.

If you use this command on a switch that is in a partial ring stack, the following warning message appears:

```
Device# redundancy force-switchover
Stack is in Half ring setup; Reloading a switch might cause stack split
This will reload the active unit and force switchover to standby[confirm]
```

This example shows how to manually switch over from the active to the standby supervisor engine:

```
Device# redundancy force-switchover
Device#
```


redundancy reload

To force a reload of one or all of the switches in the stack, use the redundancy reload command in privileged EXEC mode.
redundancy reload \{peer | shelf\}
Syntax Description

Command Default
Command Modes
Command History

| peer | Reloads the peer unit. |
| :--- | :--- |
| shelf | Reboots all switches in the stack. |

None
Privileged EXEC

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a | |

Usage Guidelines
Before using this command, see the "Performing a Software Upgrade" section of the for additional information. Use the redundancy reload shelf command to reboot all the switches in the stack.

This example shows how to manually reload all switches in the stack:

```
# redundancy reload shelf
```

\#

reload

| | To reload the stack member and to apply a configuration change, use the reload command in privileged EXEC mode.
 reload [\{/noverify $\mid /$ verify $\}]$ [\{LINE \mid at \mid cancel \mid in \mid slot stack-member-number \mid standby-cpu $\}]$ |
| :---: | :---: |
| Syntax Description | /noverify (Optional) Specifies to not verify the file signature before the reload. |
| | /verify (Optional) Verifies the file signature before the reload. |
| | LINE (Optional) Reason for the reload. |
| | at (Optional) Specifies the time in hh:mm for the reload to occur. |
| | cancel (Optional) Cancels the pending reload. |
| | in (Optional) Specifies a time interval for reloads to occur. |
| | slot (Optional) Saves the changes on the specified stack member and then restarts it. |
| | stack-member-number |
| | standby-cpu (Optional) Reloads the standby route processor (RP). |
| Command Default | Immediately reloads the stack member and puts a configuration change into effect. |
| Command Modes | Privileged EXEC |
| Command History | Release Modification |
| | Cisco IOS XE Everest 16.5.1a This command was introduced. |
| Usage Guidelines | If there is more than one switch in the switch stack, and you enter the reload slot stack-member-number command, you are not prompted to save the configuration. |
| $\overline{\text { Examples }}$ | This example shows how to reload the switch stack: |
| | |
| | System configuration has been modified. Save? [yes/no]: y Proceed to reload the whole Stack? [confirm] y |
| | This example shows how to reload a specific stack member: |
| | Device\# reload slot 6 |
| | Proceed with reload? [confirm] y |
| | This example shows how to reload a single-switch switch stack (there is only one member switch): |

```
Device# reload slot 3
System configuration has been modified. Save? [yes/no]: y
Proceed to reload the whole Stack? [confirm] y
```


router routing protocol shutdown $\mathbf{l 2}$

To create instances that should be isolated within a maintenance template, use the router routing_protocol instance_id | shutdown 12 command in the maintenance template configuration mode. To delete the instance, use the no form of the command.

```
{ router routing_protocol instance_id | shutdown l2 }
no{ router routing_protocol instance_id | shutdown 12 }
```


Syntax Description

| router | Configures instance associated with routing protocol. |
| :--- | :--- |
| routing_protocol | Routing protocol defined for the template. |
| instance_id | Instance ID associated with the routing protocol. |
| shutdown 12 | Configures instance to shut down layer 2 interfaces. |

| Command Default | Disabled. | |
| :---: | :---: | :---: |
| Command Modes | Maintenance template configuration (config-maintenance-temp) | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.6.1 | This command was introduced. |

Example:

The following example shows how to create an instance for ISIS with an instance ID of one under maintenance template temp 1 :

```
Device(config) # maintenance template g1
Device(config-maintenance-templ) # router isis 1
```

The following example shows how to create an instance for shutting down layer 2 interfaces under maintenance template g1:

```
Device(config) # maintenance template g1
Device(config-maintenance-templ)# shutdown 12
```


session

To access a specific stack member use the session command in privileged EXEC mode on the stack master.
session stack-member-number

Syntax Description
Command Default None

Command Modes Privileged EXEC

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a | |

Usage Guidelines
When you access the member, its member number is appended to the system prompt.
Use the session command from the master to access a member
Use the session command with processor 1 from the master or a standalone switch to access the internal controller. A standalone is always member 1.
$\overline{\text { Examples }}$
This example shows how to access stack member 3:

```
# session 3
-3#
```


show redundancy

To display redundancy facility information, use the show redundancy command in privileged EXEC mode

| | show redundancy \{clients \|counters \} | [\{clients \| config-sync | counters | history [\{reload | reverse\}] | slaves[slave-name] states \mid switchover history [domain default]\}] |
| :---: | :---: | :---: |
| Syntax Description | clients | (Optional) Displays information about the redundancy facility client. |
| | config-sync | (Optional) Displays a configuration synchronization failure or the ignored mismatched command list (MCL). |
| | counters | (Optional) Displays information about the redundancy facility counter. |
| | history | (Optional) Displays a log of past status and related information for the redundancy facility. |
| | history reload | (Optional) Displays a log of past reload information for the redundancy facility. |
| | history reverse | (Optional) Displays a reverse log of past status and related information for the redundancy facility. |
| | slaves | (Optional) Displays all standby switches in the redundancy facility. |
| | slave-name | (Optional) The name of the redundancy facility standby switch to display specific information for. Enter additional keywords to display all clients or counters in the specified standby switch. |
| | clients | Displays all redundancy facility clients in the specified secondary switch. |
| | counters | Displays all counters in the specified standby switch. |
| | states | (Optional) Displays information about the redundancy facility state, such as disabled, initialization, standby or active. |
| | switchover history | (Optional) Displays information about the redundancy facility switchover history. |
| | domain default | (Optional) Displays the default domain as the domain to display switchover history for. |

| Command Default |
| :--- |
| Command Modes |
| Command History |

None
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

This example shows how to display information about the redundancy facility:

```
Device# show redundancy
```

```
Redundant System Information :
Redundant System Information:
    Available system uptime = 6 days, 5 hours, 28 minutes
Switchovers system experienced = 0
            Standby failures = 0
            Last switchover reason = none
            Hardware Mode = Duplex
        Configured Redundancy Mode = sso
        Operating Redundancy Mode = sso
            Maintenance Mode = Disabled
                    Communications = Up
Current Processor Information :
            Active Location = slot 5
            Current Software state = ACTIVE
    Uptime in current state = 6 days, 5 hours, 28 minutes
                            Image Version = Cisco IOS Software, Catalyst L3 Switch Software
(CAT9K IOSXE),Experimental Version 16.x.x [S2C-build-v16x throttle-4064-/
nobackup/mcpre/BLD-BLD V16x THROTTLE LATEST 102]
Copyright (c) 1986-201x by Cisco Systems, Inc.
Compiled Mon 07-Oct-xx 03:57 by mcpre
                                    BOOT = bootflash:packages.conf;
    Configuration register = 0x102
Peer Processor Information :
----------------------
            Standby Location = slot 6
            Current Software state = STANDBY HOT
    Uptime in current state = 6 days, 5 hours, 25 minutes
                            Image Version = Cisco IOS Software, Catalyst L3 Switch Software
(CAT9K IOSXE), Experimental Version 16.x.x [S2C-build-v16x throttle-4064-/
nobackup/mcpre/BLD-BLD_V16x_THROTTLE_LATEST_20191007_000645 102]
Copyright (c) 1986-201x by Cisco Systems, Inc.
Compiled Mon 07-Oct-xx 03:57 by mcpre
                                    BOOT = bootflash:packages.conf;
                            CONFIG_FILE =
    Configuration register = 0x102
Device#
```

This example shows how to display redundancy facility client information:

| Device\# show redundancy clients | | |
| :---: | :---: | :---: |
| Group ID $=1$ | | |
| clientID $=29$ | clientSeq = 60 | Redundancy Mode RF |
| clientID $=139$ | clientSeq $=62$ | IfIndex |
| clientID $=25$ | clientSeq $=71$ | CHKPT RF |
| clientID = 10001 | clientSeq $=85$ | QEMU Platform RF |
| clientID $=77$ | clientSeq $=87$ | Event Manager |
| clientID = 1340 | clientSeq $=104$ | RP Platform RF |
| clientID $=1501$ | clientSeq $=105$ | CWAN HA |
| clientID $=78$ | clientSeq = 109 | TSPTUN HA |
| clientID $=305$ | clientSeq = 110 | Multicast ISSU Consolidation RF |
| clientID $=304$ | clientSeq = 111 | IP multicast RF Client |
| clientID $=22$ | clientSeq = 112 | Network RF Client |
| clientID $=88$ | clientSeq = 113 | HSRP |
| clientID $=114$ | clientSeq = 114 | GLBP |
| clientID $=225$ | clientSeq $=115$ | VRRP |
| clientID $=4700$ | clientSeq $=118$ | COND_DEBUG RF |
| clientID $=1341$ | clientSeq $=119$ | IOSXE DPIDX |
| clientID $=1505$ | clientSeq = 120 | IOSXE SPA TSM |
| clientID $=75$ | clientSeq = 130 | Tableid HA |

```
clientID = 501 clientSeq = 137 LAN-Switch VTP VLAN
```

<output truncated>
The output displays the following information:

- clientID displays the client's ID number.
- clientSeq displays the client's notification sequence number.
- Current redundancy facility state.

This example shows how to display the redundancy facility counter information:

```
Device# show redundancy counters
Redundancy Facility OMs
            comm link up = 0
            comm link down = 0
            invalid client tx = 0
            null tx by client = 0
                    tx failures = 0
        tx msg length invalid = 0
        client not rxing msgs = 0
rx peer msg routing errors = 0
            null peer msg rx = 0
        errored peer msg rx = 0
                            buffers tx = 135884
        tx buffers unavailable = 0
            buffers rx = 135109
        buffer release errors = 0
duplicate client registers = 0
    failed to register client = 0
        Invalid client syncs = 0
Device#
```

This example shows how to display redundancy facility history information:

```
Device# show redundancy history
00:00:04 client added: Redundancy Mode RF(29) seq=60
00:00:04 client added: IfIndex(139) seq=62
00:00:04 client added: CHKPT RF(25) seq=71
00:00:04 client added: QEMU Platform RF(10001) seq=85
00:00:04 client added: Event Manager(77) seq=87
00:00:04 client added: RP Platform RF(1340) seq=104
00:00:04 client added: CWAN HA(1501) seq=105
00:00:04 client added: Network RF Client(22) seq=112
00:00:04 client added: IOSXE SPA TSM(1505) seq=120
00:00:04 client added: LAN-Switch VTP VLAN(501) seq=137
00:00:04 client added: XDR RRP RF Client(71) seq=139
00:00:04 client added: CEF RRP RF Client(24) seq=140
00:00:04 client added: MFIB RRP RF Client(306) seq=150
00:00:04 client added: RFS RF(520) seq=163
00:00:04 client added: klib(33014) seq=167
00:00:04 client added: Config Sync RF client(5) seq=168
00:00:04 client added: NGWC FEC Rf client(10007) seq=173
00:00:04 client added: LAN-Switch Port Manager(502) seq=190
00:00:04 client added: Access Tunnel(530) seq=192
```

```
00:00:04 client added: Mac address Table Manager(519) seq=193
00:00:04 client added: DHCPC(100) seq=238
00:00:04 client added: DHCPD(101) seq=239
00:00:04 client added: SNMP RF Client(34) seq=251
00:00:04 client added: CWAN APS HA RF Client(1502) seq=252
00:00:04 client added: History RF Client(35) seq=261
<output truncated>
```

This example shows how to display information about the redundancy facility standby switches:

```
Device# show redundancy slaves
Group ID = 1
Slave/Process ID = 6107 Slave Name = [installer]
Slave/Process ID = 6109 Slave Name = [eicored]
Slave/Process ID = 6128 Slave Name = [snmp_subagent]
Slave/Process ID = 8897 Slave Name = [wcm]
Slave/Process ID = 8898 Slave Name = [table_mgr]
Slave/Process ID = 8901 Slave Name = [iosd]
Device#
```

This example shows how to display information about the redundancy facility state:

```
Device# show redundancy states
    my state = 13 -ACTIVE
    peer state = 8 -STANDBY HOT
        Mode = Duplex
        Unit = Primary
        Unit ID = 5
Redundancy Mode (Operational) = sso
Redundancy Mode (Configured) = sso
Redundancy State = sso
            Maintenance Mode = Disabled
        Manual Swact = enabled
    Communications = Up
        client count = 115
    client_notification_TMR = 30000 milliseconds
    RF debug mask = 0x0
Device#
```


show redundancy config-sync

To display a configuration synchronization failure or the ignored mismatched command list (MCL), if any, use the show redundancy config-sync command in EXEC mode.
show redundancy config-sync $\{$ failures $\{$ bem $|\mathbf{m c l}|$ pre $\} \mid$ ignored failures mcl\}
Syntax Description

| failures | Displays MCL entries or best effort method (BEM)/Parser Return Code (PRC)
 failures. |
| :--- | :--- |
| $\mathbf{b e m}$ | Displays a BEM failed command list, and forces the standby switch to reboot. |
| $\mathbf{m c l}$ | Displays commands that exist in the switch's running configuration but are not
 supported by the image on the standby switch, and forces the standby switch to
 reboot. |
| prc | Displays a PRC failed command list and forces the standby switch to reboot. |
| ignored failures mcl | Displays the ignored MCL failures. |

| $\overline{\text { Command Default }}$ | None | |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | User EXEC | |
| | Privileged EXEC | |
| Command History | Release | Modification |
| | | Cisco IOS XE Everest 16.5.1a | This command was introduced..

Usage Guidelines

When two versions of Cisco IOS images are involved, the command sets supported by two images might differ. If any of those mismatched commands are executed on the active switch, the standby switch might not recognize those commands, which causes a configuration mismatch condition. If the syntax check for the command fails on the standby switch during a bulk synchronization, the command is moved into the MCL and the standby switch is reset. To display all the mismatched commands, use the show redundancy config-sync failures mcl command.

To clean the MCL, follow these steps:

1. Remove all mismatched commands from the active switch's running configuration.
2. Revalidate the MCL with a modified running configuration by using the redundancy config-sync validate mismatched-commands command.
3. Reload the standby switch.

Alternatively, you could ignore the MCL by following these steps:

1. Enter the redundancy config-sync ignore mismatched-commands command.
2. Reload the standby switch; the system transitions to SSO mode.

If you ignore the mismatched commands, the out-of-synchronization configuration on the active switch and the standby switch still exists.
3. You can verify the ignored MCL with the show redundancy config-sync ignored mcl command.

Each command sets a return code in the action function that implements the command. This return code indicates whether or not the command successfully executes. The active switch maintains the PRC after executing a command. The standby switch executes the command and sends the PRC back to the active switch. A PRC failure occurs if these two PRCs do not match. If a PRC error occurs at the standby switch either during bulk synchronization or line-by-line (LBL) synchronization, the standby switch is reset. To display all PRC failures, use the show redundancy config-sync failures pre command.
To display best effort method (BEM) errors, use the show redundancy config-sync failures bem command.

This example shows how to display the BEM failures:

```
Device> show redundancy config-sync failures bem
BEM Failed Command List
-----------------------
The list is Empty
```

This example shows how to display the MCL failures:

```
Device> show redundancy config-sync failures mcl
Mismatched Command List
-----------------------
The list is Empty
```

This example shows how to display the PRC failures:

```
Device# show redundancy config-sync failures prc
PRC Failed Command List
-----------------------
The list is Empty
```


show switch

To display information that is related to the stack member or the switch stack, use the show switch command in EXEC mode.

| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |
| Command History |
| |
| xxamples |

None
User EXEC
Privileged EXEC

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.1 | Added the keyword detail to the command - show switch stack-ports
 detail |

This example shows how to display the member 6 summary information:

| Switch\# | Role | Mac Address | Priority | State |
| :---: | :---: | :---: | :---: | :---: |
| 6 | Member | 0003.e31a.1e00 | 1 | Ready |

This example shows how to display the neighbor information for a stack:

| Device\# show | switch neighbors | |
| :---: | :---: | :---: |
| Switch \# | Port A | Port B |
| $---------------~$ | None | 8 |
| 6 | 6 | None |

This example shows how to display stack-port information:

| Device\# show switch stack-ports | | |
| :---: | :---: | :---: |
| Switch \# | Port A | Port B |
| $---------------~$ | Ok | |
| 6 | Down | Okn |
| 8 | Ok | Down |

This is an example output from the show switch stack-ports detail command.

```
Device# show switch stack-ports detail
1/1 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 430998 packets/sec
    Five minute output rate }100989\mathrm{ packets/sec
        2198108 packets input, 17584864 bytes
    5 5 3 1 1 3 \text { packets output, 4424904 bytes}
    CRC Errors
            Data CRC 0
        Ringword CRC 0
        InvRingWord 0
```

```
        PcsCodeWord 0
1/2 is OK Loopback No
Cable Length 50cm Neighbor 3
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 743042 packets/sec
    Five minute output rate }79830\mathrm{ packets/sec
        3765816 packets input, 30126528 bytes
        4 3 9 0 0 1 ~ p a c k e t s ~ o u t p u t , ~ 3 5 1 2 0 0 8 ~ b y t e s
CRC Errors
            Data CRC 0
        Ringword CRC O
        InvRingWord 0
            PcsCodeWord 0
.....
...
....
```

Table 201: show switch stack-ports detail Command Output

| Field | Description |
| :---: | :---: |
| Neighbor | Switch number of the active member at the other end of the stack cable. |
| Cable Length | Valid lengths are $50 \mathrm{~cm}, 1 \mathrm{~m}$, or 3 m .
 If the switch cannot detect the cable length, the value is Unknown. The cable might not be connected, or the link might be unreliable. |
| Link OK | Whether the stack cable is connected and functional. There may or may not be a neighbor connected on the other end.
 The link partner is a stack port on a neighbor switch.
 - No: There is no stack cable connected to this port or the stack cable is not functional.
 - Yes: There is a functional stack cable connected to this port. |
| Link Active | Whether a neighbor is connected on the other end of the stack cable.
 - No: No neighbor is detected on the other end. The port cannot send traffic over this link.
 - Yes: A neighbor is detected on the other end. The port can send traffic over this link. |
| Sync OK | Whether the link partner sends valid protocol messages to the stack port.
 - No: The link partner does not send valid protocol messages to the stack port.
 - Yes: The link partner sends valid protocol messages to the port. |
| \# Changes to LinkOK | The relative stability of the link.
 If a large number of changes occur in a short period of time, link flapping can occur. |

| Field | Description |
| :--- | :--- |
| Five minute input rate | The average rate (calculated over a five minute period) at which packets are received,
 measured in packets/sec. |
| Five minute output
 rate | The average rate (calculated over a five minute period) at which packets are
 transmitted, measured in packets/sec. |
| CRC Errors | Different types of Cyclic Redundancy Check (CRC) errors that are seen on a stack
 interface:
 • Data CRC: Stack interface data CRC error |
| \quad • Ringword CRC: Stack interface ring word CRC error | |
| \quad • InvRingWord: Stack interface invalid ring word error | |
| \quad • PcsCodeWord: Stack interface Physical Coding Sublayer (PCS) error | |
| These errors normally occur when a stack interface state changes due to a switchover | |
| or a switch reload. You can ignore such errors. | |
| But when these error counters increase significantly or when they increase | |
| continuously over a period of time, check the stack cable for issues. | |
| Use the clear counters command to clear the stack counters for all ports. | |

show switch stack-mode

To display and verify the current stack mode on a device, use the show switch stack-mode command in priviledged EXEC mode.
show switch stack-mode

| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |
| Command History |

None
priviledged EXEC
Release Modification

Cisco IOS XE Everest 16.6.1 This command was
introduced.

Usage Guidelines
The show switch stack-mode command displays detailed status of the currently running stack mode. Fields dispalyed for each one of the devices in the stack include: the role of the device, its MAC address, the stack mode after reboot, the current stack mode, and so on.

| Device\#
 Switch | show s Role | itch stack-mode
 Mac Address | Version | Mode | Configured | State |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Member | 3c5e.c357.c880 | | 1+1' | Active' | Ready |
| *2 | Active | 547c.69de.cd00 | V05 | $1+1$ ' | Standby' | Ready |
| 3 | Member | 547c.6965.cf80 | V05 | $1+1$ ' | Member' | Ready |

The Mode field indicates the current stack mode
The Configured field refers to the device state expected after a reboot.
Single quotation marks (') indicate that the stack mode has been changed.

show tech-support stack

To display all switch stack-related information for use by technical support, use the show tech-support stack command in privileged EXEC mode.
show tech-support stack

Command Modes

Privileged EXEC (\#)
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |
| Cisco IOS XE Gibraltar 16.12.1 | The output for this command was enhanced to include
 more stack-related information. |

Usage Guidelines

The show tech-support stack command captures the snapshot of stacking states and information for debug issues. Use this command, when stacking issues (such as stack cable issue, silent reload, switch not coming to ready state, stack crash, and so on) occur.
The output of the show tech-support stack command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support stack | redirect flash:filename) in the local writable storage file system or remote file system.

The output of the show tech stack command displays the output of the following commands:

Cisco Catalyst 9300 Series Switches

- show clock
- show version
- show running-config
- show redundancy switchover history
- show switch stack-ports summary
- show switch stack-mode
- show switch stack-ring speed
- show switch stack-bandwidth
- show switch detail
- show switch neighbors

The following commands are only available on stacked switches in ready state

- show platform software stack-mgr switch
- show platform software sif switch
- show platform hardware fed switch
- dir crashinfo:
- dir flash:/core

The following commands are only available on non-stackable switches in ready state:

- show redundancy switchover history
- show platform software fed switch active
- show platform software fed switch standby
- show stackwise-virtual bandwidth
- show stackwise-virtual dual-active-detection
- show stackwise-virtual link
- show stackwise-virtual neighbors
- dir crashinfo:
- dir flash:/core

Examples

The following is sample output from the show tech-support stack command:

```
Device# show tech-support stack
```

------------------show switch stack-ports summary -----------------------

| Switch\# | Role | Mac Address | Version | Mode | Configured | State |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *1 | Active | $046 \mathrm{c} .9 \mathrm{~d} 1 \mathrm{e} . \mathrm{f} 380$ | | N+1 | None | Ready |
| 2 | Member | 0c75.bd11.5d80 | V01 | $\mathrm{N}+1$ | None | Ready |
| 3 | Standby | 0c75.bd11.59ff | P1A | $\mathrm{N}+1$ | None | Ready |

| Switch \# | Port 1 | Port 2 |
| :---: | :---: | :---: |
| --------------- | ----1 | |
| 1 | 3 | 2 |
| 2 | 1 | 3 |
| 3 | 2 | 1 |

| Switch\# | OIR State | Type | Provisioned |
| :---: | :---: | :---: | :---: |
| 1 | CHASSIS_COMPATIBLE | C9300-24U | YES |
| 2 | CHASSIS_COMPATIBLE | C9300-48U | YES |

| Stack Discovery Protocol (SDP) Counters | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Message | Tx Success | Tx Fail | Rx Success | Rx Fail |
| Discovery | 16 | 0 | 27 | 0 |
| Neighbor | 5 | 1 | 5 | 2 |
| Keepalive | 473 | 0 | 945 | 0 |
| SEPPUKU | 0 | 0 | 0 | 0 |
| Standby Elect Req | 1 | 0 | 0 | 0 |
| Standby Elect Ack | 0 | 0 | 1 | 0 |
| Standby IOS State | 0 | 0 | 2 | 0 |
| Reload Req | 0 | 0 | 0 | 0 |
| Reload Ack | 0 | 0 | 0 | 0 |
| SESA Mesg | 0 | 0 | 0 | 0 |
| RTU Msg | 1 | 0 | 4 | 0 |
| Disc Timer Stop | 1 | 0 | 2 | 0 |

------------------ show platform software sif switch 1 RO topo ---------------------

Stack Interface (SIF) Topology
\qquad

The output fields are self-explanatory.

stack-mac persistent timer

To enable the persistent MAC address feature, use the stack-mac persistent timer command in global configuration mode on the switch stack or on a standalone switch. To disable the persistent MAC address feature, use the no form of this command.
stack-mac persistent timer [\{0time-value $\}$] no stack-mac persistent timer
$\overline{\text { Syntax Description }} \mathbf{0}$ (Optional) Continues using the MAC address of the current stack's active switch after a new stack's active switch takes over.
time-value (Optional) Time period in minutes before the stack MAC address changes to that of the new active. The range is 1 to 60 minutes.

| Command Default | | Persistent MAC address is disabled. The MAC address of the stack is always that of the first active switch. |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | | |
| Command History | Release configuration | |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines

By default, the stack MAC address will always be the MAC address of the first active switch, even if a new active switch takes over. The same behavior occurs when you enter the stack-mac persistent timer command or the stack-mac persistent timer 0 command.

To avoid PAgP flaps, the stack MAC persistent wait timer should be configured as indefinite using the stack-mac persistent timer 0 .

When you enter the stack-mac persistent timer command with a time-value, the stack MAC address will change to that of the new active switch after the period of time that you entered whenever a new switch becomes the active switch. If the previous active switch rejoins the stack during that time period, the stack retains its MAC address for as long as the switch that has that MAC address is in the stack.

If the whole stack reloads the MAC address of the active switch is the stack MAC address.

Note If you do not change the stack MAC address, Layer 3 interface flapping does not occur. This also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the stack-mac update force command to resolve the conflict.

Examples

This example shows how to enable a persistent MAC address:

You can verify your settings by entering the show running-config privileged EXEC command. If enabled, stack-mac persistent timer is shown in the output.

stack-mac update force

To update the stack MAC address to the MAC address of the active switch, use the stack-mac update force command in EXEC mode on the active switch.
stack-mac update force
Syntax Description
This command has no arguments or keywords.

| Command Default | None |
| :---: | :---: |
| Command Modes | User EXEC |
| | Privileged EXEC |
| Command History | Release Modification |
| | Cisco IOS XE Everest 16.5.1a This command was introduced. |

Usage Guidelines

By default, the stack MAC address is not changed to the MAC address of the new active switch during a high availability (HA) failover. Use the stack-mac update force command to force the stack MAC address to change to the MAC address of the new active switch.

If the switch with the same MAC address as the stack MAC address is currently a member of the stack, the stack-mac update force command has no effect. (It does not change the stack MAC address to the MAC address of the active switch.)

Note If you do not change the stack MAC address, Layer 3 interface flapping does not occur. It also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the stack-mac update force command to resolve the conflict.

This example shows how to update the stack MAC address to the MAC address of the active switch:

```
> stack-mac update force
```

$>$

You can verify your settings by entering the show switch privileged EXEC command. The stack MAC address includes whether the MAC address is local or foreign.

standby console enable

To enable access to the standby console switch, use the standby console enable command in redundancy main configuration submode. To disable access to the standby console switch, use the no form of this command.
standby console enable no standby console enable

| $\overline{\text { Syntax Description }}$ | | This command has no arguments or keywords. |
| :--- | :--- | :--- |
| $\overline{\text { Command Default }}$ | | Access to the standby console switch is disabled. |
| $\overline{\text { Command Modes }}$ | Redundancy main configuration submode | |
| Command History | Release | Modification |
| | | |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines This command is used to collect and review specific data about the standby console. The command is useful primarily for Cisco technical support representatives troubleshooting the switch.

This example shows how to enter the redundancy main configuration submode and enable access to the standby console switch:

```
Device(config)# redundancy
Device(config-red) # main-cpu
Device(config-r-mc)# standby console enable
Device(config-r-mc)#
```


start maintenance

To put the system into maintenance mode, use the start maintenance command in the privileged EXEC mode.
start maintenance

Syntax Description

start maintenance
Puts the system into maintenance mode.

| Command Default | | Disabled. |
| :--- | :--- | :--- |
| Command Modes | Privileged EXEC | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest | This command was introduced. |
| | 16.6 .1 | |
| | | |

Example:

The following example shows how to start maintenance mode:

```
Device# start maintenance
```


stop maintenance

To put the system out of maintenance mode, use the stop maintenance command in the privileged EXEC mode.
stop maintenance

| Command Default | Disabled. | |
| :--- | :--- | :--- |
| Command Modes | Privileged EXEC | |
| | | Release |
| | Cisco IOS XE Everest | This command History was introduced. |
| | 16.6 .1 | |
| | | |

Example:

The following example shows how to stop maintenance mode:
Device\# stop maintenance

switch clear stack-mode

To change the stack mode to $\mathrm{N}+1$ and remove the active and standby assignemnets of the $1: 1$ mode, use the switch clear stack-mode command in priviledged EXEC mode.
switch clear stack-mode

| $\overline{\text { Command Default }}$ | None | |
| :--- | :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | priviledged EXEC | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.6.1 | This command was introduced. |

Usage Guidelines Use this command to disable the 1:1 redundancy mode and set the stack to $\mathrm{N}+1$ mode.

```
Device> enable
Device# switch clear stack-mode
WARNING: Clearing the chassis HA configuration will result in the chassis coming up in Stand
    Alone mode after reboot.The HA configuration will remain the same on other chassis. Do you
    wish to continue? [y/n]? [yes]:
```


switch switch-number role

To change the role of the device in the stack to either active or standby, use the switch switch-number role command in priviledged EXEC mode.
switch switch-number role $\{$ standby | active $\}$

| Syntax Description |
| :--- |
| Syntax Description |

| switch-number | Stack member number. |
| :--- | :--- |
| standby | Designates the device as Standby
 Device for the stack. |
| active | Designates the device as Active
 Device for the stack. |

| Command Default |
| :--- |
| Command Modes |
| Command History |

None
priviledged EXEC
Release Modification

Cisco IOS XE Everest 16.6.1 This command was introduced.

Usage Guidelines Use this command to set a device to active or standby role in the stack. The other devices in the stack remain as members of the stack.

Note Changing the role of the device results in redundancy mode being configured to $1: 1$ mode for the stack. If the configured active or standby device does not boot up, then the stack will not be able to boot.

The following example sets the device number 2 as active device and device number 1 as standby device for the stack.

```
Device> enable
Device# switch 2 role active
WARNING: Changing the switch role may result in redundancy mode being configured to 1+1
mode for this stack. If the configured Active or Standby switch numbers do not boot up,
then the stack will not be able to boot. Do you want to continue?[y/n]? : yes
Device# switch 1 role standby
WARNING: Changing the switch role may result in redundancy mode being configured to 1+1
mode for this stack. If the configured Active or Standby switch numbers do not boot up,
then the stack will not be able to boot. Do you want to continue?[y/n]? : yes
```


switch stack port

To disable or enable the specified stack port on the member, use the switch command in privileged EXEC mode on a stack member.
switch stack-member-number stack port port-number \{disable |enable\}

| Syntax Description | stack-member-number | |
| :--- | :--- | :--- |
| | stack port port-number Specifies the stack port on the member. The range is 1 to 2.
 disable Disables the specified port.
 enable Enables the specified port. | |

| Command Default | The stack port is enabled. |
| :---: | :---: |
| Command Modes | Privileged EXEC |
| Command History | Release Modification |
| | Cisco IOS XE Everest 16.5.1a This command was introduced. |

Usage Guidelines

A stack is in the full-ring state when all members are connected through the stack ports and are in the ready state.

The stack is in the partial-ring state when the following occurs:

- All members are connected through their stack ports but some are not in the ready state.
- Some members are not connected through the stack ports.

Note Be careful when using the switch stack-member-number stack port port-number disable command. When you disable the stack port, the stack operates at half bandwidth.

If you enter the switch stack-member-number stack port port-number disable privileged EXEC command and the stack is in the full-ring state, you can disable only one stack port. This message appears:

Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]

If you enter the switch stack-member-number stack port port-number disable privileged EXEC command and the stack is in the partial-ring state, you cannot disable the port. This message appears:

Disabling stack port not allowed with current stack configuration.

Examples

This example shows how to disable stack port 2 on member 4 :

```
# switch 4 stack port 2 disable
```


switch priority

To change the stack member priority value, use the switch priority command in mode on the .
switch stack-member-number priority new-priority-value

| Syntax Description |
| :--- |
| Command Default |
| Command History |
| |
| Usage Guidelines |

stack-member-number
new-priority-value \quad New stack member priority value. The range is 1 to 15 .

Usage Guidelines
The new priority value is a factor when a new is elected. When you change the priority value the is not changed immediately.

Examples

This example shows how to change the priority value of stack member 6 to 8 :
switch 6 priority 8
Changing the Switch Priority of Switch Number 6 to 8
Do you want to continue?[confirm]

switch provision

To supply a configuration to a new switch before it joins the switch stack, use the switch provision command in global configuration mode on the. To delete all configuration information that is associated with the removed switch (a stack member that has left the stack), use the no form of this command.
switch stack-member-number provision type no switch stack-member-number provision

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines
stack-member-number
type \quad Switch type of the new switch before it joins the stack.

The switch is not provisioned.
Global configuration
Release \quad Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.
For type, enter the model number of a supported switch that is listed in the command-line help strings.
To avoid receiving an error message, you must remove the specified switch from the switch stack before using the no form of this command to delete a provisioned configuration.
To change the switch type, you must also remove the specified switch from the switch stack. You can change the stack member number of a provisioned switch that is physically present in the switch stack if you do not also change the switch type.
If the switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack, the switch stack applies the default configuration to the provisioned switch and adds it to the stack. The switch stack displays a message when it applies the default configuration.
Provisioned information appears in the running configuration of the switch stack. When you enter the copy running-config startup-config privileged EXEC command, the provisioned configuration is saved in the startup configuration file of the switch stack.

Caution

When you use the switch provision command, memory is allocated for the provisioned configuration. When a new switch type is configured, the previously allocated memory is not fully released. Therefore, do not use this command more than approximately 200 times, or the switch will run out of memory and unexpected behavior will result.

[^11]This example shows how to provision a switch with a stack member number of 2 for the switch stack. The show running-config command output shows the interfaces associated with the provisioned

```
# show running-config | include switch 2
!
interface GigabitEthernet2/0/1
!
interface GigabitEthernet2/0/2
!
interface GigabitEthernet2/0/3
<output truncated>
```

You also can enter the show switch user EXEC command to display the provisioning status of the switch stack.

This example shows how to delete all configuration information about stack member 5 when the switch is removed from the stack:

```
(config)# no switch 5 provision
```

You can verify that the provisioned switch is added to or removed from the running configuration by entering the show running-config privileged EXEC command.

switch renumber

To change the stack member number, use the switch renumber command in mode on the .
switch current-stack-member-number renumber new-stack-member-number

Usage Guidelines If another stack member is already using the member number that you just specified, the assigns the lowest

 available number when you reload the stack member.Note If you change the number of a stack member, and no configuration is associated with the new stack member number, that stack member loses its current configuration and resets to its default configuration.

Do not use the switch current-stack-member-number renumber new-stack-member-number command on a provisioned switch. If you do, the command is rejected.
Use the reload slot current stack member number privileged EXEC command to reload the stack member and to apply this configuration change.

$\overline{\text { Examples }}$

This example shows how to change the member number of stack member 6 to 7 :

switch renumber

To change the stack member number, use the switch renumber command in mode on the .
switch current-stack-member-number renumber new-stack-member-number

| $\overline{\text { Syntax Description }}$ | current-stack-member-number

 Command Default

 Command History | The default stack member number is 1. |
| :--- | :--- | :--- |
| | Release | Modification |
| | Cisco IOS XE Everest | This command was introduced. |
| | 16.5 .1 a | |

Usage Guidelines If another stack member is already using the member number that you just specified, the assigns the lowest available number when you reload the stack member.

Note If you change the number of a stack member, and no configuration is associated with the new stack member number, that stack member loses its current configuration and resets to its default configuration.

Do not use the switch current-stack-member-number renumber new-stack-member-number command on a provisioned switch. If you do, the command is rejected.
Use the reload slot current stack member number privileged EXEC command to reload the stack member and to apply this configuration change.
$\overline{\text { Examples } \quad \text { This example shows how to change the member number of stack member } 6 \text { to 7: }}$

system mode maintenance

To enter the system mode maintenance configuration mode, use the system mode maintenancecommand in the global configuration mode.
system mode maintenance

Syntax Description

Command Default

Command Modes
Command History

| system mode maintenance | Enters the maintenance
 configuration mode. |
| :--- | :--- |

Disabled.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.6.1 | |

Example:

The following example shows how to enter the maintenance configuration mode:

```
Device(config)# system mode maintenance
Device(config-maintenance)#
```


рані XIII

System Management

- System Management Commands, on page 1837
- Tracing, on page 2089

System Management Commands

- arp, on page 1840
- boot, on page 1841
- cat, on page 1842
- copy, on page 1843
- copy startup-config tftp:, on page 1844
- copy tftp: startup-config, on page 1845
- debug voice diagnostics mac-address, on page 1846
- debug platform condition feature multicast controlplane, on page 1847
- debug platform condition mac, on page 1849
- debug platform rep, on page 1850
- debug ilpower powerman, on page 1851
- delete, on page 1854
- dir, on page 1855
- emergency-install, on page 1857
- exit, on page 1859
- factory-reset, on page 1860
- flash_init, on page 1863
- help, on page 1864
- hostname, on page 1865
- install, on page 1867
- install add file activate reloadfast commit, on page 1881
- ip http banner, on page 1883
- ip http banner-path, on page 1884
- ip ssh bulk-mode, on page 1885
- 12 traceroute, on page 1886
- license air level, on page 1887
- license boot level, on page 1889
- license smart (global config), on page 1892
- license smart (privileged EXEC), on page 1901
- line auto-consolidation, on page 1906
- location, on page 1908
- location plm calibrating, on page 1911
- mac address-table move update, on page 1912
- mgmt_init, on page 1913
- mkdir, on page 1914
- more, on page 1915
- no debug all, on page 1916
- reload fast, on page 1917
- rename, on page 1919
- request consent-token accept-response shell-access, on page 1920
- request consent-token generate-challenge shell-access, on page 1921
- request consent-token terminate-auth, on page 1922
- request platform software console attach switch, on page 1923
- reset, on page 1925
- rmdir, on page 1926
- sdm prefer, on page 1927
- service private-config-encryption, on page 1928
- set, on page 1929
- show avc client, on page 1932
- show bootflash:, on page 1933
- show cable-diagnostics tdr, on page 1936
- show debug, on page 1938
- show env, on page 1939
- show env xps, on page 1941
- show flow monitor, on page 1945
- show install, on page 1947
- show license all, on page 1949
- show license authorization, on page 1954
- show license data conversion, on page 1959
- show license eventlog, on page 1960
- show license history message, on page 1962
- show license reservation, on page 1963
- show license status, on page 1964
- show license summary, on page 1972
- show license tech, on page 1975
- show license udi, on page 1983
- show license usage, on page 1985
- show location, on page 1988
- show logging onboard switch uptime, on page 1990
- show logging process ios module, on page 1993
- show mac address-table, on page 1996
- show mac address-table move update, on page 2001
- show parser encrypt file status, on page 2002
- show platform hardware fpga, on page 2003
- show platform integrity, on page 2004
- show platform software audit, on page 2005
- show platform software fed switch punt cause, on page 2009
- show platform software fed switch punt cpuq, on page 2011
- show platform software sl-infra, on page 2014
- show platform sudi certificate, on page 2015
- show romvar, on page 2017
- show running-config, on page 2019
- show sdm prefer, on page 2025
- show tech-support confidential, on page 2027
- show tech-support monitor, on page 2028
- show tech-support platform, on page 2029
- show tech-support platform evpn_vxlan, on page 2033
- show tech-support platform fabric, on page 2035
- show tech-support platform igmp_snooping, on page 2039
- show tech-support platform layer3, on page 2042
- show tech-support platform mld_snooping, on page 2050
- show tech-support port, on page 2057
- show tech-support pvlan, on page 2060
- show tech-support resource, on page 2061
- show version, on page 2066
- system env temperature threshold yellow, on page 2073
- test cable-diagnostics tdr, on page 2075
- tftp-server, on page 2076
- traceroute mac, on page 2078
- traceroute mac ip, on page 2081
- type, on page 2083
- unset, on page 2084
- upgrade rom-monitor capsule, on page 2086
- version, on page 2088

arp

| | To display the contents of the Address Resolution Protocol (ARP) table, use the arp mode.
 $\operatorname{arp}\left[i p _a d d r e s s\right]$ |
| :---: | :---: |
| Syntax Description | ip_address (Optional) Shows the ARP table or the mapping for a specific IP address. |
| Command Default | No default behavior or values. |
| Command Modes | Boot loader |
| Command History | Release Modification |
| | Cisco IOS XE Everest \quad This command was introduced. 16.5.1a |
| Usage Guidelines | The ARP table contains the IP-address-to-MAC-address mappings. |
| $\overline{\text { Examples }}$ | This example shows how to display the ARP table: |
| | Device: arp 172.20.136.8
 arp'ing 172.20.136.8...
 172.20.136.8 is at 00:1b:78:d1:25:ae, via port 0 |

boot

To load and boot an executable image and display the command-line interface (CLI), use the boot command in boot loader mode.
boot [-post | -n | -p | flag] filesystem:/file-url...

Syntax Description

Command Default
Command Modes
Command History
-post (Optional) Run the loaded image with an extended or comprehensive power-on self-test (POST). Using this keyword causes POST to take longer to complete.

| $\mathbf{- n}$ | (Optional) Pause for the Cisco IOS Debugger immediately after launching. |
| :--- | :--- |
| $\mathbf{- p}$ | (Optional) Pause for the JTAG Debugger right after loading the image. |
| filesystem: | Alias for a file system. Use flash: for the system board flash device; use usbflash0: for

 USB memory sticks. |
| file-url | Path (directory) and name of a bootable image. Separate image names with a semicolon. |

No default behavior or values.

Boot loader

Release Modification
Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
When you enter the boot command without any arguments, the device attempts to automatically boot the system by using the information in the BOOT environment variable, if any.

If you supply an image name for the file-url variable, the boot command attempts to boot the specified image.
When you specify boot loader boot command options, they are executed immediately and apply only to the current boot loader session.

These settings are not saved for the next boot operation.
Filenames and directory names are case sensitive.

Example

This example shows how to boot the device using the new-image.bin image:

Device: set BOOT flash:/new-images/new-image.bin
Device: boot
After entering this command, you are prompted to start the setup program.

cat

To display the contents of one or more files, use the cat command in boot loader mode.
cat filesystem:/file-url...

Syntax Description

filesystem: Specifies a file system.
/file-url Specifies the path (directory) and name of the files to display. Separate each filename with a space.

| Command Default No default behavior or values.
 $\overline{\text { Command Modes }}$ Boot loader
 Command History Release Modification
 Cisco IOS XE Everest 16.5.1a This command was introduced. | | |
| :--- | :--- | :--- |
| | | |

Usage Guidelines

Filenames and directory names are case sensitive.
If you specify a list of files, the contents of each file appears sequentially.

Examples

This example shows how to display the contents of an image file:

```
Device: cat flash:image_file_name
version suffix: universal-12\overline{2}-xx.SEx
version_directory: image_file_name
image_system_type_id: 0x000000002
image_name: image_file_name.bin
ios_im}\mp@subsup{\mp@code{mage_file_size: 8\overline{919552}}\mathbf{1}}{}{\prime
total_image_file_size: 11592192
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: family
stacking number: 1.34
board_ids: 0x00000068 0x00000069 0x0000006a 0x0000006b
info_end:
```


copy

To copy a file from a source to a destination, use the copy command in boot loader mode.
copy filesystem:/source-file-url filesystem:/destination-file-url

| Syntax Description | filesystem: | Alias for a file system. Use usbflash0: for USB memory sticks. |
| :---: | :---: | :---: |
| | /source-file-url | Path (directory) and filename (source) to be copied. |
| | /destination-file-ur | Path (directory) and filename of the destination. |

| $\overline{\text { Command Default }}$ | No default behavior or values. | |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Boot loader | |
| Command History | | Release |
| | | Cisco IOS XE Everest 16.5.1a | This command was introduced.

Usage Guidelines

Filenames and directory names are case sensitive.
Directory names are limited to 127 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Filenames are limited to 127 characters; the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

If you are copying a file to a new directory, the directory must already exist.

Examples

This example shows how to copy a file at the root:

Device: copy usbflash0:test1.text usbflash0:test4.text
File "usbflash0:test1.text" successfully copied to "usbflash0:test4.text"

You can verify that the file was copied by entering the dir filesystem: boot loader command.

copy startup-config tftp:

To copy the configuration settings from a switch to a TFTP server, use the copy startup-config tftp: command in Privileged EXEC mode.
copy startup-config tftp: remote host \{ip-address\}/\{name\}

Syntax Description

remote host \{ip-address $\} /\{$ name\} Host name or IP-address of Remote host.

| Command Default | No default behavior or values. |
| :---: | :---: |
| Command Modes | Privileged EXEC |
| Command History | Release Modification |

Cisco IOS XE Release 16.1 This command was introduced.

Usage Guidelines

To copy your current configurations from the switch, run the command copy startup-config tftp: and follow the instructions. The configurations are copied onto the TFTP server.

Then, login to another switch and run the command copy tftp: startup-config and follow the instructions. The configurations are now copied onto the other switch.

Examples
This example shows how to copy the configuration settings onto a TFTP server:

```
Device: copy startup-config tftp:
Address or name of remote host []?
```


copy tftp: startup-config

To copy the configuration settings from a TFTP server onto a new switch, use the copy tftp: startup-config command in Privileged EXEC mode on the new switch.
copy tftp: startup-config remote host \{ip-address\}/\{name\}

| Syntax Description | remote host \{ip-address)/\{name\} Host name or IP-address of |
| :---: | :---: |
| Command Default | No default behavior or values. |
| Command Modes | Privileged EXEC |
| Command History | Release Modification |

Cisco IOS XE Release 16.1 This command was introduced.

Usage Guidelines After the configurations are copied, to save your configurations, use write memory command and then either reload the switch or run the copy startup-config running-config command.

Examples This example shows how to copy the configuration settings from the TFTP server onto a switch:

```
Device: copy tftp: startup-config
Address or name of remote host []?
```


debug voice diagnostics mac-address

To enable debugging of voice diagnostics for voice clients, use the debug voice diagnostics mac-address command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug voice diagnostics mac-address mac-addressl verbose mac-address mac-address 2 verbose nodebug voice diagnostics mac-address mac-addressl verbose mac-address mac-address 2 verbose

| Syntax Description | voice diagnostics | |
| :---: | :---: | :---: |
| | mac-address mac-address 1 mac-address mac-address 2 | |
| | verbose | |
| Command Default | No default behavior or values. | |
| Command Modes | Privileged EXEC | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.5.1a | This command was introduced. |

The following is sample output from the debug voice diagnostics mac-address command and shows how to enable debugging of voice diagnostics for voice client with MAC address of 00:1f:ca:cf:b6:60:

debug platform condition feature multicast controlplane

To enable radioactive tracing for the Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) snooping features, use the debug platform condition feature multicast controlplane command in privileged EXEC mode. To disable radioactive tracing, use the no form of this command.
debug platform condition feature multicast controlplane \{\{igmp-debug | $\mathbf{p i m}\}$ group-ip \{ipv4 address \mid ipv6 address $\}$ | \{mld-snooping | igmp-snooping\} mac mac-address ip $\{$ ipv4 address \mid ipv6 address $\}$ vlan vlan-id \} level \{debug | error | info | verbose | warning\} no debug platform condition feature multicast controlplane \{\{igmp-debug | pim\} group-ip \{ipv4 address | ipv6 address $\}$ | \{mld-snooping | igmp-snooping\} mac mac-address ip \{ipv4 address |ipv6 address\} vlan vlan-id \} level \{debug | error | info | verbose | warning\}

Syntax Description

igmp-debug

Enables IGMP control radioactive tracing.

| pim | Enables Protocol Independent
 Multicast (PIM) control radioactive
 tracing. |
| :--- | :--- |
| mld-snooping | Enables MLD snooping control
 radioactive tracing. |
| igmp-snooping | Enables IGMP snooping control
 radioactive tracing. |
| mac mac-address | MAC address of the receiver. |
| group-ip $\{$ ipv4 address \mid ipv6 address $\}$ | IPv4 or IPv6 address of the
 igmp-debug or pim group. |
| ip $\{$ ipv4 address \mid ipv6 address $\}$ | IPv4 or IPv6 address of the
 mld-snooping or igmp-snooping
 group. |
| vlan vlan-id | VLAN ID. The range is from 1 to
 4094. |
| level | Enables debug severity levels. |
| debug | Enables debugging level. |
| error | Enables error debugging. |
| info | Enables information debugging. |
| verbose | Enables detailed debugging. |
| warning | Enables warning debugging. |

Command Modes
Privileged EXEC (\#)

| Command History | Release | Modification |
| :--- | :--- | :--- |
| | Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

The following example shows how to enable radioactive tracing for IGMP snooping:

```
Device# debug platform condition feature multicast controlplane igmp-snooping mac
000a.f330.344a ip 10.1.1.10 vlan 550 level warning
```

Related Commands

| Command | Description |
| :--- | :--- |
| clear debug platform condition
 all | Removes the debug conditions applied to a platform. |
| debug platform condition | Filters debugging output for debug commands on the basis of specified
 conditions. |
| debug platform condition start | Starts conditional debugging on a system. |
| debug platform condition stop | Stops conditional debugging on a system. |
| show platform condition | Displays the currently active debug configuration. |

debug platform condition mac

To enable radioactive tracing for MAC learning, use the debug platform condition mac command in privileged EXEC mode. To disable radioactive tracing for MAC learning, use the no form of this command.
debug platform condition mac \{mac-address \{control-plane | egress | ingress\} | access-list access-list name \{egress | ingress\}\}
no debug platform condition mac \{mac-address \{control-plane | egress | ingress\} | access-list access-list name \{egress | ingress\}\}

Syntax Description

Command Modes
Command History
mac mac-address Filters output on the basis of the specified MAC address.
access-list access-list name
Filters output on the basis of the specified access list.

| control-plane | Displays messages about the
 control plane routines. |
| :--- | :--- |
| egress | Filters output on the basis of
 outgoing packets. |

ingress

Filters output on the basis of incoming packets.

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

The following example shows how to filter debugging output on the basis of a MAC address:

Device\# debug platform condition mac bc16.6509.3314 ingress

Related Commands

| Command | Description |
| :--- | :--- |
| show platform condition | Displays the currently active debug configuration. |
| debug platform condition | Filters debugging output for debug commands on the basis of specified
 conditions. |
| debug platform condition start | Starts conditional debugging on a system. |
| debug platform condition stop | Stops conditional debugging on a system. |
| clear debug platform condition
 all | Removes the debug conditions applied to a platform. |

debug platform rep

To enable debugging of Resilient Ethernet Protocol (REP) functions, use the debug platform rep command in privileged EXEC mode. To remove the specified condition, use the no form of this command.
debug platform rep \{all | error | event | packet | verbose\} no debug platform rep \{all | error | event | packet | verbose\}

Syntax Description

Command Modes

Command History

| all | Enables all REP debugging
 functions. |
| :--- | :--- |
| error | Enables REP error debugging. |
| event | Enables REP event debugging. |
| packet | Enables REP packet debugging. |
| verbose | Enables REP verbose debugging. |

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

The following example shows how to enable debugging for all functionss:

```
Device# debug platform rep all
debug platform rep verbose debugging is on
debug platform rep control pkt handle debugging is on
debug platform rep error debugging is on
debug platform rep event debugging is on
```


Related Commands

| Command | Description |
| :--- | :--- |
| show platform condition | Displays the currently active debug configuration. |
| debug platform condition | Filters debugging output for debug commands on the basis of specified
 conditions. |
| debug platform condition start | Starts conditional debugging on a system. |
| debug platform condition stop | Stops conditional debugging on a system. |
| clear debug platform condition
 all | Removes the debug conditions applied to a platform. |

debug ilpower powerman

To enable debugging of the power controller and Power over Ethernet (PoE) system, use the debug ilpower powerman command in privileged EXEC mode. Use the no form of this command to disable debugging.

| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |
| Command History |

This command has no arguments or keywords.
Privileged EXEC

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

This example shows the output for the debug ilpower powerman command for releases prior to Cisco IOS XE Gibraltar 16.10.1:

```
Device# debug ilpower powerman
1. %ILPOWER-3-CONTROLLER_PORT_ERR: Controller port error, Interface
Gix/y/z: Power Controller reports power Imax error detected
Mar 8 16:35:17.801: ilpower_power_assign_handle_event: event 0, pwrassign
    is done by proto CDP
Port Gil/O/48: Selected Protocol CDP
Mar 8 16:35:17.801: Ilpowerinterface (Gi1/0/48) process tlvfrom cdpINPUT:
Mar 8 16:35:17.801: power_consumption= 2640, power_request_id= 1,
power_man_id= 2,
Mar 8 16:35:17.801: power_request_level[] = 2640 0 0 0 0
Mar 8 16:35:17.801:
Mar 8 16:35:17.801: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.802: Ilpowerinterface (Gil/0/48) power negotiation:
consumption = 2640, alloc_power= 2640
Mar 8 16:35:17.802: Ilpowerinterface (Gil/0/48) setting ICUT_OFF threshold
    to 2640.
Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:18.115: ILP:: posting ilpslot 1 port 48 event 5 class 0
Mar 8 16:35:18.115: ILP:: Gil/0/48: State=NGWC_ILP_LINK_UP_S-6,
Event=NGWC_ILP_IMAX_FAULT_EV-5
Mar 8 16:35:18.115: ilpowerdelete power from pdlinkdownGil/0/48
Mar 8 16:35:18.115: Ilpowerinterface (Gil/0/48), delete allocated power
2640
Mar 8 16:35:18.116: Ilpowerinterface (Gil/0/48) setting ICUT_OFF threshold
    to 0.
Mar 8 16:35:18.116: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:18.116: ilpower_notify_lldp_power_via_mdi_tlvGil/0/48 pwralloc0
Mar 8 16:35:18.116: Gil/0/48 AUTO PORT PWR Alloc130 Request 130
Mar 8 16:35:18.116: Gil/0/48: LLDP NOTIFY TLV:
```

```
(curr/prev) PSE Allocation: 13000/0
(curr/prev) PD Request : 13000/0
(curr/prev) PD Class : Class 4/
(curr/prev) PD Priority : low/unknown
(curr/prev) Power Type : Type 2 PSE/Type 2 PSE
(curr/prev) mdi_pwr_support: 7/0
(curr/prevPower Pair) : Signal/
(curr/prev) PSE PwrSource : Primary/Unknown
```

This example shows the output for the debug ilpower powerman command starting Cisco IOS XE Gibraltar 16.10.1. Power Unit (mW) has been added to the power_request_level, PSE Allocation and PD Request. Power_request_level has been enhanced to display only non-zero values.

```
Device# debug ilpower powerman
1. %ILPOWER-3-CONTROLLER PORT ERR: Controller port error, Interface
Gix/y/z: Power Controller reports power Imax error detected
Mar 8 16:35:17.801: ilpower_power_assign_handle_event: event 0, pwrassign
    is done by proto CDP
Port Gil/0/48: Selected Protocol CDP
Mar 8 16:35:17.801: Ilpowerinterface (Gi1/0/48) process tlvfrom cdpINPUT:
Mar 8 16:35:17.801: power_consumption= 2640, power_request_id= 1,
power_man_id= 2,
Mar 8 16:35:17.801: power_request_level(mW) = 2640
<------------------------- mW unit added, non-zero value display
Mar 8 16:35:17.801:
Mar 8 16:35:17.801: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.802: Ilpowerinterface (Gil/0/48) power negotiation:
consumption = 2640, alloc_power= 2640
Mar 8 16:35:17.802: Ilpowerinterface (Gil/0/48) setting ICUT_OFF threshold
    to 2640.
Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:18.115: ILP:: posting ilpslot 1 port 48 event 5 class 0
Mar 8 16:35:18.115: ILP:: Gil/0/48: State=NGWC_ILP_LINK_UP_S-6,
Event=NGWC_ILP_IMAX_FAULT_EV-5
Mar 8 16:3\overline{5:18.115: ilpowērdelete power from pdlinkdownGi1/0/48}
Mar 8 16:35:18.115: Ilpowerinterface (Gil/0/48), delete allocated power
2640
Mar 8 16:35:18.116: Ilpowerinterface (Gil/0/48) setting ICUT_OFF threshold
    to 0.
Mar 8 16:35:18.116: ILP:: Sending icutoffcurrent msgto slot:1 port:48
Mar 8 16:35:18.116: ilpower_notify_lldp_power_via_mdi_tlvGil/0/48 pwralloc0
Mar 8 16:35:18.116: Gil/0/44 AUTO PORT PWR A
Mar 8 16:35:18.116: Gi1/0/48: LLDP NOTIFY TLV:
    (curr/prev) PSE Allocation (mW): 13000/0
<------------------------- mW unit added
(curr/prev) PD Request (mW) : 13000/0
<------------------------- mW unit added
```

```
(curr/prev) PD Class : Class 4/
(curr/prev) PD Priority : low/unknown
(curr/prev) Power Type : Type 2 PSE/Type 2 PSE
(curr/prev) mdi pwr support: 7/0
(curr/prevPower Pair) : Signal/
(curr/prev) PSE PwrSource : Primary/Unknown
```


delete

To delete one or more files from the specified file system, use the delete command in boot loader mode.
delete filesystem:/file-url...

Syntax Description

filesystem: Alias for a file system. Use usbflash0: for USB memory sticks.
/file-url... Path (directory) and filename to delete. Separate each filename with a space.

| Command Default | | No default behavior or values. | |
| :--- | :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Boot loader | | |
| Command History | Release | Modification | |
| | | | |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines

Filenames and directory names are case sensitive.
The device prompts you for confirmation before deleting each file.

Examples

This example shows how to delete two files:

```
Device: delete usbflash0:test2.text usbflash0:test5.text
Are you sure you want to delete "usbflash0:test2.text" (y/n)?y
File "usbflash0:test2.text" deleted
Are you sure you want to delete "usbflash0:test5.text" (y/n)?y
File "usbflash0:test2.text" deleted
```

You can verify that the files were deleted by entering the dir usbflash0: boot loader command.

dir

To display the list of files and directories on the specified file system, use the dir command in boot loader mode.
dir filesystem:/file-url

Syntax Description
filesystem: Alias for a file system. Use flash: for the system board flash device; use usbflash0: for USB memory sticks.
/file-url (Optional) Path (directory) and directory name that contain the contents you want to display. Separate each directory name with a space.

| Command Default | No default behavior or values. | | | |
| :---: | :---: | :---: | :---: | :---: |
| Command Modes | Boot Loader | | | |
| | Privileged EXEC | | | |
| Command History | Release Modification | | | |
| | Cisco IOS XE Everest 16.5.1a This command was introduced. | | | |
| Usage Guidelines | Directory names are case sensitive. | | | |
| Examples | This example shows how to display the files in flash memory: | | | |
| | Device: dir flash:
 Directory of flash:/ | | | |
| | 2 -rwx | 561 | Mar 012013 00:48:15 | express_setup.debug |
| | 3 -rwx | 2160256 | Mar 012013 04:18:48 | c2960x-dmon-mz-150-2r.EX |
| | 4 -rwx | 1048 | Mar 012013 00:01:39 | multiple-fs |
| | 6 drwx | 512 | Mar 012013 23:11:42 | c2960x-universalk9-mz.150-2.EX |
| | 645 drwx | 512 | Mar 012013 00:01:11 | dc_profile_dir |
| | 647 -rwx | 4316 | Mar 012013 01:14:05 | config.tex \bar{t} |
| | 648 -rwx | 5 | Mar 012013 00:01:39 | private-config.text |
| | 96453632 bytes available (25732096 bytes used) | | | |

Table 202: dir Field Descriptions

| Field | Description |
| :---: | :---: |
| 2 | Index number of the file. |
| -rwx | File permission, which can be any or all of the following:
 - d-directory
 - r-readable
 - w-writable
 - x-executable |

| Field | Description |
| :--- | :--- |
| 1644045 | Size of the file. |
| <date $>$ | Last modification date. |
| env_vars | Filename. |

emergency-install

To perform an emergency installation on your system, use the emergency-install command in boot loader mode.
emergency-install url://<url>

Syntax Description

| Command Default | | No default behavior or values. |
| :--- | :--- | :--- |
| Command Modes | Boot loader | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest | This command was
 introduced. |
| | | |

Usage Guidelines

The boot flash is erased during the installation operation. After you perform the emergency install operation, set the BOOT variable in the ROMMON prompt by using the set BOOT flash:packages.conf command, and run the boot flash:packages.conf command manually in boot loader mode to boot the system. If the BOOT variable is not set in the ROMMON prompt, once the system has booted, set the BOOT variable in the device prompt by using the boot system flash:packages.conf command in global configuration mode.

Example

This example shows how to perform the emergency install operation using the contents of an image file:

```
Device: emergency-install tftp:<url>
The bootflash will be erased during install operation, continue (y/n)?y
Starting emergency recovery (tftp:<url> ...
Reading full image into memory..........................................
Nova Bundle Image
--------------------
Kernel Address : 0x6042d5c8
Kernel Size : 0x317ccc/3243212
Initramfs Address : 0x60745294
Initramfs Size : 0xdc6774/14444404
Compression Format: .mzip
Bootable image at @ ram:0x6042d5c8
Bootable image segment 0 address range [0x81100000, 0x81b80000] is in range
[0x80180000, 0x90000000].
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
File "sda9:c3850-recovery.bin" uncompressed and installed, entry point: 0x811060f0
Loading Linux kernel with entry point 0x811060f0 ...
Bootloader: Done loading app on core_mask: 0xf
### Launching Linux Kernel (flags = 0x5)
```

```
Initiating Emergency Installation of bundle
tftp:<url>
Downloading bundle tftp:<url>...
Validating bundle tftp:<url>...
Installing bundle tftp:<url>...
Verifying bundle tftp:<url>...
Package cat3k_caa-base.SPA.03.02.00SE.pkg is Digitally Signed
Package cat3k_caa-drivers.SPA.03.02.00.SE.pkg is Digitally Signed
Package cat3k caa-infra.SPA.03.02.00SE.pkg is Digitally Signed
Package cat3k_caa-iosd-universalk9.SPA.150-1.EX.pkg is Digitally Signed
Package cat3k caa-platform.SPA.03.02.00.SE.pkg is Digitally Signed
Package cat3k_caa-wcm.SPA.10.0.100.0.pkg is Digitally Signed
Preparing flash...
Syncing device...
Emergency Install successful... Rebooting
Restarting system.\ufffd
Booting...(use DDR clock 667 MHz)Initializing and Testing RAM
+++@@@@#### . . .++@@++@@++@@++@@++@@++@@++@@++@@done.
Memory Test Pass!
Base ethernet MAC Address: 20:37:06:ce:25:80
Initializing Flash...
flashfs[7]: O files, 1 directories
flashfs[7]: 0 orphaned files, 0 orphaned directories
flashfs[7]: Total bytes: 6784000
flashfs[7]: Bytes used: 1024
flashfs[7]: Bytes available: 6782976
flashfs[7]: flashfs fsck took 1 seconds....done Initializing Flash.
The system is not configured to boot automatically. The
following command will finish loading the operating system
software:
    boot
```


exit

To return to the previous mode or exit from the CLI EXEC mode, use the exit command. exit
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
$\overline{\text { Command Default }}$ No default behavior or values.
Command Modes Privileged EXEC
Global configuration
Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was |
| 16.5.1a | introduced. |

This example shows how to exit the configuration mode:

```
Device(config)# exit
Device#
```


factory-reset

To erase all customer-specific data and restore a device to its factory configuration, use the factory-reset command in privileged EXEC mode.

Usage Guidelines

The factory-reset command is used in the following scenarios:

- To return a device to Cisco for Return Material Authorization (RMA), use this command to remove all the customer-specific data before obtaining an RMA certificate for the device.
- If the key information or credentials that are stored on a device is compromised, use this command to reset the device to factory configuration, and then reconfigure the device.

After the factory reset process is successfully completed, the device reboots and enters ROMMON mode.

Examples

The following example shows how to erase all the content from a device using the factory-reset all command:

```
Device> enable
Device# factory-reset all
The factory reset operation is irreversible for all operations. Are you sure? [confirm]
The following will be deleted as a part of factory reset:
1: Crash info and logs
2: User data, startup and running configuration
3: All IOS images, including the current boot image
4: OBFL logs
5: User added rommon variables
6: Data on Field Replaceable Units(USB/SSD/SATA)
The system will reload to perform factory reset.
It will take some time to complete and bring it to rommon.
You will need to load IOS image using USB/TFTP from rommon after
this operation is completed.
DO NOT UNPLUG THE POWER OR INTERRUPT THE OPERATION
Are you sure you want to continue? [confirm]
```

The following examples show how to perform a factory reset on stacked devices:

```
Device> enable
Device# factory-reset switch all all
The factory reset operation is irreversible for all operations. Are you sure? [confirm]
    The following will be deleted as a part of factory reset:
    1: Crash info and logs
    2: User data, startup and running configuration
    3: All IOS images, including the current boot image
    4: OBFL logs
    5: User added rommon variables
    6: Data on Field Replaceable Units(USB/SSD/SATA)
    The system will reload to perform factory reset.
    It will take some time to complete and bring it to rommon.
    You will need to load IOS image using USB/TFTP from rommon after
    this operation is completed.
    DO NOT UNPLUG THE POWER OR INTERRUPT THE OPERATION
    Are you sure you want to continue? [confirm]
Chassis 1 reloading, reason - Factory Reset
    Protection key not found
9300L#Oct 25 09:53:05.740: %PMAN-5-EXITACTION: F0/0: pvp: Process manager is exiting: reload
    fp action requested
Oct 25 09:53:07.277: %PMAN-5-EXITACTION:vp: Process manager is exiting: rp processes exit
with reload switch code
```

```
Enabling factory reset for this reload cycle
```

Enabling factory reset for this reload cycle
Switch booted with
Switch booted with
tftp://10.5.40.45/cat9k_iosxe.BLD_POLARIS_DEV_LATEST_20191007_224933_V17_2_0_21_2.SSA.bin
tftp://10.5.40.45/cat9k_iosxe.BLD_POLARIS_DEV_LATEST_20191007_224933_V17_2_0_21_2.SSA.bin
Switch booted via
Switch booted via
//10.5.40.45/cat9k_iosxe.BLD_POLARIS_DEV_LATEST_20191007_224933_V17_2_0_21_2.SSA.bin
//10.5.40.45/cat9k_iosxe.BLD_POLARIS_DEV_LATEST_20191007_224933_V17_2_0_21_2.SSA.bin
% FACTORYRESET - Started Cleaning Up...

```
% FACTORYRESET - Started Cleaning Up...
```

```
% FACTORYRESET - Unmounting sd1
% FACTORYRESET - Cleaning Up sd1 [0]
% FACTORYRESET - erase In progress.. please wait for completion...
% FACTORYRESET - write zero...
% FACTORYRESET - finish erase
% FACTORYRESET - Making File System sd1 [0]
Discarding device blocks: done
Creating filesystem with 409600 4k blocks and 102544 inodes
Filesystem UUID: fcf01664-7c6f-41ce-99f0-6df1d941701e
Superblock backups stored on blocks:
    32768, 98304, 163840, 229376, 294912
Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
% FACTORYRESET - Mounting Back sd1 [0]
% FACTORYRESET - Handling Mounted sd1
% FACTORYRESET - Factory Reset Done for sd1
% FACTORYRESET - Unmounting sd3
% FACTORYRESET - Cleaning Up sd3 [0]
% FACTORYRESET - erase In progress.. please wait for completion...
% FACTORYRESET - write zero...
Chassis 2 reloading, reason - Factory Reset
Dec 12 01:02:12.500: %PMAN-5-EXITACTION: F0/0: pvp: Process manager is exiting: reload fp
action requested
De
Enabling factory reset for this reload cycle
    Switch booted with
tftp://10.5.40.45/cat9k_iosxe.BLD_POLARIS_DEV_LATEST_20191007_224933_V17_2_0_21_2.SSA.bin
    Switch booted via
//10.5.40.45/cat9k_iosxe.BLD_POLARIS_DEV_LATEST_20191007_224933_V17_2_0_21_2.SSA.bin
% FACTORYRESET - Started Cleaning Up...
% FACTORYRESET - Unmounting sd1
% FACTORYRESET - Cleaning Up sd1 [0]
% FACTORYRESET - erase In progress.. please wait for completion...
% FACTORYRESET - write zero...
```

After this the switch will come to boot prompt. Then the customer has to boot the device from TFTP.

flash_init

To initialize the flash: file system, use the flash_init command in boot loader mode.

flash init

$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default
Command Modes
Command History

The flash: file system is automatically initialized during normal system operation.

Boot loader

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a | |

During the normal boot process, the flash: file system is automatically initialized.
Use this command to manually initialize the flash: file system. For example, you use this command during the recovery procedure for a lost or forgotten password.

help

To display the available commands, use the help command in boot loader mode.

help

| $\overline{\text { Syntax Description }}$ | | This command has no arguments or keywords. |
| :--- | :--- | :--- |
| $\overline{\text { Command Default }}$ | No default behavior or values. | |
| Command Modes | Boot loader | |
| Command History | Release | Modification |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Example

This example shows how to display a list of available boot loader commands:

```
Device:help
? -- Present list of available commands
arp -- Show arp table or arp-resolve an address
boot -- Load and boot an executable image
cat -- Concatenate (type) file(s)
copy -- Copy a file
delete -- Delete file(s)
dir -- List files in directories
emergency-install -- Initiate Disaster Recovery
..
...
unset -- Unset one or more environment variables
version -- Display boot loader version
```


hostname

To specify or modify the hostname for the network server, use the hostname command in global configuration mode.
hostname name

Syntax Description

Command Default

Command Modes
Command History

Usage Guidelines

The default hostname is switch.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |

The hostname is used in prompts and default configuration filenames.
Do not expect case to be preserved. Uppercase and lowercase characters look the same to many internet software applications. It may seem appropriate to capitalize a name the same way you might do in English, but conventions dictate that computer names appear all lowercase. For more information, refer to RFC 1178, Choosing a Name for Your Computer .

The name must also follow the rules for ARPANET hostnames. They must start with a letter, end with a letter or digit, and have as interior characters only letters, digits, and hyphens. Names must be 63 characters or fewer. Creating an all numeric hostname is not recommended but the name will be accepted after an error is returned.

```
Device(config) #hostname 123
% Hostname contains one or more illegal characters.
123(config)#
```

A hostname of less than 10 characters is recommended. For more information, refer to RFC 1035, Domain Names--Implementation and Specification .
On most systems, a field of 30 characters is used for the hostname and the prompt in the CLI. Note that the length of your hostname may cause longer configuration mode prompts to be truncated. For example, the full prompt for service profile configuration mode is:
(config-service-profile) \#

However, if you are using the hostname of "Switch," you will only see the following prompt (on most systems):

```
Switch(config-service-profil)#
```

If the hostname is longer, you will see even less of the prompt:

Basement-rtr2(config-service) \#

Keep this behavior in mind when assigning a name to your system (using the hostname global configuration command). If you expect that users will be relying on mode prompts as a CLI navigation aid, you should assign hostnames of no more than nine characters.

The use of a special character such as 'l'(backslash) and a three or more digit number for the character setting like hostname, results in incorrect translation:

```
Device(config)#
Device(config) #hostname \99
% Hostname contains one or more illegal characters.
```


Examples

The following example changes the hostname to "hostl":

```
Device(config)# hostname host1
host1(config)#
```


install

Syntax Description
To install Software Maintenance Upgrade (SMU) packages, use the install command in privileged EXEC mode.
install \{abort |activate |file \{bootflash: |flash: | harddisk: | webui:\} [\{auto-abort-timer timer timer prompt-level $\{$ all | none $\}\}]$ | add file $\{$ bootflash: | flash: |ftp: | harddisk: |http: |https: | rcp: | scp: | tftp: | webui:\} [\{activate [\{auto-abort-timer timer prompt-level \{all|none\}commit\}]\}] |commit | auto-abort-timer stop | deactivate file \{bootflash: | flash: | harddisk: | webui: \} | label id \{description description | label-name name\} | remove \{file \{bootflash: | flash: | harddisk: | webui:\}|inactive \} | rollback to $\{$ base \mid committed |id \{install-ID \} |label \{label-name $\}$ \} \}

| abort | Terminates the current install operation. | | |
|---|---|---|---|
| activate | Validates whether the SMU is added through the install add command. |
| | This keyword runs a compatibility check, updates package status, and if the package can be restarted, triggers post-install scripts to restart the necessary processes, or triggers a reload for nonrestartable packages. |
| file | Specifies the package to be activated. |
| \{bootflash: \| flash: | harddisk: | webui: \} | Specifies the location of the installed package. |
| auto-abort-timer timer | (Optional) Installs an auto-abort timer. |
| prompt-level \{all\| none | (Optional) Prompts a user about installation activities. |
| | For example, the activate keyword automatically triggers a reload for packages that require a reload. Before activating the package, a message prompts users about wanting to continue or not. |
| | The all keyword allows you to enable prompts. The none keyword disables prompts. |
| add | Copies files from a remote location (through FTP or TFTP) to a device and performs SMU compatibility check for the platform and image versions. |
| | This keyword runs base compatibility checks to ensure that a specified package is supported on a platform. |

\{ bootflash: | flash: |ftp: |harddisk: |http: |https: | Specifies the package to be added. rep: | scp: | tftp: |webui: $\}$

| commit | Makes SMU changes persistent over reloads. |
| :---: | :---: |
| | You can perform a commit after activating a package while the system is up, or after the first reload. If a package is activated, but not committed, it remains active after the first reload, but not after the second reload. |
| auto-abort-timer stop | Stops the auto-abort timer. |
| deactivate | Deactivates an installed package. |
| | Note Deactivating a package also updates the package status and might trigger a process restart or reload. |
| label id | Specifies the ID of the install point to label. |
| description | Adds a description to the specified install point. |
| label-name name | Adds a label name to the specified install point. |
| remove | Removes the installed packages. |
| | The remove keyword can only be used on packages that are currently inactive. |
| inactive | Removes all the inactive packages from the device. |
| rollback | Rolls back the data model interface (DMI) package SMU to the base version, the last committed version, or a known commit ID. |
| to base | Returns to the base image. |
| committed | Returns to the installation state when the last commit operation was performed. |
| id install-ID | Returns to the specific install point ID. Valid values are from 1 to 4294967295. |
| Packages are not installed. | |
| Privileged EXEC (\#) | |
| Release | fication |
| Cisco IOS XE Everest 16.6.1 | command was introduced. |
| Cisco IOS XE Fuji 16.9.1 | patching support is introduced. Sample output updated hot SMU outputs. |

Usage Guidelines

An SMU is a package that can be installed on a system to provide a patch fix or security resolution to a released image. This package contains a minimal set of files for patching the release along with metadata that describes the contents of the package.

Packages must be added before the SMU is activated.
A package must be deactivated before it is removed from Flash. A removed packaged must be added again.

The following example shows how to add an install package to a device:

```
Device# install add file
flash:cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin
install_add: START Mon Mar 5 21:48:51 PST 2018
install add: Adding SMU
--- Starting initial file syncing ---
Info: Finished copying
flash:cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin to the
    selected switch(es)
Finished initial file syncing
Executing pre scripts....
Executing pre scripts done.
--- Starting SMU Add operation ---
Performing SMU_ADD on all members
    [1] SMU ADD package(s) on switch 1
    [1] Finished SMU_ADD on switch 1
Checking status of SMU_ADD on [1]
SMU_ADD: Passed on [1]
Finished SMU Add operation
SUCCESS: install_add
/flash/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin Mon
Mar 5 21:49:00 PST 2018
```

The following example shows how to activate an install package:

```
Device# install activate file
flash:cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin
install activate: START Mon Mar 5 21:49:22 PST 2018
install_activate: Activating SMU
Executing pre scripts....
Executing pre sripts done.
--- Starting SMU Activate operation ---
Performing SMU_ACTIVATE on all members
    [1] SMU_ACTIVATE package(s) on switch 1
    [1] Finished SMU ACTIVATE on switch 1
Checking status of SMU_ACTIVATE on [1]
SMU ACTIVATE: Passed on [1]
Finished SMU Activate operation
SUCCESS: install_activate
/flash/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin Mon
Mar 5 21:49:34 PST 2018
```

The following example shows how to commit an installed package:

```
Device# install commit
install commit: START Mon Mar 5 21:50:52 PST 2018
install_commit: Committing SMU
Executing pre scripts....
Executing pre sripts done.
--- Starting SMU Commit operation ---
Performing SMU_COMMIT on all members
    [1] SMU_COMMIT package(s) on switch 1
    [1] Finished SMU_COMMIT on switch 1
Checking status of SMU COMMIT on [1]
SMU_COMMIT: Passed on [1]
Finished SMU Commit operation
SUCCESS: install commit
/flash/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin Mon
Mar 5 21:51:01 PST 2018
```

The following example shows how to change a device running in bundle boot mode to install mode:

```
Device# install add file boot flash:cat9k_iosxe.17.04.01.SSA.bin activate commit
install_add_activate_commit: START Sun Jun 14 22:31:41 PDT 2020
install_add_activate_commit: Adding PACKAGE
install_add_activate_commit: Checking whether new add is allowed ....
--- Starting initial file syncing ---
[1]: Copying flash:cat9k_iosxe.17.04.01.SSA.bin from switch 1 to switch 2
[2]: Finished copying to switch 2
Info: Finished copying flash:cat9k_iosxe.17.04.01.SSA.bin to the selected switch(es)
Finished initial file syncing
--- Starting Add ---
Performing Add on all members
    [1] Add package(s) on switch 1
    [1] Finished Add on switch 1
    [2] Add package(s) on switch 2
    [2] Finished Add on switch 2
Checking status of Add on [1 2]
Add: Passed on [1 2]
Finished Add
Image added. Version: 17.4.01.0.87954
install_add_activate_commit: Activating PACKAGE
Following packages shall be activated:
/flash/cat9k-wlc.17.04.01.SSA.pkg
/flash/cat9k-webui.17.04.01.SSA.pkg
```

```
/flash/cat9k-srdriver.17.04.01.SSA.pkg
/flash/cat9k-sipspa.17.04.01.SSA.pkg
/flash/cat9k-sipbase.17.04.01.SSA.pkg
/flash/cat9k-rpboot.17.04.01.SSA.pkg
/flash/cat9k-rpbase.17.04.01.SSA.pkg
/flash/cat9k-lni.17.04.01.SSA.pkg
/flash/cat9k-guestshell.17.04.01.SSA.pkg
/flash/cat9k-espbase.17.04.01.SSA.pkg
/flash/cat9k-cc_srdriver.17.04.01.SSA.pkg
This operation may require a reload of the system. Do you want to proceed? [y/n]y
--- Starting Activate ---
Performing Activate on all members
    [1] Activate package(s) on switch 1
    [1] Finished Activate on switch 1
    [2] Activate package(s) on switch 2
    [2] Finished Activate on switch 2
Checking status of Activate on [1 2]
Activate: Passed on [1 2]
Finished Activate
Building configuration...
[OK]--- Starting Commit ---
Performing Commit on all members
    [1] Commit package(s) on switch 1
    [1] Finished Commit on switch 1
    [2] Commit package(s) on switch 2
    [2] Finished Commit on switch 2
Checking status of Commit on [1 2]
Commit: Passed on [1 2]
Finished Commit
Send model notification for install_add_activate_commit before reload
[1 2]: Performing Upgrade_Service
300+0 records in
```

```
300+0 records out
307200 bytes (307 kB, 300 KiB) copied, 0.194027 s, 1.6 MB/s
AppGigabitEthernet port has the latest Firmware
mount: /tmp/microcode_update/boot_pkg: WARNING: device write-protected, mounted read-only.
SUCCESS: Upgrade_Service finished
Install will reload the system now!
SUCCESS: install add_activate commit Sun Jun 14 22:40:55 PDT 2020
```

The following example shows how to avoid prompt during reboot process:

```
Device# install add file boot flash:cat9k_iosxe.17.04.01.SSA.bin activate commit prompt-level
    none
install_add_activate_commit: START Wed Jun 17 03:57:53 PDT 2020
install_add_activate_commit: Adding PACKAGE
install_add_activate_commit: Checking whether new add is allowed ....
--- Starting initial file syncing ---
[1]: Copying flash:cat9k_iosxe.17.04.01.SSA.bin from switch 1 to switch 2 3
[2 3]: Finished copying to switch 2 switch 3
Info: Finished copying flash:cat9k iosxe.17.04.01.SSA.bin to the selected switch(es)
Finished initial file syncing
--- Starting Add ---
Performing Add on all members
    [1] Add package(s) on switch 1
    [1] Finished Add on switch 1
    [2] Add package(s) on switch 2
    [2] Finished Add on switch 2
    [3] Add package(s) on switch 3
    [3] Finished Add on switch 3
Checking status of Add on [ll 2 3]
Add: Passed on [ll 2 3}
Finished Add
Image added. Version: 17.4.01.0.115072
install_add_activate_commit: Activating PACKAGE
Following packages shall be activated:
/flash/cat9k-wlc.17.04.01.SSA.pkg
```

```
/flash/cat9k-webui.17.04.01.SSA.pkg
/flash/cat9k-srdriver.17.04.01.SSA.pkg
/flash/cat9k-sipspa.17.04.01.SSA.pkg
/flash/cat9k-sipbase.17.04.01.SSA.pkg
/flash/cat9k-rpboot.17.04.01.SSA.pkg
/flash/cat9k-rpbase.17.04.01.SSA.pkg
/flash/cat9k-lni.17.04.01.SSA.pkg
/flash/cat9k-guestshell.17.04.01.SSA.pkg
/flash/cat9k-espbase.17.04.01.SSA.pkg
/flash/cat9k-cc_srdriver.17.04.01.SSA.pkg
--- Starting Activate ---
Performing Activate on all members
    [1] Activate package(s) on switch 1
    [1] Finished Activate on switch 1
    [2] Activate package(s) on switch 2
    [2] Finished Activate on switch 2
    [3] Activate package(s) on switch 3
    [3] Finished Activate on switch 3
Checking status of Activate on [ll 2 3]
Activate: Passed on [1 2 3]
Finished Activate
Building configuration...
[OK]--- Starting Commit ---
Performing Commit on all members
    [1] Commit package(s) on switch 1
    [1] Finished Commit on switch 1
    [2] Commit package(s) on switch 2
    [2] Finished Commit on switch 2
    [3] Commit package(s) on switch 3
    [3] Finished Commit on switch 3
Checking status of Commit on [ll 2 3]
```

```
Commit: Passed on [1 2 3]
Finished Commit
Send model notification for install_add_activate_commit before reload
[1 2 3]: Performing Upgrade_Service
300+0 records in
300+0 records out
307200 bytes (307 kB, 300 KiB) copied, 0.194692 s, 1.6 MB/s
AppGigabitEthernet port has the latest Firmware
mount: /tmp/microcode_update/boot_pkg: WARNING: device write-protected, mounted read-only.
    SUCCESS: Upgrade_Service finished
Install will reload the system now!
SUCCESS: install add activate commit Wed Jun 17 04:05:25 PDT 2020
```

The following example shows how to avoid deleting files used for installation process:

```
Device# install remove inactive
install_remove: START Wed Jun 17 06:23:26 PDT 2020
Cleaning up unnecessary package files
No path specified, will use booted path flash:packages.conf
Cleaning flash:
    Scanning boot directory for packages ... done.
    Preparing packages list to delete ...
        cat9k-cc_srdriver.17.04.01.SSA.pkg
        File is in use, will not delete.
        cat9k-cc_srdriver.17.04.01.SSA.pkg
        File is in use, will not delete.
        cat9k-espbase.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-espbase.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-guestshell.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-guestshell.17.04.01.SSA.pkg
            File is in use, will not delete.
```

```
cat9k-lni.17.04.01.SSA.pkg
    File is in use, will not delete.
cat9k-rpbase.17.04.01.SSA.pkg
    File is in use, will not delete.
    cat9k-rpbase.17.04.01.SSA.pkg
    File is in use, will not delete.
    cat9k-rpboot.17.04.01.SSA.pkg
    File is in use, will not delete.
    cat9k-sipbase.17.04.01.SSA.pkg
    File is in use, will not delete.
    cat9k-sipbase.17.04.01.SSA.pkg
    File is in use, will not delete.
cat9k-sipspa.17.04.01.SSA.pkg
    File is in use, will not delete.
cat9k-sipspa.17.04.01.SSA.pkg
    File is in use, will not delete.
cat9k-srdriver.17.04.01.SSA.pkg
    File is in use, will not delete.
    cat9k-srdriver.17.04.01.SSA.pkg
        File is in use, will not delete.
    cat9k-webui.17.04.01.SSA.pkg
        File is in use, will not delete.
    cat9k-webui.17.04.01.SSA.pkg
        File is in use, will not delete.
    cat9k-wlc.17.04.01.SSA.pkg
        File is in use, will not delete.
cat9k-wlc.17.04.01.SSA.pkg
        File is in use, will not delete.
    packages.conf
        File is in use, will not delete.
done.
```

```
Cleaning up unnecessary package files
No path specified, will use booted path flash:packages.conf
Cleaning flash:
    Scanning boot directory for packages ... done.
    Preparing packages list to delete ...
        cat9k-cc_srdriver.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-espbase.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-guestshell.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-lni.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-rpbase.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-rpboot.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-sipbase.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-sipspa.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-srdriver.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-webui.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-wlc.17.04.01.SSA.pkg
            File is in use, will not delete.
        packages.conf
            File is in use, will not delete.
    done.
Cleaning up unnecessary package files
```

```
No path specified, will use booted path flash:packages.conf
Cleaning flash:
    Scanning boot directory for packages ... done.
    Preparing packages list to delete ...
        cat9k-cc_srdriver.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-espbase.17.04.01.SSA.pkg
            File is in use, will not delete
        cat9k-guestshell.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-lni.17.04.01.SSA.pkg
            File is in use, will not delete.
        cat9k-rpbase.17.04.01.SSA.pkg
            File is in use, will not delete
        cat9k-rpboot.17.04.01.SSA.pkg
                File is in use, will not delete.
        cat9k-sipbase.17.04.01.SSA.pkg
                File is in use, will not delete.
        cat9k-sipspa.17.04.01.SSA.pkg
                File is in use, will not delete.
        cat9k-srdriver.17.04.01.SSA.pkg
                File is in use, will not delete.
        cat9k-webui.17.04.01.SSA.pkg
                File is in use, will not delete.
        cat9k-wlc.17.04.01.SSA.pkg
                File is in use, will not delete.
        packages.conf
                File is in use, will not delete.
    done.
The following files will be deleted:
[switch 1]:
```

```
/flash/cat9k-lni.17.04.01.SSA.pkg
/flash/cat9k-rpboot.17.04.01.SSA.pkg
/flash/cat9k iosxe.17.04.01.SSA.bin
|flash/cat9k_iosxe.17.04.01.SSA.conf
/flash/cat9k_iosxe.17.04.01.SSA.conf
[switch 2]:
/flash/cat9k-cc_srdriver.17.04.01.SSA.pkg
/flash/cat9k-espbase.17.04.01.SSA.pkg
/flash/cat9k-guestshell.17.04.01.SSA.pkg
/flash/cat9k-lni.17.04.01.SSA.pkg
/flash/cat9k-rpbase.17.04.01.SSA.pkg
/flash/cat9k-rpboot.17.04.01.SSA.pkg
/flash/cat9k-sipbase.17.04.01.SSA.pkg
/flash/cat9k-sipspa.17.04.01.SSA.pkg
/flash/cat9k-srdriver.17.04.01.SSA.pkg
/flash/cat9k-webui.17.04.01.SSA.pkg
/flash/cat9k-wlc.17.04.01.SSA.pkg
/flash/cat9k iosxe.17.04.01.SSA.bin
/flash/cat9k_iosxe.17.04.01.SSA.conf
/flash/cat9k_iosxe.17.04.01.SSA.conf
[switch 3]:
/flash/cat9k-cc_srdriver.17.04.01.SSA.pkg
/flash/cat9k-espbase.17.04.01.SSA.pkg
/flash/cat9k-guestshell.17.04.01.SSA.pkg
flash/cat9k-lni.17.04.01.SSA.pkg
/flash/cat9k-rpbase.17.04.01.SSA.pkg
/flash/cat9k-rpboot.17.04.01.SSA.pkg
flash/cat9k-sipbase.17.04.01.SSA.pkg
flash/cat9k-sipspa.17.04.01.SSA.pkg
/flash/cat9k-srdriver.17.04.01.SSA.pkg
/flash/cat9k-webui.17.04.01.SSA.pkg
/flash/cat9k-wlc.17.04.01.SSA.pkg
```

```
/flash/cat9k iosxe.17.04.01.SSA.bin
/flash/cat9k_iosxe.17.04.01.SSA.conf
/flash/cat9k iosxe.17.04.01.SSA.conf
Do you want to remove the above files? [y/n]y
[switch 1]:
Deleting file flash:cat9k-lni.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-rpboot.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.bin ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.conf ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.conf ... done.
SUCCESS: Files deleted.
[switch 2]:
Deleting file flash:cat9k-cc_srdriver.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-espbase.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-guestshell.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-lni.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-rpbase.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-rpboot.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-sipbase.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-sipspa.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-srdriver.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-webui.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-wlc.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.bin ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.conf ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.conf ... done.
SUCCESS: Files deleted.
[switch 3]:
Deleting file flash:cat9k-cc_srdriver.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-espbase.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-guestshell.17.04.01.SSA.pkg ... done.
```

```
Deleting file flash:cat9k-lni.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-rpbase.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-rpboot.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-sipbase.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-sipspa.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-srdriver.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-webui.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k-wlc.17.04.01.SSA.pkg ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.bin ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.conf ... done.
Deleting file flash:cat9k_iosxe.17.04.01.SSA.conf ... done.
SUCCESS: Files deleted.
--- Starting Post_Remove_Cleanup ---
Performing Post_Remove_Cleanup on all members
    [1] Post_Remove_Cleanup package(s) on switch 1
    [1] Finished Post_Remove_Cleanup on switch 1
    [2] Post_Remove_Cleanup package(s) on switch 2
    [2] Finished Post_Remove_Cleanup on switch 2
    [3] Post_Remove_Cleanup package(s) on switch 3
    [3] Finished Post_Remove_Cleanup on switch 3
Checking status of Post_Remove_Cleanup on [1 1 2 3]
Post_Remove_Cleanup: Passed on [ll 2 3 3}
Finished Post_Remove_Cleanup
SUCCESS: install_remove Wed Jun 17 06:24:59 PDT 2020
```

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | Displays information about the install
 packages. | |

install add file activate reloadfast commit

To upgrade a standalone switch or stacked switch with the new software image using Extended Fast Software Upgrade, use the install add file activate reloadfast commit command in privileged EXEC mode.
install add file image activate reloadfast commit

Syntax Description

Command Modes

Command History

image Installs the software image. The keyword includes the location of the file (TFTP, HTTP, flash drives) and the image name.

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.3.2a | This command was introduced. |
| The install add file activate reloadfast commit command upgrades the standalone switch or stacked switch | |
| using Extended Fast Software Upgrade. The Extended Fast Software Upgrade reduces traffic downtime to | |
| less than 30 seconds depending on the switch configuration. | |

For a Border Gateway Protocol-configured (BGP-configured) standalone switch, use the bgp graceful-restart command to enable Nonstop Forwarding (NSF) awareness before upgrading the software.

For a Border Gateway Protocol-configured (BGP-configured) stacked switch, use the bgp graceful-restart all command to enable Nonstop Forwarding (NSF) awareness before upgrading the switch.

For an Open Shortest Path First Version 3-configured (OSPFv3-configured) standalone switch, use the ipv6 nd reachable-time command to set the timeout limit, and the snmp ifmib ifindex persist command to enable Simple Network Management Protocol (SNMP) interface index (ifIndex) persistence globally, and the interface-id snmp-if-index command to enable SNMP ifIndex persistence on the interface, before upgrading the software.

For an Intermediate System-to-Intermediate System-configured (IS-IS-configured) stacked switch, use either the nsf cisco or nsf ietf command before upgrading the switch.

Examples

Standalone Switch

The following example shows how to upgrade a standalone switch for a configuration other than BGP or OSPFv3:

```
Device> enable
```

Device\# install add file bootflash: cat9k iosxe.17.03.02.SPA.bin activate reloadfast commit

The following example shows how to upgrade a standalone switch for a BGP configuration:

```
Device> enable
Device# configure terminal
Device(config)# router bgp 65000
Device(config-router) # bgp graceful-restart
Device(config-router) # end
Device# write memory
Device# install add file bootflash: cat9k iosxe.17.03.02.SPA.bin activate reloadfast commit
```

The following example shows how to upgrade a standalone switch for an OSPFv3 configuration:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 nd reachable-time 3600000
Device(config)# snmp ifmib ifindex persist
Device(config)# router OSPFv3 1
Device(config-router)# router-id 192.0.2.5
Device(config-router) # interface-id snmp-if-index
Device(config-router) # end
Device# write memory
Device# install add file bootflash: cat9k_iosxe.17.03.02.SPA.bin activate reloadfast commit
```


Stacked Switch

The following example shows how to upgrade a stacked switch for a configuration other than BGP or OSPFv3:

```
Device> enable
Device# install add file bootflash: cat9k iosxe.17.03.02.SPA.bin activate reloadfast commit
```

The following example shows how to upgrade a stacked switch for a BGP configuration:

```
Device> enable
Device# configure terminal
Device(config) # router bgp 65000
Device(config-router) # bgp graceful-restart all
Device(config-router) # end
Device# write memory
Device# install add file bootflash: cat9k iosxe.17.03.02.SPA.bin activate reloadfast commit
```

The following example shows how to upgrade a stacked switch for an IS-IS configuration:

```
Device> enable
Device# configure terminal
Device(config) # router isis tag1
Device(config-router)# nsf cisco
Device(config-router) # end
Device# write memory
Device# install add file bootflash: cat9k iosxe.17.03.02.SPA.bin activate reloadfast commit
```


ip http banner

To enable the HTTP or HTTP Secure (HTTPS) server banner, use the ip http banner command in global configuration mode. To disable the HTTP or HTTPS server banner, use the no form of this command.
ip http banner no ip http banner

| $\overline{\text { Syntax Description }}$ | This command has no arguments or keywords. | |
| :--- | :--- | :--- |
| $\overline{\text { Command Default }}$ | The HTTP or HTTPS server banner is not enabled. | |
| $\overline{\text { Command Modes }}$ | Global configuration (config) | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest
 16.5 .1 a | This command was
 introduced. |

Usage Guidelines While the HTTP server processes a request, if the session ID is invalid or expired, the server redirects the user to a banner page. The banner page allows the user to \log in with credentials. The server validates the credentials and processes the request.

Examples
The following example shows how to enable the HTTP or HTTPS server banner:

```
Device> enable
Device# configure terminal
Device(config)# ip http banner
Device(config)# end
```

Related Commands

| Command | Description |
| :--- | :--- |
| ip http banner-path | Sets a custom path for the HTTP or HTTPS banner page. |

ip http banner-path

To set a custom path for the HTTP or HTTP Secure (HTTPS) banner page, use the ip http banner-path command in global configuration mode. To disable the custom path for the HTTP or HTTPS banner page, use the no form of this command.
ip http banner-path path-name
no ip http banner-path path-name

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

The custom path for the HTTP or HTTPS banner is not set.
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest
 16.5.1a | This command was
 introduced. |

Use the ip http banner-path command to direct the user to the banner path.
If the command is not configured or if the custom banner path does not exist, the server directs the user to the default banner page.

The following example shows how to set the path to the HTTP or HTTPS banner page:

```
Device> enable
Device# configure terminal
Device(config)# ip http banner-path welcome
Device(config) # end
```


Related Commands

| Command | Description |
| :--- | :--- |
| ip http banner | Enables the HTTP or HTTPS server banner. |

ip ssh bulk-mode

To enable the Secure Shell (SSH) bulk data transfer mode, use the ip ssh bulk-mode command in global configuration mode. To disable this mode, use the no form of this command.

```
ip ssh bulk-mode
no ip ssh bulk-mode
```

$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Default
SSH bulk mode is not enabled.
Command Modes Global configuration (config)
Command History

Usage Guidelines
SSH bulk mode enables optimizing the throughput performance of procedures that involve the transfer of large amounts of data. Secure Copy feature has been enhanced to leverage bulk mode optimizations. We recommend that you enable the ip ssh bulk-mode command for transferring large files only because this operation consumes more system resources such as, CPU and memory, compared to other file transfer operations. Do not use this command when the system resources are heavily loaded, and disable this command after the required file transfers are completed.

Note - Bulk data transfer mode does not support the time or volume-based SSH rekey functionality.

- Bulk data transfer mode is not supported with SSH Version 1.
- Do not configure the ip ssh window-size command if the ip ssh bulk-mode command is enabled.

Examples

The following example shows how to enable bulk data transfer mode on an SSH server:

```
Device> enable
Device# configure terminal
Device(config)# ip ssh bulk-mode
Device(config)# exit
```


12 traceroute

To enable the Layer 2 traceroute server, use the $\mathbf{1 2}$ traceroute command in global configuration mode. Use the no form of this command to disable the Layer 2 traceroute server.

12 traceroute no 12 traceroute
Syntax Description

Command Modes

This command has no arguments or keywords.
Global configuration (config\#)
Command History

Usage Guidelines Layer 2 traceroute is enabled by default and opens a listening socket on User Datagram Protocol (UDP) port 2228. To close the UDP port 2228 and disable Layer 2 traceroute, use the no $\mathbf{l 2}$ traceroute command in global configuration mode.

The following example shows how to configure Layer 2 traceroute using the $\mathbf{\mathbf { l }} \mathbf{2}$ traceroute command.

Device\# configure terminal
Device(config) \# 12 traceroute

license air level

To configure AIR licenses on a wireless controller that is connected to Cisco Catalyst Access, Core, and Aggregation Switches, enter the license air level command in global configuration mode. To revert to the default setting, use the no form of this command.
license air level \{ air-network-advantage [addon air-dna-advantage] |air-network-essentials [addon air-dna-essentials] \}
no license air level

Syntax Description

air-network-advantage Configures the AIR network advantage license level.
addon air-dna-advantage (Optional) Configures the add-on AIR DNA advantage license level.
This add-on option is available with the AIR network advantage license, and is the default license.
air-network-essentials Configures the AIR network essential license level.
addon air-dna-essentials (Optional) Configures the add-on AIR DNA essentials license level.
This add-on option is available with the AIR network essential license.

Command Default

Command Modes

Command History

In the Smart Licensing Using Policy environment, you can use the license air level command to change the license level being used on the product instance, or to additionally configure an add-on license on the product instance. The change is effective after a reload.
The licenses that can be configured are:

- AIR Network Essential
- AIR Network Advantage
- AIR DNA Essential
- AIR DNA Advantage

You can configure AIR DNA Essential or AIR DNA Advantage license level, and on term expiry, you can move to the Network Advantage or Network Essentials license level, if you do not want to renew the DNA license.

Every connecting Access Point requires a Cisco DNA Center License to leverage the unique value properties of the controller.

For more information, see the Cisco Catalyst 9800 Series Wireless Controller Software Configuration Guide for the required release.

Examples

The following example shows how to configure the AIR DNA Essential license level:

```
Device# configure terminal
Device(config)# license air level network-essentials addon air-dna-essentials
```

The following example shows how to configure the AIR DNA Advantage license level:

```
Device# configure terminal
Device(config)# license air level air-network-advantage addon air-dna-advantage
```


license boot level

To boot a new software license on the device, use the license boot level command in global configuration mode. Use the no form of this command to remove all software licenses from the device.
license boot level \{ network-advantage [addon dna-advantage] | network-essentials [addon dna-essentials] \}
no license boot level

Syntax Description

| Command Default |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines

| network-advantage [addon dna-advantage] | Configures the Network Advantage license.
 Optionally, you can also configure the Digital
 Networking Architecture (DNA) Advantage license. |
| :--- | :--- |
| network-essentials [addon dna-essentials] | Configures the Network Essentials license.
 Optionally, you can also configure the Digital
 Networking Architecture (DNA) Essentials license. |

Network Essentials
Global configuration (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.2a | This command continues to be available and
 applicable with the introduction of Smart Licensing
 Using Policy in this release. See the Usage Guidelines
 section below for details. |

The software features available on Cisco Catalyst 9000 Series Switches fall under these base or add-on license levels:

Base Licenses:

- Network Essentials
- Network Advantage-Includes features available with the Network Essentials license and more.

Add-on Licenses:

- DNA Essentials
- DNA Advantage-Includes features available with the Network Essentials license and more.

Base licenses are permanent or perpetual licenses.
Add-on licenses are subscription or term licenses and can be purchased for a three, five, or seven year period. Base licenses are a prerequite for add-on licenses. See the release notes for more information about this.

The sections below provide information about using the license boot level command in the earlier Smart Licensing environment, and in the Smart Licensing Using Policy environment.
Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, Smart Licensing Using Policy is enabled by default and you can use the license boot level command for these purposes:

- To change the base or add-on license levels being used on the product instance.

For example, if you are using Network Essentials and you want to use Network Advantage with the next reload, or if you are using DNA Advantage and you want to use DNA Essentials with the next reload.

- To add or remove add-on license levels being used on the product instance.

For example, if you are using only Network Essentials and you want to use DNA Essentials with the next reload, or if you are using DNA Advantage and you do not want to use the add-on after the next reload.

The notion of evaluation or expired licenses does not exist in Smart Licensing Using Policy.
After the command is configured, the configured license is effective after the next reload. License usage continues to be recorded on device and this changed licensing consmption information may have to be sent via the next Resource Utilization Measurement Report (RUM report) to CSSM. The reporting requirements and frequency are determined by the policy that is applied. See the Usage Reporting: section of the show license status command output. For more information about Smart Licensing Using Policy, in the software configuration guide of the required release, see System Management $>$ Smart Licensing Using Policy.

Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, Smart Licensing is enabled by default you can use the license boot level command for these purposes:

- Downgrade or upgrade licenses
- Enable or disable an evaluation or extension license
- Clear an upgrade license

This command forces the licensing infrastructure to boot the configured license level instead of the license hierarchy maintained by the licensing infrastructure for a given module:

- When the switch reloads, the licensing infrastructure checks the configuration in the startup configuration for licenses, if any. If there is a license in the configuration, the switch boots with that license. If there is no license, the licensing infrastructure follows the image hierarchy to check for licenses.
- If the forced boot evaluation license expires, the licensing infrastructure follows the regular hierarchy to check for licenses.
- If the configured boot license has already expired, the licensing infrastructure follows the hierarchy to check for licenses.

The following example shows how to configure the Network Essentials license at the next reload:

```
Device# configure terminal
Device(config)# license boot level network-essentals
Device(config)# exit
Device# copy running-config startup-config
Device# reload
```

The following example shows how to activate the DNA Essentials license at the next reload:

```
Device# configure terminal
Device(config)# license boot level network-essentals add-on dna-essentials
Device(config)# exit
Device# copy running-config startup-config
Device# reload
```


license smart (global config)

To configure licensing-related settings such as the mode of transport and the URL that the product instance uses to communicate with Cisco Smart Software Manager (CSSM), or Cisco Smart Licensing Utility (CSLU), or Smart Software Manager On-Prem (SSM On-Prem), to configure the usage reporting interval, to configure the information that must be exluded or included in a license usage report (RUM report), enter the license smart command in global configuration mode. Use the no form of the command to revert to default values.
license smart \{custom_id ID | enable | privacy \{all|hostname | version \}| proxy \{ address address_hostname | port port \} | reservation | server-identity-check | transport \{automatic |callhome | cslu |off |smart \}|url \{url|cslu cslu_or_on-prem_url|default | smart smart_url|utility secondary_url \} |usage \{ customer-tags \{tag1 | tag2 | tag3 |tag4 \} tag_value |interval interval_in_days \}|utility [customer_info \{ city city \mid country country \mid postalcode postalcode \mid state state \mid street street $\}]\}$
no license smart \{custom_id |enable|privacy \{all|hostname|version\}|proxy \{ address address_hostname | port port \} | reservation | server-identity-check | transport | url \{url|cslu cslu_or_on-prem_url | default | smart smart_url | utility secondary_url \} |usage \{ customer-tags \{tag1 |tag2 |tag3 | tag4 \} tag_value |interval interval_in_days \} |utility [customer_info \{ city city |country country |postalcode postalcode | state state \mid street street $\}$] \}

Syntax Description

custom_id ID

Although available on the CLI, this option is not supported.

| enable | Although visible on the CLI, configuring this keyword has
 no effect. Smart licensing is always enabled. |
| :--- | :--- |

privacy \{ all | hostname | version \}
Enables you to leave out certain information from the usage reports that are send to CSSM. Choose from the following options:

- all: Sends only the minimal licensing information in any communication.
- hostname: Excludes the hostname from any communication.
- version: Excludes the product instance agent version from any communication.

| proxy \{ address address_hostname \| port port \} | Configures a proxy for license usage synchronization with CSLU or CSSM. This means that you can use this option to configure a proxy only if the transport mode is license smart transport smart (CSSM), or license smart transport cslu (CSLU).
 However, you cannot configure a proxy for license usage synchronization in an SSM On-Prem deployment, which also uses license smart transport cslu as the transport mode.
 Configure the following options:
 - address address_hostname: Configures the proxy address.
 For address_hostname, enter the enter the IP address or hostname of the proxy.
 - portport: Configures the proxy port.
 For port, enter the proxy port number. | | | |
|---|---|---|---|---|
| reservation | Enables or disables a license reservation feature.
 Note
 Although available on the CLI, this option is not applicable because license reservation is not applicable in the Smart Licensing Using Policy environment. |
| server-identity-check | Enables or disables the HTTP secure server identity check. |
| transport \{ automatic \|callhome | cslu |off | smart \} | Configures the mode of transport the product instance uses to communicate with CSSM. Choose from the following options:
 - automatic: Sets the transport mode cslu.
 - callhome: Enables Call Home as the transport mode.
 - cslu: Enables CSLU as the transport mode. This is the default transport mode.
 The same keyword applies to both CSLU and SSM On-Prem, but the URLs are different. See cslucslu_or_on-prem_url in the following row.
 - off: Disables all communication from the product instance.
 - smart: Enables Smart transport. |

url \{ url | cslu cslu_url | default | smart
smart_url | utility secondary_url \}

Sets a URL for the configured transport mode. Choose from the following options:

- url: If you have configured the transport mode as callhome, configure this option. Enter the CSSM URL exactly as follows:
https://tools.cisco.com/its/serviœ/oddae/services/DDCEService
The no license smart url url command reverts to the default URL.
- cslu cslu_or_on-prem_url: If you have configured the transport mode as cslu, configure this option, with the URL for CSLU or SSM On-Prem, as applicable:
- If you are using CSLU, enter the URL as follows:

```
http://<cslu_ip_or_host>:8182/cslu/v1/pi
```

For <cslu_ip_or_host>, enter the hostname or the IP address of the windows host where you have installed CSLU. 8182 is the port number and it is the only port number that CSLU uses.

The no license smart url cslu

cslu_or_on-prem_url command reverts to http://cslu-local:8182/cslu/v1/pi

- If you are using SSM On-Prem, enter the URL as follows:
http://<ip>/cslu/v1/pi/<tenant ID>
For <ip>, enter the hostname or the IP address of the server where you have installed SSM On-Prem. The <tenantID> must be the default local virtual account ID.

Tip You can retrieve the entire URL from SSM On-Prem. In the software configuration guide of the required release (17.3.x onwards), see System Management $>$ Smart Licensing Using Policy > Task Library for Smart Licensing Using Policy > Retrieving the Transport URL (SSM On-Prem UI).

The no license smart url cslu cslu_or_on-prem_url command reverts to http://cslu-local:8182/cslu/v1/pi

- default: Depends on the configured transport mode. Only the smart and cslu transport modes are supported with this option.

If the transport mode is set to cslu, and you configure
license smart url default, the CSLU URL is configured automatically
(https://cslu-local:8182/cslu/v1/pi).

If the transport mode is set to smart, and you configure license smart url default, the Smart URL is configured automatically
(https://smartreceiver.cisco.com/licservice/license).

- smart smart_url: If you have configured the transport type as smart, configure this option. Enter the URL exactly as follows:
https://smartreceiver.cisco.com/licservice/license
When you configure this option, the system automatically creates a duplicate of the URL in license smart url url. You can ignore the duplicate entry, no further action is required.

The no license smart url smartsmart_url command reverts to the default URL.

- utility smart_url: Although available on the CLI, this option is not supported.
usage \{ customer-tags \{tag1 |tag2 |tag3| Configures usage reporting settings. You can set the tag4 $\}$ tag_value |interval interval_in_days $\}$ following options:
- customer-tags $\{$ tag1 \mid tag2 \mid tag3 \mid tag4 $\}$ tag_value: Defines strings for inclusion in data models, for telemetry. Up to 4 strings (or tags) may be defined.

For tag_value, enter the string value for each tag that you define.

- interval interval_in_days: Sets the reporting interval in days. By default the RUM report is sent every 30 days. The valid value range is 1 to 3650 .

If you set the value to zero, RUM reports are not sent, regardless of what the applied policy specifies - this applies to topologies where CSLU or CSSM may be on the receiving end.

If you set a value that is greater than zero and the transport type is set to off, then, between the interval_in_days and the policy value for ongoing reporting frequency (days): , the lower of the two values is applied. For example, if interval_in_days is set to 100 , and the value in the in the policy says Ongoing reporting frequency (days):90, RUM reports are sent every 90 days.
If you do not set an interval, and the default is effective, the reporting interval is determined entirely by the policy value. For example, if the default value is effective and only unenforced licenses are in use, if the policy states that reporting is not required, then RUM reports are not sent.
utility [customer_info \{ city city |country Although visible on the CLI, this option is not supported. country \mid postalcode postalcode \mid state state | street street \}]

Command Default

Cisco IOS XE Amsterdam 17.3.1 or earlier: Smart Licensing is enabled by default Cisco IOS XE Amsterdam 17.3.2a and later: Smart Licensing Using Policy is enabled by default.

Command Modes

Command History

Global config (Device(config)\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji | This command was introduced. |
| 16.9.1 | |

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE | The following keywords and variables were introduced with Smart Licensing Using |
| Amsterdam 17.3.2a | Policy:

 • Under the urlkeyword, these options were introduced:

 \qquad \{cslu cslu_url \mid smart smart_url $\}$ |
| • Under the transport keyword, these options were introduced: | |
| | $\{$ cslu \mid off $\}$ |
| Further, the default transport type was changed from callhome, to cslu. | |

```
•usage { customer-tags { tag1 | tag2 | tag3 | tag4 } tag_value | interval
interval_in_days }
```

The following keywords and variables under the license smart global command are deprecated and no longer available on the CLI: enableand conversion automatic.

Cisco IOS XE
Amsterdam 17.3.3

SSM On-Prem support was introduced. For product instance-initiated communication in an SSM On-Prem deployment, the existing [no]license smart url cslucslu_or_on-prem_url command supports the configuration of a URL for SSM On-Prem as well. But the required URL format for SSM On-Prem is:
http://<ip>/cslu/v1/pi/<tenant ID>.
The corresponding transport mode that must be configured is also an existing command (license smart transport cslu).

Usage Guidelines

The reporting interval that you configure (license smart usage interval interval_in_days command), determines the date and time at which the product instance sends out the RUM report. If the scheduled interval coincides with a communication failure, the product instance attempts to send out the RUM report for up to four hours after the scheduled time has expired. If it is still unable to send out the report (because the communication failure persists), the system resets the interval to 15 minutes. Once the communication failure is resolved, the system reverts the reporting interval to the value that you last configured.

The system message you may see in case of a communicatin failure is \%SMART_LIC-3-COMM_FAILED. For information about resolving this error and restoring the reporting interval value, in the software configuration guide of the required release (17.3.x onwards), see System Management > Smart Licensing Using Policy > Troubleshooting Smart Licensing Using Policy.

- Examples for Data Privacy, on page 1898
- Examples for Transport Type and URL, on page 1899
- Examples for Usage Reporting Options, on page 1900

Examples for Data Privacy

The following examples show how to configure data privacy related information using license smart privacy command in global configuration mode. The accompanying show license status output displays configured information.

No private information is sent:

```
Device# configure terminal
Device(config)# license smart privacy all
Device(config)# license smart transport callhome
Device(config)# license smart url
https://tools.cisco.com/its/service/oddce/services/DDCEService
Device(config)# exit
Device# show license status
<output truncated>
Data Privacy:
    Sending Hostname: no
        Callhome hostname privacy: ENABLED
        Smart Licensing hostname privacy: ENABLED
    Version privacy: ENABLED
Transport:
    Type: Callhome
<output truncated>
```

Agent version on the product instance is not sent:

```
Device# configure terminal
Device(config)# license smart privacy version
Device(config)# license smart transport callhome
Device(config)# license smart url
https://tools.cisco.com/its/service/oddce/services/DDCEService
Device(config)# exit
Device# show license status
<output truncated>
Data Privacy:
    Sending Hostname: yes
        Callhome hostname privacy: DISABLED
        Smart Licensing hostname privacy: DISABLED
    Version privacy: ENABLED
Transport:
    Type: Callhome
<output truncated>
```


Examples for Transport Type and URL

The following examples show how to configure some of the transport types using the license smart transport and the license smart url commands in global configuration mode. The accompanying show license all output displays configured information.

Transport: cslu:

```
Device# configure terminal
Device(config)# license smart transport cslu
Device(config)# license smart url default
Device(config)# exit
Device# show license all
<output truncated>
Transport:
    Type: cslu
    Cslu address: http://192.168.0.1:8182/cslu/v1/pi
    Proxy:
        Not Configured
<output truncated>
```

Transport: smart:

```
Device# configure terminal
Device(config)# license smart transport smart
Device(config)# license smart url smart https://smartreceiver.cisco.com/licservice/license
Device(config)# exit
Device# show license all
<output truncated>
Transport:
    Type: Smart
    URL: https://smartreceiver-stage.cisco.com/licservice/license
    Proxy:
        Not Configured
<output truncated>
```


Examples for Usage Reporting Options

The following examples show how to configure some of the usage reporting settings using the license smart usage command in global configuration mode. The accompanying show running-config output displays configured information.

Configuring the customer-tag option:

```
Device# configure terminal
Device(config)# license smart usage customer-tags tag1 SA/VA:01
Device(config)# exit
Device# show running-config | include tag1
license smart usage customer-tags tag1 SA/VA:01
```

Configuring a narrower reporting interval than the currently applied policy:

```
Device# show license status
<output truncated>
Usage Reporting:
Last ACK received: Sep 22 13:49:38 2020 PST
Next ACK deadline: Dec 21 12:02:21 2020 PST
Reporting push interval: 30 days
Next ACK push check: Sep 22 12:20:34 2020 PST
Next report push: Oct 22 12:05:43 2020 PST
Last report push: Sep 22 12:05:43 2020 PST
Last report file write: <none>
<output truncated>
Device# configure terminal
Device(config)# license smart usage interval }2
Device(config)# exit
Device# show license status
<output truncated>
Usage Reporting:
Last ACK received: Sep 22 13:49:38 2020 PST
Next ACK deadline: Nov 22 12:02:21 2020 PST
Reporting push interval: 20 days
Next ACK push check: Sep 22 12:20:34 2020 PST
Next report push: Oct 12 12:05:43 2020 PST
Last report push: Sep 22 12:05:43 2020 PST
Last report file write: <none>
<output truncated>
```


license smart (privileged EXEC)

To configure licensing functions such as requesting or returning authorization codes, saving Resource Utilization Measurement reports (RUM reports), importing a file on to a product instance, establishing trust with Cisco Smart Software Manager (CSSM), synchronizing the product instance with CSSM, or Cisco Smart License Utility (CSLU), or Smart Software Manager On-Prem (SSM On-Prem), and removing licensing information from the product instance, enter the license smart command in privileged EXEC mode with the corresponding keyword or argument.
license smart \{ authorization \{ request \{add |replace \} feature_name \{all |local \} |return \{all | local \} \{ offline [path] |online \} \} |clear eventlog |export return \{all|local \} feature_name |factory reset \mid import file_path \mid save $\{$ trust-request filepath_filename |usage $\{$ all |days days | rum-id rum-ID |unreported $\}$ \{ file file_path \} \} | sync \{all |local \} | trust idtoken id_token_value $\{$ local |all \} [\{ force \}] \}

Syntax Description

| smart | Provides options for Smart Licensing. |
| :--- | :--- |
| authorization | Provides the option to request for, or return, authorization codes.
 Authorization codes are required only if you use licenses with enforcement type:
 export-controlled or enfored. |
| request | Requests an authorization code from CSSM, CSLU (CSLU in-turn fetches it from
 CSSM), or SSM On-Prem and installs it on the product instance. |
| add | Adds the requested license to the existing authorization code. The new authorization
 code will contain all the licenses of the existing authorization code and the requested
 license. |
| replace | Replaces the existing authorization code. The new authorization code will contain
 only the requested license. All licenses in the current authorization code are returned.
 When you enter this option, the product instance verifies if licenses that correspond
 to the authorization codes that will be removed, are in-use. If licenses are being
 used, an error message tells you to first disable the corresponding features. |

| feature_name | Name of the license for which you are requesting an authorization code. |
| :--- | :--- |
| all | Performs the action for all product instances in a High Availability configuration. |
| local | Performs the action for the active product instance. This is the default option. |
| return | Returns an authorization code back to the license pool in CSSM. |
| offline file_path | Means the product instance is not connected to CSSM. The authorization code is
 returned offline. This option requires you to print the return code to a file.
 Optionally, you can also specify a path to save the file. The file format can be any
 readable format, such as .txt |

If you choose the offline option, you must complete the additional step of copying the return code from the CLI or the saved file and entering it in CSSM.

| online | Means that the product instance is in a connected mode. The authorization code is
 returned to CSLU or CSSM directly. |
| :--- | :--- |
| clear eventlog | Clears all event log files from the product instance. |
| export return | Returns the authorization key for an export-controlled license. |
| factory reset | Clears all saved licensing information from the product instance. |
| import
 filepath_filename | Imports a file on to the product instance. The file may be that of an authorization
 code, a trust code, or, or a policy. |
| | For filepath_filename, specify the location, including the filename. |
| save | Provides options to save RUM reports or trust code requests. |

file filepath_filename: Saves the specified usage information to a file. Specify the absolute path to the file, including the filename.
sync $\{$ all | local \} Synchronizes with CSSM or CSLU, or SSM On-Prem, to send and receive any pending data. This includes uploading pending RUM reports, downloading the ACK response, any pending authorization codes, trust codes, and policies for the product instance.
Specify the product instance by entering one of these options:

- all: Performs synchronization for all the product instances in a High Availability set-up. If you choose this option, the product instance also sends the list of all the UDIs in the synchronization request.
- local: Performs synchronization only for the active product instance sending the request, that is, its own UDI. This is the default option.

trust idtoken

Establishes a trusted connection with CSSM.
id_token_value
To use this option, you must first generate a token in the CSSM portal. Provide the generated token value for id_token_value.
force
Submits a trust code request even if a trust code already exists on the product instance.

A trust code is node-locked to the UDI of a product instance. If the UDI is already registered, CSSM does not allow a new registration for the same UDI. Entering the force keyword overrides this behavior.

Command Default

Command Modes

Command History

Cisco IOS XE Amsterdam 17.3.1 and earlier: Smart Licensing is enabled by default.
Cisco IOS XE Amsterdam 17.3.2a and later: Smart Licensing Using Policy is enabled by default.
Privileged EXEC (Device\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji | This command was introduced. |
| 16.9.1 | |

16.9.1

Cisco IOS XE
Amsterdam 17.3.2a
The following keywords and variables were introduced with Smart Licensing Using Policy:

- authorization \{ request \{add |replace \} feature_name \{all|local \}| return $\{$ all |local $\}$ \{ offline [path] |online \} \}
- import file_path
- save \{ trust-request filepath_filename |usage \{all|days days| rum-id rum-ID | unreported \} \{ file file_path \} \}
- sync \{ all |local \}
- trust idtoken id_token_value $\{$ local |all \} [force]

The following keywords and variables under the license smart command are deprecated and no longer available on the CLI:

- register idtoken token_id [force]
- deregister
- renew id \{ ID | auth \}
- debug $\{$ error \mid debug | trace \mid all $\}$
- mfg reservation $\{$ request |install | install file |cancel \}
- conversion \{ start | stop \}

Cisco IOS XE
Amsterdam 17.3.3

Support for SSM On-Prem was introduced. You can perform licensing-related tasks such as saving Resource Utilization Measurement reports (RUM reports), importing a file on to a product instance, synchronizing the product instance, returning authorization codes, and removing licensing information from the product instance in an SSM On-Prem deployment.

Usage Guidelines

Overwriting a Trust Code

Use case for the force option when configuring the license smart trust idtoken command: You use same token for all the product instances that are part of one Virtual Account. If the product instance has moved from one account to another (for instance, because it was added to a High Availability set-up, which is part of another Virtual Account), then there may be an existing trust code you have to overwrite.

Removing Licensing Information

Entering the licence smart factory reset command removes all licensing information (except the licenses in-use) from the product instance, including any authorization codes, RUM reports etc. Therefore, we recommend the use of this command only if the product instance is being returned (Return Material Authrization, or RMA), or being decommissioned permanently. We also recommend that you send a RUM report to CSSM, before you remove licensing information from the product instance - this is to ensure that CSSM has up-to-date usage information.

Authorization Codes and License Reservations:

Options relating to authorization codes and license reservations:

- Since there are no export-controlled or enforced licenses on any of the Cisco Catalyst Access, Core, and Aggregation Switches, the following commands are not applicable:
- license smart authorization request $\{$ add \mid replace $\}$ feature_name $\{$ all |local \}
- license smart export return
- The following option is applicable and required for any SLR authorization codes you may want to return:
license smart authorization return \{all|local \} \{ offline [path] |online \}

Examples

- Example for Saving Licensing Usage Information, on page 1904
- Example for Installing a Trust Code, on page 1905
- Example for Returning an SLR Authorization Code, on page 1905

Example for Saving Licensing Usage Information

The following example shows how you can save license usage information on the product instance. You can use this option to fulfil reporting requirements in an air-gapped network. In the example, the file is first save to flash memory and then copied to a TFTP location:

```
Device> enable
Device# license smart save usage unreported file flash:RUM-unrep.txt
Device# copy flash:RUM-unrep.txt tftp://192.168.0.1//auto/tftp-user/user01/
Address or name of remote host [192.168.0.1]?
Destination filename [//auto/tftp-user/user01/RUM-unrep.txt]?
!!
15128 bytes copied in 0.161 secs (93963 bytes/sec)
```

After you save RUM reports to a file, you must upload it to CSSM (from a workstation that has connectivity to the internet, and Cisco).

Example for Installing a Trust Code

The following example shows how to install a trust code even if one is already installed on the product instance. This requires connectivity to CSSM. The accompanying show license status output shows sample output after successful installation:

Before you can install a trust code, you must generate a token and download the corresponding file from CSSM.

Use the show license status command (Trust Code Installed:) to verify results.

```
Device> enable
Device# license smart trust idtoken
NGMwMjk5mYtNZaxMSOONzMZmtgWm local force
Device# show license status
<output truncated>
Trust Code Installed:
    Active: PID:C9500-24Y4C,SN:CAT2344L4GH
        INSTALLED on Sep 04 01:01:46 2020 EDT
    Standby: PID:C9500-24Y4C,SN:CAT2344L4GJ
        INSTALLED on Sep 04 01:01:46 2020 EDT
<output truncated>
```


Example for Returning an SLR Authorization Code

The following example shows how to remove and return an SLR authorization code. Here the code is returned offline (no connectivity to CSSM). The accompanying show license all output shows sample output after successful return:

```
Device> enable
Device# license smart authorization return local online
Enter this return code in Cisco Smart Software Manager portal:
UDI: PID:C9500-16X,SN:FCW2233A5ZV
Return code: Cr9JHx-L1x5Rj-ftwzg1-h9QZAU-LE5DT1-babWeL-FABPt9-Wr1Dn7-Rp7
Device# configure terminal
Device(config)# no license smart reservation
Device# show license all
<output truncated>
License Authorizations
=======================
Overall status:
    Active: UDI: PID:C9500-16X,SN:FCW2233A5ZV
    Status: NOT INSTALLED
    Last return code: Cr9JHx-L1x5Rj-ftwzg1-h9QZAU-LE5DT1-babWeL-FABPt9-Wr1Dn7-Rp7
<output truncated>
```

Complete the additional step of copying the return code from the CLI or the saved file and entering it in CSSM.

line auto-consolidation

To consolidate multiple line configurations of the same submode into a single line, use the line auto-consolidation command in global configuration mode. Auto-consolidation of line configurations is enabled by default. Starting with the Cisco IOS XE Bengaluru 17.4.1 you can disable auto consolidation by using the no form of the command.
line auto-consolidation
no line auto-consolidation

Syntax Description

Command Default
 Command Modes

Command History
auto-consolidation
Consolidates multiple line configurations of the same submode into a single line.

Autoconsolidation is enabled by default.
Global configuration mode (config)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Bengaluru 17.4.1 | The command was introduced. |

The following example shows the nonvolatile generation (NVGEN) process output with line auto-consolidation configured:

```
Device# show run | sec line
line con 0
stopbits 1
line vty 0 4
transport input ssh
line vty 5 9
transport input all
Device# configure terminal
Device(config)# line vty 10 15
Device(config-line)# transport input all
Device(config-line)# end
Device# show run | sec line
line con 0
stopbits 1
line vty 0 4
transport input ssh
line vty 5 15
transport input all
```

The following example shows the nonvolatile generation (NVGEN) process output after no line auto-consolidation is configured:

```
Device# show run | sec line
line con 0
stopbits 1
line vty 0 4
transport input ssh
line vty 5 9
transport input all
Device# configure terminal
```

```
Device(config) #no line auto-consolidation
Device(config)# line vty 10 15
Device(config-line)# transport input all
Device(config-line)# end
Device# show run | sec line
no line auto-consolidation
line con 0
stopbits 1
line vty 0 4
transport input ssh
line vty 5 9
transport input all
line vty 10 15
transport input all
```


location

To configure location information for an endpoint, use the location command in global configuration mode. To remove the location information, use the no form of this command.
location \{admin-tag string |civic-location identifier $\{$ host $i d\} \mid$ civic-location identifier $\{$ hostid $\} \mid$ elin-location $\{$ string |identifier $i d\} \mid$ geo-location identifier $\{$ host $i d\} \mid$ prefer $\{$ cdp weight priority-value | Ildp-med weight priority-value \mid static config weight priority-value\}
no location \{admin-tag string | civic-location identifier \{hostid\}|civic-location identifier \{hostid\}| elin-location $\{$ string \mid identifier $i d\} \mid$ geo-location identifier $\{$ host $i d\} \mid$ prefer $\{$ cdp weight priority-value | Ildp-med weight priority-value \mid static config weight priority-value $\}$

Syntax Description

admin-tagstring
Configures administrative tag or site information. Site or location information in alphanumeric format.

| civic-location | Configures civic location information. |
| :--- | :--- |
| identifier | Specifies the name of the civic location, emergency, or geographical
 location. |
| host | Defines the host civic or geo-spatial location. |
| id | Name of the civic, emergency, or geographical location. |
| Note \quadThe identifier for the civic location in the LLDP-MED
 switch TLV is limited to 250 bytes or less. To avoid
 error messages about available buffer space during
 switch configuration, be sure that the total length of
 all civic-location information specified for each
 civic-location identifier does not exceed 250 bytes. | |

| elin-location | Configures emergency location information (ELIN). |
| :--- | :--- |
| geo-location | Configures geo-spatial location information. |
| prefer | Sets location information source priority. |

| Command Default |
| :--- |
| Command Modes |
| Command History |

No default behavior or values.
Global configuration

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a | |

Usage Guidelines

After entering the location civic-location identifier global configuration command, you enter civic location configuration mode. After entering the location geo-location identifier global configuration command, you enter geo location configuration mode.

The civic-location identifier must not exceed 250 bytes.
The host identifier configures the host civic or geo-spatial location. If the identifier is not a host, the identifier only defines a civic location or geo-spatial template that can be referenced on the interface.

The host keyword defines the device location. The civic location options available for configuration using the identifier and the host keyword are the same. You can specify the following civic location options in civic location configuration mode:

- additional-code-Sets an additional civic location code.
- additional-location-information-Sets additional civic location information.
- branch-road-name-Sets the branch road name.
- building-Sets building information.
- city-Sets the city name.
- country-Sets the two-letter ISO 3166 country code.
- county-Sets the county name.
- default-Sets a command to its defaults.
- division-Sets the city division name.
- exit-Exits from the civic location configuration mode.
- floor-Sets the floor number.
- landmark-Sets landmark information.
- leading-street-dir-Sets the leading street direction.
- name-Sets the resident name.
- neighborhood-Sets neighborhood information.
- no-Negates the specified civic location data and sets the default value.
- number-Sets the street number.
- post-office-box-Sets the post office box.
- postal-code-Sets the postal code.
- postal-community-name-Sets the postal community name.
- primary-road-name-Sets the primary road name.
- road-section-Sets the road section.
- room-Sets room information.
- seat-Sets seat information.
- state-Sets the state name.
- street-group-Sets the street group.
- street-name-postmodifier-Sets the street name postmodifier.
- street-name-premodifier-Sets the street name premodifier.
- street-number-suffix-Sets the street number suffix.
- street-suffix-Sets the street suffix.
- sub-branch-road-name-Sets the sub-branch road name.
- trailing-street-suffix-Sets the trailing street suffix.
- type-of-place-Sets the type of place.
- unit-Sets the unit.

You can specify the following geo-spatial location information in geo-location configuration mode:

- altitude-Sets altitude information in units of floor, meters, or feet.
- latitude-Sets latitude information in degrees, minutes, and seconds. The range is from -90 degrees to 90 degrees. Positive numbers indicate locations north of the equator.
- longitude-Sets longitude information in degrees, minutes, and seconds. The range is from - 180 degrees to 180 degrees. Positive numbers indicate locations east of the prime meridian.
- resolution-Sets the resolution for latitude and longitude. If the resolution value is not specified, default value of 10 meters is applied to latitude and longitude resolution parameters. For latitude and longitude, the resolution unit is measured in meters. The resolution value can also be a fraction.
- default-Sets the geographical location to its default attribute.
- exit-Exits from geographical location configuration mode.
- no-Negates the specified geographical parameters and sets the default value.

Use the no lldp med-tlv-select location information interface configuration command to disable the location TLV. The location TLV is enabled by default.

This example shows how to configure civic location information on the switch:

```
Device(config)# location civic-location identifier 1
Device(config-civic)# number 3550
Device(config-civic) # primary-road-name "Cisco Way"
Device(config-civic)# city "San Jose"
Device(config-civic)# state CA
Device(config-civic)# building 19
Device(config-civic) # room C6
Device(config-civic)# county "Santa Clara"
Device(config-civic)# country US
Device(config-civic)# end
```

You can verify your settings by entering the show location civic-location privileged EXEC command.
This example shows how to configure the emergency location information on the switch:
Device(config) \# location elin-location 14085553881 identifier 1

You can verify your settings by entering the show location elin privileged EXEC command.
The example shows how to configure geo-spatial location information on the switch:

```
Device(config)# location geo-location identifier host
Device(config-geo)# latitude 12.34
Device(config-geo)# longitude 37.23
Device(config-geo)# altitude 5 floor
Device(config-geo)# resolution 12.34
```

You can use the show location geo-location identifier command to display the configured geo-spatial location details.

location plm calibrating

To configure path loss measurement (CCX S60) request for calibrating clients, use the location plm calibrating command in global configuration mode.
location plm calibrating \{multiband |uniband\}

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines
multiband Specifies the path loss measurement request for calibrating clients on the associated 802.11a or $802.11 \mathrm{~b} / \mathrm{g}$ radio.
uniband Specifies the path loss measurement request for calibrating clients on the associated $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g}$ radio.

No default behavior or values.
Global configuration

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was |
| 16.5.1a | introduced. |

The uniband is useful for single radio clients (even if the radio is a dual band and can operate in the $2.4-\mathrm{GHz}$ and the $5-\mathrm{GHz}$ bands). The multiband is useful for multiple radio clients.

This example shows how to configure the path loss measurement request for calibrating clients on the associated $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g}$ radio:

```
Device# configure terminal
Device(config)# location plm calibrating uniband
Device(config)# end
```


mac address-table move update

To enable the MAC address table move update feature, use the mac address-table move update command in global configuration mode on the switch stack or on a standalone switch. To return to the default setting, use the no form of this command.
mac address-table move update \{receive | transmit\} no mac address-table move update \{receive | transmit\}

Syntax Description

receive Specifies that the switch processes MAC address-table move update messages.
transmit Specifies that the switch sends MAC address-table move update messages to other switches in the network if the primary link goes down and the standby link comes up.

| Command Default |
| :--- |
| Command Modes |
| Command History |
| Command History |

Usage Guidelines
The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence if a primary (forwarding) link goes down and the standby link begins forwarding traffic.

You can configure the access switch to send the MAC address-table move update messages if the primary link goes down and the standby link comes up. You can configure the uplink switches to receive and process the MAC address-table move update messages.

Examples

This example shows how to configure an access switch to send MAC address-table move update messages:

```
Device# configure terminal
Device(config)# mac address-table move update transmit
Device(config)# end
```

This example shows how to configure an uplink switch to get and process MAC address-table move update messages:

```
Device# configure terminal
Device(config) # mac address-table move update receive
Device(config)# end
```

You can verify your setting by entering the show mac address-table move update privileged EXEC command.

mgmt_init

To initialize the Ethernet management port, use the mgmt_init command in boot loader mode.
mgmt_init
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

| $\overline{\text { Command Default }}$ | | No default behavior or values. |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | Boot loader | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest | This command was introduced. |
| | 16.5 .1 a | |
| | | |

Usage Guidelines Use the mgmt_init command only during debugging of the Ethernet management port.
Examples
This example shows how to initialize the Ethernet management port:

Device: mgmt_init

mkdir

To create one or more directories on the specified file system, use the mkdir command in boot loader mode. mkdir filesystem:/directory-url...

Syntax Description

filesystem: Alias for a file system. Use usbflash0: for USB memory sticks.
/directory-url... Name of the directories to create. Separate each directory name with a space.

| Command Default | No default behavior or values. |
| :---: | :---: |
| Command Modes | Boot loader |
| Command History | Release Modification |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines Directory names are case sensitive.
Directory names are limited to 127 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Example

This example shows how to make a directory called Saved_Configs:

```
Device: mkdir usbflash0:Saved_Configs
Directory "usbflash0:Saved_Configs" created
```

To display the contents of one or more files, use the more command in boot loader mode.
more filesystem:/file-url...

Syntax Description

filesystem: Alias for a file system. Use flash: for the system board flash device.
/file-url... Path (directory) and name of the files to display. Separate each filename with a space.

| Command Default | No default behavior or values. |
| :---: | :---: |
| Command Modes | Boot loader |
| Command History | Release Modification |

Cisco IOS XE Everest 16.5.1a This command was introduced.

Filenames and directory names are case sensitive.
If you specify a list of files, the contents of each file appears sequentially.

Examples

This example shows how to display the contents of a file:

```
Device: more flash:image_file_name
version suffix: universal-122-xx.SEx
version_directory: image_file_name
image_system_type_id: 0x00000002
image_name: image_file_name.bin
ios image file size: 8919552
total_image_file_size: 11592192
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: family
stacking_number: 1.34
board_ids: 0x00000068 0x00000069 0x0000006a 0x00000006b
info_end:
```


no debug all

To disable debugging on a switch, use the no debug all command in Privileged EXEC mode.
no debug all

| Command Default | | No default behavior or values. |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | | Privileged EXEC |
| Command History | Release | Modification |

Cisco IOS XE Release 16.1 This command was introduced.

Examples

This example shows how to disable debugging on a switch.

```
Device: no debug all
All possible debugging has been turned off.
```


reload fast

To reload a standalone switch or stacked switch with the software image using Extended Fast Software Upgrade, use the reload fast command in privileged EXEC mode.
reload fast

Command Modes
Command History

Privileged EXEC (\#)

Release Modification

Cisco IOS XE Amsterdam 17.3.2a
This command was introduced.

The reload fast command reloads the standalone switch or stacked switch using Extended Fast Software Upgrade, which reduces traffic downtime to less than 30 seconds depending on the switch configuration.
For a Border Gateway Protocol-configured (BGP-configured) standalone switch, use the bgp graceful-restart command to enable Nonstop Forwarding (NSF) awareness before reloading the switch.

For a Border Gateway Protocol-configured (BGP-configured) stacked switch, use the bgp graceful-restart all command to enable Nonstop Forwarding (NSF) awareness before reloading the switch.

For an Open Shortest Path First Version 3-configured (OSPFv3-configured) standalone switch, use the ipv6 nd reachable-time command to set the timeout limit, and the snmp ifmib ifindex persist command to enable Simple Network Management Protocol (SNMP) interface index (ifIndex) persistence globally, and the interface-id snmp-if-index command to enable SNMP ifIndex persistence on the interface before reloading the switch.
For an Intermediate System-to-Intermediate System-configured (IS-IS-configured) stacked switch, use either the nsf cisco or nsf ietf command before reloading the switch.

Examples

Standalone Switch

The following example shows how to reload a standalone switch for a configuration other than BGP or OSPFv3:

```
Device> enable
Device# reload fast
```

The following example shows how to reload a standalone switch for a BGP configuration:

```
Device> enable
Device# configure terminal
Device(config) # router bgp 65000
Device(config-router) # bgp graceful-restart
Device(config-router)# end
Device# write memory
Device# reload fast
```

The following example shows how to reload a standalone switch for an OSPFv3 configuration:

```
Device> enable
Device# configure terminal
Device(config) # ipv6 nd reachable-time 3600000
Device(config)# snmp ifmib ifindex persist
Device(config) # router OSPFv3 1
```

```
Device(config-router)# router-id 192.0.2.5
Device(config-router) # interface-id snmp-if-index
Device(config-router)# end
Device# write memory
Device# reload fast
```


Stacked Switch

The following example shows how to reload a stacked switch for a configuration other than BGP or OSPFv3:

```
Device> enable
Device# reload fast
```

The following example shows how to reload a stacked switch for a BGP configuration:

```
Device> enable
Device# configure terminal
Device(config)# router bgp 65000
Device(config-router)# bgp graceful-restart all
Device(config-router)# end
Device# write memory
Device# reload fast
```

The following example shows how to reload a stacked switch for an IS-IS configuration:

```
Device> enable
Device# configure terminal
Device(config)# router isis tag1
Device(config-router)# nsf cisco
Device(config-router) # end
Device# write memory
Device# reload fast
```


rename

To rename a file, use the rename command in boot loader mode.
rename filesystem:/source-file-url filesystem:/destination-file-url

| $\overline{\text { Syntax Description }}$ | filesystem: Alias for a file system. Use usbflash0: for USB memory sticks.
 /source-file-url
 Original path (directory) and filename.
 /destination-file-url | New path (directory) and filename. |
| :--- | :--- | :--- |

| $\overline{\text { Command Default }}$ |
| :--- |
| Command Modes |

No default behavior or values.

Boot loader
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines

Filenames and directory names are case sensitive.
Directory names are limited to 127 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Filenames are limited to 127 characters; the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Examples

This example shows a file named config.text being renamed to config1.text:

Device: rename usbflash0:config.text usbflash0:config1.text

You can verify that the file was renamed by entering the dir filesystem: boot loader command.

request consent-token accept-response shell-access

To submit the Consent Token response to a previously generated challenge, use the request consent-token accept-response shell-access command.
request consent-token accept-response shell-access response-string

Syntax Description

| Syntax | Description |
| :--- | :--- |
| response-string | Specifies the character string representing the
 response. |

Command Modes
 Command History

Privileged EXEC mode (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.11.1 | This command was introduced. |

Usage Guidelines

You must enter the response string within 30 minutes of challenge generation. If it is not entered, the challenge expires and a new challenge must be requested.

Example

The following is sample output from the request consent-token accept-response shell-access response-string command:

Device\# request consent-token accept-response shell-access

\% Consent token authorization success
*Jan 18 02:51:37.807: \%CTOKEN-6-AUTH_UPDATE: Consent Token Update (authentication success: Shell access 0).

request consent-token generate-challenge shell-access

To generate a Consent Token challenge for system shell access, use the request consent-token generate-challenge shell-access command.
request consent-token generate-challenge shell-access auth-timeout time-validity-slot
Syntax Description

| Syntax | Description |
| :--- | :--- |
| auth-timeout time-validity-slot | Specifies the time slot in minutes for which
 shell-access is requested. |

| Command Modes | Privileged EXEC mode (\#) | |
| :--- | :--- | :--- |
| Command History | Release | Modification |
| | Cisco IOS XE Gibraltar 16.11.1 | This command was introduced. |
| | | |

Usage Guidelines

When the requested time-slot for system shell expires, the session gets terminated automatically.
The maximum authorization timeout for system shell access is seven days.

Example

The following is sample output from the request consent-token generate-challenge shell-access auth-timeout time-validity-slot command:

```
Device# request consent-token generate-challenge shell-access auth-timeout 900
```



```
Device#
*Jan 18 02:47:06.733: %CTOKEN-6-AUTH UPDATE: Consent Token Update (challenge generation
attempt: Shell access 0).
```


request consent-token terminate-auth

To terminate the Consent Token based authorization to system shell, use the request consent-token terminate-auth command.
request consent-token terminate-auth
Command Modes

Command History
Privileged EXEC mode (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.11.1 | This command was introduced. |

Usage Guidelines

In system shell access scenario, exiting the shell does not terminate authorization until the authorization timeout occurs.

We recommend that you force terminate system shell authorization by explicitly issuing the request consent-token terminate-auth command once the purpose of system shell access is complete.
If the current authentication is terminated using the request consent-token terminate-auth command, the user will have to repeat the authentication process to gain access to system shell.

Example

The following is sample output from the request consent-token terminate-auth command:

```
Device# request consent-token terminate-auth shell-access
% Consent token authorization termination success
Device#
*Mar 13 01:45:39.197: %CTOKEN-6-AUTH_UPDATE: Consent Token Update (terminate authentication:
    Shell access 0).
Device#
```


request platform software console attach switch

To start a session on a member switch, use the request platform software console attach switch command in privileged EXEC mode.


```
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# redundancy
Device(config-red) # main-cpu
Device(config-r-mc)# standby console enable
Device(config-r-mc)# end
```

```
Device# request platform software console attach switch standby RO
#
# Connecting to the IOS console on the route-processor in slot 0.
# Enter Control-C to exit.
#
Device-stby> enable
Device-stby#
```


reset

To perform a hard reset on the system, use the reset command in boot loader mode. A hard reset is similar to power-cycling the device; it clears the processor, registers, and memory.
reset
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default
Command Modes
Command History

No default behavior or values.
Boot loader

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest | This command was introduced. |
| 16.5.1a | |

This example shows how to reset the system:

```
Device: reset
Are you sure you want to reset the system (y/n)? y
System resetting...
```


rmdir

To remove one or more empty directories from the specified file system, use the rmdir command in boot loader mode.
rmdir filesystem:/directory-url...

Syntax Description

filesystem: Alias for a file system. Use usbflash0: for USB memory sticks.
/directory-url... Path (directory) and name of the empty directories to remove. Separate each directory name with a space.

Usage Guidelines

Directory names are case sensitive and limited to 45 characters between the slashes (); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.
Before removing a directory, you must first delete all of the files in the directory.
The device prompts you for confirmation before deleting each directory.

Example

This example shows how to remove a directory:

Device: rmdir usbflasho:Test

You can verify that the directory was deleted by entering the dir filesystem: boot loader command.

sdm prefer

To specify the SDM template for use on the switch, use the sdm prefer command in global configuration mode.
sdm prefer
\{access \}

Syntax Description

| Command Default | No default behavior or values. | |
| :---: | :---: | :---: |
| Command Modes | Global configuration | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.5.1a | This command was introduced. |

Usage Guidelines
In a stack, all stack members must use the same SDM template that is stored on the active .

When a new is added to a stack, the SDM configuration that is stored on the active overrides the template configured on an individual .

Example

This example shows how to configure the access template:

```
Device(config)# sdm prefer access
Device(config)# exit
Device# reload
```


service private-config-encryption

To enable private configuration file encryption, use the service private-config-encryption command. To disable this feature, use the no form of this command.
service private-config-encryption no service private-config-encryption

Syntax Description

| Command Default | No default behavior or values. | |
| :--- | :--- | :--- |
| $\overline{\text { Command Modes }}$ | | Global configuration (config) |
| Command History | Release | Modification |
| | Cisco IOS XE Fuji | This command was introduced. |
| | 16.8 .1 a | |

Examples

The following example shows how to enable private configuration file encryption:

Device> enable
Device\# configure terminal
Device(config) \# service private-config-encryption

Related Commands

| Command | Description |
| :--- | :--- |
| show parser encrypt file status | Displays the private configuration encryption status. |

To set or display environment variables, use the set command in boot loader mode. Environment variables can be used to control the boot loader or any other software running on the device.
set variable value
variable Use one of the following keywords for variable and the appropriate value for value:
value
MANUAL_BOOT——Decides whether the device boots automatically or manually.
Valid values are $1 /$ Yes and $0 /$ No. If it is set to 0 or No, the boot loader attempts to automatically boot the system. If it is set to anything else, you must manually boot the device from the boot loader mode.

BOOT filesystem:/file-url-Identifies a semicolon-separated list of executable files to try to load and execute when automatically booting.

If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash: file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash: file system.

ENABLE_BREAK-Allows the automatic boot process to be interrupted when the user presses the Break key on the console.

Valid values are 1, Yes, On, 0 , No, and Off. If set to 1 , Yes, or On, you can interrupt the automatic boot process by pressing the Break key on the console after the flash: file system has initialized.

HELPER filesystem:/file-url-Identifies a semicolon-separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.

PS1 prompt-Specifies a string that is used as the command-line prompt in boot loader mode.
CONFIG_FILE flash: /file-url-Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.

BAUD rate-Specifies the number of bits per second (b/s) that is used for the baud rate for the console. The Cisco IOS software inherits the baud rate setting from the boot loader and continues to use this value unless the configuration file specifies another setting. The range is from 0 to $128000 \mathrm{~b} / \mathrm{s}$. Valid values are $50,75,110,150,300,600,1200,1800,2000,2400$, $3600,4800,7200,9600,14400,19200,28800,38400,56000,57600,115200$, and 128000.

The most commonly used values are $300,1200,2400,9600,19200,57600$, and 115200 .
SWITCH_NUMBER stack-member-number-Changes the member number of a stack member.
SWITCH_PRIORITY priority-number-Changes the priority value of a stack member.

MANUAL_BOOT: No (0)
BOOT: Null string
ENABLE_BREAK: No (Off or 0) (the automatic boot process cannot be interrupted by pressing the Break key on the console).
HELPER: No default value (helper files are not automatically loaded).
PS1 device:
CONFIG_FILE: config.text
BAUD: $9600 \mathrm{~b} / \mathrm{s}$
SWITCH_NUMBER: 1
SWITCH_PRIORITY: 1

Environment variables that have values are stored in the flash: file system in various files. Each line in the files contains an environment variable name and an equal sign followed by the value of the variable.

A variable has no value if it is not listed in these files; it has a value if it is listed even if the value is a null string. A variable that is set to a null string (for example, "") is a variable with a value.
Many environment variables are predefined and have default values.

Command Modes
 Command History

Usage Guidelines

Boot loader

Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Environment variables are case sensitive and must be entered as documented.
Environment variables that have values are stored in flash memory outside of the flash: file system.
Under typical circumstances, it is not necessary to alter the setting of the environment variables.
The MANUAL_BOOT environment variable can also be set by using the boot manual global configuration command.

The BOOT environment variable can also be set by using the boot system filesystem:/file-url global configuration command.
The ENABLE_BREAK environment variable can also be set by using the boot enable-break global configuration command.
The HELPER environment variable can also be set by using the boot helper filesystem: / file-url global configuration command.

The CONFIG_FILE environment variable can also be set by using the boot config-file flash: /file-url global configuration command.

The SWITCH_NUMBER environment variable can also be set by using the switch current-stack-member-number renumber new-stack-member-number global configuration command.

The SWITCH_PRIORITY environment variable can also be set by using the device stack-member-number priority priority-number global configuration command.

The boot loader prompt string (PS1) can be up to 120 printable characters not including the equal sign (=).

Example

This example shows how to set the SWITCH_PRIORITY environment variable:

Device: set SWITCH_PRIORITY 2

You can verify your setting by using the set boot loader command.

show avc client

show bootflash:

To display information about the bootflash: file system, use the show bootflash: command in user EXEC or privileged EXEC mode.
show bootflash: [\{all|filesys | namesort | sizesort | timesort \}]

Syntax Description

| all | (Optional) Displays all possible Flash information. |
| :--- | :--- |
| filesys | (Optional) Displays Flash system information. |
| namesort | (Optional) Sorts the output by file name. |
| sizesort | (Optional) Sorts the output by file size. |
| timesort | (Optional) Sorts the output by time stamp. |

| $\overline{\text { Command Default }}$ | User EXEC ($>$) |
| :--- | :--- |
| | Privileged EXEC (\#) |

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.1 | The following keywords were introduced: |
| | • namesort |
| | • sizesort |
| | • timesort |

Example:

The following is a sample output from the show bootflash: all command:

```
Device# show bootflash: all
-#- --length-- ---------date/time---------- path
24096 May 11 2020 16:49:01.0000000000 +00:00 .installer
3 4096 Feb 27 2020 15:03:50.0000000000 +00:00 .installer/issu_crash
4 May 05 2020 22:06:48.0000000000 +00:00 .installer/issu_crash/fru_crash
5 50 May 11 2020 16:40:40.0000000000 +00:00 .installer/last_pkgconf_shasum
6 6 Feb 27 2020 16:33:59.0000000000 +00:00 .installer/install_issu_pid
7 13 Feb 27 2020 21:05:35.0000000000 +00:00 .installer/install_issu_prev_state
8 17 Feb 27 2020 21:05:36.0000000000 +00:00 .installer/install_issu_state
9 13 May 11 2020 16:41:12.0000000000 +00:00 .installer/watchlist
```

```
            8 Feb 28 2020 18:04:31.0000000000 +00:00 .installer/crdu_frus
            O Mar 01 2020 18:01:09.0000000000 +00:00 .installer/.install_add_pkg_list.prev.txt
        1729 Mar 01 2020 18:02:54.0000000000 +00:00 .installer/install_add_oper.log
            5 May 11 2020 16:40:40.0000000000 +00:00 .installer/install_global_trans_lock
            1 0 ~ M a y ~ 1 1 ~ 2 0 2 0 ~ 1 6 : 4 0 : 4 0 . 0 0 0 0 0 0 0 0 0 0 ~ + 0 0 : 0 0 ~ . i n s t a l l e r / i n s t a l l \& s t a t e ~
33554432 May 11 2020 16:42:37.0000000000 +00:00 nvram_config
            3 9 6 ~ M a y ~ 1 1 ~ 2 0 2 0 ~ 1 6 : 4 1 : 0 2 . 0 0 0 0 0 0 0 0 0 0 ~ + 0 0 : 0 0 ~ b o o t h e l p e r . l o g ~
    4 0 9 6 ~ M a y ~ 1 1 ~ 2 0 2 0 ~ 1 6 : 4 0 : 4 2 . 0 0 0 0 0 0 0 0 0 0 ~ + 0 0 : 0 0 ~ r p r ~
            80 May 11 2020 16:40:42.0000000000 +00:00 rpr/RPR_log.txt
            80 May 05 2020 22:10:45.0000000000 +00:00 rpr/RPR_log_prev.txt
            2 1 8 3 \text { May 11 2020 16:40:42.0000000000 +00:00 bootloader_evt_handle.log}
            4096 Mar 06 2020 21:00:51.0000000000 +00:00 .ssh
            965 Dec 24 2019 15:23:55.0000000000 +00:00 .ssh/ssh_host_key
            630 Dec 24 2019 15:23:55.0000000000 +00:00 .ssh/ssh_host_key.pub
            1675 Dec 24 2019 15:23:56.0000000000 +00:00 .ssh/ssh_host_rsa_key
            3 8 2 \text { Dec 24 2019 15:23:56.0000000000 +00:00 .ssh/ssh_host_rsa_key.pub}
            6 6 8 \text { Dec 24 2019 15:23:56.0000000000 +00:00 .ssh/ssh_host_dsa_key}
            590 Dec 24 2019 15:23:56.0000000000 +00:00 .ssh/ssh_host_dsa_key.pub
            492 Mar 06 2020 21:00:51.0000000000 +00:00 .ssh/ssh_host_ecdsa_key
            162 Mar 06 2020 21:00:51.0000000000 +00:00 .ssh/ssh_host_ecdsa_key.pub
            387 Mar 06 2020 21:00:51.0000000000 +00:00 .ssh/ssh_host_ed25519_key
            82 Mar 06 2020 21:00:51.0000000000 +00:00 .ssh/ssh_host_ed25519_key.pub
4 0 9 6 ~ D e c ~ 2 4 ~ 2 0 1 9 ~ 1 5 : 2 4 : 4 1 . 0 0 0 0 0 0 0 0 0 0 ~ + 0 0 : 0 0 ~ c o r e
4 0 9 6 ~ M a y ~ 1 1 ~ 2 0 2 0 ~ 1 6 : 4 1 : 2 9 . 0 0 0 0 0 0 0 0 0 0 ~ + 0 0 : 0 0 ~ c o r e / m o d u l e s ~
4096 May 05 2020 22:11:47.0000000000 +00:00 .prst_sync
4096 Mar 01 2020 18:17:15.0000000000 +00:00 .rollback_timer
4096 Mar 06 2020 21:01:11.0000000000 +00:00 gs_script
    4096 Mar 06 2020 21:01:11.0000000000 +00:00 gs_script/sss
    4096 Apr 24 2020 18:56:40.0000000000 +00:00 tech_support
1 5 3 0 5 ~ M a y ~ 1 1 ~ 2 0 2 0 ~ 1 6 : 4 1 : 0 1 . 0 0 0 0 0 0 0 0 0 0 ~ + 0 0 : 0 0 ~ t e c h < s u p p o r t / i g m p - s n o o p i n g . t c l
    1612 May 11 2020 16:41:01.0000000000 +00:00 tech_support/igmpsn_dump.tcl
```

The following is a sample output from the show bootflash: sizesort command:

```
Device# show bootflash: sizesort
-#- --length-- ---------date/time--------- path
126 968337890 Mar 27 2020 18:06:17.0000000000 +00:00 cat9k_iosxe.CSCvt37598.bin
136 967769293 May 05 2020 21:50:33.0000000000 +00:00 cat9k_iosxe.CSCvu05574
124 967321806 Mar 23 2020 18:48:45.0000000000 +00:00 cat9k_ts_2103.bin
133 951680494 Apr 13 2020 19:46:35.0000000000 +00:00
cat9k_iosxe.2020-04-13_17.34_rakoppak.SSA.bin
130 \overline{950434163 Apr 09 2}2020 0\overline{9}:03:47.0000000000 +00:00
cat9k_iosxe.2020-04-09_13.49_rakoppak.SSA.bin
132 950410332 Apr 09 2020 07:29:57.0000000000 +00:00
cat9k_iosxe.2020-04-09_12.28_rakoppak.SSA.bin
134 \overline{948402972 Apr 17 \overline{2}020 2\overline{3}:02:04.0000000000 +00:00 cat9k iosxe.tla.bin}
77 810146146 Feb 27 2020 15:41:42.0000000000 +00:00 cat9k_iosxe.16.12.01c.SPA.bin
88 701945494 Feb 27 2020 16:23:55.0000000000 +00:00 cat9k_iosxe.16.09.03.SPA.bin
101 535442436 Mar 01 2020 18:01:41.0000000000 +00:00 cat9k-rpbase.16.12.01c.SPA.pkg
86 88884228 Mar 01 2020 18:01:41.0000000000 +00:00 cat9k-espbase.16.12.01c.SPA.pkg
104 60167172 Mar 01 2020 18:01:41.0000000000 +00:00 cat9k-sipspa.16.12.01c.SPA.pkg
102 43111770 Mar 01 2020 18:02:07.0000000000 +00:00 cat9k-rpboot.16.12.01c.SPA.pkg
15 33554432 May 11 2020 16:42:37.0000000000 +00:00 nvram_config
131 33554432 May 11 2020 16:42:39.0000000000 +00:00 nvram_config_bkup
103 31413252 Mar 01 2020 18:01:41.0000000000 +00:00 cat9k-sipbase.16.12.01c.SPA.pkg
105 22676484 Mar 01 2020 18:01:41.0000000000 +00:00 cat9k-srdriver.16.12.01c.SPA.pkg
85 14226440 Mar 01 2020 18:01:41.0000000000 +00:00 cat9k-cc_srdriver.16.12.01c.SPA.pkg
```


show cable-diagnostics tdr

To display the Time Domain Reflector (TDR) results, use the show cable-diagnostics tdr command in privileged EXEC mode.
show cable-diagnostics tdr interface interface-id

| $\overline{\text { Syntax Description }}$ | | |
| :--- | :--- | :--- |
| interface-id Specifies the interface on which TDR is run. | | |
| Command Default | No default behavior or values. | |
| $\overline{\text { Command Modes }}$ | Privileged EXEC | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest | This command was
 introduced. |

Usage Guidelines

TDR is supported only on 10/100/100 copper Ethernet ports. It is not supported on 10-Gigabit Ethernet ports and small form-factor pluggable (SFP) module ports.

Examples

This example shows the output from the show cable-diagnostics tdr interface interface-id command on a device:

```
Device# show cable-diagnostics tdr interface gigabitethernet1/0/23
    TDR test last run on: March 01 00:04:08
    Interface Speed Local pair Pair length Remote pair Pair status
    --------- ----- ---------- ------------------ -------------------------------------
    Gil/0/23 1000M Pair A 1 +/- 1 meters Pair A Normal
    Pair B 1 +/- 1 meters Pair B Normal
    Pair C 1 +/- 1 meters Pair C Normal
    Pair D 1 +/- 1 meters Pair D Normal
```

Table 203: Field Descriptions for the show cable-diagnostics tdr Command Output

| Field | Description |
| :--- | :--- |
| Interface | The interface on which TDR is run. |
| Speed | The speed of connection. |
| Local pair | The name of the pair of wires that TDR is testing on the local interface. |

| Field | Description |
| :---: | :---: |
| Pair length | The location of the problem on the cable, with respect to your device. TDR can only find the location in one of these cases:
 - The cable is properly connected, the link is up, and the interface speed is $1000 \mathrm{Mb} / \mathrm{s}$.
 - The cable is open.
 - The cable has a short. |
| Remote pair | The name of the pair of wires to which the local pair is connected. TDR can learn about the remote pair only when the cable is properly connected and the link is up. |
| Pair status | The status of the pair of wires on which TDR is running:
 - Normal-The pair of wires is properly connected.
 - Not completed-The test is running and is not completed.
 - Not supported-The interface does not support TDR.
 - Open-The pair of wires is open.
 - Shorted-The pair of wires is shorted.
 - ImpedanceMis-The impedance is mismatched.
 - Short/Impedance Mismatched-The impedance mismatched or the cable is short.
 - InProgress-The diagnostic test is in progress. |

This example shows the output from the show interface interface-id command when TDR is running:

```
Device# show interface gigabitethernet1/0/2
    gigabitethernet1/0/2 is up, line protocol is up (connected: TDR in Progress)
```

This example shows the output from the show cable-diagnostics tdr interface interface-id command when TDR is not running:
\# show cable-diagnostics tdr interface gigabitethernet1/0/2
\% TDR test was never issued on gigabitethernet1/0/2

If an interface does not support TDR, this message appears:
\% TDR test is not supported on device 1

show debug

To display all the debug commands available on a switch, use the show debug command in Privileged EXEC mode.
show debug
show debug condition Condition identifier \mid All conditions

Syntax Description

| Command Default |
| :--- |
| Command Modes |
| Command History |

Usage Guidelines

$\overline{\text { Examples }}$

Condition identifier Sets the value of the condition identifier to be used. Range is between 1 and 1000.
All conditions \quad Shows all conditional debugging options available.

No default behavior or values.
Privileged EXEC
Release Modification

Cisco IOS XE Release 16.1 This command was introduced.

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use debug commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. Moreover, it is best to use debug commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased debug command processing overhead will affect system use.

This example shows the output of a show debug command:

Device\# show debug condition all

To disable debugging, use the no debug all command.

show env

To display fan, temperature, and power information for the switch (standalone switch, stack's active switch, or stack member), use the show env command in EXEC modes.

```
show env { all | fan | power [all | switch [switch-number]] | stack [stack-number ] |
temperature [status] }
```

Syntax Description

| all | Displays fan, temperature and power environmental status. |
| :--- | :--- |
| fan | Displays the switch fan status. |
| power | Displays the power supply status. |
| all (Optional) Displays the status for all power supplies. | |
| switch switch-number | (Optional) Displays the power supply status for a specific
 switch. |
| stack switch-number | (Optional) Displays all environmental status for each switch
 in the stack or for a specified switch. The range is 1 to 9,
 depending on the switch member numbers in the stack. |
| temperature | Displays the switch temperature status. |
| status | (Optional) Displays the temperature status and threshold |
| | values. |

| Command Default | No default behavior or values. | |
| :--- | :--- | :--- |
| Command Modes | User EXEC | |
| | Privileged EXEC | |
| Command History | Release | Modification |
| | | |

Cisco IOS XE Everest 16.5.1a This command was introduced.
$\overline{\text { Usage Guidelines }}$ Use the show env stack [switch-number] command to display information about any switch in the stack from any member switch.

Use the show env temperature status command to display the switch temperature states and threshold levels.

Examples

This example shows how to display information about stack member 1 from the active switch:

```
Device> show env stack 1
Device 1:
Device Fan 1 is OK
Device Fan 2 is OK
Device Fan 3 is OK
FAN-PS1 is OK
```

```
FAN-PS2 is NOT PRESENT
Device 1: SYSTEM TEMPERATURE is OK
Temperature Value: 32 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 41 Degree Celsius
Red Threshold : 56 Degree Celsius
Device>
```

This example shows how to display temperature value, state, and threshold values:

```
Device> show env temperature status
Temperature Value: 32 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 41 Degree Celsius
Red Threshold : 56 Degree Celsius
Device>
```

Table 204: States in the show env temperature status Command Output

| State | Description |
| :--- | :--- |
| Green | The switch temperature is in the normal operating range. |
| Yellow | The temperature is in the warning range. You should check the external temperature around the
 switch. |
| Red | The temperature is in the critical range. The switch might not run properly if the temperature is in
 this range. |

show env xps

To display budgeting, configuration, power, and system power information for the Cisco eXpandable Power System (XPS) 2200, use the show env xps command in privileged EXEC mode.
show env xps \{ budgeting | configuration | port [all | number] | power | system | thermal | upgrade | version \}

Syntax Description

Command Modes
Command History

Usage Guidelines

Examples

| budgeting | Displays XPS power budgeting, the allocated and budgeted
 power of all switches in the power stack. |
| :--- | :--- |
| configuration | Displays the configuration resulting from the power xps
 privileged EXEC commands. The XPS configuration is
 stored in the XPS. Enter the show env xps configuration
 command to retrieve the non-default configuration. |
| port [all \| number] | Displays the configuration and status of all ports or the
 specified XPS port. Port numbers are from 1 to 9. |
| power | Displays the status of the XPS power supplies. |
| system | Displays the XPS system status. |
| thermal | Displays the XPS thermal status. |
| upgrade | Displays the XPS upgrade status. |
| version | Displays the XPS version details. |

Privileged EXEC

| Release | Modification |
| :--- | :--- |
| 12.2(55)SE1 | This command was introduced. |

Use the show env xps privileged EXEC command to display the information for XPS 2200.

This is an example of output from the show env xps budgeting command:
Switch\#
=======

XPS 0101.0100 .0000 :

| 2 | - | - | - | SP-PS | 223 | 223 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | - | - | - | - | - | - |
| 4 | - | - | - | - | - | - |
| 5 | - | - | - | - | - | - |
| 6 | - | - | - | - | - | - |
| 7 | - | - | - | - | - | - |
| 8 | - | - | - | - | - | - |
| 9 | 1 | 1100 | - | RPS-NB | 223 | 070 |
| $X P S$ | - | - | 1100 | - | - | |

This is an example of output from the show env xps configuration command:

```
Switch# show env xps configuration
===============================================
XPS 0101.0100.0000:
power xps port 4 priority 5
power xps port 5 mode disable
power xps port 5 priority 6
power xps port 6 priority }
power xps port }7\mathrm{ priority }
power xps port 8 priority }
power xps port 9 priority 4
```

This is an example of output from the show env xps port all command:

```
Switch\#
XPS 010
```


This is an example of output from the show env xps power command:

```
XPS 0101.0100.0000 :
=====================================================================================
Port-Supply SW PID
----------- -- -------------------
Serial\# Status Mode Watts
XPS-A Not present
XPS-B NG3K-PWR-1100WAC LIT13320NTV OK SP 1100
1-A
```

| $1-B$ | - | - | | - | - | SP |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2-A$ | - | - | - | - | 715 | |
| $2-B$ | - | - | | - | - | |
| $9-A$ | | esent | | | RIT141307RK OK | 1100 |
| $9-B$ | | | | | | |

This is an example of output from the show env xps system command:

```
Switch#
=======
XPS 0101.0100.0000 :
\(=================================================================================\)
XPS Cfg Cfg RPS Switch Current Data Port XPS Port Name
Mode Role Pri Conn Role-State Switch \#
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & - & On & Auto-SP & 1 & Yes & SP-PS & - \\
\hline 2 & - & On & Auto-SP & 2 & Yes & SP-PS & - \\
\hline 3 & - & On & Auto-SP & 3 & No & - & - \\
\hline 4 & none & On & Auto-SP & 5 & No & - & - \\
\hline 5 & - & Off & Auto-SP & 6 & No & - & - \\
\hline 6 & - & On & Auto-SP & 7 & No & - & - \\
\hline 7 & - & On & Auto-SP & 8 & No & - & - \\
\hline 8 & - & On & Auto-SP & 9 & No & - & \\
\hline 9 & test & On & Auto-SP & 4 & Yes & RPS-NB & \\
\hline
\end{tabular}
```

This is an example of output from the show env xps thermal command:

```
Switch#
=======
```

```
XPS 0101.0100.0000:
```



```
Fan Status
---- -----------
1 \mp@code { O K }
2 OK
3 NOT PRESENT PS-1 NOT PRESENT PS-2 OK Temperature is OK
```

This is an example of output from the show env xps upgrade command when no upgrade is occurring:

```
Switch# show env xps upgrade
No XPS is connected and upgrading.
```

These are examples of output from the show env xps upgrade command when an upgrade is in process:

```
Switch# show env xps upgrade
XPS Upgrade Xfer
SW Status Prog
-- ----------- ----
1 Waiting 0%
Switch#
*Mar 22 03:12:46.723: %PLATFORM_XPS-6-UPGRADE_START: XPS 0022.bdd7.9b14 upgrade has
started through the Service Port.
Switch# show env xps upgrade
XPS Upgrade Xfer
SW Status Prog
-- ----------- ----
1 Receiving 1%
Switch# show env xps upgrade
```

```
XPS Upgrade Xfer
SW Status Prog
- ----------- ----
1 Receiving 5%
Switch# show env xps upgrade
XPS Upgrade Xfer
SW Status Prog
-- ----------- ----
1 Reloading 100%
Switch#
*Mar 22 03:16:01.733: %PLATFORM_XPS-6-UPGRADE_DONE: XPS 0022.bdd7.9b14 upgrade has
completed and the XPS is reloading.
```

This is an example of output from the show env xps version command:

```
Switch# show env xps version
==============================================
XPS 0022.bdd7.9b14:
Serial Number: FDO13490KUT
Hardware Version: 8
Bootloader Version: 7
Software Version: 18
```

Table 205: Related Commands

| Command | Description |
| :--- | :--- |
| power xps(global configuration command) | Configures XPS and XPS port names. |
| power xps(privileged EXEC command) | Configures the XPS ports and system. |

show flow monitor

To display the status and statistics for a flow monitor, use the show flow monitor command in privileged EXEC mode.

Syntax Description

| name | (Optional) Specifies the name of a flow monitor. |
| :--- | :--- |
| monitor-name | (Optional) Name of a flow monitor that was previously configured. |
| cache | (Optional) Displays the contents of the cache for the flow monitor. |
| format | (Optional) Specifies the use of one of the format options for formatting the display output. |
| csv | (Optional) Displays the flow monitor cache contents in comma-separated variables (CSV)
 format. |
| record | (Optional) Displays the flow monitor cache contents in record format. |
| table | (Optional) Displays the flow monitor cache contents in table format. |
| statistics | (Optional) Displays the statistics for the flow monitor. |

Command Modes
 Command History

Privileged EXEC
Release \quad Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
The cache keyword uses the record format by default.
The uppercase field names in the display output of the show flowmonitor monitor-name cache command are key fields that uses to differentiate flows. The lowercase field names in the display output of the show flow monitor monitor-name cache command are nonkey fields from which collects values as additional data for the cache.

Examples

The following example displays the status for a flow monitor:

```
# show flow monitor FLOW-MONITOR-1
Flow Monitor FLOW-MONITOR-1:
    Description: Used for basic traffic analysis
    Flow Record: flow-record-1
    Flow Exporter: flow-exporter-1
    flow-exporter-2
    Cache:
        Type: normal
        Status: allocated
        Size: 4096 entries / 311316 bytes
        Inactive Timeout: }15\mathrm{ secs
        Active Timeout: 1800 secs
```

This table describes the significant fields shown in the display.

Table 206: show flow monitor monitor-name Field Descriptions

| Field | Description |
| :--- | :--- |
| Flow Monitor | Name of the flow monitor that you configured. |
| Description | Description that you configured or the monitor, or the default description User defined. |
| Flow Record | Flow record assigned to the flow monitor. |
| Flow Exporter | Exporters that are assigned to the flow monitor. |
| Cache | Information about the cache for the flow monitor. |
| Type | Flow monitor cache type. The value is always normal, as it is the only supported cache
 type. |
| Status | Status of the flow monitor cache.
 The possible values are:
 \bullet
 \bullet
 • beilocated-The cache is allocated.
 • not allocated-The cache is being deleted. |
| Size | Current cache size. |
| Inactive Timeout allocated. | Current value for the inactive timeout in seconds. |
| Active Timeout | Current value for the active timeout in seconds. |

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1:

This table describes the significant fields shown in the display.
The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1 in a table format:

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-IPv6 (the cache contains IPv6 data) in record format:

The following example displays the status and statistics for a flow monitor:

show install

To display information about install packages, use the show install command in privileged EXEC mode.
show install \{active |committed |inactive |log|package \{bootflash: | flash: | webui:\}| rollback | summary |uncommitted\}

Syntax Description

| active | Displays information about active packages. |
| :--- | :--- |
| committed | Displays package activations that are persistent. |
| inactive | Displays inactive packages.
 $\mathbf{l o g}$
 bisplays entries stored in the logging installation |
| package | Displays metadata information about the package,
 including description, restart information,
 components in the package, and so on. |
| \{bootflash: \mid flash: \mid harddisk: \mid webui: $\}$ | Specifies the location of the install package. |
| rollback | Displays the software set associated with a saved
 installation. |
| summary | Displays information about the list of active,
 inactive, committed, and superseded packages. |
| uncommitted | Displays package activations that are nonpersistent. |

| Command Modes | | |
| :--- | :--- | :--- |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.6.1 | This command was introduced. |

Usage Guidelines
 Use the show commands to view the status of the install package.

Example

The following is sample output from the show install package command:

```
Device# show install package bootflash:cat3k-universalk9.2017-01-10_13.15.1.
CSCxxx.SSA.dmp.bin
Name: cat3k-universalk9.2017-01-10 13.15.1.CSCxxx.SS
Version: 16.6.1.0.199.1484082952..Everest
Platform: Catalyst3k
Package Type: dmp
Defect ID: CSCxxx
Package State: Added
Supersedes List: {}
Smu ID: 1
```

The following is sample output from the show install summary command:

```
Device# show install summary
Active Packages:
    bootflash:cat3k-universalk9.2017-01-10_13.15.1.CSCxxx.SSA.dmp.bin
Inactive Packages:
    No packages
Committed Packages:
    bootflash:cat 3k-universalk9.2017-01-10_13.15.1.CSCxxx.SSA.dmp.bin
Uncommitted Packages:
    No packages
Device#
```

The table below lists the significant fields shown in the display.

Table 207: show install summary Field Descriptions

| Field | Description |
| :--- | :--- |
| Active Packages | Name of the active install package. |
| Inactive Packages | List of inactive packages. |
| Committed Packages | Install packages that have saved or committed changes to the harddisk, so
 that the changes become persistent across reloads. |
| Uncommitted Packages | Intall package activations that are nonpersistent. |

The following is sample output from the show install log command:

```
Device# show install log
[0|install op boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add( FATAL)]: File path (scp) is not yet supported for this command
[4|install_add]: START Sun Feb 26 05:57:04 UTC 2017
[4|install_add]: END SUCCESS
/bootflash/cat3k-universalk9.2017-01-10_13.15.1.CSCvb12345.SSA.dmp.bin
Sun Feb 26 05:57:22 UTC 2017
[5|install_activate]: START Sun Feb 26 05:58:41 UTC 2017
```

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | install | Installs SMU packages. |

show license all

To display all licensing information enter the show license all command in privileged EXEC mode. This command displays status, authorization, UDI, and usage information, all combined.
show license all
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

| Command Default |
| :--- |
| Command History |

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.2a | Command output was updated to display information
 relating to Smart Licensing Using Policy.
 Command output no longer displays Smart Account
 and Virtual account information. |

Usage Guidelines

Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.

Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing (whether smart licensing is enabled, all associated licensing certificates, compliance status, and so on).

Examples

show license all for Smart Licensing Using Policy, on page 1949
show license all for Smart Licensing, on page 1951

show license all for Smart Licensing Using Policy

The following is sample output from the show license all command on a Cisco Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Device# show license all
Smart Licensing Status
======================
Smart Licensing is ENABLED
License Reservation is ENABLED
Export Authorization Key:
    Features Authorized:
        <none>
Utility:
    Status: DISABLED
Smart Licensing Using Policy:
    Status: ENABLED
Data Privacy:
    Sending Hostname: yes
```

```
        Callhome hostname privacy: DISABLED
        Smart Licensing hostname privacy: DISABLED
    Version privacy: DISABLED
Transport:
    Type: Transport Off
Miscellaneous:
    Custom Id: <empty>
Policy:
    Policy in use: Merged from multiple sources.
    Reporting ACK required: yes (CISCO default)
    Unenforced/Non-Export Perpetual Attributes:
        First report requirement (days): 365 (CISCO default)
        Reporting frequency (days): 0 (CISCO default)
        Report on change (days): 90 (CISCO default)
    Unenforced/Non-Export Subscription Attributes:
            First report requirement (days): 90 (CISCO default)
            Reporting frequency (days): 90 (CISCO default)
            Report on change (days): 90 (CISCO default)
    Enforced (Perpetual/Subscription) License Attributes:
            First report requirement (days): 0 (CISCO default)
            Reporting frequency (days): 0 (CISCO default)
            Report on change (days): 0 (CISCO default)
    Export (Perpetual/Subscription) License Attributes:
            First report requirement (days): 0 (CISCO default)
            Reporting frequency (days): 0 (CISCO default)
            Report on change (days): 0 (CISCO default)
Usage Reporting:
    Last ACK received: <none>
    Next ACK deadline: Nov 29 10:50:05 2020 PDT
    Reporting Interval: 30
    Next ACK push check: <none>
    Next report push: Aug 31 10:52:05 2020 PDT
    Last report push: <none>
    Last report file write: <none>
Trust Code Installed: <none>
License Usage
network-advantage (C9500 Network Advantage):
    Description: network-advantage
    Count: 2
    Version: 1.0
    Status: IN USE
    Export status: NOT RESTRICTED
    Feature Name: network-advantage
    Feature Description: network-advantage
    Enforcement type: NOT ENFORCED
    License type: Perpetual
    Reservation:
            Reservation status: SPECIFIC INSTALLED
            Total reserved count: 2
dna-advantage (C9500-16X DNA Advantage):
    Description: C9500-16X DNA Advantage
    Count: 2
    Version: 1.0
    Status: IN USE
    Export status: NOT RESTRICTED
    Feature Name: dna-advantage
    Feature Description: C9500-16X DNA Advantage
    Enforcement type: NOT ENFORCED
    License type: Subscription
    Reservation:
        Reservation status: SPECIFIC INSTALLED
        Total reserved count: 2
Product Information
```

```
UDI: PID:C9500-16X,SN:FCW2233A5ZV
HA UDI List:
    Active:PID:C9500-16X,SN:FCW2233A5ZV
    Standby:PID:C9500-16X,SN:FCW2233A5ZY
Agent Version
Smart Agent for Licensing: 5.0.5_rel/42
License Authorizations
=======================
Overall status:
    Active: PID:C9500-16X,SN:FCW2233A5ZV
        Status: SPECIFIC INSTALLED on Aug 31 10:15:01 2020 PDT
            Last Confirmation code: 4bfbea7f
    Standby: PID:C9500-16X,SN:FCW2233A5ZY
            Status: SPECIFIC INSTALLED on Aug 31 10:15:01 2020 PDT
            Last Confirmation code: 9394f196
Specified license reservations:
    C9500 Network Advantage (C9500 Network Advantage):
            Description: C9500 Network Advantage
            Total reserved count: 2
            Enforcement type: NOT ENFORCED
            Term information:
                Active: PID:C9500-16X,SN:FCW2233A5ZV
                    Authorization type: SPECIFIC INSTALLED on Aug 31 10:15:01 2020 PDT
                    License type: PERPETUAL
                        Term Count: 1
            Standby: PID:C9500-16X,SN:FCW2233A5ZY
                    Authorization type: SPECIFIC INSTALLED on Aug 31 10:15:01 2020 PDT
                    License type: PERPETUAL
                        Term Count: 1
    C9500-DNA-16X-A (C9500-16X DNA Advantage):
            Description: C9500-DNA-16X-A
            Total reserved count: 2
            Enforcement type: NOT ENFORCED
            Term information:
                Active: PID:C9500-16X,SN:FCW2233A5ZV
                    Authorization type: SPECIFIC INSTALLED on Aug 31 10:15:01 2020 PDT
                    License type: PERPETUAL
                    Term Count: 1
            Standby: PID:C9500-16X,SN:FCW2233A5ZY
                    Authorization type: SPECIFIC INSTALLED on Aug 31 10:15:01 2020 PDT
                    License type: PERPETUAL
                        Term Count: 1
Purchased Licenses:
    No Purchase Information Available
Derived Licenses:
    Entitlement Tag:
regid.2017-03.com.cisco.advantagek9-Nyquist-c9500,1.0_f1563759-2e03-4a4c-bec5-5feec525a12c
    Entitlement Tag:
regid.2017-07.com.cisco.C9500-DNA-16X-A,1.0_ef3574d1-156b-486a-864f-9f779ff3ee49
```


show license all for Smart Licensing

The following is sample output from the show license all command:

```
Device# show license all
Smart Licensing Status
=======================
Smart Licensing is ENABLED
Registration:
```

```
    Status: REGISTERED
    Smart Account: CISCO Systems
    Virtual Account: NPR
    Export-Controlled Functionality: Allowed
    Initial Registration: SUCCEEDED on Jul 13 09:30:40 2018 EDT
    Last Renewal Attempt: None
    Next Renewal Attempt: Jan 09 09:30:40 2019 EDT
    Registration Expires: Jul 13 09:25:31 2019 EDT
License Authorization:
    Status: AUTHORIZED on Jul 13 09:30:45 2018 EDT
    Last Communication Attempt: SUCCEEDED on Jul 13 09:30:45 2018 EDT
    Next Communication Attempt: Aug 12 09:30:45 2018 EDT
    Communication Deadline: Oct 11 09:25:40 2018 EDT
Utility:
    Status: DISABLED
Data Privacy:
    Sending Hostname: yes
        Callhome hostname privacy: DISABLED
        Smart Licensing hostname privacy: DISABLED
    Version privacy: DISABLED
Transport:
    Type: Callhome
License Usage
==============
C9300 DNA Advantage (C9300-24 DNA Advantage):
    Description: C9300-24P DNA Advantage
    Count: 3
    Version: 1.0
    Status: AUTHORIZED
C9300 Network Advantage (C9300-24 Network Advantage):
    Description: C9300-24P Network Advantage
    Count: 3
    Version: 1.0
    Status: AUTHORIZED
Product Information
===================
UDI: PID:C9300-24U,SN:FCW2125L046
HA UDI List:
        Active:PID:C9300-24U,SN:FCW2125L046
        Standby:PID:C9300-24U,SN:FCW2125L03U
        Member:PID:C9300-24U,SN:FCW2125G01T
Agent Version
Smart Agent for Licensing: 4.4.13_rel/116
Component Versions: SA:(1_3_dev)1.0.15, SI:(dev22)1.2.1, CH:(rel5)1.0.3, PK:(dev18)1.0.3
Reservation Info
===============
License reservation: DISABLED
```


Related Commands

| Command | Description |
| :--- | :--- |
| show license status | Displays compliance status of a license. |
| show license authorization | Displays authorization code-related information. |
| show license summary | Displays summary of all active licenses. |
| show license udi | Displays UDI. |
| show license usage | Displays license usage information |
| show license tech support | Displays the debug output. |

show license authorization

To display authorization-related information for (export-controlled and enforced) licenses, enter the show license authorization command in privileged EXEC mode.

show license authorization

This command has no arguments or keywords.

Command Modes

Command History

Usage Guidelines

Privileged EXEC (Device\#)
Release Modification

Cisco IOS XE Amsterdam 17.3.2a This command was introduced.

While there are no export-controlled or enforced licenses on Cisco Catalyst Access, Core, and Aggregation Switches, you can use this command to display migrated SLR authorization codes.

Examples

See Table 208: show license authorization Field Descriptions, on page 1955 for information about fields shown in the display.

See show license authorization Displaying Migrated SLR Authorization Code, on page 1957 for sample output.

Table 208: show license authorization Field Descriptions

| Field | | Description |
| :---: | :---: | :---: |
| Overall Status | Header for UDI information for all product instances in the set-up, the type of authorization that is installed, and configuration errors, if any.
 In a High Availability set-up, all UDIs in the set-up are listed. | |
| | Active:
 Status: | The active product instance UDI, followed by the status of the authorization code installation for this UDI.
 If the status indicates that the authorization code is installed and there is a confirmation code, this is also displayed. |
| | Standby:
 Status: | The standby product instance UDI, followed by the status of the authorization code installation for this UDI.
 If the status indicates that the authorization code is installed and there is a confirmation code, this is also displayed. |
| | Member:
 Status: | The member product instance UDI, followed by the status of the authorization code installation for this UDI.
 If the status indicates that the authorization code is installed and there is a confirmation code, this is also displayed. |
| | ERROR: | Configuration errors or discrepancies in the High Availability set-up, if any. |

| Field | | Description |
| :---: | :---: | :---: |
| Authorizations | Header for detailed license authorization information. All licenses, their enforcement types, and validity durations are displayed. Errors are displayed for each product instance if its authorization or mode does not match what is installed on the active.
 This section is displayed only if the product instance is using a license with an authorization code. | |
| | (): | License name and a shortened form of the license name. |
| | Description | License description. |
| | Total available count: | Total count of licenses that are available to consume.
 This includes licenses of all durations (perpetual and subscription), including expired subscription licenses, for all the product instances in a High Availability setup. |
| | Enforcement type | Enforcement type for the license. This may be one of the following:
 - Enforced
 - Not enforced
 - Export-Controlled |
| | Term information: | Header providing license duration information. The following fields maybe included under this header:
 - Active: The active product instance UDI, followed by the status of the authorization code installation for this UDI.
 - Authorization type: Type of authorization code installed and date of installation. The type can be: SLAC, UNIVERSAL, SPECIFIED, PAK, RTU.
 - Start Date: Displays validity start date if the license is for a specific term or time period.
 - Start Date: Displays validity end date if the license is for a specific term or time period.
 - Term Count: License count.
 - Subscription ID: Displays ID if the license is for a specific term or time period.
 - License type: License duration. This can be: SUBSCRIPTION or PERPETUAL.
 - Standby: The standby product instance UDI, followed by the status of the authorization code installation for this UDI.
 - Member: The member product instance UDI, followed by the status of the authorization code installation for this UDI. |

| Field | | Description |
| :--- | :--- | :--- |
| Purchased Licenses | Header for license purchase information. | |
| | Active: | The active product instance and its the UDI. |
| | Count: | License count. |
| | Description: | License description. |
| | License type: | License duration. This can be: SUBSCRIPTION or
 PERPETUAL. |
| | Standby: | The standby product instance UDI. |
| | Member: | The member product instance UDI. |

show license authorization Displaying Migrated SLR Authorization Code

The following is sample output of the show license authorization command showing SLR authorization codes (Last Confirmation code:), which have been migrated to Smart Licensing Using Policy.

```
Device# show license authorization
Overall status:
    Active: PID:C9500-16X,SN:FCW2233A5ZV
        Status: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
            Last Confirmation code: 184ba6d6
    Standby: PID:C9500-16X,SN:FCW2233A5ZY
            Status: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
            Last Confirmation code: 961d598f
Specified license reservations:
    C9500 Network Advantage (C9500 Network Advantage):
        Description: C9500 Network Advantage
        Total reserved count: 2
        Enforcement type: NOT ENFORCED
        Term information:
            Active: PID:C9500-16X,SN:FCW2233A5ZV
            Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
                        License type: PERPETUAL
                        Term Count: 1
            Standby: PID:C9500-16X,SN:FCW2233A5ZY
            Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
            License type: PERPETUAL
                        Term Count: 1
    C9500-DNA-16X-A (C9500-16X DNA Advantage):
        Description: C9500-DNA-16X-A
        Total reserved count: 2
        Enforcement type: NOT ENFORCED
        Term information:
            Active: PID:C9500-16X,SN:FCW2233A5ZV
                    Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
                    License type: PERPETUAL
                    Term Count: 1
            Standby: PID:C9500-16X,SN:FCW2233A5ZY
                    Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
                    License type: PERPETUAL
                    Term Count: 1
```

```
Purchased Licenses:
    No Purchase Information Available
Derived Licenses:
    Entitlement Tag:
regid.2017-03.com.cisco.advantagek9-Nyquist-C9500,1.0_f1563759-2e03-4a4c-bec5-5feec525a12c
    Entitlement Tag:
regid.2017-07.com.cisco.C9500-DNA-16X-A,1.0_ef3574d1-156b-486a-864f-9f779ff3ee49
```


show license data conversion

To display license data conversion information, enter the show license data command in privileged EXEC mode.
show license data conversion

Syntax Description
This command has no keywords or arguments

Command Modes

Command History

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.2a | Command output was updated to display information relating to Smart

 Licensing Using Policy.
 Command output no longer displays Smart Account and Virtual account
 information. |

Usage Guidelines
Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.

Device-led conversion is not supported on Cisco Catalyst Access, Core, and Aggregation Switches.
Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing.

show license eventlog

To display event logs relating to Smart Licensing Using Policy, enter the show license eventlog command in privileged EXEC mode.
show license eventlog [days]

Syntax Description

Command Modes

Command History

days Enter the number of days for which you want to display event logs. The valid value range is from 0 to 2147483647.

Privileged EXEC (Device\#)

| Release | Modification |
| :---: | :---: |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.2a | Additional events were added with the introduction of Smart Licensing Using Policy:
 - Installation and removal of a policy
 - Request, installation and removal of an authorization code.
 - Installation and removal of a trust code.
 - Addition of authorization source information for license usage. |

Usage Guidelines

Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.

Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing.

Examples

show license eventlog for One Day, for Smart Licensing Using Policy, on page 1960
show license eventlog for All Events, for Smart Licensing Using Policy, on page 1961

show license eventlog for One Day, for Smart Licensing Using Policy

The following is sample output from the show license eventlog command on a Cisco Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches. The command is configured to display events for one day.

```
Device# show license eventlog 1
**** Event Log ****
2020-09-11 00:50:17.693 EDT SAEVT_PLATFORM eventSource="INFRA_SL"
eventName="INFRA_SL_EVLOG_ERM_RESET" MSG="ERM-Reset: Client 0, AP-GROUP group, 2 features
air-network-advantage,air-dna-advantage"
2020-09-11 00:50:17.695 EDT SAEVT_ENDPOINT_USAGE count="0"
```

```
entitlementTag="regid.2018-06.com.cisco.DNA NWStack,1.0_e7244e71-3ad5-4608-8bf0-d12f67c80896"
2020-09-11 00:50:17.695 EDT SAEVT_ENDPOINT_USAGE count="0"
entitlementTag="regid.2017-08.com.cisco.AIR-DNA-A,1.0 b6308627-3ab0-4a11-a3d9-586911a0d790"
2020-09-11 00:50:50.175 EDT SAEVT_POLL_MESSAGE messageType="LICENSE_USAGE"
2020-09-11 08:50:17.694 EDT SAEVT PLATFORM eventSource="INFRA SL"
eventName="INFRA_SL_EVLOG_ERM_RESET" MSG="ERM-Reset: Client 0, AP-GROUP group, 2 features
air-network-advantage,air-dna-advantage"
2020-09-11 08:50:17.696 EDT SAEVT_ENDPOINT_USAGE count="0"
entitlementTag="regid.2018-06.com.cisco.DNA NWStack,1.0 e7244e71-3ad5-4608-8bf0-d12f67c80896"
2020-09-11 08:50:17.696 EDT SAEVT_ENDPOINT_USAGE count="0"
entitlementTag="regid.2017-08.com.cisco.AIR-DNA-A,1.0_b6308627-3ab0-4a11-a3d9-586911a0d790"
2020-09-11 08:50:52.804 EDT SAEVT_POLL_MESSAGE messageType="LICENSE_USAGE"
```


show license eventlog for All Events, for Smart Licensing Using Policy

The following is sample output from the show license eventlog command on a Cisco Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches. The command is configured to display all events.

```
Device# show license eventlog
**** Event Log ****
2020-09-01 15:43:42.300 UTC SAEVT INIT START version="4.13.14 rel/41"
2020-09-01 15:43:42.301 UTC SAEVT_INIT_CRYPTO success="False" error="Crypto Initialization
has not been completed"
2020-09-01 15:43:42.301 UTC SAEVT_HA_EVENT eventType="SmartAgentEvtHArmfRegister"
2020-09-01 15:43:45.055 UTC SAEVT READY
2020-09-01 15:43:45.055 UTC SAEVT ENABLED
2020-09-01 15:43:45.088 UTC SAEVT_PLATFORM eventSource="INFRA_SL"
eventName="INFRA_SL_EVLOG_SYSDATA_FAIL" MSG="Get-SDL: not the active switch"
2020-09-01 15:43:45.089 UTC SAEVT_PLATFORM eventSource="INFRA_SL"
eventName="INFRA_SL_EVLOG_SYSDATA_FAIL" MSG="Get-SDL: not the active switch"
2020-09-01 15:43:45.089 UTC SAEVT_PLATFORM eventSource="INFRA_SL"
eventName="INFRA SL EVLOG SYSDATA FAIL" MSG="Get-SDL: not the active switch"
2020-09-01 15:43:45.089 UTC SAEVT_LICENSE_USAGE count="0" type="destroy"
entitlementTag="regid.2018-01.com.cisco.C9500-24Y4C-A,1.0 6b065611-6552-472a-8859-ab3339550166"
2020-09-01 15:43:45.098 UTC SAEVT_PLATFORM eventSource="INFRA_SL"
eventName="INFRA_SL_EVLOG_SYSDATA_FAIL" MSG="Get-SDL: not the active switch"
```


show license history message

To display communication history between the product instance and CSSM or CSLU (as the case may be), enter the show license history message command in privileged EXEC mode. The output of this command is used by the technical support team, for troubleshooting.
show license history message

Syntax Description

Command Modes

Command History

Usage Guidelines

This command has no keywords or arguments.

Privileged EXEC (Device\#)
Release Modification

Cisco IOS XE Amsterdam 17.3.2a This command was introduced.

When you encounter an error message that you are not able to resolve, along with a copy of the message that appears on the console or in the system log, provide your Cisco technical support representative with sample output of these commands: show license tech support, show license history message, and the show platform software sl-infra all privileged EXEC commands.

show license reservation

To display license reservation information, enter the show license reservation command in privileged EXEC mode.
show license reservation
This command has no arguments or keywords.

Command Modes

Privileged EXEC (Device\#)

Release Modification
Cisco IOS XE Fuji 16.9.1 This command was introduced.
Cisco IOS XE Amsterdam 17.3.2a The command continues to be available on the CLI, but is no longer applicable because the notion of reserveration does not exist in the Smart Licensing Using Policy environment.

Usage Guidelines
The command continues to be available on the CLI and corresponding output is displayed, but with the introduction of Smart Licensing Using Policy, the notion of reservation is not longer applicable. Use the show license all command in privileged EXEC mode, to display migrated SLR licenses instead (the SLR authorization code is migrated to Smart Licensing Using Policy).

show license status

To display information about licensing settings such as data privacy, policy, transport, usage reporting and trust codes, enter the show license status command in privileged EXEC mode.
show license status

This command has no arguments or keywords.
Syntax Description
Command Default
Command History

Usage Guidelines

Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.

Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing.

Examples

See Table 209: show license status Field Descriptions for Smart Licensing Using Policy, on page 1965 for information about fields shown in the display.
show license status for Smart Licensing Using Policy, on page 1970
show license status for Smart Licensing, on page 1971

Table 209: show license status Field Descriptions for Smart Licensing Using Policy

| Field | | Description |
| :---: | :---: | :---: |
| Utility | Header for utility settings that are configured on the product instance. | |
| | Status: | Status |
| | Utility report: | Last attempt: |
| | Customer Information: | The following fields are displayed:
 - Id:
 - Name:
 - Street
 - City:
 - State:
 - Country:
 - Postal Code: |
| Smart Licensing Using Policy: | Header for policy settings on the product instance. | |
| | Status: | Indicates if Smart Licensing Using Policy is enabled.
 Smart Licensing Using Policy is supported starting from Cisco IOS XE Amsterdam 17.3.2 and is always enabled on supported software images. |
| Data Privacy: | Header for privacy settings that are configured on the product instance. | |
| | Sending Hostname: | A yes or no value which shows if the hostname is sent in usage reports. |
| | Callhome hostname privacy: | Indicates if the Call Home feature is configured as the mode of transport for reporting. If configured, one of these values is displayed:
 - ENABLED
 - DISABLED |
| | Smart Licensing hostname privacy: | One of these values is displayed:
 - ENABLED
 - DISABLED |
| | Version privacy: | One of these values is displayed:
 - ENABLED
 - DISABLED |

| Field | | Description |
| :--- | :--- | :--- |
| Transport: | Header for transport settings that are configured on the product instance. | |
| | Type: | Mode of transport that is in use.
 Additional fields are displayed for certain transport modes. For
 example, if transport type is set to CSLU, the CSLU address is
 also displayed. |

| Field | | Description |
| :---: | :---: | :---: |
| Policy: | Header for policy information that is applicable to the product instance. | |
| | Policy in use: | Policy that is applied
 This can be one of the following: Cisco default, Product default, Permanent License Reservation, Specific License Reservation, PAK license, Installed on <date>, Controller. |
| | Policy name: | Name of the policy |
| | Reporting ACK required: | A yes or no value which specifies if the report for this product instance requires CSSM acknowledgement (ACK) or not. The default policy is always set to "yes". |
| | UnenforcedNon-Export Perpetual Attributes | Displays policy values for perpetual licenses.
 - First report requirement (days): The maximum amount of time available before the first report must be sent, followed by policy name.
 - Reporting frequency (days): The maximum amount of time available before the subsequent report must be sent, followed by policy name.
 - Report on change (days): he maximum amount of time available to send a report in case of a change in license usage, followed by policy name |
| | UnenforcedNon-Export Subscription Attributes | Displays policy values for subscription licenses.
 - First report requirement (days): The maximum amount of time available before the first report must be sent, followed by policy name.
 - Reporting frequency (days): The maximum amount of time available before the subsequent report must be sent, followed by policy name.
 - Report on change (days): he maximum amount of time available to send a report in case of a change in license usage, followed by policy name |
| | Enforced
 (Perpetual/Subscription)
 License Attributes | |

| Field | | Description |
| :---: | :---: | :---: |
| | | Displays policy values for enforced licenses.
 - First report requirement (days): The maximum amount of time available before the first report must be sent, followed by policy name.
 - Reporting frequency (days): The maximum amount of time available before the subsequent report must be sent, followed by policy name.
 - Report on change (days): The maximum amount of time available to send a report in case of a change in license usage, followed by policy name |
| | Export
 (Perpetual/Subscription)
 License Attributes | Displays policy values for export-controlled licenses.
 - First report requirement (days): The maximum amount of time available before the first report must be sent, followed by policy name.
 - Reporting frequency (days): The maximum amount of time available before the subsequent report must be sent, followed by policy name.
 - Report on change (days): The maximum amount of time available to send a report in case of a change in license usage, followed by policy name |
| Miscellaneous | Header for custom ID. | |
| | Custom Id: | ID |

| Field | | Description |
| :---: | :---: | :---: |
| Usage Reporting: | Header for usage reporting (RUM reports) information. | |
| | Last ACK received: | Date and time of last ACK received, in the local time zone. |
| | Next ACK deadline: | Date and time for next ACK. If the policy states that an ACK is not requires then this field displays none.
 Note
 If an ACK is required and is not received by this deadline, a syslog is displayed. |
| | Reporting Interval: | Reporting interval in days
 The value displayed here depends on what you configure in the license smart usage intervalinterval_in_days and the policy value. For more information, see the corresponding Syntax Description: Table 209: show license status Field Descriptions for Smart Licensing Using Policy, on page 1965. |
| | Next ACK push check: | Date and time when the product instance will submit the next polling request for an ACK. Date and time are in the local time zone.
 This applies only to product instance- initiated communication to CSSM or CSLU. If the reporting interval is zero, or if no ACK polling is pending, then this field displays none. |
| | Next report push: | Date and time when the product instance will send the next RUM report. Date and time are in the local time zone. If the reporting interval is zero, or if there are no pending RUM reports, then this field displays none. |
| | Last report push: | Date and time for when the product instance sent the last RUM report. Date and time are in the local time zone. |
| | Last report file write: | Date and time for when the product instance last saved an offline RUM report. Date and time are in the local time zone. |
| | Last report pull: | Date and time for when usage reporting information was retrieved using data models. Date and time are in the local time zone. |

| Field | | Description |
| :--- | :--- | :--- |
| Trust Code
 Installed: | Header for trust code-related information.
 Displays date and time if trust code is installed. Date and time are in the local time
 zone.
 If a trust code is not installed, then this field displays none. | |
| | Active: | Active product instance.
 In a High Availability set-up, the the UDIs of all product
 instances in the set-up, along with corresponding trust code
 installation dates and times are displayed. |
| | Standby: | Standby product instance. |
| | Member: | Member product instance |

show license status for Smart Licensing Using Policy

The following is sample output of the show license status command. A Cisco default policy (merged from multiple sources) is applied here, on a Cisco Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Device# show license status
Utility:
    Status: DISABLED
License Reservation is ENABLED
Data Privacy:
    Sending Hostname: yes
        Callhome hostname privacy: DISABLED
        Smart Licensing hostname privacy: DISABLED
        Version privacy: DISABLED
Transport:
    Type: Transport Off
Policy:
    Policy in use: Merged from multiple sources.
    Reporting ACK required: yes (CISCO default)
    Unenforced/Non-Export Perpetual Attributes:
            First report requirement (days): 365 (CISCO default)
            Reporting frequency (days): 0 (CISCO default)
            Report on change (days): 90 (CISCO default)
    Unenforced/Non-Export Subscription Attributes:
            First report requirement (days): 90 (CISCO default)
            Reporting frequency (days): 90 (CISCO default)
            Report on change (days): 90 (CISCO default)
    Enforced (Perpetual/Subscription) License Attributes:
            First report requirement (days): 0 (CISCO default)
            Reporting frequency (days): 0 (CISCO default)
            Report on change (days): 0 (CISCO default)
    Export (Perpetual/Subscription) License Attributes:
            First report requirement (days): 0 (CISCO default)
            Reporting frequency (days): 0 (CISCO default)
            Report on change (days): 0 (CISCO default)
Miscellaneous:
    Custom Id: <empty>
Usage Reporting:
    Last ACK received: <none>
    Next ACK deadline: Nov 29 10:50:05 2020 PDT
    Reporting Interval: 30
```

```
    Next ACK push check: <none>
    Next report push: Aug 31 10:52:05 2020 PDT
    Last report push: <none>
    Last report file write: <none>
Trust Code Installed: <none>
```


show license status for Smart Licensing

The following is sample output of the show license status command.

```
Device# show license status
Smart Licensing is ENABLED
Utility:
    Status: DISABLED
Data Privacy:
    Sending Hostname: yes
        Callhome hostname privacy: DISABLED
        Smart Licensing hostname privacy: DISABLED
    Version privacy: DISABLED
Transport:
    Type: Callhome
Registration:
    Status: REGISTERED
    Smart Account: Cisco Systems
    Virtual Account: NPR
    Export-Controlled Functionality: Allowed
    Initial Registration: First Attempt Pending
    Last Renewal Attempt: SUCCEEDED on Jul 19 14:49:49 2018 IST
    Next Renewal Attempt: Jan 15 14:49:47 2019 IST
    Registration Expires: Jul 19 14:43:47 2019 IST
License Authorization:
    Status: AUTHORIZED on Jul 28 07:02:56 2018 IST
    Last Communication Attempt: SUCCEEDED on Jul 28 07:02:56 2018 IST
    Next Communication Attempt: Aug 27 07:02:56 2018 IST
    Communication Deadline: Oct 26 06:57:50 2018 IST
```

Related Commands

| Command | Description |
| :--- | :--- |
| show license all | Displays entitlements information. |
| show license authorization | Displays authorization code-related information. |
| show license summary | Displays summary of all active licenses. |
| show license udi | Displays UDI. |
| show license usage | Displays license usage information |
| show tech-support license | Displays the debug output. |

show license summary

To display a brief summary of license usage, which includes information about licenses being used, the count, and status, use the show license summary command in privileged EXEC mode.
show license summary

| Syntax Description |
| :--- |
| Command Default |
| Command History |

Usage Guidelines

Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.

The licenses on Cisco Catalyst Access, Core, and Aggregation Switches are never not authorized or not IN USE, because none of the available licenses are export-controlled or enforced (Only these licenses require authorization before use).

Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing (summary of all active licenses).

Examples

See Table 210: show license summary Field Descriptions for Smart Licensing Using Policy, on page 1972 for information about fields shown in the display.
show license summary for Smart Licensing Using Policy (Cisco Catalyst 9300 Series Switches), on page 1973 show license summary for Smart Licensing Using Policy (Cisco Catalyst 9500 Series Switches), on page 1973
show license summary for Smart Licensing, on page 1973
Table 210: show license summary Field Descriptions for Smart Licensing Using Policy

| Field | Description |
| :--- | :--- |
| License | Name of the licenses in use |

| Field | Description |
| :--- | :--- |
| Entitlement Tag | Short name for license |
| Count | License count |
| Status | License status can be one of the following
 • In-Use: Valid license, and in-use. |
| | • Not In-Use |
| | • Not Authorized: Means that the license requires installation of a Smart |
| | Licensing Authorization Code before use. (Not applicable to Cisco Catalyst |
| | Access, Core, and Aggregation Switches) |

show license summary for Smart Licensing Using Policy (Cisco Catalyst 9300 Series Switches)

The following is sample output of the show license summary command, on a Cisco Catalyst 9300 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Devide# show license summary
License Usage:
License Entitlement Tag Count Status
-----------------------------------------------------------------------------------------
network-essentials (C9300-24 Network Essen...) 2 IN USE
dna-essentials (C9300-24 DNA Essentials) 2 IN USE
network-essentials (C9300-48 Network Essen...) 1 IN USE
dna-essentials (C9300-48 DNA Essentials) 1 IN USE
```

show license summary for Smart Licensing Using Policy (Cisco Catalyst 9500 Series Switches)
The following is sample output of the show license summary command on a Cisco Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Device# show license summary
License Usage:
License Entitlement tag Count Status
network-advantage (C9500 Network Advantage) 2 IN USE
dna-advantage (C9500-16X DNA Advantage) 2 IN USE
```


show license summary for Smart Licensing

This example shows a sample output from the show license summary command:

```
Device# show license summary
Smart Licensing is ENABLED
Registration:
    Status: REGISTERED
    Smart Account: CISCO Systems
    Virtual Account: NPR
    Export-Controlled Functionality: Allowed
    Last Renewal Attempt: None
    Next Renewal Attempt: Jan 09 09:30:40 2019 EDT
```


| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | show license all | Displays entitlements information. |
| | show license status | Displays compliance status of a license. |
| show license udi | Displays UDI. | |
| show license usage | Displays license usage information | |
| show tech-support license | Displays the debug output. | |

show license tech

To display licensing information to help the technical support team troubleshoot a problem, enter the show license tech command in privileged EXEC mode. The output for this command includes outputs of several other show license commands and more.
show license tech \{ data conversion |eventlog [days] |reservation |support \}

Syntax Description

Command Modes

Command History
data conversion Displays license data conversion information.
eventlog [days] Displays event logs related to Smart Licensing Using Policy.
For days, enter the number of days for which you want to display event logs. The valid value range is from 0 to 2147483647 .

The output for this option is the same as the show license eventlog command.

| reservation | Displays license reservation information. |
| :--- | :--- |
| support | Displays licensing information that helps the technical support team to debug a problem. |

Privileged EXEC (Device\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| Cisco IOS XE Amsterdam 17.3.2a | Command output was updated to reflect new fields that are applicable to |
| | Smart Licensing Using Policy. |

$\overline{\text { Usage Guidelines }}$ Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.

When you encounter an error message that you are not able to resolve, along with a copy of the message that appears on the console or in the system log, provide your Cisco technical support representative with sample output of these commands: show license tech support, show license history message, and the show platform software sl-infra all privileged EXEC commands.

Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing (whether smart licensing is enabled, all associated licensing certificates, compliance status, and so on).

show license tech support for Smart Licensing Using Policy

The following is sample output from the show license tech support command on a Cisco Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Device# show license tech support
Smart Licensing Tech Support info
```

```
Smart Licensing Status
Smart Licensing is ENABLED
License Reservation is ENABLED
Export Authorization Key:
    Features Authorized:
        <none>
Utility:
    Status: DISABLED
Smart Licensing Using Policy:
    Status: ENABLED
Data Privacy:
    Sending Hostname: yes
        Callhome hostname privacy: DISABLED
        Smart Licensing hostname privacy: DISABLED
    Version privacy: DISABLED
Transport:
    Type: Transport Off
Miscellaneous:
    Custom Id: <empty>
Policy:
    Policy in use: Merged from multiple sources.
    Reporting ACK required: yes (CISCO default)
    Unenforced/Non-Export Perpetual Attributes:
        First report requirement (days): 365 (CISCO default)
        Reporting frequency (days): 0 (CISCO default)
        Report on change (days): 90 (CISCO default)
    Unenforced/Non-Export Subscription Attributes:
        First report requirement (days): 90 (CISCO default)
        Reporting frequency (days): 90 (CISCO default)
        Report on change (days): 90 (CISCO default)
    Enforced (Perpetual/Subscription) License Attributes:
        First report requirement (days): 0 (CISCO default)
        Reporting frequency (days): 0 (CISCO default)
        Report on change (days): 0 (CISCO default)
    Export (Perpetual/Subscription) License Attributes:
        First report requirement (days): 0 (CISCO default)
        Reporting frequency (days): 0 (CISCO default)
        Report on change (days): 0 (CISCO default)
Usage Reporting:
    Last ACK received: <none>
    Next ACK deadline: Jan 27 09:49:33 2021 PST
    Reporting push interval: 30 days State(2) InPolicy(90)
    Next ACK push check: <none>
    Next report push: Oct 29 09:51:33 2020 PST
    Last report push: <none>
    Last report file write: <none>
License Usage
============
Handle: 1
    License: network-advantage
    Entitlement Tag:
regid.2017-03.com.cisco.advantagek9-Nyquist-C9500,1.0_f1563759-2e03-4a4c-bec5-5feec525a12c
    Description: network-advantage
```

```
    Count: 2
    Version: 1.0
    Status: IN USE(15)
    Status time: Oct 29 09:48:54 2020 PST
    Request Time: Oct 29 09:49:18 2020 PST
    Export status: NOT RESTRICTED
    Feature Name: network-advantage
    Feature Description: network-advantage
    Measurements:
        ENTITLEMENT:
            Interval: 00:15:00
            Current Value: 2
Soft Enforced: True
Handle: 2
    License: dna-advantage
    Entitlement Tag:
regid.2017-07.com.cisco.C9500-DNA-16X-A,1.0 ef3574d1-156b-486a-864f-9f779ff3ee49
    Description: C9500-16X DNA Advantage
    Count: 2
    Version: 1.0
    Status: IN USE(15)
    Status time: Oct 29 09:48:54 2020 PST
    Request Time: Oct 29 09:49:18 2020 PST
    Export status: NOT RESTRICTED
    Feature Name: dna-advantage
    Feature Description: C9500-16X DNA Advantage
    Measurements:
        ENTITLEMENT:
            Interval: 00:15:00
            Current Value: 2
    Soft Enforced: True
Handle: 7
    License: air-network-advantage
    Entitlement Tag:
regid.2018-06.com.cisco.DNA_NWStack,1.0_e7244e71-3ad5-4608-8bf0-d12f67c80896
    Description: air-network-advantage
    Count: 0
    Version: 1.0
    Status: IN USE(15)
    Status time: Oct 29 10:49:09 2020 PST
    Request Time: None
    Export status: NOT RESTRICTED
    Feature Name: air-network-advantage
    Feature Description: air-network-advantage
    Measurements:
        ENTITLEMENT:
            Interval: 00:15:00
            Current Value: 0
    Soft Enforced: True
Handle: 8
    License: air-dna-advantage
    Entitlement Tag: regid.2017-08.com.cisco.AIR-DNA-A,1.0_b6308627-3ab0-4a11-a3d9-586911a0d790
    Description: air-dna-advantage
    Count: 0
    Version: 1.0
    Status: IN USE(15)
    Status time: Oct 29 10:49:09 2020 PST
    Request Time: None
    Export status: NOT RESTRICTED
    Feature Name: air-dna-advantage
```

```
    Feature Description: air-dna-advantage
    Measurements:
    ENTITLEMENT:
        Interval: 00:15:00
        Current Value: 0
    Soft Enforced: True
Product Information
===================
UDI: PID:C9500-16X,SN:FCW2233A5ZV
HA UDI List:
    Active:PID:C9500-16X,SN:FCW2233A5ZV
    Standby:PID:C9500-16X,SN:FCW2233A5ZY
Agent Version
============
Smart Agent for Licensing: 5.0.5_rel/42
Upcoming Scheduled Jobs
Current time: Oct 29 11:04:46 2020 PST
Daily: Oct 30 09:48:56 2020 PST (22 hours, 44 minutes, 10 seconds remaining)
Init Flag Check: Expired Not Rescheduled
Reservation configuration mismatch between nodes in HA mode: Nov 05 09:52:25 2020 PST (6
days, 22 hours, 47 minutes, }39\mathrm{ seconds remaining)
Start Utility Measurements: Oct 29 11:19:09 2020 PST (14 minutes, 23 seconds remaining)
Send Utility RUM reports: Oct 30 09:53:10 2020 PST (22 hours, 48 minutes, 24 seconds
remaining)
Save unreported RUM Reports: Oct 29 12:04:19 2020 PST (59 minutes, 33 seconds remaining)
Process Utility RUM reports: Oct 30 09:49:33 2020 PST (22 hours, 44 minutes, 47 seconds
remaining)
Data Synchronization: Expired Not Rescheduled
External Event: Nov 28 09:49:33 2020 PST (29 days, 22 hours, 44 minutes, 47 seconds remaining)
Operational Model: Expired Not Rescheduled
Communication Statistics:
=======================
Communication Level Allowed: INDIRECT
Overall State: <empty>
Trust Establishment:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
            Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Trust Acknowledgement:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
            Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Usage Reporting:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
        Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Result Polling:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
            Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
```

```
Authorization Request:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
        Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Authorization Confirmation:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
            Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Authorization Return:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
            Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Trust Sync:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
            Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
Hello Message:
    Attempts: Total=0, Success=0, Fail=0 Ongoing Failure: Overall=0 Communication=0
    Last Response: <none>
        Failure Reason: <none>
    Last Success Time: <none>
    Last Failure Time: <none>
License Certificates
====================
Production Cert: True
Not registered. No certificates installed
HA Info
==========
RP Role: Active
Chassis Role: Active
Behavior Role: Active
RMF: True
CF: True
CF State: Stateless
Message Flow Allowed: False
Reservation Info
================
License reservation: ENABLED
Overall status:
    Active: PID:C9500-16X,SN:FCW2233A5ZV
            Reservation status: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
            Request code: <none>
            Last return code: <none>
            Last Confirmation code: 184ba6d6
            Reservation authorization code:
```

(据
Network Advantage</displayName><tagDescription>C9500 Network
触与与1
Standby: PID:C9500-16X,SN:FCW2233A5ZY
Reservation status: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
Request code: <none>

```
Last return code: <none>
Last Confirmation code: 961d598f
Reservation authorization code:
```



```
    Network Advantage</displayName><tagDescription>C9500 Network
```

```
Specified license reservations:
    C9500 Network Advantage (C9500 Network Advantage):
        Description: C9500 Network Advantage
        Total reserved count: 2
        Enforcement type: NOT ENFORCED
        Term information:
            Active: PID:C9500-16X,SN:FCW2233A5ZV
                Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
                License type: PERPETUAL
                    Start Date: <none>
                        End Date: <none>
                        Term Count: 1
                    Subscription ID: <none>
            Standby: PID:C9500-16X,SN:FCW2233A5ZY
                Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
                    License type: PERPETUAL
                            Start Date: <none>
                    End Date: <none>
                    Term Count: 1
                    Subscription ID: <none>
    C9500-DNA-16X-A (C9500-16X DNA Advantage):
        Description: C9500-DNA-16X-A
        Total reserved count: 2
        Enforcement type: NOT ENFORCED
        Term information:
            Active: PID:C9500-16X,SN:FCW2233A5ZV
            Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
            License type: PERPETUAL
                            Start Date: <none>
                    End Date: <none>
                    Term Count: 1
                    Subscription ID: <none>
            Standby: PID:C9500-16X,SN:FCW2233A5ZY
                    Authorization type: SPECIFIC INSTALLED on Oct 29 09:44:06 2020 PST
                    License type: PERPETUAL
                    Start Date: <none>
                    End Date: <none>
                    Term Count: 1
                    Subscription ID: <none>
Purchased Licenses:
    No Purchase Information Available
```

Other Info
$========$
Software ID: regid.2017-05.com.cisco.C9500,v1 7435cf27-0075-4bfb-b67c-b42f3054e82a
Agent State: authorized
TS enable: True
Transport: Transport Off
Locale: en US.UTF-8
Debug flags: 0x7
Privacy Send Hostname: True
Privacy Send IP: True
Build type:: Production
sizeof(char) : 1

```
sizeof(int) : 4
sizeof(long) : 4
sizeof(char *): 8
sizeof(time_t): 4
sizeof(size t): 8
Endian: Big
Write Erase Occurred: False
XOS version: 0.12.0.0
Config Persist Received: False
Message Version: 1.3
connect_info.name: <empty>
connect_info.version: <empty>
connect_info.additional: <empty>
connect info.prod: False
connect_info.capabilities: <empty>
agent.capabilities: UTILITY, DLC, AppHA, MULTITIER, EXPORT 2, OK TRY AGAIN, POLICY USAGE
Check Point Interface: True
Config Management Interface: False
License Map Interface: True
HA Interface: True
Trusted Store Interface: True
Platform Data Interface: True
Crypto Version 2 Interface: False
SAPluginMgmtInterfaceMutex: True
SAPluginMgmtIPDomainName: True
SmartAgentClientWaitForServer: 2000
SmartAgentCmReTrySend: True
SmartAgentClientIsUnified: True
SmartAgentCmClient: True
SmartAgentClientName: UnifiedClient
builtInEncryption: True
enableOnInit: True
routingReadyByEvent: True
systemInitByEvent: True
SmartTransportServerIdCheck: False
SmartTransportProxySupport: False
SmartAgentMaxRumMemory: 50
SmartAgentConcurrentThreadMax: 10
SmartAgentPolicyControllerModel: False
SmartAgentPolicyModel: True
SmartAgentFederalLicense: True
SmartAgentMultiTenant: False
attr365DayEvalSyslog: True
checkPointWriteOnly: False
SmartAgentDelayCertValidation: False
enableByDefault: False
conversionAutomatic: False
conversionAllowed: False
storageEncryptDisable: False
storageLoadUnencryptedDisable: False
TSPluginDisable: False
bypassUDICheck: False
loggingAddTStamp: False
loggingAddTid: True
HighAvailabilityOverrideEvent: UnknownPlatformEvent
platformIndependentOverrideEvent: UnknownPlatformEvent
platformOverrideEvent: SmartAgentSystemDataListChanged
WaitForHaRole: False
standbyIsHot: True
chkPtType: 2
delayCommInit: False
roleByEvent: True
maxTraceLength: 150
traceAlwaysOn: True
```

```
debugFlags: 0
Event log max size: 5120 KB
Event log current size: 109 KB
P:C9500-16X,S:FCW2233A5ZV: No Trust Data
P:C9500-16X,S:FCW2233A5zY: No Trust Data
Overall Trust: No ID
Platform Provided Mapping Table
===============================
    C9500-16X: Total licenses found: 143
Enforced Licenses:
    P:C9500-16X,S:FCW2233A5ZV:
        No PD enforced licenses
    P:C9500-16X,S:FCW2233A5ZY:
        No PD enforced licenses
```


show license udi

To display Unique Device Identifier (UDI) information for a product instance, enter the show license udi command in Privileged EXEC mode. In a High Availability set-up, the output displays UDI information for all connected product instances.
show license udi

Syntax Description
Command Default
Privileged EXEC (\#)

Command History

Usage Guidelines
Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance) is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.
Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing.

Examples

show licensing udi for Smart Licensing Using Policy, on page 1983
show license udi for Smart Licensing, on page 1983

show licensing udi for Smart Licensing Using Policy

The following is sample output of the show license udi command for a High Availability set-up on a Catalyst 9500 switch. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Device# show license udi
UDI: PID:C9500-16X,SN:FCW2233A5ZV
HA UDI List:
Active:PID:C9500-16X,SN:FCW2233A5ZV
Standby:PID:C9500-16X,SN:FCW2233A5ZY
```


show license udi for Smart Licensing

The following is sample output of the show license udi command:

```
Device# show license udi
UDI: PID:C9300-24U,SN:FCW2125L046
HA UDI List:
    Active:PID:C9300-24U,SN:FCW2125L046
```


show license usage

To display license usage information such as status, a count of licenses being used, and enforcement type, enter the show license usage command in privileged EXEC mode.
show license usage
This command has no arguments or keywords.

| Command Default | Privileged EXEC (\#) | |
| :--- | :--- | :--- |
| Command History | Release | Modification |
| | Cisco IOS XE Fuji 16.9.1 | This command was introduced. |
| | Cisco IOS XE Amsterdam 17.3.2a | Command output was updated to reflect new fields
 that are applicable to Smart Licensing Using Policy.
 This includes the Status, Enforcement type fields. |
| | | Command output was also updated to remove
 reservation related information, authorization status
 information, and export status information. |
| | | |

Usage Guidelines Smart Licensing Using Policy: If the software version on the device (also referred to as a product instance)

 is Cisco IOS XE Amsterdam 17.3.2a or a later release, command output displays fields pertinent to Smart Licensing Using Policy.Smart Licensing: If the software version on the device is Cisco IOS XE Amsterdam 17.3.1 or an earlier release, command output displays fields pertinent to Smart Licensing.

Examples

See Table 211: show license usage Field Descriptions for Smart Licensing Using Policy, on page 1985 for information about fields shown in the display.
show license usage for Smart Licensing Using Policy, on page 1986
show license usage for Smart Licensing, on page 1987
Table 211: show license usage Field Descriptions for Smart Licensing Using Policy

| Field | Description |
| :--- | :--- |
| License Authorization:
 Status: | Displays overall authorization status. |
| () | Name of the license as in CSSM.
 If this license is one that requires an authorization code, the name of th
 the code. |
| Description | Description of the license as in CSSM. |

| Field | Description |
| :---: | :---: |
| Count | License count. If the license is not in-use, the count is reflected as zero. |
| Version | Version. |
| Status | License status can be one of the following
 - In-Use: Valid license, and in-use.
 - Not In-Use
 - Not Authorized: Means that the license requires installation of SLA more information, see |
| Export Status: | Indicates if this license is export-controlled or not. Accordingly, one of the is displayed:
 - RESTRICTED - ALLOWED
 - RESTRICTED - NOT ALLOWED
 - NOT RESTRICTED |
| Feature name | Name of the feature that uses this license. |
| Feature Description: | Description of the feature that uses this license. |
| Utility Subscription id: | ID
 Not applicable, because the corresponding confiuration option is not sup |
| Enforcement type | Enforcement type status for the license. This may be one of the followin
 - ENFORCED
 - NOT ENFORCED
 - EXPORT RESTRICTED - ALLOWED
 - EXPORT RESTRICTED - NOT ALLOWED
 For more information about enforcement types, see <link tbd> |

show license usage for Smart Licensing Using Policy

The following is sample output of the show license usage command on a Cisco Catalyst 9500 switch.
Unenforced licenses are in-use here. Similar output is displayed on all supported Cisco Catalyst Access, Core, and Aggregation Switches.

```
Device# show license usage
License Authorization:
    Status: Not Applicable
network-advantage (C9500 Network Advantage):
    Description: network-advantage
    Count: 2
    Version: 1.0
    Status: IN USE
```

```
    Export status: NOT RESTRICTED
    Feature Name: network-advantage
    Feature Description: network-advantage
    Enforcement type: NOT ENFORCED
    License type: Perpetual
dna-advantage (C9500-16X DNA Advantage):
    Description: C9500-16X DNA Advantage
Count: 2
Version: 1.0
Status: IN USE
Export status: NOT RESTRICTED
Feature Name: dna-advantage
Feature Description: C9500-16X DNA Advantage
Enforcement type: NOT ENFORCED
License type: Subscription
```


show license usage for Smart Licensing

This example shows a sample output from the show license usage command:

```
Device# show license usage
License Authorization:
    Status: AUTHORIZED on Jul 17 09:47:28 2018 EDT
C9300 DNA Advantage (C9300-24 DNA Advantage):
    Description: C9300-24P DNA Advantage
    Count: 3
    Version: 1.0
    Status: AUTHORIZED
C9300 Network Advantage (C9300-24 Network Advantage):
    Description: C9300-24P Network Advantage
    Count: 3
    Version: 1.0
    Status: AUTHORIZED
```

Related Commands

| Command | Description |
| :--- | :--- |
| show license all | Displays entitlements information. |
| show license status | Displays compliance status of a license. |
| show license summary | Displays summary of all active licenses. |
| show license udi | Displays UDI. |
| show tech-support license | Displays the debug output. |

show location

To display location information for an endpoint, use the show location command in privileged EXEC mode.
show location
[\{admin-tag |civic-location\{identifier identifier-string |interface type number |static\}| custom-location\{identifier identifier-string |interface type number \mid static $\} \mid$ elin-location\{identifier identifier-string |interface type number \mid static \}|geo-location \{identifier identifier-string \mid interface type number \mid static $\} \mid$ host $\}$]

Syntax Description

| admin-tag | Displays administrative tag or site information. |
| :--- | :--- |
| civic-location | Specifies civic location information. |
| identifier
 identifier-string | Information identifier of the civic location, custom location, or geo-spatial
 location. |
| interface type number | Interface type and number.
 For information about the numbering syntax for your device, use the question
 mark (?) online help function. |
| static | Displays configured civic, custom, or geo-spatial location information. |
| custom-location | Specifies custom location information. |
| elin-location | Specifies emergency location information (ELIN). |
| geo-location | Specifies geo-spatial location information. |
| host | Specifies the civic, custom, or geo-spatial host location information. |

| Command Default | No default behavior or values. | |
| :---: | :---: | :---: |
| Command Modes | Privileged EXEC | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest 16.5.1a | This command was introduced. |

The following sample output of the show location civic-location command displays civic location information for the specified identifier (identifier 1):

```
Device# show location civic-location identifier 1
Civic location information
----------------------------
Identifier : 1
County : Santa Clara
Street number : 3550
Building : 19
Room : C6
Primary road name : Example
```

| City | $:$ San Jose |
| :--- | :--- |
| State | $:$ CA |
| Country | $:$ US |

Related Commands

| Command | Description |
| :--- | :--- |
| location | Configures location information for an endpoint. |

show logging onboard switch uptime

To display a history of all reset reasons for all modules or switches in a system, use the show logging onboard switch uptime command.
show logging onboard switch \{ switch-number | active | standby \} uptime [[[continuous | detail] [start hour day month [year] [end hour day month year]] | summary]

Syntax Description

| switch switch-number | Specifies a switch. Enter the switch number. |
| :--- | :--- |
| active | Specifies the active instance. |
| standby | Specifies the standby instance. |
| continuous | (Optional) Displays continuous data. |
| detail | (Optional) Displays detailed data. |
| start hour day month year | (Optional) Specifies the start time to display data. |
| end hour day month year | (Optional) Specifies the end time to display data. |
| summary | (Optional) Displays summary data. |

| Command Modes |
| :--- |
| Command History |

Privileged EXEC(\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Everest 16.5.1a | This command was implemented on the Cisco Catalyst

 9300 Series Switches |
| Cisco IOS XE Gibraltar 16.10.1 | The output of this command was updated to display
 the reload reasons for members in a stack. |

Examples:

The following is a sample output from the show logging onboard switch active uptime continuous command:

| UPTIME CONTINUOUS INFORMATION | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Stamp | | \| Reset | \| Up | | | | |
| MM/DD/YYYY | HH:MM:SS | Reason | \| ye | we | da | hour | minutes |
| 06/17/2018 | 19:42:56 | Reload | 0 | 0 | 0 | 0 | 5 |
| 06/17/2018 | 19:56:31 | Reload | 0 | 0 | 0 | 0 | 5 |
| 06/17/2018 | 20:10:46 | Reload | 0 | 0 | 0 | 0 | 5 |
| 06/17/2018 | 20:23:48 | Reload | 0 | 0 | 0 | 0 | 5 |
| 06/17/2018 | 20:37:20 | Reload Command | 0 | 0 | 0 | 0 | 5 |
| 06/18/2018 | 17:09:23 | Reload Command | 0 | 0 | 0 | 20 | 5 |
| 06/18/2018 | 17:18:39 | redundancy force-switchover | 0 | 0 | 0 | 0 | 5 |
| 06/18/2018 | 18:33:33 | Reload | 0 | 0 | 0 | 1 | 5 |
| 06/18/2018 | 19:03:05 | Reload | 0 | 0 | 0 | 0 | 5 |

| $06 / 18 / 2018$ | $19: 40: 30$ | Reload | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $06 / 18 / 2018$ | $20: 37: 47$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $20: 51: 13$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $21: 04: 08$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $21: 18: 23$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $21: 31: 25$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $21: 45: 15$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $21: 59: 02$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $22: 11: 41$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $22: 24: 27$ | Reload | 0 | 0 | 0 | 0 |
| $06 / 18 / 2018$ | $22: 39: 14$ | Reload Command | 0 | 0 | 0 | 0 |
| $06 / 19 / 2018$ | $00: 01: 59$ | Reload Command | 0 | 0 | 0 | 1 |
| $06 / 19 / 2018$ | $00: 13: 21$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 19 / 2018$ | $01: 05: 42$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $02: 37: 16$ | redundancy force-switchover | 0 | 0 | 1 | 1 |
| $06 / 20 / 2018$ | $02: 50: 03$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $03: 02: 13$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $03: 14: 26$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $03: 26: 44$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $03: 38: 58$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $03: 52: 43$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| $06 / 20 / 2018$ | $04: 05: 16$ | redundancy force-switchover | 0 | 0 | 0 | 0 |
| 0 | 5 | | | | | |
| 0 | 5 | | | | | |

The following is a sample output from the show logging onboard switch active uptime detail command:

The following is a sample output from the show logging onboard switch standby uptime detail command:

```
Device# show logging onboard switch standby uptime detail
UPTIME SUMMARY INFORMATION
```


The following is a sample output from the show logging onboard switch active uptime summary command:

show logging process ios module

To display btrace logs for an IOS module, use the show logging process ios module command in the EXEC mode.
show logging process ios module module-name

Syntax Description

$\overline{\text { Command Default }}$
module-name Displays the logs for the specified IOS module.

None
User EXEC
Privileged EXEC

| Release \quad Modification |
| :--- | :--- |

Cisco IOS XE Amsterdam 17.3.1 This command was introduced.

Usage Guidelines

The following example shows how to display the logs for the IPSLA Sender module:

```
Device# show logging process ios module ipsla_s
Displaying logs from the last 0 days, 0 hours, }10\mathrm{ minutes, 0 seconds
executing cmd on chassis local ...
Collecting files on current[local] chassis.
# of files collected = 2
2019/10/07 09:07:47.799791 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
echo operation
2019/10/07 09:07:47.799840 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
control phase
2019/10/07 09:07:47.803366 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket setup
    & registered with XDM - fd: 0
2019/10/07 09:07:47.804934 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): Socket send udp-echo
    packet
2019/10/07 09:07:47.804982 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket send
    successful - fd: 0
2019/10/07 09:07:47.805009 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Received response SendTime=32867803, RecvTime=32867804, delta=0
2019/10/07 09:07:47.805035 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Probe successful - RTT: 1
2019/10/07 09:08:17.800477 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
echo operation
2019/10/07 09:08:17.800527 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
control phase
2019/10/07 09:08:17.803028 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket setup
    & registered with XDM - fd: 0
2019/10/07 09:08:17.803141 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): Socket send udp-echo
    packet
2019/10/07 09:08:17.803186 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket send
    successful - fd: 0
2019/10/07 09:08:17.804660 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Received response SendTime=328978003, RecvTime=3289\overline{7}804, delta=0
2019/10/07 09:08:17.804696 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
```

```
Probe successful - RTT: 1
2019/10/07 09:08:47.799809 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
echo operation
2019/10/07 09:08:47.799865 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
control phase
2019/10/07 09:08:47.802108 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket setup
    & registered with XDM - fd: 0
2019/10/07 09:08:47.802284 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): Socket send udp-echo
    packet
2019/10/07 09:08:47.802376 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket send
    successful - fd: 0
2019/10/07 09:08:47.803603 {IOSRP R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Received response SendTime=32927802, RecvTime=32927803, delta=0
2019/10/07 09:08:47.803679 {IOSRP R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Probe successful - RTT: 1
2019/10/07 09:09:17.800297 {IOSRP R0-0}{1}: [ipsla s] [917]: (note): [1000] Starting
echo operation
2019/10/07 09:09:17.800341 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Starting
control phase
2019/10/07 09:09:17.802882 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket setup
    & registered with XDM - fd: 0
2019/10/07 09:09:17.803079 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): Socket send udp-echo
    packet
2019/10/07 09:09:17.803111 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [1000] Socket send
    successful - fd: 0
2019/10/07 09:09:17.804366 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Received response SendTime=32957803, RecvTime=32957803, delta=0
2019/10/07 09:09:17.804407 {IOSRP_R0-0}{1}: [ipsla_s] [917]: (note): [udp-echo:1000]
Probe successful - RTT: 1
```

The following example shows how to display the logs for the IPSLA Responder module:

```
Device#show logging process ios module ipsla r
Displaying logs from the last 0 days, 0 hours, }10\mathrm{ minutes, 0 seconds
executing cmd on chassis local ...
Collecting files on current[local] chassis.
# of files collected = 2
2019/10/07 09:08:25.843000 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:64446]
    Received Control message with len: 52
2019/10/07 09:08:25.843078 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:64446]
    table_id from the pktinfo
2019/10/07 09:08:25.843105 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): Ctrl-Msg Ver: 1 ID:
    18 Len: 52
2019/10/07 09:08:25.843209 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:64446]
    Sending control response message back to the client with status (0) length (24)
2019/10/07 09:08:55.843812 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:52445]
    Received Control message with len: 52
2019/10/07 09:08:55.843889 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:52445]
    table id from the pktinfo
2019/1\overline{0}/07 09:08:55.843917 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): Ctrl-Msg Ver: 1 ID:
    19 Len: 52
2019/10/07 09:08:55.844028 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:52445]
    Sending control response message back to the client with status (0) length (24)
2019/10/07 09:09:25.843451 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:53546]
    Received Control message with len: 52
2019/10/07 09:09:25.843531 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:53546]
    table_id from the pktinfo
2019/1\overline{0}/07 09:09:25.843559 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): Ctrl-Msg Ver: 1 ID:
    20 Len: 52
2019/10/07 09:09:25.843672 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:53546]
    Sending control response message back to the client with status (0) length (24)
```

```
2019/10/07 09:09:55.844054 {IOSRP R0-0}{1}: [ipsla r] [641]: (note): [192.168.12.1:60976]
    Received Control message with len: 52
2019/10/07 09:09:55.844113 {IOSRP R0-0}{1}: [ipsla r] [641]: (note): [192.168.12.1:60976]
    table_id from the pktinfo
2019/10/07 09:09:55.844141 {IOSRP R0-0}{1}: [ipsla r] [641]: (note): Ctrl-Msg Ver: 1 ID:
    21 Len: 52
2019/10/07 09:09:55.844257 {IOSRP R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:60976]
    Sending control response message back to the cliēnt with status (0) length (24)
2019/10/07 09:10:25.843479 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:50769]
    Received Control message with len: 52
2019/10/07 09:10:25.843535 {IOSRP_R0-0}{1}: [ipsla_r] [641]: (note): [192.168.12.1:50769]
    table_id from the pktinfo
```


show mac address-table

To display the MAC address table, use the show mac address-table command in privileged EXEC mode.
show mac address-table [\{ address mac-addr [interface type/number | vlan vlan-id] | aging-time [routed-mac |vlan vlan-id]| control-packet-learn | count [summary |vlan vlan-id]|[dynamic |secure |static][address mac-addr][interface type/number |van vlan-id]|interface type/number | learning [vlan vlan-id]| multicast [count] [igmp-snooping |mld-snooping |user] [vlan vlan-id] | notification \{ change [interface [type/number]] | mac-move | threshold \} | vlan vlan-id \}]

| address mac-addr | (Optional) Displays information about the MAC address table for a specific MAC address. |
| :---: | :---: |
| interface type/number | (Optional) Displays addresses for a specific interface. |
| vlan vlan-id | (Optional) Displays addresses for a specific VLAN. |
| aging-time [routed-mac \| vlan vlan-id] | (Optional) Displays the aging time for the routed MAC or VLAN. |
| control-packet-learn | (Optional) Displays the controlled packet MAC learning parameters. |
| count | (Optional) Displays the number of entries that are currently in the MAC address table. |
| dynamic | (Optional) Displays only the dynamic addresses. |
| secure | (Optional) Displays only the secure addresses. |
| static | (Optional) Displays only the static addresses. |
| learning | (Optional) Displays learnings of a VLAN or interface. |
| multicast | (Optional) Displays information about the multicast MAC address table entries only. |
| igmp-snooping | (Optional) Displays the addresses learned by Internet Group Management Protocol (IGMP) snooping. |
| mld-snooping | (Optional) Displays the addresses learned by Multicast Listener Discover version 2 (MLDv2) snooping. |
| user | (Optional) Displays the manually entered (static) addresses. |
| notification change | Displays the MAC notification parameters and history table. |
| notification mac-move | Displays the MAC-move notification status. |
| notification threshold | Displays the Counter-Addressable Memory (CAM) table utilization notification status. |

Command Modes Privileged EXEC (\#)

Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.
Cisco IOS XE Gibraltar 16.12.4 The ouput of the show mac address-table vlan vlan-id command has been updated to show the MAC addresses used for Cisco Software-Defined Access (SD-Access) solution.

Usage Guidelines

The mac-addr value is a 48 -bit MAC address. The valid format is H.H.H.
The interface number argument designates the module and port number. Valid values depend on the specified interface type and the chassis and module that are used. For example, if you specify a Gigabit Ethernet interface and have a 48 -port 10/100BASE-T Ethernet module that is installed in a 13 -slot chassis, valid values for the module number are from 1 to 13 and valid values for the port number are from 1 to 48 .

The following is sample output from the show mac address-table command:

| Vlan | Mac Address | Type | Ports |
| :---: | :---: | :---: | :---: |
| All | 0100.0ccc. cccc | STATIC | CPU |
| All | 0100.0ccc. cccd | STATIC | CPU |
| All | 0180.c200.0000 | STATIC | CPU |
| All | 0180.c200.0001 | STATIC | CPU |
| All | 0180.c200.0002 | STATIC | CPU |
| All | 0180.c200.0003 | STATIC | CPU |
| All | 0180.c200.0004 | STATIC | CPU |
| All | 0180.c200.0005 | STATIC | CPU |
| All | 0180.c200.0006 | STATIC | CPU |
| All | 0180.c200.0007 | STATIC | CPU |
| All | 0180.c200.0008 | STATIC | CPU |
| All | 0180.c200.0009 | STATIC | CPU |
| All | 0180.c200.000a | STATIC | CPU |
| All | 0180.c200.000b | STATIC | CPU |
| All | 0180.c200.000c | STATIC | CPU |
| All | 0180.c200.000d | STATIC | CPU |
| All | 0180.c200.000e | STATIC | CPU |
| All | 0180.c200.000f | STATIC | CPU |
| All | 0180.c200.0010 | STATIC | CPU |
| All | 0180.c200.0021 | STATIC | CPU |
| All | ffff.ffff.ffff | STATIC | CPU |
| 1 | 780c.f0e1.1dc3 | STATIC | Vl1 |
| 51 | 0000.1111.2222 | STATIC | V151 |
| 51 | 780c.f0e1.1dc6 | STATIC | V151 |
| 1021 | 0000.0c9f.f45c | STATIC | Vl1021 |
| 1021 | 0002.02 cc .0002 | STATIC | Gi6/0/2 |
| 1021 | 0002.02 cc .0003 | STATIC | Gi6/0/3 |
| 1021 | 0002.02 cc .0004 | STATIC | Gi6/0/4 |
| 1021 | 0002.02 cc .0005 | STATIC | Gi6/0/5 |
| 1021 | 0002.02 cc .0006 | STATIC | Gi6/0/6 |
| 1021 | 0002.02 cc .0007 | STATIC | Gi6/0/7 |
| 1021 | 0002.02 cc .0008 | STATIC | Gi6/0/8 |
| 1021 | 0002.02 cc .0009 | STATIC | Gi6/0/9 |
| 1021 | 0002.02cc.000a | STATIC | Gi6/0/10 |

<output truncated>
The following example shows how to display MAC address table information for a specific MAC address:

```
Device# show mac address-table address fc58.9a02.7382
    Mac Address Table
----------------------------------------------
Vlan Mac Address Type Ports
    - flll
Total Mac Addresses for this criterion: 1
```

The following example shows how to display the currently configured aging time for a specific VLAN:

```
Device# show mac address-table aging-time vlan 1
Global Aging Time: 300
Vlan Aging Time
---- ----------
    1 300
```

The following example shows how to display the information about the MAC address table for a specific interface:

```
Device# show mac address-table interface TenGigabitEthernet1/0/1
            Mac Address Table
Vlan Mac Address Type Ports
---- ----------- -------- -----
    1 fc58.9a02.7382 DYNAMIC Te1/0/1
Total Mac Addresses for this criterion: 1
```

The following example shows how to display the MAC-move notification status:

```
Device# show mac address-table notification mac-move
MAC Move Notification: Enabled
```

The following example shows how to display the CAM-table utilization-notification status:

```
Device# show mac address-table notification threshold
\begin{tabular}{ccc} 
Status & limit & Interval \\
\(---------------------------------120 ~\)
\end{tabular}
```

The following example shows how to display the MAC notification parameters and history table for a specific interface:

```
Device# show mac address-table notification change interface tenGigabitEthernet1/0/1
MAC Notification Feature is Disabled on the switch
Interface MAC Added Trap MAC Removed Trap
    ---------------------------------
```

The following example shows how to display the information about the MAC-address table for a specific VLAN:

Note MAC addresses of the type CP_LEARN will be displayed only if Cisco SD-Access solution is used.

The table below describes the significant fields shown in the show mac address-table display.

Table 212: show mac address-table Field Descriptions

| Field | Description |
| :--- | :--- |
| VLAN | VLAN number. |
| Mac Address | MAC address of the entry. |
| Type | Type of address. |
| Ports | Port type. |
| Total MAC addresses | Total MAC addresses in the MAC address table. |

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| clear mac address-table | Deletes dynamic entries from the MAC address table. | |

show mac address-table move update

To display the MAC address-table move update information on the device, use the show mac address-table move update command in EXEC mode.
show mac address-table move update
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
$\overline{\text { Command Default }}$ No default behavior or values.
Command Modes User EXEC
Privileged EXEC

Command History

Release

Cisco IOS XE Everest 16.5.1a

Example

This example shows the output from the show mac address-table move update command:

```
Device# show mac address-table move update
Switch-ID : 010b.4630.1780
Dst mac-address : 0180.c200.0010
Vlans/Macs supported : 1023/8320
Default/Current settings: Rcv Off/On, Xmt Off/On
Max packets per min : Rcv 40, Xmt 60
Rcv packet count : 10
Rcv conforming packet count : 5
Rcv invalid packet count : 0
Rcv packet count this min : 0
Rcv threshold exceed count : 0
Rcv last sequence# this min : 0
Rcv last interface : Po2
Rcv last src-mac-address : 0003.fd6a.8701
Rcv last switch-ID : 0303.fd63.7600
Xmt packet count : 0
Xmt packet count this min : 0
Xmt threshold exceed count : 0
Xmt pak buf unavail cnt : 0
Xmt last interface : None
```


show parser encrypt file status

To view the private configuration encryption status, use the show parser encrypt file status command.
show parser encrypt file status

| Syntax Description This command has no arguments or keywords.
 $\overline{\text { Command Default }}$ None
 Command Modes User EXEC
 Command History Release | Modification | |
| :--- | :--- | :--- |
| | Cisco IOS XE Fuji | This command was introduced. |
| | 16.8 .1 a | |

Examples The following command output indicates that the feature is available and the file is encrypted. The file is in 'cipher text' format.

```
Device> enable
Device# show parser encrypt file status
Feature: Enabled
File Format: Cipher text
Encryption Version: verl
```

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | service private-config-encryption | Enables private configuration file encryption. |

show platform hardware fpga

To display the system field-programmable gate array (FPGA) settings, use the show platform hardware fpga command in privileged EXEC mode.

show platform hardware fpga

Syntax Description This command has no arguments or keywords.

| $\overline{\text { Command Default }}$ | None |
| :--- | :--- |
| $\overline{\text { Command Modes }}$ | Privileged EXEC (\#) |

Release Modification

Cisco IOS XE Fuji 16.9.1
This command was introduced.

Example

The following is a sample output from the show platform hardware fpga command on a Cisco Catalyst 9300 Series switch:

Device\# show platform hardware fpga

| Register Addr | FPGA Reg Description | Value |
| :---: | :---: | :---: |
| 0x00000000 | Board ID | 0x00006053 |
| 0x00000004 | FPGA Version | 0x00000206 |
| 0x00000008 | Reset Reg1 | 0x00010204 |
| 0x0000000c | Reset Reg2 | 0x00000000 |
| 0x00000028 | FRU LED DATA Reg1 | 0x00001008 |
| 0x0000002c | FRU LED DATA Reg2 | 0x00001008 |
| 0x00000030 | FRU Control Reg | 0x0000c015 |
| 0x00000034 | Doppler Misc Reg | 0x00000311 |
| 0x00000010 | SBC Enable | 0x0000000f |

<snip>
The following is a sample output from the show platform hardware fpga command on a Cisco Catalyst 9500 Series switch:

Device\# show platform hardware fpga

| Register Addr | FPGA Reg Description | Value |
| :---: | :---: | :---: |
| 0×00000000 | FPGA Version | 0x00000110 |
| 0×00000040 | FRU Power Cntrl Reg | 0x00000112 |
| 0x00000020 | System Reset Cntrl Reg | 0x00000000 |
| 0×00000024 | Beacon Led Cntrl Reg | 0x00000000 |
| 0x00000044 | 1588 Sync Pulse Reg | 0x00000000 |
| 0×00000048 | Mainboard Misc Cntrl Reg | 0x0000000a |
| 0x00000038 | DopplerD Misc Cntrl Reg | 0x000000ff |

show platform integrity

To display checksum record for the boot stages , use the show platform integrity command in privileged EXEC mode.
show platform integrity [sign [nonce <nonce>]]

| $\overline{\text { Syntax Description }}$ | sign | (Optional) Show signature |
| :--- | :--- | :--- |
| | nonce | (Optional) Enter a nonce value |

$\overline{\overline{\text { Command Modes }}} \overline{\text { Command History }}$\cline { }

Examples

This example shows how to view the checksum record for boot stages :

```
Device# show platform integrity sign
PCR0: EE47F8644C2887D9BD4DE3E468DD27EB93F4A606006A0B7006E2928C50C7C9AB
PCR8: E7B61EC32AFA43DA1FF4D77F108CA266848B32924834F5E41A9F6893A9CB7A38
Signature version: 1
Signature:
816C5A29741BBAC1961C109FFC36DA5459A44DBF211025F539AFB4868EF91834C05789
5DAFBC7474F301916B7D0D08ABE5E05E66598426A73E921024C21504383228B6787B74
8526A305B17DAD3CF8705BACFD51A2D55A333415CABC73DAFDEEFD8777AA77F482EC4B
731A09826A41FB3EFFC46DC02FBA666534DBEC7DCC0C029298DB8462A70DBA26833C2A
1472D1F08D721BA941CB94A418E43803699174572A5759445B3564D8EAEE57D64AE304
EE1D2A9C53E93E05B24A92387E261199CED8D8A0CE7134596FF8D2D6E6DA773757C70C
D3BA91C43A591268C248DF32658999276FB972153ABE823F0ACFE9F3B6F0AD1A00E257
4A4CC41C954015A59FB8FE
Platform: WS-C3650-12X48UZ
```


show platform software audit

| | To display the SE Linux Audit logs, use the show p mode.
 show platform software audit \{all \| summary $\{\mathbf{0}\|\mathbf{F 0}\| \mathbf{R 0} \mid\{\mathbf{F P} \mid \mathbf{R P}\}\{$ active $\}\}\}$ | tform software audit command in privileged EXEC $[\text { switch }\{\text { switch-number \| active \| standby }\}]$ |
| :---: | :---: | :---: |
| Syntax Description | all | Shows the audit log from all the slots. |
| | summary | Shows the audit log summary count from all the slots. |
| | switch | Shows the audit logs for a slot on a specific switch. |
| | switch-number | Selects the switch with the specified switch number. |
| | switch active | Selects the active instance of the switch. |
| | standby | Selects the standby instance of the switch. |
| | 0 | Shows the audit log for the SPA-Inter-Processor slot 0. |
| | F0 | Shows the audit log for the Embedded-Service-Processor slot 0 . |
| | R0 | Shows the audit log for the Route-Processor slot 0 . |
| | FP active | Shows the audit log for the active Embedded-Service-Processor slot. |
| | RP active | Shows the audit log for the active Route-Processor slot. |
| Command Modes | Privileged EXEC (\#) | |
| Command History | Release | Modification |
| | Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

Usage Guidelines This command was introduced in the Cisco IOS XE Gibraltar 16.10.1 as a part of the SELinux Permissive Mode feature. The show platform software audit command displays the system logs containing the access violation events.

In Cisco IOS XE Gibraltar 16.10.1, operation in a permissive mode is available - with the intent of confining specific components (process or application) of the IOS-XE platform. In the permissive mode, access violation events are detected and system logs are generated, but the event or operation itself is not blocked. The solution operates mainly in an access violation detection mode.

The following is a sample output of the show software platform software audit summary command:

Device\＃show platform software audit summary

The following is a sample output of the show software platform software audit all command：

```
Device# show platform software audit all
*-ー=ーーーーーー=ー=ー
AUDIT LOG ON switch 1
========== START =============
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
comm="mcp_trace_filte" name="crashinfo" dev="rootfs" ino=13667
scontext=system u:system r:polaris trace filter t:s0
tcontext=system_u:object_r_polaris_disk_\overline{crashinfo_t:s0 tclass=lnk_file permissive=1}
type=AVC msg=audit(1539222292.584:100): avc: denied { getattr } for pid=14017
comm="mcp_trace_filte" path="/mnt/sd1" dev="sda1" ino=2
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_\overline{crashinfo_t:s0 tclass=dir permissive=1}
type=AVC msg=audit(1539222292.586:101): avc: denied { getattr } for pid=14028 comm="ls"
    path="/tmp/ufs/crashinfo" dev="tmpfs" ino=58407
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:102): avc: denied { read } for pid=14028 comm="ls"
name="crashinfo" dev="tmpfs" ino=58407 scontext=system_u:system_r:polaris_trace_filter_t:s0
    tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539438600.896:1\overline{19) : avc: denied { execute } for pid=8300 comm="sh"}
name="id" dev="loop0" ino=6982 scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
    tcontext=system_u:object_r:bin_t:s0 tclass=file permissive=1
type=AVC msg=audit(153943多600.8\overline{97:120): avc: denied { execute_no_trans } for pid=8300}
comm="sh"
path="/tmp/sw/mount/cat9k-rpbase.2018-10-02_00.13_mhungund.SSA.pkg/nyquist/usr/bin/id"
dev="loop0" ino=6982 scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:bin_t:s0 tclass=file permissive=1
type=AVC msg=audit(1539438615.535:121): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_ngin}nx_t:s
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=au\overline{dit(1539438624.916:122): avc: denied { execute_no_trans } for pid=8600}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t"s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8648.93\overline{6}:123)}\mathrm{ : avc: denied { execute no trans } for pid=9307}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=audit(15394\overline{3}8678.64\overline{9}:124)}\mathrm{ : avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_ngin}nx_t:s
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=au\overline{dit(153943}8696.969:\overline{125)}\mathrm{ : avc: denied { execute_no_trans } for pid=10057}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:\overline{system_r:polaris_auto_upgrade_server_rp_t:s0}
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=audit(15394\overline{3}732.97\overline{3}:126): avc: denied { execute_no_trans } for pid=10858
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}778.00\overline{8}:127)}\mathrm{ : avc: denied { execute_no_trans } for pid=11579}
comm="auto upgrade se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
```

```
type=AVC msg=audit(1539438800.156:128): avc: denied { name connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system u:object r:polaris caf api port t:s0 tclass=tcp socket permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8834.099:\overline{129)}}\mathrm{ : avc}: de\overline{nied { execute_no_trans } for pid=12451}
comm="auto upgrade se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394}\overline{4}0246.69\overline{7}:149)}\mathrm{ : avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=audit(1539440299.119:150): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
```

========== END ============

The following is a sample output of the show software platform software audit switch command:

```
Device# show platform software audit switch active RO
```

```
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
comm="mcp_trace_filte" name="crashinfo" dev="rootfs" ino=13667
scontext=\̄ystem_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=lnk_file permissive=1
```



```
comm="mcp_trace_filte" path="/mnt/sd1" dev="sda1" ino=2
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:101): avc: denied { getattr } for pid=14028 comm="ls"
    path="/tmp/ufs/crashinfo" dev="tmpfs" ino=58407
scontext=system_u:system_r:polaris trace filter t:s0
tcontext=system_u:object_r:polaris_ncd_tmpp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:102): avc: denied { read } for pid=14028 comm="ls"
name="crashinfo" dev="tmpfs" ino=58407 scontext=system_u:system_r:polaris_trace_filter_t:s0
    tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(153943\overline{8}624.916:1\overline{22) : avc: denied { execute_no_trans } for pid=8600}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit (15394\overline{3}8648.93\overline{6}:123)}\mathrm{ : avc: denied { execute_no_trans } for pid=9307}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=audit(1539438678.649:124): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system u:object r:polaris caf api port t:s0 tclass=tcp socket permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8696.969:\overline{125)}}\mathrm{ : avc: denied { execute_no_trans } for pid=10057}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system u:object r:shell exec t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8732.97\overline{3:126)}}\mathrm{ : avc: denied { execute_no_trans } for pid=10858}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=audit(153943
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server rp t:s0
tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=1
type=AVC msg=audit(1539438800.15\overline{6}:128): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginnx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
type=AVC msg=au\overline{dit(1539438834.099:\overline{129)}}\mathrm{ : avc: denied { execute_no_trans } for pid=12451}
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=sȳstem_u:s`ystem_r:polaris_auto_upgrade_server_rp_t:s0
```

```
tcontext=system u:object r:shell exec t:s0 tclass=file permissive=1
type=AVC msg=au\overline{dit(15394\overline{3}8860.907:130)}: avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
========== END =============
====================================
```


show platform software fed switch punt cause

To display information about why the packets received on an interface are punted to the Router Processor (RP), use the show platform software fed switch punt cpuq cause command in privileged EXEC mode.
show platform software fed switch \{switch-number |active | standby\} punt\{cause_id |clear | summary $\}$

Syntax Description
switch $\{$ switch-number \mid Displays information about the switch. You have the following options: active \mid standby \}

- switch-number.
- active -Displays information relating to the active switch.
- standby-Displays information relating to the standby switch, if available.

Note This keyword is not supported.

| cause_id | Specifies the ID of the cause for which the details have to be displayed. |
| :--- | :--- |
| clear | Clears the statistics for all the causes. Clearing the causes might result in
 inconsistent statistics. |
| summary | Displays a high-level overview of the punt reason. |
| None | |
| Privileged EXEC (\#) | Modification |
| Release | |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

Example

The following is sample output from the show platform software fed switch active punt cause summary command.

| Cause | Cause Info | Rcvd | Dropped |
| :---: | :---: | :---: | :---: |
| 7 | ARP request or response | 1 | 0 |
| 21 | RP<->QFP keepalive | 22314 | 0 |
| 55 | For-us control | 12 | 0 |
| 60 | IP subnet or broadcast packet | 21 | 0 |
| 96 | Layer2 control protocols | 133808 | 0 |

The following is sample output from the show platform software fed switch active punt cause cause-id command.
Device\# show platform software fed switch active punt cause 21
Detailed Statistics

| Sub Cause | Rcvd | |
| :--- | :---: | :---: |
| --------------------------------------- | | |
| 0 | 22363 | 0 |

show platform software fed switch punt cpuq

To display information about the punt traffic on CPU queues, use the show platform software fed switch punt cpuq command in privileged EXEC mode.
show platform software fed switch \{switch-number |active |standby\} punt cpuq \{cpuq_id | all |brief |clear |rates\}

| switch \{switch-number active standby | Displays information about the switch. You have the following options: |
| :---: | :---: |
| | - switch-number. |
| | - active -Displays information relating to the active switch. |
| | - standby-Displays information relating to the standby switch, if available. |
| | Note \quad This keyword is not supported. |

\(\left.\left.$$
\begin{array}{ll}\hline \text { punt } & \text { Displays the punt informtion. } \\
\hline \text { cpuq } & \text { Displays information about the CPU receive queue. }\end{array}
$$\right] $$
\begin{array}{ll}\hline \text { cpuq_id } & \begin{array}{l}\text { Specifies details specific to a particular CPU } \\
\text { queue. }\end{array} \\
\hline \text { all } & \text { Displays the statistics for all the CPU queues. } \\
\hline \text { brief } & \begin{array}{l}\text { Displays summarized statistics for all the queues } \\
\text { like details about punt packets received and } \\
\text { dropped. }\end{array} \\
\hline \text { clear } & \begin{array}{l}\text { Clears the statistics for all the CPU queues. } \\
\text { Clearing the CPU queue might result in } \\
\text { inconsistent statistics. }\end{array}
$$

\hline rates \& Displays the rate at which the packets are punted.\end{array}\right\}\)| None | Modification |
| :--- | :--- |

Example

The following is sample output from the show platform software fed switch active punt cpuq brief command.

The table below describes the significant fields shown in the display.

Table 213: show platform software fed switch active punt cpuq brief Field Descriptions

| Field | Description |
| :--- | :--- |
| Q no | ID of the queue. |
| Queue
 Name | Name of the queue. |
| Rx | Number of packets received. |

| Field | Description |
| :--- | :--- |
| Drop | Number of packets dropped. |

The following is sample output from the show platform software fed switch active punt cpuq cpuq_id command.

```
Device#show platform software fed switch active punt cpuq 1
Punt CPU Q Statistics
CPU Q Id : 1
CPU Q Name : CPU Q L2 CONTROL
Packets received from ASIC : 6774
Send to IOSd total attempts : 6774
Send to IOSd failed count : 0
RX suspend count
RX unsuspend count
RX unsuspend send count
RX unsuspend send failed count : 0
RX consumed count : 0
RX dropped count : 0
RX non-active dropped count : 0
RX conversion failure dropped : 0
RX INTACK count : 676
RX packets dq'd after intack : 0
Active RxQ event : 6761
RX spurious interrupt : 0
Replenish Stats for all rxq:
---------------------------------------------
Number of replenish : 61969
Number of replenish suspend : 0
Number of replenish un-suspend : 0
```


show platform software sl-infra

To display troubleshooting information and for debugging, enter the show platform software sl-infra command in privileged EXEC mode. The output of this command is used by the technical support team, for troubleshooting and debugging.
show platform software sl-infra \{ all |current |debug | stored \}

Syntax Description

Command Modes

Command History

Usage Guidelines

| all | Displays current, debugging, and stored information. |
| :--- | :--- |
| current | Displays current license-related information. |
| debug | Enables debugging |
| stored | Displays information that is stored on the product instance. |
| Privileged EXEC (Device\#) | |
| Release | Modification |

Cisco IOS XE Amsterdam 17.3.2a This command was
introduced.

When you encounter an error message that you are not able to resolve, along with a copy of the message that appears on the console or in the system log, provide your Cisco technical support representative with sample output of these commands: show license tech support, show license history message, and the show platform software sl-infra all privileged EXEC commands.

show platform sudi certificate

To display checksum record for the specific SUDI, use the show platform sudi certificate command in privileged EXEC mode.
show platform sudi certificate [sign [nonce <nonce>]]

Syntax Description

Command Modes
Command History

| sign | (Optional) Show signature |
| :--- | :--- |
| nonce | (Optional) Enter a nonce value |

Privileged EXEC (\#)

Release Modification
This command was introduced.

Examples

This example shows how to view the checksum record for a specific SUDI :

Abstract

\# show platform sudi certificate -----BEGIN CERTIFICATE----- MIIDQzCCAiugAwIBAgIQX/h7KCtU3I1CoxW1aMmt/zANBgkqhkiG9w0BAQUFADA1 MRYwFAYDVQQKEw1DaXNjbyBTeXN0ZW1 zMRswGQYDVQQDExJDaXNjbyBSb290IENB IDIwNDgwHhcNMDQwNTE0MjAxNzEyWhcNMj kwNTE0Mj AyNTQyWjA1MRYwFAYDVQQK Ew1DaXNjbyBTeXN0ZW1zMRswGQYDVQQDExJDaXNjbyBSb290IENBIDIwNDgwggEg MA0GCSqGSIb3DQEBAQUAA4 IBDQAwggEIAoIBAQCwmrmrp68Kd6ficba0ZmKUeIhH xmJVhEAyv8CrLqUccda8bnuoqrpu0hWISEWdovyD0My5jOAmaHBKeN8hF570YQXJ FcjPFto1YYmUQ6iEqDGYeJu5Tm8sUxJszR2tKyS7McQr/4NEb7Y9JHcJ6r8qqB9q VvYgDxFUl4F1pyXOWWqCZe+36ufijXWLbvLdT6ZeYpzPEApk0E5tzivMW/VgpSdH jWn0f84bcN5wGyDWbs2mAag8EtKpP6BrXruOIIt6keO1aO6g58QBdKhTCytKmg 91 Eg6CTY5j/e/rmxrbU6YTYK/CfdfHbBcl1HP7R2RQgYCUTOG/rksc35LtLgXfAgED -1EwTzALBgNVHQ8EBAMCAYYwDwYDVR0TAQH/BAUwAwEB/zAdBgNVHQ4EFgQUJ/PI FR5umgIJFq0roIlgX9p7L6owEAYJKwYBBAGCNxUBBAMCAQAwDQYJKoZIhvcNAQEF BQADggEBAJ2dhISjQal8dwy3U8pORFBi71R803UXHOjgxkhLtv5MOhmBVrBW7hmW Yqpao2TB9k5UM8Z3/sUcuuVdJcr18JOagxEu5sv4dEX+5wW4q+ffy0vhN4TauYuX cB7w4ovXsNgOnbFp1iqRe6lJT37mjpXYgyc81WhJDtSd9i7rp77rMKSsH0T8lasz Bvt9YAretIpjsJyp8qS5UwGH0GikJ3+r/+n6yUA4iGe00caEb1fJU9u6ju7AQ7L4 CYNu/2bPPu8Xs1gYJQk0XuPL1hS27PKSb3TkL4Eq1ZKR4OCXPDJoBYVL0fdX4IId kxpUnwVwwEpxYB5DC2Ae/qPOgRnhCzU=

-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIEPDCCAySgAwIBAgIKYQlufQAAAAAADDANBgkqhkiG9w0BAQUFADA1MRYwFAYD VQQKEw1DaXNjbyBTeXN0 ZW1 zMRswGQYDVQQDExJDaXNjbyBSb290IENBIDIwNDgw HhcNMTEwNjMwMTc1NjU3WhcNMj kwNTE0MjAyNTQyWjAnMQ4wDAYDVQQKEwVDaXNj bzEVMBMGA1UEAxMMQUNUMiBTVURJIENBMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A MIIBCgKCAQEA0m5l3THIxA9tN/hS5qR/6UZRpdd+9aE2JbFkNjht6gfHKd477AkS 5XAtUs5oxDYVt/zEbslZq3+LR6qrqKKQVu6JYvH05UYLBqCj38s76NLk53905Wzp 9pRcmRCPuX+a6tHF/qRuOiJ44mdeDYZo3qPCpxzprWJDPclM4iYKHumMQMqmgmg+ xghHIooWS80BOcdiynEbeP5rZ7qRuewKMpl1TiI3WdBNjZjnpfjg66F+P4SaDkGb BXdGj130VeF+EyFWLrFjj97fL2+8oauV43Qrvnf3d/GfqXj7ew+z/sXlXtEOjSXJ URsyMEj53Rdd9tJwHky8neapszS+r+kdVQIDAQABo4IBWjCCAVYwCwYDVR0PBAQD AgHGMB0GA1UdDgQWBBRI2PHxwnDVW7t8cwmTr7i4MAP4fzAfBgNVHSMEGDAWgBQn 88gVHm6aAgkWrSugiWBf2nsvqjBDBgNVHR8EPDA6MDigNqA0hjJodHRwOi8vd3d3 LmNpc2NvLmNvbS9zZWN1cml0eS9wa2kvY3JsL2NyY2EyMDQ4LmNybDBQBggrBgEF

BQcBAQREMEIwQAYIKwYBBQUHMAKGNGh0dHA6Ly93d3cuY2lzY28uY29tL3N1Y3Vy aXR5L3BraS9jZXJ0cy9jcmNhMjA00C5jZXIwXAYDVR0gBFUwUzBRBgorBgEEAQkV AQwAMEMwQQYIKwYBBQUHAgEWNWh0dHA6Ly93d3cuY2lzY28uY29tL3NlY3VyaXR5 L3BraS9wb2xpY2llcy9pbmRleC5odG1sMBIGA1UdEwEB/wQIMAYBAf8CAQAwDQYJ KoZIhvcNAQEFBQADggEBAGh1qclr9tx4hzWgDERm371yeuEmqcIfi9b9+GbMSJbi ZHc/CcCl0lJu0a9zTXA9w47H9/t6leduGxb4WeLxcwCiUgvFtCa51Iklt8nNbcKY /4dw1ex+7amATUQO4QggIE67wVIPu6bgAE3Ja/nRS3xKYSnj8H5TehimBSv6TECi i5jUhOWryAK4dVo8hCjkjEkzu3ufBTJapnv89g90E+H3VKM4L+/KdkUO+52djFKn hyl47d7cZR4DY4LIuFM2P1As8YyjzoNpK/urSRI14WdIlplR1nH7KNDl5618yfVP 0IFJZBGrooCRBjOSwFv8cpWCbmWdPaCQT2nwIjTfY8c=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIDhjCCAm6gAwIBAgIDctWkMA0GCSqGSIb3DQEBCwUAMCcxDjAMBgNVBAoTBUNp c2NvMRUwEwYDVQQDEwxBQ1QyIFNVREkgQ0EwHhcNMTUwODA2MDgwODI5WhcNMjUw ODA2MDgwODI5WjBzMSwwKgYDVQQFEyNQSUQ6V1MtQzM2NTAtMTJYNDhVWiBTTjpG RE8xOTMyWDAwQzEOMAwGA1UEChMFQ2lzY28xGDAWBgNVBAsTD0FDVC0yIExpdGUg U1VESTEZMBcGA1UEAxMQV1MtQzM2NTAtMTJYNDhVWjCCASIwDQYJKoZIhvcNAQEB BQADggEPADCCAQoCggEBANZxOGYIOeUl4HcSwjL4HO75qTjl9C2BHG3ufce9ikkN xwGXi8qg8vKxuB9tRYRaJC5bP1WMoq7+ZJtQA079xE4X14soNbkq5NaUhh7RB1wD iRUJvTfCOzVICbNfbzvtB30I75tCarFNmpd0K6AFrIa41U988QGqaCj7R1JrYNaj nC73UXXM/hC0HtNR5mhyqer5Y2qjjzo6tHZYqrrx2eS1XOa262ZSQriAxmaH/KLC K97ywyRBdJlxBRX3hGtKlog8nASB8WpXqB9NVCERzUajwU3L/kg2BsCqw9Y2m7HW U1cerTxgthuyUkdNI+Jg6iGApm2+s8E9hsHPBPMCdIsCAwEAAaNvMG0wDgYDVR0P AQH/BAQDAgXgMAwGA1UdEwEB/wQCMAAwTQYDVR0RBEYwRKBCBgkrBgEEAQkVAgOg NRMzQ2hpcElEPVVZSk50RmRRRlFvN1ZIVmxJRTlqZENBeU9DQXhPRG93TlRveE1T QVg5eWc9MA0GCSqGSIb3DQEBCwUAA4 IBAQBKicTRZbVCRjVIR5MQcWXUT086v6Ej HahDHTts3YpQoyAVfioNg2x8J6EXcEau4voyVu+eMUuoNL4szPhmmDcULfiCGBcA /R3EFuoVMIzNT0geziytsCf728KGw1oGuosgVjNGOOahUELu4+F/My7bIJNbH + PD KjIFmhJpJg0F3q17yClAeXvd13g3W393i35d00Lm5L1WbBfQtyBaOLAbxsHvutrX u1VZ5sdqSTwTkkO9vKMaQjh7a8J/AmJi93jvzM69pe5711P1zqZfYfpiJ3cyJ0xf I4brQ1smdczloFD4asF7A+1vor5e4VDBP0ppmeFAJvCQ52JTpj0M0o1D -----END CERTIFICATE-----

show romvar

To view all ROMMON environment variables, use the show romvar command. To view environmental variable for a specific resource, use the show romvar |i resource_name.
show romvar

Command Default
This command has no arguments or keywords.
Command Modes
Command History
Privileged EXEC

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

This example shows the output from the show romvar command:

```
Device# show romvar
ROMMON variables:
    PS1="switch: "
    TERMLINES="0"
MOTHERBOARD_ASSEMBLY_NUM="73-18506-02"
MOTHERBOARD_REVISION_NUM="05"
MODEL_REVISİON NUM="\overline{P}2B"
POE1_ASSEMBLY_NUM="73-16123-03"
POE1 REVISION NUM="A0"
POE1_SERIAL_NUM="FOC21387NKP"
POE2 ASSEMBLY NUM="73-16123-03"
POE2_REVISION_NUM="A0"
POE2 SERIAL NUM="FOC21387NKT"
IMAGE_UPGRAD}\overline{D}=="no
BOARDID="24666"
MAC_ADDR="F8:B7:E2:4F:37:80"
MODEL_NUM="C9300-48UN"
MOTHERBBOARD_SERIAL_NUM="FOC213901T4"
SYSTEM_SERIAL_NUM="FCW2144LO0V"
USB_SE\overline{RIAL_NUM="FOC21416472"}
STKPWR_SERIAL_NUM="FOC21432WPT"
STKPWR_ASSEMBLY_NUM="73-11956-08"
STKPWR_REVISION_NUM="B0"
USB_AS\overline{SEMBLY_NUM="73-16167-02"}
USB_REVISION_NUM="A0"
TAN_NUM="68-10101202-01"
TAN_REVISION_NUMBER="25"
VERSION_ID="P2B"
CLEI_CODE_NUMBER="ABCDEFGHIJ"
ECI_CODE_NUMBER="123456"
TAG_ID="E2003412012AFC00062B095E"
TFTP_SERVER="10.8.0.6"
TFTP_BLKSIZE="8192"
TEMPLATE="access"
LICENSE_BOOT_LEVEL="network-essentials,all:C9300_48P;"
DC_COPY="yes"
ENABLE_BREAK="yes"
IP_ADDRESS="172.21.227.57"
IP SUBNET MASK="255.255.254.0"
DEFAULT_GATEWAY="172.21.226.1"
BAUD="115200"
```

```
AUTOREBOOT RESTORE="0"
SWITCH_NUMBER="5"
CRASHINFO="crashinfo:crashinfo_RP_00_00_20180704-001833-UTC"
BOOT="flash:packages.conf;"
ABNORMAL RESET COUNT="0"
RET_2 RT\overline{S}="15:\overline{25:49 IST Fri Jul 13 2018"}
ROMMON AUTOBOOT ATTEMPT="3"
BSI="0"
RET_2_RCALTS=""
RANDOM_N_NUM="1931842665"
MANUAL_BOOT="yes"
```


show running-config

To display the contents of the current running configuration file or the configuration for a specific module, Layer 2 VLAN, class map, interface, map class, policy map, or virtual circuit (VC) class, use the show running-config command in privileged EXEC mode.
show running-config [options]

Syntax Description
options (Optional) Keywords used to customize output. You can enter more than one keyword.

- aaa [accounting | attribute | authentication | authorization | diameter | group | Idap | miscellaneous | radius-server | server | tacacs-server | user-name | username]: Displays AAA configurations.
- all: Expands the output to include the commands that are configured with default parameters. If the all keyword is not used, the output does not display commands configured with default parameters.
- bridge-domain \{id | parameterized vlan $\}$: Displays the running configuration for bridge domains.
- brief: Displays the configuration without certification data and encrypted filter details.
- class-map [name] [linenum]: Displays class map information.
- cts [interface | policy-server | rbm-rbac | server | sxp] : Displays Cisco TrustSec configurations.
- deprecated: Displays deprecated configuration along with the running configuration.
- eap $\{\boldsymbol{m e t h o d} \mid \operatorname{profiles}\}:$ Displays EAP method configurations and profiles.
- flow $\{$ exporter \mid monitor \mid record $\}$: Displays global flow configuration commands.
- full: Displays the full configuration.
- identity \{policy | profile\}: Displays identity profile or policy information.
- interface type number: Displays interface-specific configuration information. If you use the interface keyword, you must specify the interface type and the interface number (for example, interface GigabitEthernet $\mathbf{1 / 0 / 1}$). Use the show run interface $\boldsymbol{?}$ command to determine the interfaces available on your system.
- ip dhcp pool [name]: Displays IPv4 DHCP pool configuration.
- ipv6 dhcp pool [name]: Displays IPv6 DHCP pool configuration.
- linenum [brief | full | partition]: Displays line numbers in the output.
- map-class [atm | dialer | frame-relay] [name]: Displays map class information.
- mdns-sd [gateway | location-group | service-definition | service-list | service-peer | service-policy]: Displays Multicast DNS Service Discovery (mDNS-SD) configurations.
- partition \{access-list | class-map | common |global-cdp | interface | ip-as-path | ip-community | ip-prefix-list | ip-static-routes | line | policy-map | route-map | router | snmp | tacacs\}: Displays the configuration corresponding to a partition.
- policy-map [name] [linenum]: Displays policy map information.
- switch number: Displays configuration for the specified switch.
- view [full]: Enables the display of a full running configuration. This is for view-based users who typically can only view the configuration commands that they are entitled to access for that particular view.
- vlan [vlan-id]: Displays the specific VLAN information; valid values are from 1 to 4094.
- vrf [vrf-name]: Displays the Virtual routing and forwarding (VRF)-aware configuration module number.

Command Default
The default syntax, show running-config, displays the contents of the running configuration file, except commands configured using the default parameters.

| Command Modes | Privileged EXEC (\#) | |
| :---: | :---: | :---: |
| Command History | Release | Modification |

Usage Guidelines

The show running-config command is technically a command alias (substitute or replacement syntax) of the more system:running-config command. Although the use of more commands is recommended (because of their uniform structure across platforms and their expandable syntax), the show running-config command remains enabled to accommodate its widespread use, and to allow typing shortcuts such as show run.

The show running-config interface command is useful when there are multiple interfaces and you want to look at the configuration of a specific interface.

The linenum keyword causes line numbers to be displayed in the output. This option is useful for identifying a particular portion of a very large configuration.
You can enter additional output modifiers in the command syntax by including a pipe character (|) after the optional keyword. For example, show running-config interface GigabitEthernet 1/0/1 linenum | begin 3.

To display the output modifiers that are available for a keyword, enter $\boldsymbol{\boldsymbol { ? }}$ after the keyword. Depending on the platform you are using, the keywords and the arguments for the options argument may vary.
The show running-config all command displays complete configuration information, including the default settings and values. For example, if the Cisco Discovery Protocol (abbreviated as CDP in the output) hold-time value is set to its default of 180 :

- The show running-config command does not display this value.
- The show running-config all displays the following output: cdp holdtime 180.

If the Cisco Discovery Protocol holdtime is changed to a nondefault value (for example, 100), the output of the show running-config and show running-config all commands is the same; that is, the configured parameter is displayed.

The show running-config command displays ACL information. To exclude ACL information from the output, use the show running \mid section exclude ip access \mid access list command.

Examples
The following example shows the configuration for GigabitEthernet $0 / 0$ interface. The fields are self-explanatory.

```
Device# show running-config interface gigabitEthernet0/0
Building configuration...
Current configuration : }130\mathrm{ bytes
!
interface GigabitEthernet0/0
    vrf forwarding Mgmt-vrf
    ip address 10.5.20.10 255.255.0.0
    negotiation auto
    ntp broadcast
end
```

The following example shows how to set line numbers in the command output and then use the output modifier to start the display at line 10 . The fields are self-explanatory.

```
Device# show running-config linenum | begin 10
    boot-start-marker
    boot-end-marker
    !
    no logging buffered
    enable password #####
    !
    spe 1/0 1/7
    firmware location bootflash:mica-modem-pw.10.16.0.0.bin
    !
    !
    resource-pool disable
    !
    no aaa new-model
    ip subnet-zero
    ip domain name cisco.com
    ip name-server 172.16.11.48
    ip name-server 172.16.2.133
    !
    !
    isdn switch-type primary-5ess
    !
```

126 : end
In the following sample output from the show running-config command, the shape average command indicates that the traffic shaping overhead accounting for ATM is enabled. The BRAS-DSLAM encapsulation type is qinq and the subscriber line encapsulation type is snap-rbe based on the ATM adaptation layer 5 (AAL5) service. The fields are self-explanatory.

```
Device# show running-config
•
.
subscriber policy recording rules limit 64
no mpls traffic-eng auto-bw timers frequency 0
call rsvp-sync
!
controller T1 2/0
framing sf
linecode ami
!
controller T1 2/1
framing sf
linecode ami
!
!
policy-map unit-test
class class-default
shape average percent 10 account qinq aal5 snap-rbe
!
```

The following is sample output from the show running-config class-map command. The fields in the display are self-explanatory.

```
Device# show running-config class-map
Building configuration...
Current configuration : 2157 bytes
!
class-map match-any system-cpp-police-ewlc-control
    description EWLC Control
class-map match-any system-cpp-police-topology-control
    description Topology control
class-map match-any system-cpp-police-sw-forward
    description Sw forwarding, L2 LVX data packets, LOGGING, Transit Traffic
class-map match-any system-cpp-default
    description EWLC Data, Inter FED Traffic
class-map match-any system-cpp-police-sys-data
    description Openflow, Exception, EGR Exception, NFL Sampled Data, RPF Failed
class-map match-any system-cpp-police-punt-webauth
        description Punt Webauth
class-map match-any system-cpp-police-l2lvx-control
    description L2 LVX control packets
class-map match-any system-cpp-police-forus
    description Forus Address resolution and Forus traffic
class-map match-any system-cpp-police-multicast-end-station
    description MCAST END STATION
class-map match-any system-cpp-police-high-rate-app
    description High Rate Applications
class-map match-any system-cpp-police-multicast
    description MCAST Data
class-map match-any system-cpp-police-l2-control
    description L2 control
```

```
class-map match-any system-cpp-police-dot1x-auth
    description DOT1X Auth
class-map match-any system-cpp-police-data
    description ICMP redirect, ICMP_GEN and BROADCAST
class-map match-any system-cpp-police-stackwise-virt-control
    description Stackwise Virtual OOB
```

The following example shows that the teletype (tty) line 2 is reserved for communicating with the second core:

```
Device# show running
Building configuration...
Current configuration:
!
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname device
!
enable password lab
!
no ip subnet-zero
!
!
!
interface Ethernet0
    ip address 10.25.213.150 255.255.255.128
    no ip directed-broadcast
    no logging event link-status
!
interface Serialo
    no ip address
    no ip directed-broadcast
    no ip mroute-cache
    shutdown
    no fair-queue
!
interface Serial1
    no ip address
    no ip directed-broadcast
    shutdown
!
ip default-gateway 10.25.213.129
ip classless
ip route 0.0.0.0 0.0.0.0 10.25.213.129
!
!
line con 0
    transport input none
line 1 6
    no exec
    transport input all
line 7
    no exec
    exec-timeout 300 0
    transport input all
line 8 9
    no exec
    transport input all
```

```
line 10
    no exec
    transport input all
    stopbits 1
line 11 12
    no exec
    transport input all
line 13
    no exec
    transport input all
    speed 115200
line 14 16
    no exec
    transport input all
line aux 0
line vty 0 4
    password cisco
    login
!
end
```

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| copy running-config
 startup-config | Copies the running configuration to the startup configuration. (Command
 alias for the copy system:running-config nvram:startup-config
 command.) | |
| show startup-config | Displays the contents of NVRAM (if present and valid) or displays the
 configuration file pointed to by the CONFIG_FILE environment variable.
 (Command alias for the more:nvram startup-config command.) | |

show sdm prefer

To display information about the templates that can be used to maximize system resources for a particular feature, use the show sdm prefer command in privileged EXEC mode. To display the current template, use the command without a keyword.
show sdm prefer [access]

Syntax Description
access (Optional) Displays information on the access template.

| $\overline{\text { Command Default }}$ | | No default behavior or values. |
| :--- | :--- | :--- |
| Command Modes | Privileged EXEC | |
| Command History | Release | Modification |
| | Cisco IOS XE Everest | This command was introduced. |
| | 16.5 .1 a | |
| | | |

Usage Guidelines

If you did not reload the device after entering the sdm prefer global configuration command, the show sdm prefer privileged EXEC command displays the template currently in use and not the newly configured template.

The numbers displayed for each template represent an approximate maximum number for each feature resource. The actual number might vary, depending on the actual number of other features configured. For example, in the default template if your device had more than 16 routed interfaces (subnet VLANs), the number of possible unicast MAC addresses might be less than 6000.

Example

The following is sample output from the show sdm prefer command:

```
Device# show sdm prefer
Showing SDM Template Info
This is the Access template.
    Number of VLANs: 4094
    Unicast MAC addresses: }3276
    Overflow Unicast MAC addresses: }102
    L2 Multicast entries: }819
    Overflow L2 Multicast entries: 512
    L3 Multicast entries: 8192
    Overflow L3 Multicast entries: }51
    Directly connected routes: 24576
    Indirect routes: 8192
    STP Instances: 1024
    Security Access Control Entries: }512
    QoS Access Control Entries: 5120
    Policy Based Routing ACEs: }102
    Netflow Input ACEs: 256
    Netflow Output ACEs: }76
```

```
    Ingress Netflow ACEs: 256
    Egress Netflow ACEs: }76
    Flow SPAN ACEs: 1024
    Tunnels: }51
    LISP Instance Mapping Entries: 512
    Control Plane Entries: 512
    Input Netflow flows: 32768
    Output Netflow flows: 32768
    SGT/DGT (or) MPLS VPN entries: 8192
    SGT/DGT (or) MPLS VPN Overflow entries: 512
    Wired clients: 2048
    MACSec SPD Entries: 256
    MPLS L3 VPN VRF: 255
    MPLS Labels: 2048
    MPLS L3 VPN Routes VRF Mode: }716
    MPLS L3 VPN Routes Prefix Mode: 3072
    MVPN MDT Tunnels: 256
    L2 VPN EOMPLS Attachment Circuit: 256
    MAX VPLS Bridge Domains : }12
    MAX VPLS Peers Per Bridge Domain: 32
    MAX VPLS/VPWS Pseudowires : }102
These numbers are typical for L2 and IPv4 features.
Some features such as IPv6, use up double the entry size;
so only half as many entries can be created.
* values can be modified by sdm cli.
```


show tech-support confidential

To hide confidential information from the show tech-support output, use the show tech-support confidential command in privileged EXEC mode.
show tech-support confidential output file-name
Syntax Description
output file-name
Specifies the output file where the tech-support data is to be saved.

Command Default

Command History

Usage Guidelines
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Amsterdam 17.3.1 | This command was introduced. |

The show tech-support confidential command will hide sensitive data like MAC addresses, IP addresses, and passwords. The output will be the same as that of the show tech-support command with all the customer-specific data masked.
The output from the show tech-support confidential command is very long. To better manage this output, you can redirect the output to a file in the local writable storage file system or the remote file system by using the show tech-support confidential output location:filename) . Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

```
Device# show tech-support confidential output flash:tech_confidential
Collecting tech-support without confidential info, it will take few min..
```

To view the output of the redirected file, use the command more location:filename.

show tech-support monitor

To display the SPAN monitor information, use the show tech-support monitor command in privileged EXEC mode.
show tech-support monitor [\{switch switch-number \mid active | standby $\}$]

Syntax Description

| switch-number | Specifies the switch. |
| :--- | :--- |
| active | Specifies the active instance of the switch. |
| standby | Specifies the standby instance of the switch. |

$\overline{\text { Command Default }}$

Privileged EXEC (\#)
Command History

Usage Guidelines
The output from the show tech-support monitor command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support monitor [switch switch-number | active | standby] | redirect location:filename) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.
To view the output of the redirected file, use the command more location:filename.

show tech-support platform

To display detailed information about a platform for use by technical support, use the show tech-support platform command in privileged EXEC mode.
show tech-support platform

| $\overline{\text { Syntax Description }}$ |
| :--- |
| Command Modes |
| Command History |

This command has no arguments or keywords.
Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

Usage Guidelines
This command is used for platform-specific debugging. The output provides detailed information about a platform, such as CPU usage, Ternary Content Addressable Memory (TCAM) usage, capacity, and memory usage.

The output of the show tech-support platform command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support platform | redirect flash:filename) in the local writable storage file system or remote file system.

The output of the show tech-support platform command displays a list commands and their output. These commands may differ based on the platform.

Examples
The following is sample output from the show tech-support platform command:

```
Device# show tech-support platform
```

----------------- show platform hardware capacity
Load Average

Slot Status 1-Min | 5-Min | 15-Min |
| ---: | ---: | ---: |

Memory (kB)
Slot Status Total Used (Pct) Free (Pct) Committed (Pct)
1-RP0 Healthy 39644282212476 (56\%) 1751952 (44\%) 3420472 (86%)
CPU Utilization

| Slot | CPU | User | System | Nice | Idle | IRQ | SIRQ | IOwait |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1-RP0 | 0 | 1.40 | 0.90 | 0.00 | 97.60 | 0.00 | 0.10 | 0.00 |
| | 1 | 2.00 | 0.20 | 0.00 | 97.79 | 0.00 | 0.00 | 0.00 |
| | 2 | 0.20 | 0.00 | 0.00 | 99.80 | 0.00 | 0.00 | 0.00 |
| | 3 | 0.79 | 0.19 | 0.00 | 99.00 | 0.00 | 0.00 | 0.00 |
| | 4 | 5.61 | 0.50 | 0.00 | 93.88 | 0.00 | 0.00 | 0.00 |
| | 5 | 2.90 | 0.40 | 0.00 | 96.70 | 0.00 | 0.00 | 0.00 |

*: interface is up

IHQ: pkts in input hold queue OHQ: pkts in output hold queue RXBS: rx rate (bits/sec) TXBS: tx rate (bits/sec) TRTL: throttle count

IQD: pkts dropped from input queue OQD: pkts dropped from output queue RXPS: rx rate (pkts/sec)
TXPS: tx rate (pkts/sec)
Interface IHQ IQD OHQ OQD RXBS RXPS
TXBS TXPS TRTL

| Vlan1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | | | | | | |
| GigabitEthernet0/0 | 0 | 10179 | 0 | 0 | 2000 | 4 |
| 000 | | | | | | |
| GigabitEthernet1/0/1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/9 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/10 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/11 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/13 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/14 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/15 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/16 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 0 0 | | | | | | |
| GigabitEthernet1/0/17 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/18 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/19 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/20 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/21 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/22 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/23 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/24 | 0 | 0 | 0 | 0 | 0 | 0 |
| 000 | | | | | | |
| GigabitEthernet1/0/25 | 0 | 0 | 0 | 0 | 0 | 0 |
| 00 | | | | | | |


```
MAB 7: Unicast MAC addresses srip O 1
ASIC 0 HASH Table 1 Software info: FSE 0
    MAB 0: Unicast MAC addresses srip 0 1
    MAB 1: Unicast MAC addresses srip 0 1
    MAB 2: Unicast MAC addresses srip 0 1
    MAB 3: Unicast MAC addresses srip 0 1
    MAB 4: Unicast MAC addresses srip 0 1
    MAB 5: Unicast MAC addresses srip 0 1
    MAB 6: Unicast MAC addresses srip 0 1
    MAB 7: Unicast MAC addresses srip 0 1
ASIC 0 HASH Table 2 Software info: FSE 1
    MAB 0: L3 Multicast entries srip 2 3
    MAB 1: L3 Multicast entries srip 2 3
    MAB 2: SGT DGT srip 0 1
    MAB 3: SGT_DGT srip 0 1
    MAB 4: (null) srip
    MAB 5: (null) srip
    MAB 6: (null) srip
    MAB 7: (null) srip
•
*
```

Output fields are self-explanatory.

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | show tech-support platform evpn_vxlan | Displays EVPN-VXLAN-related platform
 information. |
| | show tech-support platform fabric | Displays detailed information about the switch
 fabic. |
| | show tech-support platform igmp_snooping | Displays IGMP snooping information about a
 group. |
| show tech-support platform layer3 | Displays Layer 3 platform forwarding
 information. | |
| | show tech-support platform mld_snooping | Displays MLD snooping information about a
 group. |

show tech-support platform evpn_vxlan

To display Ethernet VPN (EVPN)-Virtual eXtensible LAN (VXLAN)-related platform information for use by technical support, use the show tech-support platform evpn_vxlan command in privileged EXEC mode.
show tech-support platform evpn_vxlan switch switch-number

Syntax Description

Command Modes

Command History

Usage Guidelines

| switch switch-number | Displays information for the
 specified switch. Valid values are
 from 1 to 9. |
| :--- | :--- |

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support platform evpn_vxlan switch $\mathbf{1} \mid$ redirect flash:filename) in the local writable storage file system or remote file system.

The following is sample output from the show tech-support platform evpn_vxlan command:

```
Device# show tech-support platform evpn_vxlan switch 1
    "show clock"
    "show version"
    "show running-config"switch no: 1
----- sh sdm prefer -----
Showing SDM Template Info
This is the Advanced template.
    Number of VLANs: 4094
    Unicast MAC addresses: }3276
    Overflow Unicast MAC addresses: }51
    L2 Multicast entries: 4096
    Overflow L2 Multicast entries: 512
    L3 Multicast entries: 4096
    Overflow L3 Multicast entries: 512
    Directly connected routes: 16384
    Indirect routes: }716
    STP Instances: 4096
    Security Access Control Entries: 3072
    QoS Access Control Entries: 2560
    Policy Based Routing ACEs: }102
    Netflow ACEs: }76
    Flow SPAN ACEs: }51
    Tunnels: 256
    LISP Instance Mapping Entries: 256
    Control Plane Entries: 512
```

| Input Netflow flows: | 8192 |
| :--- | :--- |
| Output Netflow flows: | 16384 |
| SGT/DGT (or) MPLS VPN entries: | 4096 |
| SGT/DGT (or) MPLS VPN Overflow entries: | 512 |
| Wired clients: | 2048 |
| MACSec SPD Entries: | 256 |
| MPLS L3 VPN VRF: | 127 |
| MPLS Labels: | 2048 |
| MPLS L3 VPN Routes VRF Mode: | 7168 |
| MPLS L3 VPN Routes Prefix Mode: | 3072 |
| MVPN MDT Tunnels: | 256 |
| L2 VPN EOMPLS Attachment Circuit: | 256 |
| MAX VPLS Bridge Domains : | 64 |
| MAX VPLS Peers Per Bridge Domain: | 8 |
| MAX VPLS/VPWS Pseudowires : | 256 |
| These numbers are typical for L2 and IPv4 features. | |
| Some features such as IPv6, use up double the entry size; | |
| so only half as many entries can be created. | |
| * values can be modified by sdm cli. | |

----- show platform software fed switch 1 ifm interfaces nve -----
----- show platform software fed switch 1 ifm interfaces efp -----
----- show platform software fed switch 1 matm macTable -----

```
Total Mac number of addresses:: 0
*a_time=aging_time(secs) *e_time=total_elapsed_time(secs)
Type:
MAT_DYNAMIC_ADDR 0x1 MAT_STATIC_ADDR 0x2 MAT_CPU_ADDR
    0x\overline{4}}\mathrm{ MAT_DISCARD_ADDR
        0x10 MAT_NO_FORWARD 0x20 MAT_IPMULT_ADDR
MAT_ALL_VLANS
0x40 MAT RESYNC
MAT_DO_NOT_AGE 0x100 MAT_SECURE_ADDR 0x200 MAT_NO_PORT
0x400 MAT_DROP_ADDR 0\times800
MAT_DUP_ADDR 0x1000 MAT_NULL_DESTINATION 0x2000 MAT_DOT1X_ADDR
0x4000 MAT_ROUTER_ADDR 0x8000
MAT_WIRELESS___ADDR 0x10000 MAT_SECURE_CFG_ADDR 0x20000 MAT_OPQ_DATA_PRESENT
0x40000 MAT_WIRED_TUNNEL_ADDR 0x80000
MAT_DLR_ADDR ' - 0x10}0000 MAT_MRP_ADDR 0x200000 MAT_MSRP_ADDR
0x400000 MAT_LISP_LOCAL_ADDR 0x800000
MAT_LISP_REMO\overline{TE_ADDRR 0x10}000000 MAT_VPLS_ADDR 0x2000000
Device#
```

Output fields are self-explanatory.

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | show tech-support platform | Displays detailed information about a platform
 for use by technical support. |

show tech-support platform fabric

To display information about the switch fabric, use the show tech-support platform fabric command in privileged EXEC mode.
show tech-support platform fabric [\{display-cli | vrf vrf-name \{ipv4 display-cli | ipv6 display-cli | source instance-id instance-id \{ipv4 ip-address/ip-prefix | ipv6 ipv6-address/ipv6-prefix | mac mac-address \} \{dest instance-id instance-id\} \{ipv4 ip-address/ip-prefix | ipv6 ipv6-address/ipv6-prefix | mac mac-address $\}$ [\{display-cli\}]\}\}]

Syntax Description

Command Modes
Command History

| display-cli | (Optional) Displays the list of show
 commands available in the output of
 this command. |
| :--- | :--- |
| vrf vrf-name | (Optional) Displays fabric-related
 information for the specified virtual
 routing and forwarding (VRF)
 instance. |
| ipv4 ip-address/ip-prefix | (Optional) Displays fabric-related
 information for the source or
 destination IP VRF. |
| ipv6 ipv6-address/ipv6-prefix | (Optional) Displays fabric-related
 information for the source or
 destination IPv6 VRF. |
| source | (Optional) Displays fabric-related
 information for the source VRF. |
| instance-id instance-id | (Optional) Displays information
 about the endpoint identifier (EID)
 of the source. |
| mac mac-address | (Optional) Displays fabric-related
 information for the source and
 destination MAC VRF for Layer 2
 extension deployments. |

Privileged EXEC (\#)
Release Modification

Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

Usage Guidelines
The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support platform fabric | redirect flash:filename) in the local writable storage file system or remote file system.

Examples

The output of this command displays a list commands and their output. These commands may differ based on the platform.

The following is sample output from the show tech-support platform fabric vrf source instance-id ipv4 dest instance-id ipv4 command:

```
Device# show tech-support platform fabric vrf DEFAULT_VN source instance-id
4098 ipv4 10.1.1.1/32 dest instance-id 4098 ipv4 10.12.12.12/32
.
.
-----show ip lisp eid-table vrf DEFAULT_VN forwarding eid remote 10.12.12.12-----
Prefix Fwd action Locator status bits encap_iid
10.12.12.12/32 encap 0x00000001 N/A
    packets/bytes 1/576
    path list 7F44EEC2C188, 4 locks, per-destination, flags 0x49 [shble, rif, hwcn]
        ifnums:
            LISP0.4098(78): 192.0.2.2
            1 path
                path 7F44F8B5AFF0, share 10/10, type attached nexthop, for IPv4
                    nexthop 192.0.2.2 LISP0.4098, IP midchain out of LISP0.4098, addr 192.0.2.2
7F44F8E86CE8
            1 output chain
                chain[0]: IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
                        IP adj out of GigabitEthernet1/0/1, addr 10.0.2.1 7F44F8E87378
-----show lisp instance-id 4098 ipv4 map-cache-----
LISP IPv4 Mapping Cache for EID-table vrf DEFAULT_VN (IID 4098), 3 entries
0.0.0.0/0, uptime: 02:46:01, expires: never, via static-send-map-request
    Encapsulating to proxy ETR
10.1.1.0/24, uptime: 02:46:01, expires: never, via dynamic-EID, send-map-request
    Encapsulating to proxy ETR
10.12.12.12/32, uptime: 02:45:54, expires: 21:14:06, via map-reply, complete
    Locator Uptime State Pri/Wgt Encap-IID
    192.0.2.2 02:45:54 up 10/10 -
-----show lisp instance-id 4098 ipv4 map-cache detail-----
LISP IPv4 Mapping Cache for EID-table vrf DEFAULT_VN (IID 4098), 3 entries
0.0.0.0/0, uptime: 02:46:01, expires: never, via static-send-map-request
    Sources: static-send-map-request
    State: send-map-request, last modified: 02:46:01, map-source: local
    Exempt, Packets out: 2(676 bytes) (~ 02:45:38 ago)
    Configured as EID address space
    Encapsulating to proxy ETR
101.1.0/24, uptime: 02:46:01, expires: never, via dynamic-EID, send-map-request
    Sources: NONE
    State: send-map-request, last modified: 02:46:01, map-source: local
    Exempt, Packets out: 0(0 bytes)
    Configured as EID address space
    Configured as dynamic-EID address space
    Encapsulating dynamic-EID traffic
    Encapsulating to proxy ETR
```

```
10.12.12.12/32, uptime: 02:45:54, expires: 21:14:06, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 02:45:54, map-source: 10.0.1.2
    Idle, Packets out: 1(576 bytes) (~ 02:45:38 ago)
    Locator Uptime State Pri/Wgt Encap-IID
    192.0.2.2 02:45:54 up 10/10 -
        Last up-down state change: 02:45:54, state change count: 1
        Last route reachability change: 02:45:54, state change count: 1
        Last priority / weight change: never/never
        RLOC-probing loc-status algorithm:
            Last RLOC-probe sent: 02:45:54 (rtt 1ms)
-----show lisp instance-id 4098 ipv4 map-cache 10.12.12.12/32-----
LISP IPv4 Mapping Cache for EID-table vrf DEFAULT_VN (IID 4098), 3 entries
10.12.12.12/32, uptime: 02:45:54, expires: 21:14:06, via map-reply, complete
    Sources: map-reply
    State: complete, last modified: 02:45:54, map-source: 10.0.1.2
    Idle, Packets out: 1(576 bytes) (~ 02:45:38 ago)
    Locator Uptime State Pri/Wgt Encap-IID
    192.0.2.2 02:45:54 up 10/10 -
        Last up-down state change: 02:45:54, state change count: 1
        Last route reachability change: 02:45:54, state change count: 1
        Last priority / weight change: never/never
        RLOC-probing loc-status algorithm:
            Last RLOC-probe sent: 02:45:54 (rtt 1ms)
-----show ip cef vrf DEFAULT_VN 10.12.12.12/32 internal-----
10.12.12.12/32, epoch 1, flags [sc, lisp elig], refcnt 6, per-destination sharing
    sources: LISP, IPL
    feature space:
        Broker: linked, distributed at lst priority
    subblocks:
        SC owned,sourced: LISP remote EID - locator status bits 0x00000001
        LISP remote EID: 1 packets 576 bytes fwd action encap, cfg as EID space
        LISP source path list
            path list 7F44EEC2C188, 4 locks, per-destination, flags 0x49 [shble, rif, hwcn]
                    ifnums:
                        LISP0.4098(78): 192.0.2.2
            1 \text { path}
                path 7F44F8B5AFF0, share 10/10, type attached nexthop, for IPv4
                            nexthop 192.0.2.2 LISP0.4098, IP midchain out of LISP0.4098, addr 192.0.2.2
7F44F8E86CE8
            1 output chain
                chain[0]: IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
                            IP adj out of GigabitEthernet1/0/1, addr 10.0.2.1 7F44F8E87378
            Dependent covered prefix type LISP, cover 0.0.0.0/0
        2 IPL sources [no flags]
    ifnums:
        LISP0.4098(78): 192.0.2.2
    path list 7F44EEC2C188, 3 locks, per-destination, flags 0x49 [shble, rif, hwcn]
            path 7F44F8B5AFF0, share 10/10, type attached nexthop, for IPv4
            nexthop 192.0.2.2 LISP0.4098, IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
    output chain:
        PushCounter(LISP:10.12.12.12/32) 7F44F3C8B8D8
        IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
        IP adj out of GigabitEthernet1/0/1, addr 10.0.2.1 7F44F8E87378
```

```
switch no: 1
.
•
Device# show tech-support platform fabric vrf Campus_vN source instance-id 8189
mac 00b7.7128.00a1 dest instance-id 8189 mac 00b7.7128.00a0 | i show
------------------ show clock ---------------------
------------------ show version ---------------------
------------------ show running-config ---------------------
------------------ show device-tracking database ---------------------
------------------ show lisp site ---------------------
-------------------- show mac address-table address 00B7.7128.00A0------
------------------- show ip arp vrf Campus_VN-----
Device#
```

Output fields are self-explanatory.

| Related Commands | Command | Description |
| :--- | :--- | :--- |
| | show tech-support platform | Displays detailed information about a platform
 for use by technical support. |

show tech-support platform igmp_snooping

To display Internet Group Management Protocol (IGMP) snooping information about a group, use the show tech-support platform igmp_snooping command in privileged EXEC mode.
show tech-support platform igmp_snooping [\{Group_ipAddr ipv4-address | [\{vlan vlan-ID\}]\}]
Syntax Description

| Command Modes | | |
| :--- | :--- | :--- |
| Command History | Release | Modification |
| | Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

The output of this command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support platform igmp_snooping | redirect flash:filename) in the local writable storage file system or remote file system.
$\overline{\text { Examples }}$
The following is sample output from the show tech-support platform igmp_snooping command:

```
Device# show tech-support platform igmp_snooping GroupIPAddr 226.6.6.6 vlan
.
----- show ip igmp snooping groups | i 226.6.6.6 -----
5 226.6.6.6 user Gil/0/8, Gil/0/27, Gi1/0/28,
----- show ip igmp snooping groups count -----
Total number of groups: 2
----- show ip igmp snooping mrouter -----
Vlan ports
---- -----
    23 Router
    24 Router
```

$$
25 \text { Router }
$$

----- show ip igmp snooping querier -----

| Vlan | IP Address | IGMP Version | Port |
| :---: | :---: | :---: | :---: |
| 23 | 10.1.1.1 | v2 | Router |
| 24 | 10.1.2.1 | v2 | Router |
| 25 | 10.1.3.1 | v2 | Router |

----- show ip igmp snooping vlan 5 -----

Global IGMP Snooping configuration:

----- show platform software fed active ip igmp snooping vlan 5 -----

```
Vlan 5
---------
    IGMPSN Enabled : On
    PIMSN Enabled : Off
    Flood Mode : On
    I-Mrouter : Off
    Oper State : Up
```

```
STP TCN Flood : Off
Routing Enabled : Off
PIM Enabled : Off
PVLAN : No
In Retry : 0x0
L3mcast Adj :
Mrouter PortQ :
Flood PortQ :
```

----- show platform software fed active ip igmp snooping groups | begin 226.6.6.6 -----
Vlan:5 Group:226.6.6.6

Member ports :
CAPWAP ports :
Host Type Flags: 0
Failure Flags : 0
DI handle : 0x7f11151cbad8
REP RI handle : 0x7f11151cc018
SI handle : 0x7f11151cd198
HTM handle : 0x7f11151cd518
si hdl : 0x7f11151cd198 rep ri hdl : 0x7f11151cc018 di hdl : 0x7f11151cbad8 htm hdl :
0x7f11151cd518
.
Device\#

Output fields are self-explanatory.

| Command | Description |
| :--- | :--- |
| ip igmp snooping | Enables IGMP snooping globally or on an
 interface. |
| show ip igmp snooping | Displays the IGMP snooping configuration of
 a device. |
| show tech-support platform | Displays detailed information about a platform
 for use by technical support. |

show tech-support platform layer3

To display Layer 3 platform forwarding information, use the show tech-support platform layer 3 command in privileged EXEC mode.
show tech-support platform layer3 \{multicast Group_ipAddr ipv4-address switch switch-number srcIP ipv4-address | unicast \{dstIP ipv4-address srcIP ipv4-address | vrf vrf-name destIP ipv4-address srcIP ipv4-address\}\}

| Syntax Description | multicast | Displays multicast information. |
| :---: | :---: | :---: |
| | Group_ipv6Addr ipv4-address | Displays information about the specified multicast group address. |
| | switch switch-number | Displays information about the specified switch. Valid values are from 1 to 9 . |
| | srcIP ipv4-address | Displays information about the specified source address. |
| | unicast | Displays unicast-related information. |
| | dstIP ipv4-address | Displays information about the specified destination address. |
| | vrf v rf-name | Displays unicast-related virtual routing and forwarding (VRF) information. |

| Command Modes |
| :--- |
| Command History |

Usage Guidelines

Privileged EXEC (\#)

| Release | Modification |
| :--- | :--- |
| Cisco IOS XE Gibraltar 16.10.1 | This command was introduced. |

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support platform layer3 multicast group 224.1.1.1 switch 1 srcIP 10.10.0.2 \mid redirect flash:filename) in the local writable storage file system or remote file system.

Examples

The following is sample output from the show tech-support platform layer3 multicast group command:

```
Device# show tech-support platform layer3 multicast group_ipAddr 224.1.1.1
switch 1 srcIp 10.10.0.2
.
destination IP: 224.1.1.1
source IP: 10.10.0.2
```

```
switch no: 1
----- show ip mroute 224.1.1.1 10.10.0.2 -----
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
    L - Local, P - Pruned, R - RP-bit set, F - Register flag,
    T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
    X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
    U - URD, I - Received Source Specific Host Report,
    Z - Multicast Tunnel, z - MDT-data group sender,
    Y - Joined MDT-data group, y - Sending to MDT-data group,
    G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
    N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
    Q - Received BGP S-A Route, q - Sent BGP S-A Route,
    V - RD & Vector, v - Vector, p - PIM Joins on route,
    x - VxLAN group, c - PFP-SA cache created entry
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
    Timers: Uptime/Expires
    Interface state: Interface, Next-Hop or VCD, State/Mode
(10.10.0.2, 224.1.1.1), 00:00:22/00:02:37, flags: LFT
    Incoming interface: GigabitEthernet1/0/10, RPF nbr 0.0.0.0, Registering
    Outgoing interface list:
        Vlan20, Forward/Sparse, 00:00:22/00:02:37, A
----- show ip mfib 224.1.1.1 10.10.0.2 -----
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
    ET - Data Rate Exceeds Threshold, K - Keepalive
    DDE - Data Driven Event, HW - Hardware Installed
    ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB
    MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary
    MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client.
I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
    NS - Negate Signalling, SP - Signal Present,
    A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
    MA - MFIB Accept, A2 - Accept backup,
    RA2 - MRIB Accept backup, MA2 - MFIB Accept backup
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
I/O Item Counts: FS Pkt Count/PS Pkt Count
Default
    (10.10.0.2,224.1.1.1) Flags: HW
        SW Forwarding: 0/0/0/0, Other: 1/1/0
    HW Forwarding: NA/NA/NA/NA, Other: NA/NA/NA
    GigabitEthernet1/0/10 Flags: A
    Vlan20 Flags: F IC
        Pkts: 0/0
    Tunnel0 Flags: F
        Pkts: 0/0
```

----- show platform software fed switch 1 ip multicast interface summary -----
Multicast Interface database

--- show platform software fed switch 1 ip multicast groups count -----

Total Number of entries:4
----- show platform software fed switch 1 ip multicast groups 224.1.1.1/32 source 10.10.0.2 detail -----

MROUTE ENTRY vrf 0 (10.10.0.2, 224.1.1.1/32)
HW Handle: 140411418055080 Flags: IC
RPF interface: GigabitEthernet1/0/10(95)):
HW Handle:140411418055080 Flags:A
Number of OIF: 3
Flags: 0x4 Pkts : 0
OIF Details:
Tunnelo Adj: 0xf8000636 F
Vlan20 Adj: 0xf8000601 F IC
GigabitEthernet1/0/10 A
Htm: 0x7fb414b2f348 Si: 0x7fb414b321d8 Di: 0x7fb414b2dba8 Rep_ri: 0x7fb414b30ed8

DI details

Handle:0x7fb414b2dba8 Res-Type:ASIC_RSC_DI Res-Switch-Num:255 Asic-Num:255
Feature-ID:AL FID L3
MULTICAST IPV $\overline{4}$ Lk $\bar{p}-f \bar{t} r-i d: L K P$ FEAT INVALID ref count: 1
priv_ri/priv_si Handle:(nil) Hardware Indices/Handles: index0:0x538e mtu_index/l3u_ri_index0:0x0 index1:0x538e mtu_index/l3u_ri_index1:0x0

```
Cookie length: 56
00 00 00 00 00 00 00 00 00 00 00 00 02 00 0a 0a 01 01 01 e0 00 00 00 00 00 00 00 00 00 00
00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Detailed Resource Information (ASIC# O)
Destination Index (DI) [0x538e]
portMap = 0x00000000 0
cmil = 0x385
rcpPortMap = 0
al_rsc_cmi
CPU Map Index (CMI) [0x385]
ctiLo0 = 0x9
ctiLo1 = 0
ctiLo2 = 0
cpuQNum0 = 0x9e
cpuQNum1 = 0
cpuQNum2 = 0
npuIndex = 0
strip_seg = 0x0
copy_seg = 0x0
Detailed Resource Information (ASIC# 1)
------------------------------------------
Destination Index (DI) [0x538e]
portMap = 0x00000000 0
cmi1 = 0x385
rcpPortMap = 0
al_rsc_cmi
CPU Map Index (CMI) [0x385]
ctiLo0 = 0x9
ctiLo1 = 0
ctiLo2 = 0
cpuQNum0 = 0x9e
cpuQNum1 = 0
cpuQNum2 = 0
npuIndex = 0
strip_seg = 0x0
copy_seg = 0x0
==================================================================
RI details
----------
Handle:0x7fb414b30ed8 Res-Type:ASIC_RSC_RI_REP Res-Switch-Num:255 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
priv_ri/priv_si Handle:(nil) Hardware Indices/Handles: index0:0x5 mtu_index/l3u_ri_index0:0x0
index1:0x5 mtu_index/l3u_ri_index1:0x0
Cookie length: 56
00 00 00 00 00 00 00 00 00 00 00 00 02 00 0a 0a 01 01 01 e0 00 00 00 00 00 00 00 00 00 00
00 00 00
00}000000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ⿻⿻一𠃋
Detailed Resource Information (ASIC# 0)
------------------------------------------
Detailed Resource Information (ASIC# 1)
--------------------------------------------
```

```
SI details
Handle:0x7fb414b321d8 Res-Type:ASIC_RSC_SI_STATS Res-Switch-Num:255 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
priv_ri/priv_si Handle:(nil) Hardware Indices/Handles: index0:0x4004 mtu_index/l3u_ri_index0:
0x0 sm handle 0:0x7fb414b2df98 index1:0x4004 mtu_index/l3u_ri_index1:0x0
Cookie length: 56
00 00 00 00 00 00 00 00 00 00 00 00 02 00 0a 0a 01 01 01 e0 00 00 00 00 00 00 00 00 00 00
0 0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Detailed Resource Information (ASIC# O)
Detailed Resource Information (ASIC# 1)
```

```
HTM details
Handle:0x7fb414b2f348 Res-Type:ASIC RSC HASH TCAM Res-Switch-Num:0 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_IPV4_MCAST_SG ref_count:1
```



```
Detailed Resource Information (ASIC# 0)
Number of HTM Entries: 1
Entry #0: (handle 0x7fb414b2f558)
KEY - src_addr:10.10.0.2 starg_station_index: 16387
MASK - src_addr:0.0.0.0 starg_station_index: 0
AD: use_stārg_match: 0 mcast_\overline{bridge_frame: 0 mcast_rep_frame: 0 rpf_valid: 1 rpf_le_ptr: 0}
afd_client_flag: 0 dest_mod_bridge: 0 dest_mod_route: 1 cpp_type: 0 dest_mod_index: 0
rp_index:
0 priority: 5 rpf_le: 36 station_index: 16388 capwap_mgid_present: 0 mgid 0
```

The following is sample output from the show tech-support platform layer3 unicast vrf command:

```
Device# show tech-support platform layer3 unicast vrf vrl dstIP 10.0.0.20
srcIP 10.0.0.10
.
•
destination IP: 10.0.0.20
source IP: 10.0.0.10
vrf name :
Switch/Stack Mac Address : 5006.ab89.0280 - Local Mac Address
Mac persistency wait time: Indefinite
```



```
10.0.0.10 -> 10.0.0.20 =>IP adj out of GigabitEthernet1/0/7, addr 10.0.0.20
----- show ip cef exact-route platform 10.0.0.10 10.0.0.20 ------
nexthop is 10.0.0.20
Protocol Interface Address
IP GigabitEthernet1/0/7 10.0.0.20(8)
0 packets, 0 bytes
epoch 0
sourced in sev-epoch 0
Encap length }1
00211BFDE6495006AB8902C00800
L2 destination address byte offset 0
L2 destination address byte length 6
Link-type after encap: ip
ARP
----- show adjacency 10.0.0.20 detail -----
Routing entry for 10.0.0.0/24
    Known via "connected", distance 0, metric 0 (connected, via interface)
    Routing Descriptor Blocks:
    * directly connected, via GigabitEthernet1/0/7
        Route metric is 0, traffic share count is 1
----- show ip route 10.0.0.20 -----
10.0.0.20/32, epoch 3, flags [attached]
    Adj source: IP adj out of GigabitEthernet1/0/7, addr 10.0.0.20 FF90E67820
        Dependent covered prefix type adjfib, cover 10.0.0.0/24
    attached to GigabitEthernet1/0/7
----- show ip cef 10.0.0.20 detail -----
ip prefix: 10.0.0.20/32
Forwarding Table
10.0.0.20/32 -> OBJ ADJACENCY (29), urpf: 30
Connected Interface: 31
Prefix Flags: Directly L2 attached
OM handle: 0x10205416d8
```

----- show platform software ip switch 1 R0 cef prefix 10.0.0.20/32 detail -----

```
OBJ_ADJACENCY found: 29
Number of adjacency objects: 5
Adjacency id: 0x1d (29)
    Interface: GigabitEthernet1/0/7, IF index: 31, Link Type: MCP_LINK_IP
    Encap: 0:21:1b:fd:e6:49:50:6:ab:89:2:c0:8:0
    Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500
    Flags: no-l3-inject
    Incomplete behavior type: None
    Fixup: unknown
    Fixup Flags 2: unknown
    Nexthop addr: 10.0.0.20
    IP FRR MCP ADJ IPFRR NONE O
    OM handle: 0x10}20541\overline{3}4
----- show platform software adjacency switch 1 R0 index 29 -----
Forwarding Table
10.0.0.20/32 -> OBJ_ADJACENCY (29), urpf: 30
Connected Interface: 31
Prefix Flags: Directly L2 attached
aom id: 393, HW handle: (nil) (created)
----- show platform software ip switch 1 FO cef prefix 10.0.0.20/32 detail -----
OBJ_ADJACENCY found: 29
Number of adjacency objects: 5
Adjacency id: 0x1d (29)
    Interface: GigabitEthernet1/0/7, IF index: 31, Link Type: MCP_LINK_IP
    Encap: 0:21:1b:fd:e6:49:50:6:ab:89:2:c0:8:0
    Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500
    Flags: no-l3-inject
    Incomplete behavior type: None
    Fixup: unknown
    Fixup Flags 2: unknown
    Nexthop addr: 10.0.0.20
    IP FRR MCP_ADJ_IPFRR_NONE O
    aom id: 391, HW handle: (nil) (created)
```

----- show platform software adjacency switch 1 FO index 29 -----

[^12]```
Object identifier: 391
 Description: adj 0x1d, Flags None
 Status: Done, Epoch: 0, Client data: 0xc6a747a8
----- show platform software object-manager switch 1 F0 object 391 -----
Object identifier: 66
 Description: intf GigabitEthernet1/0/7, handle 31, hw handle 31, HW dirty: NONE AOM dirty
 NONE
 Status: Done
```

----- show platform software object-manager switch 1 F0 object 391 parents -----
Object identifier: 393
Description: PREFIX 10.0.0.20/32 (Table id 0)
Status: Done
-

Output fields are self-explanatory.

## Related Commands

Command	Description
show tech-support platform	Displays detailed information about a platform   for use by technical support.

## show tech-support platform mld_snooping

To display Multicast Listener Discovery (MLD) snooping information about a group, use the show tech-support platform mld_snooping command in privileged EXEC mode.
show tech-support platform mld_snooping [\{Group_ipv6Addr ipv6-address \}][\{vlan vlan-ID\}]

## Syntax Description

## Command Modes

## Command History

## Usage Guidelines

## Examples

Group_ipv6Addr

Group_ipv6Addr	(Optional) Displays snooping   information about the specified   group address.
ipv6-address	(Optional) IPv6 address of the group.
vlan vlan-ID	(Optional) Displays MLD snooping
	VLAN information. Valid values are
from 1 to 4094.	

## Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support platform mld_snooping | redirect flash:filename) in the local writable storage file system or remote file system.

The following is sample output from the show tech-support platform mld_snooping command:

```
Device# show tech-support platform mld_snooping GroupIPv6Addr FF02::5:1
.
.
----------------- show running-config ----------------------
Building configuration...
Current configuration : 11419 bytes
!
! Last configuration change at 09:17:04 UTC Thu Sep 6 2018
!
version 16.10
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service call-home
no platform punt-keepalive disable-kernel-core
!
hostname Switch
!
!
vrf definition Mgmt-vrf
```

```
address-family ipv4
exit-address-family
!
address-family ipv6
exit-address-family
!
!
no aaa new-model
switch 1 provision ws-c3650-12x48uq
!
!
!
.
call-home
 ! If contact email address in call-home is configured as sch-smart-licensing@cisco.com
 ! the email address configured in Cisco Smart License Portal will be used as contact email
 address to send SCH notifications.
 contact-email-addr sch-smart-licensing@cisco.com
 profile "profile-1"
 active
 destination transport-method http
 no destination transport-method email
!
!
!
!
ip admission watch-list expiry-time 0
!
!
login on-success log
!
!
!
!
!
no device-tracking logging theft
!
crypto pki trustpoint TP-self-signed-559433368
 enrollment selfsigned
 subject-name cn=IOS-Self-Signed-Certificate-559433368
 revocation-check none
 rsakeypair TP-self-signed-559433368
!
crypto pki trustpoint SLA-TrustPoint
 enrollment pkcs12
 revocation-check crl
!
!
crypto pki certificate chain TP-self-signed-559433368
 certificate self-signed 01
 30820229 30820192 A0030201 02020101 300D0609 2A864886 F70D0101 05050030
 30312E30 2C060355 04031325 494F532D 53656C66 2D536967 6E65642D 43657274
 69666963 6174652D 35353934 33333336 38301E17 0D313531 32303331 32353432
 325A170D 32303031 30313030 30303030 5A303031 2E302C06 03550403 1325494F
 532D5365 6C662D53 69676E65 642D4365 72746966 69636174 652D3535 39343333
 33363830 819F300D 06092A86 4886F70D 01010105 0003818D 00308189 02818100
 AD8C9C3B FEE7FFC8 986837D2 4C126172 446C3C53 E040F798 4BA61C97 7506FDCE
 46365D0A E47E3F4F C774CA5B 73E2A8DD B72A2E98 C66DB196 94E8150F 0B669CF6
 AA5BC4CD FC2E02F6 FE08B17F 0164FC19 7DC84ABB C99D91D6 398233FF 814EF6DA
 6DC8FC20 CA12C0D6 1CB28EDA 6ADD6DFA 7E3E8281 4A189A9A AA44FCC0 BA9BD8A5
 02030100 01A35330 51300F06 03551D13 0101FF04 05300301 01FF301F 0603551D
```

```
 23041830 16801448 668D668E C92914BB 69E9BA64 F61228DE 132E2030 1D060355
 1D0E0416 04144866 8D668EC9 2914BB69 E9BA64F6 1228DE13 2E20300D 06092A86
 4886F70D 01010505 00038181 0000F1D3 3DD1E5F1 EB714A95 D5819933 CAD0C943
 59927D55 9D70CAD0 D64830EB D54380AD D2B5B613 F8AF7A5B 1F801134 246F760D
 5E5515DB D098304F 5086F6CE 88E8B576 F6B93A88 F458FDCF 91A42D7E FA741908
 5C892D78 600FB655 E6C5A4D0 6C1F1B9A 3AECA550 E3DC0881 01C4D004 7AB65BC3
 88CF24DE DAA19474 51B535A5 0C
 quit
crypto pki certificate chain SLA-TrustPoint
 certificate ca 01
 30820321 30820209 A0030201 02020101 300D0609 2A864886 F70D0101 0B050030
 32310E30 0C060355 040A1305 43697363 6F312030 1E060355 04031317 43697363
 6F204C69 63656E73 696E6720 526F6F74 20434130 1E170D31 33303533 30313934
 3834375A 170D3338 30353330 31393438 34375A30 32310E30 0C060355 040A1305
 43697363 6F312030 1E060355 04031317 43697363 6F204C69 63656E73 696E6720
 526F6F74 20434130 82012230 0D06092A 864886F7 0D010101 05000382 010F0030
 82010A02 82010100 A6BCBD96 131E05F7 145EA72C 2CD686E6 17222EA1 F1EFF64D
 CBB4C798 212AA147 C655D8D7 9471380D 8711441E 1AAF071A 9CAE6388 8A38E520
 1C394D78 462EF239 C659F715 B98C0A59 5BBB5CBD 0CFEBEA3 700A8BF7 D8F256EE
 4AA4E80D DB6FD1C9 60B1FD18 FFC69C96 6FA68957 A2617DE7 104FDC5F EA2956AC
 7390A3EB 2B5436AD C847A2C5 DAB553EB 69A9A535 58E9F3E3 C0BD23CF 58BD7188
 68E69491 20F320E7 948E71D7 AE3BCC84 F10684C7 4BC8E00F 539BA42B 42C68BB7
 C7479096 B4CB2D62 EA2F505D C7B062A4 6811D95B E8250FC4 5D5D5FB8 8F27D191
 C55F0D76 61F9A4CD 3D992327 A8BB03BD 4E6D7069 7CBADF8B DF5F4368 95135E44
 DFC7C6CF 04DD7FD1 02030100 01A34230 40300E06 03551D0F 0101FF04 04030201
 06300F06 03551D13 0101FF04 05300301 01FF301D 0603551D 0E041604 1449DC85
 4B3D31E5 1B3E6A17 606AF333 3D3B4C73 E8300D06 092A8648 86F70D01 010B0500
 03820101 00507F24 D3932A66 86025D9F E838AE5C 6D4DF6B0 49631C78 240DA905
 604EDCDE FF4FED2B 77FC460E CD636FDB DD44681E 3A5673AB 9093D3B1 6C9E3D8B
 D98987BF E40CBD9E 1AECA0C2 2189BB5C 8FA85686 CD98B646 5575B146 8DFC66A8
 467A3DF4 4D565700 6ADF0F0D CF835015 3C04FF7C 21E878AC 11BA9CD2 55A9232C
 7CA7B7E6 C1AF74F6 152E99B7 B1FCF9BB E973DE7F 5BDDEB86 C71E3B49 1765308B
 5FB0DA06 B92AFE7F 494E8A9E 07B85737 F3A58BE1 1A48A229 C37C1E69 39F08678
 80DDCD16 D6BACECA EEBC7CF9 8428787B 35202CDC 60E4616A B623CDBD 230E3AFB
 418616A9 4093E049 4D10AB75 27E86F73 932E35B5 8862FDAE 0275156F 719BB2F0
 D697DF7F 28
 quit
!
!
diagnostic bootup level minimal
diagnostic monitor syslog
!
spanning-tree mode rapid-pvst
spanning-tree extend system-id
!
!
!
redundancy
 mode sso
!
!
!
!
!
class-map match-any system-cpp-police-topology-control
 description Topology control
class-map match-any system-cpp-police-sw-forward
 description Sw forwarding, L2 LVX data, LOGGING
class-map match-any system-cpp-default
 description EWLC control, EWLC data, Inter FED
class-map match-any system-cpp-police-sys-data
 description Learning cache ovfl, High Rate App, Exception, EGR Exception, NFL SAMPLED
```

```
DATA, RPF Failed
class-map match-any AutoQos-4.0-RT1-Class
 match dscp ef
 match dscp cs6
class-map match-any system-cpp-police-punt-webauth
 description Punt Webauth
class-map match-any AutoQos-4.0-RT2-Class
 match dscp cs4
 match dscp cs3
 match dscp af41
class-map match-any system-cpp-police-l2lvx-control
 description L2 LVX control packets
class-map match-any system-cpp-police-forus
 description Forus Address resolution and Forus traffic
class-map match-any system-cpp-police-multicast-end-station
 description MCAST END STATION
class-map match-any system-cpp-police-multicast
 description Transit Traffic and MCAST Data
class-map match-any system-cpp-police-l2-control
 description L2 control
class-map match-any system-cpp-police-dot1x-auth
 description DOT1X Auth
class-map match-any system-cpp-police-data
 description ICMP redirect, ICMP_GEN and BROADCAST
class-map match-any system-cpp-police-stackwise-virt-control
 description Stackwise Virtual
class-map match-any system-cpp-police-control-low-priority
 description ICMP redirect and general punt
class-map match-any system-cpp-police-wireless-priority1
 description Wireless priority 1
class-map match-any system-cpp-police-wireless-priority2
 description Wireless priority 2
class-map match-any system-cpp-police-wireless-priority3-4-5
 description Wireless priority 3,4 and 5
class-map match-any non-client-nrt-class
class-map match-any system-cpp-police-routing-control
 description Routing control and Low Latency
class-map match-any system-cpp-police-protocol-snooping
 description Protocol snooping
class-map match-any system-cpp-police-dhcp-snooping
 description DHCP snooping
class-map match-any system-cpp-police-system-critical
 description System Critical and Gold Pkt
!
policy-map system-cpp-policy
 class system-cpp-police-data
 police rate 200 pps
 class system-cpp-police-routing-control
 police rate 500 pps
 class system-cpp-police-control-low-priority
 class system-cpp-police-wireless-priority1
 class system-cpp-police-wireless-priority2
 class system-cpp-police-wireless-priority3-4-5
policy-map port_child_policy
 class non-client-nrt-class
 bandwidth remaining ratio 10
!
!
!
!
!
!
!
```

$!$

```
!
!
interface GigabitEthernet0/0
 vrf forwarding Mgmt-vrf
 no ip address
 speed 1000
 negotiation auto
!
interface GigabitEthernet1/0/1
 switchport mode access
 macsec network-link
!
interface GigabitEthernet1/0/2
!
interface GigabitEthernet1/0/3
!
interface TenGigabitEthernet1/1/1
!
interface TenGigabitEthernet1/1/2
!
interface TenGigabitEthernet1/1/3
!
interface TenGigabitEthernet1/1/4
!
interface Vlan1
 no ip address
 shutdown
!
ip forward-protocol nd
ip http server
ip http authentication local
ip http secure-server
!
ip access-list extended AutoQos-4.0-wlan-Acl-Bulk-Data
 permit tcp any any eq 22
 permit tcp any any eq 465
 permit tcp any any eq 143
 permit tcp any any eq }99
 permit tcp any any eq }99
 permit tcp any any eq 1914
 permit tcp any any eq ftp
 permit tcp any any eq ftp-data
 permit tcp any any eq smtp
 permit tcp any any eq pop3
ip access-list extended AutoQos-4.0-wlan-Acl-MultiEnhanced-Conf
 permit udp any any range 16384 32767
 permit tcp any any range 50000 59999
ip access-list extended AutoQos-4.0-wlan-Acl-Scavanger
 permit tcp any any range 2300 2400
 permit udp any any range 2300 2400
 permit tcp any any range 6881 6999
 permit tcp any any range 28800 29100
 permit tcp any any eq 1214
 permit udp any any eq 1214
 permit tcp any any eq 3689
 permit udp any any eq 3689
 permit tcp any any eq 11999
ip access-list extended AutoQos-4.0-wlan-Acl-Signaling
 permit tcp any any range 2000 2002
 permit tcp any any range 5060 5061
 permit udp any any range 5060 5061
ip access-list extended AutoQos-4.0-wlan-Acl-Transactional-Data
 permit tcp any any eq 443
 permit tcp any any eq }152
```

```
permit udp any any eq 1521
permit tcp any any eq }152
permit udp any any eq 1526
permit tcp any any eq 1575
permit udp any any eq 1575
permit tcp any any eq 1630
permit udp any any eq 1630
permit tcp any any eq }152
permit tcp any any eq }620
permit tcp any any eq }338
permit tcp any any eq 5985
permit tcp any any eq 8080
!
!
!
ipv6 access-list preauth_ipv6_acl
 permit udp any any eq domain
 permit tcp any any eq domain
 permit icmp any any nd-ns
 permit icmp any any nd-na
 permit icmp any any router-solicitation
 permit icmp any any router-advertisement
 permit icmp any any redirect
 permit udp any eq 547 any eq 546
 permit udp any eq 546 any eq 547
 deny ipv6 any any
!
control-plane
 service-policy input system-cpp-policy
!
!
line con 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 login
line vty 5 15
 login
!
!
mac address-table notification mac-move
!
!
!
!
end
-----show switch | Include Ready-----
*1 Active 188b.9dfc.eb00 1 V00 Ready
----- show ipv6 mld snooping address | i FF02::5:1 -----
\begin{tabular}{|c|c|c|c|c|}
\hline Vlan & Group & Type & Version & Port List \\
\hline 123 & FF02: 5:1 & mld & v2 & Gi2/0/1 \\
\hline
\end{tabular}
Device\#
```

Output fields are self-explanatory.

Related Commands	Command	Description
	ipv6 mld snooping	Enables MLDv2 protocol snooping globally.
	Displays MLDv2 snooping information.	
show tech-support platform	Displays detailed information about a platform   for use by technical support.	

## show tech-support port

To display port-related information for use by technical support, use the show tech-support port command in privileged EXEC mode.
show tech-support port

Syntax Description
Command Modes
Command History

This command has no arguments or keywords.
Privileged EXEC (\#)
Command History

Release	Modification
Cisco IOS XE Gibraltar 16.10.1	This command was introduced.

Usage Guidelines The output of the show tech-support port command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support port | redirect flash:filename) in the local writable storage file system or remote file system.

The output of this command displays the following commands:

- show clock
- show version
- show module
- show inventory
- show interface status
- show interface counters
- show interface counters errors
- show interfaces
- show interfaces capabilities
- show controllers
- show controllers utilization
- show idprom interface
- show controller ethernet-controller phy detail
- show switch
- show platform software fed switch active port summary
- show platform software fed switch ifm interfaces ethernet
- show platform software fed switch ifm mappings
- show platform software fed switch ifm mappings Ipn
- show platform software fed switch ifm mappings gpn
- show platform software fed switch ifm mappings port-le
- show platform software fed switch ifm if-id
- show platform software fed switch active port if_id


## Examples

The following is sample output from the show tech-support port command:

Device\# show tech-support port			
-			
-			
----- show controllers utilization -----			
Port	Receiv	Utilization	Transmit Utilization
Gi1/0/1	0	0	
Gi1/0/2	0	0	
Gi1/0/3	0	0	
Gi1/0/4	0	0	
Gi1/0/5	0	0	
Gi1/0/6	0	0	
Gi1/0/7	0	0	
Gi1/0/8	0	0	
Gi1/0/9	0	0	
Gi1/0/10	0	0	
Gi1/0/11	0	0	
Gi1/0/12	0	0	
Gi1/0/13	0	0	
Gi1/0/14	0	0	
Gi1/0/15	0	0	
Gi1/0/16	0	0	
Gi1/0/17	0	0	
Gi1/0/18	0	0	
Gi1/0/19	0	0	
Gi1/0/20	0	0	
Gi1/0/21	0	0	
Gi1/0/22	0	0	
Gi1/0/23	0	0	
Gi1/0/24	0	0	
Gil/0/25	0	0	
Gi1/0/26	0	0	
Gi1/0/27	0	0	
Gi1/0/28	0	0	
Gi1/0/29	0	0	
Gi1/0/30	0	0	
Gi1/0/31	0	0	
Gi1/0/32	0	0	
Gi1/0/33	0	0	
Gi1/0/34	0	0	
Gi1/0/35	0	0	
Gi1/0/36	0	0	
Te1/0/37	0	0	
Te1/0/38	0	0	
Te1/0/39	0	0	
Te1/0/40	0	0	
Te1/0/41	0	0	
Te1/0/42	0	0	
Te1/0/43	0	0	
Te1/0/44	0	0	

```
\begin{tabular}{lll}
Te1/0/45 & 0 & 0 \\
\(\mathrm{Te} 1 / 0 / 46\) & 0 & 0 \\
\(\mathrm{Te} 1 / 0 / 47\) & 0 & 0 \\
\(\mathrm{Te} 1 / 0 / 48\) & 0 & 0 \\
\(\mathrm{Te} 1 / 1 / 1\) & 0 & 0 \\
\(\mathrm{Te} 1 / 1 / 2\) & 0 & 0 \\
\(\mathrm{Te} 1 / 1 / 3\) & 0 & 0 \\
\(\mathrm{Te} 1 / 1 / 4\) & 0 & 0
\end{tabular}
Total Ports : 52
Total Ports Receive Bandwidth Percentage Utilization : 0
Total Ports Transmit Bandwidth Percentage Utilization : 0
Average Switch Percentage Utilization : 0
----- show idprom interface Gi1/0/1 -----
*Sep 7 08:57:24.249: No module is present
.
```

The output fields are self-explanatory.

## show tech-support pvlan

To display the private VLAN related information, use the show tech-support pvlan command in privileged EXEC mode.
show tech-support pvlan [\{pvlan_id pvlan-id $\}$ ]

## Syntax Description

pvlan_id pvlan-id
Specifies the private VLAN ID.

| $\overline{\text { Command Default }}$ |  |  |
| :--- | :--- | :--- | :--- |
| Command History | Release | Modification |
|  | Cisco IOS XE Amsterdam 17.3.1 | This command was introduced. |

## Usage Guidelines

The output from the show tech-support pvlan command is very long. To better manage this output, you can redirect the output to a file in the local writable storage file system or the remote file system by using the show tech-support pvlan [ pvlan_id pvlan-id] | redirect location:filename ). Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.
To view the output of the redirected file, use the command more location:filename.

## show tech-support resource

To display the switch resource information, use the show tech-support resource command in privileged EXEC mode.

## show tech-support resource

Syntax Description
Command Modes
This command has no arguments or keywords.
Privileged EXEC (\#)

Command History

Release	Modification
Cisco IOS XE Amsterdam 17.2.1	This command was introduced.

## Examples

The following is a sample output of the show tech-support resource command:

```
Device> enable
Device# show tech-support resource
------------------ show clock ---------------------
*17:57:36.220 UTC Fri Jun 4 2021
------------------ show version ---------------------
Cisco IOS XE Software, Version 17.03.03
Cisco IOS Software [Amsterdam], Catalyst L3 Switch Software (CAT9K_IOSXE), Version 17.3.3,
 RELEASE SOFTWARE (fc7)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2021 by Cisco Systems, Inc.
Compiled Thu 04-Mar-21 12:32 by mcpre
Cisco IOS-XE software, Copyright (c) 2005-2021 by cisco Systems, Inc.
All rights reserved. Certain components of Cisco IOS-XE software are
licensed under the GNU General Public License ("GPL") Version 2.0. The
software code licensed under GPL Version 2.0 is free software that comes
with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such
GPL code under the terms of GPL Version 2.0. For more details, see the
documentation or "License Notice" file accompanying the IOS-XE software,
or the applicable URL provided on the flyer accompanying the IOS-XE
software.
ROM: IOS-XE ROMMON
BOOTLDR: System Bootstrap, Version 17.5.2r, RELEASE SOFTWARE (P)
stack-nyqcr8 uptime is 3 weeks, 1 day, 19 hours, }18\mathrm{ minutes
Uptime for this control processor is 3 weeks, 1 day, }19\mathrm{ hours, 21 minutes
System returned to ROM by Reload Command
System image file is "flash:packages.conf"
Last reload reason: Reload Command
```



```
Building configuration...
Current configuration : 31750 bytes
!
! Last configuration change at 17:55:02 UTC Fri Jun 4 2021
!
version 17.3
service timestamps debug datetime msec
service timestamps log datetime msec
service call-home
platform punt-keepalive disable-kernel-core
!
hostname stack-nyqcr8
!
!
vrf definition Mgmt-vrf
 !
 address-family ipv4
 exit-address-family
 !
 address-family ipv6
 exit-address-family
!
logging buffered 1000000
!
no aaa new-model
boot system switch all flash:packages.conf
switch 1 provision c9300-48s
switch 2 provision c9300-48p
switch 3 provision c9300-24u
switch 4 provision c9300-24s
switch 5 provision c9300-48p
switch 6 provision c9300-24ux
switch 7 provision c9300-48un
switch 8 provision c9300-48uxm
software auto-upgrade enable
!
!
!
!
!
!
!
!
!
ip domain name byodis
!
!
!
login on-success log
!
!
i
!
!
!
no device-tracking logging theft
!
crypto pki trustpoint TP-self-signed-1829944574
 enrollment selfsigned
 subject-name cn=IOS-Self-Signed-Certificate-1829944574
```

```
 revocation-check none
 rsakeypair TP-self-signed-1829944574
!
crypto pki trustpoint DNAC-CA
 enrollment mode ra
 enrollment terminal
 usage ssl-client
 revocation-check crl none
!
crypto pki trustpoint SLA-TrustPoint
 enrollment pkcs12
 revocation-check crl
!
!
crypto pki certificate chain TP-self-signed-1829944574
 certificate self-signed 01
 30820330 30820218 A0030201 02020101 300D0609 2A864886 F70D0101 05050030
 31312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274
 69666963 6174652D 31383239 39343435 3734301E 170D3231 30353132 32323132
 33375A17 0D333130 35313232 32313233 375A3031 312F302D 06035504 03132649
 4F532D53 656C662D 5369676E 65642D43 65727469 66696361 74652D31 38323939
 34343537 34308201 22300D06 092A8648 86F70D01 01010500 0382010F 00308201
 0A028201 0100DDCC BF7D66CE FFE20EF3 725757F3 6FAFC721 94D4D60B 6233AD79
 E69AA12C 434C6ECE 98A34568 870DF666 CC4C09EA A80AE81C D607FAA3 A8B3022E
 0700AC7C 55B79266 C628FE55 1CA371A0 B5C47C4D 5445996A 0E6ADFB0 C1FF962D
 4F363522 A3CA9E43 736CA7A9 4C350C13 F4C2B5EC 59EDEAEC D7D74EF4 BF4ECE77
 4B625216 F5DD11C0 B667F9D4 1A6681E1 197B2C18 E7767A0A B798E120 D4616BCB
 99DD3D44 2F55BB2E ED85826F 91AE530E 968AD28F 36767EEE 4597726E 2D997AA0
 CDD33E49 7B814E3D 03C90538 C410F9F4 59147E4F 083B4143 40482C56 0CE5D3CD
 D3C6B337 E768E664 10FF3E35 93624B3F 187AD6A4 55C404BE F1993665 B18FC6A3
 4B968C9E 92E10203 010001A3 53305130 0F060355 1D130101 FF040530 030101FF
 301F0603 551D2304 18301680 14FDB525 614E9C81 4060EFC6 349A80E2 8B0F25F9
 28301D06 03551D0E 04160414 FDB52561 4E9C8140 60EFC634 9A80E28B 0F25F928
 300D0609 2A864886 F70D0101 05050003 82010100 2EACE5C4 6BB136E5 28204E25
 EE8C0514 21ECC597 24BC3B3B D72A34CB CBF950CC 82BADAE2 F58CD72B BE0A0BB9
 509946C4 F1DC5E8D 10184A79 33050AC0 8CD235DA 501C47BA 6920B007 FDF82BD3
 448A1E05 0C726EA7 6F641AA9 6A6172C0 4E2EAB90 CF758F0B 08A5F319 83D42DA1
 B0DF87FE E255864C 5DC87D26 339309D3 813E0B66 FD916E73 2319F717 6F8EF279
 5F13A7CC 2C5A6BA9 052E8D13 6D27B405 41984D8C DDB15B21 11E06F27 D36723F6
 85274D7A 994A8543 F6D8B8B1 9E94AAA9 AA660F19 951E2DB8 EA473526 89ED4161
 CCBF2032 9D03BF11 92FB4D62 8AA3A09D 374DB7DD 8566452B 4DEA0AF4 5B0D88B1
 B355144A FC6CC495 8058EFB2 4CF83651 149BA5DB
 quit
crypto pki certificate chain DNAC-CA
 certificate ca 43338DDB13667FF821F1D6502649F8926E67C11C
 308203A5 3082028D A0030201 02021443 338DDB13 667FF821 F1D65026 49F8926E
 67C11C30 0D06092A 864886F7 0D01010B 05003062 312D302B 06035504 030C2437
 36613236 3864642D 38393936 2D366138 322D6533 65352D34 36663366 62656137
 65306431 16301406 0355040A 0C0D4369 73636F20 53797374 656D7331 19301706
 0355040B 0C104369 73636F20 444E4120 43656E74 6572301E 170D3231 30343233
 32303431 30315A17 0D323430 31313832 30343130 315A3062 312D302B 06035504
 030C2437 36613236 3864642D 38393936 2D366138 322D6533 65352D34 36663366
 62656137 65306431 16301406 0355040A 0C0D4369 73636F20 53797374 656D7331
 19301706 0355040B 0C104369 73636F20 444E4120 43656E74 65723082 0122300D
 06092A86 4886F70D 01010105 00038201 0F003082 010A0282 010100AF 43FF5F25
 74C29B94 6E2A0FA1 A45D07B3 FD560BEC 0603B1C4 8B140AA3 A69877B8 6FAE6348
 8C7D9D3B AFDD99D2 235098C5 C5B56FD1 3EFC8258 6FD37FEE 1783B463 A490022A
 EED21295 B20CACB3 24273372 DF15FBAB A396FB54 FF348FB1 B3A34B49 59B1113A
 66595D17 EBE521A2 E3AA10BF 766F3A83 8046F031 26F0A642 609CF57D 6F6BCE6C
 5CFA6105 C783F6C6 3D414CB9 A5A572E6 FEB4CD9F D9B66208 D253F222 A2DEFEB9
 626C2AC5 6B4532DA 39429736 55D99A14 4A69D702 158469D6 5F6A6CBF A311B98F
 D459851C 5C45875A 88619DF5 22220D6C B689FE6F 989C8573 2E5492EE 9F69E108
 0892726B BB7CD254 FFE9AEAA 769395F5 1A930E7B 4AD0B5C6 603D2B02 03010001
 A3533051 301D0603 551D0E04 160414CC 002C9091 065EE9E7 003B5F10 ED1A1ED3
```

```
 76D4DD30 1F060355 1D230418 30168014 CC002C90 91065EE9 E7003B5F 10ED1A1E
 D376D4DD 300F0603 551D1301 01FF0405 30030101 FF300D06 092A8648 86F70D01
 010B0500 03820101 00719B9F 5D4F7FFE 29071394 1E82BF02 7F8BF38E 796BDFC7
 DF2750DC 7D146E0D 094F17C6 6A8559E6 090FEA1E E2734F18 4A7D8647 A1AD4190
 E0B0153A 447E9CC3 4A87B2D2 9A752F09 776CE638 4404391F F898179E 73752372
 7108D675 5859CC7E C2AABAA9 C1027074 3B2E0195 02F2822C 14B7F168 EC4F91D1
 A4EEEA07 73F92A61 9B6AE69F 379F3F77 CEF6A89B 0270F25F 2319E4FD 3795DFB6
 C4E206FB 8E2A236A D3A2D012 DEDBB99D 8DE1C4A1 D4BE3AEC 97A2CDE3 7DB719FC
 99DB5D14 4D00CBF8 EF67CE28 AC77AE17 88ECDAA5 199F7F88 9F513851 37ECCA2F
 42781701 C5FC45C2 D8B0CE82 1306D4E4 7C617076 FB562A07 A3CAF126 5B860C56
 582F1A97 E5AF26B5 65
 quit
crypto pki certificate chain SLA-TrustPoint
 certificate ca 01
 3082031B 30820203 A0030201 02020101 300D0609 2A864886 F70D0101 OB050030
 2F310E30 0C060355 040A1305 43697363 6F311D30 1B060355 04031314 4C696365
 6E73696E 6720526F 6F74202D 20444556 301E170D 31333034 32343231 35353433
 5A170D33 33303432 34323135 3534335A 302F310E 300C0603 55040A13 05436973
 636F311D 301B0603 55040313 144C6963 656E7369 6E672052 6F6F7420 2D204445
 56308201 22300D06 092A8648 86F70D01 01010500 0382010F 00308201 0A028201
 01009C56 7101D61E DF2EBCC3 BA7AE0DB B241B3B4 328A9B00 EB8A80D0 2AA86F5E
 F1AEBFDE B67BD6AD 7DAD7B43 F582753B FFCC1CA5 A7841A07 6934D3AF 99078EF6
 179196FA 4FB3F2ED 3942C756 BF1CA0A9 CC98A7A7 F9E43724 D9E61D47 89E9E792
 DD9F27B4 517C2BDE D0EB5B9A 787BA085 D9BBF003 F0563BE0 A4450C8F 127B5583
 3EBC1385 2D9BAD98 68D3AE07 5C27987C 6B814B99 0686B14A 5F61753C 813089E6
 AEC48C68 F6D45267 0E365F44 B4456E11 96DCB950 233C8ADB 9FEEBAF1 2B5F3BB6
 7CE521B5 F277EBF6 03B7B0A4 958C9C7D 5460C20B CF9CCFC7 14B80F58 B5268947
 6D081172 26916B41 FB07DF42 EB9B9408 EC346138 23FBD8C4 19909697 A30845F3
 01C50203 010001A3 42304030 0E060355 1D0F0101 FF040403 02010630 0F060355
 1D130101 FF040530 030101FF 301D0603 551D0E04 16041443 214521B5 FB217A1A
 4D1BB702 36E664CB EC8B6530 0D06092A 864886F7 0D01010B 05000382 01010085
 F1B1F2AE AE7D2F9C AB0351C3 29E3F1AE 982DF11F 5E3C90F6 00B3CDED 5A1491FB
 DF07E06C AA0F4325 9FB4C4AE 2080F675 8C3B7AC5 4EAAA03E C5B50A2F 670AFF87
 EDA6462F CFC43967 C024AB32 EE3CCDCF A04B9DAE 1BBABBDA C8DF5587 CF51CB1C
 005A282F 8B518A5A 8C6F9B3C AABA3446 32EF3A75 C2F45450 7A9BCFD3 0C8BE54A
 11872DE0 CF1200D0 D1018FD9 AC685968 167E421C 9BC394ED 9BC85463 83B28146
 07B2BDED DFC1605B 4D16007B 68723E25 55908512 4EEB0A70 B2A74C2A CB1EC882
 C3215B87 6FC74304 241E59D7 C7C02C6D BD3042F5 196E8133 7A4446A4 81216E70
 CF52CF22 50A7D23E FA9F6B07 FB0F6386 9DCC3BBC 65250693 38CF6BA6 CB8EFD
 quit
!
!
license boot level network-advantage addon dna-advantage
license smart transport off
<output truncated>
```


## show version

To display information about the currently loaded software along with hardware and device information, use the show version command in user EXEC or privileged EXEC mode.
show version [\{switch node $\}][\{$ installed | provisioned | running $\}$ ]

## Syntax Description

switch node	(optional) Only a single switch may be specified. Default is all switches in a stacked system.
running	(optional) Specifies information on the files currently running.
provisioned	(optional)Specifies information on the software files that are provisioned.
installed	Specifies information on the software installed on the RP
user-interface	Specifies information on the files related to the user-interface.


Command Default
Command Modes
Command History
Usage Guidelines

No default behavior or values.
User EXEC ( $>$ )
Privileged EXEC (\#)

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

This command displays information about the Cisco IOS software version currently running on a device, the ROM Monitor and Bootflash software versions, and information about the hardware configuration, including the amount of system memory. Because this command displays both software and hardware information, the output of this command is the same as the output of the show hardware command. (The show hardware command is a command alias for the show version command.)

Specifically, the show version command provides the following information:

- Software information
- Main Cisco IOS image version
- Main Cisco IOS image capabilities (feature set)
- Location and name of bootfile in ROM
- Bootflash image version (depending on platform)
- Device-specific information
- Device name
- System uptime
- System reload reason
- Config-register setting
- Config-register settings for after the next reload (depending on platform)
- Hardware information
- Platform type
- Processor type
- Processor hardware revision
- Amount of main (processor) memory installed
- Amount I/O memory installed
- Amount of Flash memory installed on different types (depending on platform)
- Processor board ID

The output of this command uses the following format:

```
Cisco IOS Software, <platform> Software (<image-id>), Version <software-version>,
 <software-type
Technical Support: http://www.cisco.com/techsupport
Copyright (c) <date-range> by Cisco Systems, Inc.
Compiled <day> <date> <time> by <compiler-id>
ROM: System Bootstrap, Version <software-version>, <software-type>
BOOTLDR: <platform> Software (image-id), Version <software-version>, <software-type>
<router-name> uptime is <w> weeks, <d> days, <h> hours,
<m> minutes
System returned to ROM by reload at <time> <day> <date>
System image file is "<filesystem-location>/<software-image-name>"
Last reload reason: <reload-reason>Cisco <platform-processor-type>
processor (revision <processor-revision-id>) with <free-DRAM-memory>
K/<packet-memory>K bytes of memory.
Processor board ID <ID-number
<CPU-type> CPU at <clock-speed>Mhz, Implementation <number>, Rev <
Revision-number>, <kilobytes-Processor-Cache-Memory>KB <cache-Level> Cache
```

See the Examples section for descriptions of the fields in this output.
Entering show version displays the IOS XE software version and the IOS XE software bundle which includes a set of individual packages that comprise the complete set of software that runs on the switch.

The show version running command displays the list of individual packages that are currently running on the switch. When booted in installed mode, this is typically the set of packages listed in the booted provisioning file. When booted in bundle mode, this is typically the set of packages contained in the bundle.

The show version provisioned command displays information about the provisioned package set.

The following is sample output from the show version command on a Cisco Catalyst 9300 Series Switch:

```
Device# show version
Cisco IOS XE Software, Version BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2
```



```
 16.10.20180903:072347
[v1610_throttle-/nobackup/mcpre/BLD-BLD_V1610_THROTTLE_LATEST_20180903_070602 183]
Copyright (c) 1986-2018 by Cisco Systems, Inc.
Compiled Mon 03-Sep-18 11:53 by mcpre
Cisco IOS-XE software, Copyright (c) 2005-2018 by cisco Systems, Inc.
```

```
All rights reserved. Certain components of Cisco IOS-XE software are
licensed under the GNU General Public License ("GPL") Version 2.0. The
software code licensed under GPL Version 2.0 is free software that comes
with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such
GPL code under the terms of GPL Version 2.0. For more details, see the
documentation or "License Notice" file accompanying the IOS-XE software,
or the applicable URL provided on the flyer accompanying the IOS-XE
software.
ROM: IOS-XE ROMMON
BOOTLDR: System Bootstrap, Version 16.10.1r, RELEASE SOFTWARE (P)
C9300 uptime is 20 hours, }7\mathrm{ minutes
Uptime for this control processor is 20 hours, }8\mathrm{ minutes
System returned to ROM by Image Install
System image file is "flash:packages.conf"
Last reload reason: Image Install
```

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Technology Package License Information:

Technology-package		Technology-package
Current	Type	Next reboot
network-advantage dna-advantage	Smart License   Subscription Smart License	network-advantage dna-advantage

```
Smart Licensing Status: UNREGISTERED/EVAL MODE
cisco C9300-24U (X86) processor with 1415813K/6147K bytes of memory.
Processor board ID FCW2125LOBH
8 Virtual Ethernet interfaces
56 Gigabit Ethernet interfaces
16 Ten Gigabit Ethernet interfaces
4 ~ T w e n t y F i v e ~ G i g a b i t ~ E t h e r n e t ~ i n t e r f a c e s ~
4 ~ F o r t y ~ G i g a b i t ~ E t h e r n e t ~ i n t e r f a c e s
2048K bytes of non-volatile configuration memory.
8388608K bytes of physical memory.
1638400K bytes of Crash Files at crashinfo:.
1638400K bytes of Crash Files at crashinfo-2:
11264000K bytes of Flash at flash:.
11264000K bytes of Flash at flash-2:.
OK bytes of WebUI ODM Files at webui:.
```

Base Ethernet MAC Address	: 70:d3:79:be:6c:80		
Motherboard Assembly Number	: 73-17954-06		
Motherboard Serial Number	: FOC21230KPX		
Model Revision Number	: A0		
Motherboard Revision Number	: A0		
Model Number	: C9300-24U		
System Serial Number	: FCW2125L0BH		
Switch Ports Model	SW Version	SW Image	Mode
140 C9300-24U	16.10 .1	CAT9K_IOSXE	INSTALL
240 C9300-24U	16.10 .1	CAT9K_IOSXE	INSTALL

```
Switch 02
Switch uptime : 20 hours, 8 minutes
Base Ethernet MAC Address : 70:d3:79:84:85:80
Motherboard Assembly Number : 73-17954-06
Motherboard Serial Number : FOC21230KPK
Model Revision Number : AO
Motherboard Revision Number : A0
Model Number
System Serial Number
Last reload reason : Image Install
Configuration register is 0x102
```

In the following example, the show version running command is entered on a Cisco Catalyst 9300 Series Switch to view information about the packages currently running on both switches in a 2-member stack:

```
Device# show version running
Package: Provisioning File, version: n/a, status: active
 Role: provisioning file
 File: /flash/packages.conf, on: RP0
 Built: n/a, by: n/a
 File SHA1 checksum: 6a43991bae5b94de0df8083550f827a3c01756c5
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: rp_base
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: rpboot, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: rp boot
 File: /flash/cat9k-rpboot.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: n/a
Package: guestshell, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2,
status: active
 Role: guestshell
 File:
/flash/cat9k-guestshell.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
on: RPO/O
```

```
 Built: 2018-09-03 13.11, by: mcpre
 File SHA1 checksum: 10827f9f9db3b016d19a926acc6be0541440b8d7
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: rp_daemons
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO/O
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: rp iosd
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO/O
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: rp_security
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO/O
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: webui, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: rp_webui
 File: /flash/cat9k-webui.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO/0
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 5112d7749b38fa1e122ce6ee1bfb266ad7eb553a
Package: srdriver, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 active
 Role: srdriver
 File:
/flash/cat9k-srdriver.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on:
 RP0/0
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: aff411e981a8dfc8de14005cc33462dc69f8bfaf
Package: cc_srdriver, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2,
status: active
 Role: cc_srdriver
 File:
/flash/cat9k-cc_srdriver.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: SIPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: e3da784f3e61ef1e153028e53d9dc94b2c9b1bf7
```

In the following example, the show version provisioned command is entered on a Cisco Catalyst 9300 Series Switch that is the active switch in a 2 -member stack. The show version provisioned command displays information about the packages in the provisioned package set.

```
Device# show version provisioned
Package: Provisioning File, version: n/a, status: active
 Role: provisioning file
 File: /flash/packages.conf, on: RP0
 Built: n/a, by: n/a
 File SHA1 checksum: 6a43991bae5b94de0df8083550f827a3c01756c5
```

```
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: rp_base
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: guestshell, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2,
status: n/a
 Role: guestshell
 File:
/flash/cat9k-guestshell.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
on: RPO
 Built: 2018-09-03 13.11, by: mcpre
 File SHA1 checksum: 10827f9f9db3b016d19a926acc6be0541440b8d7
Package: rpboot, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: rp_boot
 File: /flash/cat9k-rpboot.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum}: n/a
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: rp daemons
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: rp_iosd
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03 13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: rp_security
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885
Package: webui, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: rp_webui
 File: /flash/cat9k-webui.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 5112d7749b38fa1e122ce6ee1bfb266ad7eb553a
Package: wlc, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
n/a
 Role: rp_wlc
 File: /flash/cat9k-wlc.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: RP0
 Built: 2018-09-03_13.11, by: mcpre
```

```
 File SHA1 checksum: ada21bb3d57e1b03e5af2329503ed6caa7236d6e
Package: srdriver, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: srdriver
 File:
/flash/cat9k-srdriver.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on:
 RPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: aff411e981a8dfc8de14005cc33462dc69f8bfaf
Package: espbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: fp
 File:/flash/cat9k-espbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: ESPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 1a2317485f285a3945b31ae57aa64c56ed30a8c0
Package: sipbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: cc
 File: /flash/cat9k-sipbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: SIP0
 Built: 2018-09-03 13.11, by: mcpre
 File SHA1 checksum: ce821195f0c0bd5e44f21e32fca76cf9b2eed02b
Package: sipspa, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status:
 n/a
 Role: cc_spa
 File: /flash/cat9k-sipspa.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: SIP0
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum
Package: cc_srdriver, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2,
status: n/a
 Role: cc_srdriver
 File:
/flash/cat9k-cc_srdriver.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg,
 on: SIPO
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: e3da784f3e61ef1e153028e53d9dc94b2c9b1bf7
```

Table 214: Table 5, show version running Field Descriptions

Field	Description
Package:	The individual sub-package name.
version:	The individual sub-package version.
status:	Reveals if the package is active or inactive for the specific Supervisor module.
File:	The filename of the individual package file.
on:	The slot number of the Active or Standby Supervisor that this package is running on.
Built:	The date the individual package was built.

## system env temperature threshold yellow

To configure the difference between the yellow and red temperature thresholds that determines the value of yellow threshold, use the system env temperature threshold yellow command in global configuration mode. To return to the default value, use the no form of this command.
system env temperature threshold yellow value no system env temperature threshold yellow value

Syntax Description

## Command Default

value Specifies the difference between the yellow and red threshold values (in Celsius). The range is 10 to 25.

These are the default values
Table 215: Default Values for the Temperature Thresholds

Device	Difference between Yellow and Red	Red ${ }^{\mathbf{1 2}}$
Catalyst   9300	$14^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$

12 You cannot configure the red temperature threshold.

## Command Modes

Command History
Global configuration

Release	Modification
Cisco IOS XE Everest	This command was
16.5.1a	introduced.

## Usage Guidelines

You cannot configure the green and red thresholds but can configure the yellow threshold. Use the system env temperature threshold yellow value global configuration command to specify the difference between the yellow and red thresholds and to configure the yellow threshold. For example, if the red threshold is 66 degrees C and you want to configure the yellow threshold as 51 degrees C , set the difference between the thresholds as 15 by using the system env temperature threshold yellow 15 command. For example, if the red threshold is 60 degrees C and you want to configure the yellow threshold as 51 degrees C , set the difference between the thresholds as 15 by using the system env temperature threshold yellow 9 command.

Note The internal temperature sensor in the device measures the internal system temperature and might vary $\pm 5$ degrees C.

This example sets 15 as the difference between the yellow and red thresholds:

[^13]
## test cable-diagnostics tdr

To run the Time Domain Reflector (TDR) feature on an interface, use the test cable-diagnostics tdr command in privileged EXEC mode.
test cable-diagnostics tdr interface interface-id

Syntax Description	interface-id The interface on which to run TDR.	
Command Default	No default behavior or values.	
Command Modes	Privileged EXEC	
Command History	Release	Modification
	Cisco IOS XE Everes 16.5.1a	This command was introduced.

## Usage Guidelines

TDR is supported only on 10/100/100 copper Ethernet ports. It is not supported on 10-Gigabit Ethernet ports or small form-factor pluggable (SFP) module ports.
After you run TDR by using the test cable-diagnostics tdr interface interface-id command, use the show cable-diagnostics tdr interface interface-id privileged EXEC command to display the results.

This example shows how to run TDR on an interface:

```
Device# test cable-diagnostics tdr interface gigabitethernet1/0/2
TDR test started on interface Gil/0/2
A TDR test can take a few seconds to run on an interface
Use 'show cable-diagnostics tdr' to read the TDR results
```

If you enter the test cable-diagnostics tdr interface interface-id command on an interface that has an link up status and a speed of 10 or $100 \mathrm{Mb} / \mathrm{s}$, these messages appear:

```
Device# test cable-diagnostics tdr interface gigabitethernet1/0/3
TDR test on Gil/0/9 will affect link state and traffic
TDR test started on interface Gil/0/3
A TDR test can take a few seconds to run on an interface
Use 'show cable-diagnostics tdr' to read the TDR results.
```


## tftp-server

To configure a router or a Flash memory device on the router as a TFTP server, use one of the following tftp-server commands in global configuration mode. To remove a previously defined filename, use the no form of this command with the appropriate filename.
tftp-server [ bootflash | crashinfo | disk0 | flash | null | nvram | rom | system | tmpsys
[<1-99> | <1300-1999> | alias \}
notfteserver [ bootflash | crashinfo | disk0 | flash | null | nvram | rom | system |
tmpsys $\quad\{<1-99>|<1300-1999>|$ alias $\}$

Command Default
Syntax Description

No default behavior or values.

bootflash	Specifies TFTP service of a file on   a Flash memory device
crashinfo	Collection of useful information   related to the current crash stored   in bootflash or flash memory.
disk0	Source or destination URL of   rotating media.
flash	Specifies TFTP service of a file in   Flash memory.
null	Null destination for copies or files.   You can copy a remote file to null   to determine its size.
nvram	Device's NVRAM.
rom	Specifies TFTP service of a file in   ROM.
system	Source or destination URL for   system memory, which includes the   running configuration.
alias	Specifies an alternate name for the   file that the TFTP server uses in   answering TFTP Read Requests.

## Usage Guidelines

You can specify multiple filenames by repeating the tftp-server command. The system sends a copy of the system image contained in ROM or one of the system images contained in Flash memory to any client that issues a TFTP Read Request with this filename.
If the specified filenamel or filename 2 argument exists in Flash memory, a copy of the Flash image is sent. On systems that contain a complete image in ROM, the system sends the ROM image if the specified filenamel or filename 2 argument is not found in Flash memory.

Images that run from ROM cannot be loaded over the network. Therefore, it does not make sense to use TFTP to offer the ROMs on these images.
If a USB is configured as a TFTP server, it is recommended that all corresponding configurations be removed before physically removing or disabling the USB. The usb option will not be available once the USB is disabled or physically removed.

Command Modes

Command History

Global Configuration

Release	Modification
Cisco IOS XE Everest	This command was introduced.
16.5.1a	

The following example enables a device to operate as a TFTP server. The source file c3640-i-mz is in the second partition of internal Flash memory:

[^14]
## traceroute mac

To display the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address, use the traceroute mac command in privileged EXEC mode.
traceroute mac [interface interface-id] source-mac-address [interface interface-id] destination-mac-address [vlan vlan-id] [detail]

## Syntax Description

interface interface-id	(Optional) Specifies an interface on the source or destination device.
source-mac-address	The MAC address of the source device in hexadecimal format.
destination-mac-address	The MAC address of the destination device in hexadecimal format.
vlan vlan-id	(Optional) Specifies the VLAN on which to trace the Layer 2 path that the packets   take from the source device to the destination device. Valid VLAN IDs are 1 to   4094.
detail	(Optional) Specifies that detailed information appears.


$\overline{\text { Command Default }}$		No default behavior or values.
$\overline{\text { Command Modes }}$	Privileged EXEC	
Command History	Release	Modification
	Cisco IOS XE Everest   16.5 .1 a	This command was   introduced.

## Usage Guidelines

For Layer 2 traceroute to function properly, Cisco Discovery Protocol (CDP) must be enabled on all of the devices in the network. Do not disable CDP.

When the device detects a device in the Layer 2 path that does not support Layer 2 traceroute, the device continues to send Layer 2 trace queries and lets them time out.

The maximum number of hops identified in the path is ten.
Layer 2 traceroute supports only unicast traffic. If you specify a multicast source or destination MAC address, the physical path is not identified, and an error message appears.

The traceroute mac command output shows the Layer 2 path when the specified source and destination addresses belong to the same VLAN.

If you specify source and destination addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong.

If the VLAN is not specified, the path is not identified, and an error message appears.
The Layer 2 traceroute feature is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port).

When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears

This feature is not supported in Token Ring VLANs.

## Examples

This example shows how to display the Layer 2 path by specifying the source and destination MAC addresses:

```
Device# traceroute mac 0000.0201.0601 0000.0201.0201
 Source 0000.0201.0601 found on con6[WS-C3750E-24PD] (2.2.6.6)
 con6 (2.2.6.6) :Gi0/0/1 => Gi0/0/3
\(\left.\begin{array}{lllll}\text { con5 } & (2.2 \cdot 5.5 &) & : & G i 0 / 0 / 3\end{array}\right)=\mathrm{Gi} 0 / 0 / 1\)
 Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
 Layer 2 trace completed
```

This example shows how to display the Layer 2 path by using the detail keyword:

```
Device# traceroute mac 0000.0201.0601 0000.0201.0201 detail
 Source 0000.0201.0601 found on con6[WS-C3750E-24PD] (2.2.6.6)
 con6 / WS-C3750E-24PD / 2.2.6.6 :
 Gi0/0/2 [auto, auto] => Gi0/0/3 [auto, auto]
 con5 / WS-C2950G-24-EI / 2.2.5.5 :
 Fa0/3 [auto, auto] => GiO/1 [auto, auto]
 con1 / WS-C3550-12G / 2.2.1.1 :
 GiO/1 [auto, auto] => GiO/2 [auto, auto]
 con2 / WS-C3550-24 / 2.2.2.2 :
 GiO/2 [auto, auto] => FaO/1 [auto, auto]
 Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
 Layer 2 trace completed.
```

This example shows how to display the Layer 2 path by specifying the interfaces on the source and destination devices:

```
Device# traceroute mac interface fastethernet0/1 0000.0201.0601 interface fastethernet0/3
0000.0201.0201
 Source 0000.0201.0601 found on con6[WS-C3750E-24PD] (2.2.6.6)
 con6 (2.2.6.6) :Gi0/0/1 => Gi0/0/3
 con5 (2.2.5.5) : Gi0/0/3 => Gi0/0/1
 con1 (2.2.1.1) : Gi0/0/1 => Gi0/0/2
 con2 (2.2.2.2) : GiO/0/2 => Gi0/0/1
 Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
 Layer 2 trace completed
```

This example shows the Layer 2 path when the device is not connected to the source device:

```
Device\# traceroute mac 0000.0201.0501 0000.0201.0201 detail
 Source not directly connected, tracing source
 Source 0000.0201.0501 found on con5[WS-C3750E-24TD] (2.2.5.5)
 con5 / WS-C3750E-24TD / 2.2.5.5 :
 Gi0/0/1 [auto, auto] => Gi0/0/3 [auto, auto]
```

```
con1 / WS-C3550-12G / 2.2.1.1 :
 Gi0/1 [auto, auto] => Gi0/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
 Gi0/2 [auto, auto] => Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```

This example shows the Layer 2 path when the device cannot find the destination port for the source MAC address:

```
Device# traceroute mac 0000.0011.1111 0000.0201.0201
 Error:Source Mac address not found.
 Layer2 trace aborted.
```

This example shows the Layer 2 path when the source and destination devices are in different VLANs:

```
Device# traceroute mac 0000.0201.0601 0000.0301.0201
 Error:Source and destination macs are on different vlans.
 Layer2 trace aborted.
```

This example shows the Layer 2 path when the destination MAC address is a multicast address:

```
Device# traceroute mac 0000.0201.0601 0100.0201.0201
 Invalid destination mac address
```

This example shows the Layer 2 path when source and destination devices belong to multiple VLANs:

```
Device# traceroute mac 0000.0201.0601 0000.0201.0201
 Error:Mac found on multiple vlans.
 Layer2 trace aborted.
```


## traceroute mac ip

To display the Layer 2 path taken by the packets from the specified source IP address or hostname to the specified destination IP address or hostname, use the traceroute mac ip command in privileged EXEC mode.
traceroute mac ip \{source-ip-address source-hostname\} \{destination-ip-address destination-hostname\} [detail]

## Syntax Description

source-ip-address	The IP address of the source device as a 32-bit quantity in dotted-decimal format.
source-hostname	The IP hostname of the source device.
destination-ip-address	The IP address of the destination device as a 32-bit quantity in dotted-decimal format.
destination-hostname	The IP hostname of the destination device.
detail	(Optional) Specifies that detailed information appears.


Command Default
Command Modes
Command History

## Usage Guidelines

No default behavior or values.

Privileged EXEC

Release	Modification
Cisco IOS XE Everest	This command was
16.5.1a	introduced.

For Layer 2 traceroute to function properly, Cisco Discovery Protocol (CDP) must be enabled on each device in the network. Do not disable CDP.

When the device detects a device in the Layer 2 path that does not support Layer 2 traceroute, the device continues to send Layer 2 trace queries and lets them time out.

The maximum number of hops identified in the path is ten.
The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses are in the same subnet.

When you specify the IP addresses, the device uses Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

- If an ARP entry exists for the specified IP address, the device uses the associated MAC address and identifies the physical path.
- If an ARP entry does not exist, the device sends an ARP query and tries to resolve the IP address. The IP addresses must be in the same subnet. If the IP address is not resolved, the path is not identified, and an error message appears.
The Layer 2 traceroute feature is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port).

When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

## Examples

This example shows how to display the Layer 2 path by specifying the source and destination IP addresses and by using the detail keyword:

```
Device# traceroute mac ip 2.2.66.66 2.2.22.22 detail
Translating IP to mac
2.2.66.66 => 0000.0201.0601
2.2.22.22 => 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 / WS-C3750E-24TD / 2.2.6.6 :
 Gi0/0/1 [auto, auto] => Gi0/0/3 [auto, auto]
con5 / WS-C2950G-24-EI / 2.2.5.5 :
 Fa0/3 [auto, auto] => Gi0/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
 GiO/1 [auto, auto] => Gi0/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
 GiO/2 [auto, auto] => Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```

This example shows how to display the Layer 2 path by specifying the source and destination hostnames:

```
Device# traceroute mac ip con6 con2
Translating IP to mac
2.2.66.66 => 0000.0201.0601
2.2.22.22 => 0000.0201.0201
Source 0000.0201.0601 found on con6
con6 (2.2.6.6) :GiO/0/1 => Gi0/0/3
con5 (2.2.5.5) : Gi0/0/3 => Gi0/1
con1 (2.2.1.1) : Gi0/0/1 => Gi0/2
con2 (2.2.2.2) : GiO/0/2 => FaO/1
Destination 0000.0201.0201 found on con2
Layer 2 trace completed
```

This example shows the Layer 2 path when ARP cannot associate the source IP address with the corresponding MAC address:

```
Device# traceroute mac ip 2.2.66.66 2.2.77.77
Arp failed for destination 2.2.77.77.
Layer2 trace aborted.
```

To display the contents of one or more files, use the type command in boot loader mode.
type filesystem:/file-url...

Syntax Description
filesystem: Alias for a file system. Use flash: for the system board flash device; use usbflash0: for USB memory sticks.
/file-url... Path (directory) and name of the files to display. Separate each filename with a space.

Command Default	No default behavior or values.
Command Modes	Boot loader
Command History	Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Usage Guidelines

Filenames and directory names are case sensitive.
If you specify a list of files, the contents of each file appear sequentially.

## Examples

This example shows how to display the contents of a file:

```
Device: type flash:image_file_name
version_suffix: universal-122-xx.SEx
version_directory: image_file_name
image_system_type_id: 0x00000002
image_name: image_file_name.bin
ios_image_file_size: 8919552
total_image_file_size: 11592192
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: family
stacking number: 1.34
board_ids: 0x00000068 0x00000069 0x0000006a 0x00000006b
info_end:
```


## unset

To reset one or more environment variables, use the unset command in boot loader mode.
unset variable...

## Syntax Description

variable	Use one of these keywords for variable:   MANUAL_BOOT—Specifies whether the device automatically or manually boots.
BOOT-Resets the list of executable files to try to load and execute when automatically   booting. If the BOOT environment variable is not set, the system attempts to load and execute   the first executable image it can find by using a recursive, depth-first search through the   flash: file system. If the BOOT variable is set but the specified images cannot be loaded, the   system attempts to boot the first bootable file that it can find in the flash: file system.	

ENABLE_BREAK-Specifies whether the automatic boot process can be interrupted by using the Break key on the console after the flash: file system has been initialized.

HELPER-Identifies the semicolon-separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.

PS1-Specifies the string that is used as the command-line prompt in boot loader mode.
CONFIG_FILE—Resets the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.

BAUD-Resets the rate in bits per second (b/s) used for the console. The Cisco IOS software inherits the baud rate setting from the boot loader and continues to use this value unless the configuration file specifies another setting.

Command Default	No default behavior or values.	
Command Modes	Boot loader	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Usage Guidelines

Under typical circumstances, it is not necessary to alter the setting of the environment variables.
The MANUAL_BOOT environment variable can also be reset by using the no boot manual global configuration command.

The BOOT environment variable can also be reset by using the no boot system global configuration command.
The ENABLE_BREAK environment variable can also be reset by using the no boot enable-break global configuration command.

The HELPER environment variable can also be reset by using the no boot helper global configuration command.

The CONFIG_FILE environment variable can also be reset by using the no boot config-file global configuration command.

## Example

This example shows how to unset the SWITCH_PRIORITY environment variable:

Device: unset SWITCH_PRIORITY

## upgrade rom-monitor capsule

To upgrade the read-only memory monitor (ROMMON) by using the capsule method, use the upgrade rom-monitor capsule command in privileged EXEC mode.

## Standalone Devices

upgrade rom-monitor capsule $\{$ golden $\mid$ primary $\}[\{\mathbf{R 0} \mid \mathbf{R P}$ active $\}]$
Device with High Availability
upgrade rom-monitor capsule \{golden | primary\}[\{R0|R1|RP \{active | standby \} \}]
Device with StackWise Virtual
upgrade rom-monitor capsule $\{$ golden $\mid$ primary $\}[\{\mathbf{R 0}|\mathbf{R 1}| \mathbf{R P}\{$ active $\mid$ standby $\} \mid$ switch $\{$ switch_number $\mid$ active $\mid$ standby $\}\{\mathbf{R 0}|\mathbf{R 1}| \mathbf{R P}\{$ active $\mid$ standby $\}\}\}]$

## Syntax Description

## Command Default

Command Modes
Command History

Usage Guidelines
To know if a ROMMON version upgrade is applicable to a software version, see the release notes of the corresponding software release:
https://www.cisco.com/c/en/us/support/switches/catalyst-9300-series-switches/products-release-notes-list.html

## Examples

This example shows how to upgrade the golden ROMMON on a device with StackWise Virtual:

```
Device# upgrade rom-monitor capsule golden switch active R0
This operation will reload the switch and take a few minutes to complete.
Do you want to proceed (y/n)? [confirm]y
Device#
Initializing Hardware
!
!
!
Warning : New region (type 2) access rights will be modified
Updating Block at FFFFFOOOh 100%
Restarting switch to complete capsule upgrade
<output truncated>
```


## version

To display the boot loader version, use the version command in boot loader mode.
version

$\overline{\text { Syntax Description }}$	This command has no arguments or keywords.	
$\overline{\text { Command Default }}$	No default behavior or values.	
$\overline{\text { Command Modes }}$	Boot loader	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

This example shows how to display the boot loader version on a device:


## Tracing

- Information About Tracing, on page 2090
- set platform software trace, on page 2092
- show platform software trace filter-binary, on page 2096
- show platform software trace message, on page 2097
- show platform software trace level, on page 2101
- request platform software trace archive, on page 2104
- request platform software trace rotate all, on page 2105
- request platform software trace filter-binary, on page 2106


## Information About Tracing

## Tracing Overview

The tracing functionality logs internal events. Trace files are automatically created and saved to the tracelogs subdirectory under crashinfo.
The contents of trace files are useful for the following purposes:

- Troubleshooting-If a switch has an issue, the trace file output may provide information that can be used for locating and solving the issue.
- Debugging-The trace file outputs helps users get a more detailed view of system actions and operations.

To view the most recent trace information for a specific module, use the show platform software trace message command.

To modify the trace level to increase or decrease the amount of trace message output, you can set a new trace level using the set platform software trace command. Trace levels can be set for each process using the all-modules keyword in the set platform software trace command, or per module within a process.

## Location of Tracelogs

Each process uses btrace infrastructure to log its trace messages. When a process is active, the corresponding in-memory tracelog is found in the directory / tmp/<FRU>/trace/, where $<$ FRU $>$ refers to the location where the process is running ( $\mathrm{rp}, \mathrm{fp}$, or cc ).
When a tracelog file has reached the maximum file size limit allowed for the process, or if the process ends, it gets rotated into the following directory:

- /crashinfo/tracelogs, if the crashinfo: partition is available on the switch
- /harddisk/tracelogs, if the crashinfo: partition is not available on the switch

The tracelog files are compressed before being stored in the directory.

## Tracelog Naming Convention

All the tracelogs that are created using btrace have the following naming convention:

```
<process_name>_<FRU><SLOT>-<BAY>.<pid>_<counter>.<creation_timestamp>.bin
```

Here, counter is a free-running 64-bit counter that gets incremented for each new file created for the process. For example, wcm_R0-0.1362_0.20151006171744.bin. When compressed, the files will have the gz extension appended to their names

## Tracelog size limits and rotation policy

The maximum size limit for a tracelog file is 1 MB for each process, and the maximum number of tracelog files that are maintained for a process is 25 .

## Rotation and Throttling Policy

Initially, all the tracelog files are moved from the initial /tmp/<FRU>/trace directory to the /tmp/<FRU>/trace/stage staging directory. The btrace_rotate script then moves these tracelogs from the staging directory to the /crashinfo/tracelogs directory. When the number of files stored in the /crashinfo/tracelogs directory per process reaches the maximum limit, the oldest files for the process are deleted, while the newer files are maintained. This is repeated at every 60 minutes under worst-case situations.

There are two other sets of files that are purged from the /crashinfo/tracelogs directory:

- Files that do not have the standard naming convention (other than a few exceptions such as fed_python.log)
- Files older than two weeks

The throttling policy has been introduced so that a process with errors does not affect the functioning of the switch. Whenever a process starts logging at a very high rate, for example, if there are more than 16 files in a 4-second interval for the process in the staging directory, the process is throttled. The files do not rotate for the process from / tmp/<FRU>/trace into /tmp/<FRU>/trace/stage, however the files are deleted when they reach the maximum size. Throttling is re-enabled, when the count goes below 8 .

## Tracing Levels

Tracing levels determine how much information should be stored about a module in the trace buffer or file.
The following table shows all of the tracing levels that are available, and provides descriptions of the message that are displayed with each tracing level.

Table 216: Tracing Levels and Descriptions

Tracing Level	Description
Emergency	The message is regarding an issue that makes the   system unusable.
Error	The message is regarding a system error.
Warning	The message is regarding a system warning.
Notice	The message is regarding a significant issue, but the   switch is still working normally.
Informational	The message is useful for informational purposes only.
Debug	The message provides debug-level output.
Verbose	All possible trace messages are sent.
Noise	All possible trace messages for the module are logged.   The noise level is always equal to the highest possible   tracing level. Even if a future enhancement to tracing   introduces a higher tracing level, the noise level will   become equal to the level of that new enhancement.

## set platform software trace

To set the trace level for a specific module within a process, use the set platform software trace command in privileged EXEC or user EXEC mode.
set platform software trace process slot module trace-level

## Syntax Description

 processProcess whose tracing level is being set. Options include:

- chassis-manager-The Chassis Manager process.
- cli-agent-The CLI Agent process.
- dbm - The Database Manager process.
- emd-The Environmental Monitoring process.
- fed-The Forwarding Engine Driver process.
- forwarding-manager-The Forwarding Manager process.
- host-manager-The Host Manager process.
- iomd-The Input/Output Module daemon (IOMd) process.
- ios-The IOS process.
- license-manager-The License Manager process.
- logger-The Logging Manager process.
- platform-mgr-The Platform Manager process.
- pluggable-services-The Pluggable Services process.
- replication-mgr-The Replication Manager process.
- shell-manager-The Shell Manager process.
- smd-The Session Manager process.
- table-manager-The Table Manager Server.
- wireless-The wireless controller module process.
- wireshark-The Embedded Packet Capture (EPC) Wireshark process.

Hardware slot where the process for which the trace level is set, is running. Options include:

- number-Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
- SIP-slot / SPA-bay-Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.
- F0-The Embedded-Service-Processor in slot 0 .
- FP active-The active Embedded-Service-Processor.
- R0-The route processor in slot 0 .
- RP active-The active route processor.
- switch <number>-The switch with its number specified.
- switch active-The active switch.
- switch standby-The standby switch.

trace-level	Trace level. Options include:
	- debug-Debug level tracing. A debug-level trace message is a non-urgent message providing a large amount of detail about the module.
	- emergency-Emergency level tracing. An emergency-level trace message is a message indicating that the system is unusable.
	- error-Error level tracing. An error-level tracing message is a message indicating a system error.
	- info-Information level tracing. An information-level tracing message is a non-urgent message providing information about the system.
	- noise-Noise level tracing. The noise level is always equal to the highest tracing level possible and always generates every possible tracing message.
	The noise level is always equal to the highest-level tracing message possible for a module, even if future enhancements to this command introduce options that allow users to set higher tracing levels.
	- notice-The message is regarding a significant issue, but the switch is still working normally.
	- verbose-Verbose level tracing. All possible tracing messages are sent when the trace level is set to verbose.
	- warning-Warning messages.


Command Default
Command Modes
Command History

## Usage Guidelines

The default tracing level for all modules is notice.
User EXEC (>)
Privileged EXEC (\#)
Release $\quad$ Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

The module options vary by process and by hardware-module. Use the ? option when entering this command to see which module options are available with each keyword sequence.

Use the show platform software trace message command to view trace messages.
Trace files are stored in the tracelogs directory in the harddisk: file system. These files can be deleted without doing any harm to your switch operation.

Trace file output is used for debugging. The trace level is a setting that determines how much information should be stored in trace files about a module.

This example shows how to set the trace level for all the modules in dbm process:
\# set platform software trace dbm RO all-modules debug

## show platform software trace filter-binary

To display the most recent trace information for a specific module, use the show platform software trace filter-binary command in privileged EXEC or user EXEC mode.
show platform software trace filter-binarymodules [context mac-address]

Syntax Description

## Command Modes

Command History

## Usage Guidelines

contextmac-address

User EXEC ( $(>)$
Privileged EXEC (\#)

## Release

## Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This command collates and sorts all the logs present in the / tmp/ . . / across all the processes relevant to the module. The trace logs of all the processes relevant to the specified module are printed to the console. This command also generates a file named collated_log_\{system time\} with the same content, in the /crashinfo/tracelogs directory.

## Examples

This example shows how to display the trace information for a wireless module:

## show platform software trace message

To display the trace messages for a process, use the set platform software trace command in privileged EXEC or user EXEC mode.
show platform software trace message process slot

Tracing level that is being set. Options include:

- chassis-manager-The Chassis Manager process.
- cli-agent-The CLI Agent process.
- cmm-The CMM process.
- dbm - The Database Manager process.
- emd-The Environmental Monitoring process.
- fed-The Forwarding Engine Driver process.
- forwarding-manager-The Forwarding Manager process.
- geo-The Geo Manager process.
- host-manager-The Host Manager process.
- interface-manager-The Interface Manager process.
- iomd-The Input/Output Module daemon (IOMd) process.
- ios-The IOS process.
- license-manager-The License Manager process.
- logger-The Logging Manager process.
- platform-mgr-The Platform Manager process.
- pluggable-services-The Pluggable Services process.
- replication-mgr-The Replication Manager process.
- shell-manager-The Shell Manager process.
- sif-The Stack Interface (SIF) Manager process.
- smd-The Session Manager process.
- stack-mgr-The Stack Manager process.
- table-manager-The Table Manager Server.
- thread-test-The Multithread Manager process.
- virt-manager-The Virtualization Manager process.
- wireless-The wireless controller module process.

Hardware slot where the process for which the trace level is set, is running. Options include:

- number-Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
- SIP-slot / SPA-bay-Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3 , enter 3/2.
- F0-The Embedded Service Processor slot 0.
- FP active-The active Embedded Service Processor.
- R0-The route processor in slot 0 .
- RP active-The active route processor.
- switch <number>-The switch, with its number specified.
- switch active-The active switch.
- switch standby-The standby switch.
- number-Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
- SIP-slot/SPA-bay-Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.
- F0-The Embedded Service Processor in slot 0 .
- FP active-The active Embedded Service Processor.
- R0-The route processor in slot 0 .
- RP active-The active route processor.

Command Modes	User EXEC ( $>$ )	
	Privileged EXEC (\#)	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

## Examples

This example shows how to display the trace messages for the Stack Manager and the Forwarding Engine Driver processes:


## show platform software trace level

To view the trace levels for all the modules under a specific process, use the show platform software trace level command in privileged EXEC or user EXEC mode.
show platform software trace level process slot
Syntax Description process

Process whose tracing level is being set. Options include:

- chassis-manager-The Chassis Manager process.
- cli-agent-The CLI Agent process.
- cmm-The CMM process.
- dbm - The Database Manager process.
- emd-The Environmental Monitoring process.
- fed-The Forwarding Engine Driver process.
- forwarding-manager-The Forwarding Manager process.
- geo-The Geo Manager process.
- host-manager-The Host Manager process.
- interface-manager-The Interface Manager process.
- iomd-The Input/Output Module daemon (IOMd) process.
- ios-The IOS process.
- license-manager-The License Manager process.
- logger-The Logging Manager process.
- platform-mgr-The Platform Manager process.
- pluggable-services-The Pluggable Services process.
- replication-mgr-The Replication Manager process.
- shell-manager-The Shell Manager process.
- sif-The Stack Interface (SIF) Manager process.
- smd-The Session Manager process.
- stack-mgr-The Stack Manager process.
- table-manager-The Table Manager Server.
- thread-test-The Multithread Manager process.
- virt-manager-The Virtualization Manager process.
- wireless-The wireless controller module process.
slot Hardware slot where the process for which the trace level is set, is running. Options include:
- number - Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
- SIP-slot / SPA-bay-Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter $3 / 2$.
- F0-The Embedded Service Processor in slot 0.
- F1-The Embedded Service Processor in slot 1.
- FP active-The active Embedded Service Processor.
- R0-The route processor in slot 0 .
- RP active-The active route processor.
- switch <number> —The switch, with its number specified.
- switch active-The active switch.
- switch standby - The standby switch.
- number - Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
- SIP-slot / SPA-bay—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter $3 / 2$.
- F0- The Embedded Service Processor in slot 0.
- FP active-The active Embedded Service Processor.
- R0-The route processor in slot 0 .
- RP active-The active route processor.

$\overline{\text { Command Modes }}$	User EXEC ( $>$ )
	Privileged EXEC (\#)

Command History
Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

## Examples

This example shows how to view the trace level:
\# show platform software trace level dbm switch active R0

Module Name	Trace Level
binos	Notice
binos/brand	Notice
bipc	Notice
btrace	Notice
bump_ptr_alloc	Notice
cdllib	Notice
chasfs	Notice
dbal	Informational
dbm	Debug
evlib	Notice
evutil	Notice
file_alloc	Notice
green-be	Notice
ios-avl	Notice
klib	Debug
services	Notice
sw_wdog	Notice
syshw	Notice
tdl_cdlcore_message	Notice
tdl_dbal_root_message	Notice
tdl_dbal_root_type	Notice

## request platform software trace archive

To archive all the trace logs relevant to all the processes running on a system since the last reload on the switch and to save this in the specified location, use the request platform software trace archive command in privileged EXEC or user EXEC mode.
request platform software trace archive [last number-of-days [days [target location]] | target location]
Syntax Description
$\overline{\text { Command Modes }}$
$\overline{\text { Command History }}$

Usage Guidelines This archive file can be copied from the system, using the tftp or scp commands.

## Examples

This example shows how to archive all the trace logs of the processes running on the switch since the last 5 days:
\# request platform software trace archive last 5 days target flash:test_archive

## request platform software trace rotate all

To rotate all the current in-memory trace logs into the crashinfo partition and start a new in-memory trace log for each process, use the request platform software trace rotate all command in privileged EXEC or user EXEC mode.
request platform software trace rotate all

Command Modes
Command History
Usage Guidelines

User EXEC (>)
Privileged EXEC (\#)
Command History $\quad$ Release $\quad$ Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

Usage Guidelines
The trace log files are for read-only purpose. Do not edit the contents of the file. If there is a requirement to delete the contents of the file to view certain set of logs, use this command to start a new trace log file.

[^15]
## request platform software trace filter-binary

To collate and sort all the archived logs present in the tracelogs subdirectory, use the request platform software trace filter-binary command in privileged EXEC or user EXEC mode.
request platform software trace filter-binary modules [context mac-address]

## Syntax Description

## Command Modes

## Command History

Usage Guidelines

context mac-address
User EXEC (>)
Privileged EXEC (\#)

Release Modification

Cisco IOS XE Everest 16.5.1a This command was introduced.

This command collates and sorts all the archived logs present in the tracelogs subdirectory, across all the processes relevant to the module. This command also generates a file named collated_log_\{system time \} with the same content, in the /crashinfo/tracelogs directory.

## Examples

This example shows how to display the trace information for a wireless module:


## рані XIV

## VLAN

- VLAN Commands, on page 2109



## VLAN Commands

- clear vtp counters, on page 2110
- debug sw-vlan, on page 2111
- debug sw-vlan ifs, on page 2113
- debug sw-vlan notification, on page 2114
- debug sw-vlan vtp, on page 2115
- dot1q vlan native, on page 2117
- interface (VLAN), on page 2118
- private-vlan, on page 2119
- private-vlan mapping, on page 2121
- show interfaces private-vlan mapping, on page 2123
- show vlan, on page 2124
- show vtp, on page 2128
- switchport mode private-vlan, on page 2133
- switchport priority extend, on page 2135
- switchport trunk, on page 2136
- vlan, on page 2139
- vlan dot1q tag native, on page 2145
- vtp (global configuration), on page 2146
- vtp (interface configuration), on page 2151
- vtp primary, on page 2152


## clear vtp counters

To clear the VLAN Trunking Protocol (VTP) and pruning counters, use the clear vtp counters command in privileged EXEC mode.
clear vtp counters
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
Command Modes Privileged EXEC

Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

Examples This example shows how to clear the VTP counters:
Device> enable
Device\# clear vtp counters

You can verify that information was deleted by entering the show vtp counters privileged EXEC command.

## debug sw-vlan

To enable debugging of VLAN manager activities, use the debug sw-vlan command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug sw-vlan $\{$ badpmcookies $\mid$ cfg-vlan $\{$ bootup $\mid$ cli $\} \mid$ events $\mid$ ifs $\mid$ mapping | notification $\mid$ packets $\mid$ redundancy $\mid$ registries $\mid$ vtp $\}$
no debug sw-vlan \{badpmcookies $\mid$ cfg-vlan $\{$ bootup $\mid$ cli\} $\mid$ events $\mid$ ifs $\mid$ mapping $\mid$ notification $\mid$ packets $\mid$ redundancy | registries $\mid$ vtp $\}$

## Syntax Description

badpmcookies Displays debug messages for VLAN manager incidents of bad port manager cookies.

cfg-vlan	Displays VLAN configuration debug messages.
bootup	Displays messages when the switch is booting up.
cli	Displays messages when the command-line interface (CLI) is in VLAN configuration mode.
events	Displays debug messages for VLAN manager events.
ifs	Displays debug messages for the VLAN manager IOS file system (IFS). See debug sw-vlan   ifs, on page 2113 for more information.
mapping	Displays debug messages for VLAN mapping.
notification	Displays debug messages for VLAN manager notifications. See debug sw-vlan notification,   on page 2114 for more information.
packets	Displays debug messages for packet handling and encapsulation processes.   redundancy
Displays debug messages for VTP VLAN redundancy.	
registries	Displays debug messages for VLAN manager registries.
vtp	Displays debug messages for the VLAN Trunking Protocol (VTP) code. See debug sw-vlan   vtp, on page 2115 for more information.


Command Default
Command Modes
Command History

Usage Guidelines
Examples
Debugging is disabled.
Privileged EXEC

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The undebug sw-vlan command is the same as the no debug sw-vlan command.

This example shows how to display debug messages for VLAN manager events:

```
Device> enable
Device# debug sw-vlan events
```


## debug sw-vlan ifs

To enable debugging of the VLAN manager IOS file system (IFS) error tests, use the debug sw-vlan ifs command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug sw-vlan ifs $\{$ open $\{$ read $\mid$ write $\} \mid$ read $\{1|2| 3 \mid 4\} \mid$ write $\}$ no debug sw-vlan ifs $\{$ open $\{$ read $\mid$ write $\} \mid$ read $\{1|2| 3 \mid 4\} \mid$ write $\}$

Syntax Description

open   read	Displays VLAN manager IFS file-read operation debug messages.
open   write	Displays VLAN manager IFS file-write operation debug messages.
read	Displays file-read operation debug messages for the specified error test (1,2, 3, or   4).
write	Displays file-write operation debug messages.


$\overline{\text { Command Default }}$
Command Modes

## Command History

## Usage Guidelines

The undebug sw-vlan ifs command is the same as the no debug sw-vlan ifs command.
When selecting the file read operation, Operation 1 reads the file header, which contains the header verification word and the file version number. Operation 2 reads the main body of the file, which contains most of the domain and VLAN information. Operation $\mathbf{3}$ reads type length version (TLV) descriptor structures. Operation 4 reads TLV data.

## Examples

This example shows how to display file-write operation debug messages:

```
Device> enable
Device# debug sw-vlan ifs write
```


## debug sw-vlan notification

To enable debugging of VLAN manager notifications, use the debug sw-vlan notification command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug sw-vlan notification \{accfwdchange |allowedvlancfgchange |fwdchange |linkchange | modechange | pruningcfgchange | statechange\}
no debug sw-vlan notification \{accfwdchange |allowedvlancfgchange |fwdchange | linkchange | modechange | pruningcfgchange $\mid$ statechange $\}$

## Syntax Description

## Command Default

Command Modes

## Command History

## Usage Guidelines

## Examples

This example shows how to display debug messages for VLAN manager notification of interface mode changes:

```
Device> enable
Device# debug sw-vlan notification
```


## debug sw-vlan vtp

To enable debugging of the VLAN Trunking Protocol (VTP) code, use the debug sw-vlan vtp command in privileged EXEC mode. To disable debugging, use the no form of this command.
debug sw-vlan vtp $\{$ events | packets $\mid$ pruning [\{packets $\mid$ xmit $\}$ ] redundancy $\mid$ xmit \} no debug sw-vlan vtp $\{$ events $\mid$ packets $\mid$ pruning $\mid$ redundancy $\mid$ xmit $\}$

## Syntax Description

events	Displays debug messages for general-purpose logic flow and detailed VTP   messages generated by the VTP_LOG_RUNTIME macro in the VTP code.
packets	Displays debug messages for the contents of all incoming VTP packets   that have been passed into the VTP code from the Cisco IOS VTP   platform-dependent layer, except for pruning packets.
pruning	Displays debug messages generated by the pruning segment of the VTP   code.
packets	(Optional) Displays debug messages for the contents of all incoming VTP   pruning packets that have been passed into the VTP code from the Cisco   IOS VTP platform-dependent layer.
xmit	(Optional) Displays debug messages for the contents of all outgoing VTP   packets that the VTP code requests the Cisco IOS VTP platform-dependent   layer to send.
redundancy	Displays debug messages for VTP redundancy.
xmit	Displays debug messages for the contents of all outgoing VTP packets that   the VTP code requests the Cisco IOS VTP platform-dependent layer to
send, except for pruning packets.	


Command Default	Debugging is disabled.	
Command Modes	Privileged EXEC	
Command History	Release	Modification
	Cisco IOS XE Everest 16.5.1a	This command was introduced.

[^16]Examples
This example shows how to display debug messages for VTP redundancy:

```
Device> enable
Device# debug sw-vlan vtp redundancy
```


## dot1q vlan native

To assign the native VLAN ID of a physical interface trunking 802.1Q VLAN traffic, use the dot1q vlan native command in interface configuration mode. To remove the VLAN ID assignment, use the no form of this command.
dot1q vlan vlan-id [native]
no dot1q vlan vlan-id [native]

Syntax Description

$\overline{\text { Command Default }}$
Command Modes

Command History
vlan-id Trunk interface ID. The range is from 1 to 4000.
native Specifies the native VLAN associated with the 802.1Q trunk interface.

No default behavior or values

Interface configuration (config-if)

Release	Modification
Cisco IOS XE Gibraltar 16.12.1	This command was introduced.

To use this command, you must be in a user group associated with a task group that includes proper task IDs. If you suspect that user group assignment is preventing you from using a command, contact your AAA administrator.

The dot1q vlan native command defines the default, or native VLAN, associated with an 802.1Q trunk interface. The native VLAN of a trunk interface is the VLAN to which all the untagged VLAN packets are logically assigned.

Note The native VLAN cannot be configured on a subinterface of the trunk interface. The native VLAN must be configured with the same value at both ends of the link, or traffic can be lost or sent to the wrong VLAN.

## Examples

The following example shows how to configure the native VLAN of a 1/0/33 trunk interface as 1 . Packets received on this interface that are untagged, or that have an 802.1Q tag with VLAN ID 1, are received on the main interface. Packets sent from the main interface are transmitted without an 802.1Q tag.

```
Device> enable
Device(config)# interface 1/0/33.201
Device(config-subif)# dotlq vlan 1 native
```


## interface (VLAN)

To create a VLAN subinterface, use the interface command in global configuration mode. To delete a subinterface, use the no form of this command.
interface \{type switch |slot |port.subinterface \}
no interface $\{$ type switch |slot |port.subinterface \}

## Syntax Description

type	Type of interface to be configured.
switch/slot/port.subinterface	Physical interfaces or virtual interfaces followed by the subinterface path ID.
No default behavior or values	
Global configuration	
Release	Modification
Cisco IOS XE Gibraltar 16.12.1	This command was introduced.

## Usage Guidelines

To use this command, you must be in a user group associated with a task group that includes the proper task IDs. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator.
To configure a large number of subinterfaces, we recommend entering all configuration data before you commit the interface command.

To change an interface from Layer 2 to Layer 3 mode and back, you must delete the interface first and then re-configure it in the appropriate mode.

## Examples

## Related Commands

This example shows how to configure subinterfaces on layer 3 interfaces:

```
Device> enable
```

Device(config) \# interface HundredGigabitEthernet 1/0/33.201
Device(config-subif) \# encapsulation dotlq 33 native

Command	Description
dot1q vlan   native	Defines the native VLAN ID associated with a subinterface.

## private-vlan

To configure private VLANs and to configure the association between private VLAN primary and secondary VLANs, use the private-vlan VLAN configuration command on the switch stack or on a standalone switch. Use the no form of this command to return the VLAN to normal VLAN configuration.
private-vlan \{association [\{add|remove\}] secondary-vlan-list | community | isolated | primary\} no private-vlan $\{$ association $\mid$ community $\mid$ isolated $\mid$ primary \}

Syntax Description

association	Creates an association between the primary VLAN and a secondary VLAN.
add	Associates a secondary VLAN to a primary VLAN.
remove	Clears the association between a secondary VLAN and a primary VLAN.
secondary-vlan-list	One or more secondary VLANs to be associated with a primary VLAN in a private   VLAN.
community	Designates the VLAN as a community VLAN.
isolated	Designates the VLAN as an isolated VLAN.
primary	Designates the VLAN as a primary VLAN.

## Command Default

The default is to have no private VLANs configured.

VLAN configuration

Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

Usage Guidelines
Before configuring private VLANs, you must disable VTP (VTP mode transparent). After you configure a private VLAN, you should not change the VTP mode to client or server.

VTP does not propagate private VLAN configurations. You must manually configure private VLANs on all switches in the Layer 2 network to merge their Layer 2 databases and to prevent flooding of private VLAN traffic.

You cannot include VLAN 1 or VLANs 1002 to 1005 in the private VLAN configuration. Extended VLANs (VLAN IDs 1006 to 4094) can be configured in private VLANs.

You can associate a secondary (isolated or community) VLAN with only one primary VLAN. A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it.

- A secondary VLAN cannot be configured as a primary VLAN.
- The secondary-vlan-list cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.
- If you delete either the primary or secondary VLANs, the ports associated with the VLAN become inactive.

A community VLAN carries traffic among community ports and from community ports to the promiscuous ports on the corresponding primary VLAN.

An isolated VLAN is used by isolated ports to communicate with promiscuous ports. It does not carry traffic to other community ports or isolated ports with the same primary VLAN domain.

A primary VLAN is the VLAN that carries traffic from a gateway to customer end stations on private ports.
Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The private-vlan commands do not take effect until you exit from VLAN configuration mode.
Do not configure private VLAN ports as EtherChannels. While a port is part of the private VLAN configuration, any EtherChannel configuration for it is inactive.

Do not configure a private VLAN as a Remote Switched Port Analyzer (RSPAN) VLAN.
Do not configure a private VLAN as a voice VLAN.
Do not configure fallback bridging on switches with private VLANs.
Although a private VLAN contains more than one VLAN, only one STP instance runs for the entire private VLAN. When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN are propagated to the secondary VLAN.

For more information about private VLAN interaction with other features, see the software configuration guide for this release.

This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, and to associate them in a private VLAN:

```
configure terminal
(config)# vlan 20
(config-vlan)# private-vlan primary
(config-vlan)# exit
(config)# vlan 501
(config-vlan)# private-vlan isolated
(config-vlan)# exit
(config)# vlan 502
(config-vlan)# private-vlan community
(config-vlan)# exit
(config)# vlan 503
(config-vlan)# private-vlan community
(config-vlan)# exit
(config)# vlan 20
(config-vlan)# private-vlan association 501-503
(config-vlan)# end
```

You can verify your setting by entering the show vlan private-vlan or show interfaces status privileged EXEC command.

## private-vlan mapping

To create a mapping between the primary and the secondary VLANs so that both VLANs share the same primary VLAN switched virtual interface (SVI), use the private-vlan mapping interface configuration command on a switch virtual interface (SVI). Use the no form of this command to remove private VLAN mappings from the SVI.
private-vlan mapping [\{add |remove $\}$ ] secondary-vlan-list no private-vlan mapping

## Syntax Description

add	(Optional) Maps the secondary VLAN to the primary VLAN SVI.
remove	(Optional) Removes the mapping between the secondary VLAN and the primary
	VLAN SVI.


Command Default
Command Modes
Command History

Usage Guidelines
No private VLAN SVI mapping is configured.

Interface configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The device must be in VTP transparent mode when you configure private VLANs.

The SVI of the primary VLAN is created at Layer 3.
Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The secondary-vlan-list argument cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.

Traffic that is received on the secondary VLAN is routed by the SVI of the primary VLAN.
A secondary VLAN can be mapped to only one primary SVI. If you configure the primary VLAN as a secondary VLAN, all SVIs specified in this command are brought down.

If you configure a mapping between two VLANs that do not have a valid Layer 2 private VLAN association, the mapping configuration does not take effect.
$\overline{\text { Examples }}$

This example shows how to map the interface of VLAN 20 to the SVI of VLAN 18:

```
Device# configure terminal
Device# interface vlan 18
Device(config-if) # private-vlan mapping 20
Device(config-vlan)# end
```

This example shows how to permit routing of secondary VLAN traffic from secondary VLANs 303 to 305 and 307 through VLAN 20 SVI:

```
Device# configure terminal
Device# interface vlan 20
Device(config-if) # private-vlan mapping 303-305, 307
Device(config-vlan)# end
```

You can verify your settings by entering the show interfaces private-vlan mapping privileged EXEC command.

## show interfaces private-vlan mapping

To display private VLAN mapping information for the VLAN switch virtual interfaces (SVIs), use the show interfaces private-vlan mapping command in user EXEC or privileged EXEC mode.
show interfaces [interface-id] private-vlan mapping

## Syntax Description

$\overline{\text { Command Default }}$	None
$\overline{\text { Command Modes }}$	User EXEC

Privileged EXEC

Command History
None

User EXEC
interface-id (Optional) ID of the interface for which to display private VLAN mapping information.

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

$\overline{\text { Examples }}$

This example shows how to display the information about the private VLAN mapping:

```
Device#show interfaces private-vlan mapping
Interface Secondary VLAN Type
--------- -------------- --------------------
vlan2 301 community
vlan3 302 community
```


## show vlan

To display the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) on the switch, use the show vlan command in user EXEC mode.
show vlan [\{brief $\mid$ group $\mid$ id vlan-id $\mid$ mtu $\mid$ name vlan-name $\mid$ private-vlan [\{type $\}] \mid$ remote-span | summary \}]

## Syntax Description

brief	(Optional) Displays one line for each VLAN with the VLAN name,   status, and its ports.
group	(Optional) Displays information about VLAN groups.
id vlan-id	(Optional) Displays information about a single VLAN identified   by the VLAN ID number. For vlan-id, the range is 1 to 4094.
mtu	(Optional) Displays a list of VLANs and the minimum and   maximum transmission unit (MTU) sizes configured on ports in   the VLAN.
name vlan-name	(Optional) Displays information about a single VLAN identified   by the VLAN name. The VLAN name is an ASCII string from 1   to 32 characters.

private-vlan (Optional) Displays information about configured private VLANs, including primary and secondary VLAN IDs, type (community, isolated, or primary) and ports belonging to the private VLAN. This keyword is only supported if your switch is running the IP services feature set.

type	(Optional) Displays only private VLAN ID and type.
remote-span	(Optional) Displays information about Remote SPAN (RSPAN)
	VLANs.
summary	(Optional) Displays VLAN summary information.

Note The ifindex keyword is not supported, even though it is visible in the command-line help string.

$\overline{\text { Command Modes }}$		User EXEC	
Command History	Release	Modification	
	Cisco IOS XE Everest 16.5.1a	This command was introduced.	

## Usage Guidelines

In the show vlan mtu command output, the MTU_Mismatch column shows whether all the ports in the VLAN have the same MTU. When yes appears in the column, it means that the VLAN has ports with different MTUs, and packets that are switched from a port with a larger MTU to a port with a smaller MTU might be dropped.

If the VLAN does not have an SVI, the hyphen (-) symbol appears in the SVI_MTU column. If the MTU-Mismatch column displays yes, the names of the ports with the MinMTU and the MaxMTU appear.
If you try to associate a private VLAN secondary VLAN with a primary VLAN before you define the secondary VLAN, the secondary VLAN is not included in the show vlan private-vlan command output.

In the show vlan private-vlan type command output, a type displayed as normal means a VLAN that has a private VLAN association but is not part of the private VLAN. For example, if you define and associate two VLANs as primary and secondary VLANs and then delete the secondary VLAN configuration without removing the association from the primary VLAN, the VLAN that was the secondary VLAN is shown as normal in the display. In the show vlan private-vlan output, the primary and secondary VLAN pair is shown as nonoperational.

## Examples

This is an example of output from the show vlan command. See the table that follows for descriptions of the fields in the display.


[^17]2000,3000
Primary Secondary Type Ports

Table 217: show vlan Command Output Fields

Field	Description
VLAN	VLAN number.
Name	Name, if configured, of the VLAN.
Status	Status of the VLAN (active or suspend).
Ports	Ports that belong to the VLAN.
Type	Media type of the VLAN.
SAID	Security association ID value for the VLAN.
MTU	Maximum transmission unit size for the VLAN.
Parent	Parent VLAN, if one exists.
RingNo	Bridge number for the VLAN, if applicable.
BrdgNo	Spanning Tree Protocol type used on the VLAN.
Stp	Bridging mode for this VLAN-possible values are source-route bridging   (SRB) and source-route transparent (SRT); the default is SRB.
BrdgMode	Translation bridge 1.
Trans1	Translation bridge 2.
Trans2	Identifies any RSPAN VLANs that have been configured.
Remote SPAN VLANs	

This is an example of output from the show vlan summary command:

```
Device> show vlan summary
Number of existing VLANs : 45
 Number of existing VTP VLANs : 45
 Number of existing extended VLANS : 0
```

This is an example of output from the show vlan id command:


## show vtp

## Syntax Description

To display general information about the VLAN Trunking Protocol (VTP) management domain, status, and counters, use the show vtp command in EXEC mode.
show vtp $\{$ counters $\mid$ devices [conflicts] |interface [interface-id] | password |status\}

counters	Displays the VTP statistics for the device.
devices	Displays information about all VTP version 3 devices in the domain. This   keyword applies only if the device is not running VTP version 3.
conflicts	(Optional) Displays information about VTP version 3 devices that have   conflicting primary servers. This command is ignored when the device is   in VTP transparent or VTP off mode.
interface	Displays VTP status and configuration for all interfaces or the specified   interface.
interface-id	(Optional) Interface for which to display VTP status and configuration.   This can be a physical interface or a port channel.
password	Displays whether the VTP password is configured or not (available in   privileged EXEC mode only).
status	Displays general information about the VTP management domain status.

## Command Modes

User EXEC
Privileged EXEC

## Command History

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.
Cisco IOS XE Gibraltar 16.12.4	The show vtp password command output now display   the password is or is not configured.

This is an example of output from the show vtp devices command. A Yes in the Conflict column indicates that the responding server is in conflict with the local server for the feature; that is, when two devices in the same domain do not have the same primary server for a database.

```
Device> enable
Device# show vtp devices
Retrieving information from the VTP domain. Waiting for 5 seconds.
VTP Database Conf Device ID Primary Server Revision System Name
------_--- lict --- _------------- --------------------------------
VLAN Yes 00b0.8e50.d000 000c.0412.6300 12354 main.cisco.com
VLAN Yes 000c.0412.6300=000c.0412.6300 67 qwerty.cisco.com
```

This is an example of output from the show vtp counters command. The table that follows describes each field in the display.

```
Device> show vtp counters
VTP statistics:
Summary advertisements received : 0
Subset advertisements received : 0
Request advertisements received : 0
Summary advertisements transmitted : 0
Subset advertisements transmitted : 0
Request advertisements transmitted : 0
Number of config revision errors : 0
Number of config digest errors : 0
Number of V1 summary errors : 0
VTP pruning statistics:
\begin{tabular}{|c|c|c|}
\hline Trunk & Join Transmitted Join Received & Summary advts received from non-pruning-capable device \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Gi1/0/47 & 0 & 0 & 0 \\
\hline Gil/0/48 & 0 & 0 & 0 \\
\hline Gi2/0/1 & 0 & 0 & 0 \\
\hline Gi3/0/2 & 0 & 0 & 0 \\
\hline
\end{tabular}
```

Table 218: show vtp counters Field Descriptions

Field	Description
Summary advertisements received	Number of summary advertisements received by this   device on its trunk ports. Summary advertisements   contain the management domain name, the   configuration revision number, the update timestamp   and identity, the authentication checksum, and the   number of subset advertisements to follow.
Subset advertisements received	Number of subset advertisements received by this   device on its trunk ports. Subset advertisements   contain all the information for one or more VLANs.
Request advertisements received	Number of advertisement requests received by this   device on its trunk ports. Advertisement requests   normally request information on all VLANs. They   can also request information on a subset of VLANs.
Summary advertisements transmitted	Number of summary advertisements sent by this   device on its trunk ports. Summary advertisements   contain the management domain name, the   configuration revision number, the update timestamp   and identity, the authentication checksum, and the   number of subset advertisements to follow.
Subset advertisements transmitted	Number of subset advertisements sent by this device   on its trunk ports. Subset advertisements contain all   the information for one or more VLANs.


Field	Description
Request advertisements transmitted	Number of advertisement requests sent by this device on its trunk ports. Advertisement requests normally request information on all VLANs. They can also request information on a subset of VLANs.
Number of configuration revision errors	Number of revision errors.   Whenever you define a new VLAN, delete an existing one, suspend or resume an existing VLAN, or modify the parameters on an existing VLAN, the configuration revision number of the device increments.   Revision errors increment whenever the device receives an advertisement whose revision number matches the revision number of the device, but the MD5 digest values do not match. This error means that the VTP password in the two devices is different or that the devices have different configurations.   These errors indicate that the device is filtering incoming advertisements, which causes the VTP database to become unsynchronized across the network.
Number of configuration digest errors	Number of MD5 digest errors.   Digest errors increment whenever the MD5 digest in the summary packet and the MD5 digest of the received advertisement calculated by the device do not match. This error usually means that the VTP password in the two devices is different. To solve this problem, make sure the VTP password on all devices is the same.   These errors indicate that the device is filtering incoming advertisements, which causes the VTP database to become unsynchronized across the network.
Number of V1 summary errors	Number of Version 1 errors.   Version 1 summary errors increment whenever a device in VTP V2 mode receives a VTP Version 1 frame. These errors indicate that at least one neighboring device is either running VTP Version 1 or VTP Version 2 with V2-mode disabled. To solve this problem, change the configuration of the devices in VTP V2-mode to disabled.
Join Transmitted	Number of VTP pruning messages sent on the trunk.


Field	Description
Join Received	Number of VTP pruning messages received on the   trunk.
Summary Advts Received from non-pruning-capable   device	Number of VTP summary messages received on the   trunk from devices that do not support pruning.

This is an example of output from the show vtp status command. The table that follows describes each field in the display.

```
Device> show vtp status
VTP Version capable : 1 to 3
VTP version running : 1
VTP Domain Name :
VTP Pruning Mode : Disabled
VTP Traps Generation : Disabled
Device ID : 2037.06ce.3580
Configuration last modified by 192.168.1.1 at 10-10-12 04:34:02
Local updater ID is 192.168.1.1 on interface LIINO (first layer3 interface found
)
Feature VLAN:

VTP Operating Mode : Server
Maximum VLANs supported locally : 1005
Number of existing VLANs : 7
Configuration Revision : 2
MD5 digest : 0xA0 0xA1 0xFE 0x4E 0x7E 0x5D 0x97 0x41
```

Table 219: show vtp status Field Descriptions

Field	Description
VTP Version capable	Displays the VTP versions that are capable of   operating on the device.
VTP Version running	Displays the VTP version operating on the device. By   default, the device implements Version 1 but can be   set to Version 2.
VTP Domain Name	Name that identifies the administrative domain for   the device.
VTP Pruning Mode	Displays whether pruning is enabled or disabled.   Enabling pruning on a VTP server enables pruning   for the entire management domain. Pruning restricts   flooded traffic to those trunk links that the traffic must   use to access the appropriate network devices.
VTP Traps Generation	Displays whether VTP traps are sent to a network   management station.
Device ID	Displays the MAC address of the local device.


Field	Description
Configuration last modified	Displays the date and time of the last configuration modification. Displays the IP address of the device that caused the configuration change to the database.
VTP Operating Mode	Displays the VTP operating mode, which can be server, client, or transparent.   Server - A device in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on it. The device guarantees that it can recover all the VLAN information in the current VTP database from NVRAM after reboot. By default, every device is a VTP server.   Note   The device automatically changes from VTP server mode to VTP client mode if it detects a failure while writing the configuration to NVRAM and cannot return to server mode until the NVRAM is functioning.   Client-A device in VTP client mode is enabled for VTP, can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on it. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.   Transparent-A device in VTP transparent mode is disabled for VTP, does not send or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The device receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.
Maximum VLANs Supported Locally	Maximum number of VLANs supported locally.
Number of Existing VLANs	Number of existing VLANs.
Configuration Revision	Current configuration revision number on this device.
MD5 Digest	A 16-byte checksum of the VTP configuration.

## switchport mode private-vlan

To configure an interface as either a host private-VLAN port or a promiscuous private-VLAN port, use the switchport mode private-vlan command in interface configuration mode. To reset the mode to the appropriate default for the device, use the no form of this command.
switchport mode private-vlan \{host | promiscuous\} no switchport mode private-vlan
Syntax Description secondary VLANs and are either community ports or isolated ports, depending on the VLAN to which they belong.
promiscuous Configures the interface as a private-VLAN promiscuous port. Promiscuous ports are members of private-VLAN primary VLANs.

Command Default
Command Modes
Command History

## Usage Guidelines

A private-VLAN host or promiscuous port cannot be a Switched Port Analyzer (SPAN) destination port. If you configure a SPAN destination port as a private-VLAN host or promiscuous port, the port becomes inactive.

Do not configure private VLAN on ports with these other features:

- Dynamic-access port VLAN membership
- Dynamic Trunking Protocol (DTP)
- Port Aggregation Protocol (PAgP)
- Link Aggregation Control Protocol (LACP)
- Multicast VLAN Registration (MVR)
- Voice VLAN

While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive
A private-VLAN port cannot be a secure port and should not be configured as a protected port.
For more information about private-VLAN interaction with other features, see the software configuration guide for this release.
We strongly recommend that you enable spanning tree Port Fast and bridge-protocol-data-unit (BPDU) guard on isolated and community host ports to prevent STP loops due to misconfigurations and to speed up STP convergence.

If you configure a port as a private-VLAN host port and you do not configure a valid private-VLAN association by using the switchport private-vlan host-association command, the interface becomes inactive.

If you configure a port as a private-VLAN promiscuous port and you do not configure a valid private VLAN mapping by using theswitchport private-vlan mapping command, the interface becomes inactive.

This example shows how to configure an interface as a private-VLAN host port and associate it to primary VLAN 20. The interface is a member of secondary isolated VLAN 501 and primary VLAN 20.

```
(config)# interface gigabitethernet2/0/1
(config-if)# switchport mode private-vlan host
 (config-if)# switchport private-vlan host-association 20 501
 (config-if)# end
```

This example shows how to configure an interface as a private-VLAN promiscuous port and map it to a private VLAN. The interface is a member of primary VLAN 20 and secondary VLANs 501 to 503 are mapped to it.

```
(config)# interface gigabitethernet2/0/1
(config-if)# switchport mode private-vlan promiscuous
 (config-if)# switchport private-vlan mapping 20 501-503
 (config-if)# end
```


## switchport priority extend

To set a port priority for the incoming untagged frames or the priority of frames received by the IP phone connected to the specified port, use the switchport priority extend command in interface configuration mode. To return to the default setting, use the no form of this command.
switchport priority extend \{cos value |trust \} no switchport priority extend

## Syntax Description

## Command Default



$\cos \quad$ Sets the IP phone port to override the IEEE 802.1p priority received from the PC or the attached value device with the specified class of service (CoS) value. The range is 0 to 7 . Seven is the highest priority. The default is 0 .
trust Sets the IP phone port to trust the IEEE 802.1p priority received from the PC or the attached device.

The default port priority is set to a CoS value of 0 for untagged frames received on the port.

Interface configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

When voice VLAN is enabled, you can configure the device to send the Cisco Discovery Protocol (CDP) packets to instruct the IP phone how to send data packets from the device attached to the access port on the Cisco IP Phone. You must enable CDP on the device port connected to the Cisco IP Phone to send the configuration to the Cisco IP Phone. (CDP is enabled by default globally and on all device interfaces.)

You should configure voice VLAN on the device access ports.

This example shows how to configure the IP phone connected to the specified port to trust the received IEEE 802.1 p priority:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport priority extend trust
```

You can verify your settings by entering the show interfaces interface-id switchport privileged EXEC command.

## switchport trunk

To set the trunk characteristics when the interface is in trunking mode, use the switchport trunk command in interface configuration mode. To reset a trunking characteristic to the default, use the no form of this command.
switchport trunk \{allowed vlan vlan-list $\mid$ native vlan vlan-id $\mid$ pruning vlan vlan-list \} no switchport trunk \{allowed vlan |native vlan |pruning vlan\}

## Syntax Description

allowed vlan vlan-list Sets the list of allowed VLANs that can receive and send traffic on this interface in tagged format when in trunking mode. See the Usage Guidelines for the vlan-list choices.
native vlan vlan-id Sets the native VLAN for sending and receiving untagged traffic when the interface is in IEEE 802.1Q trunking mode. The range is 1 to 4094.
pruning vlan vlan-list Sets the list of VLANs that are eligible for VTP pruning when in trunking mode. See the Usage Guidelines for the vlan-list choices.

VLAN 1 is the default native VLAN ID on the port.
The default for all VLAN lists is to include all VLANs.

## Command Modes

## Command History

## Usage Guidelines

Interface configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

The vlan-list format is all | none | [add | remove | except] vlan-atom [,vlan-atom...]:

- all specifies all VLANs from 1 to 4094. This is the default. This keyword is not allowed on commands that do not permit all VLANs in the list to be set at the same time.
- none specifies an empty list. This keyword is not allowed on commands that require certain VLANs to be set or at least one VLAN to be set.
- add adds the defined list of VLANs to those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLANs (VLAN IDs greater than 1005) are valid in some cases.
$\qquad$
Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.
- remove removes the defined list of VLANs from those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLAN IDs are valid in some cases.

Note You can remove extended-range VLANs from the allowed VLAN list, but you cannot remove them from the pruning-eligible list.

- except lists the VLANs that should be calculated by inverting the defined list of VLANs. (VLANs are added except the ones specified.) Valid IDs are from 1 to 1005. Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.
- vlan-atom is either a single VLAN number from 1 to 4094 or a continuous range of VLANs described by two VLAN numbers, the lesser one first, separated by a hyphen.


## Native VLANs:

- All untagged traffic received on an IEEE 802.1Q trunk port is forwarded with the native VLAN configured for the port.
- If a packet has a VLAN ID that is the same as the sending-port native VLAN ID, the packet is sent without a tag; otherwise, the switch sends the packet with a tag.
- The no form of the native vlan command resets the native mode VLAN to the appropriate default VLAN for the device.


## Allowed VLAN:

- To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), Dynamic Trunking Protocol (DTP), and VLAN Trunking Protocol (VTP) in VLAN 1.
- The no form of the allowed vlan command resets the list to the default list, which allows all VLANs.

Trunk pruning:

- The pruning-eligible list applies only to trunk ports.
- Each trunk port has its own eligibility list.
- If you do not want a VLAN to be pruned, remove it from the pruning-eligible list. VLANs that are pruning-ineligible receive flooded traffic.
- VLAN 1, VLANs 1002 to 1005, and extended-range VLANs (VLANs 1006 to 4094) cannot be pruned.


## Examples

This example shows how to configure VLAN 3 as the default for the port to send all untagged traffic:

```
Device> enable
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport trunk native vlan 3
```

This example shows how to add VLANs 1, 2, 5, and 6 to the allowed list:

```
Device> enable
Device(config) # interface gigabitethernet1/0/2
Device(config-if)# switchport trunk allowed vlan add 1,2,5,6
```

This example shows how to remove VLANs 3 and 10 to 15 from the pruning-eligible list:

```
Device> enable
Device(config) # interface gigabitethernet1/0/2
Device(config-if)# switchport trunk pruning vlan remove 3,10-15
```

You can verify your settings by entering the show interfaces interface-id switchport privileged EXEC command.

To add a VLAN and to enter the VLAN configuration mode, use the vlan command in global configuration mode. To delete the VLAN, use the no form of this command.
vlan vlan-id
no vlan vlan-id

Syntax Description
Command Default

Command Modes
Command History
vlan-id ID of the VLAN to be added and configured. The range is 1 to 4094 . You can enter a single VLAN ID, a series of VLAN IDs separated by commas, or a range of VLAN IDs separated by hyphens.

None

Global configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

You can use the vlan vlan-id global configuration command to add normal-range VLANs (VLAN IDs 1 to 1005) or extended-range VLANs (VLAN IDs 1006 to 4094). Configuration information for normal-range VLANs is always saved in the VLAN database, and you can display this information by entering the show vlan privileged EXEC command. If the VTP mode is transparent, VLAN configuration information for normal-range VLANs is also saved in the running configuration file. VLAN IDs in the extended range are not saved in the VLAN database, but they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file.

VTP version 3 supports propagation of extended-range VLANs. VTP versions 1 and 2 propagate only VLANs 1 to 1005 .

When you save the VLAN and VTP configurations in the startup configuration file and reboot the , the configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for VLAN IDs 1 to 1005 use the VLAN database information.

If you enter an invalid VLAN ID, you receive an error message and do not enter VLAN configuration mode.
Entering the vlan command with a VLAN ID enables VLAN configuration mode. When you enter the VLAN ID of an existing VLAN, you do not create a new VLAN, but you can modify VLAN parameters for that VLAN. The specified VLANs are added or modified when you exit the VLAN configuration mode. Only the shutdown command (for VLANs 1 to 1005) takes effect immediately.

Although all commands are visible, the only VLAN configuration command that is supported on extended-range VLANs is remote-span. For extended-range VLANs, all other characteristics must remain at the default state.

These configuration commands are available in VLAN configuration mode. The no form of each command returns the characteristic to its default state:

- are are-number-Defines the maximum number of all-routes explorer (ARE) hops for this VLAN. This keyword applies only to TrCRF VLANs. The range is 0 to 13 . The default is 7 . If no value is entered, 0 is assumed to be the maximum.
- backupcrf-Specifies the backup CRF mode. This keyword applies only to TrCRF VLANs.
- enable-Backup CRF mode for this VLAN.
- disable-Backup CRF mode for this VLAN (the default).
- bridge $\{$ bridge-number |type\}-Specifies the logical distributed source-routing bridge, the bridge that interconnects all logical rings that have this VLAN as a parent VLAN in FDDI-NET, Token Ring-NET, and TrBRF VLANs. The range is 0 to 15 . The default bridge number is 0 (no source-routing bridge) for FDDI-NET, TrBRF, and Token Ring-NET VLANs. The type keyword applies only to TrCRF VLANs and is one of these:
- srb-Ssource-route bridging
- srt—Source-route transparent) bridging VLAN
- exit—Applies changes, increments the VLAN database revision number (VLANs 1 to 1005 only), and exits VLAN configuration mode.
- media-Defines the VLAN media type and is one of these:

Note The supports only Ethernet ports. You configure only FDDI and Token Ring media-specific characteristics for VLAN Trunking Protocol (VTP) global advertisements to other. These VLANs are locally suspended.

- ethernet-Ethernet media type (the default).
- fd-net-FDDI network entity title (NET) media type.
- fddi-FDDI media type.
- tokenring-Token Ring media type if the VTP v2 mode is disabled, or TrCRF if the VTP Version 2 (v) mode is enabled.
- tr-net-Token Ring network entity title (NET) media type if the VTP v2 mode is disabled or TrBRF media type if the VTP v2 mode is enabled.

See the table that follows for valid commands and syntax for different media types.

- name vlan-name-Names the VLAN with an ASCII string from 1 to 32 characters that must be unique within the administrative domain. The default is VLANxxxx where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number.
- no-Negates a command or returns it to the default setting.
- parent parent-vlan-id-Specifies the parent VLAN of an existing FDDI, Token Ring, or TrCRF VLAN. This parameter identifies the TrBRF to which a TrCRF belongs and is required when defining a $\operatorname{TrCRF}$. The range is 0 to 1005. The default parent VLAN ID is 0 (no parent VLAN) for FDDI and Token Ring VLANs. For both Token Ring and TrCRF VLANs, the parent VLAN ID must already exist in the database and be associated with a Token Ring-NET or TrBRF VLAN.
- remote-span-Configures the VLAN as a Remote SPAN (RSPAN) VLAN. When the RSPAN feature is added to an existing VLAN, the VLAN is first deleted and is then recreated with the RSPAN feature. Any access ports are deactivated until the RSPAN feature is removed. If VTP is enabled, the new RSPAN VLAN is propagated by VTP for VLAN IDs that are lower than 1024. Learning is disabled on the VLAN.
- ring ring-number-Defines the logical ring for an FDDI, Token Ring, or TrCRF VLAN. The range is 1 to 4095. The default for Token Ring VLANs is 0 . For FDDI VLANs, there is no default.
- said said-value-Specifies the security association identifier (SAID) as documented in IEEE 802.10. The range is 1 to 4294967294 , and the number must be unique within the administrative domain. The default value is 100000 plus the VLAN ID number.
- shutdown-Shuts down VLAN switching on the VLAN. This command takes effect immediately. Other commands take effect when you exit VLAN configuration mode.
- state-Specifies the VLAN state:
- active means the VLAN is operational (the default).
- suspend means the VLAN is suspended. Suspended VLANs do not pass packets.
- ste ste-number-Defines the maximum number of spanning-tree explorer (STE) hops. This keyword applies only to TrCRF VLANs. The range is 0 to 13 . The default is 7 .
- stp type-Defines the spanning-tree type for FDDI-NET, Token Ring-NET, or TrBRF VLANs. For FDDI-NET VLANs, the default STP type is ieee. For Token Ring-NET VLANs, the default STP type is ibm. For FDDI and Token Ring VLANs, the default is no type specified.
- ieee-IEEE Ethernet STP running source-route transparent (SRT) bridging.
- ibm-IBM STP running source-route bridging (SRB).
- auto-STP running a combination of source-route transparent bridging (IEEE) and source-route bridging (IBM).
- tb-vlan1 tb-vlan1-id and tb-vlan2 tb-vlan2-id-Specifies the first and second VLAN to which this VLAN is translationally bridged. Translational VLANs translate FDDI or Token Ring to Ethernet, for example. The range is 0 to 1005 . If no value is specified, 0 (no transitional bridging) is assumed.

Table 220: Valid Commands and Syntax for Different Media Types

Media Type	Valid Syntax
Ethernet	name vlan-name, media ethernet, state $\{$ suspend $\mid$   active $\},$ said said-value, remote-span, tb-vlan1   tb-vlan1-id, tb-vlan2 tb-vlan2-id


Media Type	Valid Syntax		
FDDI	name vlan-name, media fddi, state \{suspend \| active\}, said said-value, ring ring-number, parent parent-vlan-id, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id		
FDDI-NET	name vlan-name, media fd-net, state \{suspend \| active\}, said said-value, bridge bridge-number, stp type \{ieee	ibm	auto\}, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id   If VTP v2 mode is disabled, do not set the stp type to auto.
Token Ring	VTP v 1 mode is enabled. name vlan-name, media tokenring, state \{suspend $\mid$ active $\}$, said said-value, ring ring-number, parent parent-vlan-id, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id		
Token Ring concentrator relay function (TrCRF)	VTP v2 mode is enabled.   name vlan-name, media tokenring, state \{suspend $\mid$ active $\}$, said said-value, ring ring-number, parent parent-vlan-id, bridge type $\{\mathbf{s r b} \mid \mathbf{s r t}\}$, are are-number, ste ste-number, backupcrf \{enable \| disable \}, tb-vlan1 $t b$-vlan1-id, tb-vlan2 $t b$-vlan2-id		
Token Ring-NET	VTP v 1 mode is enabled. name vlan-name, media tr-net, state \{suspend \| active\}, said said-value, bridge bridge-number, stp type $\{\mathbf{i e e e} \mid \mathbf{i b m}\}$, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id		
Token Ring bridge relay function (TrBRF)	VTP v2 mode is enabled.   name vlan-name, media tr-net, state \{suspend \| active\}, said said-value, bridge bridge-number, stp type \{ieee	ibm	auto\}, tb-vlan1 tb-vlan1-id, tb-vlan2 tb-vlan2-id

The following table describes the rules for configuring VLANs:

## Table 221: VLAN Configuration Rules

$\left.\begin{array}{|l|l|}\hline \text { Configuration } & \text { Rule } \\ \hline \begin{array}{l}\text { VTP v2 mode is enabled, and you are configuring a } \\ \text { TrCRF VLAN media type. }\end{array} & \begin{array}{l}\text { Specify a parent VLAN ID of a TrBRF that already } \\ \text { exists in the database. } \\ \text { Specify a ring number. Do not leave this field blank. } \\ \text { Specify unique ring numbers when TrCRF VLANs } \\ \text { have the same parent VLAN ID. Only one backup } \\ \text { concentrator relay function (CRF) can be enabled. }\end{array} \\ \hline \begin{array}{l}\text { VTP v2 mode is enabled, and you are configuring } \\ \text { VLANs other than TrCRF media type. }\end{array} & \text { Do not specify a backup CRF. } \\ \hline \text { VTP v2 mode is enabled, and you are configuring a } & \text { Specify a bridge number. Do not leave this field blank. } \\ \text { TrBRF VLAN media type. } & \text { No VLAN can have an STP type set to auto. } \\ \hline \text { VTP v1 mode is enabled. } & \begin{array}{l}\text { This rule applies to Ethernet, FDDI, FDDI-NET, } \\ \text { Token Ring, and Token Ring-NET VLANs. }\end{array} \\ \hline \begin{array}{l}\text { Add a VLAN that requires translational bridging } \\ \text { (values are not set to zero). }\end{array} & \begin{array}{l}\text { The translational bridging VLAN IDs that are used } \\ \text { must already exist in the database. }\end{array} \\ \text { The translational bridging VLAN IDs that a } \\ \text { configuration points to must also contain a pointer to } \\ \text { the original VLAN in one of the translational bridging } \\ \text { parameters (for example, Ethernet points to FDDI, } \\ \text { and FDDI points to Ethernet). } \\ \text { The translational bridging VLAN IDs that a } \\ \text { configuration points to must be different media types } \\ \text { than the original VLAN (for example, Ethernet can } \\ \text { point to Token Ring). } \\ \text { If both translational bridging VLAN IDs are } \\ \text { configured, these VLANs must be different media } \\ \text { types (for example, Ethernet can point to FDDI and } \\ \text { Token Ring). }\end{array}\right\}$

## Examples

This example shows how to add an Ethernet VLAN with default media characteristics. The default includes a vlan-name of VLAN $x x x x$, where $x x x x x$ represents four numeric digits (including leading zeros) equal to the VLAN ID number. The default media is ethernet; the state is active. The default said-value is 100000 plus the VLAN ID; the mtu-size variable is 1500 ; the stp-type is ieee. When you enter the exit VLAN configuration command, the VLAN is added if it did not already exist; otherwise, this command does nothing.

This example shows how to create a new VLAN with all default characteristics and enter VLAN configuration mode:

[^18](config) \#

This example shows how to create a new extended-range VLAN with all the default characteristics, to enter VLAN configuration mode, and to save the new VLAN in the startup configuration file:

```
(config)# vlan 2000
(config-vlan)# end
copy running-config startup config
```

You can verify your setting by entering the show vlan privileged EXEC command.

## vlan dot1q tag native

To enable tagging of native VLAN frames on all IEEE 802.1Q trunk ports, use the vlan dot1q tag native command in global configuration mode. To return to the default setting, use the no form of this command.
vlan dot1q tag native
no vlan dot1q tag native
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default
Command Modes

Command History

The IEEE 802.1Q native VLAN tagging is disabled.
Global configuration

Release	Modification
Cisco IOS XE Everest 16.5.1a	This command was introduced.

When enabled, native VLAN packets going out of all IEEE 802.1Q trunk ports are tagged.
When disabled, native VLAN packets going out of all IEEE 802.1Q trunk ports are not tagged.
For more information about IEEE 802.1Q tunneling, see the software configuration guide for this release.

## Examples

This example shows how to enable IEEE 802.1Q tagging on native VLAN frames:

```
Device# configure terminal
Device (config)# vlan dotlq tag native
Device (config)# end
```

You can verify your settings by entering the show vlan dot1q tag native privileged EXEC command.

## vtp (global configuration)

To set or modify the VLAN Trunking Protocol (VTP) configuration characteristics, use the vtp command in global configuration mode. To remove the settings or to return to the default settings, use the no form of this command.
vtp \{domain domain-name|file filename |interface interface-name [only]|mode \{client |off|server | transparent $\}$ [\{mst | unknown | vlan\}] | password password [\{hidden | secret\}]| pruning | version number $\}$
no vtp $\{$ file $\mid$ interface $\mid$ mode [\{client $\mid$ off $\mid$ server $\mid$ transparent $\}$ ] [\{mst $\mid$ unknown $\mid$ vlan $\}] \mid$ password $\mid$ pruning | version $\}$

## Syntax Description

\(\left.$$
\begin{array}{ll}\hline \begin{array}{l}\text { domain } \\
\text { domain-name }\end{array} & \begin{array}{l}\text { Specifies the VTP domain name, an ASCII string from } 1 \text { to } 32 \text { characters that identifies } \\
\text { the VTP administrative domain for the device. The domain name is case sensitive. }\end{array}
$$ <br>

\hline file filename \& Specifies the Cisco IOS file system file where the VTP VLAN configuration is stored.\end{array}\right]\)| interface <br> interface-name | Specifies the name of the interface providing the VTP ID updated for this device. |
| :--- | :--- |
| only | (Optional) Uses only the IP address of this interface as the VTP IP updater. |
| mode | Specifies the VTP device mode as client, server, or transparent. |
| client | Places the device in VTP client mode. A device in VTP client mode is enabled for <br> VTP, and can send advertisements, but does not have enough nonvolatile storage to <br> store VLAN configurations. You cannot configure VLANs on a VTP client. . <br> are configured on another device in the domain that is in server mode. When VTP <br> client starts up, it does not send VTP advertisements until it receives advertisements <br> to initialize its VLAN database. |
| off | Places the device in VTP off mode. A device in VTP off mode functions the same as <br> a VTP transparent device except that it does not forward VTP advertisements on trunk <br> ports. |
| server | Places the device in VTP server mode. A device in VTP server mode is enabled for <br> VTP and sends advertisements. You can configure VLANs on the device. The device <br> can recover all the VLAN information in the current VTP database from nonvolatile <br> storage after reboot. |
| transparent | Places the device in VTP transparent mode. A device in VTP transparent mode is <br> disabled for VTP, does not send advertisements or learn from advertisements sent by <br> other devices, and cannot affect VLAN configurations on other devices in the network. <br> The device receives VTP advertisements and forwards them on all trunk ports except <br> the one on which the advertisement was received. |
| When VTP mode is transparent, the mode and domain name are saved in the device <br> running configuration file, and you can save them in the device startup configuration <br> file by entering the copy running-config startup config privileged EXEC command. |  |
| (Optional) Sets the mode for the multiple spanning tree (MST) VTP database (only <br> VTP Version 3). |  |


unknown	(Optional) Sets the mode for unknown VTP databases (only VTP Version 3).
vlan	(Optional) Sets the mode for VLAN VTP databases. This is the default (only VTP   Version 3).
password   password	Sets the administrative domain password for the generation of the 16-byte secret value   used in MD5 digest calculation to be sent in VTP advertisements and to validate   received VTP advertisements. The password can be an ASCII string from 1 to 32   characters. The password is case sensitive.
hidden	(Optional) Specifies that the key generated from the password string is saved in the   VLAN database file. When the hidden password is entered, you need to reenter the   password to issue a command in the domain. This keyword is supported only in VTP   Version 3.
secret	(Optional) Allows the user to directly configure the password secret key (only VTP   Version 3).
pruning	Enables VTP pruning on the device.
version number	Sets the VTP Version to Version 1, Version 2, or Version 3.

Command Default The default filename is flash:vlan.dat.
The default mode is server mode and the default database is VLAN.
In VTP Version 3, for the MST database, the default mode is transparent.
No domain name or password is defined.
No password is configured.
Pruning is disabled.
The default version is Version 1.

| Command Modes |  |  |
| :--- | :--- | :--- | :--- |
| $\overline{\text { Command History }}$ | Relobal configuration |  |
|  | Relisco IOS XE Everest 16.5.1a | Modification |
|  |  | This command was introduced. |

Usage Guidelines When you save VTP mode, domain name, and VLAN configurations in the device startup configuration file and reboot the device, the VTP and VLAN configurations are selected by these conditions:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for VLAN IDs 1 to 1005 use the VLAN database information.

The vtp file filename cannot be used to load a new database; it renames only the file in which the existing database is stored.

Follow these guidelines when configuring a VTP domain name:

- The device is in the no-management-domain state until you configure a domain name. While in the no-management-domain state, the device does not send any VTP advertisements even if changes occur to the local VLAN configuration. The device leaves the no-management-domain state after it receives the first VTP summary packet on any port that is trunking or after you configure a domain name by using the vtp domain command. If the device receives its domain from a summary packet, it resets its configuration revision number to 0 . After the device leaves the no-management-domain state, it cannot be configured to reenter it until you clear the NVRAM and reload the software.
- Domain names are case-sensitive.
- After you configure a domain name, it cannot be removed. You can only reassign it to a different domain.

Follow these guidelines when setting VTP mode:

- The no vtp mode command returns the device to VTP server mode.
- The vtp mode server command is the same as no vtp mode except that it does not return an error if the device is not in client or transparent mode.
- If the receiving device is in client mode, the client device changes its configuration to duplicate the configuration of the server. If you have devices in client mode, be sure to make all VTP or VLAN configuration changes on a device in server mode, as it has a higher VTP configuration revision number. If the receiving device is in transparent mode, the device configuration is not changed.
- A device in transparent mode does not participate in VTP. If you make VTP or VLAN configuration changes on a device in transparent mode, the changes are not propagated to other devices in the network.
- If you change the VTP or VLAN configuration on a device that is in server mode, that change is propagated to all the devices in the same VTP domain.
- The vtp mode transparent command disables VTP from the domain but does not remove the domain from the device.
- In VTP Versions 1 and 2, the VTP mode must be transparent for VTP and VLAN information to be saved in the running configuration file.
- With VTP Versions 1 and 2, you cannot change the VTP mode to client or server if extended-range VLANs are configured on the switch. Changing the VTP mode is allowed with extended VLANs in VTP Version 3.
- The VTP mode must be transparent for you to add extended-range VLANs or for VTP and VLAN information to be saved in the running configuration file.
- VTP can be set to either server or client mode only when dynamic VLAN creation is disabled.
- The vtp mode off command sets the device to off. The no vtp mode off command resets the device to the VTP server mode.

Follow these guidelines when setting a VTP password:

- Passwords are case sensitive. Passwords should match on all devices in the same domain.
- When you use the no vtp password form of the command, the device returns to the no-password state.
- The hidden and secret keywords are supported only in VTP Version 3. If you convert from VTP Version 2 to VTP Version 3, you must remove the hidden or secret keyword before the conversion.

Follow these guidelines when setting VTP pruning:

- VTP pruning removes information about each pruning-eligible VLAN from VTP updates if there are no stations belonging to that VLAN.
- If you enable pruning on the VTP server, it is enabled for the entire management domain for VLAN IDs 1 to 1005 .
- Only VLANs in the pruning-eligible list can be pruned.
- Pruning is supported with VTP Version 1 and Version 2.

Follow these guidelines when setting the VTP version:

- Toggling the Version 2 (v2) mode state modifies parameters of certain default VLANs.
- Each VTP device automatically detects the capabilities of all the other VTP devices. To use Version 2, all VTP devices in the network must support Version 2; otherwise, you must configure them to operate in VTP Version 1 mode.
- If all devices in a domain are VTP Version 2-capable, you only need to configure Version 2 on one device; the version number is then propagated to the other Version-2 capable devices in the VTP domain.
- If you are using VTP in a Token Ring environment, VTP Version 2 must be enabled.
- If you are configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, you must use Version 2.
- If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use Version 1.
- In VTP Version 3, all database VTP information is propagated across the VTP domain, not only VLAN database information.
- Two VTP Version 3 regions can only communicate over a VTP Version 1 or VTP Version 2 region in transparent mode.

You cannot save password, pruning, and version configurations in the device configuration file.

## Examples

This example shows how to rename the filename for VTP configuration storage to vtpfilename:

```
Device(config)# vtp file vtpfilename
```

This example shows how to clear the device storage filename:

```
Device(config)# no vtp file vtpconfig
Clearing device storage filename.
```

This example shows how to specify the name of the interface providing the VTP updater ID for this device:

```
Device(config)# vtp interface gigabitethernet
```

This example shows how to set the administrative domain for the device:

```
Device(config) \# vtp domain OurDomainName
```

This example shows how to place the device in VTP transparent mode: Device(config) \# vtp mode transparent

This example shows how to configure the VTP domain password:

```
Device(config) # vtp password ThisIsOurDomainsPassword
```

This example shows how to enable pruning in the VLAN database:

```
Device(config)# vtp pruning
Pruning switched ON
```

This example shows how to enable Version 2 mode in the VLAN database:

```
Device(config)# vtp version 2
```

You can verify your settings by entering the show vtp status privileged EXEC command.

## vtp (interface configuration)

To enable the VLAN Trunking Protocol (VTP) on a per-port basis, use the vtp command in interface configuration mode. To disable VTP on the interface, use the no form of this command.
vtp
no $\mathbf{v t p}$
Syntax Description
This command has no arguments or keywords.

## Command Modes

Command History

Interface configuration

Release Modification
Cisco IOS XE Everest 16.5.1a
This command was introduced.
$\overline{\text { Usage Guidelines }}$ Enter this command only on interfaces that are in trunking mode.

## Examples

This example shows how to enable VTP on an interface:

```
Device> enable
Device(config-if)# vtp
```

This example shows how to disable VTP on an interface:
Device(config-if) \# no vtp

## vtp primary

To configure a device as the VLAN Trunking Protocol (VTP) primary server, use the vtp primary command in privileged EXEC mode.

	vtp primary $[\{\mathbf{m s t} \mid$ vlan $\}][$ force $]$   Syntax Description   mst	(Optional) Configures the device as the primary VTP server for the   multiple spanning tree (MST) feature.
	vlan	(Optional) Configures the device as the primary VTP server for VLANs.
force	(Optional) Configures the device to not check for conflicting devices   when configuring the primary server.	


| Command Default The device is a VTP secondary server.  <br> Command Modes Privileged EXEC  <br> Command History Release Modification <br>  Cisco IOS XE Everest 16.5.1a This command was introduced. |  |
| :--- | :--- | :--- |

## Usage Guidelines

A VTP primary server updates the database information and sends updates that are honored by all devices in the system. A VTP secondary server can only back up the updated VTP configurations received from the primary server to NVRAM.

By default, all devices come up as secondary servers. Primary server status is needed only for database updates when the administrator issues a takeover message in the domain. You can have a working VTP domain without any primary servers.

Primary server status is lost if the device reloads or domain parameters change.

## Examples

This example shows how to configure the device as the primary VTP server for VLANs:

```
Device> enable
Device# vtp primary vlan
Setting device to VTP TRANSPARENT mode.
```

You can verify your settings by entering the show vtp status privileged EXEC command.


[^0]:    Router (config-router-lisp-serv-ipv4) \# use-petr 10.1.1.1 priority 1 weight 100
    Router (config-router-lisp-serv-ipv4) \# use-petr 10.1.2.1 priority 2 weight 100

[^1]:    Device\# cts change-password server 192.168 .2 .288 a-id ffef

[^2]:    Device\# show cts sxp connections

[^3]:    Device\# show ip interface gigabitethernet 1/0/1

[^4]:    Device\# show interfaces gigabitethernet1/1/1 transceiver properties
    Name : Gil/1/1
    Administrative Speed: auto

[^5]:    Command Modes

[^6]:    Device(config) \#router bgp 64800

[^7]:    Device(config) \#router eigrp virtual-name
    Device(config-router) \#address-family ipv4 autonomous-system 4453

[^8]:    Device(config-if) \# switchport port-security mac-address sticky 0000.0000.000f Device(config-if) \# end

[^9]:    Usage Guidelines
    The username command provides username or password authentication, or both, for login purposes only.

[^10]:    hostname server_1

[^11]:    Examples switch.

    ```
 (config)# switch 2 provision WS-xxxx
 (config) # end
    ```

[^12]:    found aom id: 391

[^13]:    Device(config)\# system env temperature threshold yellow 15 Device(config) \#

[^14]:    Device (config) \# tftp-server flash flash:2:dirt/gate/c3640-i-mz

[^15]:    Examples This example shows how to rotate all the in-memory trace logs of the processes running on the switch since the last one day:
    \# request platform software trace slot switch active R0 archive last 1 days target flash:test

[^16]:    Usage Guidelines
    The undebug sw-vlan vtp command is the same as the no debug sw-vlan vtp command.
    If no additional parameters are entered after the pruning keyword, VTP pruning debugging messages appear. They are generated by the VTP_PRUNING_LOG_NOTICE, VTP_PRUNING_LOG_INFO, VTP_PRUNING_LOG_DEBUG, VTP_PRUNING_LOG_ALERT, and VTP_PRUNING_LOG_WARNING macros in the VTP pruning code.

    When you enable debugging on a switch stack, it is enabled only on the active switch. To debug a specific stack member, you can start a CLI session from the active switch by using the session switch stack-member-number privileged EXEC command.

[^17]:    Remote SPAN VLANs

[^18]:    (config) \# vlan 200
    (config-vlan)\# exit

